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Abstract

Combining the arc routing problem with the problem of determining locations for depots results in location
arc routing problems (LARP). Several ways of connecting depots and assigning routes to the depots are
presented in the literature. This paper addresses the different types of LARP and classifies the literature
according to these types. Park and loop is one of them, where routes have to be assigned to the depots in
such a way that the start and end point of the routes is the same depot. Extending this problem by also
allowing a service to be performed with a large transfer vehicle that connects the depots is called park and
loop with curbline routes. For these two types of LARP, four mixed integer formulations are presented. The
two models, each representing one of the types, differ in how they formulate feasible routes connecting the
depots. While the first model uses generalized subtour elimination constraints, the second one uses flow
variables. The quality of the formulations is tested in a computational study.
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1. Introduction

Since their introduction by Golden andWong (1981), (mixed) capacitated arc routing problems ((M)CARP)
have received increasing attention over the last decades. An optimal CARP solution consists of a set of cost
minimal feasible routes for a fleet of vehicles such that every edge with positive demand is serviced by exactly
one vehicle and the capacity of each vehicle is met. Each route starts and ends at a specific depot node. In
the mixed case, the underlying network is represented as a mixed graph in order to achieve more realistic
models of real world problems (Belenguer et al., 2006). Because for the CARP a fixed depot location is
required, some authors relax this assumption, which leads to a location arc routing problem (LARP) (Levy
and Bodin, 1989). This problem consists of simultaneously determining locations of depots and obtaining
routes connected to the depots. Unfortunately, the term LARP is used by several authors even though the
ways of connecting routes to the depots and connecting the depots to each other differ.

Therefore, the first contribution of this paper is to classify the literature into the categories defined by
Bodin and Levy (2000) for mail delivery application. The second contribution is to present a total of four
mathematical formulations for the park and loop (PAL) problem, which is a variant of the LARP, and
the combined park and loop with curbline routes (CurbPAL) problem, which is an extension of the PAL
problem. Characteristic of the PAL problem is the combination of the routing of a transfer vehicle that takes
the postman from the depot to parking lots and the routing of smaller delivery tours starting and ending at
each parking lot. In the PAL problem, service is only allowed within routes starting at the parking lots. An
extended variant - the CurbPAL problem - can be formulated to also allow service while the transfer vehicle
connecting the parking lots is being driven. So far, the formulations presented in the literature either (i) do
not describe the connections between the parking lots or (ii) do not have the delivery routes starting and
ending at the same parking lots. In this work, these points are integrated into a mathematical formulation
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for the first time. Therefore, two models for each problem (PAL and CurbPAL), based on flow formulations
of Gouveia et al. (2010) and Hashemi Doulabi and Seifi (2013) are presented. These two models differ
in the way they handle infeasible subtours of the transfer vehicle. The first model forbids such subtours
by subsequently adding generalized subtour elimination constraints; the second model uses additional flow
variables to ensure connectivity.

The rest of the paper is structured as follows: The description of different types of LARP and their
classification into the categories of Bodin and Levy (2000) are presented in Section 2. The four models (two
each for the PAL and the extended PAL problem) are introduced in Section 3. In Section 4, computational
results for the presented models are shown, and a conclusion is drawn in Section 5.

2. Classification of location arc routing problems

It is well known that the locations of depots have an influence on the costs of routes assigned to them
(Salhi and Rand, 1989). Therefore, it is advantageous to simultaneously solve the problem of locating the
depots and the routing problem, which is then called a location routing problem (LRP). The question is how
to locate depots and assign routes to those depots in order to minimize the overall costs, which consist of
depot and vehicle costs. The types of routes can be further divided into routes requiring a service at nodes
(still called LRP) and routes performing a service along edges or arcs. The latter version is called a location
arc routing problem (LARP).

While the LRP is addressed extensively, only a few articles target the arc routing case. A survey on
applications for mail delivery, winter gritting, and garbage collection problems can be found in (Assad and
Golden, 1995). The first two papers studying the LARP were in the context of mail delivery for the Canada
Post Corporation (Roy and Rousseau, 1989) and the United States Postal Service (Levy and Bodin, 1989).
Later, Assad and Golden (1995) and Bodin and Levy (2000) observed that different ways of designing
delivery routes exist, and hence of assigning routes to the located depots. In the following we will present
delivery types suggested by Bodin and Levy (2000) and classify articles on the LARP into these types.

1. When delivering mail in a curbline route, the postman starts at the depot and drives along streets
where mail has to be delivered. He can fill the mailboxes directly from his vehicle. The working time
of the postman is completed, when he returns to the depot. A similar mode is the dismount route, but
in contrast to the curbline mode, more than 50% of the mail is delivered directly to the door, such that
the postman has to leave his vehicle. No parking lots have to be opened and only one type of vehicle
is involved. This delivery mode can be modeled as a standard CARP, without the inclusion of any
location aspects. Several exact and heuristic methods have been presented for this kind of problem
and are surveyed in (Belenguer et al., 2013) and (Prins, 2013).

2. The second delivery mode is called relay box routes, where a postman starts the delivery route with
a full handcart at some point. He delivers mail until his handcart is empty, then walks to a relay
box to refill his handcart and to continue his route. Subsequent refillings can be done at the same
or at a different relay box. There are no constraints on where the last delivery ends. The transfer
from the depot to the starting point and from the end point back to the depot is done by some means
of transportation determined by the postal service. Disregarding this transfer transport, only one
type of vehicle is involved. The main aspect, as stated in (Roy and Rousseau, 1989), is that of tour
length restrictions for the morning and afternoon tours, which can be seen as capacity restrictions
of a specific tour (Assad and Golden, 1995). Additionally, Bodin and Levy (2000) mention that the
mail delivery from the depot to the relay boxes is not considered simultaneously, but can be modeled
as a node routing problem with time windows. However, combining these two aspects without time
windows and assuming that the locations of the relay boxes are not given in advance, the problem is
to find these locations in order to meet the load capacity restrictions of the postman and to obtain his
walking route and the filling route of the relay boxes simultaneously. Such problems can be modeled
as LARPs.
There are some papers that can be classified in this problem category: Ghiani et al. (2001) consider the
CARP with intermediate facilities. Applications are waste management problems, where one vehicle
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collects garbage and whenever the vehicle capacity is met, it has to be unloaded at a dump site or
incinerator. Another application is road gritting, where intermediate facilities represent located boxes
of sand or chemicals. What these problems have in common is that a vehicle starts at the depot
collecting or delivering goods and has to be unloaded or replenished at the intermediate facilities,
which represent relay boxes. After servicing all required edges, it returns to the depot. However, no
filling routes of the relay boxes are considered. Amaya et al. (2007, 2010) consider the mail delivery to
the relay boxes and the route for the postman simultaneously. They look at a road marking problem
where a fleet of vehicles starts at the depot, marks required roads and returns to the depot. A second
type of vehicle also starts at the depot but traverses to specific positions (the relay boxes) to replenish
the first vehicle type with color for marking the roads. Salazar-Aguilar et al. (2013) extend this
problem to a synchronized arc and node routing problem by including time aspects. They consider
the locations of refilling and the routes for refilling and for the marking vehicles simultaneously.

3. A delivery mode very similar to the relay box routes is the park and loop mode. There, several types
of vehicles for traversing streets and mail delivery are available. In the standard problem, as proposed
in (Bodin and Levy, 2000), a park and loop route consists of driving a transfer vehicle from the depot
to a parking lot, getting off and walking to deliver mail at a set of street segments and returning to
the parking lot. In the following, these loops are referred to as walking loops. Further, either the
handcart is filled again with mail and a new walking loop starts, or the postman drives the vehicle
to the next parking lot. When all mail has been distributed, the postman drives back to the depot.
Possible extensions can be the use of several vehicle types for mail delivery within the walking loops.
The main difference to the relay box mode is that the postman has to bring all mail for delivery by
himself and he has to return to the parking lot at the end of each delivery route. Determining the
locations of parking lots and obtaining the corresponding walking loops can be modeled as an LARP.
Levy and Bodin (1989) considered the delivery problem of the United States Postal Service, where each
delivery loop has to start and finish at the same depot. The presented heuristic follows the location-
allocation-routing principle, where the location of depots and the allocation of street segments to
a depot are evaluated according to small deadheading time, balanced workload of each partition,
and minimal number of located depots. Amberg et al. (2000) transformed the problem into an arc-
constraint minimum spanning tree with multiple centers and developed a tabu search algorithm to
solve the problem. In contrast to the former approach, a heterogeneous fleet of vehicles is available
to deliver mail. Several objective functions, such as minimizing the deadheading time, balancing the
workload, and accounting for customer priority, are evaluated. Recently, Hashemi Doulabi and Seifi
(2013) presented a flow formulation of the multi depot problem with homogeneous vehicles, where a
predefined number of depots can be opened. The objective function takes into account service and
deadheading costs, hiring costs for each vehicle in use, and dumping costs for open depots. To analyze
the performance of their simulated annealing approach, a lower bounding model was presented.
What is common to all approaches considered so far are the missing interconnections of the depots by a
transfer vehicle, which is part of the delivery mode proposed by Bodin and Levy (2000). Nevertheless,
these approaches can be seen as LARPs with park and loop characteristics, because all vehicles of the
walking loops have to return to their starting depots.

4. The last delivery mode that Bodin and Levy (2000) mentioned is a combination of park and loop
routes and curbline routes. There, the postman is able to deliver mail both while driving the transfer
vehicle to a parking lot or while performing a walking loop starting and ending at a parking lot. So
far, no model has been presented in the literature that considers this kind of problem. As park and
loop routes are part of the problem, again, an LARP model appears to be convenient.

5. The combination of relay box routes and curbline routes is another possible delivery mode. Del Pia and
Filippi (2006) consider a garbage collection problem with two types of collection vehicles. The capacity
and the underlying street network differ for the smaller satellite vehicles and the larger compactor
trucks. Both types of vehicles are able to collect garbage and whenever satellites and trucks meet
at the same node at the same time, the smaller vehicle can dump its load into the container of the
larger truck. The problem considered is that of simultaneously determining the dump locations and
the routes for each vehicle.
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3. Mail delivery routes with park and loop characteristics

As pointed out in the previous section, no formulation representing the full problem specifications de-
fined by Bodin and Levy (2000) for both the pure park and loop delivery mode and the combination with
curbline delivery exists. Especially the aspect of connecting the parking lots by a transfer vehicle is omitted.
This section will introduce four mixed integer programs, two modeling the park and loop mode and two
formulations for the combined park and loop with curbline mode. The presented models are based on the
multi-depot LARP defined in (Hashemi Doulabi and Seifi, 2013). They extended the flow formulation of the
single-depot MCARP of Gouveia et al. (2010). However, the open parking lots are not connected in their
approach. The formulations shown below extend their model in order to integrate a transfer route starting
and ending at a specific loop-depot and visiting all open parking lots. For the first two formulations, the
postman is not allowed to perform any service on edges or arcs while driving the transfer vehicle. In order
to model combined park and loop and curbline routes, a service is also allowed with the transfer vehicle for
the second two models by further modifications.

Some notation valid for all mathematical formulations is presented first. The (combined) park and loop
model considered in this paper is defined on a mixed graph G = (V,E∪A′) with node set V , edge set E, and
arc set A′. With each edge or arc (i, j), a non-negative demand qij ≥ 0 is associated. The set of required
edges or arcs, i.e., qij > 0, is indicated by a subscript ·R. A subset of nodes D ⊆ V defines the possible
locations of parking lots. The maximum number of open parking lots is Dmax. Whenever a parking lot
d ∈ D is open, costs OCd occur. At each parking lot d ∈ D, a heterogeneous fleet K of |K| different vehicles
with capacity Qk k ∈ K is available to perform the service. Each vehicle k selected for servicing creates
hiring costs λk. The transfer vehicle is an additional vehicle indexed by k = 0 and is stationed at a specific
loop-depot dL ∈ D. Whenever traversing an edge or arc (i, j) with vehicle k ∈ K ∪ {0}, traversing costs ckij
occur. Service costs cserv,kij are associated with required edges or arcs (i, j) when the service is performed
with vehicle k ∈ K. If it is also allowed to perform a service with the transfer vehicle, service costs cserv,0ij

occur.
Some modifications on the graph are made, as the underlying formulation of the multi-depot LARP is

based on flow variables. Each edge {i, j} is replaced by two opposite arcs (i, j) and (j, i). Therefore, the
directed graph G = (V,A′′) consists of the node set V and the new arc set A′′ = A′∪{(i, j), (i, j)|{i, j} ∈ E}.
To be able to use a parking lot also as an intermediate node of a walking loop, each node that represents a
potential parking lot is duplicated and the set of duplicated parking lots is denoted by D′. New non-required
arcs (d, d′) and (d′, d) with zero deadheading costs are added. The final graph representing the underlying
network is then given by G = (V ∪D′, A) with A = A′′ ∪ {(d, d′), (d′, d)|d ∈ D}.

Throughout the paper we will use the following standard notation. For a set S ⊆ V , we denote by δ(S) the
set of edges with exactly one endpoint in S and by δ+(S) and δ−(S) the cut set of arcs leaving and entering
set S, respectively. Similarly to the notation of required edges and arcs, we denote by δR(S) = ER ∩ δ(S)
and δ∗R(S) = AR ∩ δ∗(S) with ∗ ∈ {+,−} the set of required edges or arcs in the cut. To further shorten
the notation, we will write δ(i) (δ∗(i) with ∗ ∈ {+,−}) instead of δ({i}) (δ∗({i}) with ∗ ∈ {+,−}).

3.1. Park and loop models
A park and loop solution consists of a set of open parking lots, a transfer route connecting these parking

lots and a set of tours starting and ending at each parking lot, while respecting the capacity restriction
of each vehicle. Inspired by the simple cycle problem (Fischetti et al., 2004) and the directed version
of the prize collecting traveling salesman problem (Balas, 1989), the first of our models uses standard
generalized subtour elimination constraints (SEC) for connecting the parking lots. Cutting plane procedures
to identify violated generalized SEC can easily be adapted to the park and loop case. However, because of
the exponential number of constraints, the problem cannot be stated at once. The second of our models
uses a flow formulation to connect the open parking lots, similarly to the single depot flow formulation of
Gavish and Graves (1978) for the traveling salesman problem. The advantage of this formulation is the
linear number of constraints needed to eliminate subtours. However, additional flow variables have to be
introduced for the formulation.
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3.1.1. Park and loop model with generalized SEC
To give a mathematical formulation, some further notation is needed: Let SPij be the cost of the shortest

deadheading path between i and j for the transfer vehicle, i.e., the costs of the shortest path are determined
by summing up the corresponding traversing costs. Variables xk,lij take value 1 if arc (i, j) is serviced by
vehicle k that is linked to a parking lot by label l, and 0 otherwise. Variables yk,lij count the number of times
an arc (i, j) is traversed by vehicle k linked to a parking lot by l. In order to calculate the hiring cost of
vehicles that perform a service, variables DCd are introduced. For each potential location of a parking lot
a variable zd exists and takes value 1 if the parking lot is used, and 0 otherwise. The tour of a vehicle k is
linked to a parking lot by variables T ld. These variables take value 1 if node d is selected as a parking lot and
label l is assigned to this place. Flow variables fk,lij for every arc (i, j) are used to ensure the connectivity of
the tour of vehicle k linked to a parking lot by l within the walking loops. Finally, variables rij define the
route of the transfer vehicle and take value 1 if parking lot i is connected with parking lot j. The (PAL)
model then reads:

(PAL) min
∑

l=1,...,Dmax

∑
k∈K

 ∑
(i,j)∈AR

cserv,kij xk,lij +
∑

(i,j)∈A

ckijy
k,l
ij

+
∑
i∈D′

∑
j∈D′\{i}

SPijrij

+
∑
d′∈D′

(DCd′ +OCd′zd′) (1)

s.t.
∑

j∈δ+(i)

yk,lij +
∑

j∈δ+R(i)

xk,lij =
∑

j∈δ−(i)

yk,lji +
∑

j∈δ−R (i)

xk,lji ∀i ∈ V, ∀k ∈ K, l = 1, . . . , Dmax (2)

∑
l=1,...,Dmax

∑
k∈K

xk,lij = 1 ∀(i, j) ∈ A′R,
∑

l=1,...,Dmax

∑
k∈K

(xk,lij + xk,lji ) = 1 ∀{i, j} ∈ ER (3)

yk,ld′d ≤ T
l
d′ ∀d′ ∈ D′, ∀k ∈ K, l = 1, . . . , Dmax (4)∑

j∈δ−(i)

fk,lji −
∑

j∈δ+(i)

fk,lij =
∑

j∈δ−R (i)

qjix
k,l
ji ∀i ∈ V, ∀k ∈ K, l = 1, . . . , Dmax (5)

∑
(i,j)∈AR

qijx
k,l
ij −M(1− T ld) ≤ f

k,l
d′d ≤

∑
(i,j)∈AR

qijx
k,l
ij +M(1− T ld)

∀d′ ∈ D′, ∀k ∈ K, l = 1, . . . , Dmax (6)

fk,ld′d ≤MT ld ∀d′ ∈ D′, ∀k ∈ K, l = 1, . . . , Dmax (7)

fk,ldd′ = 0 ∀d′ ∈ D′, ∀k ∈ K, l = 1, . . . , Dmax (8)

fk,lij ≤ Q
k(xk,lij + yk,lij ) ∀(i, j) ∈ A, ∀k ∈ K, l = 1, . . . , Dmax (9)

DCd′ ≥ λ(
∑
k∈K

yk,ld′d)−M(1− T ld′) ∀d′ ∈ D′, l = 1, . . . , Dmax (10)∑
d′∈D′

zd′ ≤ Dmax (11)∑
l=1,...,Dmax

T ld′ = zd′ ∀d′ ∈ D′ (12)

∑
d′∈D′

T ld′ ≤ 1 l = 1, . . . , Dmax (13)

xk,lij ≤
∑
d′∈D′

T ld′ ∀(i, j) ∈ AR, ∀k ∈ K, l = 1, . . . , Dmax (14)

yk,lij ≤M
∑
d′∈D′

T ld′ ∀(i, j) ∈ A, ∀k ∈ K, l = 1, . . . , Dmax (15)
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∑
j∈D′\{i}

rij = zi ∀i ∈ D′ \ {dL},
∑

i∈D′\{j}

rij = zj ∀j ∈ D′ \ {dL} (16)

∑
i∈S

∑
j /∈S

rij ≥ zh ∀S ⊆ D′, dL ∈ S, h ∈ D′ \ S (17)

xk,l ∈ {0, 1}|AR|, yk,l ∈ Z|A|+ , fk,lij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K, l = 1, . . . , Dmax

z ∈ {0, 1}|D
′|, T l ∈ {0, 1}|D

′| l = 1, . . . , Dmax, rij ∈ {0, 1} ∀i, j ∈ D′. (18)

The objective (1) seeks to minimize the sum over service and deadheading costs of the walking loops,
the connection of parking lots by the transfer vehicle, and the costs for opening a depot and hiring a vehicle.
Constraints (2)–(15) define feasible routes of the service vehicles k ∈ K, while constraints (16) and (17)
ensure a feasible transfer tour. The connectivity of service vehicles at each node is ensured by equations
(2) and the service of each required arc and edge by exactly one vehicle is guaranteed by equations (3).
Inequalities (4) ensure a maximum of one traversal from the dummy parking lot to the original one if d
is an open parking lot. Constraints (5)–(8) are flow conservation constraints. Together with the coupling
constraint (9) they ensure the elimination of infeasible subtours.

• Equations (5) ensure that the difference between inflow and outflow of node i is exactly the demand de-
livered on arcs entering node i. This type of constraint is also known as a generalized flow conservation
constraint.

• Inequalities (6) ensure that if the parking lot d is open, the flow leaving this node by vehicle k is equal
to the demand delivered by the same vehicle linked to the parking lot by l.

• Inequalities (7) ensure that the outgoing flow from parking lot d is zero if d is not open.

• Equations (8) ensure that there is no flow left when finishing the tour by returning to the dummy
parking lot.

• Inequalities (9) are upper bounds on the flow of an arc (i, j) and couple flow variables with traversing
and servicing variables.

Next, inequalities (10) calculate the total hiring costs of tours assigned to parking lot d. Constraints (11)–
(15) restrict the number of open parking lots, the number of labels assigned to a parking lot and the vehicles
assigned to a parking lot by a label l. More precisely:

• Inequality (11) ensures at maximum Dmax parking lots are open.

• Equalities (12) link the variables T ld to a specific parking lot d.

• Inequalities (13) ensure that no more than one depot d is linked to a label l.

• Inequalities (14) and (15) ensure that a tour of vehicle k linked to parking lot d by l is constructed
only if there is a link between d and l.

The last two sets of restrictions define a feasible tour for the transfer vehicle. Equalities (16) are generalized
node degree constraints and state that exactly one arc has to leave (enter) node i if i is selected as a parking
lot. If dL is the only open parking lot, the transfer vehicle does not need to connect dL to other parking
lots. Therefore, no such constraint exists for the loop-depot dL. Constraints (17) eliminate subtours of the
transfer vehicle including an open parking lot h disconnected from the loop-depot dL. This version of the
generalized subtour elimination constraints stated here assumes that the loop-depot dL is always a possible
parking lot.
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Additional improving constraints, as presented in (Hashemi Doulabi and Seifi, 2013) and (Gouveia et al.,
2010), are added:

fklij ≤ qijxklij ∀(i, j) ∈ AR, ∀k ∈ K, l = 1, . . . , Dmax (19)

fklij ≤
(
yklij − 1

)
min
(i∗j∗)

qi∗j∗ ∀(i, j) ∈ A \AR, ∀k ∈ K, l = 1, . . . , Dmax (20)∑
d∈D

dT ld ≥
∑
d∈D

dT l+1
d ∀l = 1, . . . , Dmax − 1. (21)

Constraints (19) and (20) impose lower bounds on the flow variables and constraints (21) break symmetric
solutions regarding the link to a parking lot.

3.1.2. Park and loop model with flow formulation
In order to formulate flow constraints for the transfer vehicle, new variables sij are necessary to model

the flow of the transfer vehicle. The flow formulation (PAL-flow) of the park and loop model then reads:

(PAL-flow) min
∑

l=1,...,Dmax

∑
k∈K

 ∑
(i,j)∈AR

cserv,kij xk,lij +
∑

(ij)∈A

ckijy
k,l
ij

+
∑
i∈D′

∑
j∈D′\{i}

SPijrij

+
∑
d′∈D′

(DCd′ +OCd′zd′) (22)

s.t. Constraints (2)− (15) of PAL (23)∑
j∈D′\{i}

rij = zi ∀i ∈ D′ \ {dL},
∑

i∈D′\{j}

rij = zj ∀j ∈ D′ \ {dL} (24)

∑
j∈D

sji −
∑
j∈D

sij = zi ∀i ∈ D \ {dL} (25)

∑
j∈D

sdLj = |D| − 1 (26)

(|D| − 1)rij − sij ≥= 0 ∀i, j ∈ D and i 6= j (27)

xk,l ∈ {0, 1}|AR|, yk,l ∈ Z|A|+ , fk,lij ≥ 0 ∀(i, j) ∈ A, ∀k ∈ K, l = 1, . . . , Dmax

z ∈ {0, 1}|D
′|, T l ∈ {0, 1}|D

′| l = 1, . . . , Dmax

rij ∈ {0, 1} ∀i, j ∈ D′, sij ≥ 0 ∀(i, j) ∈ A. (28)

The objective (22) and constraints (23) are the same as in the PAL model before. Constraints (24)–(27)
model the tour of the transfer vehicle. Instead of adding generalized subtour elimination constraints (see
(17)), a flow formulation is now used. Whenever node i is selected as an open parking lot, the transfer vehicle
has to enter and leave that node, which is stated by constraints (24). Flow conservation is guaranteed by
constraints (25) and (26). The first set of constraints (25) states that whenever node i is a parking lot, one
unit of flow has to be absorbed by that node. The second constraint states that exactly |D|−1 units of flow
leave the loop-depot dL. If less than |D| parking lots are open (either Dmax < |D| or because of optimality),
the remaining flow is taken by the loop variable sdLdL . Constraints (27) link the flow variables sij with the
transfer variables rij . The same improving constraints (19)–(21) as for the PAL model can be added.

3.2. Combined park and loop and curbline models
This paragraph will introduce two mixed integer formulations for the combined park and loop and

curbline delivery mode. In contrast to the models of the previous paragraph, the postman is now also
allowed to deliver mail with the transfer vehicle. Again, the two models differ in the way they handle
infeasible subtours of the transfer vehicle. The first formulation follows the idea of the sparse formulation
presented by Belenguer and Benavent (1998) for the CARP. Additional balance constraints resulting from
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the mixed network and constraints ensuring the connectivity of parking lots are added. The computational
results of Belenguer and Benavent (1998) show that the formulation work well for small sized problems.
The second formulation uses flow variables in the same spirit as presented in (Gouveia et al., 2010). Their
computation results show that this formulation is sometimes able to improve the lower bounds obtained by
the aggregated version of the spare formulation.

3.2.1. Combined park and loop and curbline routes with generalized SEC
In order to formulate the model, new variables rxe, rxa, rye, rya, and pi are introduced. Variables rxe

and rxa take value 1 if the transfer vehicle services edge e or arc a. Variables rye and rya count the number
of times an edge e or arc a is traversed without being serviced by the transfer vehicle. Auxiliary variables
pi for every node i ∈ V are needed to ensure even node degrees. Note that the transfer vehicle is indexed
by k = 0 and the set of (required) arcs of the original network is indicated by A′ (A′R). A mathematical
formulation for the combined delivery mode is then:

(CurbPAL)

min
∑

l=1,...,Dmax

∑
k∈K

 ∑
(i,j)∈AR

cserv,kij xk,lij +
∑

(ij)∈A

ckijy
k,l
ij


+
∑
e∈ER

cserv,0e rxe +
∑
a∈A′R

cserv,0a rxa +
∑
e∈E

c0erye +
∑
a∈A′

c0arya

+
∑
d∈D

(DCd +OCdzd) (29)

s.t. Constraints (2) and (4)− (15) of PAL (30)∑
l=1,...,Dmax

∑
k∈K

xk,lij + rxa = 1 ∀a = (i, j) ∈ A′R,∑
l=1,...,Dmax

∑
k∈K

(xk,lij + xk,lji ) + rxe = 1 ∀e = {i, j} ∈ ER (31)

∑
e∈δR(dL)

rxe +
∑

a∈δ+R(dL)

rxa +
∑

e∈δ(dL)

rye +
∑

a∈δ+(dL)

rya + zdL ≥ 1 (32)

∑
e∈ER

rxe +
∑
a∈AR

rxa ≤ Q0 (33)

∑
e∈δR(i)

rxe +
∑

a∈δ+R(i)∪δ−R (i)

rxa +
∑
e∈δ(i)

rye +
∑

a∈δ+(i)∪δ−(i)

rya = 2pi ∀i ∈ V (34)

−
∑

a∈δ+R(S)

rxa −
∑

a∈δ+(S)

rya +
∑

a∈δ−R (S)

rxa +
∑

a∈δ−(S)

rya +
∑

e∈δR(s)

rx+
∑
e∈δ(S)

rya ≥ 0 ∀S ⊆ V (35)

∑
e∈δR(i)

rxe +
∑

a∈δ+R(i)∪δ−R (i)

rxa +
∑
e∈δ(i)

rye +
∑

a∈δ+(i)∪δ−(i)

rya ≥



2rxe, e ∈ ER(S)
2rxa, a ∈ A′R(S)
2rye, e ∈ E(S)

2rya, a ∈ A′(S)
2zi, i ∈ D′ ∩ S

∀S ⊆ V \ {dL}

(36)

xk,l ∈ {0, 1}|AR|, yk,l ∈ Z|A|+ , rx ∈ {0, 1}|A
′
R∪ER|, ry ∈ Z|A

′∪E|
+ , p ∈ Z|V |+

fk,l ≥ 0, ∀k ∈ K, l = 1, . . . , Dmax, z ∈ {0, 1}|D|, T l ∈ {0, 1}|D| l = 1, . . . , Dmax. (37)

The objective (29) calculates the costs that occur when either a vehicle of the smaller delivery routes
starting at a parking lot or the transfer vehicle services or traverses an edge or arc. Again, hiring costs
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for vehicles in use and fixed costs for opening a parking lot are taken into account. Constraints (30) are
the same as for the pure park and loop delivery mode and model feasible routes for vehicles of the walking
loops. The service constraints (31) take into account that it is now possible to service an edge or arc with
the transfer vehicle. A feasible route for the transfer vehicle is defined by constraints (32)–(36). In detail:

• Constraint (32) ensures that if the loop-depot dL is not chosen as an open parking lot, at least one
outgoing edge or arc of the transfer vehicle has to be used.

• Constraint (33) ensures the capacity restriction of the transfer vehicle.

• Constraints (34) ensure that for every node i ∈ V , the sum of incoming and outgoing edges and arcs
is even.

• Constraints (35) are balance constraints and ensure that for every subset of nodes the difference
between incoming and outgoing arcs can be compensated by edges.

• Subtour elimination constraints (36) ensure that there are no disconnected arcs or edges and no
disconnected open parking lots from the loop-depot dL.

As before, improving constraints for bounding the flow of vehicles in the walking loop (19), (20) and
symmetry breaking constraints (21) can be added to speed up the solution process.

3.2.2. Combined park and loop and curbline routes with flow formulation
The second formulation of the combined park and loop and curbline routes uses again a flow formulation

to describe a feasible route of the transfer vehicle. For each arc (i, j) ∈ A′, there is a variable ryij counting
the number of traversings of the transfer vehicle without servicing. Whenever the arc (i, j) is required, a
binary variable rxij exists taking value 1 if (i, j) is serviced by the transfer vehicle, and 0 otherwise. Two
service and deadheading variables rxij , rxji and ryij , ryji, respectively, exist for each edge {i, j} representing
both directions in which an edge can be traversed. Similar, flow variables sij exist, one for each arc (i, j)
and two for each edge {i, j}. The flow formulation of the combined PAL with curbline problem then reads:

(CurbPAL-flow)

min
∑

l=1,...,Dmax

∑
k∈K

 ∑
(i,j)∈AR

cserv,kij xk,lij +
∑

(ij)∈A

ckijy
k,l
ij


+

∑
(i,j)∈AR

cserv,0ij rxij +
∑

(i,j)∈A

c0ijryij

+
∑
d∈D

(DCd +OCdzd) (38)

s.t. Constraints (2) and (4)− (15) of PAL (39)∑
l=1,...,Dmax

∑
k∈K

xk,lij + rxij = 1 ∀(i, j) ∈ A′R,∑
l=1,...,Dmax

∑
k∈K

(xk,lij + xk,lji ) + (rxij + rxji) = 1 ∀{i, j} ∈ ER (40)

∑
j∈δ+(i)

ryij +
∑
δ+R(i)

rxij =
∑
δ−(i)

ryji +
∑
δ−R (i)

rxji ∀i ∈ V (41)

∑
j∈δ−(i)

sji −
∑

j∈δ+(i)

sij =
∑

j∈δ−R (i)

qjirxji ∀i ∈ V (42)

∑
j∈δ+(dL)

sdLj =
∑

(i,j)∈AR

qijrxij (43)
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sij ≤ Q0(rxij + ryij) ∀(i, j) ∈ A (44)∑
j∈δ+(d′)

rxd′j +
∑

j∈δ+(d′)

ryd′j ≥ zd′ ∀d′ ∈ D′ (45)

xk,l ∈ {0, 1}|AR|, yk,l ∈ Z|A|+ , rx ∈ {0, 1}|A
′
R∪ER|, ry ∈ Z|A

′∪E|
+ , s ≥ 0

fk,l ≥ 0, ∀k ∈ K, l = 1, . . . , Dmax, z ∈ {0, 1}|D|, T l ∈ {0, 1}|D| l = 1, . . . , Dmax. (46)

The objective (38) and constraints (39) are the same as in the PAL model of the previous section. The
service constraints (40) take into account that it is possible to service an edge or arc with the transfer
vehicle. Because of the flow formulation, there are two variables associated with one edge: one for each
possible traversing direction. A feasible route for the transfer vehicle is defined by constraints (41)–(45),
which are formulated with flow variables. In detail:

• Constraints (41) ensure the continuity of the transfer vehicle.

• Constraints (42) ensure that the difference between incoming and outgoing flow of the transfer vehicle
at node i is exactly the demand absorbed by the demand of arcs entering node i and serviced with the
transfer vehicle. These generalized flow conservation constraints are similar to constraints (5) of the
PAL model.

• Constraint (43) ensures that the outgoing flow of the loop-depot dL equals the demand delivery by
the transfer vehicle.

• Constraints (44) are upper bounds on the flow variables.

• Constraints (45) ensure that the transfer vehicle reaches every open parking lot.

As before, improving constraints for bounding the flow of vehicles in the walking loop (19), (20) and
symmetry breaking constraints (21) can be added to speed up the solution process.

4. Computational results

This section reports computational results for the four models presented for the park and loop problem
and the combination with curbline delivery. To test the quality of the new formulations, we randomly
generated a benchmark set of 39 instances on mixed graphs with both required and non-required edges and
arcs. For instances Pal1 to Pal25, the size of the underlying network increases for both nodes and edges or
arcs. There are three types of vehicles available, where the first type always represents the transfer vehicle.
It is assumed that there exists just one transfer vehicle. Instances Pal26 to Pal39 model problems with two
or three districts that are connected by arcs or edges. These instances are derived by combining some of the
first problems and additional arcs and edges to ensure a strongly connected graph. Again, three different
vehicle types are given, but more vehicles per type are available. Service and transfer costs are provided for
every link and every vehicle type. About 20% of the nodes represent possible parking lots.

All computations were performed on a standard PC with an Intel c©CoreTM i7-2600 processor at 3.4 GHz
with 16 GB of main memory. The four models for the (combined) park and loop problem were introduced
to CPLEX through the callable C++ API of CPLEX 12.2 and the cutting plane algorithm was coded in
C++ (MS-Visual Studio, 2010). For separating violated SEC in the (Curb)PAL model, we follow the idea
of Benavent et al. (2000) and compute a min-cut separating the loop-depot dL and a parking lot h or an
edge or arc traversed or serviced by the transfer vehicle. Separating violated balance set constraints is a bit
more tricky to implement. The separation procedure we follow is described in (Nobert and Picard, 1996).
A hard time limit of four hours has been set for CPLEX to solve the model. We also use CPLEX for finding
an upper bound and applied the feasibility pump heuristic with an emphasis on finding a feasible solution.

Tables 1–4 report results of the linear relaxation and the end of the branch-and-bound tree on all tested
benchmark sets. The entries of the header of all tables have the following meaning:
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Dmax = 2,3 maximum number of open parking lots
(Curbline+) PAL/PAL-flow lower bounds and computation times for the PAL model (1)–(17),

the PAL-flow model (22)–(27)
the combined park and loop with curbline mode CurbPAL model (29)–(36)
and the CurbPAL-flow model (38)–(44)

instance name of the instance
|V |,|A ∪ E|,|AR|,|ER|,Ptotal characteristics of the instance: |V | number of nodes, |A∪E| number of links,

|AR| number of required arcs, |ER| number of required edges, Ptotal total
number of vehicles at each parking lot
Due to the sake of brevity, this information is omitted in the reporting
integer results.

lb lower bound at the end of the root node or the end of the branch-and-bound
tree

time computation time in seconds; if the time limit is reached, it is indicated
by 4h

lbbest best lower bound obtained with either the PAL or PAL-flow formulation or
CurbPAL or CurbPAL-flow formulation for the combined problem

ub best upper bound reported by CPLEX

The following additional information is given for the respective model:

Num lbbest number of instances that provided the best lower bound lbbest
Num opt number of obtained integer solutions
avg time average computation time for the root node or the whole branch-and-bound tree

4.1. Linear Relaxation Results
We will start with the analysis of the linear relaxation results for both delivery modes obtained at the

end of the root node. Tables 1 and 2 show the results for the generated Pal instances.
Comparing the values of the lower bounds for the pure park and loop delivery mode, the performance

of a formulation seems to depend on the problem size. If at maximum two parking lots can be opened,
the number of best lower bounds lbbest is slightly higher for the PAL-flow model than for the PAL model.
However, allowing at maximum three open parking lots, the problem size increases by both O (|A|Ptotal)
in variables and constraints. Then, the PAL model formulated with generalized SEC results more often in
better lower bounds than does the flow formulation PAL-flow. Overall, the computation time for solving
the root node is on average higher for the PAL model than for the PAL-flow model.

Comparing the linear relaxation results for the combined park and loop with curbline mode in Table 2,
we see that the PAL-flow model clearly outperforms the PAL model. For both Dmax = 2 and Dmax = 3,
higher lower bounds are obtained with the PAL-flow formulation in 31 and 32 out of 39 cases, respectively.
Also, the average computation time is by factor 18 and 25, respectively, drastically smaller than the average
computation time of the root node with the PAL model.

The combined park and loop with curbline mode is a more complex problem than the pure park and
loop mode, as additional decisions on whether or not to service an edge or arc with the transfer vehicle
are required. Increasing computation times for the root node of the combined problem modeled with the
CurbPAL formulation support this. Surprisingly, solving the root node of the CurbPAL-flow formulation is
much faster than the PAL-flow formulation of the pure park and loop mode.

4.2. Integer Results
In Tables 3 and 4, we report results at the end of the branch-and-bound tree. Again, the flow formulation
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of the PAL problem clearly outperforms the formulation with the generalized SEC. As reported in Table 3,
the PAL-flow model results in 38 out of 39 cases in a better lower bound. The only exceptions are instances
Pal35 for Dmax = 2 and Pal36 for Dmax = 3. Also, the number of obtained optimal integer solutions is
much higher for the flow formulation (31 and 26, respectively). The advantage of the PAL-Flow model is
also shown by the smaller average computation times (about factor two times faster). Similar results are
obtained for the combined park and loop and curbline mode. There, all 39 instances for both Dmax = 2 and
Dmax = 3 are solved best with the flow formulation. All integer solutions found with the CurbPAL-flow
model are also found with the CurbPAL model, but not vice versa.

5. Conclusion

In this paper, we have considered the different mail delivery modes classified by Bodin and Levy (2000)
and have assigned the existing literature on LARPs to these categories. We have also presented mathematical
formulations for two of the delivery modes, and showed computational results for all formulations. Extending
the standard MCARP by a location aspect results in a combined location and arc routing problem. However,
there are several possibilities for how locations are connected among themselves and with delivery routes.

First, the existing literature concerned with location arc routing is reviewed to distinguish between these
possibilities. Considering the mail delivery context, these extensions can be described by different delivery
modes.

Second, when the postman drives a transfer vehicle that allows a service to be performed or not, the
corresponding delivery mode is called park and loop mode or combined park and loop with curbline mode,
respectively. For each of these two delivery modes, we have proposed two mathematical formulations. The
two formulations differ in how they model feasible routes of the transfer vehicle. In particular, the first
model uses generalized subtour elimination constraints, where missing constraints are identified by a cutting
plane procedure and added dynamically. This has the advantage of starting with a small problem and
adding only relevant constraints. The second model uses a flow formulation to model feasible routes of the
transfer vehicle. The advantage is that only a linear number of constraints is needed to describe feasible
routes. Therefore, the whole model can be stated at once. As far as we know, this is the first time that a
mathematical formulation both for the park and loop and the combined park and loop with curbline delivery
has been presented.

Third, we have provided computational results, where the performance of the different formulations
is analyzed. The results show that the flow formulation of both problem types clearly outperforms the
formulation with generalized subtour elimination constraints. Both better bounds and lower computation
times are obtained with the flow formulation.
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