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A Note on Symmetry Reduction for Circular Traveling Tournament Problems

Timo Gschwind*™?, Stefan Irnich?®

@ Chair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob- Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The traveling tournament problem (TTP) consists of finding a distance-minimal double round-robin tour-
nament where the number of consecutive breaks is bounded. [Easton et al.| (2001)) introduced the so-called
circular TTP instances, where venues of teams are located on a circle. The distance between neighboring
venues is one, so that the distance between any pair of teams is the distance on the circle. It is empirically
proved that these instances are very hard to solve due to the inherent symmetry. This note presents new
ideas to cut off essentially identical parts of the solution space. Enumerative solution approaches, e.g. re-
lying on branch-and-bound, benefit from this reduction. We exemplify this benefit by modifying the DFS*
algorithm of [Uthus et al.| (2009) and show that speedups can approximate factor 4n.

Key words: Timetabling, sports league scheduling, traveling tournament problem, circular instances,
symmetry reduction

1. Introduction

The traveling tournament problem (TTP) consists of finding a distance-minimal double round-robin
tournament where the number of consecutive breaks is bounded (cf. [Easton et all|2001)). Teams and venues
are given by T'= {1,2,...,n} for an even number n € 2N. Throughout the paper, we use indices ¢,t' € T for
teams and indices ¢, j € T for their venues. Let D = (d;;) for ¢, j € T be the distance between venues ¢ and j.
Any feasible solution to the TTP can be represented by tours p* = (i, ..., i;(n_l)) for all teams ¢ € T. Herein,

it € T describes for each time slot s € {1,2,...,2(n— 1)} at which venue team ¢ plays. For i} = ¢, team ¢ is
playing at home, otherwise t is playing away. Obviously, a solution is only feasible if tours are compatible,
i.e. an away game it = ¢/ # t implies a home game i}, = t’. With the definitions ¢ := i%,,_; := ¢ for all

teams ¢t € T, the cost of a solution p is the overall distance traveled ), .. Zi(znofl) dit e Additionally,

no-repeater constraints (NRCs) require that a home game ¢ against ¢’ is not followed by the corresponding
away game, where t' plays at home against ¢.

Easton et al.|(2001)) introduced the so-called circular TTP instances, where venues of the teams are located
on a circle. The distance between neighboring venues is one so that the distance between two teams i > j
is d;j = min{i — j,n + j —}. It is empirically proved that these instances are very hard to solve due to the
inherent symmetry. The purpose of this note is, therefore, to fully explicate the symmetry and exploit it
algorithmically.

This paper is structured as follows: In Section[2]we describe different kinds of symmetry and, if symmetry
is reduced, we compare the worst-case number of solutions to consider in enumerative solution approaches for
the TTP. Section [3] empirically tests the symmetry reduction methods on the branch-and-bound algorithm
that constitutes the kernel of the DFS* algorithm presented in (Uthus et al, [2009). Final conclusions are
drawn in Section [l
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2. Symmetry in Circular TTP Instances

It is possible to rotate the teams and venues of a feasible solution, i.e. replace ¢ by t+1 (for t < n) and n
by 1. The rotated solution is also feasible and has identical costs. Furthermore, reflections through opposite
vertices or edges, as depicted in Figure [1} produce symmetric solutions with identical costs.
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Figure 1: Circular Instance for n = 6; (a) Distances, (b) Rotation by 27/6, (c) and (d) Reflections through Vertices or Edges

Formally, the symmetry group of an n-sided regular polygon, which is known as the dihedral group D,,,
operates on the teams/venues (for an introduction to group theory we refer to|Aschbacher,2000)). D,, consists
of n rotations by multiples of 27 /n (including the identity) and n reflections through opposite vertices and
edges. We can exploit this operation in different ways, either by considering home-away assignments or
oriented 1-factors. Both will be explained in the following.

Symmetry on Home-Away Assignments. A home-away assignment (HAA) partially characterizes a solution
to the TTP. A HAA specifies, for each team and each time slot, whether the team plays at home or away.
Since there are equally many teams playing at home and away in a time slot, the overall number of slot
HAAs is (n’}Q) D,, operates on the set of slot HAAs of a given slot s.

For n = 6, there are (g) = 20 possible slot HAAs. The slot HAAs that are symmetric to (hhhaaa)
are defined as the orbit. For instance, the orbit of (hhhaaa) is {(hhhaaa), (ahhhaa), (aahhha), (aaahhh),
(haaahh), (hhaaah)}. The three different orbits with lengths 2, 6, and 12 are depicted in Figure 2{(b).

Due to symmetry in the circular instances, it suffices to consider one representative slot HAA from each
orbit for a given time slot s. This is the key observation for symmetry reduction. Without loss of generality,
we consider the first time slot s = 1 in the following. In branch-and-bound, symmetry reduction can be
implemented as an a priori branching rule in the first level of the branch-and-bound tree. For n = 4, there
are just two branches: The first branch can fix that teams 1 and 2 play at home, while the others play away;
the second branch can fix that teams 2 and 4 play at home and 1 and 3 away, as depicted in Fig. a). Also
other enumerative solution approaches for circular TTP instances benefit from choosing representatives, e.g.
the branch-and-price algorithm by |Irnich| (2010)).

Moreover, Figure [2| l(c ) compares standard branching with a priori branching on slot HA A representatives.
In the worst case, all ( /2) HAAs in slot 1 are checked in a standard branch-and-bound approach. Taking
representatives creates just as many branches as orbits exist. Thus, the ratio of the two numbers is an
(optimistic) estimate what can be gained from selecting representatives. This ratio is 3 for n = 4 and
increases to approximately 18 for n = 12. Since the length of an orbit divides the order of the symmetry
group, the ratio is here bounded (from above) by |D,| = 2n. The numbers in the table presented in
Figure (C) were computed with a straightforward enumeration procedure.

Symmetric 1-Factors. For each time slot s, a solution imposes a tournament, i.e. an oriented 1-factor of
the complete graph with node set T' (cf. [de Werral [1980). For instance, f := {(3,2),(1,6),(5,4)} means
that team 3 plays at home against 2, 1 at home against 6, and 5 at home against 4. The dihedral group
D,, naturally operates on oriented 1-factors. On f, D, produces an orbit consisting of four elements:
{1,{(2,1),(4,3),(6,5)},{(1,2),(3,4),(5,6)},{(2,3),(4,5),(6,1)}}. As before, in an enumerative solution
approach such as branch-and-bound, all elements of an orbit are equivalent. Therefore, it suffices to consider
one representative oriented 1-factor for the slot s = 1.
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Figure 2: (a) Orbits of HAAs for n = 4, (b) for n = 6, and (c¢) Number of HAAs and Orbits

Figure a) shows for n = 4 the three orbits with four elements each. Reducing symmetry in branch-
and-bound for n = 4 can a priori branch on the three representatives, e.g. the first branch assigns the games
(1,2),(4,3) to slot 1, the second (1,2),(3,4), and the third (1,3),(2,4). The table in Figure B[b) has the
same meaning as the one presented for the slot HAAs. In particular, the ratio shows the reduction in the
number of cases to be considered when reducing symmetry with 1-factors. Interestingly, the ratio here is
larger compared to the ratio for slot HAAs. For n > 10, it is approximately equal to the order 2n of the
symmetry group D,,.
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Figure 3: (a) Orbits of oriented 1-Factors for n = 4, (b) Number of oriented 1-Factors and Orbits
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Reversing Tours. Another type of symmetry can be utilized if distances d;; are symmetric. In this case, any

solution with tours p* = (i{,45,...,45, ,)) of the teams ¢ € T' has a corresponding reverse solution with
reverse tours (Zé(nfl)’ ... i4, 1) for all teams t. The symmetry group is the group Zy = {id,rev} = {+1, -1}
consisting of the identity id = +1 and the reversal rev = —1. Several authors have already exploited this

symmetry: In the branch-and-price algorithm of [Irnich| (2010), arcs are removed from the pricing network
of one team (say team 1) in such a way that only one of the two symmetric tours can be generated. In
their branch-and-bound approach, [Uthus et al.| (2009) require for team 1 that the first half of the schedule
(i.e. games in slots 1 to n — 1) has more home than away games (or vice versa). This is checked when
the schedule of team 1 is constructed round by round. In any case, the speedup that can be gained from

exploiting reverse tours is obviously bounded by factor 2.
3



Symmetry on Pairs of HAAs. Both symmetry within time slot 1 (slot HAAs or oriented 1-factors) and
symmetry induced by tour reversal can be combined. The symmetry group is G, = D,, x {+1,—1} with

4n elements. Any group element g = (d,e) € G operates on a solution with tours (it,d,... ,ig(n_l)),

t € T as follows: the resulting solution is given by the tours (i'f(t),ig(t),...,ig&)_l)) for e = +1 and
d(t d(t) .d(t

(’2273—1)’ o ,12( ),zl( )) for e = —1.

In order to exploit this symmetry, we consider two slot HAAs simultaneously. The HAAs must refer
to corresponding time slots (w.r.t reversal), say, the first time slot 1 and the last time slot 2(n — 1). The
overall number of HAA pairs is (7:}2)2. For n = 4, the operation of G4 on the (3)2 = 36 pairs of HAAs is
summarized in Figure a): (G4 produces six orbits with lengths 2, 2, 4, 4, 8, and 16. In general, the table
in Figure b) shows that the ratio approximates the order 4n of the symmetry group G,,. It is, from n =4
on, larger than the ratios for single slot HAAs and oriented 1-factors, and it is for n > 6 larger than twice
the ratio for single slot HAAs. These observations suggest that using pairs of HAAs may lead to larger
reductions in computing time than the symmetry reduction techniques that only take the dihedral group
D,, into account. We will empirically check this assumption in Section [3]

og oﬁ ﬁo eooo ﬁogo geﬁe

- (16 pairs) ...

Nb. of Nb. of Nb. of Nb. of Nb. of Nb. of
Teams n~ HAA pairs  Orbits Ratio Teams n 1-Fact. Pairs Orbits Ratio
4 36 6 6 4 144 17 ~8.5
6 400 26 ~15.4 6 14,400 652 ~22.1
8 4,900 186 ~26.3 8 2,822,400 89,093 =31.7
10 63,504 1,682 ~37.8 10 914,457,600 ? ?
12 853,776 18,168  ~47.0 12 4,425,974,784 ? ?

—~
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Figure 4: Operation of G, = D, X Z2 (a) Orbits of HAA pairs for n = 4, (b) Number of HAA Pairs and Orbits, (c) Number
of 1-Factor Pairs and Orbits

Now it is straightforward to also combine oriented 1-factors with reversals. Since the number of oriented
1-factors quickly increases with n, the number of pairs grows even faster, as can be seen in the table in
Figure (c) Due to the huge number of pairs we were not able to compute the orbits for n = 10 and n = 12.
Thus, symmetry reduction based on pairs of oriented 1-factors is not a promising approach to accelerate
enumerative algorithms. We will not consider pairs of oriented 1-factors any further.

3. Computational Results

Algorithm. To quantify the benefits of the different symmetry reductions, we implemented a modified version
of the DFS* approach of [Uthus et al.|(2009). Simplifying, we apply only the kernel of their approach which
is a standard depth-first brand-and-bound (DFB&B) search, where we initialize upper bounds with the
best known solutions from the literature. The DFB&B uses recursive backtracking to construct the overall

4



Computation Time Number of Recursions ——
HAA pairs

Instance None REVJI\‘/OelI{:al HAA 1-Factor Hﬁ%or(;?)lrs None Re:[\‘z;;al HAA 1-Factor (100%) Opt. Sol
circ 4 ? ? ? ? 0Os 229% 145% 84% 66% 38 20
circ 6 320% 200% 60% 60% 0.5s 713% 457% 127% 85% 58713 64
circ 8 2041% 1411% 275% 189% 44s 2259% 1553% 303% 205% 8568 856 132
circ 10 - - - - 6.0-107s - - - - 1.2-10" 242

Table 1: Constrained Instances: Computation Times and Number of Recursions (“?”=unmeasurable)

schedule time slot by time slot. In each step, it picks (in numerical order) the first team that has not been
assigned in the respective time slot and pairs it with a feasible opponent, at home or away. For the first
time slot, the integration of our symmetry reduction methods is straightforward: only games that match
the given representative in the first time slot are allowed.

Lower bounds in each step are given by the sum of the distances traveled so far and the independent lower
bounds (ILBs) for the remaining tours of each team individually. The ILBs for each team are determined
prior to the DFB&B execution. Herein, we use all information available at the respective step except for
the particular teams left to play at home. Thus, each ILB is indexed by the team ¢t it belongs to, the time
slot s of the last assigned game of team ¢, the venue i%, the current number of breaks, and the teams against
whom team ¢ still has to play away. This contrasts to the approach of [Uthus et al.|(2009) who do not use the
exact number of remaining home games resulting in a slightly lower memory usage by the cost of possibly
weaker bounds in some cases. The ILBs are the second point where the symmetry on HAA pairs is applied:
we allow only for those tours that match the pattern of a given representative in the last time slot, which
leads to tighter ILBs in many cases. To sum up, our branch-and-bound algorithm works as follows: First all
orbits and all ILBs are computed, followed by the DFB&B for one representative of each orbit. This offers
a natural way to parallelize the overall optimization as the orbits can be processed independently of each
other.

Computational Setup. We tested our symmetry reduction methods on the different variants of the circular
TTP instances, i.e. the constrained instances, where the number of consecutive home/away games is bounded
by 3, as well as the unconstrained instances with and without NRCs. The TTP benchmark instances can
be found on Michael Trick’s website http://mat.tepper.cmu.edu/ TOURNL

All algorithms were coded in C+-+, compiled in release mode with MS-Visual C+-+ 2008 version 9.0,
.NET version 3.5 SP 1. Most runs were performed on a standard PC with Intel Core2 Duo E8400 CPU
with 3.00 GHz, 4GB main memory, on Windows 7 using a single thread. For the harder instances (circ 8
unconstrained and circ 10) we distributed the computations on several computers with different performance,
but normalized computation times.

Runtime Analysis. The first observation is that the costs for calculating the orbits are negligible as their
computation always takes less than 0,1% of the overall runtime for instances with n > 8 teams. For the
smaller instances the computation times are not measurable.

Our most important finding is that all symmetry reductions cut the computation times of the branch-
and-bound algorithm significantly. Table [I] summarizes our results regarding the constrained instances. For
each instance, it shows the overall computation time and the total number of recursions. Since both times
and recursions are mostly smallest for symmetry reduction based on HAA pairs, we present absolute values
(=100%) for HAA pairs but relative values in all other cases. In general, the larger the symmetry group,
the larger the average length of an orbit can be. Note that the ratios presented in Section [2] are in fact the
average lengths of orbits. Now we empirically observe that the larger the orbits, the larger the speedup.
Interestingly, the gains in computation times are slightly smaller than the gains in the number of recursions.
This is due to the fact that in the branch-and-bound algorithm recursions are less expensive the deeper they
are in the search tree, and reduction methods with more orbits generally have to consider more recursions
with lower depth.

With increasing complexity of the instances we observe increasing speedups that, for circ 8, almost reach
the maximal possible savings for all symmetry groups as computed in Section[2] For instance, we calculated
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http://mat.tepper.cmu.edu/TOURN

Computation Time Number of Recursions ——
Tour HAA 1-Factor Tour HAA 1-Factor
Instance None Reversal  pairs HAA (100%) None Reversal  pairs HAA (100%) Opt. Sol.
w. NRCs
circ 4 ? ? ? ? 0Os 348% 220% 152%  128% 25 20
circ 6 825% 494% 306% 119% 1.6s 887% 525% 291% 128% 428 587 56
circ 8 - - 829%  129%  179094s - - 633%  146% 41103371129 102
w/o. NRCs
circ 4 ? ? ? ? Os 332% 229% 123%  113% 31 20
circ 6 775% 483% 258%  108% 1.2s 883% 546% 263%  130% 283361 54
circ 8 - - 795%  134%  149611s - - 562%  147% 34037268057 100

Table 2: Unconstrained Instances: Computation Times and Number of Recursions (“?”=unmeasurable)

a ratio of 26.3 for HAA pairs and attained a speedup of factor 20.4; for 1-factors we have a ratio of 13.9 and
a speedup of factor 10.7, and for slot HAAs 8.8 and 7.4, respectively.

The results suggest that similar speedups can be gained also for larger instances (if one were able to
solve these). Thus, we think that the use of HAA pairs is the most promising approach to reduce symmetry
when solving constrained instances. Using HAA pairs, we also confirm the result of Uthus et al. regarding
the optimal solution of the constrained circ 10 instance (cf. http://mat.tepper.cmu.edu/ TOURN).

The results for the unconstrained instances are given in Table [2] which is structured analogously to
Table However, our benchmark is now the symmetry reduction using 1-factors as computation times
and number of recursions are smallest here. Still, the results are less uniform compared to the constrained
case. While symmetry reduction based on slot HAAs and 1-factors again perform well and produce speedups
approximating the ratios presented in Section[2] symmetry reduction with HAA pairs is slower than expected.
We suspect that this is related to the gap between upper bound (or optimal solution) and ILBs, which is
small for the constrained but huge for the unconstrained instances (% between 50% and 60% for
n = 6,8). When applying reduction with HAA pairs, the fixations in the last slot lead to slightly tighter
bounds being particularly effective if the gap is small. For the unconstrained case, however, the small
increase of the lower bounds typically does not suffice to terminate the tree search at an early stage. As a
result, fixations with slot HAAs and HAA pairs need approximately the same number of recursions for one
orbit, while there are many more orbits for HAA pairs leading to longer overall computation times. This
explains why it is most beneficial to use 1-factors for the unconstrained instances.

Comparing constrained and unconstrained instances, the latter are considerably harder to solve (with
approaches using ILBs). However, with the symmetry reduction methods we were able to prove optimality of
the solutions of the unconstrained circ 8 instances provided by Langford (cf. http: / /mat.tepper.cmu.edu/ TOURN)).
Using symmetry reduction based on 1-factors, circ 8 unconstrained with NRCs is solved in less than 50 hours,
and circ 8 unconstrained without NRCs in less than 42 hours.

4. Conclusions

In this note we provided insights into the nature of the symmetry inherent in the circular TTP instances.
The largest symmetry group is G,, = D,, X Zs, which is the cartesian product of the dihedral group of
order 2n (n is the number of teams) and the group of order 2. We have shown that G,, operates on pairs
of home-away assignments of two corresponding time slots and can reduce the search space by a factor
approximating 4n. By selecting representatives from orbits it is easy to design algorithms that exactly cut
off the symmetric parts of the solution space and thus are much faster.

Using a branch-and-bound approach we demonstrated that the speedups increase with the number n of
teams. For the constrained circular instance with eight teams we observed a speedup of factor 20. A full
analysis for more teams is impossible due to the large computation times, but the empirical results suggest
that symmetry reduction can lead to speedups that approximate 4n for the larger constrained instances.

For the unconstrained circular instances, only the operation of D,, on 1-factors (implied by the games
of a time slot) can be exploited effectively in the branch-and-bound approach. Here, speedups seem to
approximate 2n. Finally, with the accelerated branch-and-bound we were able to solve the two unconstrained
instances circ 8 to proven optimality for the first time.
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