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Abstract: This paper proposes models and algorithms for the pickup and delivery vehicle routing problem
with time windows and multiple stacks. Each stack is rear-loaded and is operated in a last-in-first-out
(LIFO) fashion, meaning that when an item is picked up, it is positioned at the rear of a stack. An item can
only be delivered if it is in that position. This problem arises in the transportation of heavy or dangerous
material where unnecessary handling should be avoided, such as in the transportation of cars between car
dealers and the transportation of livestock from farms to slaughterhouses. To solve this problem, we propose
two different branch-price-and-cut algorithms. The first solves the shortest path pricing problem with the
multi-stack policy, while the second incorporates this policy partly in the shortest path pricing problem and
generates additional inequalities to the master problem when infeasible multi-stack routes are encountered.
Computational results obtained on instances derived from benchmark instances for the pickup and delivery
traveling salesman problem with multiple stacks are reported, and reveal the advantage of incorporating the
multi-stack policy in the pricing problem. Instances with up to 75 requests and with one, two and three
stacks can be solved optimally within two hours of computational time.

Key Words: Vehicle routing with pickups and deliveries, loading constraints, column generation, branch-
price-and-cut, valid inequalities.
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1 Introduction

This paper proposes two branch-price-and-cut algorithms for the pickup and delivery problem with time

windows and multiple stacks (PDPTWMS) and analyzes their performance. In the pickup and delivery

problem, vehicles based at a depot are used to satisfy a set of requests which consists of transporting goods (or

items) from a specific pickup location, where the item is loaded, to a specific delivery location, where the item

is unloaded. We consider an unlimited fleet of identical vehicles with multiple homogeneous compartments

of limited capacity. Each compartment is rear-loaded and is operated as a last-in-first-out (LIFO) stack,

meaning that when an item is picked up, it is positioned on top of a stack. An item can only be delivered

if it is on top of its stack and shifting items between stacks is not allowed. To illustrate, let 0 denote the

depot, and let i+ and i− be the pickup and the delivery nodes associated with request i. Figure 1 depicts a

route and the load of a two-stack vehicle with respect to the multi-stack policy. Each pickup and delivery

location has a specified time window during which the service must start. A vehicle route is feasible if (i)

the service at each location starts within the given time windows, (ii) the load in each compartment of the

vehicle does not exceed its capacity, (iii) each completed requested is first picked up at its pickup location

and then delivered at its corresponding delivery location, and (iv) the loading and unloading of the items

respect the LIFO policy for each stack. Two types of costs are considered: a fixed cost for each vehicle used in

the solution and a distance-related variable cost. The PDPTWMS consists of determining a set of least-cost

feasible routes in which the number of vehicles is first minimized.

The PDPTWMS arises in the transportation of heavy or dangerous material for which unnecessary han-

dling should be avoided. In particular, this problem is encountered in the transportation of cars between car

dealers with multi-level vehicles, where each level is operated in a LIFO fashion. This problem also arises

in the transportation of livestock from farms to slaughterhouses with multi-compartment vehicles, where

each compartment is operated in a LIFO fashion. To the best of our knowledge, this problem has not been

previously studied, but several of its variants have been investigated, namely the pickup and delivery prob-

lem (see Berbeglia et al. [7], Parragh et al. [23, 24] for surveys), the pickup and delivery problem with time

windows (PDPTW) (see Ropke et al. [29], Battara et al. [6] for exact algorithms), the traveling salesman

problem with pickup and delivery and LIFO loading (TSPPDL) (see Carrabs et al. [8], Cordeau et al. [12] for

exact algorithms), the pickup and delivery problem with time windows and LIFO loading (PDPTWL) (see

Cherkesly et al. [10] for three exact branch-price-and-cut algorithms), the double traveling salesman problem

with multiple stacks (see Alba Mart́ınez et al. [1], Lusby et al. [21], Petersen et al. [25] for exact algorithms

and Petersen and Madsen [26] for a heuristic), the double vehicle routing problem with multiple stacks (see

Iori and Riera-Ledesma [18] for exact algorithms), and the pickup and delivery traveling salesman problem

with multiple stacks (PDTSPMS) (see Côté et al. [13, 14] for a branch-and-cut algorithm and a heuristic).

Among the algorithms proposed for the variants of the PDPTWMS, two exact algorithms stand out

and constitute the basis of this research. Côté et al. [13] have developed a branch-and-cut algorithm for

the PDTSPMS, for which several families of valid inequalities were proposed and tested, and instances

with up to 21 requests were solved to optimality within one hour of computation time. Cherkesly et al.

[10] have developed a branch-price-and-cut for the PDPTWL and have introduced three relaxations of the

pricing problem, for which they developed shortest path labeling algorithms to enforce the LIFO policy. One

0 1+ 2+ 3+ 1− 3− 2− 0

1 1 12 2 2 2

3 3

Figure 1: Route satisfying the capacity constraints and the multi-stack policy for a vehicle containing two
stacks, each of capacity 2. All three items have a unit demand.
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algorithm solves the pricing problem without the LIFO policy and imposes it through additional constraints in

the master problem. Another algorithm solves the pricing problem with a relaxed LIFO policy and additional

constraints may be added to the master problem if needed. The last one solves the pricing problem with a

complete version of the LIFO policy. Computational results revealed that for harder instances the hybrid

algorithm seemed to perform best.

The main objective of this paper is to develop, for the first time, different exact branch-price-and-cut

algorithms for the PDPTWMS. A branch-price-and-cut algorithm is a branch-and-price algorithm in which

the linear relaxation is strengthened through the generation of valid inequalities. Column generation can be

adapted to constrained vehicle routing problems and have been shown to provide some of the best known

results for the PDPTW (Ropke and Cordeau [28], Baldacci et al. [2]) and for the PDPTWL (Cherkesly et al.

[10]).

The first algorithm developed in this paper solves the pricing problem with the multi-stack policy, whereas

the second incorporates it partially in the pricing problem and generates additional inequalities to the master

problem in which infeasible multi-stack routes are used in a linear relaxation solution. The results of extensive

computational experiments on instances derived from known PDTSPMS instances are reported. Instances

with up to 75 requests and with up to three stacks can be solved within two hours of computation time. The

results show that the first algorithm always performs better than the second.

The remainder of this paper is structured as follows. Section 2 proposes a column generation formulation

for the PDPTWMS and formally introduces the pricing problem. Section 3 presents our first branch-price-

and-cut algorithm in which the pricing problem is solved under the multi-stack policy. Section 4 presents our

second branch-price-and-cut algorithm in which the pricing problem is partly solved under the multi-stack

policy and through the introduction of additional constraints in the master problem. Extensive computational

results are reported in Section 5 and are followed by conclusions in Section 6.

2 A mathematical formulation

We now introduce a set partitioning formulation for the PDPTWMS. Beforehand, we provide the required

notation.

2.1 Notation

Let n denote the number of requests. The PDPTWMS can be defined on a directed graph G = (N,A), where
N = {0, 1, ..., 2n, 2n+ 1} is the set of nodes and A is the set of arcs. Nodes 0 and 2n+ 1 represent two copies

of the depot appearing at the start and at the end of a route, respectively. The subsets P = {1, ..., n} and

D = {n+ 1, ..., 2n} are the sets of pickup and delivery nodes, respectively. With each request i is associated

a pickup node i ∈ P , denoted by i+, and a delivery node n + i ∈ D, denoted by i−. Note that i ∈ P refers

to a pickup node and to its associated request.

With each node i ∈ N is associated a demand qi to be picked up or delivered, and for each request i ∈ P ,

qi > 0 and qn+i = −qi. For each request i ∈ P , we refer to the load picked up at node i and delivered at node

n+ i as an item. Moreover, we assume that q0 = q2n+1 = 0. A time window [wi, w̄i] is associated with each

node i ∈ N , where wi and w̄i represent the earliest and the latest time at which service at node i can start,

respectively. An unlimited set of identical vehicles, each with S identical stacks of capacity Q, is available.

A non-negative travel cost cij and a non-negative travel time tij including the service time at node i are

associated with each arc (i, j) ∈ A. The cost of each arc leaving the origin node, i.e., an arc (0, i) ∈ A, i ∈ P ,

also includes a large vehicle fixed cost, leading to first minimizing the number of vehicles, and then the total

traveled distance. The triangle inequality is assumed to be respected for travel costs and travel times.

2.2 Set partitioning formulation

Let Ω denote the set of all feasible routes with respect to the time window constraints, the capacity constraints,

and the multi-stack policy. Let cr denote the cost of route r ∈ Ω, i.e., a fixed vehicle cost and its total traveled
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distance, and let air be the number of times node i ∈ P is visited in route r. Defining yr as a binary variable

equal to 1 if and only if route r is used in the solution, the PDPTWMS can be formulated as

minimize
∑
r∈Ω

cryr (1)

subject to
∑
r∈Ω

airyr = 1, ∀i ∈ P, (2)

yr ∈ {0, 1}, ∀r ∈ Ω. (3)

The objective function (1) minimizes the total cost and constraints (2) ensure that each request is completed

exactly once. Because the model defined by (1)–(3) generally contains a large number of variables, column

generation is often used to solve its linear relaxation, also called the master problem (see Desaulniers et al.

[15]). At each column generation iteration, a restricted master problem (RMP) containing a subset of variables

is solved through linear programming, yielding primal and dual solutions. The pricing problem is then solved

to identify variables, also called columns, with negative reduced cost. In the PDPTWMS context, the pricing

problem is an elementary shortest path problem with time window constraints, capacity constraints, and

multi-stack policy. When such columns are identified, they are added to the RMP and a new iteration starts.

Otherwise, the process stops with an optimal solution to the master problem.

2.3 Pricing problem

The column generation pricing problem aims at finding feasible routes with a negative reduced cost. In this

section, we provide a formulation for this problem.

The reduced cost of arc (i, j) ∈ A can be defined as

c̄ij =

{
cij − αi, ∀i ∈ P,
cij , ∀i ∈ N\P,

(4)

where αi, i ∈ P , are the dual variables associated with constraints (2).

For each node i ∈ N , let Ti be a variable representing the time at which the service begins at node i. For

each arc (i, j) ∈ A, let xij be a binary variable equal to 1 if and only if arc (i, j) ∈ A is used in the current

route. For each request i ∈ P and each stack s ∈ S, let zsi be a binary variable equal to 1 if and only if

item i is loaded on stack s in the current route, and let Qsi be a variable representing the total load of stack

s after leaving node i. In order to define the multi-stack policy, we introduce the following notation. Let

R = (i1, . . . , iρ) be a path such that i1 6= 0 and iρ 6= 2n+ 1 and let N(R) = {i1, . . . , iρ} be its corresponding

set of nodes. Let
(
sei
)
i∈N(R)

be an assignment (indexed by e) to the stacks in S of the items picked up

or delivered in R, i.e., sei ∈ S indicates the stack to which item i is assigned. Some of these assignments

might yield an infeasible path with respect to the multi-stack policy. Denote by I(R) the set of infeasible

item-to-stack assignments for path R. Let R be the set of all paths R that can have infeasible assignments,

i.e., such that I(R) 6= ∅. The pricing problem for the PDPTWMS can then be modeled as

minimize
∑

(i,j)∈A

c̄ijxij (5)

subject to
∑

j∈N |(i,j)∈A

xij −
∑

j∈N |(n+i,j)∈A

xn+i,j = 0, ∀i ∈ P, (6)

∑
j∈P

x0j = 1, (7)

∑
j∈N |(j,i)∈A

xji −
∑

j∈N |(i,j)∈A

xij = 0, ∀i ∈ P ∪D, (8)

∑
i∈D

xi,2n+1 = 1, (9)
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ρ−1∑
µ=1

xiµ,iµ+1
+

∑
i∈P∩N(R)

z
sei
i +

∑
i∈D∩N(R)

z
sei−n
i−n ≤ 2|N(R)| − 2, ∀R = (i1, ..., iρ) ∈ R, e ∈ I(R) (10)

∑
j∈N |(i,j)∈A

xij =
∑
s∈S

zsi , ∀i ∈ P, (11)

Qsj ≥ Qsixij + qjxijz
s
j , ∀s ∈ S, (i, j) ∈ A such that j ∈ P, (12)

Qsj ≥ Qsixij + qjxijz
s
j−n, ∀s ∈ S, (i, j) ∈ A such that j ∈ D, (13)

max{0, qi}zsi ≤ Qsi ≤ min{Q,Q+ qi}zsi , ∀i ∈ P, s ∈ S, (14)

Tj ≥ (Ti + tij)xij , ∀(i, j) ∈ A, (15)

wi ≤ Ti ≤ w̄i, ∀i ∈ N, (16)

Ti + ti,n+i ≤ Tn+i, ∀i ∈ P, (17)

xij ∈ {0, 1}, ∀(i, j) ∈ A, (18)

zsi ∈ {0, 1}, ∀i ∈ P, s ∈ S. (19)

The objective function (5) minimizes the sum of reduced costs. Constraints (6) ensure that the pairing

constraints are respected, i.e., the pickup and delivery nodes of a request are visited in the same route.

Constraints (7)–(9) define a path structure for each route. More specifically, constraints (7) and (9) ensure

that each route starts and ends at the depot, while (8) are flow conservation constraints. The multi-stack

policy is imposed through constraints (10) which are stated through infeasible path inequalities. We note

that Côté et al. [13] have proposed an alternate way of formulating these constraints. Constraints (11) state

that each picked up item must be assigned to exactly one of the stacks. Constraints (12) and (13) compute

the load variables according to the arcs used in the solution and constraints (14) ensure that the capacity

of each stack is respected. Constraints (15) and (16) compute the time variables and ensure that the time

windows are respected. Constraints (17) impose the precedence constraints, i.e., for each request i the pickup

node must be visited before the delivery node. The model is non-linear because of constraints (12)–(15), but

can be linearized (see Ropke et al. [29], Côté et al. [13]).

Note that constraints (10) can be replaced by the smaller set of constraints

ρ−1∑
µ=1

xiµ,iµ+1
≤ |N(R)| − 2, ∀R = (i1, ..., iρ) ∈ R∗, (20)

where R∗ ⊆ R is a subset of infeasible paths such that, for each path, there exists no feasible assignment

of the items to the stacks. Solving model (5)–(9), (11)–(19), (20) could yield an infeasible solution given

the values taken by the zsi variables at optimality, i.e., these values would provide an infeasible item-to-stack

assignment for at least one path in R \R∗, but there exists an alternative feasible solution having the same

cost with different zsi values.

3 A branch-price-and-cut algorithm with multi-stack feasible paths

Our first branch-price-and-cut algorithm fully enforces the multi-stack policy in the pricing problem. In this

section, we first present path relaxations and labeling algorithms for the corresponding pricing problem. We

then discuss valid inequalities for the PDPTWMS and branching strategies.

3.1 Path relaxations and labeling algorithms

The pricing problem is an elementary shortest path problem with pickups and deliveries, time windows,

capacity constraints, and multi-stack policy. It can be solved through a labeling algorithm. A label stores

information about a partial path starting at the origin node and ending at some node η. Each element stored

in a label is called a component. Starting from an initial label E0 at the origin node 0, a labeling algorithm

propagates labels toward the destination node with resource extension functions. To avoid enumerating all

feasible paths, some labels are eliminated through a dominance criterion.
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The pricing problem can be relaxed by allowing cycles in paths, that is, a request can be completed more

than once. These relaxations usually yield weaker master problem lower bounds. Paths with cycles cannot

be part of a feasible integer solution, hence branching ensures that the final solution contains only elementary

paths.

Sections 3.1.1 and 3.1.2 describe labeling algorithms for the elementary and non-elementary versions of

the pricing problem, respectively.

3.1.1 Elementary shortest path problem with pickups and deliveries, time windows, capacity constraints
and multi-stack policy

The first version of the constrained shortest path problem respects the elementarity constraints. The ideas

presented in this section are non-trivial extensions of those initially proposed by Cherkesly et al. [10] for the

PDPTWL. For a given label E, the following components are stored:

• η(E), the end node of the partial path;

• t(E), the start of service time at node η;

• c(E), the cumulated reduced cost;

• U(E), the set of unreachable requests;

• li(E),∀i ∈ P , the load in the stack under item i ∈ P (including its own load);

• Sij(E),∀i, j ∈ P , the relative positions of items i and j in a given stack;

• Cij(E),∀i, j ∈ P , the concurrent presence of items i and j in different stacks.

A request i ∈ P is said to be unreachable if i has already been visited on the partial path, or if traveling

directly from η to i violates the time window constraints at node i ∈ P . For a given label E, let R(E) =

(0, i1, i2, ..., iρ = η(E)) be the partial path represented by this label. Then

U(E) = {i ∈ P |i ∈ R(E)} ∪ {i ∈ P |t(E) + tη(E),i > w̄i}. (21)

The relative position of two items i, j ∈ P in a given stack indicates that the two items are simultaneously

in the same stack and item i is on top of item j, that is

Sij(E) =


1 if i = j and item i is in the vehicle,

1 if item i is in the same stack as item j and on top of it

0 otherwise.

(22)

Moreover, for any two items i, j ∈ P , we need to know whether both are simultaneously onboard and in

different stacks, or not, that is

Cij(E) =


1 if items i and j are simultaneously in the vehicle

but not in the same stack,

0 otherwise.

(23)

This new notation is as powerful as the notation proposed by Cherkesly et al. [10] for the single-stack case,

but is better suited for the multi-stack variant because it eliminates the symmetry between the S identical

stacks.

Given a label E, its extension along an arc (η(E), j) ∈ A is allowed if one of the following three conditions

holds:

0 < j ≤ n and j /∈ U(E), (24)

n < j ≤ 2n and Sj−n,j−n(E) = 1 and Si,j−n(E) = 0,∀i ∈ P\{j − n}, (25)

j = 2n+ 1 and Sii(E) = 0,∀i ∈ P. (26)

Condition (24) ensures that if j is a pickup node, then it must not have been previously visited, and must

be reachable with respect to time windows. Condition (25) ensures that if j is a delivery node, then its
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corresponding item must be on top of one of the stacks, i.e., the item is in the vehicle and there is no item on

top. Condition (26) ensures that if j is the destination node, then all the picked items on the path must have

been delivered. Together these three conditions ensure that each request will be completed at most once for

any complete path from 0 to 2n+ 1.

If the extension to a pickup node is allowed, i.e., condition (24) is fulfilled, then several new labels may

result. Indeed, one new label per stack in use can be created. Thus, for a given label E, we define

H(E) = {i ∈ P |Sii(E) = 1 and Sji(E) = 0,∀j ∈ P\{i}} (27)

as the top items in the stacks. In particular, |H(E)| is the number of stacks currently in use. If this number

is less than the number of stacks, i.e., |H(E)| < S, then there exists at least one empty stack. In such a case,

in order to allow the addition of an item on top of an empty stack, an additional auxiliary top item h = 0 is

created. We define

H0(E) =

{
H(E) ∪ {0} if |H(E)| < S,

H(E) otherwise.
(28)

In summary, for the extension to a pickup node j ∈ P , one new label Eh for each h ∈ H0(E) is created. If

j is a delivery node, j ∈ D, a single new label Eh for h = j − n is generated. If j is a pickup node and all

stacks are empty, i.e., H(E) = ∅, a single new label Eh is created for the auxiliary top item h = 0. Thus,

given a new label E, an arc (η(E), j), and a top item h ∈ H0(E) for j ∈ P , or h = j − n for j ∈ D, the

extension is computed as follows:

η(Eh) = j, (29)

t(Eh) = max{t(E) + tη(E),j , wj}, (30)

c(Eh) = c(E) + c̄η(E),j , (31)

U(Eh) =

{
U(E) ∪ {j} ∪ {i ∈ P |t(Eh) + tη(Eh),i > w̄i} if j ∈ P,
U(E) ∪ {i ∈ P |t(Eh) + tη(Eh),i > w̄i} if j ∈ D,

(32)

lm(Eh) =


lh(E) + qm if j ∈ P, j = m,

0 if j ∈ D, m = j − n,
lm(E) otherwise,

∀m ∈ P, (33)

Smi(Eh) =


1 if j ∈ P, j = m, Shi(E) = 1,

1 if j ∈ P, m = i = j,

0 if j ∈ D, j − n = m,

Smi(E) otherwise,

∀i,m ∈ P, (34)

Cmi(Eh) =


1 if j ∈ P, j = m, Chi(E) = 1,

1 if j ∈ P, i = j, Chm(E) = 1,

0 if j ∈ D, j − n = m or j − n = i,

Cmi(E) otherwise,

∀i,m ∈ P. (35)

Equations (33) state that if j is a pickup node, then the load under it must be the total load in the chosen

stack, plus its own load; if j is a delivery node, then the load under item j − n is 0 because item j − n is

no longer in the vehicle, and otherwise the load under each item remains the same. Equations (34) update

the positions of items that are in the same stack. If j is a pickup node, then it must be on top of all nodes

below h, on top of node h, and must be in the vehicle. If j is a delivery node, then there are no more items

below j−n. The other positions are unchanged. Equations (35) update the information about items that are

simultaneously in the vehicle but are not in the same stack. If j is a pickup node, then it must be separated

from all nodes that are not in the same stack as node h, and if j is a delivery node then there are no more

items simultaneously onboard with j − n and in different stacks. The other positions remain the same.
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A new label Eh is kept if it respects the time windows and the capacity constraints, that is, if

t(Eh) ≤ w̄j , (36)

lh(Eh) ≤ Q. (37)

Finally, a label E1 dominates a label E2 if

η(E1) = η(E2), (38)

t(E1) ≤ t(E2), (39)

c(E1) ≤ c(E2), (40)

U(E1) ⊆ U(E2), (41)

Sij(E1) ≤ Sij(E2), ∀i, j ∈ P, (42)

Cij(E1) ≤ Cij(E2), ∀i, j ∈ P. (43)

Conditions (38)–(42) constitute a valid dominance criterion for the single-stack case, i.e., the PDPTWL (see

Cherkesly et al. [10]), if the delivery triangle inequality holds. Note that the definition of c̄ij in formula (4)

does not necessarily ensure the delivery triangle inequality c̄ij + c̄jk ≥ c̄ik for all delivery nodes j ∈ D. In

this situation, Ropke and Cordeau [28] propose a procedure to transform an arbitrary cost matrix into a cost

matrix that satisfies the delivery triangle inequality. We apply the same procedure before solving the pricing

problem.

However, the single-stack dominance criterion is not valid for the multi-stack variant. In fact, without

conditions (43), the dominance criterion would not be valid because items in the same stack for label E2

could be in different stacks for label E1. In such a case, the possible extensions of label E2 could be infeasible

for label E1 with respect to capacity constraints, yielding wrongly dominated labels. Figure 2 depicts such

a case where Q = 2, q1 = 1, q2 = 1, and q3 = 2. Figure 2a and 2b illustrate the configuration of the vehicle

for labels E1 and E2, respectively. One can see that item 3 cannot be loaded with the first configuration,

but can be with the second one. In that case, conditions (38)–(42) are respected. Conditions (43) are then

necessary to allow a proper dominance criterion.

Proposition 3.1 Conditions (38)–(43) constitute a valid dominance criterion whenever c̄ij satisfies the de-

livery triangle inequality.

Proof. The proof is similar to that of Proposition 3 in Cherkesly et al. [10]. We show that for every feasible

completion of E2 there exists a feasible completion of E1 with no greater reduced cost. Let r be a path

extending R(E2) to node 2n+ 1 such that (R(E2), r) is feasible with respect to time windows, elementarity

constraints, pickup and delivery constraints, capacity constraints and the multi-stack policy. If no such path

exists, then clearly one can remove label E2. Let r′ be the path obtained from r by removing the deliveries

for each request i ∈ P with Sii(E1) = 0 and Sii(E2) = 1. Because (R(E2), r) is feasible with respect to

elementarity constraints, and pickup and delivery constraints, then so is (R(E1), r′). Because the triangle

inequality is assumed for travel times and (R(E2), r) is feasible with respect to the time windows, then so

is (R(E1), r′). The capacity constraints for each stack are not violated because items in different stacks for

1 2

(a) Stack configuration for label E1: S11(E1) =
S22(E1) = 1 and C12(E1) = C21(E1) = 1

1

2

(b) Stack configuration for label E2: S11(E2) =
S22(E2) = S21(E2) = 1 and C12(E2) = C21(E2) = 0

Figure 2: Example where two labels cannot be compared, q1 = q2 = 1, q3 = 2 and Q = 2



8 G–2015–25 Les Cahiers du GERAD

E1 are also in different stacks for E2, and items in the same stack for E1 are also in the same stack for E2,

thus the capacity constraints are respected on (R(E1), r′). The multi-stack policy is not violated because the

order in which the deliveries are performed on (R(E1), r′) is the same as on (R(E2), r). Because (R(E2), r) is

feasible, then so is (R(E1), r′). Because the delivery triangle inequality holds for the reduced cost component

c, the cost of r′ does not exceed that of r. Thus, c(E1) ≤ c(E2) implies that the cost of (R(E1), r′) is at most

equal to that of (R(E2), r). Hence, label E1 dominates label E2.

3.1.2 Shortest path problem with pickups and deliveries, time windows, capacity constraints and multi-
stack policy

The second version of the constrained shortest path problem allows paths to contain cycles under the following

two conditions:

(i) a pickup cannot be performed again before its corresponding delivery has been completed;

(ii) the precedence constraints for every request must be respected.

In this version of the algorithm, a label E stores the components η(E), t(E), c(E), li(E), i ∈ P , Sij(E),

and Cij(E), i, j ∈ P . The extension of a label E along arc (η(E), j) is allowed if E and j satisfy condition

(25), (26), or

0 < j ≤ n and Sjj(E) = 0. (44)

A label Eh is then created for each top item h ∈ H0(E) using the extension function (29)–(31) and (33)–

(35). Condition (44) relaxes condition (24) by allowing cycles to occur while forbidding to pick up the same

request twice without delivering it in the meantime. The resulting label Eh is kept if it satisfies the time

windows (36) and the capacity constraints (37) at node j. If the delivery triangle inequality holds, then the

following dominance criterion is valid: a label E1 dominates a label E2 if conditions (38)–(40), and (42)–(43)

are respected.

The reader can easily adapt the arguments of Proposition 3.1 for this version of the shortest path problem.

3.2 Valid inequalities

We now present valid inequalities commonly used to solve the PDPTW and applicable to the PDPTWMS.

These are 2-path cut inequalities, rounded capacity inequalities, and subset-row inequalities. We also present

a family of cuts based on the branching on the number of vehicles. These inequalities are added within the

master problem. For the sake of conciseness, we omit the discussion about the impact on the reduced cost of

adding such inequalities (see Desaulniers et al. [16]). These inequalities are used for both branch-price-and-cut

algorithms.

If the number of vehicles is fractional, two branches are created:
∑
r∈Ω yr ≤

⌊∑
r∈Ω ỹr

⌋
and

∑
r∈Ω yr ≥⌈∑

r∈Ω ỹr
⌉
, where (ỹ1, . . . , ỹ|Ω|) is the computed fractional solution of the master problem. Because we first

minimize the number of vehicles, the number of vehicles used in the solution of the master problem is a lower

bound on the number of vehicles used in the optimal integer solution. In this case, the inequality

∑
r∈Ω

yr ≥

⌈∑
r∈Ω

ỹr

⌉
(45)

is added to the master problem and replaces the branching on the number of vehicles.

Kohl et al. [20] have introduced 2-path cuts in the context of the vehicle routing problem with time

windows (VRPTW). These were later shown to be valid for the PDPTW (see Ropke and Cordeau [28]). Let

NS ⊆ P ∪D be a subset of nodes that cannot be served by a single vehicle and let δ(NS) = {(i, j) ∈ A|i ∈
NS , j ∈ N\NS} represent the set of arcs exiting set NS . Then the inequality∑

r∈Ω

∑
(i,j)∈δ(NS)

brijyr ≥ 2 (46)
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is valid, where brij is a constant equal to the number of times arc (i, j) ∈ A is used in route r. Identifying

a subset of nodes that cannot be served by a single vehicle means determining whether the corresponding

pickup and delivery traveling salesman problem with time windows is feasible. Because this is an NP-

complete problem (see Savelsbergh [30]), the separation of violated 2-path cuts is achieved by means of a

greedy heuristic (see Ropke and Cordeau [28]).

The rounded capacity inequalities are often used for the vehicle routing problem (VRP), the VRPTW,

and the PDPTW (see, e.g., Naddef and Rinaldi [22], Cordeau [11], Ropke et al. [29]) and have been adapted

to the PDTSPMS (see Côté et al. [13]). Let NS ⊆ P ∪ D be a subset of nodes and let ξ(NS) be a lower

bound on the number of vehicles needed to visit all nodes in NS . Then, the inequality∑
r∈Ω

∑
(i,j)∈δ(NS)

brijyr ≥ ξ(NS) (47)

is valid for ξ(NS) = max
{

1,
⌈
q(π(NS))
SQ

⌉
,
⌈
−q(σ(NS))

SQ

⌉}
, where SQ is the total capacity of the vehicle, π(NS) =

{i ∈ P |i /∈ NS , n+i ∈ NS} denotes the set of predecessors of NSs and σ(NS) = {n+i ∈ D|i ∈ NS , n+i /∈ NS}
denotes the set of successors of NS . The lower bound on the load of the vehicles entering NS is q(π(NS)) =∑
i∈π(NS) qi, and the lower bound on the load of the vehicles leaving NS is q(σ(NS)) =

∑
n+i∈σ(NS) qi. These

inequalities are separated by means of a heuristic enumerative procedure (see Ropke et al. [29]).

The subset-row inequalities were introduced by Jepsen et al. [19] for the VRPTW and are a special case

of the clique inequalities. These inequalities are the rank-1 Chvátal-Gomory inequalities defined as

∑
r∈Ω

⌊
1

χ

∑
i∈NS

air

⌋
yr =

⌊
|NS |
χ

⌋
, ∀NS ⊆ P, 2 ≤ χ ≤ |NS |, (48)

where NS is a subset of pickup nodes. As in Jepsen et al. [19] and Desaulniers et al. [17], we focus on

the inequalities defined for subsets of three customers because these can be efficiently separated. These

subset-row inequalities can be rewritten as∑
r∈ΩS

yr ≤ 1, ∀NS ⊆ P such that |NS | = 3, (49)

where ΩS ⊆ Ω is the subset of routes completing at least two requests in NS . Because handling the dual

prices of the active subset-row inequalities in the subproblem can be highly time-consuming, we limit their

usage by generating them only in the first two levels of the branching tree and adding at most 50 cuts at

once.

3.3 Branching

In a branch-price-and-cut algorithm, branching is used to obtain integer feasible solutions and should be com-

patible with the column generation process, especially with the algorithm used to solve the pricing problem.

With the dominance criterion (38)–(43), the removal of arcs must preserve the delivery triangle inequality

(see Ropke and Cordeau [27]). Consequently, we propose to branch on the outflow of node subsets (see Nad-

def and Rinaldi [22]). This branching strategy adds constraints to the master problem, yielding additional

dual prices to be incorporated into the objective function of the pricing problem (see Desaulniers et al. [16]).

In this branching strategy, a subset of nodes NS is selected such that f(NS) =
∑
r∈Ω

∑
(i,j)∈δ(NS) b

r
ij ỹr is as

far as possible from the nearest integer, where f(NS) is the total outflow for the set NS of the computed

fractional solution of the master problem. Two branches are then created by adding the following constraints

to the master problem associated with each branch:∑
r∈Ω

∑
(i,j)∈δ(NS)

brijyr ≤ bf(NS)c , (50)

∑
r∈Ω

∑
(i,j)∈δ(NS)

brijyr ≥ df(NS)e . (51)

The exploration of the enumeration tree is achieved through a best-first strategy.
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4 A branch-price-and-cut algorithm with relaxed multi-stack paths

This second branch-price-and-cut algorithm deals with the multi-stack policy partly in the set partitioning

formulation and partly in the master problem. This pricing problem is easier to solve, but the extended

set partitioning formulation is weaker yielding worse lower bounds. As Cherkesly et al. [10] did in their

hybrid branch-price-and-cut algorithm for the PDPTWL, we solve the shortest path problem under relaxed

multi-stack constraints, i.e., the LIFO policy must be respected for the last κ items of each compartment.

An ejection process is therefore needed: when a pickup node is visited, its corresponding item is put on top

of a stack; if the height of the stack exceeds κ, the lowest item is ejected from the stack but is kept in the

corresponding compartment. Thus, a compartment can contain stacked items, for which the extension of the

partial path needs to respect the LIFO policy, and ejected items, for which the extension of the partial path

does not need to respect the LIFO policy. There is no given ordering for the delivery of the ejected items, but

these can only be delivered if there are no more stacked items in the compartment. Corresponding infeasible

path inequalities are added to the master problem when infeasible multi-stack routes are used in a linear

relaxation solution. Figure 3 presents an example, for κ = 1, in which the path must respect the LIFO policy

for the items in grey. The vehicle contains two compartments and each compartment has a corresponding

stack with a maximal size of one item. Note that item 2 is ejected from the second stack in Figure 3c and

item 3 is ejected from the second stack in Figure 3d because the maximal size is reached.

4.1 Labeling algorithm

We now describe the modifications to the labeling algorithm presented in Section 3 that we have implemented

to handle this variant. The valid inequalities and the branching decisions used are those of Sections 3.2 and 3.3.

In the elementary version of the problem, a label E stores the components η(E), t(E), c(E), U(E), li(E),

i ∈ P , Cij(E), and SEPij (E), i, j ∈ P . SEPij (E) is a relaxation of Sij(E) that considers an ejection process.

0 1+

1

(a) Label Ea: the first stack contains item 1, thus the
extension of the path must respect the LIFO policy
for item 1, SEP

11 (Ea) = 1

0 1+ 2+

1 1 2

(b) Label Eb: the first stack contains item 1 and the
second stack contains item 2, thus the extension of
the path must respect the LIFO policy for items 1
and 2, SEP

11 (Eb) = SEP
22 (Eb) = 1

0 1+ 2+ 3+

1 1 12 2

3

(c) Label Ec: the first stack contains item 1, the
second stack contains item 3, and the second com-
partment contains items 2 and 3, thus the extension
of the path does not need to respect the LIFO pol-
icy for item 2 as the maximal size of the LIFO stack
has been reached for the second stack, SEP

11 (Ec) =
SEP
22 (Ec) = SEP

33 (Ec) = SEP
32 (Ec) = 1

0 1+ 2+ 3+ 4+

1 1 1 12 2 2

3 3

4

(d) Label Ed: the first stack contains item 1, the
second stack contains item 4, and the second com-
partment contains items 2, 3, and 4, thus the exten-
sion of the path does not need to respect the LIFO
policy for items 2 and 3, SEP

11 (Ed) = SEP
22 (Ed) =

SEP
33 (Ed) = SEP

44 (Ed) = SEP
42 (Ed) = SEP

43 (Ed) = 1
but SEP

23 (Ed) = SEP
32 (Ed) = 0

Figure 3: The extension of the path must respect the LIFO policy for the items in grey (κ = 1)
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For a given label E, SEPij (E) is defined as

SEPij (E) =



1 if i = j and item i is in the vehicle,

1 if items i and j are in the same stack and i is on top of j,

1 if items i and j are in the same compartment,

i is in the stack, and j is ejected,

0 if items i and j are in the same compartment and both are ejected,

0 otherwise.

(52)

That is, if two items i ∈ P and j ∈ P , i 6= j, are in the same vehicle compartment, request i is in the stack

and node i+ was visited after node j+, then SEPij (E) = 1 and SEPji (E) = 0. If two items i ∈ P and j ∈ P ,

i 6= j, are in the same vehicle compartment but none of them are in the stack, i.e., if both have been ejected,

then SEPij (E) = SEPji (E) = 0.

The extension of a label E along an arc (η(E), j) ∈ A is allowed if it satisfies one of the three conditions,

(24)–(26), where Sij(E) is replaced with SEPij (E), ∀i, j ∈ P .

Defining H(E) as in equation (27), H(E) contains all items that can be delivered, i.e., those that have

not been ejected from a stack and are on top of a stack, and those that have been ejected from a stack and

are not under an item for which the multi-stack policy needs to be respected. In order to have at most one

extension per compartment, the top items are defined as the items for which one of these two conditions is

respected:

(i) the item is in the stack and no item is on top of it;

(ii) the item is not in the stack, and is in a compartment that has no item in its stack. One arbitrary item is

kept to represent each non-empty compartment. In the following, we choose the item with the smallest

index.

We define C(E) as the set of top items for the relaxed multi-stack policy which can be computed as

C(E) = {i ∈ H(E)|Cij(E) = 1, j < i, j ∈ H(E)}. (53)

Note that if |C(E)| < S, an additional auxiliary top item is added in order to allow loading on top of

empty stacks. Thus, we define

C(E)0 =

{
C(E) ∪ {0} if |C(E)| < S,

C(E) otherwise.
(54)

The extension of a label E along an arc (η(E), j) will create a new label Eh, ∀h ∈ C(E). Note that in

some cases only one label is created (as explained in Section 3.1.1). For each label Eh, O(Eh) is defined

as the open requests in the vehicle that have been ejected from the stack, i.e., requests that are currently

onboard but for which the extension of the label does not need to respect the multi-stack policy. O(Eh) is

computed as

O(Eh) =

{
i ∈ P

∣∣∣∣∣Chi(E) = 0 and

(∑
j∈P
SEPji (E) ≥ κ or

∃j ∈ P\{i} such that SEPjj (E) = 1, Cij(E) = 0,SEPij (E) = SEPji (E) = 0

)}
. (55)

Equation (55) states that i ∈ P is an open request with respect to top item h ∈ C(E)0 if i and h are in

the same vehicle compartment, and if there are at least κ items between the positions of i and h or if i has

already been ejected from the stack.
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The components of label Eh are set with equations (29)–(32), (35) and

lm(Eh) =


lh(E) + qj if j ∈ P, j = m,∑
i∈O(Eh) qi if j ∈ P,

0 if j ∈ D, m = j − n,
lm(E) otherwise,

∀m ∈ O(Eh), (56)

SEPmi (Eh) =



1 if j ∈ P, j = m, ∀i ∈ P such that SEPhi (E) = 1,

1 if j ∈ P, j = m, ∀i ∈ O(Eh),

1 if j ∈ P, i = m = j,

0 if j ∈ P,
0 if j ∈ D, j − n = m, ∀i ∈ P,
SEPmi (E) otherwise.

∀m, i ∈ O(Eh), (57)

Equation (56) replaces equation (33); if two requests are in the same compartment but none of them are in the

stack, their total loads will be the same. Equation (57) updates the positions of the items in the compartment.

If j is a pickup node then it is on top of the stack, i.e., on top of all other items in the compartment, either

in the stack or ejected. If the stack has reached its maximal size, then no order is imposed among all ejected

items. If j is a delivery node, then they are no more items linked to j − n. Furthermore, label Eh is kept if

it respects the time window constraints (36) and the capacity constraints (37).

Finally, a label E1 dominates a label E2 if conditions (38)–(41), (43) and

SEPij (E1) ≤ SEPij (E2), ∀i, j ∈ P, (58)

hold.

Proposition 4.1 Conditions (38)–(41), (43) and (58) constitute a valid dominance criterion whenever c̄ij
satisfies the delivery triangle inequality.

Proof. The proof is similar to that of Proposition 3.1. We show that for every feasible completion of E2

there exists a feasible completion of E1 with no larger reduced cost. Let r be a path extending R(E2) to node

2n + 1 such that (R(E2), r) is feasible with respect to time windows, elementarity constraints, pickup and

delivery constraints, capacity constraints and relaxed multi-stack policy. If no such path exists, then clearly

one can remove label E2. Let r′ be the path obtained from r by removing the deliveries for each request i ∈ P
with SEPii (E1) = 0 and SEPii (E2) = 1. Because (R(E2), r) is feasible with respect to elementarity constraints,

and pickup and delivery constraints, then so is (R(E1), r′). Because the triangle inequality is assumed for

travel times and (R(E2), r) is feasible with respect to the time windows, then so is (R(E1), r′). The capacity

constraints for each stack are not violated because items in different stacks for E1 are also in different stacks

for E2, and items in the same stack for E1 are also in the same stack for E2, thus the capacity constraints

are respected on (R(E1), r′). The order in which the deliveries are performed on (R(E1), r′) is the same as

the order on (R(E2), r), i.e., each item that is in a stack for E1 is also in the stack for E2, and each item that

has been ejected for E1 can be ejected or not for E2. No ejected item for E2 can be in a stack for E1. Thus,

the relaxed multi-stack policy is not violated. Because (R(E2), r) is feasible, then so is (R(E1), r′). Because

the delivery triangle inequality holds for the reduced cost component c, the cost of r′ does not exceed that

of r. Thus, c(E1) ≤ c(E2) implies that the cost of (R(E1), r′) is at most equal to that of (R(E2), r). Hence,

label E1 dominates label E2.

The reader can easily adapt this procedure to the non-elementary version of the shortest path problem.

4.2 Infeasible path cuts

When solving the shortest path problem with the labeling algorithm presented in the previous section, we

might find a path for which the multi-stack policy is not respected. Figures 4a and 4b present a path and a
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0 1+ 2+ 3+ 1− 3− 2− 0

(a) Path

1 1 12 2 2 2

3 3

(b) Possible configuration of the vehicle not respecting the multi-stack policy

1 1 12 2 2 2

3 3

(c) Rearrangement of the items respecting the multi-stack policy

Figure 4: Path for which a possible rearrangement of the items can be found such that the multi-stack policy
is respected, q1 = q2 = q3 = 1 and Q = 2

0 1+ 2+ 3+ 3− 1− 2− 0

(a) Path

1 1 1 1

2 2 2 2

3

(b) Possible configuration of the vehicle not respecting the multi-stack policy

Figure 5: Path for which no possible rearrangement of the items can be found such that the multi-stack policy
is respected, q1 = q2 = 1, q3 = 2 and Q = 2

configuration of the vehicle found with the relaxed multi-stack policy when setting κ = 0. This configuration

does not respect the multi-stack policy, but the items can be rearranged as in Figure 4c in order to respect

it. Thus, this path is feasible. Figures 5a and 5b illustrate a path and a configuration of the vehicle found

with the relaxed multi-stack policy when setting κ = 0. In such a case, no rearrangement of the items is

possible, and this path is infeasible.

In order to find out whether a path is feasible with respect to the multi-stack policy even if its current

configuration is not, Côté et al. [13] proposed solving a bin packing problem. Instead, our algorithm solves

a shortest path problem with multi-stack policy. The labeling algorithm presented in Section 3 is applied on

the reduced graph containing only the arcs used in the current path. If a solution is found, a rearrangement

is possible. Otherwise, the path is infeasible and its corresponding infeasible path inequality (20) is added to

the RMP. Thus, these inequalities can be reformulated as

∑
r∈Ω

(
ρ−1∑
µ=1

briµ,iµ+1

)
yr ≤ |N(R)| − 2, ∀R = (i0, ..., iρ) ∈ R∗. (59)

These constraints are separated through an exact enumerative procedure. For every path in a given optimal

solution of the master problem, several of these constraints can be violated. The sequential search is then
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carried out on each active route r ∈ Ω with yr > 0, and the first identified violated inequality is added

to the master problem. Note that the dual variables of (59) affect the reduced cost of the arcs along the

corresponding path, but we leave out the details for conciseness reasons.

5 Computational results

The two branch-price-and-cut algorithms just described were tested on a set of PDPTWMS instances derived

from an instance of the TSPLIB. In this section, we report the computational results obtained for these

PDPTWMS instances. The instances are solved by considering one, two, and three stacks. All tests were

performed on a Linux computer equipped with an Intel(R) Core(TM) i7-3770 processor (3.4 GHz). The

algorithms were implemented using the GENCOL library using CPLEX 12.4.0.0 to solve all restricted master

problems.

5.1 Instances

To test our algorithms, we have generated 198 PDPTWMS instances from the a280 instance of the TSPLIB

by following the ideas of Carrabs et al. [8, 9], Cordeau et al. [12] for the TSPPDL, and of Côté et al. [13] for

the PDTSPMS. Two classes of instances were tested. In the first class, C1, each item has a unit demand,

and the total capacity of a vehicle is 6. In the second class, C2, the demand of each item is a random number

between 3 and 9, and the capacity of a vehicle is 24 for the one- and two-stack variants, and 27 for the

three-stack variant.

For each class, we have generated and tested a total of 99 instances in which the number of requests ranges

from 25 to 75, i.e., the number of nodes ranges from 51 to 151. For an instance with 2n+ 1 nodes, we have

kept the first 2n+ 1 nodes from the a280 instance of the TSPLIB. For each request, a pickup and a delivery

node have been randomly paired, and the time windows have been randomly generated. Three time window

horizons were tested: (1) setting wi ≤ 500,∀i ∈ P and wi ≤ 1000,∀i ∈ D, (2) setting wi ≤ 1000,∀i ∈ P
and wi ≤ 1200,∀i ∈ D, and (3) setting wi ≤ 1500,∀i ∈ P and wi ≤ 2000,∀i ∈ D. The three time horizons

are denoted by 500-1000, 1000-1200, and 1500-2000 in the following. For each time window horizon, three

different time window lengths were tested, i.e., 15, 30, and 45.

In all instances, we first aim to minimize the number of vehicles. To this end, a fixed cost of 100,000 is

imposed on each arc (0, j) ∈ A with j ∈ P .

5.2 Detailed computational results

Table 1 presents the number of instances solved optimally for each algorithm using the elementary shortest

path problem. A time limit of 7200 seconds (two hours) was imposed for the solution of each instance. The

algorithms are denoted as follows: BPC MS (branch-price-and-cut algorithm with multi-stack feasible paths)

and BPC Relaxed (branch-price-and-cut algorithm with relaxed multi-stack paths). For the latter, we also

specify the value of κ. We have tested different values of κ and report those with κ = 0 and κ = 2.

For any number of stacks and instance class, BPC MS solves the largest number of instances. In our

experiments, we observed that all instances solved with BPC Relaxed are also solved with BPC MS. Therefore,

Table 1: Number of instances solved for each algorithm

BPC MS BPC Relaxed BPC Relaxed

κ = 0 κ = 2

Class C1 C2 C1 C2 C1 C2

1 stack 77 96 63 85 69 93
2 stacks 27 63 5 11 26 62
3 stacks 89 52 89 21 89 52
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we will only present detailed computational results for the BPC MS algorithm. We have also tested an

adaptation of the ng-path relaxation proposed by Baldacci et al. [3, 4] for the VRP and adapted by Cherkesly

et al. [10] for the PDPTWL and the non-elementary shortest path problem. Neither of these two relaxations

of the pricing problem has a positive impact on the quality of the lower bound or on the computational time.

Thus, we do not present these results.

For the one- and two-stack variants, one can realize that the instances in class C1 are harder to solve than

those in class C2. For the instances in class C1, this is probably due to the symmetry between the items, i.e.,

each item has unit demand. For the three-stack variant, the instances in class C2 prove to be more difficult.

This is due to the increase of the maximum number of items simultaneously present in a vehicle. In fact,

for each instance in class C1 solved with three stacks, the maximum number of items simultaneously in the

vehicle is three (see Table A.10). Thus, solving the problem with the multi-stack policy for these instances is

equivalent to solving the PDPTW.

Tables 2–4 present summarized results for the PDPTWMS with one, two, and three stacks, respectively,

with the BPC MS algorithm when solving the elementary version of the suproblem in all three cases. Detailed

computational results are presented in A. In each table we present, for each instance class, summarized results

on each set of 11 instances with a specified time window length and horizon. For each of these 11 instances,

the number of nodes ranges from 25 to 75. In each table, the first column indicates the width of the length of

the time windows (15, 30 or 45), and the time window horizon, i.e., 500-1000, 1000-1200, and 1500-2000. For

example, w15-500-1000 refers to instances that have a time window length of 15 and a time window horizon

500-1000. We present the following information: NbSolved the number of instances solved to optimality

within the prescribed time limit; Sec., the average CPU time in seconds; Gap (%), the average integrity

gap in percentage computed as (z∗ − z)/(z∗), where z∗ is the optimal solution value and z is the lower

bound at the root node before adding any cuts; Veh, the average minimal number of vehicles; and maxItem,

the average maximal number of items simultaneously in a vehicle. All these averages are computed over

the solved instances. Furthermore, for each class of instances, we report in the row Weighted average the

averages for the class weighted according to the number of instances solved for each set of 11 instances with

a specified time window length and horizon.

Table 2: Summarized computational results for the variant with one stack

Instance NbSolved Sec. Gap (%) Veh maxItem

Instances in class C1

w15-500-1000 11 59.9 0.00 24.18 3.64
w15-1000-1200 11 60.6 0.27 19.18 3.36
w15-1500-2000 7 98.6 0.39 12.71 4.14
w30-500-1000 10 1,783.1 0.53 20.00 3.80
w30-1000-1200 10 971.8 0.31 16.70 4.10
w30-1500-2000 8 654.3 0.00 12.63 4.25
w45-500-1000 7 2,130.4 1.92 15.00 4.57
w45-1000-1200 7 772.2 0.98 13.14 4.00
w45-1500-2000 6 785.1 0.69 11.17 4.17

Weighted average 8.56 777.0 0.50 16.86 3.95

Instances in class C2

w15-500-1000 11 3.7 0.30 24.09 3.27
w15-1000-1200 11 3.8 0.25 19.18 3.45
w15-1500-2000 11 64.8 0.00 16.45 4.00
w30-500-1000 11 49.5 0.00 21.64 4.00
w30-1000-1200 11 21.5 0.57 18.00 3.64
w30-1500-2000 11 834.9 0.46 13.82 4.27
w45-500-1000 10 310.5 0.73 17.60 4.00
w45-1000-1200 11 267.3 1.24 15.27 3.73
w45-1500-2000 9 478.3 0.67 11.56 3.89

Weighted average 10.67 219.9 0.46 17.64 3.80
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Table 3: Summarized computational results for the variant with two stacks

Instance NbSolved Sec. Gap (%) Veh maxItem

Instances in class C1

w15-500-1000 7 547.8 3.08 11.86 4.86
w15-1000-1200 5 2,036.2 1.87 9.80 4.20
w15-1500-2000 2 563.9 4.11 6.00 4.50
w30-500-1000 3 523.7 9.44 8.00 4.67
w30-1000-1200 3 2,396.4 4.80 8.33 5.00
w30-1500-2000 1 162.1 0.01 5.00 6.00
w45-500-1000 2 2,956.5 7.49 7.50 4.50
w45-1000-1200 3 3,480.1 10.95 6.33 5.33
w45-1500-2000 1 17.4 0.00 4.00 4.00

Weighted average 3.00 1,497.7 4.80 8.74 4.74

Instances in class C2

w15-500-1000 11 541.4 2.75 14.91 4.27
w15-1000-1200 9 939.1 4.82 12.11 3.67
w15-1500-2000 6 1,391.0 5.58 7.83 4.00
w30-500-1000 6 124.0 3.16 10.83 4.50
w30-1000-1200 9 1,070.6 2.43 10.89 3.78
w30-1500-2000 6 1,410.6 2.91 7.00 4.00
w45-500-1000 4 419.7 5.89 8.25 4.25
w45-1000-1200 6 1,037.0 2.80 8.50 4.00
w45-1500-2000 6 1,234.6 3.39 7.17 4.50

Weighted average 7.00 903.2 3.59 10.35 4.08

Table 4: Summarized computational results for the variant with three stacks

Instance NbSolved Sec. Gap (%) Veh maxItem

Instances in class C1

w15-500-1000 11 294.3 3.29 16.00 3.00
w15-1000-1200 11 492.1 3.28 12.45 3.00
w15-1500-2000 10 844.8 4.62 10.80 3.00
w30-500-1000 11 246.6 2.55 15.64 3.00
w30-1000-1200 9 559.9 2.48 10.56 3.00
w30-1500-2000 10 1,584.8 1.71 10.40 3.00
w45-500-1000 11 543.2 1.94 15.09 3.00
w45-1000-1200 9 267.6 5.55 10.78 3.00
w45-1500-2000 7 1,071.2 2.29 8.57 3.00

Weighted average 9.89 635.7 3.07 12.53 3.00

Instances in class C2

w15-500-1000 10 1,308.4 3.04 13.50 4.60
w15-1000-1200 8 726.5 4.94 11.25 4.25
w15-1500-2000 5 1,764.7 3.47 7.20 5.00
w30-500-1000 5 838.1 4.39 9.60 4.80
w30-1000-1200 7 825.2 3.67 9.43 4.00
w30-1500-2000 4 554.0 6.78 6.00 4.75
w45-500-1000 4 3,033.5 3.14 7.50 5.00
w45-1000-1200 5 287.3 3.68 7.40 4.20
w45-1500-2000 4 1,965.9 5.43 6.25 4.50

Weighted average 5.78 1,179.5 4.04 9.44 4.52

We first observe that for both classes of instances and independently of the number of stacks, solving

instances with larger time windows and with larger time window horizons is harder. In fact, we can, solve

157, 135 and 112 instances with time window lengths of 15, 30 and 45, respectively, and we can solve 145,

145, and 114 instances with the time window horizons of 500-1000, 1000-1200, and 1500-2000, respectively.
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Second, for instances with one and two stacks, instances of class C1 are harder to solve. For the one-stack

variant, 77 instances in class C1 and 96 instances in class C2 are solved, and, for the two-stack variant,

27 instances in class C1 and 63 instances in class C2 are solved. This is probably due to the symmetry

between the unit demand items. For instances solved with three stacks, we obtain the opposite result which

is probably due to the increase of the number of items simultaneously in the vehicle for instances in class C2.

Third, solving instances in classes C1 and C2 with one stack yields better gaps than with two and three

stacks. For class C1, the gaps are on average 0.50%, 4.80%, and 3.07% for the one-, two-, and three-stack

variants, respectively. For class C2, the gaps are on average 0.46%, 3.59%, and 4.04% for the one-, two-, and

three-stack variants, respectively. This is probably due to a lower number of feasible paths with one stack,

which also explains why solving instances with one stack yields on average more vehicles in a solution. For

class C1, the average number of vehicles is 16.86, 8.74, and 12.53, while for class C2, the average number of

vehicles is 17.64, 10.35, and 9.44 for the one-, two-, and three-stack variants, respectively.

Fourth, for instances in class C1, solving them with three stacks yields better gaps than with two stacks,

i.e., 3.07% and 4.80% on average, respectively. We can also observe that the average number of vehicles with

three stacks is greater than with two stacks, i.e., 12.53 and 8.74 vehicles on average, respectively. This result

holds for instances that are solved for both two and three stacks. Interestingly, not all feasible solutions

with respect to two stacks are feasible with respect to three stacks because the stack capacities differ. In the

proposed instances, each vehicle has a capacity of six: with two stacks, each stack has a capacity of three;

and with three stacks, each stack has a capacity of two. Thus, from a managerial perspective, it is interesting

to see that having more stacks in a vehicle does not necessarily reduce the total costs.

Finally, for instances in class C2, solving them with two stacks yields better gaps than with three stacks,

i.e., 3.59% and 4.04% on average, but yields more vehicles, i.e., 10.35 and 9.44 vehicles on average, respectively.

In the proposed instances, a vehicle with two stacks has a total capacity of 24 and a vehicle with three stacks

has a total capacity of 27. Thus, an increase of 11.1% of the total vehicle capacity decreases, on average, the

number of vehicles by 8.8% and the maximum number of items by 9.7% which seems coherent.

5.3 Impact of the number of stacks

Table 5 presents computational results showing the impact of the number of stacks on the total traveled

distance, the number of vehicles used, and the maximum number of items simultaneously in a vehicle.

Detailed computational results are presented in B. In the table, we compare the results obtained with one

stack to the results obtained with two and three stacks. We present the following information: ∆ Dist

(%), the average relative difference in the total traveled distance, computed as (Dist2 − Dist1)/(Dist1)

and (Dist3 − Dist1)/(Dist1), where Distj , j = {1, 2, 3}, is the distance with j stacks; ∆ V eh (%) , the

average relative difference in the number of vehicles, computed as (V eh2 − V eh1)/(V eh1) and (V eh3 −
V eh1)/(V eh1), where V ehj , j = {1, 2, 3}, is the number of vehicles with j stacks; and ∆ maxItem (%),

the average relative difference in the maximum number of items simultaneously in a vehicle, computed as

(maxItem2 −maxItem1)/(maxItem1) and (maxItem3 −maxItem1)/(maxItem1), where maxItemj , j =

{1, 2, 3}, is the maximum number of items simultaneously in a vehicle with j stacks.

For instances in class C1, the total capacity of the vehicle is 6 independently of the number of stacks.

First, increasing the number of stacks from one to two and from one to three decreases the total traveled

distance by an average of 28.6% and 22.8%, and decreases the number of vehicles used by an average of 39.0%

and 29.6%, respectively. Second, increasing the number of stacks from one to two increases the maximum

number of items simultaneously in a vehicle by an average of 35.2%. Comparing one with three stacks, the

maximum number of requests simultaneously in a vehicle decreases by an average of 21.6%. This last result

is counterintuitive, but by examining the optimal solutions with three stacks, the maximum number of items

is three and is often reached, whereas with one stack, this maximum is reached less often.

For the class C2, the total capacity of the vehicle is 24 for instances with one and two stacks, and 27 for

instances with three stacks. Even though the capacity is not the same for the three-stack variant, we present

the impact of the number of stacks on the results to show the general trend. We first observe that increasing
the number of stacks from one to two and from one to three decreases the total traveled distance by an
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Table 5: Summarized impact of the number of stacks on the results

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ V eh (%) ∆ maxItem (%) ∆ Dist (%) ∆ V eh (%) ∆ maxItem (%)

Instances in class C1

w15-500-1000 –32.0 –41.4 45.2 –28.3 –34.0 –15.0
w15-1000-1200 –25.9 –36.3 31.7 –23.3 –34.2 –9.1
w15-1500-2000 –31.7 –45.5 29.2 –22.9 –26.4 –25.7
w30-500-1000 –30.1 –40.1 30.6 –22.6 –26.3 –20.0
w30-1000-1200 –25.1 –34.3 38.9 –20.1 –33.4 –23.9
w30-1500-2000 –30.0 –37.5 50.0 –19.2 –26.6 –27.5
w45-500-1000 –27.1 –37.4 12.5 –17.9 –18.9 –33.6
w45-1000-1200 –27.0 –34.7 33.3 –24.2 –29.8 –25.0
w45-1500-2000 –23.9 –50.0 33.3 –25.1 –32.2 –25.8

Weighted average –28.6 –39.0 35.2 –22.8 –29.6 –21.6

Instances in class C2

w15-500-1000 –26.2 –37.6 32.6 –29.6 –40.4 45.0
w15-1000-1200 –23.2 –32.1 11.1 –26.2 –36.9 31.3
w15-1500-2000 –22.0 –38.9 11.1 –28.0 –42.0 41.7
w30-500-1000 –29.7 –42.2 20.8 –36.6 –49.0 30.0
w30-1000-1200 –18.5 –33.2 5.2 –22.2 –34.9 14.3
w30-1500-2000 –17.9 –36.0 5.6 –26.5 –40.2 31.3
w45-500-1000 –19.6 –30.4 14.6 –21.7 –37.1 33.3
w45-1000-1200 –21.1 –33.2 16.7 –26.4 –37.2 25.0
w45-1500-2000 –14.9 –30.3 18.1 –26.5 –35.2 22.9

Weighted average –21.8 –35.0 15.8 –27.2 –39.1 31.4

average of 21.8% and 27.2%, respectively. It also decreases the number of vehicles used by an average of

35.0% and 39.1%, and increases the maximum number of requests simultaneously in a vehicle by an average

of 15.8% and 31.4%, respectively.

Thus, for both classes C1 and C2, increasing the number of stacks from one to two has a positive impact

on the total traveled distance and on the minimal number of vehicles needed. Interestingly, the additional

gain of three stacks is significantly smaller than increasing the number of stacks from one to two.

6 Conclusions

In this paper, we have introduced the PDPTWMS and described two column generation algorithms to

solve it. An ad hoc labeling algorithm for shortest path problems with multiple stacks is proposed and

implemented. Moreover, we have adapted the hybrid branch-price-and-cut algorithm of Cherkesly et al. [10]

for the PDPTWL to the PDPTWMS. In addition, we have introduced a new notation to represent a stack

in a vehicle which can be adapted to variants of the PDPTW with loading constraints such as the PDPTW

with handling costs. Instances involving up to 75 requests and three stacks were solved to optimality within

two hours of computational time. On the PDPTWL instances, Cherkesly et al. [10] had shown that, for

their instances, the BPC Relaxed seemed to outperform the BPC MS. On our new instances, we obtain the

opposite result, i.e., the BPC Relaxed is outperformed by the BPC MS. Our results also show that increasing

the number of stacks from one to two has a positive impact on the total traveled distance and on the minimal

number of vehicles used, but increasing it from two to three does not yield a significant additional gain.
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Appendix A Detailed computational results

This appendix presents the detailed computational results on our test instances. Tables A.6–A.11 present

the results obtained when solving each instance with the branch-price-and-cut algorithm with multi-stack

feasible paths, and solving the elementary shortest path problem. In each table, the first column indicates

the name of the instance corresponding to its number of nodes, its instance class (C1 or C2), the length of the

time windows (15, 30 or 45), and the time window horizon. For example, instance a280-51-c1-w15-500-1000

involves 51 nodes, is in class C1, has a time window length of 15, and a time window horizon such that

wi ≤ 500,∀i ∈ P and wi ≤ 1000,∀i ∈ D. We present the following information: Sec., the CPU time in

seconds; z, the lower bound at the root node before adding any cuts; z∗, the optimal solution value; Veh., the

minimal number of vehicles in the optimal solution; maxItem, the maximal number of items simultaneously

in a vehicle; OC, the total number of constraints (46), (47), and (49) added to the master problem; and B, the

number of nodes in the search tree including the root node. For all the instances tested with our algorithms,

no feasible solution was found whenever the time limit was reached. Thus, we do not report a lower bound

value even if one was found.

Table A.6: Computational results for the variant with one stack for instances in class C1

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c1-w15-500-1000 0.0 1,105,647.0 1,105,647.0 11 4 0 1
a280-61-c1-w15-500-1000 0.1 1,808,284.8 1,808,284.8 18 3 0 1
a280-71-c1-w15-500-1000 0.4 1,709,058.6 1,709,058.6 17 3 0 1
a280-81-c1-w15-500-1000 2.1 2,212,102.1 2,212,102.1 22 3 0 1
a280-91-c1-w15-500-1000 1.2 2,514,106.2 2,514,106.2 25 4 0 1
a280-101-c1-w15-500-1000 1.6 2,514,863.5 2,514,863.5 25 3 0 1
a280-111-c1-w15-500-1000 0.5 2,516,452.5 2,516,452.5 25 4 0 1
a280-121-c1-w15-500-1000 48.4 2,917,967.1 2,917,967.1 29 4 0 1
a280-131-c1-w15-500-1000 53.9 2,917,267.7 2,917,267.7 29 3 0 1
a280-141-c1-w15-500-1000 19.2 3,419,880.8 3,419,880.8 34 4 0 1
a280-151-c1-w15-500-1000 532.0 3,118,717.5 3,118,717.5 31 5 0 1

a280-51-c1-w15-1000-1200 0.1 1,105,937.2 1,105,937.2 11 3 0 1
a280-61-c1-w15-1000-1200 0.2 1,207,347.2 1,207,347.2 12 3 0 1
a280-71-c1-w15-1000-1200 0.5 1,308,216.2 1,308,216.2 13 3 0 1
a280-81-c1-w15-1000-1200 12.0 1,509,621.7 1,509,621.7 15 3 0 1
a280-91-c1-w15-1000-1200 8.2 2,112,198.8 2,112,198.8 21 4 0 1
a280-101-c1-w15-1000-1200 3.3 1,663,127.4 1,713,265.2 17 4 8 3
a280-111-c1-w15-1000-1200 6.4 2,113,948.0 2,113,948.0 21 3 0 1
a280-121-c1-w15-1000-1200 373.4 2,315,420.2 2,315,420.2 23 4 0 1
a280-131-c1-w15-1000-1200 119.8 2,114,163.8 2,114,163.8 21 4 0 1
a280-141-c1-w15-1000-1200 102.6 2,919,615.0 2,919,615.0 29 3 0 1
a280-151-c1-w15-1000-1200 40.0 2,817,812.9 2,817,812.9 28 3 0 1

a280-51-c1-w15-1500-2000 0.1 1,105,889.5 1,105,889.5 11 3 0 1
a280-61-c1-w15-1500-2000 1.7 1,106,952.5 1,106,952.5 11 4 0 1
a280-71-c1-w15-1500-2000 17.9 1,006,670.1 1,006,670.1 10 5 0 1
a280-81-c1-w15-1500-2000 6.2 1,008,842.1 1,008,842.1 10 5 0 1
a280-91-c1-w15-1500-2000 288.5 1,409,820.3 1,409,820.3 14 4 0 1
a280-101-c1-w15-1500-2000 68.6 1,510,936.0 1,510,936.0 15 4 0 1
a280-111-c1-w15-1500-2000 307.4 1,763,132.1 1,813,022.0 18 4 0 2
a280-121-c1-w15-1500-2000
a280-131-c1-w15-1500-2000
a280-141-c1-w15-1500-2000
a280-151-c1-w15-1500-2000

a280-51-c1-w30-500-1000 0.5 1,004,669.6 1,004,669.6 10 4 0 1
a280-61-c1-w30-500-1000 1.6 1,407,454.9 1,407,454.9 14 3 0 1
a280-71-c1-w30-500-1000 0.5 1,608,457.6 1,608,457.6 16 4 0 1
a280-81-c1-w30-500-1000 96.2 1,660,592.6 1,710,398.8 17 3 0 2
a280-91-c1-w30-500-1000 150.9 1,811,246.7 1,811,246.7 18 4 0 1
a280-101-c1-w30-500-1000 31.2 2,213,749.1 2,213,759.2 22 4 5 2
a280-111-c1-w30-500-1000 1,796.0 2,465,393.9 2,515,458.0 25 4 8 5
a280-121-c1-w30-500-1000 6,988.8 2,515,845.2 2,515,845.2 25 4 0 1
a280-131-c1-w30-500-1000 2,283.1 2,415,711.4 2,415,711.4 24 4 0 1
a280-141-c1-w30-500-1000
a280-151-c1-w30-500-1000 6,481.7 2,906,085.9 2,918,603.3 29 4 2 3
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Table A.6: Computational results for the variant with one stack for instances in class C1 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c1-w30-1000-1200 0.4 1,004,966.1 1,004,966.1 10 4 0 1
a280-61-c1-w30-1000-1200 0.5 1,206,358.7 1,206,358.7 12 3 0 1
a280-71-c1-w30-1000-1200 10.2 1,307,419.2 1,307,419.2 13 4 0 1
a280-81-c1-w30-1000-1200 20.1 1,409,119.5 1,409,119.5 14 4 0 1
a280-91-c1-w30-1000-1200 8.8 1,509,756.4 1,509,756.4 15 5 0 1
a280-101-c1-w30-1000-1200 22.1 1,562,241.1 1,612,187.1 16 4 0 6
a280-111-c1-w30-1000-1200 120.2 1,913,682.3 1,913,683.8 19 4 7 2
a280-121-c1-w30-1000-1200 1,647.7 2,215,871.3 2,215,871.3 22 4 0 1
a280-131-c1-w30-1000-1200
a280-141-c1-w30-1000-1200 2,486.5 2,215,548.2 2,215,548.2 22 4 0 1
a280-151-c1-w30-1000-1200 5,401.1 2,415,924.4 2,415,924.4 24 5 0 1

a280-51-c1-w30-1500-2000 0.1 804,751.1 804,751.1 8 4 0 1
a280-61-c1-w30-1500-2000 6.5 805,473.4 805,473.4 8 4 0 1
a280-71-c1-w30-1500-2000 27.8 1,307,372.4 1,307,372.4 13 3 0 1
a280-81-c1-w30-1500-2000 16.6 1,208,314.2 1,208,314.2 12 4 0 1
a280-91-c1-w30-1500-2000 431.8 1,309,938.8 1,309,938.8 13 5 0 1
a280-101-c1-w30-1500-2000 412.2 1,411,245.3 1,411,245.3 14 4 0 1
a280-111-c1-w30-1500-2000 598.6 1,512,520.4 1,512,520.4 15 5 0 1
a280-121-c1-w30-1500-2000 3,740.8 1,813,294.2 1,813,294.2 18 5 0 1
a280-131-c1-w30-1500-2000
a280-141-c1-w30-1500-2000
a280-151-c1-w30-1500-2000

a280-51-c1-w45-500-1000 1.7 1,105,693.2 1,105,693.2 11 4 0 1
a280-61-c1-w45-500-1000 9.9 1,256,820.3 1,306,849.4 13 4 0 2
a280-71-c1-w45-500-1000 269.2 1,073,686.5 1,107,077.6 11 5 14 6
a280-81-c1-w45-500-1000 1,382.7 1,459,158.4 1,509,170.9 15 4 12 3
a280-91-c1-w45-500-1000 803.1 1,609,893.8 1,609,893.8 16 5 0 1
a280-101-c1-w45-500-1000 6,504.3 1,946,106.6 2,012,805.5 20 5 0 2
a280-111-c1-w45-500-1000 5,941.8 1,911,894.5 1,911,894.5 19 5 0 1
a280-121-c1-w45-500-1000
a280-131-c1-w45-500-1000
a280-141-c1-w45-500-1000
a280-151-c1-w45-500-1000

a280-51-c1-w45-1000-1200 1.1 804,649.0 804,649.0 8 4 0 1
a280-61-c1-w45-1000-1200 1.6 905,443.6 905,443.6 9 4 0 1
a280-71-c1-w45-1000-1200 3.1 1,207,359.0 1,207,359.0 12 4 0 1
a280-81-c1-w45-1000-1200 3,041.7 1,358,979.4 1,409,060.4 14 4 0 62
a280-91-c1-w45-1000-1200 123.1 1,459,618.5 1,509,809.5 15 4 16 3
a280-101-c1-w45-1000-1200 1,751.2 1,711,792.9 1,711,812.7 17 4 13 12
a280-111-c1-w45-1000-1200 483.3 1,713,895.5 1,713,895.5 17 4 0 1
a280-121-c1-w45-1000-1200
a280-131-c1-w45-1000-1200
a280-141-c1-w45-1000-1200
a280-151-c1-w45-1000-1200

a280-51-c1-w45-1500-2000 0.1 805,142.4 805,142.4 8 3 0 1
a280-61-c1-w45-1500-2000 4.5 1,006,154.4 1,006,154.4 10 5 0 1
a280-71-c1-w45-1500-2000 36.3 1,007,200.9 1,007,200.9 10 5 0 1
a280-81-c1-w45-1500-2000 11.6 1,308,730.7 1,308,730.7 13 4 0 1
a280-91-c1-w45-1500-2000 50.7 1,159,978.6 1,209,905.5 12 4 0 2
a280-101-c1-w45-1500-2000 4,607.2 1,411,697.7 1,411,697.7 14 4 0 1
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000
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Table A.7: Computational results for the variant with one stack for instances in class C2

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c2-w15-500-1000 0.0 1,506,585.3 1,506,585.3 15 3 0 1
a280-61-c2-w15-500-1000 0.2 1,457,204.4 1,507,163.0 15 3 0 2
a280-71-c2-w15-500-1000 0.2 1,508,562.9 1,508,562.9 15 3 0 1
a280-81-c2-w15-500-1000 0.4 1,809,825.0 1,809,825.0 18 4 0 1
a280-91-c2-w15-500-1000 1.1 1,911,167.3 1,911,167.3 19 3 0 1
a280-101-c2-w15-500-1000 0.5 2,716,189.8 2,716,189.8 27 3 0 1
a280-111-c2-w15-500-1000 1.1 2,817,077.5 2,817,077.5 28 3 0 1
a280-121-c2-w15-500-1000 11.8 2,616,706.3 2,616,706.3 26 4 0 1
a280-131-c2-w15-500-1000 8.4 3,418,753.8 3,418,753.8 34 3 0 1
a280-141-c2-w15-500-1000 12.0 3,118,588.4 3,118,588.4 31 3 0 1
a280-151-c2-w15-500-1000 5.1 3,721,381.7 3,721,381.7 37 4 0 1

a280-51-c2-w15-1000-1200 0.0 1,206,090.1 1,206,090.1 12 3 0 1
a280-61-c2-w15-1000-1200 0.0 1,608,096.6 1,608,096.6 16 3 0 1
a280-71-c2-w15-1000-1200 0.1 1,407,622.1 1,407,622.1 14 3 0 1
a280-81-c2-w15-1000-1200 0.4 1,811,171.3 1,811,171.3 18 3 0 1
a280-91-c2-w15-1000-1200 0.5 1,811,570.2 1,811,570.2 18 4 0 1
a280-101-c2-w15-1000-1200 1.7 1,712,400.2 1,712,400.2 17 4 0 1
a280-111-c2-w15-1000-1200 2.4 1,913,406.5 1,913,406.5 19 3 0 1
a280-121-c2-w15-1000-1200 6.6 1,762,821.5 1,812,664.0 18 4 0 2
a280-131-c2-w15-1000-1200 6.9 2,215,077.3 2,215,077.3 22 4 0 1
a280-141-c2-w15-1000-1200 8.4 3,017,913.1 3,017,913.1 30 3 0 1
a280-151-c2-w15-1000-1200 15.3 2,718,035.8 2,718,035.8 27 4 0 1

a280-51-c2-w15-1500-2000 0.3 1,105,556.8 1,105,556.8 11 3 0 1
a280-61-c2-w15-1500-2000 0.1 1,006,239.9 1,006,239.9 10 4 0 1
a280-71-c2-w15-1500-2000 1.2 1,208,386.1 1,208,386.1 12 4 0 1
a280-81-c2-w15-1500-2000 2.9 1,609,497.7 1,609,497.7 16 3 0 1
a280-91-c2-w15-1500-2000 3.3 1,309,653.6 1,309,653.6 13 4 0 1
a280-101-c2-w15-1500-2000 7.3 1,511,317.0 1,511,317.0 15 4 0 1
a280-111-c2-w15-1500-2000 58.2 1,913,589.1 1,913,589.1 19 5 0 1
a280-121-c2-w15-1500-2000 57.2 1,613,194.9 1,613,194.9 16 4 0 1
a280-131-c2-w15-1500-2000 47.6 2,214,746.1 2,214,746.1 22 4 0 1
a280-141-c2-w15-1500-2000 75.7 2,415,844.1 2,415,844.1 24 5 0 1
a280-151-c2-w15-1500-2000 459.1 2,317,319.0 2,317,319.0 23 4 0 1

a280-51-c2-w30-500-1000 0.0 1,306,410.9 1,306,410.9 13 3 0 1
a280-61-c2-w30-500-1000 0.5 1,607,490.2 1,607,490.2 16 3 0 1
a280-71-c2-w30-500-1000 0.6 1,809,178.3 1,809,178.3 18 4 0 1
a280-81-c2-w30-500-1000 6.3 1,910,466.8 1,910,466.8 19 4 0 1
a280-91-c2-w30-500-1000 3.7 2,212,887.0 2,212,923.8 22 4 8 4
a280-101-c2-w30-500-1000 3.4 2,414,303.6 2,414,303.6 24 5 0 1
a280-111-c2-w30-500-1000 28.0 2,314,435.2 2,314,435.2 23 4 0 1
a280-121-c2-w30-500-1000 91.9 2,415,380.8 2,415,380.8 24 4 0 1
a280-131-c2-w30-500-1000 86.2 2,616,226.7 2,616,226.7 26 4 0 1
a280-141-c2-w30-500-1000 134.4 2,716,713.0 2,716,713.0 27 4 0 1
a280-151-c2-w30-500-1000 189.8 2,616,748.4 2,616,774.5 26 5 19 2

a280-51-c2-w30-1000-1200 0.0 904,649.6 904,649.6 9 3 0 1
a280-61-c2-w30-1000-1200 0.7 1,005,432.3 1,005,437.1 10 3 0 3
a280-71-c2-w30-1000-1200 1.0 1,407,500.7 1,407,507.1 14 5 4 2
a280-81-c2-w30-1000-1200 0.9 1,409,499.0 1,409,499.0 14 4 0 1
a280-91-c2-w30-1000-1200 1.0 1,811,139.4 1,811,139.4 18 3 0 1
a280-101-c2-w30-1000-1200 4.9 2,013,638.1 2,013,638.1 20 3 0 1
a280-111-c2-w30-1000-1200 51.1 1,863,134.4 1,913,243.5 19 4 14 28
a280-121-c2-w30-1000-1200 54.9 2,190,325.7 2,215,280.7 22 4 0 2
a280-131-c2-w30-1000-1200 16.3 1,963,883.7 2,013,900.9 20 4 0 2
a280-141-c2-w30-1000-1200 35.3 2,616,709.1 2,616,709.1 26 4 0 1
a280-151-c2-w30-1000-1200 70.6 2,616,560.0 2,616,560.0 26 3 0 1

a280-51-c2-w30-1500-2000 0.2 904,923.5 904,923.5 9 3 0 1
a280-61-c2-w30-1500-2000 0.5 706,464.3 706,464.3 7 4 0 1
a280-71-c2-w30-1500-2000 1.2 1,307,458.4 1,307,458.4 13 4 0 1
a280-81-c2-w30-1500-2000 2.1 1,208,839.3 1,208,839.3 12 4 0 1
a280-91-c2-w30-1500-2000 4.8 1,109,237.8 1,109,237.8 11 4 0 1
a280-101-c2-w30-1500-2000 58.2 1,245,157.2 1,311,314.2 13 5 0 2
a280-111-c2-w30-1500-2000 15.1 1,411,640.6 1,411,640.6 14 4 0 1
a280-121-c2-w30-1500-2000 118.0 1,512,718.8 1,512,718.8 15 5 0 1
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Table A.7: Computational results for the variant with one stack for instances in class C2 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-131-c2-w30-1500-2000 326.5 1,713,721.4 1,713,721.4 17 5 0 1
a280-141-c2-w30-1500-2000 4,938.5 1,914,710.9 1,914,755.5 19 5 2 2
a280-151-c2-w30-1500-2000 3,719.1 2,216,229.3 2,216,235.2 22 4 9 4

a280-51-c2-w45-500-1000 0.5 1,005,077.4 1,005,077.4 10 3 0 1
a280-61-c2-w45-500-1000 20.2 1,005,400.6 1,005,434.9 10 4 20 5
a280-71-c2-w45-500-1000 16.3 1,307,698.0 1,307,744.3 13 4 14 6
a280-81-c2-w45-500-1000 3.6 1,509,460.8 1,509,460.8 15 4 0 1
a280-91-c2-w45-500-1000 8.3 1,409,459.2 1,409,459.2 14 4 0 1
a280-101-c2-w45-500-1000 163.9 1,807,855.2 1,912,082.1 19 4 43 4
a280-111-c2-w45-500-1000 105.6 1,913,493.3 1,913,493.3 19 4 0 1
a280-121-c2-w45-500-1000
a280-131-c2-w45-500-1000 226.9 2,214,734.3 2,214,734.3 22 4 0 1
a280-141-c2-w45-500-1000 780.2 2,667,246.8 2,716,908.3 27 4 0 2
a280-151-c2-w45-500-1000 1,779.5 2,716,695.1 2,716,695.1 27 5 0 1

a280-51-c2-w45-1000-1200 0.1 1,005,255.3 1,005,255.3 10 3 0 1
a280-61-c2-w45-1000-1200 0.4 1,106,345.6 1,106,345.6 11 3 0 1
a280-71-c2-w45-1000-1200 1.6 1,206,790.8 1,206,858.9 12 4 6 2
a280-81-c2-w45-1000-1200 3.6 1,157,910.0 1,207,777.5 12 3 0 2
a280-91-c2-w45-1000-1200 2.9 1,410,414.7 1,410,414.7 14 4 0 1
a280-101-c2-w45-1000-1200 11.5 1,662,326.9 1,712,007.2 17 4 13 3
a280-111-c2-w45-1000-1200 16.7 1,612,507.0 1,612,507.0 16 4 0 1
a280-121-c2-w45-1000-1200 152.1 1,813,012.4 1,813,012.4 18 4 0 1
a280-131-c2-w45-1000-1200 745.3 1,813,883.3 1,913,259.6 19 4 25 17
a280-141-c2-w45-1000-1200 1,452.3 1,789,304.4 1,814,371.8 18 4 49 32
a280-151-c2-w45-1000-1200 553.3 2,116,420.0 2,116,463.9 21 4 12 5

a280-51-c2-w45-1500-2000 0.2 705,047.1 705,047.1 7 4 0 1
a280-61-c2-w45-1500-2000 0.5 1,106,182.1 1,106,182.1 11 3 0 1
a280-71-c2-w45-1500-2000 12.9 1,039,596.5 1,106,349.9 11 4 9 3
a280-81-c2-w45-1500-2000 20.1 908,183.5 908,466.8 9 4 9 9
a280-91-c2-w45-1500-2000 3.5 1,208,948.2 1,208,948.2 12 4 0 1
a280-101-c2-w45-1500-2000 23.9 1,211,215.2 1,211,215.2 12 4 0 1
a280-111-c2-w45-1500-2000 17.9 1,210,969.4 1,210,969.4 12 4 0 1
a280-121-c2-w45-1500-2000 368.5 1,413,167.6 1,413,207.2 14 4 4 5
a280-131-c2-w45-1500-2000 3,857.3 1,613,115.5 1,613,128.6 16 4 10 8
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000

Table A.8: Computational results for the variant with two stacks for instances in class C1

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c1-w15-500-1000 1.8 704,140.1 704,140.1 7 5 0 1
a280-61-c1-w15-500-1000 51.5 955,662.7 1,005,105.4 10 5 0 2
a280-71-c1-w15-500-1000 74.3 1,014,253.7 1,106,783.1 11 4 13 4
a280-81-c1-w15-500-1000 867.4 1,207,975.7 1,207,975.7 12 6 0 1
a280-91-c1-w15-500-1000 1,677.1 1,309,472.0 1,309,504.1 13 4 3 8
a280-101-c1-w15-500-1000 693.5 1,359,661.3 1,409,613.4 14 5 0 2
a280-111-c1-w15-500-1000 469.2 1,535,073.1 1,611,220.5 16 5 17 3
a280-121-c1-w15-500-1000
a280-131-c1-w15-500-1000
a280-141-c1-w15-500-1000
a280-151-c1-w15-500-1000

a280-51-c1-w15-1000-1200 3.6 671,088.0 704,241.7 7 3 0 2
a280-61-c1-w15-1000-1200 27.1 805,276.5 805,276.5 8 5 0 1
a280-71-c1-w15-1000-1200 682.9 881,291.8 906,162.9 9 4 17 5
a280-81-c1-w15-1000-1200
a280-91-c1-w15-1000-1200 4,935.1 1,209,115.3 1,209,115.3 12 5 0 1
a280-101-c1-w15-1000-1200
a280-111-c1-w15-1000-1200 4,532.5 1,285,981.9 1,310,818.1 13 4 8 3
a280-121-c1-w15-1000-1200
a280-131-c1-w15-1000-1200
a280-141-c1-w15-1000-1200
a280-151-c1-w15-1000-1200
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Table A.8: Computational results for the variant with two stacks for instances in class C1 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c1-w15-1500-2000 340.4 554,372.4 604,017.4 6 4 0 2
a280-61-c1-w15-1500-2000 787.4 604,751.2 604,751.2 6 5 0 1
a280-71-c1-w15-1500-2000
a280-81-c1-w15-1500-2000
a280-91-c1-w15-1500-2000
a280-101-c1-w15-1500-2000
a280-111-c1-w15-1500-2000
a280-121-c1-w15-1500-2000
a280-131-c1-w15-1500-2000
a280-141-c1-w15-1500-2000
a280-151-c1-w15-1500-2000

a280-51-c1-w30-500-1000 711.5 553,767.5 603,547.1 6 5 7 3
a280-61-c1-w30-500-1000 494.6 714,272.0 804,773.3 8 5 21 3
a280-71-c1-w30-500-1000 365.0 917,222.5 1,005,906.0 10 4 25 7
a280-81-c1-w30-500-1000
a280-91-c1-w30-500-1000
a280-101-c1-w30-500-1000
a280-111-c1-w30-500-1000
a280-121-c1-w30-500-1000
a280-131-c1-w30-500-1000
a280-141-c1-w30-500-1000
a280-151-c1-w30-500-1000

a280-51-c1-w30-1000-1200 232.1 653,619.3 703,716.1 7 5 10 3
a280-61-c1-w30-1000-1200 165.6 704,727.8 704,727.8 7 5 0 1
a280-71-c1-w30-1000-1200
a280-81-c1-w30-1000-1200
a280-91-c1-w30-1000-1200
a280-101-c1-w30-1000-1200 6,791.4 1,028,448.3 1,109,220.7 11 5 34 5
a280-111-c1-w30-1000-1200
a280-121-c1-w30-1000-1200
a280-131-c1-w30-1000-1200
a280-141-c1-w30-1000-1200
a280-151-c1-w30-1000-1200

a280-51-c1-w30-1500-2000 162.1 503,285.3 503,325.0 5 6 39 16
a280-61-c1-w30-1500-2000
a280-71-c1-w30-1500-2000
a280-81-c1-w30-1500-2000
a280-91-c1-w30-1500-2000
a280-101-c1-w30-1500-2000
a280-111-c1-w30-1500-2000
a280-121-c1-w30-1500-2000
a280-131-c1-w30-1500-2000
a280-141-c1-w30-1500-2000
a280-151-c1-w30-1500-2000

a280-51-c1-w45-500-1000 2,845.0 644,466.8 704,103.9 7 4 27 21
a280-61-c1-w45-500-1000 3,068.0 752,580.7 805,048.0 8 5 2 3
a280-71-c1-w45-500-1000
a280-81-c1-w45-500-1000
a280-91-c1-w45-500-1000
a280-101-c1-w45-500-1000
a280-111-c1-w45-500-1000
a280-121-c1-w45-500-1000
a280-131-c1-w45-500-1000
a280-141-c1-w45-500-1000
a280-151-c1-w45-500-1000

a280-51-c1-w45-1000-1200 1,198.3 472,853.8 503,405.3 5 5 5 3
a280-61-c1-w45-1000-1200 3,559.5 516,846.8 603,928.4 6 6 29 5
a280-71-c1-w45-1000-1200 5,682.5 705,751.0 805,415.2 8 5 55 17
a280-81-c1-w45-1000-1200
a280-91-c1-w45-1000-1200
a280-101-c1-w45-1000-1200
a280-111-c1-w45-1000-1200
a280-121-c1-w45-1000-1200



24 G–2015–25 Les Cahiers du GERAD

Table A.8: Computational results for the variant with two stacks for instances in class C1 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-131-c1-w45-1000-1200
a280-141-c1-w45-1000-1200
a280-151-c1-w45-1000-1200

a280-51-c1-w45-1500-2000 17.4 403,914.1 403,914.1 4 4 0 1
a280-61-c1-w45-1500-2000
a280-71-c1-w45-1500-2000
a280-81-c1-w45-1500-2000
a280-91-c1-w45-1500-2000
a280-101-c1-w45-1500-2000
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000

Table A.9: Computational results for the variant with two stacks for instances in class C2

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c2-w15-500-1000 6.1 804,375.0 804,506.1 8 4 48 16
a280-61-c2-w15-500-1000 1.9 867,904.7 905,317.9 9 4 0 2
a280-71-c2-w15-500-1000 6.0 956,421.7 1,006,320.0 10 4 0 2
a280-81-c2-w15-500-1000 8.7 1,250,523.1 1,307,681.1 13 5 15 3
a280-91-c2-w15-500-1000 110.3 1,258,642.3 1,308,469.4 13 5 26 11
a280-101-c2-w15-500-1000 54.0 1,611,601.6 1,611,817.0 16 4 25 13
a280-111-c2-w15-500-1000 69.9 1,787,934.1 1,812,796.4 18 4 12 4
a280-121-c2-w15-500-1000 2,738.1 1,626,114.1 1,712,384.1 17 4 53 39
a280-131-c2-w15-500-1000 2,177.2 1,797,801.6 1,813,249.3 18 5 36 37
a280-141-c2-w15-500-1000 551.6 1,964,742.4 2,014,119.1 20 4 35 10
a280-151-c2-w15-500-1000 231.2 2,142,837.7 2,215,602.5 22 4 20 4

a280-51-c2-w15-1000-1200 1.0 854,650.1 904,616.7 9 3 7 3
a280-61-c2-w15-1000-1200 1.4 822,315.4 905,305.4 9 3 0 2
a280-71-c2-w15-1000-1200 3.8 955,943.9 1,005,845.1 10 3 11 3
a280-81-c2-w15-1000-1200 41.1 1,174,609.8 1,208,065.7 12 4 23 11
a280-91-c2-w15-1000-1200 82.1 1,174,241.1 1,209,279.3 12 4 19 22
a280-101-c2-w15-1000-1200 563.8 1,222,364.3 1,310,248.8 13 4 64 39
a280-111-c2-w15-1000-1200 1,012.1 1,256,198.9 1,311,126.3 13 4 69 104
a280-121-c2-w15-1000-1200 669.2 1,138,498.8 1,209,965.6 12 4 54 9
a280-131-c2-w15-1000-1200
a280-141-c2-w15-1000-1200 6,077.2 1,888,867.7 1,913,702.4 19 4 31 64
a280-151-c2-w15-1000-1200

a280-51-c2-w15-1500-2000 8.1 554,299.1 603,995.5 6 4 31 4
a280-61-c2-w15-1500-2000 8.3 605,268.3 605,570.0 6 4 26 4
a280-71-c2-w15-1500-2000 153.5 726,483.4 805,775.4 8 4 27 9
a280-81-c2-w15-1500-2000 324.0 824,160.5 906,454.0 9 4 0 2
a280-91-c2-w15-1500-2000 749.4 865,179.4 908,308.7 9 4 61 18
a280-101-c2-w15-1500-2000 7,102.7 895,442.9 909,507.8 9 4 119 160
a280-111-c2-w15-1500-2000
a280-121-c2-w15-1500-2000
a280-131-c2-w15-1500-2000
a280-141-c2-w15-1500-2000
a280-151-c2-w15-1500-2000

a280-51-c2-w30-500-1000 2.1 679,392.0 704,319.5 7 4 0 2
a280-61-c2-w30-500-1000 33.2 855,367.6 905,162.2 9 5 47 4
a280-71-c2-w30-500-1000 11.0 1,056,080.2 1,106,008.6 11 4 0 2
a280-81-c2-w30-500-1000 171.7 1,107,899.8 1,107,899.8 11 5 0 1
a280-91-c2-w30-500-1000 249.7 1,284,756.7 1,309,579.4 13 4 38 26
a280-101-c2-w30-500-1000 276.5 1,360,302.8 1,410,052.2 14 5 16 5
a280-111-c2-w30-500-1000
a280-121-c2-w30-500-1000
a280-131-c2-w30-500-1000
a280-141-c2-w30-500-1000
a280-151-c2-w30-500-1000
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Table A.9: Computational results for the variant with two stacks for instances in class C2 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c2-w30-1000-1200 0.5 704,314.8 704,324.1 7 3 3 2
a280-61-c2-w30-1000-1200 4.7 655,125.4 704,687.0 7 3 18 5
a280-71-c2-w30-1000-1200 12.5 906,049.3 906,094.7 9 4 9 2
a280-81-c2-w30-1000-1200 22.7 1,004,991.1 1,008,098.4 10 4 10 4
a280-91-c2-w30-1000-1200 129.7 1,168,697.1 1,208,357.5 12 4 19 15
a280-101-c2-w30-1000-1200 103.0 1,210,282.4 1,210,282.4 12 4 0 1
a280-111-c2-w30-1000-1200 4,133.4 1,276,467.0 1,311,048.2 13 3 107 221
a280-121-c2-w30-1000-1200
a280-131-c2-w30-1000-1200 3,861.4 1,221,912.7 1,310,717.5 13 5 64 27
a280-141-c2-w30-1000-1200 1,367.8 1,485,128.7 1,512,917.1 15 4 5 3
a280-151-c2-w30-1000-1200

a280-51-c2-w30-1500-2000 14.5 503,907.4 503,914.7 5 4 2 2
a280-61-c2-w30-1500-2000 11.9 505,504.5 505,504.5 5 4 0 1
a280-71-c2-w30-1500-2000 78.1 756,981.7 805,654.8 8 4 52 4
a280-81-c2-w30-1500-2000 84.9 700,065.3 707,568.9 7 4 30 4
a280-91-c2-w30-1500-2000 1,943.6 723,751.3 807,307.3 8 4 68 50
a280-101-c2-w30-1500-2000
a280-111-c2-w30-1500-2000 6,330.7 909,872.6 910,183.0 9 4 75 43
a280-121-c2-w30-1500-2000
a280-131-c2-w30-1500-2000
a280-141-c2-w30-1500-2000
a280-151-c2-w30-1500-2000

a280-51-c2-w45-500-1000 29.2 644,309.0 703,927.4 7 4 11 5
a280-61-c2-w45-500-1000 495.7 721,863.2 804,639.2 8 4 20 4
a280-71-c2-w45-500-1000 83.8 806,421.5 806,421.5 8 5 0 1
a280-81-c2-w45-500-1000 1,070.1 958,832.5 1,007,186.1 10 4 62 43
a280-91-c2-w45-500-1000
a280-101-c2-w45-500-1000
a280-111-c2-w45-500-1000
a280-121-c2-w45-500-1000
a280-131-c2-w45-500-1000
a280-141-c2-w45-500-1000
a280-151-c2-w45-500-1000

a280-51-c2-w45-1000-1200 0.9 703,894.7 703,894.7 7 4 0 1
a280-61-c2-w45-1000-1200 44.5 654,455.1 704,350.5 7 4 52 7
a280-71-c2-w45-1000-1200 27.7 705,805.6 705,809.2 7 4 1 2
a280-81-c2-w45-1000-1200 114.7 796,563.7 806,929.8 8 4 20 3
a280-91-c2-w45-1000-1200 427.1 983,156.6 1,007,973.5 10 4 54 15
a280-101-c2-w45-1000-1200 5,607.2 1,137,055.0 1,209,618.5 12 4 98 82
a280-111-c2-w45-1000-1200
a280-121-c2-w45-1000-1200
a280-131-c2-w45-1000-1200
a280-141-c2-w45-1000-1200
a280-151-c2-w45-1000-1200

a280-51-c2-w45-1500-2000 53.0 479,238.6 504,155.2 5 5 61 22
a280-61-c2-w45-1500-2000 89.2 704,556.5 704,677.8 7 4 50 20
a280-71-c2-w45-1500-2000 1,644.7 655,713.5 705,136.8 7 5 62 10
a280-81-c2-w45-1500-2000 2,734.5 647,827.7 706,828.1 7 5 112 103
a280-91-c2-w45-1500-2000 293.3 809,319.0 809,325.4 8 4 3 2
a280-101-c2-w45-1500-2000
a280-111-c2-w45-1500-2000 2,592.8 909,438.6 909,514.5 9 4 52 10
a280-121-c2-w45-1500-2000
a280-131-c2-w45-1500-2000
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000
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Table A.10: Computational results for the variant with three stacks for instances in class C1

Instance Sec. z z∗ Veh. maxItem OC B

a280-51-c1-w15-500-1000 0.1 771,396.7 804,243.4 8 3 0 2
a280-61-c1-w15-500-1000 0.5 1,038,700.9 1,105,192.8 11 3 3 3
a280-71-c1-w15-500-1000 8.5 1,073,706.8 1,107,074.8 11 3 17 14
a280-81-c1-w15-500-1000 1.1 1,274,987.6 1,308,179.7 13 3 1 3
a280-91-c1-w15-500-1000 37.3 1,342,754.9 1,409,233.6 14 3 28 30
a280-101-c1-w15-500-1000 11.1 1,644,142.4 1,710,847.6 17 3 20 8
a280-111-c1-w15-500-1000 172.8 1,695,055.5 1,711,766.3 17 3 37 78
a280-121-c1-w15-500-1000 18.3 1,946,387.9 2,012,695.1 20 3 24 5
a280-131-c1-w15-500-1000 2,576.7 1,946,173.5 2,012,928.2 20 3 166 366
a280-141-c1-w15-500-1000 257.9 2,247,860.3 2,314,592.9 23 3 41 55
a280-151-c1-w15-500-1000 152.8 2,181,145.6 2,214,373.5 22 3 26 19

a280-51-c1-w15-1000-1200 4.2 637,638.0 704,178.9 7 3 20 28
a280-61-c1-w15-1000-1200 0.2 805,245.0 805,245.0 8 3 0 1
a280-71-c1-w15-1000-1200 0.6 892,260.1 906,384.6 9 3 0 2
a280-81-c1-w15-1000-1200 9.1 1,051,503.3 1,108,123.3 11 3 23 7
a280-91-c1-w15-1000-1200 19.1 1,242,724.8 1,309,120.9 13 3 27 10
a280-101-c1-w15-1000-1200 103.2 1,148,591.6 1,209,326.8 12 3 50 35
a280-111-c1-w15-1000-1200 238.6 1,344,351.1 1,411,124.3 14 3 60 46
a280-121-c1-w15-1000-1200 46.0 1,478,511.8 1,511,805.5 15 3 28 7
a280-131-c1-w15-1000-1200 1,719.5 1,396,817.3 1,412,334.7 14 3 80 158
a280-141-c1-w15-1000-1200 1,292.1 1,594,751.3 1,613,862.8 16 3 74 113
a280-151-c1-w15-1000-1200 1,980.0 1,801,830.6 1,814,289.0 18 3 42 202

a280-51-c1-w15-1500-2000 3.1 637,223.1 703,938.1 7 3 10 11
a280-61-c1-w15-1500-2000 21.8 738,422.2 805,122.9 8 3 24 36
a280-71-c1-w15-1500-2000 14.3 739,172.5 805,594.2 8 3 48 9
a280-81-c1-w15-1500-2000 41.5 807,266.7 807,350.6 8 3 54 15
a280-91-c1-w15-1500-2000 107.4 1,107,525.7 1,107,577.8 11 3 76 26
a280-101-c1-w15-1500-2000 424.0 1,042,218.4 1,108,513.7 11 3 91 104
a280-111-c1-w15-1500-2000 384.8 1,176,880.3 1,210,071.7 12 3 68 55
a280-121-c1-w15-1500-2000 1,917.6 1,343,986.4 1,410,583.7 14 3 81 122
a280-131-c1-w15-1500-2000 1,025.5 1,377,192.8 1,410,572.2 14 3 61 41
a280-141-c1-w15-1500-2000 4,507.6 1,444,926.8 1,511,435.5 15 3 101 231
a280-151-c1-w15-1500-2000

a280-51-c1-w30-500-1000 7.1 703,832.1 703,905.1 7 3 17 7
a280-61-c1-w30-500-1000 8.3 871,468.7 904,887.6 9 3 47 10
a280-71-c1-w30-500-1000 0.7 1,013,737.7 1,106,203.5 11 3 0 2
a280-81-c1-w30-500-1000 1.1 1,274,842.3 1,308,059.0 13 3 0 2
a280-91-c1-w30-500-1000 69.4 1,342,490.8 1,409,180.7 14 3 40 24
a280-101-c1-w30-500-1000 14.8 1,577,926.0 1,611,012.6 16 3 23 5
a280-111-c1-w30-500-1000 66.3 1,677,678.4 1,710,981.0 17 3 41 14
a280-121-c1-w30-500-1000 1,701.3 1,945,921.7 2,012,740.7 20 3 172 236
a280-131-c1-w30-500-1000 27.2 2,012,655.2 2,012,673.4 20 3 6 3
a280-141-c1-w30-500-1000 245.0 2,280,698.1 2,313,981.9 23 3 23 16
a280-151-c1-w30-500-1000 571.0 2,214,890.5 2,214,964.9 22 3 65 38

a280-51-c1-w30-1000-1200 2.6 670,549.8 703,829.2 7 3 5 7
a280-61-c1-w30-1000-1200 1.6 705,245.5 705,282.5 7 3 10 2
a280-71-c1-w30-1000-1200 53.5 872,543.4 905,768.0 9 3 44 27
a280-81-c1-w30-1000-1200 13.0 907,210.3 907,261.1 9 3 10 5
a280-91-c1-w30-1000-1200 18.8 1,075,040.8 1,108,303.0 11 3 26 5
a280-101-c1-w30-1000-1200 75.7 1,065,388.4 1,109,516.5 11 3 54 9
a280-111-c1-w30-1000-1200 507.4 1,250,937.6 1,310,816.8 13 3 53 71
a280-121-c1-w30-1000-1200 1,542.5 1,378,738.1 1,411,791.0 14 3 69 106
a280-131-c1-w30-1000-1200
a280-141-c1-w30-1000-1200 2,823.6 1,412,967.4 1,413,207.4 14 3 78 132
a280-151-c1-w30-1000-1200

a280-51-c1-w30-1500-2000 0.3 504,074.5 504,074.5 5 3 0 1
a280-61-c1-w30-1500-2000 17.4 704,435.2 704,468.8 7 3 50 12
a280-71-c1-w30-1500-2000 169.2 772,317.7 805,558.0 8 3 78 51
a280-81-c1-w30-1500-2000 2.6 806,556.9 806,556.9 8 3 0 1
a280-91-c1-w30-1500-2000 87.6 1,041,509.9 1,108,169.4 11 3 31 15
a280-101-c1-w30-1500-2000 370.9 1,109,456.0 1,109,540.4 11 3 92 52
a280-111-c1-w30-1500-2000 1,543.6 1,109,733.2 1,109,871.9 11 3 96 156
a280-121-c1-w30-1500-2000 5,866.3 1,277,203.7 1,310,533.8 13 3 133 326
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Table A.10: Computational results for the variant with three stacks for instances in class C1 (continued)

Instance Sec. z z∗ Veh. maxItem OC B

a280-131-c1-w30-1500-2000 866.1 1,377,474.0 1,410,762.4 14 3 51 24
a280-141-c1-w30-1500-2000
a280-151-c1-w30-1500-2000 6,923.6 1,579,566.0 1,612,873.2 16 3 76 205

a280-51-c1-w45-500-1000 3.9 670,998.4 704,064.9 7 3 7 5
a280-61-c1-w45-500-1000 0.5 905,467.5 905,467.5 9 3 0 1
a280-71-c1-w45-500-1000 7.4 972,894.5 1,006,087.9 10 3 10 4
a280-81-c1-w45-500-1000 793.0 1,274,267.2 1,307,675.7 13 3 211 201
a280-91-c1-w45-500-1000 175.0 1,408,377.3 1,408,428.5 14 3 63 29
a280-101-c1-w45-500-1000 257.2 1,576,915.6 1,610,308.2 16 3 44 54
a280-111-c1-w45-500-1000 439.2 1,677,230.6 1,710,508.8 17 3 41 32
a280-121-c1-w45-500-1000 360.3 1,744,599.4 1,811,360.8 18 3 47 18
a280-131-c1-w45-500-1000 55.6 1,912,004.9 1,912,031.6 19 3 25 4
a280-141-c1-w45-500-1000 3,685.7 2,080,515.1 2,113,707.4 21 3 150 195
a280-151-c1-w45-500-1000 197.0 2,181,064.3 2,214,374.5 22 3 32 9

a280-51-c1-w45-1000-1200 1.0 537,064.6 603,479.8 6 3 0 2
a280-61-c1-w45-1000-1200 11.9 616,449.2 704,077.5 7 3 42 5
a280-71-c1-w45-1000-1200 134.6 780,661.8 805,654.4 8 3 81 33
a280-81-c1-w45-1000-1200 332.8 906,496.2 906,578.9 9 3 61 44
a280-91-c1-w45-1000-1200 423.3 923,007.9 1,007,429.4 10 3 79 54
a280-101-c1-w45-1000-1200 566.1 1,142,730.9 1,209,398.5 12 3 50 60
a280-111-c1-w45-1000-1200
a280-121-c1-w45-1000-1200 275.3 1,243,203.9 1,309,712.6 13 3 54 8
a280-131-c1-w45-1000-1200
a280-141-c1-w45-1000-1200 110.3 1,444,918.3 1,511,335.9 15 3 5 3
a280-151-c1-w45-1000-1200 552.9 1,713,169.7 1,713,257.0 17 3 53 14

a280-51-c1-w45-1500-2000 0.7 403,943.5 403,943.5 4 3 0 1
a280-61-c1-w45-1500-2000 30.6 670,852.7 704,214.6 7 3 47 12
a280-71-c1-w45-1500-2000 33.1 805,772.5 805,819.7 8 3 43 8
a280-81-c1-w45-1500-2000 2,118.7 739,374.8 806,155.9 8 3 179 439
a280-91-c1-w45-1500-2000 74.9 807,624.2 807,681.5 8 3 57 7
a280-101-c1-w45-1500-2000 550.0 1,075,475.0 1,108,801.1 11 3 54 38
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000 4,690.5 1,411,266.7 1,411,337.1 14 3 64 103
a280-151-c1-w45-1500-2000

Table A.11: Computational results for the variant with three stacks for instances in class C2

Instance Sec. z z∗ Veh maxItem OC B

a280-51-c2-w15-500-1000 1.9 704,424.7 704,424.7 7 4 0 1
a280-61-c2-w15-500-1000 5.7 865,165.9 905,043.8 9 4 0 2
a280-71-c2-w15-500-1000 94.8 905,863.5 905,917.6 9 4 30 15
a280-81-c2-w15-500-1000 114.9 1,245,390.9 1,307,786.2 13 5 38 20
a280-91-c2-w15-500-1000 1,148.8 1,258,444.9 1,308,336.8 13 5 34 40
a280-101-c2-w15-500-1000 387.4 1,399,688.1 1,510,667.3 15 5 34 27
a280-111-c2-w15-500-1000 118.9 1,712,128.8 1,712,128.8 17 4 0 1
a280-121-c2-w15-500-1000 4,713.0 1,523,939.3 1,611,521.1 16 5 28 8
a280-131-c2-w15-500-1000 4,687.2 1,680,142.8 1,712,233.6 17 5 47 10
a280-141-c2-w15-500-1000 1,810.9 1,860,423.0 1,913,410.7 19 5 56 7
a280-151-c2-w15-500-1000

a280-51-c2-w15-1000-1200 3.1 754,574.8 804,354.3 8 3 3 4
a280-61-c2-w15-1000-1200 3.9 771,728.7 804,876.3 8 4 0 2
a280-71-c2-w15-1000-1200 8.5 906,789.5 906,910.3 9 4 5 3
a280-81-c2-w15-1000-1200 33.4 1,132,702.8 1,207,431.8 12 4 10 4
a280-91-c2-w15-1000-1200 47.0 1,115,772.0 1,208,755.2 12 5 10 5
a280-101-c2-w15-1000-1200 994.2 1,134,718.4 1,209,308.8 12 5 28 18
a280-111-c2-w15-1000-1200 1,567.8 1,159,692.0 1,210,475.7 12 5 82 53
a280-121-c2-w15-1000-1200
a280-131-c2-w15-1000-1200
a280-141-c2-w15-1000-1200 3,154.4 1,708,632.4 1,713,062.9 17 4 12 3
a280-151-c2-w15-1000-1200
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Table A.11: Computational results for the variant with three stacks for instances in class C2 (continued)

Instance Sec. z z∗ Veh maxItem OC B

a280-51-c2-w15-1500-2000 9.2 503,814.4 503,814.4 5 5 0 1
a280-61-c2-w15-1500-2000 8.9 585,037.5 604,889.9 6 5 0 2
a280-71-c2-w15-1500-2000 761.2 738,758.9 805,232.7 8 5 43 12
a280-81-c2-w15-1500-2000 6,018.1 873,171.3 906,400.1 9 5 19 7
a280-91-c2-w15-1500-2000 2,026.0 790,680.0 808,044.5 8 5 58 8
a280-101-c2-w15-1500-2000
a280-111-c2-w15-1500-2000
a280-121-c2-w15-1500-2000
a280-131-c2-w15-1500-2000
a280-141-c2-w15-1500-2000
a280-151-c2-w15-1500-2000

a280-51-c2-w30-500-1000 4.2 604,267.7 604,267.7 6 4 0 1
a280-61-c2-w30-500-1000 148.3 755,006.6 804,538.2 8 5 9 3
a280-71-c2-w30-500-1000 142.6 872,630.9 905,705.0 9 5 34 15
a280-81-c2-w30-500-1000
a280-91-c2-w30-500-1000 299.1 1,129,789.1 1,208,022.4 12 5 29 10
a280-101-c2-w30-500-1000 3,596.1 1,234,939.8 1,309,393.0 13 5 64 16
a280-111-c2-w30-500-1000
a280-121-c2-w30-500-1000
a280-131-c2-w30-500-1000
a280-141-c2-w30-500-1000
a280-151-c2-w30-500-1000

a280-51-c2-w30-1000-1200 0.7 704,314.8 704,324.1 7 3 3 2
a280-61-c2-w30-1000-1200 2.7 618,378.3 704,338.5 7 4 0 2
a280-71-c2-w30-1000-1200 262.3 791,007.5 806,080.0 8 5 51 28
a280-81-c2-w30-1000-1200 61.3 969,668.5 1,006,878.1 10 4 14 4
a280-91-c2-w30-1000-1200 557.3 1,051,651.3 1,107,908.5 11 4 43 20
a280-101-c2-w30-1000-1200 1,165.2 1,077,967.4 1,109,227.0 11 4 33 7
a280-111-c2-w30-1000-1200 3,727.0 1,210,422.9 1,210,549.7 12 4 43 41
a280-121-c2-w30-1000-1200
a280-131-c2-w30-1000-1200
a280-141-c2-w30-1000-1200
a280-151-c2-w30-1000-1200

a280-51-c2-w30-1500-2000 82.3 437,036.0 503,573.7 5 6 14 4
a280-61-c2-w30-1500-2000 105.5 504,662.3 504,708.6 5 4 40 3
a280-71-c2-w30-1500-2000 600.0 672,606.3 705,468.4 7 4 64 13
a280-81-c2-w30-1500-2000 1,428.1 641,417.2 706,655.6 7 5 52 20
a280-91-c2-w30-1500-2000
a280-101-c2-w30-1500-2000
a280-111-c2-w30-1500-2000
a280-121-c2-w30-1500-2000
a280-131-c2-w30-1500-2000
a280-141-c2-w30-1500-2000
a280-151-c2-w30-1500-2000

a280-51-c2-w45-500-1000 39.4 604,419.3 604,419.3 6 4 0 1
a280-61-c2-w45-500-1000 2,702.7 677,875.0 704,438.8 7 5 40 4
a280-71-c2-w45-500-1000 3,554.5 752,402.1 805,445.0 8 6 44 17
a280-81-c2-w45-500-1000 5,837.3 887,015.6 907,002.7 9 5 62 81
a280-91-c2-w45-500-1000
a280-101-c2-w45-500-1000
a280-111-c2-w45-500-1000
a280-121-c2-w45-500-1000
a280-131-c2-w45-500-1000
a280-141-c2-w45-500-1000
a280-151-c2-w45-500-1000

a280-51-c2-w45-1000-1200 5.4 703,866.0 703,880.1 7 4 10 2
a280-61-c2-w45-1000-1200 34.5 554,048.8 603,773.1 6 4 0 2
a280-71-c2-w45-1000-1200 86.3 671,978.4 705,150.7 7 5 21 4
a280-81-c2-w45-1000-1200 837.1 777,024.2 806,567.4 8 4 48 11
a280-91-c2-w45-1000-1200 473.1 891,572.5 907,833.8 9 4 51 6
a280-101-c2-w45-1000-1200
a280-111-c2-w45-1000-1200
a280-121-c2-w45-1000-1200
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Table A.11: Computational results for the variant with three stacks for instances in class C2 (continued)

Instance Sec. z z∗ Veh maxItem OC B

a280-131-c2-w45-1000-1200
a280-141-c2-w45-1000-1200
a280-151-c2-w45-1000-1200

a280-51-c2-w45-1500-2000 20.3 470,300.9 503,496.4 5 4 0 2
a280-61-c2-w45-1500-2000 48.6 537,642.8 604,088.8 6 5 32 4
a280-71-c2-w45-1500-2000
a280-81-c2-w45-1500-2000 3,483.0 606,788.8 607,006.4 6 5 50 20
a280-91-c2-w45-1500-2000 4,311.8 773,673.9 806,792.8 8 4 61 8
a280-101-c2-w45-1500-2000
a280-111-c2-w45-1500-2000
a280-121-c2-w45-1500-2000
a280-131-c2-w45-1500-2000
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000

Appendix B Detailed results on the impact of the number of stacks

This appendix presents detailed computational results to assess the impact of the number of stacks. Ta-

bles B.12 and B.13 present the impact of the number of stacks on the computational results for instances in

class C1 and C2, respectively. For each table, we compare the results obtained with one stack to the results

obtained with two and three stacks. We present the following information: ∆ Dist (%), the impact in percent-

age on the total traveled distance, computed as (Dist2−Dist1)/(Dist1) and (Dist3−Dist1)/(Dist1), where

Distj , j = {1, 2, 3}, is the distance with j stacks, respectively; ∆ Veh (%), the impact in percentage on the

number of vehicles, computed as (V eh2−V eh1)/(V eh1) and (V eh3−V eh1)/(V eh1), where V ehj , j = {1, 2, 3},
is the number of vehicles with j stacks, respectively; and ∆ maxItem (%), the impact in percentage on the

maximum number of items simultaneously in a vehicle, computed as (maxItem2−maxItem1)/(maxItem1)

and (maxItem3−maxItem1)/(maxItem1), where maxItemj , j = {1, 2, 3}, is the maximum number of items

simultaneously in a vehicle with j stacks.

Table B.12: Impact of the number of stacks on the results for instances in class C1

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%) ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%)

a280-51-c1-w15-500-1000 –26.7 –36.4 25.0 –24.9 –27.3 –25.0
a280-61-c1-w15-500-1000 –38.4 –44.4 66.7 –37.3 –38.9 0.0
a280-71-c1-w15-500-1000 –25.1 –35.3 33.3 –21.9 –35.3 0.0
a280-81-c1-w15-500-1000 –34.1 –45.5 100.0 –32.4 –40.9 0.0
a280-91-c1-w15-500-1000 –32.6 –48.0 0.0 –34.5 –44.0 –25.0
a280-101-c1-w15-500-1000 –35.3 –44.0 66.7 –27.0 –32.0 0.0
a280-111-c1-w15-500-1000 –31.8 –36.0 25.0 –28.5 –32.0 –25.0
a280-121-c1-w15-500-1000 –29.3 –31.0 –25.0
a280-131-c1-w15-500-1000 –25.1 –31.0 0.0
a280-141-c1-w15-500-1000 –26.6 –32.4 –25.0
a280-151-c1-w15-500-1000 –23.2 –29.0 –40.0

a280-51-c1-w15-1000-1200 –28.6 –36.4 0.0 –29.6 –36.4 0.0
a280-61-c1-w15-1000-1200 –28.2 –33.3 66.7 –28.6 –33.3 0.0
a280-71-c1-w15-1000-1200 –25.0 –30.8 33.3 –22.3 –30.8 0.0
a280-81-c1-w15-1000-1200 –15.6 –26.7 0.0
a280-91-c1-w15-1000-1200 –25.3 –42.9 25.0 –25.2 –38.1 –25.0
a280-101-c1-w15-1000-1200 –29.7 –29.4 –25.0
a280-111-c1-w15-1000-1200 –22.4 –38.1 33.3 –20.2 –33.3 0.0
a280-121-c1-w15-1000-1200 –23.4 –34.8 –25.0
a280-131-c1-w15-1000-1200 –12.9 –33.3 –25.0
a280-141-c1-w15-1000-1200 –29.3 –44.8 0.0
a280-151-c1-w15-1000-1200 –19.8 –35.7 0.0

a280-51-c1-w15-1500-2000 –31.8 –45.5 33.3 –33.1 –36.4 0.0
a280-61-c1-w15-1500-2000 –31.7 –45.5 25.0 –26.3 –27.3 –25.0
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Table B.12: Impact of the number of stacks on the results for instances in class C1 (continued)

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%) ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%)

a280-71-c1-w15-1500-2000 –16.1 –20.0 –40.0
a280-81-c1-w15-1500-2000 –16.9 –20.0 –40.0
a280-91-c1-w15-1500-2000 –22.8 –21.4 –25.0
a280-101-c1-w15-1500-2000 –22.1 –26.7 –25.0
a280-111-c1-w15-1500-2000 –22.7 –33.3 –25.0
a280-121-c1-w15-1500-2000
a280-131-c1-w15-1500-2000
a280-141-c1-w15-1500-2000
a280-151-c1-w15-1500-2000

a280-51-c1-w30-500-1000 –24.0 –40.0 25.0 –16.4 –30.0 –25.0
a280-61-c1-w30-500-1000 –36.0 –42.9 66.7 –34.4 –35.7 0.0
a280-71-c1-w30-500-1000 –30.2 –37.5 0.0 –26.7 –31.3 –25.0
a280-81-c1-w30-500-1000 –22.5 –23.5 0.0
a280-91-c1-w30-500-1000 –18.4 –22.2 –25.0
a280-101-c1-w30-500-1000 –20.0 –27.3 –25.0
a280-111-c1-w30-500-1000 –29.0 –32.0 –25.0
a280-121-c1-w30-500-1000 –19.6 –20.0 –25.0
a280-131-c1-w30-500-1000 –19.3 –16.7 –25.0
a280-141-c1-w30-500-1000
a280-151-c1-w30-500-1000 –19.6 –24.1 –25.0

a280-51-c1-w30-1000-1200 –25.2 –30.0 25.0 –22.9 –30.0 –25.0
a280-61-c1-w30-1000-1200 –25.6 –41.7 66.7 –16.9 –41.7 0.0
a280-71-c1-w30-1000-1200 –22.3 –30.8 –25.0
a280-81-c1-w30-1000-1200 –20.4 –35.7 –25.0
a280-91-c1-w30-1000-1200 –14.9 –26.7 –40.0
a280-101-c1-w30-1000-1200 –24.3 –31.3 25.0 –21.9 –31.3 -25.0
a280-111-c1-w30-1000-1200 –21.0 –31.6 –25.0
a280-121-c1-w30-1000-1200 –25.7 –36.4 –25.0
a280-131-c1-w30-1000-1200
a280-141-c1-w30-1000-1200 –15.1 –36.4 –25.0
a280-151-c1-w30-1000-1200

a280-51-c1-w30-1500-2000 –30.0 –37.5 50.0 –14.2 –37.5 –25.0
a280-61-c1-w30-1500-2000 –18.4 –12.5 –25.0
a280-71-c1-w30-1500-2000 –24.6 –38.5 0.0
a280-81-c1-w30-1500-2000 –21.1 –33.3 –25.0
a280-91-c1-w30-1500-2000 –17.8 –15.4 –40.0
a280-101-c1-w30-1500-2000 –15.2 –21.4 –25.0
a280-111-c1-w30-1500-2000 –21.2 –26.7 –40.0
a280-121-c1-w30-1500-2000 –20.8 –27.8 –40.0
a280-131-c1-w30-1500-2000
a280-141-c1-w30-1500-2000
a280-151-c1-w30-1500-2000

a280-51-c1-w45-500-1000 –27.9 –36.4 0.0 –28.6 –36.4 –25.0
a280-61-c1-w45-500-1000 –26.3 –38.5 25.0 –20.2 –30.8 –25.0
a280-71-c1-w45-500-1000 –14.0 –9.1 –40.0
a280-81-c1-w45-500-1000 –16.3 –13.3 –25.0
a280-91-c1-w45-500-1000 –14.8 –12.5 –40.0
a280-101-c1-w45-500-1000 –19.5 –20.0 –40.0
a280-111-c1-w45-500-1000 –11.6 –10.5 –40.0
a280-121-c1-w45-500-1000
a280-131-c1-w45-500-1000
a280-141-c1-w45-500-1000
a280-151-c1-w45-500-1000

a280-51-c1-w45-1000-1200 –26.8 –37.5 25.0 –25.2 –25.0 –25.0
a280-61-c1-w45-1000-1200 –27.8 –33.3 50.0 –25.1 –22.2 –25.0
a280-71-c1-w45-1000-1200 –26.4 –33.3 25.0 –23.2 –33.3 –25.0
a280-81-c1-w45-1000-1200 –27.4 –35.7 –25.0
a280-91-c1-w45-1000-1200 –24.3 –33.3 –25.0
a280-101-c1-w45-1000-1200 –20.4 –29.4 –25.0
a280-111-c1-w45-1000-1200
a280-121-c1-w45-1000-1200
a280-131-c1-w45-1000-1200
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Table B.12: Impact of the number of stacks on the results for instances in class C1 (continued)

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%) ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%)

a280-141-c1-w45-1000-1200
a280-151-c1-w45-1000-1200

a280-51-c1-w45-1500-2000 –23.9 –50.0 33.3 –23.3 –50.0 0.0
a280-61-c1-w45-1500-2000 –31.5 –30.0 –40.0
a280-71-c1-w45-1500-2000 –19.2 –20.0 –40.0
a280-81-c1-w45-1500-2000 –29.5 –38.5 –25.0
a280-91-c1-w45-1500-2000 –22.5 –33.3 –25.0
a280-101-c1-w45-1500-2000 –24.8 –21.4 –25.0
a280-111-c1-w45-1500-2000
a280-121-c1-w45-1500-2000
a280-131-c1-w45-1500-2000
a280-141-c1-w45-1500-2000
a280-151-c1-w45-1500-2000

Average –28.6 –39.0 35.2 –22.8 –29.6 –21.6

Table B.13: Impact of the number of stacks on the results for instances in class C2

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%) ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%)

a280-51-c2-w15-500-1000 –31.6 –46.7 33.3 –32.8 –53.3 33.3
a280-61-c2-w15-500-1000 –25.8 –40.0 33.3 –29.6 –40.0 33.3
a280-71-c2-w15-500-1000 –26.2 –33.3 33.3 –30.9 –40.0 33.3
a280-81-c2-w15-500-1000 –21.8 –27.8 25.0 –20.8 –27.8 25.0
a280-91-c2-w15-500-1000 –24.2 –31.6 66.7 –25.3 –31.6 66.7
a280-101-c2-w15-500-1000 –27.0 –40.7 33.3 –34.1 –44.4 66.7
a280-111-c2-w15-500-1000 –25.1 –35.7 33.3 –29.0 –39.3 33.3
a280-121-c2-w15-500-1000 –25.9 –34.6 0.0 –31.0 –38.5 25.0
a280-131-c2-w15-500-1000 –29.4 –47.1 66.7 –34.8 –50.0 66.7
a280-141-c2-w15-500-1000 –24.0 –35.5 33.3 –27.9 –38.7 66.7
a280-151-c2-w15-500-1000 –27.0 –40.5 0.0

a280-51-c2-w15-1000-1200 –24.2 –25.0 0.0 –28.5 –33.3 0.0
a280-61-c2-w15-1000-1200 –34.5 –43.8 0.0 –39.8 –50.0 33.3
a280-71-c2-w15-1000-1200 –23.3 –28.6 0.0 –9.3 –35.7 33.3
a280-81-c2-w15-1000-1200 –27.8 –33.3 33.3 –33.5 –33.3 33.3
a280-91-c2-w15-1000-1200 –19.8 –33.3 0.0 –24.3 –33.3 25.0
a280-101-c2-w15-1000-1200 –17.4 –23.5 0.0 –24.9 –29.4 25.0
a280-111-c2-w15-1000-1200 –17.0 –31.6 33.3 –21.9 –36.8 66.7
a280-121-c2-w15-1000-1200 –21.3 –33.3 0.0
a280-131-c2-w15-1000-1200
a280-141-c2-w15-1000-1200 –23.5 –36.7 33.3 –27.1 –43.3 33.3
a280-151-c2-w15-1000-1200

a280-51-c2-w15-1500-2000 –28.1 –45.5 33.3 –31.4 –54.5 66.7
a280-61-c2-w15-1500-2000 –10.7 –40.0 0.0 –21.6 –40.0 25.0
a280-71-c2-w15-1500-2000 –31.1 –33.3 0.0 –37.6 –33.3 25.0
a280-81-c2-w15-1500-2000 –32.0 –43.8 33.3 –32.6 –43.8 66.7
a280-91-c2-w15-1500-2000 –13.9 –30.8 0.0 –16.7 –38.5 25.0
a280-101-c2-w15-1500-2000 –16.0 –40.0 0.0
a280-111-c2-w15-1500-2000
a280-121-c2-w15-1500-2000
a280-131-c2-w15-1500-2000
a280-141-c2-w15-1500-2000
a280-151-c2-w15-1500-2000

a280-51-c2-w30-500-1000 –32.6 –46.2 33.3 –33.4 –53.8 33.3
a280-61-c2-w30-500-1000 –31.1 –43.8 66.7 –39.4 –50.0 66.7
a280-71-c2-w30-500-1000 –34.5 –38.9 0.0 –37.8 –50.0 25.0
a280-81-c2-w30-500-1000 –24.5 –42.1 25.0
a280-91-c2-w30-500-1000 –25.9 –40.9 0.0 –37.9 –45.5 25.0
a280-101-c2-w30-500-1000 –29.7 –41.7 0.0 –34.3 –45.8 0.0
a280-111-c2-w30-500-1000
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Table B.13: Impact of the number of stacks on the results for instances in class C2 (continued)

1 stack VS 2 stacks 1 stack VS 3 stacks

Instance ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%) ∆ Dist (%) ∆ Veh (%) ∆ maxItem (%)

a280-121-c2-w30-500-1000
a280-131-c2-w30-500-1000
a280-141-c2-w30-500-1000
a280-151-c2-w30-500-1000

a280-51-c2-w30-1000-1200 –7.0 –22.2 0.0 –7.0 –22.2 0.0
a280-61-c2-w30-1000-1200 –13.8 –30.0 0.0 –20.2 –30.0 33.3
a280-71-c2-w30-1000-1200 –18.8 –35.7 –20.0 –19.0 –42.9 0.0
a280-81-c2-w30-1000-1200 –14.7 –28.6 0.0 –27.6 –28.6 0.0
a280-91-c2-w30-1000-1200 –25.0 –33.3 33.3 –29.0 –38.9 33.3
a280-101-c2-w30-1000-1200 –24.6 –40.0 33.3 –32.3 –45.0 33.3
a280-111-c2-w30-1000-1200 –16.6 –31.6 –25.0 –20.3 –36.8 0.0
a280-121-c2-w30-1000-1200
a280-131-c2-w30-1000-1200 –22.9 –35.0 25.0
a280-141-c2-w30-1000-1200 –22.7 –42.3 0.0
a280-151-c2-w30-1000-1200

a280-51-c2-w30-1500-2000 –20.5 –44.4 33.3 –27.4 –44.4 100.0
a280-61-c2-w30-1500-2000 –14.8 –28.6 0.0 –27.2 –28.6 0.0
a280-71-c2-w30-1500-2000 –24.2 –38.5 0.0 –26.7 –46.2 0.0
a280-81-c2-w30-1500-2000 –14.4 –41.7 0.0 –24.7 –41.7 25.0
a280-91-c2-w30-1500-2000 –20.9 –27.3 0.0
a280-101-c2-w30-1500-2000
a280-111-c2-w30-1500-2000 –12.5 –35.7 0.0
a280-121-c2-w30-1500-2000
a280-131-c2-w30-1500-2000
a280-141-c2-w30-1500-2000
a280-151-c2-w30-1500-2000

a280-51-c2-w45-500-1000 –22.6 –30.0 33.3 –13.0 –40.0 33.3
a280-61-c2-w45-500-1000 –14.6 –20.0 0.0 –18.3 –30.0 25.0
a280-71-c2-w45-500-1000 –17.1 –38.5 25.0 –29.7 –38.5 50.0
a280-81-c2-w45-500-1000 –24.0 –33.3 0.0 –26.0 –40.0 25.0
a280-91-c2-w45-500-1000
a280-101-c2-w45-500-1000
a280-111-c2-w45-500-1000
a280-121-c2-w45-500-1000
a280-131-c2-w45-500-1000
a280-141-c2-w45-500-1000
a280-151-c2-w45-500-1000

a280-51-c2-w45-1000-1200 –25.9 –30.0 33.3 –26.2 –30.0 33.3
a280-61-c2-w45-1000-1200 –31.4 –36.4 33.3 –40.5 –45.5 33.3
a280-71-c2-w45-1000-1200 –15.3 –41.7 0.0 –24.9 –41.7 25.0
a280-81-c2-w45-1000-1200 –10.9 –33.3 33.3 –15.6 –33.3 33.3
a280-91-c2-w45-1000-1200 –23.4 –28.6 0.0 –24.8 –35.7 0.0
a280-101-c2-w45-1000-1200 –19.9 –29.4 0.0
a280-111-c2-w45-1000-1200
a280-121-c2-w45-1000-1200
a280-131-c2-w45-1000-1200
a280-141-c2-w45-1000-1200
a280-151-c2-w45-1000-1200

a280-51-c2-w45-1500-2000 –17.7 –28.6 25.0 –30.7 –28.6 0.0
a280-61-c2-w45-1500-2000 –24.3 –36.4 33.3 –33.9 –45.5 66.7
a280-71-c2-w45-1500-2000 –19.1 –36.4 25.0
a280-81-c2-w45-1500-2000 –19.4 –22.2 25.0 –17.2 –33.3 25.0
a280-91-c2-w45-1500-2000 4.2 –33.3 0.0 –24.1 –33.3 0.0
a280-101-c2-w45-1500-2000
a280-111-c2-w45-1500-2000 –13.3 –25.0 0.0
a280-121-c2-w45-1500-2000
a280-131-c2-w45-1500-2000
a280-141-c2-w45-1500-2000
a280-151-c2-w45-1500-2000

Average –21.8 –35.0 15.8 –27.2 –39.1 31.4
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