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Abstract: Effective route planning for battery electric commercial vehicle (ECV) fleets has to take into
account their limited autonomy and the possibility of visiting recharging stations during the course of a route.
In this paper, we consider four variants of the electric vehicle-routing problem with time windows: (i) at
most a single recharge per route is allowed, and batteries are fully recharged on visit of a recharging station,
(ii) multiple recharges per route, full recharges only, (iii) at most a single recharge per route, and partial
battery recharges are possible, and (iv) multiple, partial recharges. For each variant, we present exact branch-
price-and-cut algorithms that rely on customized mono-directional and bi-directional labeling algorithms for
generating feasible vehicle routes. In computational studies, we find that all four variants are solvable for
instances with up to 100 customers and 21 recharging stations. This success can be attributed to the tailored
resource extension functions (REFs) that enable efficient labeling with constant time feasibility checking and
strong dominance rules, even if these REFs are intricate and rather elaborate to derive. The studies also
highlight the superiority of the bi-directional labeling algorithms compared to the mono-directional ones.
Finally, we find that allowing multiple as well as partial recharges both help to reduce routing costs and the
number of employed vehicles in comparison to the variants with single and with full recharges.

Key Words: Vehicle routing, electric vehicles, recharging decisions, branch-price-and-cut, labeling algo-
rithms.
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1 Introduction

The utilization of battery electric commercial vehicles (ECVs) is steadily increasing, e.g., in the field of small-

package shipping or the distribution of food and beverages (Pelletier et al., 2014), despite the fact that, when

compared to conventional internal combustion engine vehicles, ECVs offer a limited driving range and are

not competitive from a cost perspective due to their high acquisition costs (Davis and Figliozzi, 2013). This

increase of ECV usage is due to the following advantages of the ECVs:

• ECVs produce minimal noise and no local greenhouse gas emissions. Therefore, they can be employed to

meet emission targets of delivery fleets or to serve restricted inner-city areas with noise and emission limits.

• ECVs help logistics companies to promote a green image, an important competitive factor given the

increasing number of socially and environmentally aware customers. Moreover, relative autonomy from

fluctuating oil prices can be achieved.

• ECVs become attractive from a cost perspective due to heavy subsidies offered by several governments

around the globe. In addition, governments and private companies are strongly investing to provide the

required recharging infrastructure.

Effective route planning of an ECV fleet requires solving vehicle-routing problems (VRPs, see, e.g., Toth and

Vigo, 2014) that take into account the limited driving range of ECVs and the possibility of visiting recharging

stations during the course of a route. Several heuristic solution methods for such VRPs have recently been

proposed in the literature (see, e.g., Erdogan and Miller-Hooks, 2012; Schneider et al., 2014a; Felipe et al.,

2014). However, to the best of our knowledge, no exact solution method has been presented yet.

In this paper, we develop effective branch-price-and-cut-algorithms for four variants of the electric VRP

with time windows (EVRPTW). The EVRPTW was introduced in (Schneider et al., 2014a) and includes

recharging times that depend on the battery level on arrival at a recharging station, vehicle capacity, and

customer time windows. The following four EVRPTW variants are addressed:

(i) at most a single (S) recharge per route is allowed, and batteries are fully (F) recharged on visit of a

recharging station (EVRPTW-SF);

(ii) the variant considered in (Schneider et al., 2014a): multiple (M) recharges per route, full (F) recharges

only (EVRPTW-MF);

(iii) at most a single (S) recharge per route, and partial (P) battery recharges are possible (EVRPTW-SP);

and

(iv) multiple (M), partial (P) recharges (EVRPTW-MP).

We solve the four EVRPTW variants to optimality with eight branch-price-and-cut algorithms, two

algorithms tailored to each specific variant. Branch-price-and-cut means that an extensive formulation (a

set-partitioning model in our case) is linearly relaxed, the relaxation is solved using column generation,

additional valid inequalities are added to strengthen the LP bound, and integer solutions are finally enforced

by branching (see Desaulniers et al., 2005; Lübbecke and Desrosiers, 2005). The solution of the master

program, i.e., the linear relaxation of the extensive formulation, starts with restricting the master to a

small subset of variables. The optimization of this restricted master program (RMP) provides the necessary

dual information needed to generate missing variables (columns) for the RMP. In our problem, as in many

extensive formulations for vehicle routing and crew scheduling problems, the generation of variables uses

a path representation of routes so that the column-generation subproblem is a variant of the elementary

shortest-path problem with resource constraints (ESPPRC, see Irnich and Desaulniers, 2005). The column-

generation process alternates between RMP reoptimization and solution of the ESPPRC until no more

columns with a negative reduced cost exist.

While the master program for EVRPTW is standard, the four variants give rise to different ESPPRCs.

The contribution of the paper at hand lies in the concise formulation of the different ESPPRC variants so

that highly effective solution techniques can be applied. An important aspect is the modeling with as few

as possible attributes (resource variables) in such a way that dominance rules allow the elimination of the

majority of the partial paths constructed in the course of the ESPPRC labeling algorithm. For the variants

with partial recharge (SP and MP), there is an immanent tradeoff between the amount recharged and the
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time spent for recharging: longer recharging extends the driving range while it may prohibit the timely arrival

at a later customer due to its service time window. Therefore, we require a label that models a tradeoff curve;

tradeoffs between two resources were earlier discussed for flight synchronization (Ioachim et al., 1999), for

the split delivery VRP with time windows (Desaulniers, 2010) and for inventory routing (Desaulniers et al.,

2014b). Additional state-of-the-art solution principles for ESPPRC rely on bi-directional search (Righini

and Salani, 2006) and bounding (Bode and Irnich, 2014). These techniques require a reversible labeling

process, meaning that paths can be generated from a given endpoint (the destination depot) using backward

propagation of labels. Interestingly, compared to the forward labeling process, the backward labeling for

the EVRPTW variants with full recharges (SF and MF) is considerably harder from the conceptual and

modeling point of view as well as from the computational perspective. Hence, it is not obvious whether

bi-directional labeling is superior. In contrast, forward and backward labeling for the variants with partial

recharges (SP and MP) are equally complex. The paper compares the performance of the mono-directional

and bi-directional algorithms in EVRPTW branch-price-and-cut.

Finally, there exists another tradeoff within the branch-price-and-cut algorithm itself: since the solution

of the ESPPRC is often prohibitively time consuming, relaxations of the ESPPRC are frequently solved

instead, often in combination with the addition of valid inequalities for the master program. Therefore, we

apply the ng-route relaxation (Baldacci et al., 2011), an adaptation of 2-path cuts (Kohl et al., 1999), and

subset-row inequalities (Jepsen et al., 2008).

We present an overall scheme that uses all the algorithmic components in a well coordinated fashion.

The computational experiments demonstrate that all four variants are solvable for instances with up to 100

customers and 21 recharging stations. This success can be attributed to the tailored resource extension

functions (REFs) that enable efficient labeling with constant time feasibility checking and strong dominance

rules, even if these REFs are intricate and rather elaborate to derive. The studies also highlight the superiority

of the bi-directional labeling algorithms compared to the mono-directional ones and quantify the gains that

can be achieved by allowing partial recharges and multiple recharges per route.

This paper is organized as follows. In the next section, we provide a short discussion of the literature on

electric VRPs (EVRPs). In Section 3, the four variants of the EVRPTW studied in this paper are described

in detail, and a mathematical formulation valid for all four variants is provided. In Section 4, we introduce

the proposed branch-price-and-cut algorithms. The results of our computational experiments are presented

in Section 5. Finally, conclusions are drawn in Section 6.

2 Literature

EVRPs are structurally similar to VRPs with intermediate replenishment facilities (Crevier et al., 2007;

Muter et al., 2014) and VRPs with distance constraints (Laporte et al., 1985; Juan et al., 2014). However,

neither heuristics nor exact solution methods for these problems are directly applicable for solving EVRPTW

to optimality. We will instead borrow some solution techniques from exact VRPTW approaches (Desaulniers

et al., 2014a). Moreover, EVRPs are related to the planning of recharging infrastructure (MirHassani and

Ebrazi, 2013; Mak et al., 2014).

The EVRPs addressed in the literature cover different subsets of classical VRP constraints and are shortly

discussed in the following. Conrad and Figliozzi (2011) present the recharging VRP that consists of routing a

fleet of ECVs with limited driving range subject to vehicle capacity and time window constraints. Recharging

is possible at certain customer locations and incurs a constant time penalty. The authors use an iterative

route construction and improvement algorithm to study the impact of driving range, recharging times, and

time window existence on modified Solomon (1987) instances. Moreover, bounds on the average tour lengths

are computed. Erdogan and Miller-Hooks (2012) propose two heuristics for the green VRP, a routing problem

in which vehicles can be refueled at dedicated stations that have to be visited en route. Neither capacity

constraints nor time windows are considered. Montoya et al. (2014) address the green VRP as follows: first,

giant tours are built by means of three randomized heuristics for the traveling salesman problem (TSP), then

routes are generated by optimally splitting the giant tours, and finally, a green VRP solution is assembled by

solving a set partitioning problem over the generated routes. Schneider et al. (2014b) develop an adaptive
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variable neighborhood search (VNS) for VRPs with intermediate stops that is used to solve instances of

the green VRP and of an EVRP with a maximal route duration constraint. Felipe et al. (2014) study an

extension of the green VRP that considers different types of recharging stations with different costs and

recharging speeds. As solution methods, a construction heuristic, several local search heuristics, and a

simulated annealing algorithm are developed.

Schneider et al. (2014a) propose a metaheuristic hybrid of VNS and tabu search to address EVRPTW-MF.

Hiermann et al. (2014) consider a combination of EVRPTW-MF and the fleet size and mix VRP with fixed

costs. Here, an unlimited number of ECVs with different battery capacities, load capacities and acquisition

costs but vehicle-independent routing costs are available. The problem is addressed by means of an adaptive

large neighborhood search (ALNS) enhanced by a labeling algorithm. Finally, a VRP with a mixed fleet of

electric and conventional vehicles is investigated by means of an ALNS in Goeke and Schneider (2014). For

both types of vehicles, energy consumption depends on vehicle load, vehicle speed and gradients.

Among these works, Conrad and Figliozzi (2011); Erdogan and Miller-Hooks (2012), and Montoya et al.

(2014) assume fixed recharging/refueling times, while Schneider et al. (2014a,b); Hiermann et al. (2014);

Goeke and Schneider (2014) and Felipe et al. (2014) assume the recharging time to be a linear function of

the amount of energy recharged. Among the latter works, all but Felipe et al. (2014) make the assumption

of full recharges. None of the above works explicitly restricts the number of recharges per route to a single

recharge, although this may often be possible in practical situations where the total route distance is limited

by the working hours of the driver.

For a discussion of simplifications commonly used in EVRP models, we refer to (Schneider et al., 2014a;

Goeke and Schneider, 2014). Finally, an overview of the field of goods distribution with ECVs can be found

in (Pelletier et al., 2014).

3 Problem description and mathematical formulation

Let N be the set of customers that all require deliveries (collection from all customers is identical). Denote

by qi the demand of customer i ∈ N and by [ei, `i] the time window in which service has to start at this

customer. A vehicle can arrive at a customer before the opening of its time window and wait to start service.

We assume an unlimited fleet of identical ECVs with a storage capacity of Q and a battery capacity of B.

At the beginning of the planning horizon, the ECVs are located in a single depot from which they start fully

charged and to which they must return by the end of the planning horizon.

Let R be a set of recharging stations at which the vehicles can stop en route to recharge their battery.

We assume that the battery recharging time is proportional to the amount of energy recharged. Traveling

from one location i (the depot, a customer or a recharging station) to another location j incurs a cost cij , a

travel time tij (that includes service time at i if i ∈ N), and an energy consumption bij .

There is certainly a cost for the energy consumed by the vehicle along its route. We consider the case

with identical recharging costs at all stations R and at the depot, where vehicles are fully recharged at the

end of the day. In this case, the recharging cost is irrelevant for routing decisions. The case of station-specific

costs is more intricate to handle.

A vehicle route is a sequence of locations that starts and ends at the depot and visits a non-empty subset

of customers and possibly some recharging stations. Its cost is given by the sum of the travel costs cij between

the pairs of consecutive locations i and j that it visits. A route is feasible if (i) it is elementary with respect

to the customers (recharging stations may be visited more than once); (ii) the total demand of the visited

customers does not exceed the vehicle capacity; (iii) the battery charge level is always nonnegative along the

route; and (iv) the customer time windows are respected. For the problem variants allowing partial recharges,

the amount recharged at a station and thus the required recharging time is a variable. Testing whether there

exists a feasible time schedule for a given route is therefore a non-trivial task in the EVRPTW-MP.

Note that the battery capacity constraint can also be expressed in terms of the time required to recharge

the energy consumed. Indeed, let hij = αbij be the time required to recharge the consumed energy bij when
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traveling between locations i and j, where α > 0 is a proportionality factor. Furthermore, let H = αB be

the total time required to recharge B units of energy. Let (i1, i2, · · · , ik) be a subpath of a route whose

extremities i1 and ik are either the depot or a recharging station and all intermediate locations i2 to ik−1

are customer locations. The battery capacity constraint imposes that
∑k−1

j=1 bij ,ij+1 ≤ B or equivalently∑k−1
j=1 hij ,ij+1 ≤ H holds. Neither bookkeeping of the consumed energy nor of the current battery level is

therefore necessary, and we will work directly and exclusively with the required recharging times. This avoids

numerical rounding errors that may otherwise occur due to time-to-energy and energy-to-time conversions

with a fractional result.

The EVRPTW consists of finding a set of feasible vehicle routes such that each customer i ∈ N is visited

exactly once by a vehicle and the sum of the route costs is minimized. The four EVRPTW variants stated in

Section 1 only differ by constraints imposed on battery recharges. The following mathematical formulation

for the EVRPTW is valid for all of them. Let Ω be the set of feasible routes that depends on the variant

considered. For each route p ∈ Ω, denote by cp its cost and by api, i ∈ N , a binary parameter equal to 1

if route p visits customer i and 0 otherwise. With each route p ∈ Ω, we associate a binary variable θp that

takes value 1 if the route is part of the solution and 0 otherwise. Using this notation, the EVRPTW can be

formulated as the following integer program:

min
∑
p∈Ω

cpθp (1a)

s.t.
∑
p∈Ω

apiθp = 1, ∀i ∈ N (1b)

θp ∈ {0, 1}, ∀p ∈ Ω. (1c)

Objective function (1a) seeks to minimize total routing costs. Set partitioning constraints (1b) ensure that

each customer i ∈ N is visited exactly once by a vehicle. Binary requirements (1c) restrict the domain of the

route variables.

Note that for the variants that consider partial recharges (EVRPTW-SP and EVRPTW-MP), there might

exist numerous feasible recharging plans for a route that visits one or several recharging stations. Because

no recharging costs are considered, there is no need to distinguish between those plans and it is sufficient to

know that at least one recharging plan exists for each such route. Consequently, the routes are not associated

with recharging plans.

In practice, model (1) contains a huge number of variables, namely, one per feasible route in Ω. This

number prohibits using a standard MIP solver or branch-and-bound algorithm for solving it. In the next

section, we propose alternative solution algorithms based on the branch-price-and-cut paradigm.

4 Branch-price-and-cut algorithms

To solve the set-partitioning model (1), we develop two branch-price-and-cut algorithms (Barnhart et al.,

1998; Desaulniers et al., 2005; Lübbecke and Desrosiers, 2005) for each problem variant. Because the pro-

cedure that generates the routes very much depends on the EVRPTW variant, we will mainly focus on this

aspect in Section 4.1, while cutting planes and branching are discussed in Sections 4.2 and 4.3.

4.1 Column generation

In this section, we focus on the initial linear relaxation of the extensive formulation (1), i.e., without cuts

or branching decisions. Recall that the subproblem aims at generating negative reduced cost columns (route

variables) to be added to the current RMP. If no such columns exist, the algorithm stops and the computed

solution to the current RMP is also optimal for the complete linear relaxation (for further details, see

Desrosiers and Lübbecke, 2005).

For model (1), the column generation subproblem can be defined as follows. Let πi for i ∈ N be the dual

variables associated with constraints (1b). Let c̄p, p ∈ Ω, be the reduced cost of variable θp with respect to
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these dual variables, i.e., c̄p = cp −
∑

i∈N apiπi. The subproblem can be stated as

min
p∈Ω

c̄p. (2)

The set of feasible routes in Ω can be implicitly represented in a directed graph G = (V,A) with vertex set

V and arc set A. The vertex set V is given by V = {o, d} ∪N ∪R, where o is a source and d a sink vertex,

both associated with the depot. Demand qi and time window [ei, `i] are associated with each vertex i ∈ N .

For all vertices i ∈ R ∪ {o, d}, we define qi = 0 and associate a nonrestrictive time window [ei, `i] (note that

our algorithms can be adapted to restrictive time windows). The arc set A contains all arcs (o, j) and (j, d)

with j ∈ N ∪R and all arcs (i, j) ∈ (N ∪R)2 with i 6= j. With each arc (i, j) ∈ A, we associate the cost cij ,

the travel time tij that includes the service time at i if i ∈ N , and the required recharging time hij . Given

these parameters, some arcs can be removed from A because they cannot be part of a feasible route, namely,

the arcs (i, j) with hij > H, qi + qj > Q, or ei + tij > `j . We assume that the cost, travel time, and required

recharging time matrices satisfy the triangle inequality.

A feasible route in Ω corresponds to an o-d path in G, in which any vertex i ∈ N is visited at most

once, i.e., elementarity is respected for the customer vertices. However, not all elementary o-d paths in G

correspond to feasible routes as they may violate the time windows, the vehicle capacity, or the battery

capacity. Additional constraints on the paths are therefore required to ensure that they represent feasible

routes. We define such resource constraints below.

Subproblem (2) aims at finding a feasible route with minimum reduced cost. To compute the reduced cost

of each o-d path in G, we replace the arc cost cij for each arc (i, j) ∈ A by a modified cost c̄ij = cij−πi, where

we set πi = 0 if i ∈ R ∪ {o, d}. Then, the sum of the modified costs c̄ij of the arcs (i, j) of a path p is equal

to its reduced cost c̄p. In this setting, the subproblem corresponds to an ESPPRC, in which elementarity

is imposed only on the customer vertices and the path length is measured with respect to the modified arc

costs c̄ij , (i, j) ∈ A.

Each EVRPTW variant induces a specific subproblem. The two single-recharge variants require a resource

constraint to ensure that at most one vertex in R is visited in a path. Furthermore, because full battery

recharges are more restrictive than partial battery recharges, these two recharge types must be handled

differently. In consequence, we consider four variants of the subproblem called ESPPRC-SF, ESPPRC-MF,

ESPPRC-SP, and ESPPRC-MP hereafter.

The ESPPRC on graph G can be solved by dynamic programming using a labeling algorithm (see Irnich

and Desaulniers, 2005). In this algorithm, labels are used to represent partial paths that start at the origin

vertex o. Starting from an initial label associated with vertex o, paths are constructed iteratively by extending

this label and its descendants forwardly in G. The extension of a label along an arc is performed using REFs.

Each generated label is checked for feasibility with respect to the resource constraints and infeasible labels

are discarded. Furthermore, to avoid enumerating all feasible o-d-paths, a dominance criterion is applied

to eliminate partial paths for which no completion to a full o-d-path with minimal reduced cost is possible.

When the labels are extended in this way from o to d, we say that a mono-directional forward search is

performed.

Alternatively, a bi-directional search (see Righini and Salani, 2006) can be applied and often yields lower

computational times. In this case, a resource has to be selected, for which the value is non-decreasing along a

path. Moreover, a midpoint M ∈ [E,F ] has to be chosen, where [E,F ] is the domain of the selected resource.

For example, any M ∈ [eo, `d] works for the time resource in the EVRPTW. Now, the algorithm proceeds

in three steps. First, labels are extended forwardly in G until reaching the midpoint M . Second, labels are

extended backwardly from d using backward REFs until reaching M . Finally, forward and backward labels

are merged and checked for feasibility to yield complete o-d-paths.

In the following, we propose mono-directional and bi-directional labeling algorithms for all subproblem

variants. We focus on the label components, the REFs, and the dominance rules.
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4.1.1 Labeling algorithms for the full-recharge ESPPRCs

In this section, we describe the labeling algorithms for the ESPPRC-SF and ESPPRC-MF variants of sub-

problem (2). We first propose a mono-directional forward labeling algorithm for ESPPRC-SF, then provide

a bi-directional algorithm for the same subproblem variant. Finally, we explain how both algorithms can be

adapted to ESPPRC-MF.

Mono-directional search In a forward labeling algorithm for ESPPRC-SF, a partial path p from o to a vertex

i ∈ V is represented by a label Li =
(
T cost
i , T load

i , T rch
i , T time

i , T rt
i , (T

custn
i )n∈N

)
, where the label components

are:

T cost
i : reduced cost of path p;

T load
i : total load delivered along path p;

T rch
i : number of recharges performed along path p;

T time
i : earliest service start time at vertex i;

T rt
i : cumulated required recharging time since the last recharge along path p (or since the beginning

of p if p contains no recharge);

T custn
i : number of times that customer n ∈ N is visited along path p. Also set to 1 if customer n is not

visited but is unreachable from p. A customer n is said to be unreachable if T load
i + qn > Q or

T time
i + tin > `n in which case it cannot be part of any feasible extension of path p.

In the initial label at vertex o, all components are set to 0 except T time
o that is set to eo. The extension

of a label Li =
(
T cost
i , T load

i , T rch
i , T time

i , T rt
i , (T

custn
i )n∈N

)
along an arc (i, j) ∈ A is performed using the

following REFs

T cost
j = T cost

i + c̄ij (3a)

T load
j = T load

i + qj (3b)

T rch
j = T rch

i +

{
1 if j ∈ R
0 otherwise

(3c)

T time
j =

{
max{ej , T time

i + tij + T rt
i } if i ∈ R

max{ej , T time
i + tij} otherwise

(3d)

T rt
j =

{
hij if i ∈ R
T rt
i + hij otherwise

(3e)

T custn
j =

{
T custn
i + 1 if j = n

max{T custn
i , Ufw

n (T load
j , T time

j )} otherwise,
(3f)

where Ufw
n (T load

j , T time
j ) is a function that sets the unreachability status of customer n ∈ N , i.e., Ufw

n

(T load
j , T time

j ) is equal to 1 if T load
j + qn > Q or T time

j + tjn > `n, and to 0 otherwise. The label Lj =(
T cost
j , T load

j , T rch
j , T time

j , T rt
j , (T

custn
j )n∈N

)
resulting from this extension is deemed feasible if T load

j ≤ Q,

T rch
j ≤ 1, T rt

j ≤ H, T time
j ≤ `j , and T custn

j ≤ 1 for all n ∈ N . If Lj is not feasible, it is deleted.

Given that all REFs (3) are non-decreasing functions, the following dominance rule can be applied (see

Desaulniers et al., 1998).

Definition 4.1 Let Lk =
(
T cost
k , T load

k , T rch
k , T time

k , T rt
k , (T

custn
k )n∈N

)
, k ∈ {1, 2}, be two labels associated

with paths ending at the same vertex. Label L2 is said to be dominated by label L1 if T r
1 ≤ T r

2 for all

r ∈ {cost, load, rch, time, rt, (custn)n∈N} and at least one of these inequalities is strict.

Dominated labels are discarded. Furthermore, if two labels L1 and L2 are equal, then one of them can be

discarded.

Bi-directional search In a bi-directional labeling algorithm for ESPPRC-SF, we can choose the time resource
for defining a midpoint, e.g., M = (`d − eo)/2 or

∑
i∈V (`i − ei)/(2|V |). We chose the first of these options

for the numerical studies. Then, the forward step proceeds as above except that a label is not extended if its
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T time component exceeds M . In the backward step, a partial path p from a vertex j ∈ V to d is associated

with a label Lj =
(
W cost

j ,W load
j ,Wnrch

j ,W time
j ,W sl

j ,W
avrt
j ,W rt

j , (W
custn
j )n∈N

)
whose components are:

W cost
j : reduced cost of path p;

W load
j : total load delivered along path p except at the last vertex j;

Wnrch
j : negative number of recharges performed along path p except at the last vertex j;

W time
j : latest service start time at vertex j that ensures time window feasibility at the subsequent vertices

along path p;

W sl
j : if a recharging station is visited along path p, this is the cumulated slack time at vertex j that

can be used for recharging at the next recharging station without changing the latest service start

time at j. Such slack time arises if the time window of a preceding customer is so restrictive that

waiting cannot be avoided. Note that we will reuse this definition of resources also for the case

of multiple recharges so that the term next recharging station refers to either the first and only

or a later recharging station;

W avrt
j : if a recharging station is visited along path p, this is the maximum recharging time available at

the next recharging station that ensures time window feasibility along p;

W rt
j : cumulated required recharging time needed to recover the energy consumed up to the next

recharge along path p (or until the end of p if no recharge is performed);

W custn
j : number of times that customer n ∈ N is visited along path p except vertex j. Also set to 1 if

customer n is not visited but is unreachable from p. In this case, a customer n is said to be

unreachable if W load
j + qj + qn > Q or W time

j − tnj < en in which case it cannot be part of any

feasible backward extension of path p.

The backward labeling process starts with an initial label at vertex d whose components are set to

0 except that W time
d = `d, W sl

d = ∞, and W avrt
d = H. The backward extension of a label Lj =(

W cost
j ,W load

j ,Wnrch
j ,W time

j ,W sl
j ,W

avrt
j ,W rt

j , (W
custn
j )n∈N

)
along an arc (i, j) ∈ A is performed using the

following backward REFs as long as W time
j − tij > M

W cost
i = W cost

j + c̄ij (4a)

W load
i = W load

j + qj (4b)

Wnrch
i = Wnrch

j −
{

1 if j ∈ R
0 otherwise

(4c)

W time
i =


min{`i,W time

j − tij − hij} if j ∈ R
min{`i,W time

j − tij} if j 6∈ R and Wnrch
j = 0

min{`i,W time
j − tij + min{0,W sl

j − hij}} otherwise
(4d)

W sl
i =


max{0,W time

j − tij − hij − `i} if j ∈ R
∞ if j 6∈ R and Wnrch

j = 0
max{W sl

j − hij , 0}+
max{0,W time

j − tij + min{0,W sl
j − hij} − `i} otherwise

(4e)

W avrt
i =


min{H − hij ,W time

i − ei +W sl
i } if j ∈ R

H if j 6∈ R and Wnrch
j = 0

min{W avrt
j − hij ,W time

i − ei +W sl
i } otherwise

(4f)

W rt
i =

{
hij if j ∈ R
W rt

j + hij otherwise
(4g)

W custn
i =

{
W custn

j + 1 if j = n

max{W custn
j , U bw

n (W load
i ,W time

i )} otherwise,
(4h)

where U bw
n (W load

i ,W time
i ) is a function that sets the unreachability status of customer n ∈ N , i.e., U bw

n

(W load
i ,W time

i ) is equal to 1 if W load
i + qi + qn > Q or W time

i − tni < en, and 0 otherwise. The label

Li =
(
W cost

i ,W load
i ,Wnrch

i ,W time
i ,W sl

i ,W
avrt
i ,W rt

i , (W
custn
i )n∈N

)
resulting from this extension is deemed

feasible if W load
i ≤ Q − qi, Wnrch

i ≥ −1, W time
i ≥ ei, W

avrt
i ≥ 0, W rt

i ≤ H, and W custn
i ≤ 1 for all n ∈ N .

If Li is not feasible, it is deleted.
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Figure 1: Computation of backward label components for a given path (ESPPRC-SF)

Figure 1 provides an example that describes the interaction between the resources time, sl and avrt. The

top part shows a path from customer 1 to the destination vertex d, that visits customers 2 and 3 as well

as a recharging station r. The time windows are depicted above each vertex. Travel time t and required

recharging time h are given on each arc, and we assume the time to fully recharge an empty battery to be

H = 50. The table in the bottom part of the figure indicates the W time, W sl, and W avrt components of the

backward labels generated along this path (from d to 1). The first row corresponds to the components of

the initial label at vertex d. With the first two extensions, the W sl and W avrt components do not change

given that no recharge occurs on the last two vertices. The W time component is only affected by the travel

times along these arcs. The extension along arc (2, r) yields W time
2 = min {`2,W time

r − t2,r − h2,r} =

min {120, 176− 30− 10} = 120, W sl
2 = max {0,W time

r − t2,r−h2,r− `2} = max {0, 176− 30− 10− 120} = 16,

and W avrt
2 = min {H − h2,r,W

time
r − t2,r − h2,r − e2} = min {50 − 10, 176 − 30 − 10 − 100} = 36. Indeed,

even if the recharge at r was taking up to W sl
2 = 16 additional units of time, W time

2 would still be equal

to 120. Furthermore, we observe that the time window at vertex 2 would still be respected even if up to

W avrt
2 = 36 units of recharging time were additionally required at r, in which case W time

2 would be set at

e2 = 100. The last extension along arc (1, 2) yields W time
1 = min{95, 120−34+min{0, 16−11}} = 86, W sl

1 =

max{16−11, 0}+max{0, 120−34+min{0, 16−11}−95} = 5, and W avrt
1 = min{36−11, 86−65+5} = 25.

Here, the W time component reduces only by 34 units along this arc although traveling along it takes 34 units

of time and increases the recharging time at r by h12 = 11 units. This is because the time is compensated

by the accumulated slack time which diminishes from 16 to 5. Finally, the W avrt component also drops by

h12 = 11 units to 25. Note that, given that there are 5 units of accumulated slack time, adding 25 units of

recharging time at r would move backward W time
1 to 86 + 5− 25 = 66, which would still be feasible.

All REFs (3) are non-decreasing functions. This is trivial to see for all except the four interdependent

resources nrch, time, sl, and avrt. The latter three of these resources depend on nrch due to the distinction

between the cases j /∈ R,Wnrch
j = 0 and j /∈ R,Wnrch

j < 0, i.e, the “otherwise” case in (4d), (4e), and (4f).

Here, it is straightforward to check that the smaller values Wnrch
j < 0 produce not greater components W time

i ,

W sl
i , and W avrt

i in comparison to Wnrch
j = 0. This is the reason why we defined Wnrch as a non-positive

component, counting visits to recharging stations negatively. As a result, all four interdependent resources

imply non-decreasing REFs. Moreover, they are bounded from below because of the feasibility conditions

Wnrch
i ≥ −1, W time

i ≥ ei, and W avrt
i ≥ 0, and the definition of W sl

i , which guarantees that W sl
i ≥ 0. Hence,

the following dominance rule can be applied.

Definition 4.2 Let Lk =
(
W cost

k ,W load
k ,Wnrch

k ,W time
k ,W sl

k ,W
avrt
k ,W rt

k , (W
custn
k )n∈N

)
, k ∈ {1, 2}, be two

backward labels associated with paths ending at the same vertex. Label L2 is said to be dominated by label L1

if W r
1 ≤ W r

2 for all resources r ∈ {cost, load, rt, (custn)n∈N}, W r
1 ≥ W r

2 for r ∈ {nrch, time, sl, avrt}, and
at least one of these inequalities is strict.

Once the forward labeling and the backward labeling processes are completed, forward and backward

labels are joined together to form full o-d-paths. Let Lfw
i =

(
T cost
i , T load

i , T rch
i , T time

i , T rt
i , (T

custn
i )n∈N

)
and

Lbw
i =

(
W cost

i ,W load
i ,Wnrch

i ,W time
i ,W sl

i , W
avrt
i ,W rt

i , (W
custn
i )n∈N

)
be labels representing a forward and a
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backward path ending at vertex i, respectively. Joining these two labels yields an o-d-path with reduced cost

T cost
i +W cost

i that is feasible if and only if the labels meet the conditions

T load
i +W load

i ≤ Q (5a)

T rch
i −Wnrch

i ≤ 1 (5b)

T custn
i +W custn

i ≤ 1 ∀n ∈ N \ {i} (5c)

as well as the following conditions, which we state according to three distinct cases concerning the merge

point.

Case 1: the forward and backward paths are merged at a recharging station, i.e., i ∈ R,

T time
i + T rt

i ≤ W time
i ; (6a)

Case 2: the backward path does not include a recharging station, i.e., i /∈ R and Wnrch
i = 0,

T time
i ≤W time

i and T rt
i +W rt

i ≤ H; (6b)

Case 3: the backward path includes a recharging station, i.e., i /∈ R and Wnrch
i < 0,

T time
i + max{0, T rt

i −W sl
i } ≤W time

i , T rt
i +W rt

i ≤ H, and T rt
i ≤ W avrt

i . (6c)

For the ESPPRC-SF (and for the EVRPTW-SP), we also implemented a simpler bi-directional labeling

algorithm in which the forward and backward labels are extended until reaching a recharging station. The

labels in both forward and backward steps only need to contain the cost, load, time, rt and (custn)n∈N
components which are computed using simple REFs. Forward and backward labels are merged at recharging

stations where the required recharging time can easily be computed. Preliminary tests showed that this

approach is not competitive with the one proposed above. The midpoint definition by recharging station is

less restrictive than the midpoint definition by the middle of the time horizon. Therefore, many more labels

are generated in the forward and backward labeling steps.

Multiple recharge case To solve the ESPPRC-MF, the algorithms described above are modified as follows.

For the mono-directional labeling algorithm, the T rch component is not required anymore (including its

corresponding tests). For the bi-directional algorithm, the T rch component is not required in the forward

labeling step. However, the Wnrch component is still needed in the backward step for the REFs (4d)–(4f)

and to determine which case applies in conditions (6). On the other hand, the feasibility of a label does

not depend on the value of this component and the merging condition (5b) does not have to be considered.

Finally, the test on Wnrch can be omitted from the dominance rule in Definition 4.2. Given the usage of

this component in the backward REFs, one should forbid the dominance of a label with this component

equal to 0 by a label with a negative component. However, this situation is already considered by the W avrt

component which takes its maximal value H as long as no recharging station is visited. Note finally that all

strictly negative values of Wnrch
i are equally good in the multiple-recharge case so that we can replace the

REF (4c) by Wnrch
i = max{−1,Wnrch

j − 1} for j ∈ R, and Wnrch
i = Wnrch

j otherwise, leading to a slightly

stronger dominance according to Definition 4.2.

4.1.2 Labeling algorithms for the partial-recharge ESPPRCs

Now, we describe the labeling algorithms for the ESPPRC-SP and ESPPRC-MP variants of subproblem (2).

Analogous to the previous section, we first present a mono-directional search algorithm for ESPPRC-SP,

then a bi-directional one. Finally, we discuss how these algorithms can be generalized for ESPPRC-MP.

Mono-directional search When partial recharges are allowed, the main difficulty to overcome in a forward

labeling algorithm is that the amount of energy to recharge at a station must be determined a posteriori, i.e.,

based on the travel performed after visiting this station. Consequently, the amount recharged at a station,

which can be expressed by means of the corresponding recharging time as described in Section 3, must
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be considered as a variable in the labeling algorithm. Therefore, the earliest service start time at vertices

following a recharging station becomes a linear function of this variable.

In the proposed forward labeling algorithm for ESPPRC-SP, a partial path p from o to a vertex i ∈ V
is represented by a label Li =

(
T cost
i , T load

i , T rch
i , T tMin

i , T tMax
i , T rtMax

i , (T custn
i )n∈N

)
. The definitions of

the components T cost
i , T load

i , T rch
i , and (T custn

i )n∈N are identical to the ones used in Section 4.1.1. In the

following, we provide the definitions of the other components:

T tMin
i : earliest service start time at vertex i assuming that, if a recharging station is visited prior to i

along p, a minimum recharge (ensuring battery feasibility up to i) is performed;

T tMax
i : earliest service start time at vertex i assuming that, if a recharging station is visited prior to i

along p, a maximum recharge (ensuring time-window feasibility up to i) is performed;

T rtMax
i : For the definition of this resource, we make the artificial assumption that recharging is possible

at all vertices. This assumption is only used to propagate the information forward along the

path, but a real recharge never occurs at a customer. Using the assumption, T rtMax
i denotes the

maximum possible recharging time at vertex i assuming that, if a recharging station is visited

prior to i along p, a minimum recharge (ensuring battery feasibility up to i) is performed.

If no recharging station is visited along the partial path p, then T tMin
i = T tMax

i is the standard earliest

arrival time and T rtMax
i is the cumulated recharging time of the path. Otherwise, T tMax

i −T tMin
i is equal to

the maximum recharging time that can be added at the preceding recharge while maintaining path feasibility.

As illustrated in Figure 2, the three components T tMin
i , T tMax

i , and T rtMax
i are sufficient to describe

the relationship between the earliest service start time and the maximum possible recharging time. This

relationship is depicted by the four line segments, each corresponding to a different label. The labels,

which are denoted L1 to L4, are associated with four paths ending at the same vertex and containing

one visit to a recharging station (if no recharging visit is contained, the line segment reduces to a single

point). For the moment, let us focus on the line segment associated with L1. The other segments will be

useful when we discuss the dominance rule below. For this segment, the extremities (T tMin
1 , T rtMax

1 ) and

(T tMax
1 , T rtMax

1 − (T tMax
1 − T tMin

1 )) correspond to the situation in which a minimum or maximum recharge,

respectively, is performed at the preceding recharging station while ensuring path feasibility. Thus, any point

between these extremities corresponds to the recharge of an intermediate amount. Observe that spending

one additional unit of recharging time reduces the maximum possible recharging time by 1 and increases the

earliest service start time by 1, i.e., the slope of the line segment is −1.

In the initial label at vertex o, all components are set to 0 except T tMin
o and T tMax

o that are both set to eo.
To extend a label Li =

(
T cost
i , T load

i , T rch
i , T tMin

i , T tMax
i , T rtMax

i , (T custn
i )n∈N

)
along an arc (i, j) ∈ A, we

use the REFs presented in Section 4.1.1 for computing the components T cost
j , T load

j , T rch
j , and (T custn

j )n∈N
of the resulting label Lj =

(
T cost
j , T load

j , T rch
j , T tMin

j , T tMax
j , T rtMax

j , (T custn
j )n∈N

)
. The other components

T tMin
j , T tMax

j , and T rtMax
j represent the line segment that describes the relationship between the earliest

service start time and the maximum possible recharging time. These components can be determined by

extending the line segment associated with Li using the following REFs:

T tMin
j =

{
max{ej , T tMin

i + tij} if T rch
i = 0

max{ej , T tMin
i + tij}+Xij(T

tMin
i , T rtMax

i ) otherwise
(7a)

T tMax
j =

{
min{`j ,max{ej , T tMin

i + T rtMax
i + tij}} if i ∈ R

min{`j ,max{ej , T tMax
i + tij}} otherwise

(7b)

T rtMax
j =

{
T rtMax
i + hij if T rch

i = 0
min{H,max{0, T rtMax

i − Sij(T
tMin
i )}+ hij} otherwise.

(7c)

In these REFs, Sij(T
tMin
i ) = max{0, ej − (T tMin

i + tij)} is the slack time between the time win-

dow lower bound at vertex j and the earliest arrival time at j. If a recharge is performed before, this

slack can be substituted by additional recharging time at the preceding recharging station. Furthermore,

Xij(T
tMin
i , T rtMax

i ) = max{0,max{0, T rtMax
i − Sij(T

tMin
i )} + hij − H} is the minimum recharging time
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Figure 2: Relationship between earliest service start time and maximum possible recharging time
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Figure 3: Computation of forward label components for a given path (ESPPRC-SP)

(besides the available slack time) that must be added at the preceding recharging station (if one exists) so

that battery capacity is still respected after traveling arc (i, j).

The resulting label Lj is feasible if T load
j ≤ Q, T rch

j ≤ 1, T tMin
j ≤ `j , T

tMin
j ≤ T tMax

j , T rtMax
j ≤ H, and

T custn
j ≤ 1 for all n ∈ N . Otherwise, Lj is rejected. Note that the condition T tMin

j ≤ T tMax
j is violated

if either an additional recharging time at the preceding recharging station yields a time window violation

or the required recharging time since the recharging station exceeds H. Concerning the latter case, it holds

that T tMax
j − T tMin

j ≤ T rtMax
j ≤ H if j ∈ R and this difference decreases by at least huv for each following

extension along an arc (u, v) with u 6∈ R. Thus, T tMin
v ≤ T tMax

v will be violated at a certain vertex v as soon

as the battery capacity is exceeded. If no recharge occurs (T rch
i = 0), the condition T rtMax

j ≤ H ensures

that the battery capacity is respected.

Figure 3 illustrates the computation of the label components T tMin
j , T tMax

j , and T rtMax
j using the pro-

posed REFs for a path (o, 1, r, 2, 3), in which 1, 2 and 3 are customers and r is a recharging station. Time

windows, travel times and required recharging times are depicted as in Figure 1. Again, we assume that

H = 50. The extensions along the arcs (o, 1) and (1, r) are straightforward. At station r, a maximum recharg-

ing time of T rtMax = 31 may be consumed if the subsequent extensions require it. The extension along (r, 2)
consumes a travel time of tr2 = 70 and a required recharging time of hr2 = 28. Thus, the earliest arrival time

at vertex 2 is T tMin
r + tr2 = 93 + 70 = 163, providing a slack time of Sr2(93) = max{0, 165− 163} = 2 that
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reduces the maximum possible recharging time from T rtMax
r = 31 to 29 before increasing it to 29 + 28 = 57.

In this case, it exceeds H = 50 by Xr2(93, 31) = max{0,max{0, 31 − 2} + 28 − 50} = 7. To respect

the battery capacity, this extra recharging time must be added to the earliest service start time yielding

T tMin
2 = max{165, 93 + 70}+ 7 = 172 and T rtMax

2 = min{50,max{0, 31− 2}+ 28} = 50. In this extension,

the maximum earliest service start time T tMax
2 = min{185,max{165, 93 + 31 + 70}} = 185 indicates that

a maximum additional recharging time of T tMax
2 − T tMin

2 = 185 − 172 = 13 can be added at r without

violating the time window at 2. The final extension along arc (2, 3) requires h23 = 8 of additional time units

at r to ensure sufficient battery energy up to vertex 3, yielding S23(172) = max{0, 190 − (172 + 19)} = 0,

X23(172, 50) = max{0,max{0, 50 − 0} + 8 − 50} = 8, T tMin
2 = max{190, 172 + 19} + 8 = 199, T tMax

2 =

min{220,max{190, 185 + 19}} = 204, and T rtMax
2 = min{50,max{0, 50 − 0} + 8} = 50. Hence, 8 units of

recharging time were added a posteriori at r, which increases the earliest service start time by 8 and reduces

the gap between T tMax
3 and T tMin

3 to 204− 199 = 5 units. Overall, at station r, the recharging process takes

exactly Sr2(93) + S23(172) +Xr2(93, 31) +X23(172, 50) = 2 + 0 + 7 + 8 = 17 time units.

Although all REFs (7) are non-decreasing (to see this, rewrite −Sij(T
tMin
i ) = min{0, T tMin

i + tij − ej} in

(7c) and in the definition of Xij), the standard dominance rule cannot be applied because of the feasibility

condition T tMin
j ≤ T tMax

j and the relationship between the earliest service start time and maximum possible

recharging time associated with a path.

A label L1 dominates a label L2 if the associated paths p1 and p2 end at the same vertex, T r
1 ≤ T r

2 for

r ∈ {cost, load, rch, tMin, (custn)n∈N}, and for every service start time T2 ∈ [T tMin
2 , T tMax

2 ], there exists a

service start time T1 ∈ [T tMin
1 , T2] such that T rtMax

1 − (T1 − T tMin
1 ) ≤ T rtMax

2 − (T2 − T tMin
2 ). The latter

condition stipulates that, for every maximum possible recharging time T rtMax
2 − (T2 − T tMin

2 ) achievable by

p2, path p1 can achieve the same maximum possible recharging time or a lower one at the same service start

time T2 or earlier.

Figure 2 illustrates some examples. In this figure, label L1 can dominate label L2 because the above

conditions on the components T tMin, T tMax, and T rtMax are respected. However, L1 cannot dominate L3

because the path associated with L3 can achieve a maximum possible recharging time that cannot be achieved

by the path associated with L1. Moreover, L1 cannot dominate L4 because the path associated with L4 can

achieve a maximum possible recharging time that can also be achieved by the path associated with L1 but

only for a later service start time. Following these observations, we can state the dominance rule as follows.

Definition 4.3 Let Lk =
(
T cost
k , T load

k , T rch
k , T tMin

k , T tMax
k , T rtMax

k , (T custn
k )n∈N

)
, k ∈ {1, 2}, be two labels

associated with paths ending at the same vertex. Label L2 is said to be dominated by label L1 if

T r
1 ≤ T r

2 for all r ∈ {cost, load, rch, tMin, (custn)n∈N}, (8a)

T rtMax
1 − (T tMax

1 − T tMin
1 ) ≤ T rtMax

2 − (T tMax
2 − T tMin

2 ), (8b)

T rtMax
1 − (T tMin

2 − T tMin
1 ) ≤ T rtMax

2 , (8c)

and at least one of these inequalities is strict.

Condition (8b) ensures that the minimum value of the maximum possible recharging time that can be

achieved by L1 is less than or equal to that achieved by L2. Condition (8c) ensures that the maximum

possible recharging time of L1 for a service start time of T tMin
2 is less than or equal to the corresponding

maximum possible recharging time of L2. These two conditions are equivalent to the requirement stated

above: for every service start time T2 ∈ [T tMin
2 , T tMax

2 ], there exists a service start time T1 ∈ [T tMin
1 , T2]

such that T rtMax
1 − (T1 − T tMin

1 ) ≤ T rtMax
2 − (T2 − T tMin

2 ). Note that, if T rch
1 = 0, condition (8c) is not

meaningful. However, in this case, it can only be violated if condition (8b) is also violated.

Bi-directional search For the ESPPRC-SP, the forward step of the bi-directional search labeling algorithm

proceeds as described above. We design a backward labeling algorithm that is completely symmetric to the

forward labeling algorithm. To this end, we define a reversed ESPPRC instance in which the underlying

graph G = (V,A) is replaced by the inverse graph G′ = (V,A′) with (i, j) ∈ A′ if and only if (j, i) ∈ A, all

time windows [ei, `i] replaced by [−`i,−ei], and all other coefficient (cij , qi, Q, tij , hij , H) kept. Moreover,
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start and destination nodes are swapped, i.e., o′ = d and d′ = o. We claim that for every feasible route of

the given instance, the reversed route is feasible in the reversed instance, and vice versa.

First, this statement is certainly true for routes without recharging. Therefore, we only consider routes

with one or several recharges in the following. (We use the plural stations/recharges to make the results

reusable for the case of multiple recharges discussed later.) Second, in the partial recharge case considered

here, it is always possible to reach the destination depot with all energy consumed, i.e., with an empty

battery. Otherwise, one could have reduced the amount recharged at the last recharging station (minimum

recharges).

Third, for a feasible route p in G with minimum recharges, the reversed route p′ is feasible when the

same amount of energy is recharged at the recharging stations. To prove the symmetry, assume the route

p = (r0 − r1 − r2 − · · · − rp − rp+1) with recharging stations r1, r2, . . . , rp ∈ R and r0 = o and rp+1 = d.

Let b1, b2, . . . , bp+1 be the amount of energy consumed when traveling between r0 − r1, r1 − r2, . . . , rp − rp+1

and let f1, f2, . . . , fp be the amount of energy recharged at the stations r1, r2, . . . , rp, respectively. Of course,

expressing energy consumption as recharging times is also possible here (H and h instead of B and b),

however, we use energy consumption for clarity of the exposition. Then, the feasibility of p implies that for

each recharging station ri, i ∈ {1, . . . , p}, it holds that

0 ≤ B −
i∑

j=1

bj +

i−1∑
j=1

fj ≤ B −
i∑

j=1

bj +

i∑
j=1

fj ≤ B,

where the left term is the battery level before and the right term the battery level after the visit of the respec-

tive recharging station. Reaching the destination depot empty implies B =
∑p+1

j=1 bj −
∑p

j=1 fj . Replacing

B in the above inequality by this term and subtracting the resulting inequality from B yields

B ≥ B −
p+1∑

j=i+1

bj +

p∑
j=i

fj ≥ B −
p+1∑

j=i+1

bj +

p∑
j=i+1

fj ≥ 0, (9)

for i ∈ {1, . . . , p}. For the reversed route p′ = (rp+1 − rp − · · · − r2 − r1 − r0) with recharge quantities

fp, . . . , f2, f1, the left term in inequality (9) is the battery level after visiting recharging station ri and the

right term is the one before reaching ri. The proven bounds 0 and B ensure the battery feasibility of p′.

Finally, the identical recharging quantities at all recharging stations imply that all service and recharging

times at all visits are identical in p and p′. Therefore, a feasible time schedule for p′ exists if the route p is
feasible.

Based on the discussed symmetry, the backward step of the bi-directional algorithm can be performed

analogously to the forward step: A partial path p from a vertex j ∈ V to d is associated with a label

Lj =
(
W cost

j ,W load
j ,Wnrch

j ,W tMin
j ,W tMax

j ,W rtMax
j , (W custn

j )n∈N
)
. The components W cost

j , W load
j , Wnrch

j ,

and (W custn
j )n∈N are defined as in Section 4.1.1. The three components W tMin

j ,W tMax
j ,W rtMax

j play the

same role as the components T tMin, T tMax and T rtMax for the mono-directional forward labeling algorithm.

Details on the initial label, the associated REFs, and the dominance rule can be found in the online appendix.

In the bi-directional algorithm, a forward label is not extended if its T tMin component exceeds an a priori

chosen midpoint M ∈ [eo, `d]. We used M = (`d − eo)/2 for the numerical studies. Accordingly, a backward

label is not extended if its W tMin component falls below M .

For the merging step of the bi-directional algorithm, let Lfw
i =

(
T cost
i , T load

i , T rch
i , T tMin

i , T tMax
i , T rtMax

i ,

(T custn
i )n∈N

)
and Lbw

i =
(
W cost

i ,W load
i ,Wnrch

i ,W tMin
i ,W tMax

i ,W rtMax
i , (W custn

i )n∈N
)

be labels represent-

ing a forward and a backward path ending at vertex i, respectively. Joining them yields an o-d-path with

reduced cost T cost
i +W cost

i that is feasible if and only if the labels satisfy the conditions

T load
i +W load

i ≤ Q (10a)

T rch
i −Wnrch

i ≤ 1 (10b)

T custn
i +W custn

i ≤ 1, ∀n ∈ N \ {i} (10c)
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T tMin
i + Zi(T

rtMax
i ,W rtMax

i ) ≤ W tMin
i (10d)

i ∈ R or Zi(T
rtMax
i ,W rtMax

i ) ≤ (T tMax
i − T tMin

i ) + (W tMin
i −W tMax

i ), (10e)

where Zi(T
rtMax
i ,W rtMax

i ) = max{0, T rtMax
i + W rtMax

i − H} is the minimum recharging time to add at

a recharging station to ensure that battery capacity is respected along the whole path. The interpretation

of the conditions (10a)–(10c) is straightforward. Condition (10d) ensures that the time windows of the

visited customers are met after adding the required minimum recharging time Zi(T
rtMax
i ,W rtMax

i ). Finally,

condition (10e) stipulates that the minimum recharging time, if any, is available at the visited recharging

station.

Multiple recharge case To handle the ESPPRC-MP, modifications must be made to the algorithms described

above. For the forward mono-directional labeling algorithm, the definitions of the T tMin, T tMax, and T rtMax

components must include the possibility to have multiple visits to recharging stations, all with either mini-

mum recharges or maximum recharges. Furthermore, the upper bound on the T rch component is no longer

necessary nor its corresponding test in the dominance rule stated in Definition 4.3. However, the component

T rch is needed to determine which case of the REFs (7) must be applied. For the bi-directional algorithm,

the modifications described above are also valid for the forward labeling process. For the backward labeling

phase, analogous modifications must be made for the W tMin, W tMax, and W rtMax components. Finally, the

merging condition (10b) must be dropped.

4.1.3 Acceleration strategies

We use two strategies to acceleration the solution process. Both aim at reducing the time spent solving

the subproblem, which is NP-hard for all EVRPTW variants due to the elementarity requirements on the

customers. The first strategy consists of relaxing the subproblem by allowing the generation of routes

containing cycles, i.e., that visit a customer more than once. Several route relaxations relying on this

principle have been proposed for the VRPTW (see Desaulniers et al., 2014a). Among them, the ng-route

relaxation introduced by Baldacci et al. (2011) currently seems to be the most effective.

For the EVRPTW, we use the following ng-route relaxation. For each vertex i ∈ N ∪ R, we define a

neighborhood NGi ⊂ N that contains i and the ν closest customers to i which can be visited before i, where

ν < |N | is a predefined parameter (set to 6 in the numerical studies). An ng-route allows to visit a customer

i twice (or more often) if it visits at least one vertex j in between two visits to i such that i 6∈ NGj . On

the one hand, considering ng-routes in the set Ω (while redefining the parameter api to be the number of

times customer i is visited in route p) may yield weaker lower bounds to model (1). On the other hand, the

subproblem becomes easier to solve if ν is sufficiently small. To address the subproblem, the computation

of the (T custn)n∈N and (W custn)n∈N components in the algorithms presented above must depend on the

neighborhoods NGi, i ∈ N ∪R (for details, see Desaulniers et al., 2014a).

The second acceleration strategy is to rapidly generate negative reduced cost columns using a graph of

reduced size. More precisely, at each iteration of the column generation algorithm, the labeling algorithm is

executed first on a simplified graph G that contains only a subset A′ of the arcs in A. If it fails to find negative

reduced cost columns, then the algorithm is executed again, but on the complete graph G. As suggested in

(Desaulniers et al., 2008), the subset A′ varies in each iteration: the arcs in A′ are selected based on the arc

modified costs c̄ij , (i, j) ∈ A, which depend on the current values of the dual variables of the RMP. First,

for every vertex i ∈ N ∪ R, we sort separately all incoming arcs and all outgoing arcs in increasing order of

their modified cost and put them in separate ordered lists denoted Ii and Oi, respectively. An arc (i, j) is

removed from A if (i) i, j ∈ N ∪ R, (ii) the rank of (i, j) in list Ij is greater than a predefined parameter µ,

and (iii) the rank of (i, j) in list Oi is also greater than µ. Thus, A′ contains all arcs leaving the origin o, all

arcs entering the destination d, and, for every vertex, at least µ incoming and µ outgoing arcs (unless there

exist less than µ of these arcs initially). In the numerical studies, we used µ = 3.
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4.2 Cutting planes

To strengthen the linear relaxations in the branch-and-bound search tree, two types of cutting planes are

applied: 2-path cuts and subset row inequalities. 2-path cuts were introduced by Kohl et al. (1999) for the

VRPTW and can be defined as follows. Let W ⊆ N ∪ R be a subset of vertices in V that includes at least

one customer and it is not possible to serve all customers in W on the same route, i.e., at least two vehicles

are required to serve them. The corresponding 2-path inequality is given by
∑

p∈Ω n
W
p θp ≥ 2, where nWp is

equal to the number of times that route p enters into set W , i.e., the number of arcs (i, j) ∈ A traversed in p

such that i 6∈ W and j ∈ W . To separate these inequalities, we first enumerate all subsets W ⊆ N ∪R such

that |W | is less than or equal to a given parameter (we used a value of 10 in our studies), the flow entering

W is less than two, and the vertices in W are connected in the support graph of the current linear relaxation

solution. If
∑

i∈N∩W qi > Q, then a violated inequality is found. If not, we solve an elementary shortest path

problem with time windows (ESPPTW) over W ∪{o, d} with all costs set to −1 (this is equivalent to solving

a TSP with time windows) to determine whether it is possible to visit all customers in W using a single

route while respecting the customer time windows (Desaulniers et al., 2008). If this is not possible, a violated

inequality is found. We also implemented a version of the separation algorithm that considered an ESPPTW

with battery capacity. However, this approach turned out to be less effective as not many more cuts were

found but separation time increased substantially. The violated 2-path inequalities that are identified are

added to the RMP. The dual variable associated with the 2-path cut for subset W must be subtracted from

c̄ij for all arcs (i, j) ∈ A with i 6∈W and j ∈W .

Subset row inequalities (Jepsen et al., 2008) are Chvátal-Gomory inequalities of rank 1 defined over subsets

of the constraints (1b). As in (Jepsen et al., 2008; Desaulniers et al., 2008), we consider only the subsets

involving three constraints (1b). Let W ⊂ N be a subset of three customers. The corresponding subset row

inequality is
∑

p∈Ωm
W
p θp ≤ 1, where mW

p = bβW
p /2c and βW

p is equal to the number of visits to a customer

in W along route p. If p is elementary, then mW
p is equal to 1 if p visits two or three customers in W and

0 otherwise. In this case, the inequality specifies that at most one route visiting two or three customers in

W can be part of a feasible integer solution. The subset row inequalities are separated by enumerating all

subsets of three customers and checking for each subset whether the corresponding inequality is violated.

Violated inequalities are added to the RMP. Contrary to the 2-path cuts, the dual variables associated with

the subset row cuts cannot be integrated into the modified arc costs c̄ij . When solving the subproblem by a

labeling algorithm, the dual variable associated with a subset row cut must be subtracted from the reduced

cost of a partial path each time that it visits two customers defining the cut. In consequence, the labels must

contain an additional component for each cut to count the number of visits to the associated customers.

Accordingly, the dominance rule must be modified to take into account these additional components (for

details, see Jepsen et al., 2008; Desaulniers et al., 2008, 2011).

The subset row cuts have proved to be very efficient for the VRPTW, substantially reducing the number

of nodes to explore in the search tree and the total computational times. However, the treatment of their

dual variables in the subproblem increases the difficulty of solving the subproblem to optimality. Therefore,

we only separate these cuts if no violated 2-path cuts are found.

4.3 Branching

To derive integer solutions, we impose the following types of branching decisions in the branch-and-bound

search tree: (i) on the total number of routes, (ii) on the total number of recharges, (iii) on the total number

of recharges at a given recharging station, and (iv) on the total flow on an arc of graph G. Given a fractional-

valued solution, these types of decisions are evaluated in the given order and the first type that can be

imposed is selected. If the total number of recharges is fractional for several stations, we choose to branch on

a station for which the fractional part of its total number of recharges is closest to 0.5. Similarly, if the arc

flow is fractional for several arcs, we choose an arc for which the fractional part of its flow is closest to 0.5.

For every decision, two branches are created. Decisions of the first three types are imposed by adding an

inequality to the RMP. The dual variable of this inequality alters the reduced cost of certain route variables.

For the fourth decision type, the decisions are imposed in a different manner by removing arcs from the graph
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G in the route-generation step. Moreover, all routes in RMP incompatible with this decision are removed.

Details of implementing these decisions are discussed, e.g., in (Desaulniers et al., 1998, 2005).

The branch-and-bound search tree is explored using the local depth-first search strategy introduced in

(Desaulniers et al., 2014a). This strategy chooses a node in the tree using the best-first criterion and explores,

possibly partially, the subtree rooted at this node using a depth-first strategy. A node is evaluated in this

subtree if the gap between the lower bound at its father node and the best lower bound of the unexplored

nodes is within a given tolerance (we used a value of 10 in our studies). When the local exploration of the

subtree is completed, the search strategy chooses the next node to explore using the best-first criterion before

locally exploring its subtree. This process is repeated until completing the search tree exploration. This

hybrid search strategy allows relatively fast linear relaxation reoptimizations in the depth-first phase and

limits the total number of nodes evaluated using the best-first criterion.

5 Computational studies

In this section, we present computational experiments to analyze the effectiveness of the proposed branch-

price-and-cut algorithms (Section 5.2), and to assess the benefits of allowing multiple and partial recharges,

i.e., to compare the four EVRPTW problem variants (Section 5.3). Section 5.1 describes the instance sets

used in our experiments. All algorithms were implemented in C/C++, compiled with GCC 4.4.7 using the

CPLEX 12.4 library for solving linear programs. The experiments were performed on a standard PC with

an Intel(R) Core(TM) i7-4770 CPU at 3.40 GHz, 16 GB of RAM, and running Linux, kernel version 3.8.13.

The parameters of the algorithms were calibrated in preliminary studies and their final values have been

presented in Section 4.

5.1 Benchmark instances

The EVRPTW benchmark set was introduced in (Schneider et al., 2014a) and is based on the VRPTW

benchmark set of Solomon (1987). To each of the 100-customer Solomon instances, Schneider et al. (2014a)

apply the following modifications to obtain an EVRPTW instance: (i) 21 randomly generated recharging

stations are added; (ii) the battery capacity is suitably set; and (iii) the time windows of some customers are

enlarged to ensure feasibility. The energy consumption bij along an arc (i, j) ∈ A is set equal to the arc cost

cij , and the proportionality factor α is chosen such that a complete battery recharge requires three times the

average customer service time of the considered instance.

In our experiments, we only use the groups R1, C1, and RC1 of the EVRPTW instances, which are

characterized by narrow time windows. The instances of the groups R2, C2, and RC2 have wide time

windows and are not interesting for our analysis because the time window constraints can easily be satisfied

and thus have only a minor influence on the recharging decisions. The resulting set of 29 instances could

have been used as a test set for the EVRPTW-MF and the EVRPTW-MP without modifications. However,

some of these instances are infeasible for the EVRPTW-SF and the EVRPTW-SP because two recharges are

needed to visit certain customers. Therefore, we modify these instances by randomly relocating the critical

customers closer to the depot. We additionally generate two sets of small and medium-sized instances, which

are obtained by randomly extracting 25 and 50 customers, respectively, from each 100-customer instance and

keeping the 21 recharging stations. Consequently, we end up with 3 · 29 = 87 instances.

5.2 Algorithmic performance

First, we investigate the performance of the different branch-price-and-cut algorithms with mono-directional

(M) and bi-directional (B) labeling algorithms for the four EVRPTW variants (SF, SP, MF, MP). For the

studies, the maximum run-time was set to 1 hour per instance. For each combination of solution algorithm

and problem variant, Table 1 reports aggregated results over the sets of instances with the same size (given

by the number of customers |N |): the number of instances solved to proven optimality within the time limit

(#Opt), and in the following columns, averages over these solved instances for the run-time in seconds (t), the

relative integrality gap in percent (∆), the percentage of this gap that is closed by the cuts (CC), the number
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of 2-path cuts (#2PC), the number of subset row cuts (#SRC), and the number of branch-and-bound nodes

explored (#Nodes). In addition, further aggregated results at different levels are provided.

Table 1: Performance of the branch-price-and-cut algorithms with mono-directional and bi-directional labeling
for the different problem variants.

Variant |N | #Opt t[s] ∆[%] CC[%] #2PC #SRC #Nodes

Mono-directional

SF
25 29/29 2.81 0.85 95.03 2.97 9.62 2.83
50 26/29 147.55 1.48 88.00 5.96 52.62 21.12

100 10/29 359.79 0.92 82.04 35.60 81.10 60.40

all 65/87 115.63 1.12 89.96 9.18 37.82 19.00

SP
25 29/29 2.59 0.66 93.48 2.86 7.07 2.66
50 25/29 130.20 1.37 90.77 6.88 39.84 13.64

100 9/29 247.58 0.91 88.18 38.89 43.44 12.67

all 63/87 88.23 0.98 91.40 9.60 25.27 8.44

MF
25 28/29 9.28 0.90 95.46 2.21 9.14 3.07
50 27/29 136.77 1.09 93.43 7.59 58.78 54.37

100 8/29 368.88 1.88 92.83 59.50 55.88 26.63

all 63/87 109.58 1.11 94.15 11.79 36.35 28.05

MP
25 29/29 24.44 0.80 98.55 3.21 9.24 2.79
50 23/29 371.87 0.99 84.36 7.00 108.87 155.65

100 8/29 690.16 1.53 91.98 36.63 66.75 19.63

all 60/87 246.38 0.97 91.53 9.12 55.10 63.63

all all 251/348 138.49 1.05 91.76 9.93 38.43 29.29

Bi-directional

SF
25 29/29 2.96 0.85 95.03 2.97 9.10 2.83
50 27/29 169.76 1.56 86.88 4.89 52.59 20.19

100 11/29 356.55 1.05 81.52 30.45 102.27 64.55

all 67/87 128.23 1.17 89.23 8.25 41.93 19.96

SP
25 29/29 2.82 0.66 93.48 2.86 7.79 2.76
50 27/27 112.90 1.50 90.33 6.11 48.33 20.07

100 12/29 657.49 1.04 84.90 32.50 101.50 44.50

all 68/87 162.06 1.06 90.33 9.38 40.43 17.00

MF
25 29/29 27.51 1.00 95.23 2.14 10.86 3.38
50 27/29 60.46 1.09 92.32 7.52 61.04 62.96

100 11/29 595.17 1.90 90.60 49.45 129.73 113.55

all 67/87 133.99 1.18 93.14 12.07 50.60 45.48

MP
25 29/29 7.08 0.80 98.93 3.21 8.97 2.79
50 26/29 380.55 1.17 85.68 7.08 85.08 158.38

100 10/29 419.58 1.67 90.72 32.50 87.40 36.90

all 65/87 219.93 1.08 91.62 9.26 51.48 70.28

all all 267/348 160.61 1.13 91.07 9.75 46.04 37.86

M and B all all 267/348

The results show that the bounds obtained at root node are tight with an average integrality gap of

approximately 1.1%. On average, 91% of this gap is closed by the cutting planes. Many more subset row

cuts are generated than 2-path cuts. The resulting gaps allow to prove optimality by exploring a relatively

small number of branch-and-bound nodes. Overall, 518 out of 696 instances are solved within an average

run-time of approximately 150 seconds. More precisely, more than 98% of the instances with 25 customers,

approximately 90% of the instances with 50 customers, and approximately 27% of the 100-customer instances

are solved. Moreover, we find that the EVRPTW-MP is the most challenging problem variant for both types of

algorithms (M and B). This can be explained by the fact that the feasible space for this variant is significantly

larger, which makes the subproblem harder to solve.
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In addition, we are interested in a direct comparison of the performance of the branch-price-and-cut

algorithms relying on mono-directional and bi-directional labeling. To this end, Table 2 reports the following

aggregated results for each combination of problem variant and set of test instances of the same size: the

number of instances solved by both types of branch-price-and-cut algorithms (#Common) and the difference

between the number of instances that can be solved by algorithms of type B and of type M (#Opt+
B). In the

last two columns, averages over the instances solved to optimality are provided for the run-time in seconds

obtained by the respective algorithm of type M (tM ), and for the relative deviation of the run-time of the

algorithm of type B (∆tB), which is calculated as 100 · (tB − tM )/tB , where tB (tM ) is the run-time of the

algorithm of type B (M).

Table 2: Comparison between the algorithms using mono-directional and bi-directional labeling.

Variant |N | #Common #Opt+B tM [s] ∆tB [%]

SF 25 29 0 2.81 13.61
50 26 1 147.55 -55.51

100 10 1 359.79 -53.01

all 65 2 115.63 -24.29

SP 25 29 0 2.59 17.75
50 25 2 130.20 -69.10

100 9 3 247.58 -157.08

all 63 5 88.23 -41.69

MF 25 28 1 9.28 -41.14
50 27 0 136.77 -57.74

100 8 3 368.88 -146.53

all 63 4 109.58 -61.64

MP 25 29 0 24.44 -15.55
50 23 3 371.87 -75.12

100 8 2 690.16 -112.56

all 60 5 246.38 -51.32

all all 251 16 138.49 -44.49

The results indicate that, overall, the algorithms using bi-directional labeling are more effective than

the algorithms with mono-directional labeling: on average, they are nearly twice as fast and are able to

solve more instances to optimality, namely 267 instead of 251 out of the 348 test instances. Furthermore, all

instances that were solved by algorithms of type M were also solved by algorithms of type B (this is additional

information that cannot be derived from the table). However, we note that the advantage is rather slight for

the small instances with 25 customers. Here, the algorithms of type B can only solve one additional instance

for variant MF, but the average run-times are longer for variants SF and SM.

5.3 Effect of allowing partial and multiple recharges

We investigate the effects of allowing partial recharges by comparing the results obtained for the problem

variants restricted to full recharges to those obtained with partial recharges. Because the algorithms relying

on bi-directional labeling are able to solve more instances, we base the analysis on the respective results.

Table 3 reports aggregate results for each combination of instance set (with instances of the same size,

i.e., |N |= 25, 50, 100) and number of recharges allowed per route in the considered problem variant (single

vs. multiple). Column “#Common” reports the number of instances that were solved to optimality for both

problem variants with partial (P) and full (F) recharges. The averages reported in the following columns are

based on the solved instances. Here, the average cost (Cost), number of vehicles (#Vehicles) and number

of recharges per vehicle (#Rech./Veh.) are reported for variant F. The results for variant P are given as

percentage deviation from the result of variant F (∆P ) and are computed in analogous fashion to ∆tB in

Table 2. Moreover, aggregations at several levels are reported.
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Table 3: Comparison between the results obtained for the full-recharge and partial-recharge variants.

#Rech. allowed |N | #Common Cost #Vehicles #Rech./Veh.

F ∆P [%] F ∆P [%] F ∆P [%]

single 25 29 514.55 -0.93 5.41 -0.86 0.83 0.69
50 26 809.65 -1.05 8.58 -4.42 0.82 4.30

100 9 1177.54 -0.88 13.78 -0.47 0.63 -4.50

all 64 727.67 -0.97 7.88 -2.25 0.79 1.43

multiple 25 29 505.67 -1.72 5.21 -2.70 1.06 5.15
50 25 778.24 -2.04 8.32 -3.65 1.01 10.26

100 8 1316.23 -2.21 15.00 -8.27 0.88 15.73

all 62 720.17 -1.91 7.73 -3.80 1.02 8.57

all all 126 723.98 -1.43 7.80 -3.02 0.90 4.94

For the cases with single recharge per route, we observe that allowing partial recharges leads to an average

reduction of the routing costs of 0.97% and a decrease in the number of vehicles used of 2.25%. These savings

are likely to happen because partial recharges allow to reduce recharging times in order to meet customer

time windows. For the cases with multiple recharges per route, a similar but stronger tendency can be

observed: on average, the routing costs reduce by 1.91%, the number of vehicles by 3.80%, and the number of

recharges per route increases by 8.57%. In fact, combining the multiple-recharge option with partial recharges

offers a much higher degree of flexibility resulting in lower costs and in more frequent but shorter recharging

operations.

Next, we investigate the effect of allowing multiple recharges by comparing the results of the multiple-

recharge variants to those of the single-recharge variants. Again, we base the analysis on the solutions of the

algorithms relying on bi-directional labeling. Table 4 reports our findings in an analogous fashion to Table 3:

now, results are aggregated according to the type of recharge (full vs. partial), and the differences between

the variants with single (S) and multiple (M) recharges per route are reported.

Table 4: Comparison between the results obtained for the single-recharge and multiple-recharge variants.

#Rech. type |N | #Common Cost #Vehicles #Rech./Veh.

S ∆M [%] S ∆M [%] S ∆M [%]

full 25 29 514.55 -1.65 5.41 -4.34 0.83 17.98
50 26 806.44 -3.29 8.58 -3.20 0.82 17.07

100 9 1218.76 -1.48 14.33 -1.30 0.65 19.31

all 64 732.16 -2.29 7.95 -3.45 0.80 17.80

partial 25 29 509.82 -2.46 5.38 -6.18 0.83 22.64
50 25 797.17 -3.79 8.20 -2.38 0.86 21.36

100 7 1275.72 -2.43 14.57 -5.39 0.66 36.28

all 61 715.47 -3.00 7.59 -4.53 0.82 23.68

all all 125 724.02 -2.64 7.78 -3.98 0.81 20.67

We observe that the flexibility introduced by allowing multiple recharges per route yields, on average,

a decrease of 2.64% in the routing costs and of 3.98% in the number of vehicles used, while the average

number of recharges per vehicle increases considerably (by 20.67%). These gains, which are larger for the

partial recharge case, are due to the possibility of scheduling the required recharges at several occasions

along a route, exactly when spare time is available before serving customers. Compared to allowing partial

recharges, allowing multiple recharges per route is clearly more profitable. On the other hand, this option

might be less practical.
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6 Conclusions

In this paper, we present effective branch-price-and-cut algorithms for four variants of the EVRPTW, which

are defined according to the maximal number of recharges per route (single vs. multiple) and the type of

recharge (partial vs. full). For each problem variant, mono-directional and bi-directional labeling algorithms

for generating feasible routes are presented. Their efficiency results from complex REFs, that allow for

constant time feasibility checking, and strong dominance rules. On average, only relatively few branch-

and-bound nodes need to be explored due to the utilization of state-of-the-art techniques for reducing the

integrality gap: almost elementary routes are generated using the ng-route relaxation and the remaining

integrality gap is closed to a large extent by applying an adaptation of 2-path cuts and subset-row inequalities.

In numerical studies, we demonstrate that our algorithms are capable of solving instances with up to 100

customers and 21 recharging stations for each of the problem variants. Moreover, we show that, especially

for larger instances with 50 and 100 customers, the bi-directional labeling is superior compared to the mono-

directional one. Finally, we find that allowing multiple as well as partial recharges both help to reduce routing

costs and the number of employed vehicles in comparison to the variants with single and with full recharges.

Appendix

A Backward labeling algorithm for the partial-recharge ESPPRCs

Recall from Section 4.1.2 that the backward labeling step for the partial-recharge ESPPRCs uses labels Lj =(
W cost

j ,W load
j ,Wnrch

j ,W tMin
j ,W tMax

j ,W rtMax
j , (W custn

j )n∈N
)
, in which the components W tMin

j ,W tMax
j ,

W rtMax
j play the same role as the components T tMin, T tMax and T rtMax in the mono-directional forward

labeling algorithm. We argued using the formal device of the reversed ESPPRC instance with inverse graph

G′ = (V,A′). Basically, the reversed instance uses reversed arcs and the negative values of all data related to

points in time. This includes that time windows are defined as [−`i,−ei] for i ∈ V . Then, we use the results

obtained from the reversed instance and, in turn, replace all time related resources by their negative. This

way, we derive the final formulas.

Hence, the components of the initial label at vertex d are set to 0 except for W tMin
d = W tMax

d = `d.

Further, we define the REFs for extending a label Lj =
(
W cost

j ,W load
j ,Wnrch

j ,W tMin
j ,W tMax

j ,W rtMax
j ,

(W custn
j )n∈N

)
along an arc (i, j) ∈ A. The components W cost

j , W load
j , Wnrch

j , and (W custn
j )n∈N are not

related to points in time and can therefore be propagated using the REFs (4a)–(4c) and (4h). For the other

components, we use the forward REFs (7) for the reversed instance with the following modifications: we

swap e and ` as well as i and j, multiply the time-related components T tMin
i and T tMax

i by −1 (note that

T rtMax
i is a duration and not a point in time and is therefore not multiplied by −1), use the equalities

−max{a, b} = min{−a,−b} and −min{a, b} = max{−a,−b}, and replace the symbols −T tMin by W tMin,

−T tMax by W tMax, and +T rtMax by W rtMax. The following REFs result

W tMin
i =

{
min{`i,W tMin

j − tij} if Wnrch
j = 0

min{`i,W tMin
j − tij} − X̂ij(W

tMin
j ,W rtMax

j ) otherwise
(11a)

W tMax
i =

{
max{ei,min{`i,W tMin

j −W rtMax
j − tij}} if j ∈ R

max{ei,min{`i,W tMax
j − tij}} otherwise

(11b)

W rtMax
i =

{
W rtMax

j + hij if Wnrch
j = 0

min{H,max{0,W rtMax
j − Ŝij(W

tMin
j )}+ hij} otherwise,

(11c)

with Ŝij(W
tMin
j ) = max{0,W tMin

j − tij − `i} and X̂ij(W
tMin
j ,W rtMax

j ) = max{0,max{0,W rtMax
j

−Ŝij(W
tMin
j )}+ hij −H}.

The resulting label Li is feasible if W load
i ≤ Q, Wnrch

i ≥ −1, W tMin
i ≥ ei, W

tMin
i ≥ W tMax

i , W rtMax
i ≤

H, and W custn
i ≤ 1 for all n ∈ N . Otherwise, Li is rejected. Based on Definition 4.3 we can get the analogous

dominance rule:
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Definition A.1 Let Lk =
(
W cost

k ,W load
k ,Wnrch

k ,W tMin
k ,W tMax

k ,W rtMax
k , (W custn

k )n∈N
)
, k ∈ {1, 2}, be two

labels associated with paths ending at the same vertex. Label L2 is said to be dominated by label L1 if

W r
1 ≤W r

2 for all r ∈ {cost, load, (custn)n∈N}, (12a)

W r
1 ≥W r

2 for all r ∈ {nrch, tMin}, (12b)

W rtMax
1 − (W tMin

1 −W tMax
1 ) ≤W rtMax

2 − (W tMin
2 −W tMax

2 ), (12c)

W rtMax
1 − (W tMin

1 −W tMin
2 ) ≤W rtMax

2 , (12d)

and at least one of these inequalities is strict.

Conditions (12c) and (12d) play the same role as conditions (8b) and (8c) in Definition 4.3.
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