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Abstract

Ibrahim, Maculan, and Minoux (International Transactions in Operational Research, vol. 16,
2009, pp. 361–369) presented and analyzed two integer programming formulations for the
elementary shortest-path problem (ESPP), which is known to be NP-hard if the underlying
digraph contains negative cycles. In fact, the authors showed that a formulation based on
commodity flows possesses a significantly stronger LP-relaxation than a formulation based
on arc flow variables. Since the ESPP is essentially an integer problem, the contribution of
our paper lies in extending this research by comparing the formulations with regard to the
computation time and memory requirements required for their integer solution. Moreover,
we assess the quality of the lower bounds provided by an integer relaxation of the commodity
flow formulation.
Keywords: Elementary shortest-path problem, Negative cycles, Mixed-integer programming

1 Introduction

The elementary shortest-path problem (ESPP) is to determine a shortest path between two
vertices of a graph so that each vertex of the graph is visited at most once. For graphs without
negative cycles, strongly polynomial algorithms for solving the ESPP exist (Ahuja et al. [1]).
By contrast, the computation of shortest elementary paths in graphs with negative cycles is
NP-hard (ib.). Ibrahim et al. [7] have studied two integer programming formulations for the
ESPP and have compared these with regard to the strength of the respective linear relaxations.
The contribution of the present paper is to compare the integer versions of the formulations
with regard to the computation time and memory requirements, and to assess the quality of
the lower bounds provided by an integer relaxation of the second formulation. Our research is
motivated by the fact that (resource-constrained) ESPPs in graphs with negative cycles appear
as subproblems in column-generation solution approaches for vehicle-routing problems (VRPs)
(Toth and Vigo [11], Golden et al. [5]). The traditional method for solving these shortest-path
subproblems is a labelling algorithm based on dynamic programming (Irnich and Desaulniers
[8]). However, there are variants of VRPs where such labelling algorithms do not work well
or cannot be applied at all (Desaulniers et al. [3], Crainic et al. [2], Drexl [4]). Therefore, the
research in this paper also constitutes a step toward finding out if and how such subproblems
can be solved by branch-and-cut.
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2 Mathematical models

We assume a directed graph D = (V,A) with vertex set V and arc set A. Without loss of
generality, D is assumed to contain neither loops nor parallel arcs, so that an arc from a vertex
i ∈ V to a vertex j ∈ V can unequivocally be referred to as (i, j) ∈ A with cost cij ∈ Q. A
path from s to t in D (an s-t-path) is a sequence p = i1, i2, . . . , in−1, in with i1 = s, in = t,
ik ∈ V for k = 1, . . . , n, and (ik, ik+1) ∈ A for k = 1, . . . , n− 1. The cost c(p) of such a path p is∑n−1

k=1 cikik+1
. D may contain negative cycles, that is, paths p with i1 = in and c(p) < 0. A path

is elementary if it fulfils ik 6= il for all 1 ≤ k < l ≤ n.
A (weak) component of D is a digraph D′ = (V ′, A′) with V ′ ⊆ V , A′ = {(i, j) ∈ A : i, j ∈ V ′}
and the property that for any two vertices i, j ∈ V ′, there is a sequence i1, i2, . . . , in of vertices
in V ′ with i = i1, j = in, and either (ik, ik+1) ∈ A or (ik+1, ik) ∈ A or both for all 1 ≤ k < n.
In the following, we use the standard notation for the forward star δ+(S) := {(i, j) ∈ A : i ∈
S 63 j}, the backward star δ−(S) := {(j, i) ∈ A : i ∈ S 63 j}, and the inner arcs A(S) :=
{(i, j) ∈ A : i, j ∈ S} for all S ⊆ V . For simplicity, we define the shortcuts δ+(i) := δ+({i}) and
δ−(i) := δ−({i}). Without loss of generality, we assume that δ−(s) = δ+(t) = ∅. Finally, for any
subset B ⊆ A and any vector w ∈ Q|B|, we define w(B) :=

∑
(i,j)∈B wij .

We seek a shortest elementary path from a specified start vertex s ∈ V to a specified target
vertex t ∈ V . (When negative cycles are present, no shortest non-elementary path exists.)

2.1 A classical formulation

The first formulation for the ESPP considered here uses only one type of variable, xij , indicating
whether or not arc (i, j) ∈ A is traversed (cf. Ibrahim et al. [7], Jepsen et al. [9]):∑

(i,j)∈A

cijxij → min subject to (1a)

x(δ+(i))− x(δ−(i)) =


1, i = s
−1, i = t

0, i ∈ V \ {s, t}
(1b)

x(δ+(S))− x(δ+(i)) ≥ 0 ∀ i ∈ S ⊆ (V \ {t}), |S| ≥ 2 (1c)

xij ∈ {0, 1} ∀ (i, j) ∈ A (1d)

The objective function, (1a), is the sum of the costs of the arcs in the path. Constraints (1b)
ensure flow conservation, and constraints (1c), of which there are exponentially many (their
number is exponential in the number of vertices of the graph), are the subtour-elimination
constraints (SECs), that is, they exclude cycles and thus ensure elementarity of the solution
paths.
Compared to the formulation given by Ibrahim et al., the following modification is made on
formulation (1): Ibrahim et al. use constraints

x(A(S)) ≤ |S| − 1 ∀ S ⊆ V, |S| ≥ 2, (2)

to eliminate subtours. Instead, we use constraints (1c), since we did not have an efficient pro-
cedure for separating constraints (2); moreover, (1c) are stronger than (2).

2.2 A formulation based on commodity flows

The second formulation studied by Ibrahim et al. uses three types of variable: As before, xij
indicates whether or not arc (i, j) ∈ A is traversed. Moreover, yi indicates, for all i ∈ V , whether
or not vertex i is visited. Finally, variables zkij ≥ 0 measure the flow, through arc (i, j) ∈ A, from
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the source vertex s to a vertex k ∈ V \ {s}. Defining commodities K := V \ {s, t}, the model
can be stated as follows:∑

(i,j)∈A

cijxij → min subject to (3a)

zkij ≤ xij ∀ k ∈ K, (i, j) ∈ A, i 6= k, s 6= j 6= t (3b)

zk(δ+(s)) = yk ∀ k ∈ K (3c)

zk(δ+(i))− zk(δ−(i)) = 0 ∀ k ∈ K, i ∈ V \ {s, k, t} (3d)

zk(δ−(k)) = yk ∀ k ∈ K (3e)

x(δ+(i)) = yi ∀ i ∈ V \ {t} (3f)

x(δ−(i)) = yi ∀ i ∈ V \ {s} (3g)

x(δ+(s)) = 1 (3h)

x(δ−(t)) = 1 (3i)

xij ∈ {0, 1} ∀ (i, j) ∈ A (3j)

yi ∈ {0, 1} ∀ i ∈ V (3k)

zkij ≥ 0 ∀ k ∈ K, (i, j) ∈ A, i 6= k, s 6= j 6= t (3l)

The objective function, (3a), is identical to the one for model (1). In any feasible solution to (3),
constraints (3b) ensure that constraints (3c)–(3e) provide flow conservation in the z variables
for all visited vertices. This means that (3c)–(3e) ensure that there is a path from s to each
visited vertex, including t. Constraints (3f) and (3g) ensure that each visited vertex i other than
s and t is reached and left exactly once, in other words, that there is exactly one arc entering i
and one arc leaving i. Constraints (3h) and (3i) require that the source vertex s be left and that
the sink vertex t be reached exactly once. Now, since each visited vertex other than s and t is
reached and left exactly once, all these vertices must lie on the unique s-t-path, and, moreover,
this path must be elementary: A subtour containing a vertex i which lies on a path from s to t
is impossible since this would imply that i is reached more than once. An isolated subtour not
connected to s is impossible since there is a path from s to each visited vertex. In this way, the
elimination of subtours is ensured by the interplay of all constraints.
Compared to the formulation given by Ibrahim et al., the following modifications are made on
formulation (3): Ibrahim et al. introduce zkij variables for all k ∈ V \ {s} and (i, j) ∈ A, they
formulate constraints (3b) for all k ∈ V \ {s} and (i, j) ∈ A, constraints (3c) and (3e) for all
k ∈ V \{s}, and constraints (3d) for all k ∈ V \{s} and i ∈ V \{s, k}. Moreover, they formulate
constraints (3f) also for i = s and constraints (3g) also for i = t. Thus, formulation (3) uses
fewer variables and constraints, which is possible since δ−(s) = δ+(t) = ∅ is assumed.

2.3 T -family relaxations

Ibrahim et al. study also a third formulation, called T -family relaxation. Such a relaxation results
from (3) by replacing k ∈ K by k ∈ T with T being a subset of K. Of particular interest is the
case where T = ∅. In this case, there are no z variables, and constraints (3b)–(3e) vanish.
Note that, if the set T is a proper subset of K, subtours may occur in the optimal solution to
the LP-relaxation as well as in the optimal integer solution.
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2.4 Structural properties of the formulations

The subtour-elimination constraints are necessary in both formulations; they are non-redundant
inequalities for the formulation, that is, disregarding the SECs may lead to false solutions. The
difference between formulations (1) on the one hand and (3) on the other is that the former has
an exponential number (O(2|V |)) of constraints overall. This is due to the exponential number of
subtour-elimination constraints (1c), which must be separated dynamically for larger instances
if an exact solution is to be computed. By contrast, the number of variables and constraints
in the latter formulation is O(|V ||A|) and allows their explicit specification. (Nevertheless, for
larger instances, it is recommendable to also dynamically separate constraints (3b)–(3e)). On
the downside, the number of variables and variable types is larger in the latter formulation. The
effects of these structural properties on the computational behaviour of the formulations are
unclear and must be tested empirically. This was done in our computational experiments, which
are described next.

3 Computational experiments

Ibrahim et al. used random test instances small enough to allow explicit specification of all con-
straints in both formulations. We decided to create larger instances which require the separation
of SECs for the classical formulation. Moreover, we extracted pricing subproblems from a heur-
istic column-generation algorithm for the asymmetric m-salesmen TSP (cf. Gutin and Punnen
[6], Chapter 1) to see how these compare with purely random instances. The pricing problem
in such an algorithm is an ESPP on a graph with negative cycles, due to the dual prices of
the master-problem constraints. To be precise, Table 1 specifies the 15 classes of the 420 test
instances that were generated. For the random instances, the arc cost values were created from
a uniform distribution within the indicated ranges. For the pricing-problem instances, for each
underlying m-salesmen TSP instance, the first, penultimate, and last pricing problem created
by the column-generation algorithm were used. The very negative values for the ‘first’ and ‘pen-
ultimate’ instances are due to Big-M values for artificial variables. All instances contain at least
one negative cycle.

Class name Type No. instances No. vertices No. arcs Arc cost range Arc cost type

R sparse 25 Random 20 26 300 [−10; +10] Integer

R sparse 50 Random 20 51 1,225 [−10; +10] Integer

R sparse 100 Random 20 101 4,950 [−10; +10] Integer

R dense 25 Random 30 26 553 [−1,000.0; +1,000.0] Double

R dense 50 Random 30 51 2,353 [−1,000.0; +1,000.0] Double

R dense 100 Random 30 101 9,703 [−1,000.0; +1,000.0] Double

P first 25 Pricing 30 28 651 [−108;−9.48 · 107] Double

P penultimate 25 Pricing 30 28 651 [−107; +30,000] Double

P last 25 Pricing 30 28 651 [−30,000; +30,000] Double

P first 50 Pricing 30 53 2,551 [−108;−9.48 · 107] Double

P penultimate 50 Pricing 30 53 2,551 [−107; +30,000] Double

P last 50 Pricing 30 53 2,551 [−30,000; +30,000] Double

P first 100 Pricing 30 103 10,101 [−108;−9.48 · 107] Double

P penultimate 100 Pricing 30 103 10,101 [−107; +30,000] Double

P last 100 Pricing 30 103 10,101 [−30,000; +30,000] Double

Table 1: Test instances

For formulation (3), the following three approaches were examined: (i) Solve with all SECs added
ex ante. (ii) Solve with SECs as lazy constraints. This means that all SECs are added ex ante
to a pool. Initially, the model consists only of constraints (3f)–(3l). The LP-relaxation is solved,
and when an integer feasible solution is found, the lazy constraints are checked for violation. Any
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violated lazy constraints are then added, and the LP-relaxation of the model is re-optimized.
(iii) Solve with dynamic separation of SECs.
To dynamically separate the subtour-elimination constraints of formulations (1) and (3), that
is, constraints (1c) and (3b)–(3e) respectively, a two-stage approach is used. First, the support
graph is checked for isolated components not connected to s and t. For formulation (1), for one
vertex of each isolated component found, an SEC is added. For formulation (3), for one vertex i of
each isolated component found, the corresponding set of SECs for k = i is added. Second, if the
support graph consists of only one component, a maximum i-t-flow/minimum i-t-cut problem
is solved for each vertex i ∈ V \ {t}, using the xij values as arc capacities. A maximum flow
which is less than the absolute outflow from i, that is, less than x(δ+(i)), indicates a violated
SEC. In model (1), S is then the set of vertices which are on the same side of the i-t-cut as i.
For one such i, an SEC is added in formulation (1); in formulation (3), the corresponding set of
SECs for k = i is added. Basically, it is sufficient to check for violated SECs whenever a feasible
integer solution to the current formulation containing only a part of all SECs is found. However,
it turned out useful to also add violated SECs after solving the LP-relaxation at each node of
the branch-and-bound tree.
To solve the test instances, the formulations described above were implemented in C++, using
IBM Ilog Cplex Concert Technology, version 12.2. The standard Cplex cuts were automatically
added. Where SECs were dynamically separated, the isolated components were identified with a
union-find data structure as described by Wayne [12]. The max-flow problems were solved using
a code written by Skorobohatyj [10]. All computations were performed in single-thread mode on
a PC with an Intel Core i7-2600 CPU, 3.40 GHz, and 16 GB main memory running Windows 7
64-bit. A time limit of 1,200 seconds of CPU time for each instance was set.
The computational results are indicated in the tables on the subsequent pages. The columns in
the tables have the following meaning:
Instance class: Class of test instance as described in Table 1
Solution approach: Formulation and solution approach used
No. variables: Number of variables in respective formulation
No. constraints: Number of constraints in respective formulation without dynamically added
SECs, that is, for solution of formulation (3) with all SECs added ex ante, overall number of
constraints including (3b)–(3e)
% optimal: Percentage of instances solved to optimality; for the exact approaches, an instance
is only counted if optimization terminated before time limit was reached
B & B nodes: Number of nodes in the branch-and-bound tree
No. separated SECs: Number of SECs which were separated dynamically, or, for the approach
with a static lazy constraint pool, were identified as violated and were moved from the pool to
the formulation
CPU time: Overall CPU time in seconds
For the rightmost three columns, ‘(min. / avg. / max.)’ means the minimum, average, and
maximum value respectively.
The computational experiments yielded the following essential results:
• The classical formulation (1) clearly outperforms the commodity flow formulation (3). Com-

paring (1) instance by instance with the respective best exact solution approach for (3) shows
that:
– (1) uses less computation time than (3) for 94 % of all 420 test instances and is faster by

at least a factor of 10 for 66 % of all 280 instances with 50 or more vertices.
– (1) is more than one second slower than (3) for only one instance (4.91 seconds).
– (1) yields an optimal solution within the time limit for 98 % of all instances, compared to

74 % for (3).
– (3) solves no instance to optimality which (1) does not also solve optimally.
– (1) separates fewer SECs than (3) for more than 94 % of all 420 test instances, although

the overall number of SECs in the former formulation is much larger than in the latter.
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Instance Solution approach No. No. % B & B nodes No. separated SECs CPU time

class variables constraints optimal (min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

R sparse 25 Classical 299 26 100 1 / 2 / 10 25 / 39 / 64 0.00 / 0.06 / 0.13

Commodity flow complete 6,908 7,235 100 1 / 2 / 12 n.a. 0.05 / 0.59 / 1.17

Commodity flow, lazy constraint pool 6,908 52 100 1 / 3 / 15 670 / 3,527 / 4,869 0.05 / 0.52 / 1.23

Commodity flow, dynamic SEC separation 6,908 52 100 1 / 3 / 24 0 / 760 / 1,777 0.00 / 0.09 / 0.31

T -family relaxation, T = ∅ 325 52 20 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.03

R sparse 50 Classical 1,225 51 100 1 / 4 / 10 52 / 82 / 134 0.31 / 0.58 / 1.03

Commodity flow complete 58,937 60,213 100 1 / 3 / 17 n.a. 36.89 / 146.22 / 680.31

Commodity flow, lazy constraint pool 58,937 102 100 2 / 16 / 70 33,762 / 41,761 / 51,706 49.52 / 168.83 / 635.08

Commodity flow, dynamic SEC separation 58,937 102 100 1 / 8 / 31 0 / 5,697 / 11,051 0.19 / 6.86 / 37.35

T -family relaxation, T = ∅ 1,276 102 35 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.05

R sparse 100 Classical 4,950 101 100 1 / 6 / 17 61 / 146 / 236 3.79 / 9.98 / 15.18

Commodity flow complete 485,105 490,157 5 1 / 1 / 1 n.a. 756.84 / 1,178.15 / > 1,200

Commodity flow, lazy constraint pool 485,105 202 0 5 / 16 / 32 94,087 / 159,726 / 171,934 > 1,200 / > 1,200 / > 1,200

Commodity flow, dynamic SEC separation 485,105 202 70 1 / 12 / 32 0 / 30,414 / 49,574 17.35 / 723.14 / > 1,200

T -family relaxation, T = ∅ 5,051 202 70 1 / 1 / 1 n.a. 0.02 / 0.04 / 0.08

R dense 25 Classical 553 26 100 1 / 7 / 38 25 / 38 / 61 0.02 / 0.08 / 0.19

Commodity flow complete 12,769 12,842 100 1 / 5 / 31 n.a. 0.48 / 1.35 / 5.04

Commodity flow, lazy constraint pool 12,769 52 100 1 / 7 / 44 3,926 / 6,389 / 9,862 0.39 / 1.70 / 5.91

Commodity flow, dynamic SEC separation 12,769 52 100 1 / 7 / 46 0 / 1,381 / 2,655 0.02 / 0.32 / 1.33

T -family relaxation, T = ∅ 579 52 20 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.05

R dense 50 Classical 2,353 51 100 1 / 13 / 70 50 / 76 / 105 0.94 / 1.36 / 2.14

Commodity flow complete 113,044 113,192 97 1 / 12 / 95 n.a. 24.23 / 304.59 / > 1,200

Commodity flow, lazy constraint pool 113,044 102 87 1 / 17 / 67 56,047 / 78,768 / 100,221 80.86 / 465.52 / > 1,200

Commodity flow, dynamic SEC separation 113,044 102 100 1 / 15 / 91 0 / 10,608 / 20,754 0.55 / 25.77 / 90.70

T -family relaxation, T = ∅ 2,404 102 15 1 / 1 / 1 n.a. 0.00 / 0.02 / 0.05

R dense 100 Classical 9,703 101 100 1 / 15 / 132 98 / 121 / 161 30.44 / 34.86 / 55.18

Commodity flow complete 951,094 951,392 0 1 / 1 / 1 n.a. > 1,200 / > 1,200 / > 1,200

Commodity flow, lazy constraint pool 951,094 202 0 1 / 1 / 1 186,285 / 211,832 / 231,129 > 1,200 / > 1,200 / > 1,200

Commodity flow, dynamic SEC separation 951,094 202 70 1 / 7 / 15 0 / 46,109 / 76,848 47.80 / 853.84 / 1,246.70

T -family relaxation, T = ∅ 9,804 202 15 1 / 1 / 1 n.a. 0.02 / 0.05 / 0.08

Table 2: Computational results for random instances

6



Instance Solution approach No. No. % B & B nodes No. separated SECs CPU time

class variables constraints optimal (min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

P first 25 Classical 651 28 100 1 / 2 / 8 36 / 46 / 53 0.05 / 0.10 / 0.17

Commodity flow complete 16,329 16,408 100 1 / 1 / 1 n.a. 1.09 / 2.75 / 6.88

Commodity flow, lazy constraint pool 16,329 56 100 1 / 2 / 8 7,191 / 9,210 / 11,811 1.17 / 3.37 / 7.35

Commodity flow, dynamic SEC separation 16,329 56 100 1 / 1 / 10 4,389 / 6,625 / 8,151 0.23 / 1.02 / 3.60

T -family relaxation, T = ∅ 679 56 0 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.03

P first 50 Classical 2,551 53 100 1 / 9 / 29 83 / 101 / 133 1.14 / 1.48 / 1.81

Commodity flow complete 127,654 127,808 25 1 / 6 / 17 n.a. 98.45 / 636.18 / > 1,200

Commodity flow, lazy constraint pool 127,654 106 17 7 / 29 / 61 75,128 / 97,699 / 107,764 301.10 / 917.93 / > 1,200

Commodity flow, dynamic SEC separation 127,654 106 100 1 / 8 / 33 50,040 / 55,795 / 60,048 60.72 / 191.39 / 588.89

T -family relaxation, T = ∅ 2,604 106 0 1 / 1 / 1 n.a. 0.00 / 0.02 / 0.03

P first 100 Classical 10,101 103 100 6 / 41 / 86 175 / 207 / 239 30.69 / 38.29 / 48.49

Commodity flow complete 1,010,304 1,010,608 0 1 / 1 / 1 n.a. > 1,200 / > 1,200 / > 1,200

Commodity flow, lazy constraint pool 1,010,304 206 0 24 / 36 / 61 167,309 / 177,753 / 190,606 > 1,200 / > 1,200 / > 1,200

Commodity flow, dynamic SEC separation 1,010,304 206 0 1 / 1 / 1 420,084 / 446,756 / 470,094 > 1,200 / > 1,200 / > 1,200

T -family relaxation, T = ∅ 10,204 206 0 1 / 1 / 1 n.a. 0.02 / 0.05 / 0.08

P penultimate 25 Classical 651 28 100 1 / 12 / 88 55 / 80 / 126 0.17 / 0.31 / 0.55

Commodity flow complete 16,329 16,408 100 1 / 3 / 17 n.a. 0.91 / 2.87 / 20.83

Commodity flow, lazy constraint pool 16,329 56 100 1 / 26 / 211 3,172 / 8,195 / 11,049 0.81 / 3.91 / 12.03

Commodity flow, dynamic SEC separation 16,329 56 100 1 / 17 / 121 5,643 / 8,235 / 10,659 0.53 / 3.48 / 12.28

T -family relaxation, T = ∅ 679 56 0 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.03

P penultimate 50 Classical 2,261 53 100 2 / 38 / 228 104 / 202 / 585 1.39 / 4.06 / 17.68

Commodity flow complete 113,041 113,485 100 1 / 8 / 35 n.a. 42.35 / 212.50 / 853.00

Commodity flow, lazy constraint pool 113,041 106 77 42 / 134 / 251 60,592 / 77,714 / 89,954 319.55 / 732.08 / > 1,200

Commodity flow, dynamic SEC separation 113,041 106 97 3 / 44 / 219 22,735 / 43,356 / 61,156 42.07 / 271.58 / > 1,200

T -family relaxation, T = ∅ 2,314 106 0 1 / 1 / 1 n.a. 0.00 / 0.02 / 0.06

P penultimate 100 Classical 10,101 103 93 27 / 1,704 / 6,556 321 / 470 / 735 74.40 / 344.10 / > 1,200

Commodity flow complete 1,010,304 1,010,608 0 1 / 1 / 1 n.a. > 1,200 / > 1,200 / > 1,200

Commodity flow, lazy constraint pool 1,010,304 206 0 30 / 53 / 114 152,511 / 172,616 / 199,425 > 1,200 / > 1,200 / > 1,200

Commodity flow, dynamic SEC separation 1,010,304 206 0 1 / 1 / 1 390,078 / 415,416 / 440,088 > 1,200 / > 1,200 / > 1,200

T -family relaxation, T = ∅ 10,204 206 0 1 / 1 / 1 n.a. 0.02 / 0.05 / 0.08

Table 3: Computational results for pricing instances
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Instance Solution approach No. No. % B & B nodes No. separated SECs CPU time

class variables constraints optimal (min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

P last 25 Classical 651 28 100 1 / 29 / 198 64 / 95 / 168 0.19 / 0.41 / 0.83

Commodity flow complete 16,329 16,408 100 1 / 2 / 38 n.a. 1.36 / 2.82 / 12.92

Commodity flow, lazy constraint pool 16,329 56 100 1 / 15 / 86 7,154 / 9,184 / 10,828 1.83 / 4.70 / 10.61

Commodity flow, dynamic SEC separation 16,329 56 100 1 / 22 / 405 5,016 / 8,172 / 12,540 1.05 / 4.88 / 48.27

T -family relaxation, T = ∅ 679 56 0 1 / 1 / 1 n.a. 0.00 / 0.01 / 0.03

P last 50 Classical 2,261 53 100 1 / 59 / 327 204 / 417 / 1,185 3.68 / 11.77 / 61.90

Commodity flow complete 113,041 113,485 100 1 / 14 / 107 n.a. 30.86 / 227.49 / 1,115.77

Commodity flow, lazy constraint pool 113,041 106 22 19 / 152 / 381 40,052 / 68,440 / 82,460 69.25 / 840.34 / > 1,200

Commodity flow, dynamic SEC separation 113,041 106 100 1 / 53 / 360 20,384 / 40,102 / 56,615 23.06 / 237.92 / 884.04

T -family relaxation, T = ∅ 2,314 106 0 1 / 1 / 1 n.a. 0.00 / 0.02 / 0.03

P last 100 Classical 10,101 103 25 96 / 2,347 / 6,510 327 / 493 / 625 92.82 / 470.14 / > 1,200

Commodity flow complete 1,010,304 1,010,608 0 1 / 1 / 1 n.a. > 1,200 / > 1,200 / > 1,200

Commodity flow, lazy constraint pool 1,010,304 206 0 31 / 61 / 96 155,923 / 176,796 / 198,197 > 1,200 / > 1,200 / > 1,200

Commodity flow, dynamic SEC separation 1,010,304 206 0 1 / 1 / 1 390,078 / 416,750 / 450,090 > 1,200 / > 1,200 / > 1,200

T -family relaxation, T = ∅ 10,204 206 0 1 / 1 / 1 n.a. 0.02 / 0.04 / 0.08

Table 4: Computational results for pricing instances (continued)

Solution approach Avg. no. Avg. no. % B & B nodes No. separated SECs CPU time

variables constraints optimal (min. / avg. / max.) (min. / avg. / max.) (min. / avg. / max.)

Classical 4,018 61 98 1 / 306 / 6,556 25 / 180 / 1,185 0.00 / 65.29 / > 1,200

Commodity flow complete 348,417 348,928 65 1 / 4 / 107 n.a. 0.05 / 505.47 / > 1,200

Commodity flow, lazy constraint pool 348,417 121 60 1 / 40 / 381 670 / 87,948 / 231,129 0.05 / 620.28 / > 1,200

Commodity flow, dynamic SEC separation 348,417 121 74 1 / 14 / 405 0 / 108,849 / 470,094 0.00 / 405.49 / > 1,200

T -family relaxation, T = ∅ 4,079 121 8 1 / 1 / 1 n.a. 0.00 / 0.02 / 0.08

All approaches n.a. n.a. 46 1 / 61 / 6,556 0 / 19,698 / 470.094 0.00 / 319.31 / > 1,200

Table 5: Aggregated computational results over all 420 instances
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• For the commodity flow formulation (3), dynamic separation of SECs is by far better than
adding all SECs ex ante. Using a lazy constraint pool for the SECs is still worse. This is
demonstrated by the fact that with dynamic separation, 74 % of all test instances are solved to
optimality, compared to 65 and 60 % with ex ante adding of SECs and a static lazy constraint
pool respectively. Moreover, dynamic separation is faster than the other two approaches for
72 % of all instances, and uses 25 and 53 % less overall computation time respectively.
• The T -family relaxation with T = ∅ yields very bad lower bounds. On average over all instances

solved to optimality, the objective function values obtained with the T -family relaxation are
197 % below those of the optimal solutions.
• It is easy to see that the solutions obtained with the T -family relaxation with T = ∅ consist of

an elementary s-t-path and zero or more cycles not connected to s and t. Removing all such
isolated components yields a feasible solution, and, hence, an upper bound for the ESPP. The
upper bounds obtained by this procedure, however, are also very bad, lying on average more
than 70 % above the optimal solution values.
• A correlation analysis between formulations (1) and (3) with dynamic separation of SECs

regarding the CPU time and the number of separated SECs showed only rather weak positive
correlations between the formulations: The values of the sample correlation coefficient r were
0.703 and 0.718 respectively. This means that if an instance is relatively difficult to solve with
the one formulation, this instance tends to be difficult to solve with the other formulation as
well, although the relationship is not very pronounced.
• The instances generated from pricing problems are significantly more difficult than the random

instances: On average, a pricing-problem instance required 30 % more computation time and
the separation of 530 % more SECs compared to a random instance. No significant difference
exists between the computation times needed and the number of SECs separated for the
instances generated from the first, penultimate, and last pricing problems.

4 Conclusion

The central result of the computational study described in this paper is that, unfortunately,
the results obtained by Ibrahim et al. for the LP-relaxations of the presented formulations
do not carry over to the MIP solution. The classical formulation with only arc variables and
exponentially many SECs is by far superior to the commodity flow formulation.
A challenging direction for future research would be a thorough polyhedral study of both for-
mulations. It is however unlikely that valid inequalities for the commodity flow formulation will
be found which are separable and strong enough to change the results in favour of the latter
and close the huge performance gap to the classical formulation.
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