
E�ective Handling of Dynamic Time Windows and Synchronization with

Precedences for Exact Vehicle Routing

Timo Gschwinda, Stefan Irnicha

aChair of Logistics Management, Johannes Gutenberg University Mainz,

Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

A dynamic time window relates to two operations that have to be executed within a given time meaning
that the di�erence between the points in time when the two operations are performed is restricted. The
most prevalent context of dynamic time windows is when precedences are given for the two operations
so that it is a priori speci�ed that one operation must take place before the other. A prominent vehicle
routing problem with dynamic time windows and precedences is the dial-a-ride problem (DARP), where
user-speci�ed transportation requests from origin to destination points have to be serviced. The paper
presents a new branch-and-cut-and-price solution approach for the DARP, the prototypical vehicle-routing
problem with ordinary and dynamic time windows. For the �rst time, both ordinary and dynamic time
windows are handled in the column-generation subproblem. For its solution, an e�ective column-generation
pricing procedure is derived that allows fast shortest-path computations due to new dominance rules. The
new approach is compared with alternative column-generation algorithms that handle dynamic time win-
dows either as constraints of the master program or with less e�ective labeling procedures. Computational
experiments indicate the superiority of the new approach.

Key words: Dynamic time windows, dial-a-ride problem, labeling algorithm, ride-time constraints, time
synchronization, branch-and-price

1. Introduction

In vehicle routing and scheduling, an ordinary or static time window restricts the point in time a speci�c
operation takes place. Such an operation can be the visit of a customer, or in a more complex setting, the
execution of a single service operation that is needed to ful�ll a request consisting of several working steps.
In contrast, a dynamic time window relates to two operations: Both operations have to be executed within
a given time meaning that the di�erence between the points in time when the two operations are performed
is restricted. Thus, the di�erence is bounded by the the dynamic time window. The most prevalent context
of dynamic time windows is when precedences are given for the two operations so that it is a priori speci�ed
that one operation must take place before the other. However, precedence alone cannot model that both
operations are synchronized by the dynamic time window.

A prominent vehicle routing problem (VRP) with dynamic time windows and precedences is the dial-a-
ride problem (DARP), where user-speci�ed transportation requests from origin to destination points have
to be serviced. Common applications of the DARP are door-to-door transportation of school children,
handicapped persons, the elderly and disabled (see, e.g., Russell and Morrel, 1986; Madsen et al., 1995;
Toth and Vigo, 1997; Borndörfer et al., 1997). In order to guarantee a certain level of service, the duration
a passenger is on board the vehicle is either penalized or restricted by a so-called ride-time constraint.
We consider the latter case which is, obviously, an example for a dynamic time window. It refers to

Email addresses: gschwind@uni-mainz.de (Timo Gschwind), irnich@uni-mainz.de (Stefan Irnich)

Technical Report LM-2012-05 October 4, 2012

pickup and delivery operations, e.g., the origin can be the person's home and the destination a school,
hospital, or training workshop. This synchronization is an intra-route synchronization opposed to inter-
route synchronization conditions that couple di�erent routes (Drexl, 2012). Another application is in home
care, where patients have to be monitored and attended by nurses in given intervals (Eveborn et al., 2006).
In the service industries, a service technician might need to come back to a location to �nally �nish a job
that he has begun before. The reason might be that a workpiece must dry, harden, rest etc. before a next
working step can start. Moreover, security guards have to inspect facilities repeatedly with a guaranteed
time between two inspections (Bredström and Rönnqvist, 2008).

The contribution of this paper is threefold: First, we derive a new branch-and-cut-and-price solution
approach for the DARP, the prototypical vehicle-routing problem with ordinary and dynamic time win-
dows. For the �rst time, both time-window and ride-time constraints are handled in the column-generation
subproblem. The crucial point here is the development of an e�ective column-generation pricing procedure
that allows fast shortest-path computations. The most important building block is a strong dominance rule
to be used in the shortest-path labeling procedure. Second, checking for a given route whether or not there
exists a feasible time schedule with service times that at the same time obey the ordinary and the dynamic
time window constraints is intricate. We provide a labeling procedure which can be used for e�cient feasi-
bility checking when a partial route is extended in a node-by-node fashion. Third, we compare the proposed
branch-and-price approach with alternative column-generation algorithms that handle ride-time constraints
either as constraints of the master program or with less e�ective labeling procedures.

We elaborate on the three contributions in more detail now: First, there are numerous examples for
VRP variants, for which highly successful exact solution approaches are based on integer column generation
(e.g., Desrochers et al., 1992; Jepsen et al., 2008; Baldacci and Mingozzi, 2009). The success of integer
column generation can be attributed to the stronger lower bounds (we assume a minimization problem)
that a column-generation (=extended) formulation provides compared to an original formulation, from
which the former is derived by Dantzig-Wolfe decomposition (Lübbecke and Desrosiers, 2005). Solutions
provided by the pricing problem are convex-combined in the column-generation master program. Thus, the
master program produces a stronger linear relaxation than the original formulation whenever these convex
combinations form a proper subset of the corresponding original domain. Accordingly, it is known that no
lower bound improvement can be gained if the subproblem possesses the integrality property (Lübbecke and
Desrosiers, 2005). In many routing and scheduling applications, however, the subproblem is an elementary
shortest-path problem with additional constraints (ESPPRC) that does not have the integrality property
(Desaulniers et al., 1998). Interestingly, stronger lower bounds can even result when only a proper relaxation
of the subproblem is solved. For ESPPRC, one can relax the elementary condition and herewith allow that
paths visit nodes or arcs more than once. These relaxations are known as shortest-path problems with
resource constraints (SPPRC). Both ESPPRC and SPPRC are typically solved using dynamic-programming
labeling algorithms (Irnich and Desaulniers, 2005). In early column-generation algorithms, the use of SPPRC
was the only viable approach to compute any subproblem solutions, since pseudo-polynomial algorithms are
known in this case (Desrochers and Soumis, 1988). Later on, the exploitation of the tradeo� between
the hardness of the pricing problem and the quality of the lower bound has led to several other ESPPRC
relaxations. Examples are SPPRC with 2-cycle and k-cycle free paths (Houck et al., 1980; Irnich and
Villeneuve, 2006), partial elementary paths (Desaulniers et al., 2008), and ng-paths (Baldacci et al., 2011).

Similarly, when there are groups of complicated constraints in the subproblem that are hard to in-
corporate in combination, relaxing one type of constraint might lead to a well-solvable subproblem. The
column-generation approach of Ropke and Cordeau (2005) for the DARP is an example for this. The pres-
ence of two potentially con�icting temporal constraints (ordinary and dynamic time windows) signi�cantly
complicates the subproblem. Even more, traditional labeling algorithms are not able to check both ordinary
and dynamic time windows. Thus, instead of including all tour constraints of the DARP in the subproblem,
Ropke and Cordeau (2005) chose to relax the ride-time constraints. The resulting subproblem is well studied
and can be solved e�ectively (Dumas et al., 1991; Ropke and Cordeau, 2009). The ride-time constraints
are handled with infeasible-path elimination inequalities in the master program in their algorithm. Our ap-
proach, in contrast, is to integrate both time-window and ride-time constraints into the column-generation
subproblem. This should generally provide stronger lower bounds to the cost of a harder to solve pricing

2

problem. To be able to simultaneously deal with time windows and maximum ride times in the subproblem,
we derive two new dominance criteria that are valid in the presence of both temporal constraints. This
enables e�ective labeling procedures for solving the shortest-path subproblem of our column-generation
approach for the DARP.

Second, concerning feasibility testing of a given DARP route, Tang et al. (2010) presented an O (n2)
algorithm (where n is the length of the route) and Haugland and Ho (2010) a faster O (n log n) algorithm.
Recently, Firat and Woeginger (2011) provided a linear time O (n) algorithm. However, when a given feasible
partial route is extended by just one node, neither of these algorithms is suited to derive a simple and e�cient
feasibility check. Note that the extension of a partial route by one node is a fundamental algorithmic step
in both local search-based heuristics and exact approaches that are based on shortest-path subproblems
(discussed also later on). A by-product of the dynamic-programming labeling approach proposed here is a
labeling-based feasibility check. Herein, several attributes have to be computed repeatedly for each node of
a partial route. More precisely, when extending a partial route by one node, O (1+ jOj) additional attributes
must be determined, where O is the set of picked requests that are not yet delivered. As the number of open
requests is always bounded by the vehicle capacity and typically a small number in real-world applications,
the proposed labeling procedure is a step towards simple and e�cient feasibility checking.

Third, we provide an extensive computational study comparing several exact solution approaches for
the DARP. It is a priori not clear if the additional e�ort of solving a subproblem that handles all routing
constraints of the DARP pays o� in the branch-and-bound tree. Thus, we implemented di�erent branch-and-
price algorithms based on two basic formulations that handle ride-time constraints either in the subproblem
or in the master program. In algorithmic variants, di�erent classes of valid inequalities are added to the
master program to strengthen the respective formulations. Furthermore, for the formulation with ride-time
constraints in the master program di�erent separation strategies are investigated. For the new branch-
and-cut-and-price approach that handles all routing constraints in the column-generation subproblem, two
di�erent labeling strategies for the shortest-path computations of the subproblem are compared. Finally, we
include the two strongest approaches from the DARP literature (Ropke et al., 2007; Ropke and Cordeau,
2005) in our study. The detailed analysis will show that the new branch-and-cut-and-price algorithm out-
performs all exact solution approaches from the DARP literature.

The rest of the paper is structured as follows: Section 2 provides a literature review on the DARP. In
Section 3, we give a formal de�nition of the DARP, present compact and extensive formulations from the
literature, and outline the di�erences to the extensive formulation proposed in this paper. The novelty of our
approach is the joint handling of static and dynamic time windows in the column-generation subproblem.
For its e�ective solution, we develop weak and strong dominance relations between partial routes to be
used in dynamic-programming labeling algorithms presented in Section 4. The basic components of the
branch-and-cut-and-price solution algorithms are brie�y discussed in Section 5 followed by computational
experiments in Section 6. The paper ends with �nal conclusions and an outlook given in Section 7.

2. The Dial-a-Ride Problem

The DARP is a pickup-and-delivery vehicle routing problem for passenger transportation where user
speci�ed transportation requests from origin to destination points have to be served by a �eet of vehicles
located at a central depot. Most of the literature on the DARP is based on speci�c practical applications and
uses problem formulations tailored to these applications. Thus, no common problem de�nition exists. For
a comprehensive overview on DARP variants and solution approaches we refer to recent surveys (Cordeau
and Laporte, 2007; Parragh et al., 2008; Cordeau et al., 2008).

The DARP variant we consider in the following is the basic VRP where static and dynamic time windows
occur together. It was introduced by Cordeau and Laporte (2003) and seeks to minimize the total travel
distance subject to pairing, precedence, capacity, time-window and ride-time constraints. The resulting
DARP is very close to other VRP variants. In fact, it di�ers from the pickup-and-delivery problem with
time windows (PDPTW) only by an additional constraint imposing a maximum time Li between a pickup i
and the corresponding delivery i+ n, i.e., the time a request is on board of the vehicle. In other words, the

3

ride-time constraints impose a dynamic time window [0; Li] between pickup and delivery of the request i.
As a generalization of many other VRP the DARP is NP -hard.

Heuristic approaches on the DARP with an additional constraint on the route duration include the work
of Cordeau and Laporte (2003) suggesting a tabu search algorithm and Parragh et al. (2010) suggesting a
variable neighborhood search. Regarding exact solution approaches, Cordeau (2006) developed a branch-
and-cut algorithm based on a three-index formulation. Maximum route duration constraints are considered
in the model, but they coincide with the time windows of the depots in the benchmark instances. Thus,
they are not explicitly present there. Known inequalities from the TSP, VRP(TW) and PDPTW where
adapted to the DARP and used along with new inequalities valid for the DARP. The algorithm was able to
solve randomly generated benchmark instances with up to four vehicles and 36 requests.

Another branch-and-cut approach based on two di�erent two-index formulations was proposed by Ropke
et al. (2007). These more compact formulations and di�erent new liftings of several families of inequalities
allowed the authors to solve benchmark instances with up to eight vehicles and 96 requests, outperforming
the branch-and-cut algorithm of Cordeau (2006).

A branch-and-cut-and-price algorithm was developed in (Ropke and Cordeau, 2005). This paper is an
earlier version of (Ropke and Cordeau, 2009) where the PDPTW is considered. The same algorithm is used
to solve the DARP in (Ropke and Cordeau, 2005). Tailored to the PDPTW, their subproblem asks for
feasible PDPTW routes, which may violate ride-time constraints. Infeasible-path inequalities in the master
program enforce the maximum ride times if needed. Computational results showed that the branch-and-
cut-and-price approach often leads to stronger lower bounds than the branch-and-cut algorithm of Ropke
et al. (2007).

3. Compact and Extensive Formulations

For a formal de�nition of the DARP, let n be the number of customer requests. We assume a directed
graph G = (N;A) with node set N = P [D [f0; 2n + 1g and arc set A. 0 denotes the origin and 2n + 1
the destination depot, P = f1; :::; ng the pickup nodes, and D = fn+1; :::; 2ng the delivery nodes. For each
customer request i consisting of a pickup node i 2 P and a delivery node i+ n 2 D, a maximum ride time
Li is given. At the pickup node i, di 2 N passengers have to be picked up altogether. The same passengers
are dropped at the delivery node i + n, indicated by the negative demand di+n = �di. Furthermore, a
non-negative service time sj (with s0 = s2n+1 = 0) and a time window [aj ; bj] in which the service has to
be started are given for each node j 2 N . This means that arriving before aj is allowed, in which case the
vehicle has to wait until time aj to begin the service. Moreover, whenever the vehicle arrives at a node j,
it can always wait and delay the start of service voluntarily. We assume that there is no restriction on the
waiting time, however, the service has to be started not after bj . The possibility to delay the start of service
at some nodes is crucial for the feasibility of routes in the presence of maximum ride times (see Section 4.1).

A routing cost cij and a travel time tij are associated with each arc and we assume that the triangle
inequality and non-negativity holds for both. We assume that from the arc set A all or least the obviously
infeasible arcs are excluded. Thus, the arc set A is (a subset of)

f(i; j) 2 N �N : i 6= 2n+ 1; j 6= 0; j 6= i� n; ai + si + tij � bj ; jdi + dj j � Cg :

A homogeneous �eet K of vehicles, each with a capacity of C is available to serve the requests. The task
is to �nd jKj DARP-feasible vehicle routes starting and ending at the depot nodes 0 and 2n + 1, so that
all requests are served exactly once and the total routing costs are minimal. A route is DARP-feasible, if it
satis�es the following constraints:

Pairing and precedence: Pickup node i and delivery node i+ n of a request i have to be visited on the
same route, and i has to be visited before i+ n.

Capacity: The number of passengers on board must not exceed C at any time.

Time windows: At each node i the service has to start within the time window [ai; bi].

4

Ride time: The time between the end of service at the pickup node i and the start of service at the delivery
node i+ n (i.e., the time request i is actually on board) must not exceed Li for each request i.

We do not impose an explicit bound on the maximum duration of a route, as e.g., Cordeau and Laporte
(2003) do. Instead, we assume that route duration constraints are given implicitly by the time windows
of the origin and destination depots. Note, however, that for our stronger dominance rule Domstrong the
integration of a maximum route duration constraint is straightforward and causes only constant additional
computational e�ort.

To formulate the DARP as a mixed-integer program, let xkij be binary variables indicating if vehicle k 2 K

uses arc (i; j) 2 A. For each vehicle k 2 K, let Lki be the time request i is on board, T k
i be the start of

service at node i 2 N and Qk
i the load of vehicle k after visiting node i. For any node i 2 N , the in-arcs

and out-arcs of i are de�ned as ��(i) = f(h; i) 2 A : h 2 Ng and �+(i) = f(i; j) 2 A : j 2 Ng, respectively.
We will use a condensed notation, where for the vector xk 2 f0; 1gA and any subset B � A, the term xk(B)
means

P
b2B xkb .

Then, a three-index model for the DARP is as follows (Cordeau, 2006):

min
X
k2K

X
(i;j)2A

cijx
k
ij (1)

s.t.
X
k2K

xk(�+(i)) = 1 8i 2 P (2)

xk(�+(i))� xk(�+(n+ i)) = 0 8i 2 P; k 2 K (3)

xk(�+(i))� xk(��(i)) =

8><
>:
1 i = 0

�1 i = 2n+ 1

0 i 2 P [D

8i 2 N; k 2 K (4)

T k
j � (T k

i + si + tij)x
k
ij 8(i; j) 2 A; k 2 K (5)

ai � T k
i � bi 8i 2 N; k 2 K (6)

Qk
j � (Qk

i + di)x
k
ij 8(i; j) 2 A; k 2 K (7)

maxf0; dig � Qk
i � minfC;C + dig 8i 2 N; k 2 K (8)

Lki = T k
n+i � (T k

i + si) 8i 2 P; k 2 K (9)

ti;i+n � Lki � Li 8i 2 P; k 2 K (10)

xkij 2 f0; 1g 8(i; j) 2 A; k 2 K (11)

The objective is to minimize the total routing costs (1). Constraints (2) guarantee that each requests is
served exactly once, and (3) impose pairing. The �ow conservation constraints (4) require that each route
starts at the depot 0, is continued, and �nally ends in the depot 2n + 1. Constraints (5) and (7) ensure
consistency of the time and load variables with the routing variables. Time variables are bounded the by
time windows (6), and load variables by the vehicle capacity (8). The ride times are de�ned by equations (9)
and are bounded by the maximum ride times (10). Due to the non-negativity of the ride times constraints,
constraints (10) also impose the precedences. This three-index formulation (1)�(11) is non-linear because
of constraints (5) and (7). A linearization, however, is straightforward (see, e.g., Cordeau (2006) or Ropke
et al. (2007)).

Two tighter problem formulations are presented by Ropke et al. (2007). Using appropriate formulated
precedence inequalities, they are able to ensure pairing and precedence without the use of an additional index
for the vehicle and thus to formulate the DARP with a two-index model. These mixed integer programs can
be solved with standard MIP-solvers or tailored branch-and-cut algorithms.

The formulation (1)�(8) and (11), i.e., without constraints (9)�(10) on ride times, is the standard three-
index formulation for the PDPTW. The PDPTW has been subject of intensive research (Dumas et al.,
1991; Desaulniers et al., 2002; Ropke and Cordeau, 2009), which we can rely on because the PDPTW is a
relaxation of the DARP.

5

Another possibility to model the ride-time constraints is to replace (9)�(10) by infeasible-path elimination
constraints (IPEC). For this purpose, let I be the set of all paths that are infeasible with respect to time
window and ride-time constraints. The IPEC are of the form

xk(I) � jIj � 1 8I 2 I; k 2 K; (12)

where jIj denotes the length of the infeasible path I 2 I, i.e., the number of its arcs. IPEC were �rst
successfully applied for solving the traveling salesman problem with time windows (Ascheuer et al., 2000),
but o�er an universal approach for handling (complex) constraints in routing models that solely consist of
routing variables. On the downside, since generally IPEC form an exponential family of valid inequalities,
they cannot be included en masse when solving the MIP, but violated IPEC have to be separated and added
dynamically.

To solve the DARP with column generation, we can partition the three-index formulation in di�erent
ways into master and subproblem constraints for applying a Dantzig-Wolfe decomposition. The constraints
(3)�(11) and also the IPEC (12) are all non-coupling constraints as they refer to each vehicle individually.
A straightforward Dantzig-Wolfe decomposition has covering constraints (2) as coupling constraints and
all other constraints in the subproblem. The column-generation (or extensive) formulation, therefore, uses
route variables �r corresponding with DARP-feasible routes r. The set of all DARP-fesible routes is denoted
by
DARP .

An alternative Dantzig-Wolfe decomposition leaves the covering constraints (2) and the IPEC (12) in
the master program. Since IPEC replace the ride-time constraints (9)�(10) in this case, the subproblem
comprises only the PDPTW constraints (3)�(8). The variables �r of this extensive formulation model
PDDTW-feasible routes, where the set of all such routes is
PDPTW .

In the master programs, the cost of a route r 2
DARP or r 2
PDPTW is cr, respectively. For each
request i 2 P and each route r, let air 2 Z+ be the number of times route r performs request i. In an
elementary route, air is binary. However, we will also allow relaxations where non-elementary routes may
serve a request more than once. Moreover, for any infeasible path I 2 I and any route r, the coe�cient bIr
indicates how many times the route traverses arcs of that path. The integer master programs (IMP) of both
decompositions are now presented side-by-side:

min
X

r2
PDPTW

cr�r min
X

r2
DARP

cr�r (13)

s.t.
X

r2
PDPTW

air�r = 1 8i 2 P s.t.
X

r2
DARP

air�r = 1 8i 2 P (14)

(IMP-I)
X

r2
PDPTW

�r = jKj (IMP)
X

r2
DARP

�r = jKj (15)

X
r2
PDPTW

bIr�r � jIj � 1 8I 2 I (16)

�r 2 f0; 1g 8r 2
PDPTW �r 2 f0; 1g 8r 2
DARP (17)

The objective (13) is the minimization of the total costs, the pendant to request covering constraints (2)
is (14), and constraints (15) are generalized convexity constraints (resulting from aggregation by vehicles,
see Desaulniers et al., 1998). The reformulation of the IPEC (12) in the route variables is (16).

The IMP on the left-hand side is exactly the one used by Ropke and Cordeau (2005) in the following
denoted by IMP-I(we will also add the su�x -I to identify its components), while the approach presented in
this paper will rely on the right-hand side formulation. As the number of feasible routes in the masters is
too large to solve them directly, one has to rely on column-generation (or Lagrangian relaxation) techniques.
The linear relaxation of (13)�(17), denoted by (MP), is solved by initializing the column-generation process
with a proper subset of all routes. Missing routes are then added dynamically to this restricted master
program (RMP). Integrality is ensured by integrating the column-generation process into a branch-and-
bound algorithm.

6

While IMP-I and IMP have the same set of feasible integer solutions, the linear relaxation MP is generally
stronger than MP-I. The reason is that in MP-I a subset of DARP-infeasible routes can be convex-combined
to form routes that do not violate the IPEC. In MP, however, DARP-infeasible routes are excluded so that
MP's lower bound is always not smaller than MP-I's lower bound. This advantage of a stronger model comes
at the price of a harder to solve subproblem. Our contribution is the development of an e�ective solution
procedure for the MP subproblem. We will also show empirically that, with the proposed subproblem
algorithm, the trade-o� (between bounds and e�ort to gain the bounds) clearly turns towards favoring MP.

4. Column-Generation Subproblem and Labeling Algorithms

The task of the column-generation subproblem a.k.a. pricing problem (PP) is to identify negative reduced
cost routes or to prove that no such routes exist. Let, � = (�i)i2P , �, and � = (�I)I2I be the values of
the dual variables to the RMP constraints (14), (15), and (16), respectively. To identify feasible routes with
negative reduced cost, one �rst has to compute the reduced costs of the routing variables xij as

~cij =

8><
>:
cij � �i �

P
I2I

bIr�I if i 2 P

cij �
P
I2I

bIr�I otherwise
~cij =

(
cij � �i if i 2 P

cij otherwise
; (18)

and then the following subproblem has to be solved:

(PP-I)
=(SPPPDPTW)

min
X

(i;j)2A

~cijxij � � (PP)
=(SPPDARP)

min
X

(i;j)2A

~cijxij � � (19)

s.t. (3)�(8) and (11) s.t. (3)�(11)

where in the constraints (3)�(11) the index k for the speci�c vehicle is dropped.

Subproblem Solution by Dynamic-Programming Labeling Algorithms. Pricing problems of most VRP vari-
ants are elementary shortest-path problems with resource constraints (ESPPRC) (Desaulniers et al., 1998).
ESPPRC and their relaxations are typically solved using a dynamic-programming labeling algorithm (Irnich
and Desaulniers, 2005). The basic principle of a labeling algorithm is the following: Starting at a distinct
source node, partial paths are iteratively extended along arcs of the underlying graph until the sink node
is reached and the path is complete. The partial paths are represented by labels in which attributes such
as the accumulated cost or time consumption along the partial path are stored. To be able to solve such
shortest-path problems, it is crucial to identify and discard useless labels so that not all possible paths are
enumerated. Dominance rules accomplish this task.

The standard dominance principle says that a label `1 representing the partial path P(`1) dominates a
label `2 representing the partial path P(`2) if the following three conditions hold:

1. P(`1) and P(`2) must end at the same node.

2. Every completion Q of `2 to the sink node that gives a feasible path P2 = (P(`2); Q) is a completion
of `1 that must also result in a feasible path P1 = (P(`1); Q).

3. The (reduced) cost of P1 must not exceed the (reduced) cost of P2.

In this case, `2 can never lead to a path with smaller cost than `1, and can thus be excluded from further
consideration.

Note that the second condition requires that the partial path P(`1) must be feasible. We call a label `
feasible, if the represented partial path P(`) is feasible. Also, a completion Q of a label ` that leads to a
feasible (partial) path (P(`); Q) is called feasible. Typically, considering all possible feasible completions
is not tractable so that the above dominance relation is hardly directly applicable. Instead, the second
condition is often proved indirectly using conditions that compare attributes of the labels `1 and `2, i.e.,

7

accumulated costs and consumed resources. If `1 has better attributes than `2, the same holds for all
extended partial paths, whenever resource consumptions are monotone. The importance of non-decreasing
resource extension functions (REFs) for the validity of dominance rules was stressed and exempli�ed in
(Desaulniers et al., 1998; Irnich, 2008).

In the following, we brie�y summarize the labeling procedure and dominance rules applicable to the
PDPTW. Moreover, we clarify that in the additional presence of ride-time constraints, however, the standard
relation to ensure dominance for the time resource is not valid anymore. Basically, it is no longer correct
that serving earlier is better than serving later. Thus, there seem to be no simple attributes to model feasible
DARP routes with non-decreasing REFs.

A �nal remark about IMP-I subproblem for the generation of PDPTW routes seems appropriate here.
The advantage of replacing (9)�(10) by IPEC, as suggested by Ropke and Cordeau, is that the reduced
costs (18) in PP-I solely depend on the chosen arcs, but not on a route's schedule. If schedules were
involved, Desaulniers et al. (1998) have explained that highly complex variants of SPPRC would result,
where linear node costs and pro�ts have to be included (Ioachim et al., 1998).

PDPTW Labeling Procedure and Dominance Rules. Ropke and Cordeau (2005) use an ESPPRC tailored to
the PDPTW (ESPPPDPTW) to solve the DARP with formulation IMP-I.

In the SPPPDPTW, a feasible path must satisfy time-window, capacity, pairing and precedence con-
straints. For a non-elementary path, pairing and precedence means that a request is allowed to be served
again, once it has been picked up and delivered. Hence, several pickup-and-delivery pairs of the same request
can be present in a single path. For ease of notation, we assume for the rest of the paper, that all (partial)
paths are elementary. All arguments, however, are similar for non-elementary paths.

Feasibility of a partial path means that time-window, capacity and precedence constraints must be
respected, whereas pairing constraints need not to be satis�ed for all requests. If for some pickup-and-
delivery pair (i; i + n) only the pickup node i is visited on the partial path, the request i is said to be
open. It is then necessary for each feasible completion to visit the delivery nodes of those open requests.
Conversely, however, partial paths with open delivery nodes are not allowed in the labeling process and thus
considered infeasible.

A general prerequisite for the following dominance rule is that the reduced costs ~c ful�ll ~cij � ~cik�~ckj for
all arcs (i; j); (i; k); (k; j) 2 A with k 2 D. Ropke and Cordeau (2009) call this property the delivery triangle
inequality. It may be ful�lled by de�nition (18) and permits a more e�cient solution of the PDPTW pricing
problem (Dumas et al., 1991). However, adding additional cuts to the RMP formulated in the xij variables
may lead to reduced costs that do not satisfy the delivery triangle inequality. Ropke and Cordeau (2009)
show how to transform the reduced-cost matrix by addition of constants into one that satis�es the delivery
triangle inequality. From now on, we assume that the delivery triangle inequality holds. In particular, the
validity of the following and all other dominance rules in this paper is based on this property.

The standard dominance criterion for SPPPDPTW (Dumas et al., 1991; Ropke and Cordeau, 2005) uses
the following attributes for each label `: the node �` the label belongs to, its (reduced) cost ~c`, the earliest
start of service t`, and the set of open requests O`. Dumas et al. (1991) and Ropke and Cordeau (2005)
have shown:

Proposition 1. (DomPDPTW) A feasible label `1 dominates a label `2 if

�`1 = �`2 ; ~c`1 � ~c`2 ; t`1 � t`2 ; and O`1 � O`2 :

The dominance rule of Proposition 1 slightly di�ers from the standard dominance principle presented
before. Indeed, if O`1 6= O`2 , then a feasible completion Q of `2 cannot be a feasible completion of `1 due to
pairing constraints.

We introduce some notation helpful for describing completions that resolve the complication with pairing
constraints. For any number n and any set of numbers M , let n+M = fn+m : m 2Mg. Furthermore, for
any sequence (path or schedule) P = (h1; h2; : : : ; hp) and any set M of numbers, the term P nM denotes
the sub-sequence of P where hi is removed if hi = m is the �rst occurrence of m 2M in the sequence P.

The proof of Proposition 1 results from the generalization of the second condition of the standard
dominance. Condition 2. can be replaced by

8

Labels
`1 for path (0; :::; �)
`01 for path (0; ::; i+n)

nodes in P(`1), P(`01) 0 j i j + n � i+ n
time window [ai; bi] [0; 100] [0; 15] [20; 35] [15; 30] [50; 65] [60; 75]

earliest time t`1 0 10 20 30 50 60

Labels
`2 for path (0; :::; �)
`02 for path (0; ::; i+n)

earliest time t`2 0 20 30 45 55 65
time window [ai; bi] [0; 100] [20; 35] [20; 35] [45; 60] [50; 65] [60; 75]

nodes in P(`2), P(`02) 0 h i h+ n � i+ n

Table 1: Label `1 dominates label `2 in the SPPPDPTW sense, but is inferior regarding the ride-time constraint of request i

2'. For every completion Q2 of `2 to the sink node that is a feasible path P2 = (P(`2); Q2) there exists a
completion Q1 of `1 so that P1 = (P(`1); Q1) is a feasible path.

Note that Q1 may or may not be identical or resulting from Q2. Now consider the completion Q0 =
Qnfn + (O`2nO`1)g of `1. Q

0 is equal to Q except for skipping the delivery nodes for the additional open
requests O`2nO`1 . The path P1 = (P(`1); Q0) satis�es pairing and precedence constraints. The relations in
Proposition 1 ensure that P1 also respects capacity and time-window constraints if Q is a feasible completion
for `2, and that the total costs of P2 = (P(`2); Q) cannot be smaller than that of P1. The latter is true
as visiting an additional delivery node is never bene�cial when the delivery triangle inequality holds. P1
respects the capacity constraint, since P2 satis�es it and O`1 � O`2 implies that the load of `1 is not larger
than of `2. Finally, time-window constraints are also respected by P1 when they are respected by P2, as
t`1 � t`2 and visiting the additional deliveries in Q compared to Q0 can never decrease the time, since travel
times satisfy the triangle inequality. From a higher perspective, the PDPTW dominance rules result from
the modeling with non-decreasing REFs for pairing and precedence, capacity, and time-window constraints
as shown in (Irnich and Desaulniers, 2005).

Ropke and Cordeau (2005) also discussed three additional aspects of DomPDPTW. First, an extension to
the elementary case is straightforward. One just needs to keep track of the set of serviced requests U for each
label and additionally require U`1 � U`2 in the dominance rules. Second, DomPDPTW is only valid as long
as the delivery triangle inequality holds for the reduced costs ~cij . If no assumptions on the reduced costs
can be made, dominance is only possible between labels with identical sets O`1 = O`2 of open requests (and
U`1 = U`2 in the elementary case). Third, when column generation is embedded into branch-and-bound,
the use of DomPDPTW as dominance criterion limits the choice of branching rules. In particular, branching
on arcs of the original problem formulation (1)�(11) is critical because it is not possible to remove an arc
(i; j) when there exists a delivery node k 2 D such that (i; k; j) is a feasible sub-path. In this case, it is not
possible to meet the delivery triangle inequality.

PDPTW and Ride-Time Constraints. We now show that ride-time constraints are not compatible with the
standard SPPPDPTW dominance rule. The main di�culty is to deal with the trade-o� between serving all
nodes as early as possible (promoting feasibility regarding time-window constraints) and serving pickups as
late as possible (promoting feasibility regarding ride-time constraints). In general, it is no longer su�cient
to solely keep track of the earliest possible start of service. An example to illustrate this is given next.

Example 1. Consider two labels `1 and `2 representing the respective partial paths P(`1) = (0; j; i; j+n; �)
and P(`2) = (0; h; i; h+n; �) as shown in Table 1. Assume that the travel times tij are 10 between all nodes
and that service times si are zero for all nodes. At node �, only request i is open for both labels, thus they
are comparable in the SPPPDPTW sense. When considering the time-related resources of the SPPPDPTW,
which are only the earliest start of service t`1 and t`2 for both labels, then `1 seems to dominate `2. This
is, however, not true for the SPPDARP. If the maximum ride time of requests i is 35 � Li < 40, then `2
can be feasibly extended to delivery node i+ n, while `1 cannot, since it violates the ride-time constraint of
requests i.

9

4.1. Weak Dominance for SPPDARP

One may ask why we present a weak dominance relation if a stronger dominance is also available (Sec-
tion 4.3). The reason is that, on the one hand, the weak dominance provides some useful insights about
basic information needed for applying any dominance rule. These insights will be used for the development
of the strong dominance rules. On the other hand, there is a trade-o� between the strength of the dominance
rules and the e�ort needed to implement and perform the comparison of labels: The weak dominance rule
is easy to understand, simple to implement, and computationally cheap. Section 6 will therefore compare
branch-and-price algorithms based on both weak and strong dominance rules.

Example 1 demonstrated that for labels with open requests, their ride-time constraints a�ect the feasi-
bility of the partial paths (and possible extensions), and DomPDPTW cannot guarantee dominance for the
SPPDARP. On the other hand, it is easy to see that this is not an issue if there are no active ride-time
constraints at a label. Consequently, whenever a label ` is feasible and represents an empty vehicle at the
current node �` 2 D, i.e., O` = ?, it can dominate other labels according to the rule DomPDPTW.

When extending a label with O`0 = ? to a customer node, this needs to be a pickup node �` 2 P. The
only active ride-time constraint for the resulting label ` is that of the request picked at the current node �`.
Thus, there are no ride times connecting the preceding part of the path with �`, which allows to delay the
start of service at �` for ` to at least the same time as it is possible for any other label at �`. As a result, `
can dominate other labels according to the rule DomPDPTW leading to the following dominance rule for the
SPPDARP:

Proposition 2. (Domweak) A feasible label `1 dominates a label `2, if

�`1 = �`2 ; ~c`1 � ~c`2 ; t`1 � t`2 ; and

jO`1 j =

(
0; if � 2 D

1; if � 2 P
: (20)

Note that condition (20) implies O`1 � O`2 . In contrast to the SPPPDPTW, it is not obvious whether
a label ` is feasible or not in the SPPDARP sense. As in Example 1, there may exist labels `02 with a later
earliest start of service representing a feasible path, while a stronger label `01 in the SPPPDPTW sense does
not. Thus, for correct domination, it is necessary to ensure the feasibility of the dominating label. The
SPPPDPTW attributes of a label, however, are not su�cient to decide on the label's feasibility.

Example 2. Consider label `02 from Example 1. When arriving at node i+n, it is not clear if the ride-time
constraint of request i is satis�ed or not (nor is it clear for h). Even storing the start of service at node i in
`02 does not su�ce to decide on the feasibility of `02. Suppose that Li = 30, then `02 appears to be infeasible
as the actual ride time for i is 65 � 30 = 35. Yet, it is possible to voluntarily delay the start of service at
node i for 5 units. This reduces the actual ride time of request i from 35 to 30 (without a�ecting the service
times of the successing nodes), which means that `02 does indeed represent a feasible path.

Additional interdependencies between several requests and the corresponding time-window and ride-
time constraints further complicate feasibility testing. To check the DARP-feasibility of a given path, the
procedures proposed by Tang et al. (2010); Haugland and Ho (2010); Firat and Woeginger (2011) can be
applied.

4.2. Labeling Algorithm with Weak Dominance

SPPDARP can be solved by a labeling algorithm that uses the new dominance rule Domweak, but apart
from that is identical to the one of Ropke and Cordeau (2009) for the SPPPDPTW. The resources that
need to be stored within each label ` are �`; ~c`; t` and O` as de�ned in Proposition 1. For convenience, we
also include a resource for the load l that the vehicle carries when departing from the respective node. For

10

extending a label ` to a node x along an arc (�`; x) 2 A, one �rst needs to check whether this extension is
feasible. Consistency with the pairing and precedence constraints for ` and x result from

x =2 O` if x 2 P (21)

x� n 2 O` if x 2 D (22)

O` = ? if x = 2n+ 1: (23)

Feasibility regarding capacity and time-window constraints is guaranteed by t`+ t�`;x � bx and l`+ dx � C.

Ride-Time Feasibility. A feasible 0-(2n+ 1)-path in the SPPDARP has to respect pairing and precedence,
capacity, time-window, and ride-time constraints. If a path P = (h1; : : : ; hq) is feasible in the SPPDARP
sense, then there exists a time schedule TP = (�1; : : : ; �q) satisfying

�i 2 [ahi ; bhi] 8i = 1; : : : ; q (24)

�i + shi + thi;hi+1
� �i+1 8i = 1; : : : ; q � 1 (25)

�i + shi + Lhi � �j if hi + n = hj : (26)

The time schedule TP is then said to be feasible. Note again, that elementarity of P is assumed. Otherwise,
inequalities (26) have to be satis�ed for every pair of corresponding pickup and delivery nodes.

For a partial path, feasibility in the SPPDARP sense means respecting time-window, capacity, and
precedence constraints. Furthermore, ride-time constraints have to be met for each request that has been
picked up and delivered on the partial path. Then, there exists at least one feasible time schedule for each
feasible partial path. Hence, when solving the SPPDARP, an explicit feasibility test is required if O`0 = ?

holds for a dominating label `0. Only the feasibility of a label with � 2 P and jO`0 j = 1 follows immediately
from the feasibility of its parent label ` together with t` + t�`;x � bx.

To check if the partial path represented by `0 is DARP-feasible, we use a revised procedure of the
feasibility test of Tang et al. (2010) with a worst-case time of O (n2). The average time, however, should be
signi�cantly better. Moreover, in many cases it is not necessary to consider in the feasibility test the entire
partial path that is given by `0 from origin depot 0 up to node �`0 . Instead, only the part of the path between
the node where the vehicle was empty for the last time and �`0 needs to be checked. In computational tests
we observed that paths of only a few nodes need to be tested. Therefore, it seems unlikely that feasibility
tests with a superior worst-case time are practically bene�cial, such as the O (n log n) test by Haugland
and Ho (2010) or the linear-time test by Firat and Woeginger (2011). Besides, the algorithm of Tang et al.
(2010) can uses some of the data already computed during the labeling process, while the approach of Firat
and Woeginger (2011) is based on a reformulation of the problem into a cycle-detection problem on an
appropriate graph that structurally di�ers for every new path.

Label Generation and Elimination. If the extension of ` along the arc (�`; x) is feasible, the corresponding
label `0 is created and the resources of the new label are set according to the following REFs:

�`0 = x ~c`0 = ~c` + ~c�`;x t`0 = maxfax; t` + t�`;xg l`0 = l` + dx (27)

O`0 =

(
O` [fxg if x 2 P

O`nfx� ng if x 2 D
(28)

The pairing constraints enable the elimination of labels whenever there exists no feasible extension to the
destination depot 2n+1. Rules for label elimination were formulated in Dumas et al. (1991) in the PDPTW
context. Their basic idea is that every feasible completion has to deliver all open requests i 2 O` of a label
` before reaching the node 2n + 1. If there exists no path starting at �` at time t` and ending in 2n + 1
that visits at least all delivery nodes of the open requests satisfying the time-window constraints, then `
can be eliminated. When travel times satisfy the triangle inequality, this comes down to solving a traveling
salesman problem with time windows over the nodes fi+n 2 D : i 2 O`g[f�`; 2n+1g, which is NP -hard.
Thus, Dumas et al. (1991) consider only subsets of O` with not more than two requests. We follow the same

11

approach, but additionally make use of the fact that here a path can also be infeasible because of ride-time
constraints. When using Domweak, however, no additional information about the open requests as can be
used as, e.g., the order in which they have been picked up. This means that, except for the earliest possible
start of service at the current node t`, no label-speci�c information can be used to decide whether or not
a ride-time feasible extension to the node 2n + 1 exists. Label elimination based on ride-time constraints
can therefore only be performed due to bounds on the minimum time the requests are on board. This time
depends on the time windows, travel times, and the start of service t` at the current node. Still, speedups
are obtainable when accounting for maximum ride times in the label elimination.

4.3. Strong Dominance for SPPDARP
Proposition 2 has shown that when restricting the set of dominating labels according to (20) then the

ride-time constraints can be ignored in the dominance relation between two labels. In general, however, the
ride times of open requests have to be considered in the dominance rule.

To decide if in the presence of ride-time constraints a label `1 with open requests can dominate another
label `2, the times in which these requests can be delivered have to be known. In particular, whenever the
open requests i 2 O`1 can be ride-time feasibly delivered in a completion Q of `2 it must also be possible
to feasibly deliver them for `1 using the completion Q0 = Qnfn+ (O`2nO`1)g. As the ride-time constraints
only bound the maximum time on board, delivering early is never a problem, but delivering late can be.
Thus, the latest possible delivery times still respecting the maximum ride times of the open requests are of
importance. As seen in Example 2, the possibility to delay the start of service at pickup nodes has to be
incorporated. Consequently, we always have to consider those latest possible delivery times, where the start
of service at the respective pickup nodes has been delayed as much as possible without violating any other
constraints, i.e., time windows of successive nodes or maximum ride times of other requests. This usually
requires adapting the starts of service of other nodes on the path as well. The idea of delaying the service at
pickup nodes as much as possible in order to maximize ride-time feasibility is similar to the idea of using the
forward time slack that was originally introduced by Savelsbergh (1992) for the TSPTW and generalized by
Cordeau and Laporte (2003) for the DARP.

One di�culty of this approach in a labeling algorithm is that a label ` represents only a partial path up
to node �`, and the completion of this path is not yet known. As a result, not all constraints are known that
may limit the possibility to delay the service at certain pickup nodes. To be more precise, the time windows
of the nodes succeeding �` as well as the ride times of the requests that are open at node �` clearly depend
on the respective extension of ` and are not known for `. Consequently, not even the actual start of service
t` at the current node �` can be speci�ed for sure. While for some extension it may be necessary to choose t`
as early as possible due to the strict time window of a succeeding node, this may not be needed for another
extension where delaying the start of service t` is bene�cial in order to maximize the latest delivery times
of open requests. However, we need to ensure that it is always, i.e., for any feasible time the current node
�` can be serviced, possible that a dominating label `1 can deliver its open requests if a dominated label `2
can do also. We will show (in Proposition 3) that this property is, along with DomPDPTW, in fact su�cient
to guarantee dominance in the presence of time-window and ride-time constraints.

For a strong dominance criterion, we therefore store, in addition to the earliest start of service t� at the
current node �, for all open request i 2 O the latest possible delivery time ldi(t) as a function of the start of
service t at �. In other words, ldi(t) is the latest delivery time for request i, i.e., the latest ride-time feasible
start of service at the delivery node i + n, where the start of service at its pickup node i has been delayed
as much as possible. No constraints that are already known for the partial path up to � are violated, and
the start of service at � is not delayed beyond t.

To formalize ldi`(t), let P(`) = (h1; :::; hq) with hq = �` be the path represented by label `. For any

path P, let TP(t) be the set of all feasible time schedules with �� � t. Then, ldhi` (t); t � t�` ; hi 2 O` can be
de�ned as

ldhi` (t) = min

�
bhi+n; max

TP(`)=(�i)2TP(`)(t)
f�ig+ shi + Lhi

�
: (29)

To maximize �i, generally, the starts of service �j at several nodes hj of the path P need to be changed
compared to the respective earliest starts of service. However, this does not lead to any con�icts when the

12

latest delivery times have to be computed for more than one request. In fact, maximizing �i for some hi has
no restricting e�ect on the maximization of �j for all other nodes hj 6= hi on path P. The following lemma
shows that, for any path P, there exists a unique time schedule where simultaneously the start of service is
maximal for all nodes.

Lemma 1. Let P = (h1; :::; hq) be a feasible partial path, and let �
�
i (t) = max

TP=(�i)2TP(t)
f�ig be the maximum

value for the start of service at node hi with t � �q. Then, T
�
P(t) = (��1 (t); :::; �

�
q (t)) 2 TP(t).

Proofs of this and all other lemmas and propositions can be found in Section A of the Appendix.

Integrating the information ldi`(t) on the latest possible delivery times for each open request i 2 O` into
the dominance relation leads to the following dominance rule for the SPPDARP:

Proposition 3. (Dom�
strong) A feasible label `1 dominates a label `2, if

�`1 = �`2 ; ~c`1 � ~c`2 ; t�`1 � t�`2 ; O`1 � O`2 ; and (30)

ldi`1(t) � ldi`2(t) 8i 2 O`1 ; t 2 [t�`2 ; b�`2]: (31)

Equations (31) ensure that for all open requests i 2 O`1 of the dominating label `1 and for each time t
that may represent a feasible start of service at � for `2, it is feasible to deliver request i for `1 whenever
it is feasible for `2. Note that the functions ldi`(t) give the latest possible delivery time of request i for `
when allowing the start of service at �` to be delayed up to time t. In particular, this does not require that
t actually is a feasible start of service at �`. The implication for Dom�

strong and equations (31) is that it is
not necessary for the start of service of the dominating label `1 to actually reach all feasible times t for the
start of service of `2, as long as ld

i
`1
(t) � ldi`2(t) holds for all i 2 O`1 ; t 2 [t�`2 ; b�`2].

Note that it is straightforward to extend Dom�
strong to a valid dominance rule for the subproblem of the

DARP with an additional constraint on the route duration. Introducing a dummy request with origin and
destination depots as pickup and delivery nodes and setting its maximum ride time equal to the maximum
route duration guarantees dominance regarding the maximum route duration.

Since the dominance rule of Proposition 3 requires the comparison of several functions in (31), the
dominance relation is practically not yet applicable in a labeling algorithm. We therefore characterize the
shape of the functions ldi(t) next enabling a version of Dom�

strong that is easy to handle.

Proposition 4. Let ` be a feasible label at node �` with earliest start of service t�` and open requests O`.
The functions ldi`(t); t � t�` are of the form minfki1 + t; ki2g for all i 2 O`, where k

i
1 and ki2 are constants.

Using Proposition 4, Dom�
strong can be simpli�ed to a dominance rule where instead of having to keep

track of and compare the entire functions ldi`(t) it is su�cient to store and check the values of ldi`(t) only at
two distinct points of time. We have chosen the earliest possible start of service t�` and time Bi

` where the
latter is the time when ldi`(t) becomes constant. Then a simpli�ed version of Dom�

strong is as follows (see
Figure 1):

Proposition 5. (Domstrong) A label `1 dominates a label `2, if

�`1 = �`2 ; ~c`1 � ~c`2 ; t�`1 � t�`2 ; O`1 � O`2 ;

ldi`1(t
�
`1
) + (t�`2 � t�`1) � ldi`2(t

�
`2
); and ldi`1(B

i
`1
) � ldi`2(B

i
`2
) 8i 2 O`1 :

4.4. Labeling Algorithm with Strong Dominance

The basic course of the labeling algorithm with dominance rule Domstrong is the same as for Domweak.
In what follows, we will only describe additional aspects. According to Proposition 5, the two additional
resources ldi`(t

�
`) and ld

i
`(B

i
`) for each open request i 2 O` have to be stored within each label `. Furthermore,

the computation of ldi`(B
i
`) requires carrying along B

i
` for each i 2 O` as an additional resource.
13

t

t

t
� `
1

t
� `
2

B
i `
1

B
i `
2

ldi
`1

(t
�
`1

)

ldi
`2

(t
�
`2

)

ldi
`1

(Bi
`1

)

ldi
`2

(Bi
`2

)

ldi
`1

(t)

ldi
`2

(t)
t
� `
2
�
t
� `
1

t

t

t
� `
1

t
� `
2

B
i `
1

B
i `
2

ldi
`1

(t
�
`1

)

ldi
`2

(t
�
`2

)

ldi
`1

(Bi
`1

)

ldi
`2

(Bi
`2

)

ldi
`1

(t)

ldi
`2

(t)

t
� `
2
�
t
� `
1

Figure 1: Dominance condition for ldi full�lled (left hand side) and not full�lled (right hand side)

With ldi`(B
i
`), precise information on the actual ride times of the open requests i 2 O` and hence on

the feasibility of a label ` is available. Namely, the extension of ` along an arc (�`; x) can only be feasible
if t�` + s�` + t(�`;x) � ldi`(B

i
`) holds for all i 2 O`. Otherwise the ride-time constraint of at least one open

request cannot be satis�ed. When applying the label elimination rules described later, this consistency check
on the ride-time constraints is redundant.

Proposition 6. Let the label `0 result from the extension of a label ` along the arc (�`; x). Then, the
resources ldi`(t

�
`), ld

i
`(B

i
`), and Bi

` are either initialized or updated according to the following REFs:

Bi
`0 =

(
minf~bx; bx+n � sx � Lig if i = x

minfBi
` + s�` + t�`;x;

~bxg otherwise
(32)

ldi`0(t
x
`0) =

(
minftx`0 + sx + Li; bx+ng if i = x

ldi`(t
�`
`) + (minftx`0 � s�` � t�`;x; B

i
`g � t�``) otherwise

(33)

ldi`0(B
i
`0) =

(
Bi
`0 + sx + Li if i = x

ldi`(B
i
`)� ((Bi

` + s�` + t�`;x)�Bi
`0) otherwise,

(34)

where

~bx =

(
bx if x 2 P

minfbx; ld
x�n
` (Bx�n

`)g if x 2 D
: (35)

Example 3. A small example to illustrate the REFs and the underlying intuition for Bi, ldi(t�) and ldi(Bi)
is given in Table 2. Consider the labels `0; `i; `j and `k which are successively generated along the path
P = (0; i; j; k), see Figure 2. Assume that the travel times between all nodes are 5, the maximum ride time
of request i is Li = 20, and there are no service times at the nodes. When extending the initial label `0
along the arc (0; i) label `i is created. As request i is being picked up Bi

`i
; ldi`i(t

i
`i
) and ldi`i(B

i
`i
) need to be

initialized. Assuming that the end of the time window bi+n of the delivery node i + n is not binding, the
latest possible delivery times are clearly given by the start of service at i plus the maximum ride time, i.e.,
ldi`i(t

i
`i
) = 5 + 20 = 25 and ldi`i(B

i
`i
) = 15 + 20 = 35, and Bi

`i
is equal to bi = 15.

The extension of `i along the arc (i; j) leads the label `j with tj`j = ti`i + 5 = 10. Regarding the latest

delivery times for request i, starting the service at j at time tj`j means that the predecessor node i has to be

serviced at the earliest possible time ti`i , and consequently ldi`i(t
i
`i
) = ldj`j (t

j
`j
) = 25. To maximize the latest

delivery of i, we want to delay the start of service at i until Bi
`i
. This means that one would arrive at node

j at time 20 which is too late, as the latest feasible start of service at j is at time 18. As a result, within the
partial path (0; i; j) the service at i can at latest be delayed up to time bj�5 = 13 = Bi

`i
�2. The corresponding

latest delivery time of i for the latest feasible service at j is ldi`j (B
i
`j
) = ldi`i(B

i
`i
� 2) = ldi`i(B

i
`i
) � 2 = 33

and Bi
`j

= bj = 18.
14

`0 `i `j `k
� 0 i j k

[a�; b�] [0; 100] [5; 15] [10; 18] [17; 25]
t� 0 5 10 17
Bi - 15 18 23

ldi(t�) - 25 25 27
ldi(Bi) - 35 33 33

Table 2: REFs for Bi, ldi(t�) and ldi(Bi) along the path P = (0; i; j; k) assuming a maximum ride time of Li = 20

Considering label `k, the earliest start of service is tk`k = 17 implying that there is a waiting time of 2
when serving all nodes as early as possible. In terms of maximizing the latest possible delivery of i, this
waiting time should be shifted before the service of node i. In other words, when serving k at time tk`k = 17

the service of i should not be started at ti`i but instead be delayed until ti`i + 2 = 7. This also implies that j

is serviced at time tj`j + 2 = 12. The corresponding latest delivery times of i for the earliest feasible service

at k are then given by ldi`k(t
k
`k
) = ldi`j (t

i
`i
+ 2) = ldi`j (t

i
`i
) + 2 = 27. To maximize the latest delivery of i

we again want to delay the start of service at j until Bi
`j

which results in an feasible time for the start of

service at k. Even more, serving node k later than Bi
`j
+ 5 = 23 does not increase the latest delivery time

of i, as it is already constrained by the time window at node j. To satisfy the time window of j, service at
node i cannot start later than at time 13 implying a start of service at j of Bi

`j
= 18 and a start of service

at k of Bi
`k

= 23. Consequently ldi`k(B
i
`k
) = ldi`j (B

i
`j
) = 33.

Label elimination is performed in the same way as for Domweak. When using Domstrong, however, valuable
information on the actual ride times of the open requests is available through the resources ldi`(B

i
`); i 2 O`.

With this information, label elimination based on maximum ride-time constraints is very e�ective.

4.5. A Pseudo-Linear Feasibility Test for DARP

A by-product of having the information ldi`(B
i
`) on the latest possible delivery times is that we can decide

on the feasibility of (partial) paths. Thus, the labeling algorithm with Domstrong also serves as a feasibility
test for a given DARP route.

The worst-case complexity of this test is easy to analyze: If the number of open requests can be bounded
by a number M , then the number of resources at each node and the complexity of the updates (27)�(28)
and (32)�(34) is O (M). Hence, the feasibility test requires O (nM) time and space, where n is the length
of the route. Assuming integer values for node demands d and vehicle capacity C (which seems natural for
passenger transportation), then, e.g., M � C holds. The travel and service times in combination with the
time windows allow similar estimations. Thus, feasibility testing with the labeling procedure is pseudo-linear.

Considering other work on feasibility testing for the DARP, there exists to the best of our knowledge
only one algorithm that runs in linear time (Firat and Woeginger, 2011). Feasibility tests with a worst-
case runtime of O (n log n) and O (n2) were provided by Haugland and Ho (2010) and Tang et al. (2010),
respectively. The eight-step route evaluation procedure of Cordeau and Laporte (2003) also serves as an
feasibility check and runs in O (n2). Even more, in the SPPRC context, when a given feasible partial route
is extended node by node, neither of these algorithms is suited to derive a simple and e�cient check. Our
labeling algorithm, however, allows to decide on the feasibility of such an extension in O (M).

4.6. Re�nements of the Strong Dominance

We brie�y discuss some re�nements of the dominance rule for the strong labeling algorithm that are
helpful to speedup the pricing process.

The only point where the labeling algorithm with Domstrong of Section 4.4 utilizes the information on the
actual ride times is for label elimination. We now show that actual ride times are useful for the determination
of the resources Bi

`0 and ldi`0(B
i
`0), and therewith to improve the dominance Domstrong. More precisely, let

15

i

t

t

1
0

t
i `
i

B
i `
i

2
0

3
0

ti
`i

10

Bi
`i

20

ldi
`i

(ti
`i

)

30

ldi
`i

(Bi
`i

)

L
i
+
s
i

L
i
+
s
i

ldi

`i
(t)

~bi

bi+n

j

t

t

t
i `
i

t
j `
j

B
i `
j

2
0

3
0

10

20

30

ldi
`j

(t
j
`j

)

ldi
`j

(Bi
`j

)

~bj

bi+n

ldi

`j
(t)

ldi
`i

(t)

si + tij

si + tij

�

j

t

t

t
i `
i

t
j `
j

B
i `
j

2
0

3
0

10

20

30

ldi
`j

(t
j
`j

)

ldi
`j

(Bi
`j

)

~bj

bi+n

ldi

`j
(t)

k

t

t

t
j `
j

t
k `
k 2
0

3
0

B
i `
k

10

20

30

ldi
`k

(tk
`k

)

ldi
`k

(Bi
`k

)

bi+n

~bk

ldi
`j

(t)

ldi

`k
(t)

sj + tjk

sj + tjk

�

Figure 2: Extension of labels: Latest delivery times ldi(t) for an open request i for the extension along arc (i; j) (upper part)
and along arc (j; k) (lower part)

16

`0 result from the extension of a label ` to node x so that P(`0) = (h1; :::; hq = x). When computing
the maximum service times �j for `0 at the nodes h1; :::; hq, we consider inequalities (24) and (25), and
inequalities (26) for requests already picked up and delivered. No information on the ride-time constraints
of the open requests is included. Instead of ignoring these maximum ride times, they can be used to impose
additional constraints on the service time �q of the last node �`0 = hq. For any feasible completion Q of `0,
the resulting path (P(`0); Q) must among others satisfy �i + shi + Lhi � �j for all hi 2 O`0 ; hi + n = hj .
Consequently, each feasible partial schedule must respect �q+s�`0 + t�`0 ;hi+n � �i+shi +Lhi for all hi 2 O`0

in order to be feasibly completed. These constraints bound �q. Using this bound in equation (35), a tighter

upper bound b̂x instead of ~bx can be computed. As a result, the values Bi
`0 and ldi`0(B

i
`0) may also decrease.

Obviously, when there are two or more open requests, a feasible completion must successively visit the
delivery nodes of all the open requests which imposes even stronger bounds on �q. The computational e�ort
to �nd the strongest bound on �q, however, seems to be prohibitively large in general. We therefore take a
similar approach as in the label elimination strategy, and consider only subsets of O`0 of not more than two
requests.

Summarizing, the labeling algorithm is then altered in the following way: Prior to the propagation of
the resources Bi

`0 , ld
i
`0(t

�
`0), and ldi`0(B

i
`0) an upper bound b̂�`0 on the latest feasible start of service at the

current node x is computed. In the REFs (32)�(34), the value ~bx is then replaced by b̂x.
Bounding the start of service at the current node has two positive e�ects on the dominance rule: First,

the dominance relation is less restrictive, since it is a relaxed condition to require ldi`1(t) � ldi`2(t) for all

t 2 [t�`2 ; b̂�`2] than for all t 2 [t�`2 ; b�`]. Second, the possible bounding e�ect on Bi
` and ldi`(B

i
`) gets stronger

the more requests are open. This increases the possibility that ldi`(B
i
`1
) � ldi`(B

i
`2
) holds for two labels `1

and `2 with O`1 � O`2 , compared to not using the additional bounds.

5. Branch-and-Price Algorithms

We now brie�y describe the main components of our implementations of the branch-and-price and branch-
and-cut-and-price algorithms that will be compared in Section 6. Mainly, we will analyze the di�erence
between using the two formulations IMP-I and IMP. For a fair comparison, we do not only compare with
the results of Ropke and Cordeau (2005) directly, but we implemented versions for solving IMP-I, i.e., where
the pricing problem is an SPPPDPTW and ride-time constraints are enforced on the master problem level.
The use of formulation IMP requires that a SPPDARP subproblem is solved, and we will also compare the
two new labeling algorithms of Sections 4.2 and 4.4. Apart from the di�erent handling of the maximum
ride-times, all approaches follow the same basic algorithm.

Preprocessing. As preprocessing steps, we use time-window tightening and arc-elimination rules proposed
for the VRPTW and tailored to the PDPTW and the DARP (Desrochers et al., 1992; Dumas et al., 1991;
Cordeau, 2006). A comprehensive description of these rules can be found in (Cordeau, 2006; Ropke and
Cordeau, 2005), where the authors also comment on additional di�culties that arise when applying prepro-
cessing techniques to the DARP.

Pricing Problem. In each column-generation iteration, an SPPRC pricing problem has to be solved to
generate routes with negative reduced costs. For accelerating the column-generation process, it is often
bene�cial to solve the pricing problem heuristically, instead of always using an exact method. When the
heuristics fail to �nd negative reduced cost routes, an exact method has to be invoked such as those described
in Section 4. Our implementation comes with two straightforward pricing heuristics: The �rst is solving the
pricing problem on a reduced network only. The other is for the SPPDARP only and solves the SPPPDPTW,
i.e., it ignores the ride-time constraints and drops all ride-time infeasible routes.

Preliminary computational tests indicated that the bene�ts from using these pricing heuristics appear
to be rather high for the SPPDARP labeling algorithm with Domweak. Speedups are small, however, when
using Domstrong for SPPDARP or when solving the SPPPDPTW.

17

Cutting Planes. Cordeau (2006), Ropke et al. (2007) and Ropke and Cordeau (2009) have proposed several
valid inequalities for the PDPTW and the DARP. These valid inequalities can be used in branch-and-cut
and also in branch-and-price (resulting in a branch-and-cut-and-price algorithm), using the correspondence
for arc �ows

xij =
X
k2K

xkij =
X
r2

aij;r�r 8(i; j) 2 A (36)

between two-index and three-index compact formulations and extensive formulations (the coe�cient aij;r is
the number of times route r traverses arc (i; j)). For the sake of clarity, we distinguish between variables
and their actual values, denoted by �xij for all arcs (i; j) 2 A.

We use the following classes of valid inequalities in our branch-and-cut-and-price algorithm: tournament
constraints and another lifting of the IPEC, rounded capacity inequalities, 2-path cuts, and fork inequal-
ities. Section B of the Appendix gives further details on these inequalities and their separation. For the
computational studies, we will distinguish between approaches that solely use IPEC and their liftings and
those that make use of all the valid inequalities. The latter case is indicated with an index cut.

Moreover, some separation procedures rely on checking ride-time constraints. Those that utilize a
SPPDARP-based separation procedure, i.e., ride-time constraints are taken into account in a comprehensive
way, are indicated with an index sepRT .

Branching Strategy and Node Selection. If the solution of MP or MP-I is fractional, we use two di�erent
branching rules to obtain integer solutions. First, using (36) we branch on the number �x(�+(0)) of vehicles
if fractional, and create the two branches x(�+(0)) � b�x(�+(0))c and x(�+(0)) � d�x(�+(0))e. Second, we
branch on the out�ow of a node set S = fh; ig of size two. A set S with out�ow �x(�+(S)) closest to 1.5
is chosen and the two branches x(�+(S)) � 1 and x(�+(S)) � 2 are created. For each branch of either
branching decision, an additional linear constraint is added to the master program. No structural changes
have to be made on the subproblem.

The node selection strategy is best �rst, and no upper bounds are given to the algorithms.

6. Computational Results

To compare the proposed branch-and-cut-and-price algorithms and existing exact solution approaches
from the literature, we use the benchmark instances for the DARP introduced by Cordeau (2006) and larger
instances with the same characteristics later added by Ropke et al. (2007). There are two sets of randomly
generated Euclidean instances with tighter (type a) and less tight (type b) maximum ride times Li. The
instances are labeled in the form aK-n and bK-n, where K indicates the number of available vehicles and
n the number of requests. The largest instance for both types consists of 8 vehicles and 96 requests. A
detailed description of the instances can be found in Cordeau (2006) and the entire benchmark is available
at http://www.hec.ca/chairedistributique/data/darp.

In our computational study, we compare two basic approaches, i.e., handling the ride-time constraints
in the master problem based on formulation IMP and in the pricing problem based on formulation IMP-I.
The respective linear relaxations are MP and MP-I. Both approaches are varied using di�erent algorithmic
components explained in the following paragraph. Moreover, we compare our approaches to the branch-
and-cut algorithm of Ropke et al. (2007) denoted by B&C, and the branch-and-cut-and-price algorithm of
Ropke and Cordeau (2005) denoted by B&P-RC.

The pure set-partitioning formulation IMP-I uses the lifted IPEC (see Section B of the Appendix, eqs.
(37) and (38)) to ensure the ride-time constraints, but no additional cuts. Since the ride-time constraints
are not handled in the pricing problem, the resulting subproblem is a SPPPDPTW which we solve using a
labeling algorithm with DomPDPTW. In this case, IPEC are always needed to enforce the maximum ride
times in the master program. In contrast, IMP-Icut refers to the version where 2-path cuts, rounded capacity
inequalities, and fork inequalities are separated (see Section B of the Appendix). Following the notation
of Section 5, IMP-IsepRT and IMP-IcutsepRT integrate the ride-time constraints in all separation procedures,

while IMP-I and IMP-Icut do not.

18

http://www.hec.ca/chairedistributique/data/darp

A
lg
o
ri
th
m

B
&
C

(
R
o
p
k
e

e
t
a
l
.
,

2
0
0
7
)

B
&
P
-R

C
(
R
o
p
k
e

a
n
d

C
o
r
d
e
a
u
,

2
0
0
5
)

IM
P
-I

IM
P
-I
c
u
t

IM
P
-I
s
e
p
R
T

IM
P
-I
c
u
t

s
e
p
R
T

IM
P
w
e
a
k

IM
P
c
u
t

w
e
a
k

IM
P
s
t
r
g

IM
P
c
u
t

s
t
r
g

acronym

Formulation 2-index IMP-I IMP-I IMP-I IMP-I IMP-I IMP IMP IMP IMP

Subproblem
SPPPDPTW � � � � �

SPPDARP � � � �

�weak dominance weak � �

�strong dominance strg � �

Cutting planes
lifted IPEC () � � � � � � � �

rounded cap. ineq. cut � � � � � �

2-path cuts cut � � � � � �

fork ineq. cut � � � �

other cuts () � �

Ride-time check in
separation basic () ? ? � �

sets & sequences sepRT ? ? � � � � � �

Table 3: Overview of DARP solution approaches used for comparison

The approaches based on IMP where the subproblem is an SPPDARP solved using the proposed labeling
algorithm with Domweak and Domstrong are denote by IMPweak and IMPstrg, respectively. As before, a
superscript cut indicates that cuts are used, giving rise to IMP-I and IMP-Icut. All algorithms are summarized
in Table 3.

In preceding experiments, we found that there are only small improvements in the root lower bounds
when the elementary variants of the pricing problems replace the non-elementary. Due to the hardness of the
elementary subproblem the labeling algorithms are slower. Overall, this results in slightly longer computation
times for the entire branch-and-price algorithms. These �ndings coincide with those of Ropke and Cordeau
(2005). As a consequence, we decided to not report any computational results for the elementary case.

All of our algorithms were coded in C++ using the callable library of CPLEX 12.2 to re-optimize the
RMP. The computations were carried out on a standard PC with an Intel(R) Core(TM)2 Duo E8400 at
3.0 GHz with 4,0 GB main memory using a single thread only.

6.1. Linear Relaxation Results

We start the analysis with results on the linear relaxation of the master program (13)�(17). Tables 4
and 5 show details for the lower bound values lb and summarize the computation times. The notation in
the tables has the following meaning:

opt value of an optimal solution

opt number of optimal solutions obtained by respective algorithm

best number of times the respective algorithm provides the best lb of all considered algorithms

% gap average percentage integrality gap (opt� lb)=opt

avg. time average computation time (in seconds) per instance

More detailed tables with individual computation times per instance can be found in Section C of the
Appendix. Note that for B&C and B&P-RC the computation times were reported for di�erent computers
so that a direct comparison is critical.

19

Instance opt B
&
C

(
R
o
p
k
e

e
t
a
l
.
,

2
0
0
7
)

B
&
P
-R

C
(
R
o
p
k
e

a
n
d

C
o
r
d
e
a
u
,

2
0
0
5
)

M
P
-I

M
P
-I
c
u
t

M
P
-I
s
e
p
R
T

M
P
-I
c
u
t

s
e
p
R
T

M
P
w
e
a
k

M
P
s
t
r
g

M
P
c
u
t

w
e
a
k

M
P
c
u
t

s
t
r
g

a2-16 294.2 * * 294.0 294.0 294.0 * * *
a2-20 344.8 * * 343.7 * * * * *
a2-24 431.1 430.3 430.4 430.6 430.6 430.6 430.6 * *
a3-24 344.8 * * 339.4 343.5 341.7 344.5 * *
a3-30 494.8 * * 490.5 493.5 490.9 * * *
a3-36 583.2 579.0 579.0 576.0 576.1 576.7 578.7 579.0 579.0
a4-32 485.5 * * 484.0 485.3 484.1 * * *
a4-40 557.7 553.9 556.6 553.7 553.7 553.7 556.9 * *
a4-48 668.8 666.5 668.1 663.2 664.1 664.1 * 667.4 *
a5-40 498.4 * * 497.4 498.3 497.4 497.9 * *
a5-50 686.6 680.0 680.8 671.9 675.8 673.3 681.8 684.0 686.3
a5-60 808.4 804.1 * 805.5 806.1 806.0 806.9 808.0 *
a6-48 604.1 * * 601.9 602.2 602.2 * * *
a6-60 819.2 816.2 819.1 814.2 814.9 815.5 * 819.2 *
a6-72 916.0 910.1 913.6 904.5 906.0 905.7 913.4 913.9 914.5
a7-56 724.0 718.5 720.9 717.1 718.4 717.3 718.3 721.8 721.8
a7-70 889.1 886.7 888.8 883.8 885.7 884.7 886.5 * *
a7-84 1033.4 1025.2 1028.6 1022.9 1029.2 1024.4 1032.0 1029.8 *
a8-64 747.5 743.7 747.3 741.9 742.8 743.1 745.7 * *
a8-80 945.7 938.1 940.3 925.7 930.2 928.0 942.2 944.6 945.1
a8-96 1229.7 1213.4 1224.5 1205.3 1212.8 1209.1 1225.1 1228.8 *

opt 7 8 0 1 1 7 11 16
best 7 8 0 1 1 7 13 21
% gap 0.42 0.20 0.88 0.60 0.74 0.22 0.12 0.06

avg. time ? ? 3.7 19.9 5.6 60.4 9.0 1.4 33.7 2.1

Table 4: Lower bound values lb for type a instances, * if lower bound = opt.

20

Instance opt B
&
C

(
R
o
p
k
e

e
t
a
l
.
,

2
0
0
7
)

B
&
P
-R

C
(
R
o
p
k
e

a
n
d

C
o
r
d
e
a
u
,

2
0
0
5
)

M
P
-I

M
P
-I
c
u
t

M
P
-I
s
e
p
R
T

M
P
-I
c
u
t

s
e
p
R
T

M
P
w
e
a
k

M
P
s
t
r
g

M
P
c
u
t

w
e
a
k

M
P
c
u
t

s
t
r
g

b2-16 309.4 308.1 * 309.3 309.3 309.4 * * *
b2-20 332.6 * * * * * * * *
b2-24 444.7 444.5 444.5 444.6 444.6 444.6 444.6 444.5 444.6
b3-24 394.5 392.9 392.2 392.2 393.9 392.2 393.9 392.2 393.9
b3-30 531.4 * * * * * * * *
b3-36 603.8 * * * * * * * *
b4-32 494.8 * * * * * * * *
b4-40 656.6 * * * * * * 656.6 *
b4-48 673.8 671.9 673.2 672.9 673.0 673.0 673.0 672.9 673.2
b5-40 613.7 611.1 * 613.5 * 613.5 * 613.5 *
b5-50 761.4 756.2 * * * * * * *
b5-60 902.0 893.9 898.3 895.9 896.9 896.5 897.9 896.7 898.9
b6-48 714.8 * * 714.7 714.7 714.7 714.7 * *
b6-60 860.1 * * * * * * * *
b6-72 978.5 963.1 975.7 974.1 975.3 974.1 975.4 975.7 977.0
b7-56 824.0 808.3 822.2 821.7 822.0 821.7 822.0 820.3 822.2
b7-70 912.6 907.2 911.1 906.5 911.4 906.5 911.4 906.6 911.7
b7-84 1203.4 1193.2 1202.0 1201.9 1202.0 1201.9 1202.0 1201.3 1202.0
b8-64 839.9 834.7 836.9 836.4 837.4 836.4 838.0 836.6 838.1
b8-80 1036.3 1032.6 1036.2 1035.7 1035.7 1035.7 1036.2 1035.9 1036.2
b8-96 1185.6 1165.1 1181.5 1181.4 1181.9 1181.4 1182.2 1181.3 1183.8

opt 7 10 7 8 7 9 8 10
best 7 11 8 11 8 13 8 20
% gap 0.51 0.12 0.18 0.11 0.18 0.10 0.18 0.07

avg. time ? ? 1.8 6.2 1.9 4.3 5.0 1.2 35.4 3.4

Table 5: Lower bound values lb for type b instances, * if lower bound = opt.

Lower Bounds. The computed lower bound values lb for linear relaxations shows that integrating ride-time
constraints into the subproblem yields signi�cantly stronger lower bounds compared to handling ride times in
the master program. This holds for both approaches with and without cuts. For the type a instances, lower
bounds obtained with MP are even stronger than those obtained by MP-I-based approaches with additional
cuts. In general, the di�erences in the lower bound values lb between approaches with and without ride-time
constraints in the subproblem are larger for the a than for the b instances. This results mainly from the fact
that the integrality gaps of formulations MP-I are larger for the type a than for the b instances. Compared
to the branch-and-cut algorithm B&C, the column-generation approaches are typically superior in terms of
lower bound values for the type b instances, while for the type a instances only the MP-based formulations,
MP-IcutsepRT , and B&P-RC yield better lower bounds than B&C.

MPcutstrg produces for 16 out of 21 instances of the more constrained type a instances integer optimal
solutions in the root node. The version without cuts, i.e., MPstrg, still solves eleven of the type a instances
in the root node. For the type b instances, these numbers decrease to ten and eight, respectively. For the
type a instances, the maximum number of solved instances over all other approaches is eight. In contrast,
B&P-RC solves the same type b instances as MPcutstrg. Here, the strength of the B&P-RC algorithm results
from the use of additional families of valid inequalities.

Both the formulation MP and MP-I are signi�cantly strengthened when using 2-path cuts, rounded
capacity cuts, and fork inequalities. Moreover, integrating the ride-time information into all separation
procedures (algorithms with su�x sepRT) raises the lower bounds. This is particularly bene�cial for the
type a instances.

Computation Times. We now compare the computation times for solving the linear relaxations MP-I and
MP. The most important �nding is that MPstrg and MPcutstrg algorithms have consistently smaller (not longer)
computation times compared to the corresponding MP-I-based approaches, even though the solution of a

21

single pricing problem is much harder for the SPPDARP compared to the SPPPDPTW. Since the MP-I-
based approaches generate routes that generally do not satisfy the ride-time constraints, many more violated
valid inequalities, in particular IPEC, need to be added here. Even more, the necessity to repeatedly solve
pricing problems and separation problems to achieve a optimal ride-time feasible solution imposes that
many more pricing and separation problems have to be solved. This complicates and slows down the re-
optimization of the master program. As a result, the overall computation times of the MP-I-based approaches
exceed those that are MP-based.

The analysis of the di�erent dominance rules Domweak and Domstrong for the SPPDARP yields the
following result: weak dominance based algorithms MPweak and MPcutweak are slower than strong dominance
based algorithms MPstrg and MPcutstrg. However, in both cases computation times are comparable for most
instances and seem still acceptable.

Next we compare computation times for MP-IsepRT and MP-IcutsepRT , i.e., approaches with full consider-

ation of ride-time feasibility, with MP-I and MP-Icut. Recall that for the type a instances, full ride-time
consideration produces signi�cantly stronger lower bounds. With an increasing number of requests, the
computation times also become longer, in particular for MP-IcutsepRT . The reasons are that the separation
procedures with full consideration of ride-time feasibility are much harder to solve, better bounds generally
require more time, and more valid inequalities are separated in the variants MP-IsepRT and MP-IcutsepRT .

Interestingly, for the type b instances, the opposite is true for the solution times of MP-IcutsepRT and MP-Icut.
Our interpretation is that with full consideration of ride-times the dominating e�ect is that the separated
cuts are in fact stronger so that overall less pricing problems have to be solved.

6.2. Integer Solution Results

Results for the computation times of optimal integer solutions are given in Tables 6 and 7. The entry 1h
indicates that the respective algorithm was unable to solve the instances within the time limit of one hour.
There was no time limit for B&C and B&P-RC was terminated after two hours (2h).

Our approach IMPcutstrg with the SPPDARP subproblem and cuts was able solve all 42 instances from
the benchmark set. Without using the cuts, IMPstrg fails on instance b8-96. The only other approach to
solve all the instances is B&C. All branch-and-price algorithms based on IMP-I using SPPPDPTW as a
subproblem (including B&P-RC) fail at least in solving the two biggest type a instances a8-80 and a8-96.
The approach without ride-time information in the separation procedures IMP-Icut fails on three more
instances, the approaches without any cuts (except those, necessary to handle ride-time constrains) IMP-I
and IMP-IsepRT on four additional instances.

For the instance a8-96, we computed an optimal integer solution with value 1229.66 that di�ers from
the value 1232.61 reported in (Ropke et al., 2007).

Dominance Rules in SPPDARP. For solving SPPDARP, we derived the weak and strong dominance rules
and associated labeling algorithms. With Domweak, we are unable to solve ten instances with IMPcutweak and
twelve instances with IMPweak. Apparently, only one of the larger instances, a8-80, that is not already
solved to optimality in the root node can be solved with IMPcutweak. No additional instance is solved to
optimality with IMPweak. In these unsuccessful cases, we observed that often a single pricing problem could
not be solved within the time limit. It seems that additional dual values resulting either from adding valid
inequalities or, more often, from branching complicate the pricing so much that the labeling algorithm with
Domweak cannot solve it. Obviously, the weak dominance rule is too weak to solve larger instances.

Computation Times. Computation times for integer solutions are now discussed separately for type a and
type b instances. The type a instances are generally more constraining w.r.t. ride-times. Here, the algorithms
IMPstrg and IMPcutstrg clearly outperform all other approaches. Computation times are always below 100
seconds, while all other approaches either fail or need at least one hour. Ride-time constraints in the
subproblem in combination with an e�ective labeling algorithm makes solving these instances seemingly
easy. For example, with IMPcutstrg all but three instances can be solved within 10 seconds (exceptions are
a6-72: 24.4s, a8-80: 43.0s, a8-96: 11.1s). All MP-I-based approaches and B&P-RC fail on the last two

22

instances. For the larger instances with at least 50 requests, IMPcutstrg is by at least a factor of 10 faster than
these algorithms.

For the type b instances, where the maximum ride times are less constraining, the picture is less clear.
Still, IMPcutstrg is always among the fastest approaches for all instances. With respect to computation times,
the branch-and-cut algorithm B&C seems inferior to all IMP and IMP-I-based approaches.

As for the linear relaxation, the weak dominance rule is clearly inferior to the strong dominance rule.
For both benchmark sets, IMPweak and IMPcutweak are only competitive on instances that are already solved
in the root node.

Concluding, using cutting planes is bene�cial for all approaches. With very few exceptions, the solution
times of the algorithms with cuts are faster than without cuts. Despite the harder separation, the integration
of the ride-time information in all separation procedures leads to overall faster computations. This is
particularly true for the type a instances. Note that the best strategy for all approaches is to separate
violated inequalities only at the root node.

Instance B
&
C

(
R
o
p
k
e

e
t
a
l
.
,

2
0
0
7
)

B
&
P
-R

C
(
R
o
p
k
e

a
n
d

C
o
r
d
e
a
u
,

2
0
0
5
)

IM
P
-I

IM
P
-I
c
u
t

IM
P
-I
s
e
p
R
T

IM
P
-I
c
u
t

s
e
p
R
T

IM
P
w
e
a
k

IM
P
c
u
t

w
e
a
k

IM
P
s
t
r
g

IM
P
c
u
t

s
t
r
g

a2-16 0.6 0.3 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
a2-20 1.2 0.9 0.4 0.3 0.1 0.3 0.1 0.1 0.1 0.1
a2-24 2.4 3.0 0.4 1.9 0.4 0.9 0.2 0.2 0.1 0.1
a3-24 1.8 1.3 2.0 2.9 2.0 1.3 0.1 0.1 0.1 0.1
a3-30 4.8 3.0 2.7 1.5 2.1 0.9 0.2 0.2 0.2 0.2
a3-36 10.8 12.3 9.9 9.4 7.6 5.2 2.1 2.2 0.9 1.0
a4-32 5.4 3.8 1.5 3.4 3.0 2.5 0.3 0.3 0.1 0.1
a4-40 19.2 12.2 4.2 5.6 4.4 6.8 1.0 1.0 0.5 0.5
a4-48 33.6 45.7 10.2 23.4 16.8 9.1 4.8 2.3 1.9 1.5
a5-40 10.2 6.4 1.2 1.7 4.3 1.3 0.5 0.5 0.3 0.3
a5-50 62.4 544.9 1h 1h 1h 194.4 298.4 32.7 15.9 3.2
a5-60 93.0 63.4 71.2 34.3 94.7 36.6 41.5 7.2 5.1 2.6
a6-48 26.4 17.4 22.9 16.4 7.9 9.9 1.6 1.6 0.5 0.5
a6-60 101.4 54.9 787.1 810.6 168.6 24.4 15.8 5.7 2.8 2.4
a6-72 198.6 1721.6 1h 1h 1h 686.0 1h 1h 97.7 24.4
a7-56 103.2 63.0 198.9 171.3 152.6 94.8 262.5 13.7 2.6 4.8
a7-70 209.4 135.1 840.1 361.2 130.0 128.7 5.1 5.1 1.9 1.9
a7-84 493.8 1436.5 1h 2686.7 1h 146.9 1h 51.7 86.5 7.8
a8-64 216.6 53.2 925.6 623.5 278.0 65.6 4.7 4.7 1.2 1.2
a8-80 733.2 2h 1h 1h 1h 1h 1h 395.7 67.4 43.0
a8-96 4233.0 2h 1h 1h 1h 1h 1h 178.4 20.5 11.1
opt 21 19 16 17 16 19 17 20 21 21

Table 6: Computation times for optimal integer solutions of type a instances in seconds.

7. Conclusions and Outlook

In this paper, we presented dynamic time windows as an example of intra-tour synchronization constraints
that are relevant for applications in passenger transportation, and service industries such as for the routing
and scheduling of service personal (technicians, security guards etc.), and in home care. In a recent survey,
Drexl (2012) outlined that there is a growing interest in vehicle routing with synchronization constraints.
The work presented here can be seen as the central building block for handling dynamic time windows of
the form [0; Li] to synchronize two operations i and i+ n.

The DARP, in the variant where the service level is controlled by means of ride-time constraints, is
the simplest example of a VRP with dynamic time windows. We proposed a new column-generation based
solution approach where for the �rst time both time-window and ride-time constraints are handled in the

23

Instance B
&
C

(
R
o
p
k
e

e
t
a
l
.
,

2
0
0
7
)

B
&
P
-R

C
(
R
o
p
k
e

a
n
d

C
o
r
d
e
a
u
,

2
0
0
5
)

IM
P
-I

IM
P
-I
c
u
t

IM
P
-I
s
e
p
R
T

IM
P
-I
c
u
t

s
e
p
R
T

IM
P
w
e
a
k

IM
P
c
u
t

w
e
a
k

IM
P
s
t
r
g

IM
P
c
u
t

s
t
r
g

b2-16 0.6 0.3 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
b2-20 0.6 0.4 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
b2-24 1.8 1.7 0.4 1.0 0.4 0.9 0.4 0.7 0.3 0.6
b3-24 1.8 2.0 0.4 0.7 0.4 0.6 0.8 0.7 0.5 0.5
b3-30 3.0 1.9 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
b3-36 4.8 3.7 0.3 0.4 0.4 0.4 0.4 0.4 0.3 0.3
b4-32 3.0 2.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
b4-40 8.4 6.3 0.6 1.3 0.6 1.0 2.1 1.4 1.0 0.7
b4-48 30.0 23.1 7.6 24.7 17.3 16.3 674.3 1h 2.5 5.5
b5-40 16.8 4.8 0.5 0.8 0.5 0.7 0.8 0.7 0.7 0.6
b5-50 39.6 11.6 0.7 0.7 0.7 0.7 0.9 0.9 0.7 0.7
b5-60 108.6 192.8 146.5 716.6 845.9 227.1 1h 1h 25.7 22.9
b6-48 14.4 7.2 0.6 1.3 0.8 0.8 0.4 0.4 0.2 0.2
b6-60 40.8 18.4 0.8 0.9 0.9 0.8 1.1 1.1 1.0 1.0
b6-72 1024.2 402.7 468.8 230.8 600.3 212.9 1h 1h 136.1 31.4
b7-56 807.6 66.2 32.1 10.8 26.7 9.3 1h 1h 30.4 50.3
b7-70 127.2 65.1 42.9 12.7 158.6 9.4 1h 1h 163.7 13.0
b7-84 396.6 237.6 30.4 45.4 75.4 36.8 1h 1h 42.0 71.7
b8-64 150.0 105.1 92.1 43.4 31.3 63.7 1h 1h 36.7 23.1
b8-80 183.0 73.1 17.7 20.8 18.7 9.6 1h 1h 14.4 10.3
b8-96 7205.4 3403.5 1h 1h 1h 3031.6 1h 1h 1h 898.8
opt 21 21 20 20 20 21 13 13 20 21

Table 7: Computation times for optimal integer solution of type b instances in seconds.

subproblem. The detailed computational study has shown that this approach outperforms all other exact so-
lution techniques either based on branch-and-cut or branch-and-cut-and-price, but with ride-time constraints
handled in the column-generation master program. The superiority of the newly proposed branch-and-cut-
and-price algorithm can be attributed to the following facts: First, a column-generation formulation with all
intra-route constraints in the subproblem provides better lower bounds when solving its linear relaxation.
Second, the key for the success of such stronger bounds is that we can compute them in relatively short
time due to the new dynamic-programming labeling algorithm. Its heart is e�ective dominance rules for
comparing partial paths represented by labels. As obvious when looking back on Section 4, the dominance
rules were non-trivial to derive, but their application boils down to some simple updates of attributes when
constructing a new label. Third, with the considerable work on valid inequalities for the PDPTW and
DARP by Cordeau (2006) and (Ropke et al., 2007) it was simple to further improve the lower bounds. As a
result, the proposed branch-and-cut-and-price algorithm with ride-time and time-windows constraints in the
subproblem can solve all instances from the standard benchmark set and is about one order of magnitude
faster than previous approaches.

We see several promising avenues for future research building on the techniques presented in this paper.
First, more general intra-route synchronization with dynamic time windows of the form [Ki; Li] with Ki > 0
should be considered. It means that after performing operation i at least Ki time units must elapse before
operation i+n can be executed. The modeling of these minimum ride-times (in DARP vocabulary) is trivial
in a two-index or three-index compact formulation. However, based on attempts to generalize our results,
we suspect that the simultaneous handling of regular and dynamic time windows [Ki; Li] in a dynamic
programming labeling algorithm is not straightforward, but highly intricate. However, a possible way to
tackle such a problem is the handling of minimum ride times in the column-generation master program.
The subproblem is then identical to the DARP subproblem, for which the actual implementation can be
used.

Even more challenging types of VRP result from a mix of intra-route and inter-route synchronization con-
straints. It is clear that inter-route synchronization leads to additional constraints in the column-generation

24

master program (Desaulniers et al., 1998; Ioachim et al., 1999), resulting in costs and pro�ts per node de-
pending on the time of service (Ioachim et al., 1998). The inter-route synchronization constraints alone are
very di�cult to be handled e�ectively, and it seems to be completely unclear how VRP combining inner-
route and inter-route synchronization constraints can be modeled and solved. This relates to exact as well
as heuristic approaches.

Acknowledgment

The second author's research is partially funded by the Deutsche Forschungsgemeinschaft (DFG) under
grant no. IR 122/5-1.

References

Ascheuer, N., Fischetti, M., and Grötschel, M. (2000). A polyhedral study of the asymmetric traveling salesman problem with
time windows. Networks, 36(2), 69�79.

Baldacci, R. and Mingozzi, A. (2009). A uni�ed exact method for solving di�erent classes of vehicle routing problems. Mathe-

matical Programming, 120(2), 347�380.
Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem.

Operations Research, 59(5), 1269�1283.
Borndörfer, R., Klostermeier, F., Grötschel, M., and Küttner, C. (1997). Telebus Berlin: vehicle scheduling in a dial-a-ride

system. Technical report SC 97-23, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany.
Bredström, D. and Rönnqvist, M. (2008). Combined vehicle routing and scheduling with temporal precedence and synchro-

nization constraints. European Journal of Operational Research, 191, 19�29.
Cordeau, J.-F. (2006). A branch-and-cut algorithm for the dial-a-ride problem. Operations Research, 54(3), 573�586.
Cordeau, J.-F. and Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride problem. Transportation

Research Part B: Methodological, 37(6), 579�594.
Cordeau, J.-F. and Laporte, G. (2007). The dial-a-ride problem: models and algorithms. Annals of Operations Research,

153(1), 29�46.
Cordeau, J.-F., Laporte, G., and Ropke, S. (2008). Recent models and algorithms for one-to-one pickup and delivery problems.

In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Latest Advances and New Challenges,
pages 327�357. Springer US, Boston and MA.

Desaulniers, G., Desroisiers, J., Ioachim, I., Solomon, M., Soumis, F., and Villeneuve, D. (1998). A uni�ed framework for
deterministic time constraint vehicle routing and crew scheduling problems. In T. Crainic and G. Laporte, editors, Fleet
Management and Logistics, pages 57�93. Kluwer, Norwell and MA.

Desaulniers, G., Desrosiers, J., Erdmann, A., Solomon, M., and Soumis, F. (2002). VRP with pickup and delivery. In P. Toth
and D. Vigo, editors, The Vehicle Routing Problem, chapter 9, pages 225�242. SIAM, Philadelphia.

Desaulniers, G., Lessard, F., and Hadjar, A. (2008). Tabu search, partial elementarity, and generalized k-path inequalities for
the vehicle routing problem with time windows. Transportation Science, 42(3), 387�404.

Desrochers, M. and Soumis, F. (1988). A generalized permanent labelling algorithm for the shortest path problem with time
windows. INFOR, 26(3), 191�212.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algorithm for the vehicle routing problem with
time windows. Operations Research, 40(2), 342�354.

Drexl, M. (2012). Synchronization in vehicle routing�a survey of VRPs with multiple synchronization constraints. Trans-

portation Science, 46(3), 297�316.
Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pickup and delivery problem with time windows. European Journal of

Operational Research, 54(1), 7�22.
Eveborn, P., Flisberg, P., and Rönnqvist, M. (2006). Laps care � an operational system for sta� planning of home care.

European Journal of Operational Research, 171(3), 962 � 976.
Firat, M. and Woeginger, G. J. (2011). Analysis of the dial-a-ride problem of Hunsaker and Savelsbergh. Operations Research

Letters, 39(1), 32�35.
Haugland, D. and Ho, S. C. (2010). Feasibility testing for dial-a-ride problems. In D. Hutchison, T. Kanade, J. Kittler, J. M.

Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. Pandu Rangan, B. Ste�en, M. Sudan, D. Terzopoulos,
D. Tygar, M. Y. Vardi, G. Weikum, and B. Chen, editors, Lecture Notes in Computer Science, pages 170�179. Springer,
Berlin and Heidelberg.

Houck, D. J., Picard, J. C., Queyranne, M., and Vemuganti, R. R. (1980). The travelling salesman problem as a constrained
shortest path problem: Theory and computational experience. Opsearch, 17, 93�109.

Ioachim, I., Gélinas, S., Desrosiers, J., and Soumis, F. (1998). A dynamic programming algorithm for the shortest path problem
with time windows and linear node costs. Networks, 31, 193�204.

Ioachim, I., Desrosiers, J., Soumis, F., and Bélanger, N. (1999). Fleet assignment and routing with schedule synchronization
constraints. European Journal of Operational Research, 119(1), 75�90.

Irnich, S. (2008). Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum, 30(1),
113�148.

25

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, and
M. M. Solomon, editors, Column Generation, pages 33�65. Springer, New York.

Irnich, S. and Villeneuve, D. (2006). The shortest-path problem with resource constraints and k-cycle elimination for k � 3.
INFORMS Journal on Computing, 18(3), 391�406.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing
problem with time windows. Operations Research, 56(2), 497�511.

Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., and Soumis, F. (1999). 2-path cuts for the vehicle routing problem
with time windows. Transportation Science, 33(1), 101�116.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007�1023.
Madsen, O., Ravn, H., and Rygaard, J. (1995). A heuristic algorithm for a dial-a-ride problem with time windows, multiple

capacities, and multiple objectives. Annals of Operations Research, 60, 193�208.
Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2008). A survey on pickup and delivery problems: Part II: Transportation

between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81�117.
Parragh, S. N., Doerner, K. F., and Hartl, R. F. (2010). Variable neighborhood search for the dial-a-ride problem. Computers

& Operations Research, 37(6), 1129�1138.
Ropke, S. and Cordeau, J.-F. (2005). Branch and cut and price for the pickup and delivery problem with time windows.

Chapter 9 of S. Ropke's cumulative Ph.D. dissertation, Heuristic and exact algorithms for vehicle routing problems, University
of Copenhagen, Copenhagen, Denmark.

Ropke, S. and Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery problem with time windows.
Transportation Science, 43(3), 267�286.

Ropke, S., Cordeau, J.-F., and Laporte, G. (2007). Models and branch-and-cut algorithms for pickup and delivery problems
with time windows. Networks, 49(4), 258�272.

Russell, R. A. and Morrel, R. B. (1986). Routing special-education school buses. Interfaces, 16(5), 56�64.
Savelsbergh, M. W. P. (1992). The vehicle routing problem with time windows: Minimizing route duration. INFORMS Journal

on Computing, 4(2), 146�154.
Tang, J., Kong, Y., Lau, H., and Ip, A. W. (2010). A note on �e�cient feasibility testing for dial-a-ride problems�. Operations

Research Letters, 38(5), 405�407.
Toth, P. and Vigo, D. (1997). Heuristic algorithms for the handicapped persons transportation problem. Transportation

Science, 31(1), 60�71.

Appendix

A. Proofs

Proof of Lemma 1: The schedule T �
P(t) = (��1 (t); :::; �

�
q (t)) is feasible, i.e., T

�
P(t) 2 TP(t), if it satis�es

conditions (24)�(26) and �q � t. By de�nition, for each i = 1; :::; q, there exists a feasible schedule T i
P(t) =

(� i1(t); :::; �
�
i (t); :::; �

i
q(t)) with � iq(t) � t and � ij(t) � ��j (t) for all j 6= i. Hence, ��i (t) 2 [ahi ; bhi] for all

i = 1; :::; q and ��q (t) � t obviously hold. Since ��i (t) + shi + thi;hi+1
� � ii+1(t) and � ii+1(t) � ��i+1(t) hold for

i = 1; :::; q � 1, T �
P(T) satis�es inequalities (25). Finally, using �

j
i (t) + shi + Lhi � ��j (t) and ��i (t) � � ji (t)

for each pair i; j with hi + n = hj , T
�
P(T) also satis�es inequalities (26) and thus T �

P(T) 2 TP(t). �

Proof of Proposition 3: Let Q be a feasible completion of `2 and denote by P2 = (P(`2); Q) the cor-
responding path. The completion Q0 = Qnfn + O`2nO`1g of `1 leads to a path P1 = (P(`1); Q0) with
P(`1) = (h1; :::; hq = �`1). It is known from Proposition 1 that P1 satis�es pairing, precedence, and capacity
constraints and has smaller costs than P2. To show that P1 is feasible, it remains to show that there exists
a feasible time schedule TP1

for P1.
Let TP2

= (TP(`2); TQ) be a feasible schedule for P2 with TQ = (�q+1; :::; �r) and start of service �
`2 at the

current node �`2 . Denote by T
�
P(`1)

= (��1 (�
`2); :::; ��q (�

`2)) 2 TP(`1)(�
`2) with hq = �`1 the time schedule for

P(`1) that maximizes the start of service �i for all nodes hi; i = 1; :::; q while ��`1 � � `2 . Lemma 1 guarantees
the existence and feasibility of this time schedule. Moreover, denote by TQ0 = TQnf�i : hi � n 2 O`2nO`1g
the schedule for Q0 that assigns each node hi of Q

0 the same start of service �i as in TQ. Then, using

that T �
P(`1)

and TP2
are feasible, ���`1

� � `2 , and �i � ldhi�n`2
(� `2) � ldhi�n`1

(� `2) for all nodes hi of Q
0 with

hi � n 2 O`1 , it follows that the schedule TP1
= (T �

P(`1)
; TQ0) is feasible. �

Proof of Proposition 4: Let P(`) = (h1; :::; hq) with hq = �` be the path represented by label `. We �rst
show that the latest feasible start of service ��q (t); t � t�` at the last node hq is of the form ��q (t) = minft; kg,

26

where k is a constant. By de�nition, ��q (t) = max
TP(`)2TP(`)(t)

f�qg with �q � t. If �` 2 P , then clearly

��q (t) = minft; b�`g.
If �` 2 D, then ��q (t) is given by minft; b�` ; �

�
j (t) + shj + Lhjg where �

�
j (t) is the latest feasible start of

service at node hj with �q � t and hj = �`�n the pickup node of �`. Consider the case �
�
j (t) + shj +Lhj <

minft; b�`g, i.e., �
�
q (t) is strictly smaller than t. Then, ��j (t) is independent of t and hence both ��q (t) and

��j (t) are constant for all such t. As a result, we have that ��q (t) is of the form minft; kg, with a constant k.
Let hi 2 O` be an open request, and let m = q� i be the length of sub-path of P starting at hi. We can

now show by induction over the number m that ldhi` (t) = minfkhi1 + t; khi2 g; t � t�` for all hi 2 O`: Recall

that ldhi` (t) = minfbhi+n; �
�
i (t) + shi + Lhig. Thus, it is su�cient to show that ��i (t) = minf~khi1 + t; ~khi2 g

with constants ~khi1 and ~khi2 .
The case m = 0 means that the request is just being picked up, i.e., hi = hq = �`. The property follows

immediately from ��q (t) = minft; kg as shown above.
For the case m + 1, let ` be a label representing a path P(`) = (h1; :::hq = �`) where hi is on board

for m nodes and ��i (t) = minf~khi1 + t; ~khi2 g. If the extension of ` along the arc (�`; x) with x 6= hi + n
is feasible, a new feasible label `0 where hi is on board for m + 1 nodes is created. The case x = hi + n

can be neglected, as then hi =2 O`0 . Denote by T �;`0

P(`0)(t) = (��;`
0

1 (t); :::; ��;`
0

q (t); ��;`
0

x (t)) 2 TP(`0)(t) the

feasible schedule for P(`0) maximizing the start of service at all nodes with ��;`
0

x � t, and by T 0
P(`0nx)(t

0) =

(� 01(t
0); :::; � 0q(t

0)) 2 TP(`0)nfxg(t) the feasible schedule for P(`0)nfxg maximizing the start of service at all

nodes with � 0q � t0. Comparing the de�ning maximation problems for T �;`0

P(`0)(t) and T
0
P(`0nx)(t

0) we have that

T �;`0

P(`0)(t) = (T 0
P(`0)nfxg(t

0); ��;`
0

x (t)) for t0 = ��;`
0

x (t)� shq � thq;x. Since T
0
P(`0)nfxg(t

0) is by de�nition equal to

the schedule that maximizes all �i with �q � t0 for the path represented by `, it follows that � 0i(t
0) = ��;`

0

i (t).

By assumption � 0i(t
0) = minf~khi1 + t0; ~khi2 g holds and thus ��;`

0

i (t) = minf~khi1 + ��;`
0

x (t) � shq � thq;x;
~khi2 g.

Using the property that ��;`
0

x (t) = minft; kg with a constant k proves the proposition. �

Proof of Proposition 6: Consider �rst the case i = x. We have shown in the proof of Proposition 4 that
the latest possible delivery times for i in this case are ldi`0(t) = minfminft; bxg+ sx + Li; bi+ng. The point
of time when ldi`0(t) becomes constant is then clearly given by Bi

`0 = minfbx; bi+n � sx �Lig. The formulas
for ldi`0(t

x
`0) and ldi`0(B

i
`0) are obvious in this case.

For i 6= x, it is again known from the proof of Proposition 4 that T �;`0

P(`0)(t) = (T �;`
P(`)(t

0); ��;`
0

x (t)) and thus

ldi`0(t) = ldi`(t
0) holds, with t0 = ��;`

0

x (t) � s�` � t�`;x and ��;`
0

x (t) = minft;~bxg. If t � ~bx then ��;`
0

x (t) is

constant and hence ldi`0(t) is constant for all such t. For all t < ~bx, �
�;`0

x (t) increases linear in t and so does
ldi`(t

0) as long as Bi
` � t0. If Bi

` < t0, then ldi`(t
0) is constant and so is ldi`0(t). As a result, the time when

ldi`0(t) becomes constant is B
i
`0 = minfBi

` + s�` + t�`;x;
~bxg.

For ldi`0(t
x
`0) and ldi`0(B

i
`0) note �rst that �

�;`0

x (tx`0) = tx`0 and ��;`
0

x (Bi
`0) = Bi

`0 Then, we have ld
i
`0(t

x
`0) =

ldi`(t
x
`0 � s�` � t�`;x) = ldi`(t

x
`0 � s�` � t�`;x + t�`` � t�``) and ldi`0(B

i
`0) = ldi`(B

i
`0 � s�` � t�`;x) = ldi`(B

i
`0 �

s�` � t�`;x + Bi
` � Bi

`). Using the property that ldi`(t) increases linear for all t 2
�
t�`` ; B

i
`

�
and is constant

for all t > Bi
` we have that ldi`0(t

x
`0) = ldi`(t

�`
`) + minf(tx`0 � s�` � t�`;x) � t�`` ; B

i
` � t�`` g and ldi`0(B

i
`0) =

ldi`(B
i
`)� ((Bi

` + s�` + t�`;x)�Bi
`0) �

B. Valid Inequalities

To describe valid inequalities of the PDPTW and DARP some additional notation is necessary. For each
subset S � N of nodes, we denote by �(S) = fi 2 P : i + n 2 S; i =2 Sg the sets of predecessors, and by
�(S) = fi+ n 2 D : i 2 S; i+ n =2 Sg the sets of successors of S. Let �+(S) = f(i; j) : i 2 S; j =2 Sg be the
set of arcs leaving S.

The �rst class results from lifting IPEC and is known as tournament constraints (Ascheuer et al., 2000).
Suppose the path I = (h1; :::; hq) is infeasible (with respect to any constraint), then the associated tourna-

27

ment constraint is
x([I]) � jIj � 1 (= q � 2); (37)

where [I] := f(hi; hj) 2 A : 1 � i < j � qg is the transitive closure of the path I.
In the context of pickup-and-delivery problems, another strengthening of IPEC is possible. If h1 = i

and hq = i + n, i.e., the path I connects a pickup node i with its corresponding delivery node i + n, then
Cordeau (2006) suggested the use of the following inequality:

x(I) � jIj � 2 (= q � 3) (38)

For the separation of both types of infeasible path inequalities, we use a straightforward enumeration pro-
cedure (see Ascheuer et al., 2000).

The second family of inequalities are rounded capacity inequalities. Capacity inequalities impose a lower
bound on the number of vehicles that must leave (and enter) a set of nodes S � N due to capacity limitations
of the vehicles. Such inequalities have been applied successfully in approaches for the CVRP. In the context
of pickup-and-delivery problems, where there is negative demand at the delivery nodes, Ropke and Cordeau
(2009) proposed rounded capacity inequalities of the following form:

x(�+(S)) � max

�
1;

�
d(�(S))

C

�
;

�
�d(�(S))

C

��

The right-hand side takes into account bounds on the number of vehicles that must leave S by considering
the demands of the predecessor nodes �(S) and the demands of the successor nodes �(S) separately. Clearly,
a feasible solution must satisfy both bounds. For the separation of the rounded capacity inequalities, we
use the heuristic separation procedure of Ropke and Cordeau (2009): It starts from a singleton set S = fhg,
node subsets S 2 P [D are iteratively enlarged maximizing a parameterized objective that seeks �nding
a violated rounded capacity inequality. This procedure is repeated several times for each possible initial
node h and randomly chosen parameters of the objective.

In the DARP, a set of nodes S � P [D may need to be served by several vehicles not only due to capacity
limitations of the vehicles, but also because of all other route constraints. This is the key idea of the 2-path
cuts that were introduced by Kohl et al. (1999) for the VRPTW. If the nodes S cannot be feasibly served
by just one vehicle, then the following inequality is valid:

x(�+(S)) � 2

The separation of the 2-path cuts is performed using another heuristic proposed by Ropke and Cordeau
(2009): Also here, the node subsets S for constructing tentative sets S are initialized with a single node and
additional nodes are iteratively added so that �x(�+(S)) is minimized. Whenever �x(�+(S)) < 2, it is checked
whether or not S can be served by a single vehicle. The procedure is started several times from each node
and is randomized by adding a random value to each xij when selecting a node to add.

The last class of inequalities available are fork inequalities, which were proposed by Ropke et al. (2007)
for the PDPTW. They can be di�erentiate into outfork and infork inequalities. Their basic idea is to consider
groups of infeasible paths that are built around an inner path that is feasible (see Ropke et al., 2007, for
illustrative examples). Consider a feasible path P = (h1; :::; hq) and node subsets S; T1; :::; Tq � P [D
satisfying hj =2 Tj�1 for j = 2; :::; q. If the path (i; h1; :::; hm; j) is infeasible for each integer m � q and any
two nodes i 2 S and j 2 Tm, then the following outfork inequality is valid for the DARP:

X
i2S:

(i;h1)2A

xi;h1 +

q�1X
m=1

xhm;hm+1
+

qX
m=1

X
j2Tm:

(hm;j)2A

xhm;j � q

In analogy, the infork inequalities are de�ned for a feasible path P = (h1; :::; hq) and node subsets S1; :::; Sq; T �
P [D satisfying hj =2 Sj+1 for j = 1; :::; q�1. If the path (i; hm; :::; hq; j) is infeasible for each integer m � q

28

and any two nodes i 2 Sm and j 2 T , then the following infork inequality is valid:

qX
m=1

X
i2Sm:

(i;hm)2A

xi;hm +

q�1X
m=1

xhm;hm+1
+

X
j2T :

(hq;j)2A

xhq;j � q

Ropke and Cordeau (2009) showed that both types of fork inequalities are in fact implied by a set-partitioning
formulation that uses elementary routes only. As mentioned before, even when solving the non-elementary
SPPDARP subproblem, hardly any non-elementary routes are generated. Therefore, we do not use fork
constraints in our implementations for MP and IMP that handle the ride-time constraints in the subproblem.
With SPPPDPTW subproblems, however, the generated routes may not satisfy the maximum ride-times.
In this case, the fork constraints are not implied and we use them to strengthen the lower bounds.

The (lifted) IPEC, 2-path cuts and fork inequalities all rely on the (in)existence of a feasible path visiting
either a given sequence P of nodes, or visiting all nodes of a given subset S in any order. In a pickup-
and-delivery context, to decide whether or not there exists such a feasible path, pairing and precedence
constraints can be taken into account. Herewith, stronger conditions for feasibility can be derived (see
Ropke and Cordeau, 2009) because for any subset S � N of nodes, the feasible path over S has to visit all
predecessor nodes �(S) before and all successor nodes �(S) after visiting S. At least one of the possible
sequences over (�(S); S; �(S)) still has to satisfy the constraints of the DARP. The same is true for a feasible
path over a given sequence P. Consequently, a huge number of possible paths might have to be checked
for a given sequence P or subset S. For this purpose, we use an adaptation of our labeling algorithm for
SPPDARP with Domstrong. The enumeration of all paths that possibly need to be checked is not promising
to attain e�cient separation procedures. Thus, when comparing the approaches that can handle ride-times
in a labeling algorithm to one that cannot, it seems fair not to include in the latter case the ride-time
constraints in that part of the separation procedures that account for pairing and precedence constraints.
In Section 6, we will present results for two di�erent versions of the separation procedures when using
SPPPDPTW as subproblem. The �rst one integrates the ride-times in the all separation procedures and is
marked with the subscript sepRT in the computational results. The other one considers ride-time constraints
only in feasibility checks that do not incorporate the predecessor �(S) and successor nodes �(S).

Care must also be taken when including the predecessor and successor information to identify infeasible
paths in the case of the lifted IPEC (38). These inequalities are not valid if the respective path I is only
infeasible because of a violation of the ride-time constraint of a request that has only its pickup or its delivery
node in I but not both. As a simple example consider the sequence P = (i; j; i+n) with a pickup j 2 P . Any
feasible path for P needs to visit node j + n after the nodes of the sequence P implied by �(fi; j; i+ ng) =
fj + ng and �(fi; j; i+ ng) = ?. In this case, the only possibility is ~P = (i; j; i+ n; j + n). If ~P is infeasible
only because of a violation of the maximum ride-time of request j, then the path P̂ = (i; j; j + n; i + n)
may still be feasible and be part of an integer solution. This shows the possible usage of the arc (i; j) in an
integer solution and, hence, that the respective inequality (38), i.e., x(P) � jPj � 2 = 0, is not valid in this
case. With the same argumentation it can be shown that the demands of requests where only the pickup or
only the delivery node is in P must not be included when checking feasibility for inequalities (38).

C. Detailed Computational Results

The Tables 8 and 9 show the detailed computation times for the root node lower bounds. All times are
given in seconds.

29

Instance M
P
-I

M
P
-I
c
u
t

M
P
-I
s
e
p
R
T

M
P
-I
c
u
t

s
e
p
R
T

M
P
w
e
a
k

M
P
c
u
t

w
e
a
k

M
P
s
t
r
g

M
P
c
u
t

s
t
r
g

a2-16 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
a2-20 0.1 0.3 0.1 0.3 0.1 0.1 0.1 0.1
a2-24 0.3 1.8 0.3 0.7 0.2 0.2 0.1 0.1
a3-24 0.2 1.8 0.2 1.2 0.1 0.1 0.1 0.1
a3-30 0.3 1.1 0.3 0.9 0.2 0.2 0.2 0.2
a3-36 0.8 1.9 1.0 2.4 0.7 0.8 0.3 0.5
a4-32 0.5 3.2 0.6 2.5 0.3 0.3 0.1 0.1
a4-40 0.5 1.5 0.5 5.7 1.0 1.0 0.5 0.5
a4-48 2.4 8.2 2.7 9.1 1.5 2.3 0.8 1.5
a5-40 0.5 1.2 0.4 1.0 0.5 0.5 0.3 0.3
a5-50 1.5 13.3 1.8 11.5 1.7 3.5 0.6 1.4
a5-60 4.7 19.6 5.7 16.6 4.6 7.2 2.0 2.6
a6-48 1.3 8.2 1.6 9.9 1.6 1.6 0.5 0.5
a6-60 5.5 17.1 7.8 24.4 3.9 5.7 1.3 2.4
a6-72 8.6 49.2 12.9 123.0 32.2 46.9 3.2 5.6
a7-56 1.5 8.3 1.4 6.2 1.9 2.2 0.7 1.0
a7-70 4.8 27.4 7.7 33.2 5.1 5.1 1.9 1.9
a7-84 11.4 55.5 16.4 82.4 9.8 51.7 3.6 7.8
a8-64 2.1 11.7 3.6 12.0 4.7 4.7 1.2 1.2
a8-80 11.4 79.3 16.7 178.7 9.5 395.7 3.9 6.2
a8-96 19.7 106.8 35.5 746.8 108.7 178.4 7.8 11.1

avg. time 3.7 19.9 5.6 60.4 9.0 33.7 1.4 2.1

Table 8: Computation times for root lower bounds and type a instances in seconds.

Instance M
P
-I

M
P
-I
c
u
t

M
P
-I
s
e
p
R
T

M
P
-I
c
u
t

s
e
p
R
T

M
P
w
e
a
k

M
P
c
u
t

w
e
a
k

M
P
s
t
r
g

M
P
c
u
t

s
t
r
g

b2-16 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1
b2-20 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
b2-24 0.2 0.8 0.2 0.7 0.1 0.5 0.1 0.4
b3-24 0.1 0.5 0.1 0.5 0.1 0.4 0.1 0.4
b3-30 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
b3-36 0.3 0.4 0.4 0.3 0.4 0.4 0.3 0.3
b4-32 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
b4-40 0.6 1.3 0.6 1.0 0.8 1.4 0.3 0.7
b4-48 2.1 7.4 2.9 4.9 2.3 5.1 0.9 3.2
b5-40 0.2 0.8 0.2 0.7 0.5 0.7 0.3 0.6
b5-50 0.7 0.7 0.7 0.7 0.9 0.9 0.7 0.7
b5-60 2.8 10.1 2.8 8.2 3.6 8.9 1.5 5.6
b6-48 0.4 1.0 0.4 0.7 0.4 0.4 0.2 0.2
b6-60 0.8 0.9 0.9 0.8 1.1 1.1 1.0 1.0
b6-72 4.1 14.9 4.5 13.3 9.6 21.5 2.8 10.5
b7-56 1.4 3.5 1.4 3.2 3.0 566.5 1.0 2.9
b7-70 1.6 10.6 1.8 6.9 1.7 11.2 1.4 6.8
b7-84 5.7 10.7 5.0 9.5 51.3 59.4 3.5 9.6
b8-64 1.2 5.6 1.3 7.3 1.7 6.5 1.0 4.3
b8-80 4.0 9.7 4.0 5.5 3.9 7.9 2.1 6.3
b8-96 10.4 50.1 12.2 26.4 23.3 50.8 7.6 16.8

avg. time 1.8 6.2 1.9 4.3 5.0 35.4 1.2 3.4

Table 9: Computation times for root lower bounds and type b in seconds.

30

	Introduction
	The Dial-a-Ride Problem
	Compact and Extensive Formulations
	Column-Generation Subproblem and Labeling Algorithms
	Weak Dominance for SPPDARP
	Labeling Algorithm with Weak Dominance
	Strong Dominance for SPPDARP
	Labeling Algorithm with Strong Dominance
	A Pseudo-Linear Feasibility Test for DARP
	Refinements of the Strong Dominance

	Branch-and-Price Algorithms
	Computational Results
	Linear Relaxation Results
	Integer Solution Results

	Conclusions and Outlook
	Proofs
	Valid Inequalities
	Detailed Computational Results

