
Cut-First Branch-and-Price-Second for the Capacitated Arc-Routing Problem

Bode Claudiaa, Stefan Irnicha

aChair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

This paper presents the first full-fledged branch-and-price (bap) algorithm for the capacitated arc-routing
problem (CARP). Prior exact solution techniques either rely on cutting planes or the transformation of
the CARP into a node-routing problem. The drawbacks are either models with inherent symmetry, dense
underlying networks, or a formulation where edge flows in a potential solution do not allow the reconstruction
of unique CARP tours. The proposed algorithm circumvents all these drawbacks by taking the beneficial
ingredients from existing CARP methods and combining them in a new way. The first step is the solution
of the one-index formulation of the CARP in order to produce strong cuts and an excellent lower bound.
It is known that this bound is typically stronger than relaxations of a pure set-partitioning CARP model.
Such a set-partitioning master program results from a Dantzig-Wolfe decomposition. In the second phase,
the master program is initialized with the strong cuts, CARP tours are iteratively generated by a pricing
procedure, and branching is required to produce integer solutions. This is a cut-first bap-second algorithm
and its main function is, in fact, the splitting of edge flows into unique CARP tours.

Key words: transportation: vehicle routing, integer programming: cutting-plane and branch-and-price
algorithm.

1. Introduction

The capacitated arc-routing problem (CARP) is the basic multiple-vehicle arc-routing problem and has
applications in waste collection, postal delivery, winter services such as snow plowing and salt gritting, meter
reading, school bus routing and more. It was first introduced by Golden and Wong (1981) and has received
a lot of attention since then; see for instance the edited book by Dror (2000) and the annotated bibliography
by Corberán and Prins (2010).

This paper presents the first full-fledged branch-and-price (bap) algorithm for the CARP. Prior exact
solution techniques either rely on cutting planes or the transformation of the CARP into a node-routing
problem. As already pointed out by Letchford and Oukil (2009), the drawbacks are either models with
inherent symmetry, dense underlying networks, or a formulation where edge flows in a potential solution
do not allow the reconstruction of unique CARP tours. The proposed algorithm circumvents all these
drawbacks by taking the beneficial ingredients from existing CARP methods and combining them in a new
way. The first step is the solution of the one-index formulation of the CARP in order to produce strong
cuts and an excellent lower bound. It is known that this bound is typically stronger than relaxations of
a pure set-partitioning CARP model. Such a set-partitioning master program results from Dantzig-Wolfe
decomposition. In the second phase, the master program is initialized with the strong cuts, CARP tours are
iteratively generated by a pricing procedure, and branching is required to produce integer solutions. This
is a cut-first bap-second algorithm and its main function is, in fact, the splitting of edge flows into unique
CARP tours.

Email addresses: claudia.bode@uni-mainz.de (Bode Claudia), irnich@uni-mainz.de (Stefan Irnich)

Technical Report LM-2011-03 (revised) December 21, 2011

The novelty of our approach comprises the following aspects: First, pricing of CARP tours is fast because
it can be performed on the original network that is sparse for real-world instances. A key property for not
being forced to use a transformed network is that deadheading variables can be guaranteed to have non-
negative reduced cost. The addition of dual-optimal inequalities (Ben Amor et al., 2006) to the column
generation master program is the device to ensure non-negativity. Second, in a CARP solution edges might
be traversed more than once. This creates the problem that not all solutions with integer flows on edges
impose integer path variables in the master problem. Therefore, a new hierarchical branching scheme is
developed that is able to finally guarantee integer CARP solutions while being compatible with the pricing
algorithm.

For a formal definition of the CARP, we assume an undirected graph G = (V,E) with node set V and
edge set E. Non-negative integer demands qe ≥ 0 are located on edges e ∈ E. Those edges with positive
demand form the subset ER ⊂ E of required edges that have to be serviced exactly once. A fleet K of |K|
homogeneous vehicles stationed at depot d ∈ V with capacity Q is given. The problem is to find minimum
cost vehicle tours which start and end at the depot d, service all required edges exactly once, and respect
the vehicle capacity Q. The tour costs consist of service costs cserve for required edges e that are serviced
and deadheading cost ce whenever an edge e is traversed without servicing.

Throughout the paper we use the following standard notation. For any subset S ⊆ V we denote by δ(S)
the set of edges with exactly one endpoint in S and by δR(S) = δ(S)∩ER. For the sake of brevity, we write
δ(i) instead of δ({i}). E(S) is the set of edges with both endpoints in S and ER(S) = E(S) ∩ER. For any
subset F ⊆ E and any parameter or variable y, let be y(F) =

∑
e∈F ye.

The remainder of this paper is structured as follows. Section 2 reviews existing exact approaches for
the CARP. Section 3 describes the Dantzig-Wolfe decomposition. The key components (cutting, pricing,
branching) of the bap algorithm and their implementation are described in Section 4. Section 5 analyzes the
interplay between cycle elimination and branching. Computational results in Section 6 show the capability
of the new approach. Final conclusions are drawn in Section 7.

2. Review of Models and Methods

In this section, we outline successful MIP-based exact algorithms for the CARP that have been presented
in the literature. Two types of approaches can be distinguished: Full exact methods determine an optimal
integer solution and show optimality by proving that its cost is a lower bound. Methods that use compact
MIP models with aggregated variables (see below) also provide a lower bound, but are not able to determine
a solution to the CARP. Instead, optimality is proved with the help of a heuristic whenever the heuristic
solution matches the lower bound.

Some authors (e.g. Belenguer and Benavent, 1998; Longo et al., 2006) assume that |K| is just a lower
bound on the fleet size, others (e.g. Belenguer and Benavent, 1998) fix the number |K| of vehicles. We also
assume a fixed fleet size with |K| vehicles, but point out that this assumption can affect the strength of the
lower bounds and the computing times.

2.1. Node-Routing Transformation
Several researchers developed and applied transformations of arc-routing problems into node-routing

problems (Pearn et al., 1987; Longo et al., 2006; Baldacci and Maniezzo, 2006). These approaches transform
each required edge of the CARP into two or three associated nodes so that the number of nodes in the
capacitated vehicle-routing problem (CVRP) is 2|ER| + 1 or 3|ER| + 1, respectively. The resulting CVRP
instance is then solved with any CVRP algorithm.

Exact algorithms for the CVRP have been intensively studied in the past. The currently most successful
algorithms are based on branch-and-cut (Lysgaard et al., 2004), branch-and-price-and-cut (Fukasawa et al.,
2006), and a set-partitioning and cut-generation based approach that finally applies a standard IP solver
(Baldacci et al., 2010).

A very successful variation of the solution approach of Baldacci et al. (2010), tailored to the CARP,
is the recent work of Bartolini et al. (2011). As a prerequisite, an upper bound ub is required. First, the

2

CARP is transformed into a generalized VRP (GVRP). Here each required edge e ∈ ER is represented by
two nodes ie, je (one for each direction of service) so that any GVRP solution must cover exactly one node of
the cluster {ie, je}. Second, an extended set covering formulation with lifted odd cuts, rounded capacity cuts
(Belenguer and Benavent, 2003), and subset-row inequalities (Jepsen et al., 2008) is solved by a sequence of
lower bounding procedures (producing non-decreasing lower bounds lb1, lb2, lb3, and lb4). Finally, as in the
approach of Baldacci et al. (2010), all feasible CARP routes with reduced cost not exceeding the integrality
gap ub− lb4 are enumerated and a corresponding set-partitioning problem is solved using a MIP solver. In
essence, the method is a VRP method as pricing and enumeration are performed on a transformed network
that is dense and requires the covering of nodes.

Although these approaches are rather successful, Letchford and Oukil (2009) mentioned the following
drawbacks: Even for relatively small CARP instances the resulting VRP is defined over a larger number of
nodes and edges. In particular, the increase in the number of edges can be quadratic as the VRP graph is
complete. As real-world CARP instances are based on street networks with typically very sparse underlying
graphs, this effect is significant. Furthermore, specific graph structures allowing tailored CARP algorithms
get lost by the transformation and the resulting VRP instance might feature further symmetries.

2.2. Two-Index Formulation
Belenguer and Benavent (1998) were the first to develop and analyze the following IP formulation for

the CARP. This formulation is also referred to as sparse or two-index formulation. For every pair of an
edge e and a vehicle k there are service and deadheading variables: xke is equal to 1 if vehicle k services edge
e ∈ ER and 0 otherwise. The variable yke counts the number of times vehicle k traverses edge e ∈ E without
servicing. Auxiliary variables pki for each node i and vehicle k are needed to ensure even node degrees. The
two-index formulation is:

min
∑
k∈K

cserv,>xk +
∑
k∈K

c>yk (1)

s.t.
∑
k∈K

xke = 1 for all e ∈ ER (2)

xk(δR(S)) + yk(δ(S)) ≥ 2xkf for all S ⊆ V \ {d}, f ∈ ER(S), k ∈ K (3)

xk(δR(i)) + yk(δ(i)) = 2pki for all i ∈ V , k ∈ K (4)
q>xk ≤ Q for all k ∈ K (5)

pk ∈ Z|V |+ , xk ∈ {0, 1}|ER|, yk ∈ Z|E|+ for all k ∈ K (6)

The objective (1) is the minimization of all service and deadheading costs. Since each required edge is
serviced exactly once, as stated by (2), service costs cserve have no impact on optimal decisions. The
formulation in (Belenguer and Benavent, 1998) therefore omits service costs. Constraints (3) are the subtour-
elimination constraints (SEC). As discussed in (Belenguer and Benavent, 1998, p. 169), the given SEC still
allow disconnected components being deadheaded. A corresponding infeasible integer solution, denoted as
extended k-route, is not optimal and can be excluded by adding constraints of the form (3) with 2xkf replaced
by 2ykf . The parity constraints (4) ensure that each vehicle can leave a node i after entering. The capacity
constraints are given by (5) and integrality constraints by (6).

The two-index formulation has two major drawbacks: First, the number of variables increases with the
fleet size |K|. Second, the inherent symmetry with respect to the numbering of vehicles lets branch-and-
bound based algorithms perform poorly. The computational results in (Belenguer and Benavent, 2003; Ahr,
2004) show that the two-index formulation can work well for small |K| ≤ 5, but is not suited to solve CARP
instances with a larger fleet.

3

2.3. One-Index Formulation
The one-index formulation, first considered independently by Letchford (1997) and Belenguer and Be-

navent (1998), solely uses aggregated deadheading variables

ye =
∑
k∈K

yke ∈ Z+,

one for each edge e ∈ E.
A formulation with deadheading variables alone seems appealing due to the small number of variables

and, even more important, due to the eliminated symmetry regarding the numbering of the vehicles k ∈ K.
Notably, no IP formulation with aggregated deadheading variables ye ∈ Z+ alone is known for the CARP.
In fact, the integer polyhedron of the following CARP model is a relaxation of the CARP and can therefore
contain infeasible integer solutions (see Belenguer and Benavent, 2003, p. 709). Even worse, a feasible integer
solution to the CARP that is represented by the deadheading variables ye of the one-index formulation is
not helpful. The reconstruction of tours from deadheading variables is NP -hard (and typically also a hard
problem in practice). The bap phase of our solution approach can be interpreted as such a flow decomposition
algorithm.

The usefulness of the one-index formulation is, however, that its LP-relaxation often produces a very
tight lower bound:

min c>y (7)
s.t. y(δ(S)) ≥ 2K(S)− |δR(S)| for all ∅ 6= S ⊆ V \ {d} (8)

y(δ(S)) ≥ 1 for all ∅ 6= S ⊆ V , |δR(S)| odd (9)

y ∈ Z|E|+ (10)

The objective (7) just takes the cost for deadheadings into account as service costs are constant. The
capacity inequalities (8) require that there are at least 2K(S) traversals (services and deadheadings) over
the cutset δ(S). Thus, K(S) is the minimum number of vehicles necessary to serve ER(S) ∪ δR(S) which
can be approximated by dq(ER(S) ∪ δR(S))/Qe and computed exactly by solving a bin-packing problem.
The odd-cut inequalities (9) require at least one deadheading if there is an odd number of required edges in
the cut δ(S).

In combination with a powerful CARP heuristic, the one-index formulation provides a possible exact
algorithm: Only if the heuristic comes across an optimal solution, the lower bound provided by (7)–(10)
might prove optimality (as benchmark problems typically have integral costs, a gap less than one suffices).

Disjoint-path inequalities are another class of valid inequalities first considered by Belenguer and Be-
navent (2003). For the development of our model, it suffices to know that the general form of all valid
inequalities of the one-index formulation is∑

e∈E
desye ≥ rs s ∈ S, (11)

where s is the index referring to a particular inequality, des is the coefficient of edge e in the inequality,
and S the set of all valid inequalities. Some details and references on separation procedures are provided in
Section 4.1 and in the appendix.

2.4. Extended Set-Covering Approach
Gómez-Cabrero et al. (2005) use a set-covering approach in which the standard set covering constraints

are supplemented with the capacity inequalities (8) and odd-cut inequalities (9). As for the one-index
formulation, the focus is on generating an excellent lower bound by solving the LP-relaxation of the model.
As the number of tours and cuts grows exponentially with the size of the instance, both row and column
generation is required. Opposed to our approach, cutting planes are added after a solution to the LP-
relaxation of an initial set-covering model has been computed. Details on pricing out new routes and

4

separating violated cuts will be discussed in comparison with the proposed cut-first bap-second approach in
Section 4.2.

Let cr indicate the cost of a route r ∈ Ω and let x̄er ∈ {0, 1} and ȳer ∈ Z+ be the number of times
that route r services and deadheads through edge e, respectively. The extended set-covering model for the
CARP has binary decision variables λr for each route r ∈ Ω and is defined as follows:

min
∑
r∈Ω

crλr (12)

s.t.
∑
r∈Ω

x̄erλr ≥ 1 for all e ∈ ER (13)∑
r∈Ω

dsrλr ≥ rs for all s ∈ S (14)

λr ∈ {0, 1} for all r ∈ Ω (15)

The extension to the standard set-covering model (12), (13) and (15) is the addition of transformed cuts
(14) derived from (11), i.e., the constraints of the one-index formulation. Herein, dsr is the coefficient of the
transformed cut s ∈ S for route r, which is dsr =

∑
e∈E desȳer.

Gómez-Cabrero et al. (2005) allow non-elementary tours in the sense that a tour may service a required
edge more than once. This relaxation makes pricing out new tours a relatively easy problem (pseudo
polynomial). Using 2-loop elimination techniques, first proposed for the CARP in (Benavent et al., 1992),
massive cycling on service edges can be prevented. The consequence of allowing non-elementary tours is
however that coefficients x̄er of tours are not necessarily binary, but can be non-negative integers. With these
additional tour variables in the set-covering formulation, the lower bound of the LP-relaxation is weakened.

However, the bounds obtained with the LP-relaxation of (12)–(15) sometimes outperform those of the
one-index formulation. The approach is therefore attractive but incomplete as Gómez-Cabrero et al. (2005)
do not present a branching scheme which is in general needed to determine an optimal integer solution. The
devising of such a branching scheme is one of the major contributions of this paper.

Another set covering-based solution approach was presented, discussed, and empirically analyzed by
Letchford and Oukil (2009). The main focus of this paper is on the impact that elementary pricing has
on lower bounds. The authors neither extend their set-covering formulation with valid cuts, nor devise a
branching scheme to produce integer CARP solutions. The final conclusion that can be drawn from the paper
is that elementary routes improve the lower bounds at the cost of an dramatic increase in computation times.
Comparing the results of (Letchford and Oukil, 2009) and (Gómez-Cabrero et al., 2005), the contribution
of elementary pricing to the quality of the lower bounds is on average smaller than the impact of the cuts.

3. Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is one of the most successful techniques when it comes to solving vehicle
and crew routing and scheduling problems (Desaulniers et al., 2005; Lübbecke and Desrosiers, 2005). The
advantages of solving the resulting integer master program follow from (i) a typically stronger lower bound,
(ii) the elimination of symmetry in vehicles or crew members, and (iii) the possibility to handle non-linear
cost structures for routes and schedules. In the CARP case the first two aspects apply.

In the following, we propose the decomposition of the two-index formulation (1)–(6) together with the
valid cuts (11). As in other routing problems, we assume that the covering/partitioning constraints (2)
are the coupling constraints. Additionally, the valid cuts (11) (or any subset of active cuts) are coupling
constraints.

3.1. Column-Generation Formulation
First we analyze the domain D = {(x, y, p) : fulfilling (3)–(6)} in order to describe the general structure

of the pricing problem as well as the extreme points of D that correspond to the variables of the column-
generation formulation a.k.a. extensive formulation (see Lübbecke and Desrosiers, 2005). The domain D is

5

separable by vehicle (index k) and can therefore be described as the cartesian product of domains Dk =
{(xk, yk, pk) : that fulfill (3)–(6)} for k ∈ K. As vehicles are assumed identical in the CARP, all domains Dk

are identical.
Let X = conv(Dk) be the polyhedron given by the convex hull of integral points in Dk. X consists of

all convex combinations of its extreme points plus all non-negative linear combinations of its extreme rays
(Schrijver, 2003). For the sake of simplicity, we argue with the well-studied directed case (Ahuja et al., 1993)
to describe what extreme points and rays of X are in the CARP case.

Modeling constrained directed shortest paths can be done on directed networks, where the nodes represent
states (combinations of resource consumptions and nodes), and arcs connect those states resulting from
feasible movements (see Irnich and Desaulniers, 2005). When modeling constrained shortest paths, the
depot is typically split into a source and a sink node, one unit of flow is sent from source to sink, and flow
conservation must hold in all nodes. Here, the set of extreme points consists of all efficient feasible routes.
The attribute efficient means that the route does not deadhead along a cycle in G. Such a cycle corresponds
to a ray of X. Extreme rays are the simple deadheading cycles in G. Simple means that all nodes of the
cycle have degree 2. Thus, any route is composed of an efficient route plus a non-negative combination
(possibly null) of simple cycles.

It is clear that optimal solutions to the CARP do not include routes r with deadheading cycles. Hence,
only efficient routes are needed for the formulation of the master program. However, we will see later on that
the inclusion of simple deadheading cycles of the form Ce = (e, e) for edges e ∈ E is helpful (see Section 3.4).

We use the identical notation for routes r ∈ Ω, coefficients of route costs cr, service x̄er, deadheading
ȳer, and cuts dsr as in Section 2.4. The integer master program (IMP) of the CARP reads as follows:

min
∑
k∈K

c>λk (16)

s.t.
∑
k∈K

∑
r∈Ω

x̄erλ
k
r = 1 for all e ∈ ER (17)∑

k∈K

∑
r∈Ω

dsrλ
k
r ≥ rs for all s ∈ S (18)∑

r∈Ω

1>λkr = 1 for all k ∈ K (19)

λk ≥ 0 (∈ R|Ω|) for all k ∈ K (20)

xke =
∑
r∈Ω

x̄erλ
k
r , yke =

∑
r∈Ω

ȳerλ
k
r for all e ∈ ER/e ∈ E, k ∈ K (21)

xk ∈ {0, 1}|ER|, yk ∈ Z|E|+ for all k ∈ K (22)

The objective (16) minimizes over the costs of all tours. Equalities (17) ensure that every required edge is
covered exactly once. The reformulated cuts are given by (18). Equalities (19) are convexity constraints
and require each vehicle to perform a CARP tour. Constraints (21) couple the variables for service and
deadheading with the tour variables and constraints (22) ensure the integrality of the solution.

The LP-relaxation of (16)–(22) is the master program (MP). As there is no need to keep the coupling
constraints (21) when integrality is relaxed, MP reduces to (16)–(20). Column generation solves MP by
iteratively reoptimizing a restricted master program (RMP) over a proper subset of variables (columns) and
generating missing variables with negative reduced costs.

3.2. Pricing Problem and Relaxations
The task of the pricing problem is exactly the generation of one or several variables with negative reduced

cost or proving that no such variable exists. Let dual prices π = (πe)e∈ER
to the partitioning constraints (17),

β = (βs)s∈S to the cuts (18), and µ = (µk)k∈K to the convexity constraints (19) be given. Omitting the
index k of the vehicle, the pricing problem is

zPP = min c̃serv,>x+ c̃>y − µ s.t. (3)–(6),
6

where reduced costs for service and deadheading can be associated to the edges:

c̃serve = cserve − πe for all e ∈ ER and c̃e = ce −
∑
s∈S

desβs for all e ∈ E. (23)

It is known that the determination of a minimum reduced cost route r ∈ Ω for the CARP is an NP -hard
problem. Even if practically tractable for small and mid-sized instances, computation times can become long
(Letchford and Oukil, 2009). In order to keep the computational effort small, several researchers proposed
the use of non-elementary CARP routes. We follow this idea in our cut-first bap-second approach and briefly
discuss the impact of a relaxed pricing problem.

In contrast to elementary routes, a non-elementary route r services at least one of the required edges
e ∈ ER more than once, i.e., has coefficient x̄er ≥ 2. The effect for the MP is the enlargement of the set Ω
which typically degrades the quality of the lower bound. The advantage is, however, that pricing becomes
an easy problem. The currently most efficient non-elementary pricing algorithm was recently presented by
Letchford and Oukil (2009) and has worst-case complexity O (Q(|E|+ |V | log |V |)), while elementary pricing
is NP -hard in the strong sense. In fact, pricing elementary or non-elementary routes plays with the tradeoff
between the hardness of pricing and the quality of the lower bound resulting in branch-and-bound trees that
can significantly differ in size.

Each route r, either elementary or non-elementary, is given as a point (x̄er, ȳer, p̄vr) satisfying the con-
straints (3)–(6) except for the binary requirements for xer. The point represents a solution in which an
edge e is traversed x̄er + ȳer times. The corresponding multiple copies of these edges form a Eulerian graph.
Since a Eulerian tour is generally not unique, the tour does not automatically imply a particular sequence
in which edges are serviced. In the following, we allow a point being represented by one or several corre-
sponding service sequences. Such a sequence arises naturally when routes are determined as shortest paths
in pricing (see Section 4.2), which is the only efficient method currently available. More precisely, we write
sr = (er1, e

r
2, . . . , e

r
pr) for the sequence in which the required edges er1, er2, . . . , erpr ∈ ER are serviced by route

r.
Whenever consecutively serviced edges are identical, i.e., eri = eri+1 for an index i, the route contains a

so-called 2-loop. The simplest form of a 2-loop is the subroute (i, j, i) on a required edge e = {i, j}. Opposed
to node routing, where the only 2-loops are subpaths (i, j, i), the CARP 2-loops may connect the endpoints
of the required edge e = {i, j} by any deadheading path between these endpoints. Thus, using the concept
of tasks (on edges), in more detail described in (Irnich and Desaulniers, 2005), 2-loop free CARP routes are
routes without task 1-cycles. Pricing 2-loop free routes can be done as efficiently as non-elementary pricing.
We outline this approach in Section 4.2.

3.3. Aggregation
In order to eliminate the symmetry from (16)–(22) with respect to the vehicles, aggregation over k ∈ K

identical subproblems can be applied. The aggregated service, deadheading, and route variables are

xe =
∑
k∈K

xke for e ∈ ER, ye =
∑
k∈K

yke for e ∈ E, λr =
∑
k∈K

λkr for r ∈ Ω.

This leads to the following aggregated integer master program (agg-IMP):

min
∑
r∈Ω

crλr (24)

s.t.
∑
r∈Ω

x̄erλr = 1 for all e ∈ ER,
∑
r∈Ω

dsrλr ≥ rs for all s ∈ S (25)

1>λ = |K|, λ ≥ 0, λ ∈ Z|Ω| (26)

A crucial point in our approach is that aggregation complicates the determination of feasible integer CARP
solutions. We assume that a solution λ̄ of the LP-relaxation of (24)–(26) is given. Clearly, if all variables λ

7

are binary, an integer solution of the CARP is found. However, the development of a branching scheme to
force a solution to become integral is intricate for the CARP (see also Section 4.3). First, it is not possible
to uniquely deduce the disaggregated values of x̄ke and ȳke from λ̄. Moreover, the values of the aggregated
service variables are useless as x̄e = 1 holds. Finally, the aggregated deadheading variables ȳe do not allow
the reconstruction of tours, as already discussed for the one-index formulation in Section 2.3.

A second important aspect is that integrality of all variables ye does not automatically force the tour
variables λ to be binary. This implies that branching on the aggregated original variables is generally
not sufficient to guarantee integrality. It is widely known that branching on the route variables λr has the
disadvantages that it destroys the structure of the pricing problem and branches tend to be highly unbalanced
(Villeneuve and Desaulniers, 2005). The effect is a typically untractable pricing problem together with a
huge branch-and-bound tree. Instead integrality of agg-IMP must be controlled by additional constraints
that are not included in the given formulation (24)–(26).

A first alternative is related to the branching rule that Ryan and Foster (1981) suggested for the LP-
relaxation of a set-partitioning problem: in any fractional solution there exist two rows, say e and e′, such
that the fractional solution does not uniquely determine whether e and e′ are covered by the same or by
different columns. For the formulation agg-MP, it suffices to have

hee′ =
∑
r∈Ω

(x̄erx̄e′r)λr ∈ {0, 1} for all e, e′ ∈ ER.

The variable hee′ indicates whether the two required edges e, e′ ∈ ER are served separately or by the
same tour. These additional binary constraints ensure binary route variables λ. The condition hee′ = 0 is
equivalent to xke +xke′ ≤ 1 for all k ∈ K in the two-index formulation, while hee′ = 1 is equivalent to xke = xke′
for all k ∈ K. Even if these conditions can be expressed in the original variables, they destroy the structure
of the pricing problem.

In our approach we use a second alternative to ensure integrality based on undirected follower information.
Compared to Ryan and Foster’s rule it has the advantage that the structure of the pricing problem can be
preserved. The follower conditions are given by

fee′ =
∑
r∈Ω

fee′rλr ∈ {0, 1} for all e, e′ ∈ ER (27)

where fee′r = |{1 ≤ q < pr : {e, e′} = {erq, erq+1}}| counts how often the two edges e and e′ are serviced in
succession by route r ∈ Ω. Note that f is symmetric, i.e., fee′ = fe′e holds.

The follower information suffices to ensure integrality of the route variables λ as can be seen as follows:
Let H ⊂ ER×ER be the binary relation representing the values hee′ , i.e., (e, e′) ∈ G if and only if hee′ = 1.
Similarly, let F be the follower relation with (e, e′) ∈ F if and only if fee′ = 1. Then H is the reflexive and
transitive closure of F . Hence, binary values of fee′ imply binary values of hee′ , and therewith binary route
variables λr.

The algorithmic procedures that impose follower (fee′ = 1) and non-follower (fee′ = 0) conditions to the
master and pricing problems are explained in Section 4.3.

3.4. Dual-Optimal Inequalities
The equation (23) for the reduced costs of deadheading along the edge e ∈ E shows that for large values

of dual prices βs the reduced cost c̃e might become negative. Thus, an extreme ray corresponding to the
cycle Ce = (e, e) must be priced out.

Conversely, if an additional variable which represents that cycle Ce is already present in agg-MP, its
reduced cost must be non-negative for any RMP solution. This implies that also the reduced costs c̃e are
non-negative because 2c̃e is the reduced cost of the cycle Ce.

The goal of this subsection is to briefly discuss the theoretical implications of adding variables for
cycles Ce. Let ze ≥ 0 be the variable that represents the cycle Ce = (e, e) corresponding to an extreme

8

ray of the pricing polyhedron X. The addition of ze to the LP-relaxation of agg-MP leads to the following
extended aggregated master program (eMP):

min
∑
r∈Ω

crλr +
∑
e∈E

(2ce)ze (28)

s.t.
∑
r∈Ω

x̄erλr = 1 for all e ∈ ER (29)∑
r∈Ω

dsrλr +
∑
e∈E

(2des)ze ≥ rs for all s ∈ S (30)

1>λ = |K| (31)
λ ≥ 0, z ≥ 0 (32)

Obviously, deadheading twice through e produces a cost of 2ce in (28), it has no impact on partitioning (29),
but can have non-zero coefficients 2des in the cuts (30). As Ce is an extreme ray, it has coefficient zero in
the generalized convexity constraint (31).

The additional variables ze allow extended k-routes (Belenguer and Benavent, 1998) in eMP, the primal
problem, and correspond to inequalities in the dual problem. In fact, the presence of ze in eMP gives a dual
inequality of the form ∑

s∈S
desβs ≤ ce for all e ∈ E.

The concept of dual-optimal inequalities was first presented by Ben Amor et al. (2006). In our case, the
positive impact of the dual cuts is twofold:

1. The reduced costs of deadheading edges are non-negative which provides algorithmic advantages in
every pricing iteration as will be shown in Section 4.2.

2. The dual variables βs are stabilized because their values are restricted by the dual-optimal inequalities.
The result is a typically faster convergence of the column generation process (du Merle et al., 1999;
Ben Amor et al., 2006).

4. Cut-First Branch-and-Price-Second Approach

An outline of the overall cut-first bap-second approach is shown in Algorithm 1. Its three key components
are the cut generation procedure, the pricer, and the branching scheme. These components will be explained
in the following.

Algorithm 1: Cut-First Branch-and-Price-Second Algorithm
1. Solve LP-relaxation of one-index formulation (7)–(10) with a cutting-plane algorithm
2. Identify binding cuts (odd cuts, capacity cuts, disjoint-path inequalities DP1, DP2, DP3) and odd/capacity cuts
with rhs>0 for singleton sets S = {i} with i ∈ V \ {d}; the index set of these cuts is S
3. Solve extended aggregated integer master program eMP (28)–(32) with branch-and-price; use set S from step 2 for
valid inequalities (30)

4.1. Cutting
Before starting the bap phase, the one-index formulation (7)–(10) is solved with a cutting-plane algorithm

in order to identify the cuts that are finally binding. Details about the particular separation procedures, the
order in which they are invoked, the number of separated and finally binding cuts, and computation times
are given in the appendix.

Here, we briefly sketch the separation routines. To find violated odd cuts (9) the efficient separation
algorithm of Letchford et al. (2008) is applied. Capacity inequalities (8) are separated using the heuristic
algorithm of Belenguer and Benavent (2003) and an exact MIP-based algorithm of Ahr (2004). In both

9

cases, the minimum number of vehicles K(S) is approximated by dq(ER(S) ∪ δR(S))/Qe. Disjoint-path
inequalities (of type dp1, dp2 and dp3) were presented by Belenguer and Benavent (2003) together with a
rather complex heuristic scheme to separate violated inequalities. We implemented a similar heuristic trying
to be as close as possible to the original algorithm.

Only those cuts that are finally binding in the one-index formulation (plus odd cuts for singleton sets)
are active in the eMP. No additional cuts are added later in the column-generation procedure even if non-
binding or other cuts might become violated in the branch-and-bound tree. Conversely, non-binding cuts
are not eliminated from eMP.

4.2. Pricing
For pricing out non-elementary routes, Letchford and Oukil (2009) proposed labeling algorithms that

work on the original CARP graph G and so exploit the sparsity of the network. They introduce both
an exact and a heuristic pricer that consider labels with identical capacity consumption q in the sequence
q = 0, 1, 2, . . . , Q. Both algorithms have two types of path-extension steps (see Irnich and Desaulniers, 2005,
for details):

1. An extension with service on a required edge e ∈ ER always creates new labels where the consumed
capacity increases by qe > 0. The reduced cost c̃serve is added to the cost component.

2. An extension along a deadheading edge e ∈ E does not alter the capacity consumed and adds the
value c̃e to the cost of the partial path. The dual inequalities of the eMP guarantee that c̃e ≥ 0 holds.
All extensions over deadheading edges (for a given capacity consumption q) can be performed together
using the Dijkstra algorithm.

As a result, the overall time complexity of the exact pricing routine is O (Q(|E|+ |V | log |V |)).
We adapted the presented pricing routines in order to eliminate 2-loops. This technique is straightforward

following the ideas presented in (Houck et al., 1980; Benavent et al., 1992). The resulting worst-case time
complexity is still O (Q(|E|+ |V | log |V |)).

4.3. Branching
Let λ̄ be a fractional solution to eMP at a branch-and-bound node with associated values x̄ and ȳ

(eqs. (21)). To obtain an integer solution a branching scheme has to be devised. Our hierarchical branching
scheme consists of three levels of decisions:

1. branching on node degrees
2. branching on edge flows
3. branching on followers and non-followers

The idea behind this scheme is that decisions from the first two levels are more global decisions that typically
have a stronger impact on the lower bounds. The decisions of the third level are more local, but they alone
guarantee integrality (see Section 3.3).

First, if there exists a node i ∈ V with node degree d̄i = x̄(δ(i)) + ȳ(δ(i)) not even (either fractional
or odd), the two branches x(δ(i)) + y(δ(i)) ≤ 2p and x(δ(i)) + y(δ(i)) ≥ 2p + 2 are created with p ∈ Z+

defined by 2p < d̄i < 2p+ 2. Second, if for an edge e ∈ E the edge flow φ̄e = x̄e + ȳe is fractional, the two
branches xe + ye ≤ bφ̄ec and xe + ye ≥ bφ̄ec+ 1 are generated. Both types of branching decisions only have
an impact on the master program, where a linear constraint must be added. This constraint has the same
form as the cuts (30). Consequently, the equations (23) can still be used to compute the reduced cost of
service and deadheading edges. Third, if for any two required edges e and e′ the follower information f̄ee′
(see eq. (27)) is fractional, two branches with constraints fee′ = 0 and fee′ = 1 are induced. This means that
all routes variables λ not respecting the constraint are removed from eMP. Moreover, no routes violating
these decisions must be priced out. We guarantee compatible routes by modifying the underlying graph on
which pricing is carried out. The network modifications that we describe in Section 4.3.2 do not destroy the
structure of the pricing problem.

10

The specific variable to branch on is determined as follows. For branching on node degrees, we first
compute for each node i ∈ V the distance of d̄i to the next even integer, i.e., min{2p + 2 − d̄i, d̄i − 2p} for
an integer p with 2p ≤ d̄i < 2p+ 2. We select the node i∗ for which

min{2p+ 2− d̄i∗ , d̄i∗ − 2p}
α+ β2p

is maximal. We experimented with different values for α and β. For example, α = 1 and β = 0 chooses the
largest absolute distance of the node degree to the next even integer. In the final implementation we have
chosen α = 6 and β = 1 and ties are broken arbitrarily. The idea of this rule is that the distance of d̄i to
the next even integer is biased towards selecting nodes with a smaller node degree. For branching on edge
flows, an edge e∗ with fractional flow ȳe∗ closest to 0.5 is chosen.

In order to describe the rule for the third level, we partition the set ER of required edges. The active
branch-and-bound constraints induce the follower relation F and the non-follower relation N , i.e., F =
{(e, e′) : fee′ is fixed to 1} and N = {(e, e′) : fee′ is fixed to 0}. The reflexive and transitive closure of F ∪N
defines the partitioning ER = E1

R ∪ E2
R ∪ . . . ∪ E

q
R. The subsets E`

R characterize which required edges are
directly or indirectly connected by active follower and non-follower constraints. If there exists no follower
or non-follower relation for an edge e ∈ ER, the subset consists of that edge alone.

For the selection of a variable fe∗e∗′ , we search for the pair (e∗, e∗′) with fractional value f̄e∗e∗′ closest to
0.5 inducing a subset of size less than or equal to 5. If e∗ and e∗′ are already in the same subset, the addition
of an associated constraint will not alter the given partitioning. Otherwise, the two subsets of e∗ and e∗′,
say E`

R and Em
R are merged resulting in a single subset of size |E`

R| + |Em
R |. If no induced subset is of size

less than or equal to 5, we only consider pairs with smallest induced subset and proceed as described before.
The idea behind this rule is that small subsets are algorithmically attractive because we have to enumerate
permutations of their edges to map branching decisions to the pricing network (see Section 4.3.2).

4.3.1. Integer Solutions from Follower Information
The analysis undertaken in Section 3.3 has shown that branching on followers alone guarantees binary

master program variables λ. A crucial point in the proof is that routes were assumed being elementary. In
fact, for relaxed pricing with 2-loop free routes the variables λ can still be fractional. A detailed example is
provided in the appendix.

With a relaxed pricing, it can happen that all follower variables fee′ are binary but route variables λ̄ are
still fractional In this case, nevertheless, an integer solution can implicitly be obtained from the fractional
master program eMP. In fact, the binary follower information implies a unique partitioning and sequences
of required edges that can be utilized to construct a solution.

We assume that the relation F is given by those pairs of required edges that are followers in the eMP, i.e.,
fulfill f̄ee′ = 1. The reflexive and transitive closure F̄ of the follower relation F defines exactly |K| subsets
of the required edges, i.e., ER =

⋃
k∈K Ek

R. A required edge e ∈ ER can be in follower relation to either
no other edge, to a single edge, or to exactly two edges. In other words, the graph (ER, F̄) has exactly |K|
components consisting of paths (possibly with length 0). Hence, F implies for each subset Ek

R a sequence
sk = (ek1 , e

k
2 , . . . , e

k
tk

) of required edges. This sequence is unique except for reversal.
The final step is the determination of cost-minimal routes rk that service the required edges exactly in the

sequence sr. This task consists of two types of decisions, the identification of deadheading paths connecting
subsequent required edges and the fixing of directions in which required edges are serviced. A cost-minimal
route can be computed as a shortest path in the auxiliary network depicted in Figure 1. We assume that
for each pair of nodes a shortest deadheading path between these nodes is pre-computed such that cij is
the shortest deadheading distance between the nodes i and j. Recall that cserve is the cost for servicing a
required edge e. The auxiliary network consists of two copies for each required edge e1, . . . , et modeling the
two possible directions when servicing. Starting and ending at nodes representing the depot d, dashed arcs
model the deadheadings between the required edges. Thus, the length of a path in the auxiliary network is
exactly the cost of the shortest route that services e1, . . . , et in the given sequence sr. The appendix provides
a detailed example.

11

dd

cd1

cd2

cwd

cvd

c23

c24

c13

c14

. . .

1

1 2

2 3

3 4

4 v

v w

w
e1

e1

e2

e2

et

et

cserve1

cserve1

cserve2

cserve2

cservet

cservet

Figure 1: Auxiliary network

4.3.2. Network Modifications
This section explains how follower and non-follower constraints can be handled in the pricing problem.

The key property of our approach is that the active constraints can solely be implemented by network
modifications. More precisely, only deletions and additions of required edges are performed on the original
pricing network G = (V,E). The basic structure of the pricing problem remains unchanged. We assume
that active branch-and-bound constraints are given by the follower relation F = {(e, e′) : fee′ is fixed to 1}
and the non-follower relation N = {(e, e′) : fee′ is fixed to 0}.

For the sake of clarity, we first consider a single follower or non-follower constraint (F or N is {(e, e′)}).
Afterwards the general case with multiple active constraints will be described.

On the non-follower branch fee′ = 0, servicing edge e immediately followed by edge e′ is forbidden. Note
that in the undirected network G = (V,E) all constraints are symmetric so that e and e′ can be interchanged
and that the two services do not need to be directly connected but can be connected with any deadheading
path. This constraint can be implemented using the concept of task-2-loop free paths as presented in (Irnich
and Desaulniers, 2005; Irnich and Villeneuve, 2006). All required edges represent different tasks except for
e and e′ which represent the same task. Any task-2-loop free path ensures that the non-follower constraint
fee′ = 0 is respected.

On the follower branch fee′ = 1, the service of edge e must immediately follow the service of edge e′ (or
vice versa). First, the two original required edges are deleted from the network (deadheading along e and e′
remains possible). Second, four new edges are added to the network. They model the consecutive service to
e = {i, j} and e′ = {k, l}. Since the direction of service is unknown for both edges, there are four possible
paths:

• path p1 = (i, j)+ deadheading from j to k + (k, l)

• path p2 = (i, j)+ deadheading from j to l + (l, k)

• path p3 = (j, i)+ deadheading from i to k + (k, l)

• path p4 = (j, i)+ deadheading from i to l + (l, k)

The four additional edges {i, l}, {i, k}, {j, l} and {j, k} represent these paths. Consequently, they all have
the same resulting demand qe + qe′ and the same associated task. The latter implies that no two of these
four edges can be served consecutively. The costs of the new edges is calculated by summing up serviced
costs c̃serve + c̃serve′ plus the costs for deadheading along the respective paths.

The modifications become even more intricate if several follower and non-follower conditions are active.
In general the proceeding is outlined in Algorithm 2:

The computation of a minimum-cost path p is similar to the shortest-path computation in the auxiliary
network described in 4.3.1. We just elaborate the differences: First, costs ce and cserve have to be replaced by
reduced costs c̃e and c̃serve defined by (23). Note that dual-optimal inequalities (see Section 3.4) guarantee
that all reduced deadheading costs are non-negative. Therefore, the distances c̃ij of the shortest deadheading
paths can be computed with the Dijkstra algorithm (between every pair of nodes i and j). Second, the path p
starts in node i and ends in node j. Hence, the deadheading part from the depot d to the first required
edge e1 and from the last required edge et to the depot d is omitted in the auxiliary network. Moreover,

12

Algorithm 2: Network modification for follower and non-follower constraints
input : A network with costs c̃serve and c̃e, active follower and non-follower relations F and N
output: A modified network

Compute the partitioning E1
R ∪ E2

R ∪ . . . ∪ E
q
R of ER induced by F and N

for ` = 1, . . . , q do
if |E`

R| > 1 then
Delete all required edges e ∈ E`

R from the network
Compute all feasible sequences s = (e1, e2 . . . , et) on all subsets of edges in E`

R

for all sequences s = (e1, e2 . . . , et) do
for the four pairs (i, j) of endpoints of e1 = {i1, i2} and et = {j1, j2} do

Compute the minimum-cost path p servicing sequence s
p starts at node i and ends in node j

Add a required edge {i, j} to the network
with demand

∑t
m=1 qem , associated task is `

the directions of e1 and et are fixed in each iteration (third for-loop). A detailed example of the network
modification in included in the appendix.

The enumeration of all possible sequences s may produce a network with an exponential number of
edges. By selecting edges in the follower branching rule carefully, we try to keep the resulting subsets small.
Therewith, we postpone the exponential growing of the network to some deeper branches of the tree (that
were not reached in our experiments).

A final remark is that parallel edges might result from feasible sequences s that have identical first and
last edges. In this case, for identical demand

∑
qep , a single cost-minimal edge can be chosen while the

other edges can be discarded.

5. Cycle Elimination

It is known for a long time that for routing problems cycle-elimination techniques can improve lower
bounds of master programs (Houck et al., 1980; Feillet et al., 2004; Irnich and Villeneuve, 2006; Desaulniers
et al., 2008). For the CARP, Letchford and Oukil (2009) analyzed the impact of elementary CARP routes.
Although their study shows that elementary routes can improve lower bounds, a comparison with the cutting-
plane approaches of Benavent et al. (1992), Ahr (2004), and Gómez-Cabrero et al. (2005) did not reveal the
full potential of cycle elimination. The reason is that no odd-cut inequalities (9), capacity inequalities (8),
and disjoint-path inequalities were present in the column-generation formulation. While Section 6.1 will
quantify lower bound improvements due to cycle elimination, this section focuses on the interplay between
cycle elimination and branching from a conceptual point of view.

In Section 3.2, task-2-loop elimination was introduced to improve the master program lower bound.
Task-2-loop (i.e., task-1-cycle) elimination excludes the occurrence of two consecutive required edges labeled
with the same task. Thus, by giving edges the same task the non-follower branching rule was implemented
(see Section 4.3.2). The crucial point is here that branching requires task-k-loop exactly for k = 2. For
k > 2, the non-follower branching rule would be incorrect as also not direct following occurrences of the two
tasks would be excluded.

In conclusion, branching only works with task-2-loop elimination while using task-k-loop for k > 2 helps
to improve master program lower bounds. At first glance, both requirements (k = 2 and k as large as
possible) seem incompatible in the presented bap approach. However, we can resolve this incompatibility
by differentiating between the two corresponding classes of tasks:

• tasks T E for modeling the elementary routes

13

• tasks T B for branching

In essence, a shortest-path problem where paths are elementary w.r.t. T E and task-2-loop free w.r.t. T B

must be solved. Relaxations to the elementarity w.r.t. T E can again play with the tradeoff between hardness
of the problem and strength of the relaxation. We outline the meaning and handling of the two task sets in
the following.

For tasks T E , each required edge e ∈ ER forms an individual task so that the sets can be considered
identical (T E = ER). Branching does not modify this definition. A branch with a follower constraint,
however, triggers a network modification: if a sequence of required edges is modeled by one or four new edges
(see Section 4.3.2) such edges get the associated task sequence. The concept of task sequences associated to
arcs (and nodes) has already been sketched in (Irnich and Desaulniers, 2005, p. 40).

For tasks T B , only active non-follower constraints have to be considered and cause the insertion of tasks
into the set T B . More precisely, only those tasks ` that are assigned to the new edges modeling a sequence
through the same component E`

R (see last step of Algorithm 2) have to be included in T B . Consequently,
the task set T B is empty at the root node of the bap tree. The k-cycle elimination method, as presented in
(Irnich and Villeneuve, 2006), are therefore applicable when the root in bap is solved.

Our ongoing research is on combining T B-2-loop and T E-k-cycle elimination (and is going to be presented
in a separate paper). It is obvious that not only k-cycle elimination but also alternative relaxations for T E-
elementarity are promising, e.g., partial elementarity or NG-route relaxations (Desaulniers et al., 2008;
Baldacci et al., 2009).

6. Computational Results

We tested our cut-first bap-second approach on the four standard benchmark sets for the CARP.
The same benchmark sets (or a subset of instances) was also used to analyze the methods presented
in the review (Section 2). The complete data with additional information can be downloaded from
http://www.uv.es/˜belengue/carp/. The two benchmark sets kshs and gdb contain 6 and 23 artifi-
cially generated instances. While the underlying graphs are sparse for the gdb set, some kshs instances
are defined over a complete graph. Two other benchmark sets, bccm and egl, have 34 and 24 instances,
respectively. The latter set is based on parts of the road network of Cumbria.

The following results were performed on a standard PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz
with 16 GB of main memory. The algorithm was coded in C++ and the callable library of CPLEX 12.2
was used to iteratively solve LPs and MIPs (reoptimization and separation) in the cutting phase and to
reoptimize the RMP.

For the computational analysis we use the following notation:

lb∗ lower bound obtained by algorithm of *; BB= cutting-plane algorithm of Belenguer and Benavent
(2003); A= Ahr (2004); L= linear relaxation (root) by Longo et al. (2006); LO= linear relaxation (root,
elementary routes) by Letchford and Oukil (2009); MPS= dual ascent and cutting-plane algorithm of
Martinelli et al. (2011)

lbrootown / lbtreeown lower bound obtained in our linear relaxation (root) or at termination of phase II (tree)
ubbest best known upper bound
comp. by first paper where the currently best upper bound was computed; H= Hertz et al. (2000); La= Lacomme

et al. (2001); BE= Brandão and Eglese (2008); PD= Polacek et al. (2008); SCC= Santos et al. (2010);
BLC= Baldacci et al. (2010); Be= Beullens et al. (2003)

opt value of optimal solution
proved by lb first paper where optimality is proved due to |ub− lb| < 1
proved by sol first paper where optimality is proved by computing an integer solution; B= Benavent et al. (1992);

BB= Belenguer and Benavent (2003); Lo= Longo et al. (2006); BM= Baldacci and Maniezzo (2006);
LO= Letchford and Oukil (2009); own= own solution

time computation in time seconds for phase I or phase II; the time limit for both phases is 4 hours (indicated
by 4h)

B&B nodes number of solved nodes in our branch-and-bound tree
branching D/E/F number of different branching decisions: D= node degree; E= edge flow; F= follower

14

For the sake of brevity, all computational results regarding phase I (cutting-plane algorithm) are presented
in the appendix.

6.1. Linear Relaxation Results
For phase II, the following two column-generation acceleration techniques were implemented: Before

calling the exact pricer, we apply the heuristic of Letchford and Oukil (2009) (consider only tours with
consecutive services) and a pricing heuristic where weakly dominant labels are ignored (see Irnich and
Desaulniers, 2005, p. 58). Moreover, the partitioning constraints (29) in eMP are replaced by covering
constraints (≥ 1) together with the constraint

∑
r∈Ω

∑
e∈ER

x̄erλr ≤ |ER| in order to stabilize the column
generation process (du Merle et al., 1999).

We begin with the presentation of the results on the linear relaxation of the master program eMP
(28)–(32). These results are shown in the first three sections of the Tables 1-2 (results for the small-sized
benchmark sets kshs and gdb are presented in the appendix).

15

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
L

lb
L
O

lb
B
C
L

lb
r
o
o
t

o
w
n

lb
tr

e
e

o
w
n

u
b b

e
s
t

or
op

t

co
m
p.

by

pr
ov
ed

by
lb

pr
ov
ed

by
so
l

ti
m
e

ph
as
e
I

ti
m
e

ph
as
e
II

B
&
B

no
de
s

br
an

ch
in
g

D
/E

/F

1a 24 39 2 247 247 247 220 247 247 - 247 H B own 0.1 16.9 24 2/0/21
1b 24 39 3 247 247 247 225 247 247 - 247 H B own 0.2 4.1 13 1/0/11
1c 24 39 8 309 309 312 313 314 315 - 319 H - Lo 0.5 55.6 649 511/4/132
2a 24 34 2 298 298 298 277 298 298 - 298 H BB own 0.1 10.2 14 1/0/12
2b 24 34 3 330 328 329 304 330 328 - 330 La BB Lo 0.1 8.9 29 18/1/9
2c 24 34 8 526 526 528 528 528 528 - 528 H Lo Lo 0.4 0.4 1 0/0/0
3a 24 35 2 105 105 105 93 105 105 - 105 H BB own 0.1 5.5 22 1/0/20
3b 24 35 3 111 111 111 101 111 111 - 111 H BB own 0.3 2.2 17 1/0/15
3c 24 35 7 161 159 161 155 162 162 - 162 H - Lo 0.7 1.1 21 16/0/4
4a 41 69 3 522 522 522 478 522 522 - 522 H BB own 0.3 412.9 34 2/0/31
4b 41 69 4 534 534 534 492 534 534 - 534 H BB own 0.5 72.0 29 1/0/27
4c 41 69 5 550 550 550 515 550 550 - 550 La BB own 0.5 31.0 23 2/0/20
4d 41 69 9 644 642 648 621 649 646 - 652 La - own 8.0 707.8 836 821/5/9
5a 34 65 3 566 566 566 524 566 566 - 566 H BB own 0.3 75.4 39 1/0/37
5b 34 65 4 589 586 588 548 588 589 - 589 H BB own 0.5 24.4 34 1/0/32
5c 34 65 5 612 610 613 578 613 612 - 617 H - own 0.8 405.2 465 407/17/37
5d 34 65 9 714 714 716 689 717 715 - 718 PD - own 0.9 27.3 76 68/1/6
6a 31 50 3 330 330 330 305 330 330 - 330 H B own 0.1 19.4 30 3/0/25
6b 31 50 4 338 336 337 315 337 336 - 340 La - BM 0.3 208.7 522 227/14/21
6c 31 50 10 418 414 420 405 421 418 - 424 H - BM 2.0 4024.9 9683 4637/161/43
7a 40 66 3 382 382 382 358 382 382 382 382 H B - 0.1 4h 10579 2464/121/2704
7b 40 66 4 386 386 386 361 386 386 - 386 H BB own 0.3 34.5 81 9/0/31
7c 40 66 9 436 430 436 407 437 436 437 437 H - Lo 3.1 4h 19773 2542/1420/5924
8a 30 63 3 522 522 522 489 522 522 - 522 H B own 0.1 37.7 65 0/0/32
8b 30 63 4 531 531 531 502 531 531 - 531 H B own 0.4 17.3 65 0/0/32
8c 30 63 9 653 645 654 638 655 654 - 657 Be - own 2.1 23.0 245 113/1/8
9a 50 92 3 450 450 450 407 450 450 - 450 H B own 0.4 684.4 107 3/1/49
9b 50 92 4 453 453 453 412 453 453 - 453 H B own 0.3 153.7 123 8/2/51
9c 50 92 5 459 459 459 419 459 459 - 459 H B own 1.1 73.7 113 4/1/51
9d 50 92 10 509 505 512 484 512 510 515 516∗ PD - own 3.0 4h 8235 3956/159/2
10a 50 97 3 637 637 637 590 637 637 - 637 H B own 0.2 541.3 125 5/1/56
10b 50 97 4 645 645 645 597 645 645 - 645 H B own 1.1 7554.2 3545 809/11/952
10c 50 97 5 655 655 655 609 655 655 - 655 La BB own 0.8 171.0 117 2/2/54
10d 50 97 10 732 731 734 695 734 734 - 734 PD Lo own 104.0 91.6 109 26/2/26

∗

a new best integer solution with value 515 was found with a different branching scheme

Table 1: Results for the bccm instances at the end of phase II.

16

na
m

e

|V | |E| |K| lb
B

B

lb
A

lb
L

lb
L
O

lb
M

P
S

lb
B

C
L

lb
r
o
o
t

o
w

n

lb
t
r
e
e

o
w

n

u
b
b
e
s
t

or
op

t

co
m

p.
by

pr
ov

ed
by

so
l

ti
m

e
ph

as
e

I

ti
m

e
ph

as
e

II

B
&
B

no
de

s

br
an

ch
in

g
D

/E
/F

e1-a 77 98 5 3515 3516 3548 3425 3527 3548 3545 - 3548 La Lo 49.3 1572 135 35/0/79
e1-b 77 98 7 4436 4436 4468 4291 4468 4498 4464 - 4498 La BM 102.5 1733 617 588/12/16
e1-c 77 98 10 5453 5481 5542 5472 5513 5595 5523 5545 5595 La BLC 145.5 4h 4248 3102/291/852
e2-a 77 98 7 4994 4963 5011 4832 4995 5012 4995 - 5018 La BM 25.3 1966 312 268/4/38
e2-b 77 98 10 6249 6271 6280 6105 6273 6284 6272 6301 6317 BE - 56.9 4h 3822 1996/641/1184
e2-c 77 98 14 8114 8155 8234 8187 8165 8335 8202 8244 8335 BE BLC 118.9 4h 5921 5915/0/0
e3-a 77 98 8 5869 5866 5898 5706 5898 5898 5894 - 5898 La Lo 33.6 810 144 59/2/82
e3-b 77 98 12 7646 7649 7697 7541 7649 7711 7684 7728 7775 PD - 51.2 4h 3298 3297/0/0
e3-c 77 98 17 10019 10119 10163 10086 10138 10244 10144 10191 10292 PD - 102.8 4h 5658 5650/0/0
e4-a 77 98 9 6372 6378 6395 6233 6378 6395 6388 6408 6444 SCC - 11.3 4h 1246 526/232/478
e4-b 77 98 14 8809 8838 8884 8678 8838 8935 8852 8892 8961 BLC - 19,4 4h 3983 3905/0/0
e4-c 77 98 19 11276 11376 11427 11416 11383 11493 11410 11457 11562 BLC - 257.0 4h 6031 6000/0/0
s1-a 140 190 7 4992 4975 5014 4985 5010 5018 5011 - 5018 La BM 208.3 8462 100 73/3/23
s1-b 140 190 10 6201 6180 6379 6284 6368 6388 6369 6388 6388 BE BLC 454.5 4h 364 360/3/1
s1-c 140 190 14 8310 8286 8480 8423 8404 8518 8417 8441 8518 La BLC 605.3 4h 436 436/0/0
s2-a 140 190 14 9780 9718 9824 9667 9737 9825 9790 9803 9884 SCC - 283.1 4h 434 434/0/0
s2-b 140 190 20 12286 12835 12968 12801 12901 13017 12949 12970 13100 BE - 1136,3 4h 2344 2344/0/0
s2-c 140 190 27 16221 16216 16353 16262 16274 16425 16313 16352 16425 BE BLC 2154.6 4h 2640 2615/0/0
s3-a 140 190 15 10025 9991 10143 9925 10083 10145 10143 10160 10220 SCC - 927.8 4h 408 408/0/0
s3-b 140 190 22 13554 13520 13616 13388 13568 13648 13598 13631 13682 PD - 1291.5 4h 1519 1519/0/0
s3-c 140 190 29 16969 16958 17100 17014 17019 17188 17058 17097 17188 BLC BLC 2750.9 4h 3398 3398/0/0
s4-a 140 190 19 12027 12007 12143 11905 12026 12141 12126 12149 12268 SCC - 476.9 4h 1165 1165/0/0
s4-b 140 190 27 15933 15897 16093 15891 16001 16098 16066 16105 16321 PD - 1003.3 4h 2686 2683/0/0
s4-c 140 190 35 20179 20176 20375 20197 20256 20430 20340 20376 20481 BLC - 1695.6 4h 4019 3997/0/0

Table 2: Results for the egl instances at the end of phase II.

17

The focus of the following analysis is on lower bounds. The lower bounds lbrootown obtained with our
column-generation algorithm in the root node are always at least as good as the bounds lbA obtained by
Ahr (2004). This is a direct consequence of using all active odd-cut and capacity constraints to initialize the
eMP. Compared to the lower bounds lbBB of Belenguer and Benavent (2003), the values lbrootown are sometimes
worse (for the bccm instances 2b and 6b as well as egl instance s2-a). We suspect that this is due to the
fact that the separation of disjoint-path inequalities in phase I is performed with a complex heuristic that
certainly differs at some points from the one used to compute lbBB (see appendix for the discussion of the
phase I results). Conversely, for several instances better lower bounds were obtained by column generation,
i.e., lbrootown > max{lbBB , lbA}. This is the case for one kshs instance (kshs4), two gdb instances (gdb8 and
gdb12), nine bccm instances, and all egl instances except for s2-a.

Comparing the pure set-partition formulation (without additional cuts) of Letchford and Oukil (2009)
with our approach, lbLO never exceeds lbrootown except for the two egl instances e4-c and s1-c. It seems that
the addition of cuts to eMP is most of the time more important than using elementary routes alone.

Longo et al. (2006) presented detailed lower bound results only for bccm and egl instances. Their lower
bounds obtained in the root-node of the CVRP branch-and-price-and-cut algorithm are generally better
than our bounds (7 times for bccm and always for egl except for s3-a with an identical bound). For the
bccm instances 1c, 3c, and 5b, however, lbrootown exceeds lbL.

Some concluding remarks on the comparison with (Longo et al., 2006) can be given: Our computation
times for root nodes are significantly smaller than those for the CVRP, sometimes by more than factor 100
(for example bccm instance 1c). Since the branch-and-price-and-cut algorithm of Longo et al. (2006) is
based on the algorithm by Fukasawa et al. (2006), CVRP pricing problems are solved with (node-)k-cycle
elimination for k ∈ {2, 3, 4}. This partially explains their better lower bounds at the cost of a more complex
and time-consuming pricing.

Finally, the strongest relaxation bound lbBCL obtained by Bartolini et al. (2011) almost always exceeds
lbrootown as their relaxation is stronger. Elementary routes and different types of cuts (including the non-robust
subset-row inequalities on the master program) are combined in the approach. The only cuts not used in
their implementation are disjoint-path inequalities. This fact can explain why for the two bccm instances 1c
and 5b lbBCL < lbrootown holds.

Cycle Elimination Result
Recall from Section 5 that we can provide results for pricing with k-loop elimination only for the linear

relaxation eMP due to the incompatibility of the branching scheme with k-loop elimination for k ≥ 3. Table 3
summarizes the impact of cycle elimination on the root node lower bound and the root node computation
time. We present results only for the egl instances because these are the only ones where cycle elimination
had a significant impact. We suspect that the presence of non-required edges conveys the appearance of
cycles.

As could be expected, the results exactly reflect the trade-off between lower bound improvement and
hardness of solving the respective linear relaxation. For k = 5-loop elimination, solving eMP becomes time
consuming (in one case more than 10 hours). On average, the increase of the lower bound is 11.0 going from
k = 2 to k = 3, 5.4 from k = 3 to k = 4, and 2.8 from k = 4 to k = 5. While for some instances the increase
is marginal, it can become substantial (e.g. for e2-c an overall increase of 25+36+6=67). On the downside,
average computation times increase also by factor 2.3 from k = 2 to k = 3, 3.0 from k = 3 to k = 4, and
12.9 from k = 4 to k = 5.

For the instance e1-a, the 5-loop elimination entirely closes the integrality gap (remaining gap = 0). In
seven other cases, 4-loop or 5-loop elimination gives a stronger root node relaxation than the CVRP root
node relaxation computed in (Longo et al., 2006) (e1-b, e2-b, e2-c, e3-b, e3-c, e4-c, s1-a, s3-a, and
s4-c; see also Table 2). Interestingly, these are often instances with relatively small computation times.

Concluding, the computational results indicate that the use of cycle-free routes is one of the key devices
to improve lower bounds. In addition to the study of Letchford and Oukil (2009) it has become clear now
that loop-elimination is still beneficial when cutting planes are already added to the eMP.

18

Table 3: Cycle Elimination for the egl instances.

na
m
e

u
b b

e
s
t

or
op

t

lb
r
o
o
t

ti
m
e

ph
as
e
II

lb
r
o
o
t

ti
m
e

ph
as
e
II

lb
r
o
o
t

ti
m
e

ph
as
e
II

lb
r
o
o
t

ti
m
e

ph
as
e
II

re
m
ai
n.

ga
p

elimin. of k = 2-loops k = 3-loops k = 4-loops k = 5-loops
e1-a 3548 3545 30 3546 (+1) 74 3546 (+0) 368 3548 (+2) 2575 0
e1-b 4498 4464 12 4465 (+1) 46 4467 (+2) 196 4470 (+3) 2474 28
e1-c 5595 5523 13 5528 (+5) 31 5532 (+4) 56 5535 (+3) 1127 60
e2-a 5018 4996 24 4996 (+0) 98 4999 (+3) 1247 4999 (+0) 22301 19
e2-b 6317 6273 21 6280 (+7) 53 6283 (+3) 272 6283 (+0) 3611 34
e2-c 8335 8202 10 8227 (+25) 21 8263 (+36) 55 8269 (+6) 1083 66
e3-a 5898 5894 40 5895 (+1) 297 5895 (+0) 991 5895 (+0) 25083 3
e3-b 7775 7684 21 7699 (+15) 45 7704 (+5) 190 7709 (+5) 4246 66
e3-c 10292 10145 11 10176 (+31) 23 10182 (+6) 65 10183 (+1) 1169 109
e4-a 6444 6389 49 6389 (+0) 336 6389 (+0) 422 6389 (+0) 7571 55
e4-b 8961 8852 20 8862 (+10) 46 8865 (+3) 244 8870 (+5) 2195 91
e4-c 11562 11411 16 11438 (+27) 43 11463 (+25) 159 11465 (+2) 1774 97
s1-a 5018 5011 347 5012 (+1) 687 5013 (+1) 2517 5015 (+2) 11330 5
s1-b 6388 6370 437 6373 (+3) 559 6376 (+3) 2073 6376 (+0) 8635 12
s1-c 8518 8418 227 8457 (+39) 87 8468 (+11) 157 8475 (+7) 755 43
s2-a 9884 9791 263 9795 (+4) 784 9795 (+0) 1977 9798 (+3) 26124 89
s2-b 13100 12949 125 12955 (+6) 424 12960 (+5) 848 12963 (+3) 5976 137
s2-c 16425 16314 125 16332 (+18) 180 16338 (+6) 357 16340 (+2) 3612 85
s3-a 10220 10143 297 10145 (+2) 973 10145 (+0) 2718 10147 (+2) 41494 75
s3-b 13682 13598 177 13604 (+6) 298 13605 (+1) 1024 13606 (+1) 12671 76
s3-c 17188 17058 71 17089 (+31) 146 17090 (+1) 416 17095 (+5) 3271 93
s4-a 12268 12126 180 12129 (+3) 467 12129 (+0) 1248 12132 (+3) 32172 139
s4-b 16321 16066 124 16071 (+5) 328 16073 (+2) 688 16077 (+4) 15605 248
s4-c 20481 20340 133 20362 (+22) 243 20375 (+13) 352 20383 (+8) 3932 98

19

6.2. Branch-and-Price and Integer Solution Results
The final branch-and-bound component that has to be specified is the node selection rule. In order to

increase the overall lower bound as fast as possible, nodes are processed according to the best-first search
strategy. In case of a tie, the last node added is selected first. We found that this strategy is fundamental
for finding integer solutions early because there often exist large subtrees having nodes with identical lower
bounds (some kind of plateaus). In these cases, the rule implies that the subtree is processed in a depth-first
manner. Another crucial point for the effectiveness of the branching scheme is that the follower son node is
always selected before its non-follower brother node (two unprocessed son nodes have identical lower bounds
inherited from their father).

Results of the branch-and-price (bap) algorithm can be found in the rightmost section of the Tables 1-2
and columns headed lbtreeown (see appendix for kshs and gdb instances). All kshs and gdb instances were
solved to proved optimality often in less than one second. We did not provide any upper bounds to help
bap to terminate early. Instead, an optimal CARP solution was computed for these instances and the lower
bound had to be raised to close the integrality gap (gap < 1).

For the bccm benchmark set, results are shown in Table 1. The information about optimal solutions
differs from that given in (Letchford and Oukil, 2009) because results from a working paper by Ghiani et al.
(2007) are unreliable. This working paper has been withdrawn (Laporte, 2011).

For all bccm instances we can either show that the ubbest is at the same time a lower bound or find
an integer solution and prove its optimality. For the instance 9d, we have found an optimal solution with
value 515 during experiments with other branching schemes. Hence, for 7a, 7c, and 9d the final setup was
only able to prove optimality due to the tree lower bound. For five instances (4d, 5c, 5d, 8c, and 9d),
optimality was proven for the first time. This means the solution of all bccm benchmark problems that were
open at the time of writing. Overall, we are able to determine optimal integer solutions in 32 out of 35
cases. In contrast, the node-routing approaches of Longo et al. (2006), Baldacci and Maniezzo (2006), and
Bartolini et al. (2011) determine and prove optimal solutions in five, six, and 29 cases, respectively.

Results for the egl test set are presented in Table 2. With the given setup, five instances (e1-a, e1-b,
e2-a, e3-a, and s1-a) are solved to proved optimality in 4 hours. These instances were already solved
either by Longo et al. (2006) or Baldacci and Maniezzo (2006). For s1-b we are able to close the gap, but
we were unable to determine an optimal solution. Thus, we prove optimality of s1-b by lower bound using
the upper bound presented in (Brandão and Eglese, 2008).

(Bartolini et al., 2011) are able to solve ten of the 24 egl instances (however, e2-a remains unsolved in
their approach). The better lower bounds lb4 in the final bounding procedure allow them to close the gap
for five additional instance e1-c, e2-c, s1-c, s2-c, and s3-c.

The lower bound lbtreeown resulting from the partial solution of the branch-and-bound tree exceeds the best
known lower bounds lbL presented by Longo et al. (2006) for 14 instances. The bound lbtreeown also exceeds
the lower bound presented by Bartolini et al. (2011) in six cases (e2-b, e3-b, e4-a, s3-a, s4-a, and s4-b).
The appendix contains a table that lists the best known lower and upper bounds with references.

7. Conclusions

In this paper we proposed a cut-first branch-and-price-second algorithm for the CARP. The strength of
the new column-generation formulation results from strong lower bounds, symmetry elimination, efficient
pricing, and an effective branching scheme. Strong lower bounds are obtained by the combination of cuts
from the one-index formulation and the Dantzig-Wolfe reformulation inducing a set-partitioning type master
program. This aggregated master program avoids vehicle-specific variables and therewith eliminates sym-
metry. Even so, the reconstruction of individual vehicle routes is possible. The generation of new routes
can be done efficiently because all pricing computations can be performed on the original sparse underlying
street network. A second fundamental finding is that negative reduced costs on deadheading edges can
be prevented by adding dual-optimal inequalities to the extensive formulation. Non-negative reduced costs
are algorithmically advantageous as parts of the pricing can now be carried out using Dijkstra’s algorithm
without the need to prevent cycling. Finally, the new branching scheme is the first one that ensures integral

20

CARP solutions, while the structure of the pricing problem remains unchanged. Contrary to the node-
routing case, the integrality of the aggregated variables of a original (i.e. compact) formulation generally
do not imply integer master program variables. The key device to finally obtain integer routes is branching
on followers of required edges, where in one branch two required edges have to be serviced consecutively,
and in the other branch subsequent service is forbidden. While branching on follower constraints is common
in node routing, the novelty of our approach is the handling of follower constraints referring to edges that
might not be directly connected.

Computational experiments show that the proposed cut-first branch-and-price-second algorithm gives
considerable results for all four benchmark sets. Several earlier exact approaches proved optimality of
known heuristic solutions by matching lower and upper bounds, but were not able to deliver optimal CARP
routes. Our branching scheme however enables us to compute feasible integer solutions and optimal ones in
many cases. As a result, all open benchmark instances of Belenguer and Benavent (1998) are solved now.
For the (Eglese and Li, 1992) benchmark set, optimality of one more instance was shown (independently
the results of Bartolini et al. (2011)) and some lower bounds were improved.

We see the following possible avenues for future research: A deeper analysis of the polyhedral structure
might lead to new strong valid inequalities and might help to further strengthen the initial lower bound. All
cuts might also be separated in the branch-and-bound tree and not only once at the beginning. Another
topic, as already suggested by Letchford and Oukil (2009), are approaches that replace the weaker 2-loop
free pricing with stronger relaxations. Since columns in the master program often contain 3-loops and longer
loops, k-loop elimination for k ≥ 3 would probably improve the lower bounds. We pointed out that this is
a non-trivial task due to the incompatibility between the suggested branching rule on (non-)followers and
k-loop elimination for k ≥ 3. Various other relaxations of the elementary pricing problem that eliminate
these loops should be analyzed (Irnich and Villeneuve, 2006; Desaulniers et al., 2008; Baldacci et al., 2009)
for which we expect that pricing times remain acceptable as pricing on the original sparse graph is possible.

References

Ahr, D. 2004. Contributions to multiple postmen problems. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg.
Ahuja, R.K., T.L. Magnanti, J.B. Orlin. 1993. Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood

Cliffs, New Jersey.
Baldacci, R., V. Maniezzo. 2006. Exact methods based on node-routing formulations for undirected arc-routing problems.

Networks 47(1) 52–60.
Baldacci, R., A. Mingozzi, R. Roberti. 2009. Solving the vehicle routing problem with time windows using new state space

relaxation and pricing strategies. Presented at AIRO 2008, EURO 2009, ISMP 2009, and AIRO 2009.
Baldacci, R., E. Bartolini, A. Mingozzi, R. Roberti. 2010. An exact solution framework for a broad class of vehicle routing

problems. Computational Management Science 7 229–268. doi:10.1007/s10287-009-0118-3.
Bartolini, E., J.-F. Cordeau, G. Laporte. 2011. Improved lower bounds and exact algorithm for the capacitated arc routing

problem. Technical report, HEC Montréal and CIRRELT, Montreal H3T 2A7, Canada.
Belenguer, J.M., E. Benavent. 1998. The capacitated arc routing problem: Valid inequalities and facets. Computational

Optimization and Applications 10(2) 165–187.
Belenguer, J.M., E. Benavent. 2003. A cutting plane algorithm for the capacitated arc routing problem. Computers & Oper.

Res. 30 705–728.
Ben Amor, H., J. Desrosiers, J.M.V. de Carvalho. 2006. Dual-optimal inequalities for stabilized column generation. Oper. Res.

54(3) 454–463. doi:10.1287/opre.1060.0278.
Benavent, E., V. Campos, A. Corberán, E. Mota. 1992. The capacitated arc routing problem: lower bounds. Networks 22

669–669.
Beullens, P., L. Muyldermans, D. Cattrysse, D. Van Oudheusden. 2003. A guided local search heuristic for the capacitated arc

routing problem. Eur. J. Oper. Res. 147(3) 629–643.
Brandão, J., R. Eglese. 2008. A deterministic tabu search algorithm for the capacitated arc routing problem. Computers &

Oper. Res. 35(4) 1112–1126. doi:10.1016/j.cor.2006.07.007.
Corberán, A., C. Prins. 2010. Recent results on arc routing problems: An annotated bibliography. Networks 56(1). doi:

10.1002/net.20347.
Desaulniers, G., J. Desrosiers, M.M. Solomon, eds. 2005. Column Generation. Springer, New York, NY.
Desaulniers, G., F. Lessard, A. Hadjar. 2008. Tabu search, partial elementarity, and generalized k-path inequalities for the

vehicle routing problem with time windows. Transportation Sci. 42(3) 387–404.
Dror, M., ed. 2000. Arc Routing: Theory, Solutions and Applications. Kluwer, Boston.
du Merle, O., D. Villeneuve, J. Desrosiers, P. Hansen. 1999. Stabilized column generation. Discrete Mathematics 194 229–237.
Eglese, R.W., L.Y.O. Li. 1992. Efficient routeing for winter gritting. J. of the Operational Res. Society 43(11) 1031–1034.

21

Feillet, D., P. Dejax, M. Gendreau, C. Guéguen. 2004. An exact algorithm for the elementary shortest path problem with
resource constraints: Application to some vehicle routing problems. Networks 44(3) 216–229.

Fukasawa, R., H. Longo, J. Lysgaard, M. Poggi de Aragão, M. Reis, E. Uchoa, R. F. Werneck. 2006. Robust branch-and-cut-
and-price for the capacitated vehicle routing problem. Math. Programming, Ser. A 106(3) 491–511.

Ghiani, G., D. Laganá, G. Laporte, R. Musmanno. 2007. A branch-and-cut algorithm for the capacitated arc routing problem.
Working paper.

Golden, B.L., R.T Wong. 1981. Capacitated arc routing problems. Networks 11 305–315.
Gómez-Cabrero, D., J.M. Belenguer, E. Benavent. 2005. Cutting plane and column generation for the capacitated arc routing

problem. Presented at ORP3, Valencia.
Hertz, A., G. Laporte, M. Mittaz. 2000. A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48(1)

129–135.
Houck, D.J., J.C. Picard, M. Queyranne, R.R. Vemuganti. 1980. The travelling salesman problem as a constrained shortest

path problem: Theory and computational experience. Opsearch 17 93–109.
Irnich, S., G. Desaulniers. 2005. Shortest path problems with resource constraints. Desaulniers et al. (2005), chap. 2, 33–65.
Irnich, S., D. Villeneuve. 2006. The shortest path problem with resource constraints and k-cycle elimination for k ≥ 3.

INFORMS J. Comput. 18(3) 391–406.
Jepsen, M., B. Petersen, S. Spoorendonk, D. Pisinger. 2008. Subset-row inequalities applied to the vehicle-routing problem

with time windows. Oper. Res. 56(2) 497–511. doi:10.1287/opre.1070.0449.
Lacomme, P., C. Prins, W. Ramdane-Chérif. 2001. A genetic algorithm for the capacitated arc routing problem and its

extensions. E.J.W. Boers, S. Cagnoni, J. Gottlieb, E. Hart, P. Luca Lanzi, G. Raidl, R.E. Smith, H. Tijink, eds., Applications
of Evolutionary Computing. EvoWorkshops2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM. Proceedings,
LNCS , vol. 2037. Springer-Verlag, Como, Italy, 473–483.

Laporte, G. 2011. Personal Communication.
Letchford, A. N. 1997. Polyhedral Results for Some Constrained Arc-Routing Problems. Ph.D. thesis, Lancaster University,

Lancaster, UK.
Letchford, A. N., A. Oukil. 2009. Exploiting sparsity in pricing routines for the capacitated arc routing problem. Computers

& Oper. Res. 36(7) 2320–2327.
Letchford, A.N., G. Reinelt, D.O. Theis. 2008. Odd minimum cut-sets and b-matchings revisited. SIAM J. on Discrete

Mathematics 22(4) 1480–1487.
Longo, H., M.P. de Aragão, E. Uchoa. 2006. Solving capacitated arc routing problems using a transformation to the CVRP.

Computers & Oper. Res. 33(6) 1823–1837.
Lysgaard, J., A.N. Letchford, R.W. Eglese. 2004. A new branch-and-cut algorithm for the capacitated vehicle routing problem.

Math. Programming 100(2) 423–445.
Lübbecke, M.E., J. Desrosiers. 2005. Selected topics in column generation. Oper. Res. 53(6) 1007–1023.
Martinelli, R., M. Poggi, A. Subramanian. 2011. Improved bounds for large scale capacitated arc routing problem. Preprint

submitted to computers & operations research, Departamento de Informática, Rio de Janeiro, RJ 22453-900, Brazil.
Pearn, W. L., A. Assad, B. L. Golden. 1987. Transforming arc routing into node routing problems. Computers & Oper. Res.

14(4) 285–288. doi:10.1016/0305-0548(87)90065-7.
Polacek, M., K.F. Doerner, R.F. Hartl, V. Maniezzo. 2008. A variable neighborhood search for the capacitated arc routing

problem with intermediate facilities. J. of Heuristics 14(5) 405–423.
Ryan, D.M., B.A. Foster. 1981. An integer programming approach to scheduling. A. Wren, ed., Computer Scheduling of Public

Transport: Urban Passenger Vehicle and Crew Scheduling, chap. 17. Elsevier, North-Holland, 269–280.
Santos, L., J. Coutinho-Rodrigues, J.R. Current. 2010. An improved ant colony optimization based algorithm for the capacitated

arc routing problem. Transportation Res. B 44(2) 246–266.
Schrijver, A. 2003. Combinatorial Optimization. Polyhedra and Efficiency. No. 24 in Algorithms and Combinatorics, Springer,

Berlin, Heidelberg, New York.
Villeneuve, D., G. Desaulniers. 2005. The shortest path problem with forbidden paths. Eur. J. Oper. Res. 165(1) 97–107.

22

Appendix

A. Integer Solutions from Fractional Solutions

Example: Consider a CARP instance with nodes {1, . . . , 11} and 19 edges that are all required. The depot is located
in node 1. The edge demands are all equal to 1 and the vehicle capacity is Q = 5. Four vehicles are needed to service these
edge demands. In Figure 2, a solution of eMP in one of the branch-and-bound nodes is shown. This eMP solution consists

1

2

3

4

5

6

7
8

9

10

11

λ1 = 1
λ2 = 1
λ3 = 1
λ4 = 0.5
λ5 = 0.5

Figure 2: Fractional Solution

of five (fractional) routes that are 2-loop free. Below, the corresponding node sequences (“=” indicates a service and “−” a
deadheading) and service sequences sr are shown. Additionally, the value of the corresponding route variable λ is given.

route r1 is (1 = 7 = 8 = 11 = 5 = 6− 1) servicing s1 = ({1, 7}, {7, 8}, {8, 11}, {11, 5}, {5, 6}) λ̄1 = 1

route r2 is (1 = 6 = 7− 8 = 10 = 9− 2− 1) servicing s2 = ({1, 6}, {6, 7}, {8, 10}, {10, 9}) λ̄2 = 1

route r3 is (1 = 2 = 9 = 11 = 10 = 1) servicing s3 = ({1, 2}, {2, 9}, {9, 11}, {11, 10}, {10, 1}) λ̄3 = 1

route r4 is (1 = 4 = 3 = 5− 3 = 4 = 1) servicing s4 = ({1, 4}, {4, 3}, {3, 5}, {3, 4}, {4, 1}) λ̄4 = 0.5

route r5 is (1− 4 = 2 = 3 = 5− 3 = 2 = 4− 1) servicing s5 = ({4, 2}, {2, 3}, {3, 5}, {3, 2}, {2, 4}) λ̄5 = 0.5

The eMP uses routes r1, r2 and r3 one time each, but the last two routes r4 and r5 are used only 0.5 times. The only edge
serviced by two routes is {3, 5} (by route 4 and 5). Moreover, the edges {1, 4}, {2, 3}, {2, 4} and {3, 4} are serviced twice within
the same route, either by route 4 or 5, i.e., f{1,4},{3,4},4 = f{3,4},{3,5},4 = f{2,4},{2,3},5 = f{2,3},{3,5},5 = 2 (see equation (27)).

Note that this convex combination of routes produces integer edge flows on all edges (see Figure 2). The implied follower
information is

f{1,4},{3,4} = f{3,4},{3,5} = f{3,5},{2,3} = f{2,3},{2,4} = 1.

Example: In the previously given example, the reflexive and transitive closure F̄ defined by the five routes separates the
set of required edges into four subsets E1

R ∪ E
2
R ∪ E

3
R ∪ E

4
R. The follower relation defined by routes 4 and 5 results in one

subset E4
R = {{1, 4}, {2, 3}, {2, 4}, {3, 4}, {3, 5}}. This implies four sequences of required edges:

s1 = ({1, 7}, {7, 8}, {8, 11}, {11, 5}, {5, 6})
s2 = ({1, 6}, {6, 7}, {8, 10}, {10, 9},)
s3 = ({2, 9}, {9, 11}, {11, 10}, {10, 1})
s′4 = ({1, 4}, {4, 3}, {3, 5}, {3, 2}, {2, 4})

The costs of the corresponding routes equal the costs of the fractional solution in the previous example.

B. Network Modifications

Example: We consider a graph G with eight nodes {a, . . . , g} and twelve edges (see Figure 3). We assume the following
active (non)-follower decisions given by F = {(e1, e2), (e3, e4)} and N = {(e1, e3)} with e1 = {a, b}, e2 = {c, d}, e3 = {e, f}
and e4 = {g, h}. The edges e1, e2, e3 and e4 induce the subset {e1, e2, e3, e4} of ER. The set of all possible subsequences s is

{(e1, e2), (e3, e4), (e1, e2, e3, e4), (e1, e2, e4, e3), (e2, e1, e4, e3)}

(For example, the sequences (e2) and (e2, e3, e4) are infeasible as they violate the follower condition fe1,e2 = 1.) For each
possible subsequence and for each pair of start and end nodes, a shortest-path problem in the auxiliary network has to be
solved. These twenty (five sequences and four pairs) new edges are added to the network depicted in Figure 4.

a

b

c

d

e

f

g
h

e1

e2

e3

e4

Figure 3: Original network

a

b

c

d

e

f

g
h

(e1, e2)

(e3, e4)

(e1, e2, e3, e4)

(e1, e2, e4, e3)

(e2, e1, e4, e3)

Figure 4: Modified network

24

C. Computational Results of Phase I

Recall from Section 4 that in phase I the LP-relaxation of the one-index formulation (7)–(10) is solved.
The results obtained at the end of this phase are presented in the Tables 4–7. We use the following notation:

lb∗ lower bound obtained by algorithm of *
lbA cutting-plane algorithm of Ahr (2004)
lbL linear relaxation (root) by Longo et al. (2006)
lbLO linear relaxation (root with elementary routes) by Letchford and Oukil (2009)
lbMPS dual ascent and cutting-plane method of Martinelli et al. (2011)
lbown lower bound obtained in phase I

init cuts number of initial cuts
component number of odd cuts and capacity cuts separated on components
odd cuts number of separated odd outs/number of binding odd cuts
cap cuts number of separated/binding capacity cuts
dp1 number of separated/binding dp1 cuts
dp2 number of separated/binding dp2 cuts

comp. time in time seconds of phase I

The meaning of all entries in the tables and the way we produced the results is explained in the following:
We initialize the one-index formulation with all odd cut constraints y(S) ≥ 1 for singleton sets S = {v}

where v ∈ V is an odd node. Additionally, odd cut and capacity cut constraints y(S) ≥ k(S) − |δR(S)|
are added to the model with the initialization procedure described in (Belenguer and Benavent, 2003). The
number of all these inequalities is shown in column “init cuts”.

We start every iteration of the separation procedure with a fast separation heuristic that considers the
components of the support graph (V,ER∪{e ∈ E : ye > 0}) in order to generate candidate sets S. Associated
violated odd cuts or capacity cuts are added first. Their number is shown in column “component”.

If no cut has been found so far, the efficient separation routine of Letchford et al. (2008) is used to
separate odd cuts exactly. Moreover, capacity cuts are then separated in a heuristic way with the procedure
of Belenguer and Benavent (2003) by solving a maximum-flow problem both on an auxiliary graph and
perturbed variants of that auxiliary graph (the edge demand qe is perturbed). This procedure is guaranteed
to find all violated fractional capacity cuts. Those sets S that do not violate the fractional cut y(S) ≥
q(ER(S) ∪ δR(S))/Q− δR(S) are checked to violate y(S) ≥ k(S)− |δR(S)|.

If no cut is found, the algorithm of Ahr (2004) is then used to exactly separate capacity cuts.
The separation of disjoint-path inequalities is the most time consuming component. After analyzing the

computation times, we decided to start with the separation of disjoint-path inequalities of type dp2. We
proceed with the separation procedures for disjoint-path inequalities of type dp1 followed by dp3.

In all separation procedures, we use a threshold of ε = 0.01 for minimum violation, i.e., a cut is only
violated if its rhs exceeds the lhs by at least ε. The only exception from this rule is the MIP-based separation
algorithm for capacity cuts of Ahr (2004), where the threshold is set to ε = 0.1.

Using this cascade of separation procedures, we never found violated cuts of type dp3 (last procedure
in the cascade). Therefore, the Tables 4–7 do not report results on disjoint-path inequalities of type dp3.
However, when we change the order so that dp3 cuts were considered before dp1 and dp2, we find at least
some violated inequalities of type dp3.

The number of separated cuts and the number of cuts used to initialize the eMP (phase II) are shown
in the columns “odd cuts”, “capacity cuts”, “dp1”, and “dp2”, respectively. The last column presents the
computation time of phase I.

Next, we compare our results with the results from the literature. For the kshs and gdb instances, we
obtained at least the lower bounds lbA and lbBB as presented in (Ahr, 2004; Belenguer and Benavent, 2003).
In the case of gdb8, we are able to increase the lower bound (this is possible as Belenguer and Benavent
(2003) do not use an exact separation procedure for capacity cuts and Ahr (2004) did not separate disjoint-
path inequalities). For gdb8 and gdb12, one binding dp1 inequality was separated (but non of type dp2).

25

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
o
w
n

in
it
cu
ts

co
m
po

ne
nt

od
d
cu
ts

ca
p
cu
ts

dp
1

dp
2

ti
m
e

kshs1 8 15 4 14661 14661 14661 5 3 0/4 1/2 0/0 0/0 0.1
kshs2 10 15 4 9863 9863 9863 9 3 0/9 1/2 0/0 0/0 0.2
kshs3 6 15 4 9320 9320 9320 7 0 0/6 0/1 0/0 0/0 0.2
kshs4 8 15 4 11098 11098 11098 5 0 0/3 1/2 0/0 0/0 0.1
kshs5 8 15 3 10957 10957 10957 5 1 0/5 0/1 0/0 0/0 0.1
kshs6 9 15 3 10197 10197 10197 5 2 0/6 0/1 0/0 0/0 0.2

Table 4: Results for the kshs instances at the end of phase I.

The computation times for both sets of instances are all small (sometimes too small to be recorded properly;
note that all times are rounded up with precision 0.1).

For the bccm instances, the lower bounds lbown is always at least as strong as lbA. This is consistent as
we use the same MIP approach as Ahr (2004) to exactly separate capacity cuts. Compared to (Belenguer
and Benavent, 2003), in three cases (2b, 6b and 9d), the lower bounds lbBB are two units better than our
bound lbown. We suspect that this is due to the fact that the separation of disjoint-path inequalities is
performed with our version of the heuristic that certainly differs from the one used to compute lbBB . For
10d, we are able to increase the lower bound compared to lbBB by one unit.

The lower bounds lbL of Longo et al. (2006) obtained in the root node of their CVRP branch-and-price-
and-cut algorithm are at least as good as our lower bounds obtained at the end of the cutting plane algorithm
(11 cases better). The only exception is the instance 5b were our bound is slightly better.

For the egl benchmark set, our lower bounds lbown are at least as strong as the both lower bounds lbA
and lbBB (except for s2-a). As for the bccm instances, the reported lower bound lbL are always better than
our lower bounds. The recent paper by Martinelli et al. (2011) reports computational results only for the
egl instances. There, the lower bounds at the end of the cutting-plane algorithms are sometimes worse (9
cases) and sometimes better (9 cases) than our lower bounds. This might be due to the fact that they do
not separate disjoint-path inequalities, but might use smaller thresholds ε > 0 for violation.

Concerning the computation time presented in Tables 6 and 7, our implementation could further be
accelerated. The work of Martinelli et al. (2011) shows that a warm-start of the cutting-plane algorithm
can further reduce computation times. They use a dual-ascent heuristic for the warm-start. However, even
without such a warm-start the computation times for phase I are typically much smaller than those of
phase II.

26

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
o
w
n

in
it
cu
ts

co
m
po

ne
nt

od
d
cu
ts

ca
p
cu
ts

dp
1

dp
2

ti
m
e

gdb1 12 22 5 316 316 316 7 8 0/11 1/2 0/0 0/0 0.2
gdb2 12 26 6 339 339 339 6 4 0/7 0/1 0/0 0/0 0.3
gdb3 12 22 5 275 275 275 8 2 0/8 0/1 0/0 0/0 0.2
gdb4 11 19 4 287 287 287 9 0 0/8 1/2 0/0 0/0 0.2
gdb5 13 26 6 377 377 377 7 7 0/11 2/3 0/0 0/0 0.2
gdb6 12 22 5 298 298 298 6 2 0/6 1/2 0/0 0/0 0.3
gdb7 12 22 5 325 325 325 7 10 0/15 1/2 0/0 0/0 0.1
gdb8 27 46 10 344 344 346 19 17 1/21 25/14 1/1 0/0 1.8
gdb9 27 51 10 303 303 303 17 15 0/21 14/10 0/0 0/0 0.8
gdb10 12 25 4 275 275 275 8 3 0/10 0/0 0/0 0/0 0.4
gdb11 22 45 5 395 395 395 18 5 0/20 0/1 0/0 0/0 0.4
gdb12 13 23 7 450 450 450 8 3 0/5 2/3 1/1 0/0 0.4
gdb13 10 28 6 536 536 536 6 2 0/6 0/1 0/0 0/0 0.4
gdb14 7 21 5 100 100 100 1 0 0/0 0/1 0/0 0/0 0.1
gdb15 7 21 4 58 58 58 1 0 0/0 0/1 0/0 0/0 0.1
gdb16 8 28 5 127 127 127 9 0 0/7 0/1 0/0 0/0 0.4
gdb17 8 28 5 91 91 91 9 0 0/8 0/0 0/0 0/0 0.5
gdb18 9 36 5 164 164 164 1 0 0/0 0/1 0/0 0/0 0.5
gdb19 8 11 3 55 55 55 5 1 0/5 0/1 0/0 0/0 0.1
gdb20 11 22 4 121 121 121 5 3 0/6 0/1 0/0 0/0 0.2
gdb21 11 33 6 156 156 156 5 1 0/5 0/1 0/0 0/0 0.5
gdb22 11 44 8 200 200 200 5 1 0/5 0/1 0/0 0/0 1.0
gdb23 11 55 10 233 233 233 1 0 0/0 1/2 0/0 0/0 1.6

Table 5: Results for the gdb instances at the end of phase I.

27

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
L

lb
o
w
n

in
it
cu
ts

co
m
po

ne
nt

od
d
cu
ts

ca
p
cu
ts

dp
1

dp
2

ti
m
e

1a 24 39 2 247 247 247 247 16 16 0/31 0/0 0/0 0/0 0.1
1b 24 39 3 247 247 247 247 16 16 0/31 0/0 0/0 0/0 0.2
1c 24 39 8 309 309 312 309 16 15 0/23 14/13 0/0 0/0 0.5
2a 24 34 2 298 298 298 298 17 4 0/19 2/3 0/0 0/0 0.1
2b 24 34 3 330 328 329 328 17 6 0/15 3/6 0/0 0/0 0.1
2c 24 34 8 526 526 528 526 17 11 0/9 13/14 0/0 0/0 0.4
3a 24 35 2 105 105 105 105 16 9 0/21 1/2 0/0 0/0 0.1
3b 24 35 3 111 111 111 111 16 10 0/19 2/5 0/0 0/0 0.3
3c 24 35 7 161 159 161 161 17 16 0/7 21/19 0/0 3/3 0.7
4a 41 69 3 522 522 522 522 24 11 0/29 3/4 0/0 0/0 0.3
4b 41 69 4 534 534 534 534 24 11 0/28 3/4 0/0 0/0 0.5
4c 41 69 5 550 550 550 550 24 12 0/28 6/7 0/0 0/0 0.5
4d 41 69 9 644 642 648 644 24 19 6/30 57/25 3/2 1/1 8.0
5a 34 65 3 566 566 566 566 19 26 0/43 1/2 0/0 0/0 0.3
5b 34 65 4 589 586 588 589 20 33 0/47 3/4 0/0 1/1 0.5
5c 34 65 5 612 610 613 612 20 33 0/46 6/6 0/0 1/1 0.8
5d 34 65 9 714 714 716 714 21 38 1/37 11/11 0/0 0/0 0.9
6a 31 50 3 330 330 330 330 19 27 0/41 0/1 0/0 0/0 0.1
6b 31 50 4 338 336 337 336 19 27 0/38 1/2 0/0 0/0 0.3
6c 31 50 10 418 414 420 418 19 26 1/22 38/20 1/0 1/1 2.0
7a 40 66 3 382 382 382 382 21 7 0/26 0/0 0/0 0/0 0.1
7b 40 66 4 386 386 386 386 21 7 0/26 1/1 0/0 0/0 0.3
7c 40 66 9 436 430 436 436 22 6 0/21 27/21 2/2 1/0 3.1
8a 30 63 3 522 522 522 522 18 6 0/22 0/1 0/0 0/0 0.1
8b 30 63 4 531 531 531 531 18 6 0/21 2/3 0/0 0/0 0.4
8c 30 63 9 653 645 654 653 20 13 0/17 20/15 2/2 6/6 2.1
9a 50 92 3 450 450 450 450 32 34 0/64 0/0 0/0 0/0 0.4
9b 50 92 4 453 453 453 453 32 21 0/50 0/1 0/0 0/0 0.3
9c 50 92 5 459 459 459 459 32 21 0/49 0/1 1/1 0/0 1.1
9d 50 92 10 509 505 512 507 32 26 0/50 15/14 1/1 1/1 3.0
10a 50 97 3 637 637 637 637 32 18 0/48 0/1 0/0 0/0 0.2
10b 50 97 4 645 645 645 645 32 41 15/83 1/2 0/0 0/0 1.1
10c 50 97 5 655 655 655 655 32 51 0/77 3/4 0/0 0/0 0.8
10d 50 97 10 732 731 734 733 33 35 38/64 38/15 4/2 6/4 104.0

Table 6: Results for the bccm instances at the end of phase I.

28

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
L

lb
M

P
S

lb
o
w
n

in
it
cu
ts

co
m
po

ne
nt

od
d
cu
ts

ca
p
cu
ts

dp
1

dp
2

ti
m
e

e1-a 77 98/51 5 3515 3516 3548 3527 3545 41 65 133/146 317/152 7/5 0/0 49
e1-b 77 98/51 7 4436 4436 4468 4468 4464 41 73 62/49 396/136 0/0 0/0 103
e1-c 77 98/51 10 5453 5481 5542 5513 5515 41 110 68/64 365/216 2/2 0/0 146
e2-a 77 98/72 7 4994 4963 5011 4995 4995 55 87 35/112 157/87 0/0 0/0 25
e2-b 77 98/72 10 6249 6271 6280 6273 6271 56 125 72/67 191/104 0/0 0/0 57
e2-c 77 98/72 14 8114 8155 8234 8165 8163 56 117 19/53 243/106 4/4 0/0 119
e3-a 77 98/87 8 5869 5866 5898 5898 5894 67 93 6/77 117/52 0/0 0/0 34
e3-b 77 98/87 12 7646 7649 7697 8649 7677 67 88 4/60 184/88 0/0 1/1 51
e3-c 77 98/87 17 10019 10119 10163 10138 10125 68 123 14/42 193/75 0/0 0/0 103
e4-a 77 98/98 9 6372 6378 6395 6378 6378 60 75 10/87 73/56 0/0 0/0 11
e4-b 77 98/98 14 8809 8838 8884 8838 8838 61 107 7/59 141/72 0/0 0/0 19
e4-c 77 98/98 19 11276 11376 11427 11383 11382 62 160 28/43 139/68 1/1 0/0 257
s1-a 140 190/75 7 4992 4975 5014 5010 5010 49 325 420/284 542/353 0/0 0/0 208
s1-b 140 190/75 10 6201 6180 6379 6368 6368 50 422 290/253 640/482 0/0 0/0 454
s1-c 140 190/75 14 8310 8286 8480 8404 8404 51 517 165/168 671/600 0/0 0/0 605
s2-a 140 190/147 14 9780 9718 9824 9737 9758 106 217 39/116 409/204 0/0 12/7 283
s2-b 140 190/147 20 12286 12835 12968 12901 12914 109 427 47/85 465/115 7/5 1/1 1136
s2-c 140 190/147 27 16221 16216 16353 16274 16247 109 493 33/95 559/224 0/0 0/0 2155
s3-a 140 190/159 15 10025 9991 10143 10083 10119 107 260 70/105 375/129 10/7 7/6 928
s3-b 140 190/159 22 13554 13520 13616 13568 13576 110 505 82/94 405/156 16/4 4/0 1291
s3-c 140 190/159 29 16969 16958 17100 17019 17007 110 459 32/84 426/141 1/1 1/0 2751
s4-a 140 190/190 19 12027 12007 12143 12026 12052 111 120 38/94 283/111 8/4 10/9 477
s4-b 140 190/190 27 15933 15897 16093 16001 16016 112 132 23/84 474/112 2/2 1/1 1003
s4-c 140 190/190 35 20179 20176 20375 20256 20235 112 158 16/70 580/175 0/0 0/0 1696

Table 7: Results for the egl instances at the end of phase I.

29

D. Computational Results of Phase II

This section presents the results on the linear relaxation of the master program eMP (phase II) for the
small-sized benchmark sets kshs and gdb. We use the same notation as in the journal article:

lb∗ lower bound obtained by algorithm of *; BB= cutting-plane algorithm of Belenguer and Benavent
(2003); A= Ahr (2004); L= linear relaxation (root) by Longo et al. (2006); LO= linear relaxation (root,
elementary routes) by Letchford and Oukil (2009); MPS= dual ascent and cutting-plane algorithm of
Martinelli et al. (2011)

lbrootown / lbtreeown lower bound obtained in our linear relaxation (root) or at termination of phase II (tree)
ubbest best known upper bound
comp. by first paper where the currently best upper bound was computed; H= Hertz et al. (2000); La= Lacomme

et al. (2001); BE= Brandão and Eglese (2008); PD= Polacek et al. (2008); SCC= Santos et al. (2010);
BLC= Baldacci et al. (2010); Be= Beullens et al. (2003)

opt value of optimal solution
proved by lb first paper where optimality is proved due to |ub− lb| < 1
proved by sol first paper where optimality is proved by computing an integer solution; B= Benavent et al. (1992);

BB= Belenguer and Benavent (2003); Lo= Longo et al. (2006); BM= Baldacci and Maniezzo (2006);
LO= Letchford and Oukil (2009); own= own solution

comp. time computation in time seconds for phase I or phase II
B&B nodes number of solved nodes in our branch-and-bound tree
branching D/E/F number of different branching decisions: D= node degree; E= edge flow; F= follower

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
r
o
o
t

o
w
n

op
t

pr
ov
ed

by
lb

pr
ov
ed

by
so
l

ti
m
e

ph
as
e
I

ti
m
e

ph
as
e
II

B
&
B

no
de
s

br
an

ch
in
g

D
/E

/F

kshs1 8 15 4 14661 14661 14.661 14661 BB Lo 0.1 0.1 2 0/0/1
kshs2 10 15 4 9863 9863 9.863 9863 BB Lo 0.2 0.1 2 0/0/1
kshs3 6 15 4 9320 9320 9.320 9320 BB Lo 0.2 0.1 3 0/0/2
kshs4 8 15 4 11098 11098 11.498 11498 Lo Lo 0.1 0.1 1 0/0/0
kshs5 8 15 3 10957 10957 10.957 10957 BB Lo 0.1 0.1 2 0/0/1
kshs6 9 15 3 10197 10197 10.197 10197 BB Lo 0.2 0.1 2 0/0/1

Table 8: Results for the kshs instances at the end of phase II.

30

na
m
e

|V | |E| |K| lb
B
B

lb
A

lb
r
o
o
t

o
w
n

op
t

pr
ov
ed

by
lb

pr
ov
ed

by
so
l

ti
m
e

ph
as
e
I

ti
m
e

ph
as
e
II

B
&
B

no
de
s

br
an

ch
in
g

D
/E

/F

gdb1 12 22 5 316 316 316 316 BB Lo 0.2 0.1 9 0/0/8
gdb2 12 26 6 339 339 339 339 BB Lo 0.3 0.1 6 0/0/5
gdb3 12 22 5 275 275 275 275 BB Lo 0.2 0.1 7 0/0/6
gdb4 11 19 4 287 287 287 287 BB Lo 0.2 0.1 3 0/0/2
gdb5 13 26 6 377 377 377 377 BB Lo 0.2 0.1 7 0/0/6
gdb6 12 22 5 298 298 298 298 BB Lo 0.3 0.1 5 0/0/4
gdb7 12 22 5 325 325 325 325 BB Lo 0.1 0.1 9 0/0/8
gdb8 27 46 10 344 344 347 348 Lo Lo 1.8 0.8 12 5/0/6
gdb9 27 51 10 303 303 303 303 BB Lo 0.8 1.3 11 6/0/4
gdb10 12 25 4 275 275 275 275 BB Lo 0.4 0.1 8 0/0/7
gdb11 22 45 5 395 395 395 395 BB Lo 0.4 1.0 21 0/0/20
gdb12 13 23 7 450 450 451 456 Lo Lo 0.4 0.2 15 12/0/2
gdb13 10 28 6 536 536 536 536 BB Lo 0.4 0.2 4 0/0/3
gdb14 7 21 5 100 100 100 100 BB Lo 0.1 0.1 3 0/0/2
gdb15 7 21 4 58 58 58 58 BB Lo 0.1 0.1 6 1/0/4
gdb16 8 28 5 127 127 127 127 BB Lo 0.4 0.2 14 2/0/11
gdb17 8 28 5 91 91 91 91 BB Lo 0.5 0.2 20 1/0/18
gdb18 9 36 5 164 164 164 164 BB Lo 0.5 0.2 17 0/0/16
gdb19 8 11 3 55 55 55 55 BB Lo 0.1 0.1 1 0/0/0
gdb20 11 22 4 121 121 121 121 BB Lo 0.2 0.2 6 0/0/5
gdb21 11 33 6 156 156 156 156 BB Lo 0.5 0.2 12 2/0/9
gdb22 11 44 8 200 200 200 200 BB Lo 1.0 0.4 22 3/0/18
gdb23 11 55 10 233 233 233 233 BB Lo 1.6 0.6 23 3/0/19

Table 9: Results for the gdb instances at the end of phase II.

31

E. Best Known Lower and Upper Bounds for the egl Instances

The following table summarizes the best known lower and upper bounds for the egl instances and list
the corresponding references:

name lbbest comp. by ubbest comp. by opt proved by
e1-a - - 3548 Lacomme et al. (2001) 3548 Longo et al. (2006)
e1-b - - 4498 Lacomme et al. (2001) 4498 Baldacci and Maniezzo (2006)
e1-c - - 5595 Lacomme et al. (2001) 5595 Bartolini et al. (2011)
e2-a - - 5018 Lacomme et al. (2001) 5018 Baldacci and Maniezzo (2006)
e2-b 6301 own 6317 Brandão and Eglese (2008) - -
e2-c - - 8335 Brandão and Eglese (2008) 8335 Bartolini et al. (2011)
e3-a - - 5898 Lacomme et al. (2001) 5898 Longo et al. (2006)
e3-b 7728 own 7775 Polacek et al. (2008) - -
e3-c 10244 Bartolini et al. (2011) 10292 Polacek et al. (2008) - -
e4-a 6408 own 6444 Santos et al. (2010) - -
e4-b 8935 Bartolini et al. (2011) 8961 Bartolini et al. (2011) - -
e4-c 11493 Bartolini et al. (2011) 11562 Bartolini et al. (2011) - -
s1-a - - 5018 Lacomme et al. (2001) 5018 Baldacci and Maniezzo (2006)
s1-b - - 6388 Brandão and Eglese (2008) 6388 Bartolini et al. (2011)
s1-c - - 8518 Lacomme et al. (2001) 8518 Bartolini et al. (2011)
s2-a 9825 Bartolini et al. (2011) 9884 Santos et al. (2010) - -
s2-b 13017 Bartolini et al. (2011) 13100 Brandão and Eglese (2008) - -
s2-c - - 16425 Brandão and Eglese (2008) 16425 Bartolini et al. (2011)
s3-a 10160 own 10220 Santos et al. (2010) - -
s3-b 13648 Bartolini et al. (2011) 13682 Polacek et al. (2008) - -
s3-c - - 17188 Bartolini et al. (2011) 17188 Bartolini et al. (2011)
s4-a 12149 own 12268 Santos et al. (2010) - -
s4-b 16105 own 16321 Polacek et al. (2008) - -
s4-c 20430 Bartolini et al. (2011) 20481 Bartolini et al. (2011) - -

Table 10: Bounds for the egl instances.

32

F. Optimal solutions for the bccm instances:

Optimal solutions for the bccm instances that have not been presented before are the following:

4d z = 650
veh 1 1–2–3=4=5=6=12=11=17=16=15=10–9–3–2–1
veh 2 1–2–3–9=10=4–5=11=16–15=14=13=7=8–9–3–2–1
veh 3 1–2–3–9–14=24=25–31=35=36=32=26=19–16–15–10–9–3–2–1
veh 4 1=7–13=23=24=30=29=23–14=9–3–2–1
veh 5 1–2–3–9–10=11–17=18=22=28=27=21=22–21=20–19–16–15–10–9–3–2–1
veh 6 1–2–3–9–10–15=25=26=27=32=31=30–29–23–14–9–3–2–1
veh 7 1–2–3–9–10–15–25=31–35=34=38=39=36=37=33=27–20=17–11–10–9–3–2–1
veh 8 1–2–3–9–10–15–16=19=20=27–33–37=41=40=36–40=39=35–34=29–23=14–9–3–2–1
veh 9 1–2=8=9=3=2=1

5c z = 617
veh 1 1=2-3=9=15=21-22=23=28=27=26=31=30=29=18=12=6-1
veh 2 1=6=18=19=25=29-30=25=26=20=14=8-14-13=2-1
veh 3 1=7-13=19=20=21=27=32=31-32=33=34=28=22=15-14=13=12-6-1
veh 4 1-2=3=10-3=4=10=16=17=11=5=4=11=10=9=8=2-1
veh 5 1-6=7=13-14=15=16=23=24=11-17=24=34-33=28-22=21-20-19=12-6-1

5d z = 718
veh 1 1=2=13=19=12=18=6–1
veh 2 1=6=7=1
veh 3 1–2=3=4=11=17–11=5=4=10=9=3–2–1
veh 4 1–2=8=9=15=14=8–14=13=12=6–1
veh 5 1–2–3=10=11=24=17=16=15–14–13=7–1
veh 6 1–2–3–10=16=23=24=34–28=23=22=21=20=14–13–12–6–1
veh 7 1–6–12–13–14–15=21=27=32=33=34=28=22=15–14–13–12–6–1
veh 8 1–6–18=19=20=26=31=30=29=18–6–1
veh 9 1–6–12–19=25=26=27=28=33–32=31–30=25=29–18–6–1

8c z = 657
veh 1 1=2=3=10=9=8=1
veh 2 1=5=8=7=6=4=5–1
veh 3 1=9–10=19=18–19=15=8–1
veh 4 1–2=9–10=15=14=13=17=14=8–1
veh 5 1–5–4=7=12=16=21=24=28=29–22=25–30=23–18–15–9–2–1
veh 6 1–5–4–6=11=20–27=28=21=29=22=17–14–8–1
veh 7 1–8=13=12=11=16=17=18=15–9–2–1
veh 8 1–2–9=15–18=23=26=30=29=25=30–26=18–15–9–2–1
veh 9 1–8–13=16=20=24=27=20=21=22=23–18–15–9–2–1

9d z = 515
veh 1 1=5=2=3=6=7=12=11=10=1
veh 2 1=9=14=15=16=1
veh 3 1=15=24=30=38=36=35=34=33=25=20=21=13=9–1
veh 4 1–5–2–3=4=7–12=19=32=40–32=31=17=16–1
veh 5 1–5=6=11=18=19–18=17=30=29=28=22=14–9–1
veh 6 1–5=10=17=24=23=22=13=8=9–1
veh 7 1–9–14=23–28=36=44=45=49–48=45=46=38–39=31–17–16–1
veh 8 1–15=23=29=37=38=39=40=47=39=30–29=24–15–1
veh 9 1–9–14–22=21=26=25–33=41=42=43=44–43=35=27=28=23–15–1
veh 10 1–15–23–28–27=26=34=42–43=48=49=50=46–50=45–44=37–29–24–15–1

Note: “=” indicates a service and “−” a deadheading

33

References

Ahr, D. 2004. Contributions to multiple postmen problems. Ph.D. thesis, Ruprecht-Karls-Universität Heidelberg.
Baldacci, R., V. Maniezzo. 2006. Exact methods based on node-routing formulations for undirected arc-routing problems.

Networks 47(1) 52–60.
Bartolini, E., J.-F. Cordeau, G. Laporte. 2011. Improved lower bounds and exact algorithm for the capacitated arc routing

problem. Technical report, HEC Montréal and CIRRELT, Montreal H3T 2A7, Canada.
Belenguer, J.M., E. Benavent. 2003. A cutting plane algorithm for the capacitated arc routing problem. Computers & Oper.

Res. 30 705–728.
Beullens, P., L. Muyldermans, D. Cattrysse, D. Van Oudheusden. 2003. A guided local search heuristic for the capacitated arc

routing problem. Eur. J. Oper. Res. 147(3) 629–643.
Brandão, J., R. Eglese. 2008. A deterministic tabu search algorithm for the capacitated arc routing problem. Computers &

Oper. Res. 35(4) 1112–1126. doi:10.1016/j.cor.2006.07.007.
Hertz, A., G. Laporte, M. Mittaz. 2000. A tabu search heuristic for the capacitated arc routing problem. Oper. Res. 48(1)

129–135.
Lacomme, P., C. Prins, W. Ramdane-Chérif. 2001. A genetic algorithm for the capacitated arc routing problem and its

extensions. Egbert J.W. Boers, S. Cagnoni, J. Gottlieb, E. Hart, P. Luca Lanzi, G. Raidl, R. E. Smith, H. Tijink, eds.,
Applications of Evolutionary Computing. EvoWorkshops2001: EvoCOP, EvoFlight, EvoIASP, EvoLearn, and EvoSTIM.
Proceedings, LNCS , vol. 2037. Springer-Verlag, Como, Italy, 473–483.

Letchford, A. N., A. Oukil. 2009. Exploiting sparsity in pricing routines for the capacitated arc routing problem. Computers
& Oper. Res. 36(7) 2320–2327.

Letchford, A.N., G. Reinelt, D.O. Theis. 2008. Odd minimum cut-sets and b-matchings revisited. SIAM J. on Discrete
Mathematics 22(4) 1480–1487.

Longo, H., M.P. de Aragão, E. Uchoa. 2006. Solving capacitated arc routing problems using a transformation to the CVRP.
Computers & Oper. Res. 33(6) 1823–1837.

Martinelli, R., M. Poggi, A. Subramanian. 2011. Improved bounds for large scale capacitated arc routing problem. Preprint
submitted to computers & operations research, Departamento de Informática, Rio de Janeiro, RJ 22453-900, Brazil.

Pearn, W. L., A. Assad, B. L. Golden. 1987. Transforming arc routing into node routing problems. Computers & Oper. Res.
14(4) 285–288. doi:10.1016/0305-0548(87)90065-7.

Polacek, M., K.F. Doerner, R.F. Hartl, V. Maniezzo. 2008. A variable neighborhood search for the capacitated arc routing
problem with intermediate facilities. J. of Heuristics 14(5) 405–423.

Santos, L., J. Coutinho-Rodrigues, J.R. Current. 2010. An improved ant colony optimization based algorithm for the capacitated
arc routing problem. Transportation Res. B 44(2) 246–266.

34

