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Abstract

In the Synchronized Pickup and Delivery Problem (SPDP), user-specified transportation requests from
origin to destination points have to be serviced by a fleet of homogeneous vehicles. The task is to find a
set of minimum-cost routes satisfying pairing and precedence, capacities, and time windows. Additionally,
temporal synchronization constraints couple the service times at the pickup and delivery locations of the
customer requests in the following way: A request has to be delivered within prespecified minimum and
maximum time lags (called ride times) after it has been picked up. The presence of these ride-time constraints
severely complicates the subproblem of the natural column-generation formulation of the SPDP so that it
is not clear if their integration into the subproblem pays off in an integer column-generation approach.
Therefore, we develop four branch-and-cut-and-price algorithms for the SPDP based on column-generation
formulations that use different subproblems. Two of these subproblems have not been studied before. We
derive new dominance rules and labeling algorithms for their effective solution. Extensive computational
results indicate that integrating either both types of ride-time constraints or only the maximum ride-time
constraints into the subproblem results in the strongest overall approach.

Key words: vehicle routing, pickup and delivery, temporal synchronization, labeling algorithm,
branch-and-cut-and-price

1. Introduction

In the family of one-to-one Pickup-and-Delivery Problems (PDPs), customer requests consist of trans-
porting goods or people between paired origin and destination points: for each request a specific good or
person has to be picked up at one location and to be transported to the corresponding delivery location.
Typically, the task is to design a set of minimum-cost routes satisfying all customer requests subject to
pairing and precedence, and other problem-specific constraints. For details on different PDP-variants we
refer to the recent surveys (Berbeglia et al., 2007; Cordeau et al., 2008; Parragh et al., 2008).

A well-studied one-to-one PDP is the Pickup-and-Delivery Problem with Time Windows (PDPTW) (e.g.,
Dumas et al., 1991; Ropke and Cordeau, 2009; Baldacci et al., 2011) in which vehicle routes must respect
pairing and precedence, capacities, and time windows. In this article, we introduce the Synchronized Pickup
and Delivery Problem (SPDP). It extends the PDPTW by imposing additional constraints that couple
the service times at the pickup and delivery locations of the customer requests in the following way: A
delivery node has to be serviced within prespecified minimum and maximum time lags (called ride times)
after the service at the corresponding pickup node has been completed. Because both pickup and delivery
are performed by the same vehicle, these additional constraints are temporal intra-route synchronization
constraints. As a generalization of the PDPTW the SPDP is clearly NP -hard.

As pointed out, e.g., by Dohn et al. (2011) or Drexl (2012), synchronization aspects are highly relevant in
routing practice and there is a growing interest on Vehicle Routing Problems (VRPs) with synchronization
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constraints in the research community. We see the SPDP as the prototypical VRP with temporal intra-
route synchronization in the sense that synchronization takes place only within disjunctive pairs of nodes
and that there are no other non-standard constraints present. In this respect, the development of an effective
algorithm for solving the SPDP constitutes a central building block for the solution of richer VRPs with
synchronization constraints.

A special case of the SPDP is the so-called Dial-a-Ride Problem (DARP) in which only a maximum ride
time is specified for each pickup-and-delivery pair. The DARP mainly arises in door-to-door transportation
services for school children, handicapped persons, or the elderly and disabled (see, e.g., Russell and Morrel,
1986; Madsen et al., 1995; Toth and Vigo, 1997; Borndörfer et al., 1997). In this context, maximum ride
times are used to guarantee a certain service level by limiting the time a passenger is on board of the vehicle.
A similar service-related use of maximum ride-time constraints is described by Plum et al. (2014) in the
context of liner shipping service design. When there is a limit on the total working hours of drivers (Ceselli
et al., 2009) or when transporting perishable goods (Azi et al., 2010), the time a vehicle is away from the
depot has to be restricted. This can be modeled by imposing a maximum ride-time constraint on a dummy
request originating and destinating at the depot. Similarly, one might want to have a limit on both the
minimum and maximum duration of the routes in order to achieve an even work-distribution of the drivers.

Other applications of temporal intra-route synchronization in which minimum and maximum ride times
are relevant include the planning of security guards where locations have to be inspected repeatedly within
given time intervals (Bredström and Rönnqvist, 2008). There, no actual pickup at one location followed by a
delivery at another location takes place. Instead, just a pairing and precedence relation between the services
at the nodes forming a customer request is given. Similar planning problems arise in home health care, e.g.,
when patients have to be monitored by a nurse several times a day (Eveborn et al., 2006; Rasmussen et al.,
2012). Note that in many health care applications, including those considered in Eveborn et al. (2006) and
Rasmussen et al. (2012), it is not mandatory that the patients are always treated by the same nurse, i.e.,
these problems are of a more general nature than the one considered in this paper. The temporal aspects
of this more general synchronization constraints are considered in (Dohn et al., 2011). However, personnel
consistency often plays an important role in health care problems (Rasmussen et al., 2012; Kovacs et al.,
2014) so that it may be reasonable to have specific patients monitored by a single staff member only and,
hence, to require pairing and precedence of the corresponding services.

The contributions of this paper are the following: First, we introduce the SPDP as the prototypical VRP
with temporal intra-route synchronization. This problem has to the best of our knowledge not been consid-
ered before. Second, we develop four exact solution approaches to the SPDP based on column-generation
formulations whose master programs are formulated on different sets of variables implying different subprob-
lems. Two of these subproblems are considered for the first time in the literature. One of them is the natural
subproblem of the SPDP, in which time windows as well as temporal intra-route synchronization with both
minimum and maximum ride times have to be dealt with. In the other one, maximum ride-times are relaxed.
We derive new dominance rules and labeling algorithms for their solution. The other subproblems are solved
with algorithms proposed by Dumas et al. (1991) and Gschwind and Irnich (2014), respectively. Finally, to
compare the strength of the different solution approaches, we report extensive computational results over a
large number of test instances with different characteristics regarding the number of customer requests and
the tightness of capacity, time-window, and minimum and maximum ride-time constraints. The analysis
shows that integrating either both types of ride-time constraints or only the maximum ride-time constraints
into the subproblem results in the strongest overall approach regarding the number of optimal solutions,
computation times, and remaining integrality gap.

Integer column-generation methods have proven to be very successful in solving many VRP-variants
including PDPs (e.g., Dumas et al., 1991; Ropke and Cordeau, 2009; Baldacci et al., 2011). The column-
generation master programs of such approaches typically are extended set-partitioning models formulated on
variables representing feasible routes for the problem at hand. These formulations provide stronger bounds
compared to other formulations like, e.g., arc-flow formulations or extended set-partitioning models formu-
lated on a relaxed set of variables, if the respective subproblem does not possess the integrality property
(Lübbecke and Desrosiers, 2005). This is the case for many VRPs where the subproblems are typically Ele-
mentary Shortest-Path Problems with Resource Constraints (ESPPRC, Desaulniers et al., 1998). However,
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the overall success of an integer column-generation approach for VRP-variants relies not only on strong
bounds but also on the effective solution of the subproblem.

This is the main challenge when synchronization comes into play (Drexl, 2012). In the case of inter-
route synchronization, additional constraints have to be included in the master programs (Desaulniers et al.,
1998). Because of the dual variables associated with these constraints, the resulting subproblems are highly
complex (e.g., Christiansen and Nygreen, 1998; Ioachim et al., 1999; Dohn et al., 2011) and cannot be solved
by standard dynamic-programming labeling algorithms. This is also true for intra-route synchronization
where no additional linking constraints are necessary. There, the increased complexity of the subproblems
is not caused by additional duals but by the synchronization constraints themselves, which may be hard to
incorporate into the subproblem. For the DARP, e.g., Hunsaker and Savelsbergh (2002) have demonstrated
that in the presence of time windows and maximum ride times checking the feasibility of a given route is
intricate. Clearly, the effective generation of such routes within a column-generation approach is even more
challenging.

In the case of intra-route synchronization, the complexity of the subproblems can be reduced by relaxing
one or more types of constraints in the subproblem and handling them in the master programs instead
(see, e.g., Ropke and Cordeau (2005) for the DARP or Cherkesly et al. (2014) for the PDPTW with LIFO
Loading). The resulting easier-to-solve subproblems come at the cost of weaker lower bounds and, thus,
larger branch-and-bound trees. Often, it is a priori not clear what is the best compromise between the
strength of the CG formulation and the hardness of the subproblem.

The recent work of Gschwind and Irnich (2014) provides insights regarding this trade-off for the DARP:
They proposed a branch-and-cut-and-price algorithm that handles all route constraints of the DARP in
the subproblem which is solved by means of an effective labeling algorithm. In a computational study,
they compared the strength of their approach to the branch-and-cut-and-price algorithm of Ropke and
Cordeau (2005) that uses a subproblem in which the maximum ride-time constraints are relaxed. The
results indicated that their approach significantly outperforms the algorithm of Ropke and Cordeau (2005)
in terms of computation times and number of solved instances. However, they also tested their approach
with a different labeling algorithm that uses a weaker dominance rule and observed that in this case the
approach with the relaxed subproblem of Ropke and Cordeau (2005) shows the better overall performance.
Decisive for the success of the approach using the stronger formulation, thus, is the availability of an effective
pricing procedure for the harder subproblem.

Compared to the DARP, the additional presence of minimum ride times significantly complicates the
natural subproblem of the SPDP. As a result, the dominance rule that we are able to derive for its solution
is much weaker compared to those that can be used for the subproblems in which one or both types of ride-
time constraints are relaxed. Therefore, we propose and compare the efficiency of four column-generation
algorithms for the SPDP. Each algorithm uses a different subproblem: One that handles all route constraints
of the SPDP, one that relaxes the minimum ride times, one that relaxes the maximum ride times, and one
that relaxes both types of ride-time constraints.

The remainder of the paper is organized as follows. Section 2 defines the SPDP and presents column-
generation formulations of it. The dominance rules and labeling algorithms we use for solving the different
subproblems are detailed in Section 3. In Section 4, we briefly describe our basic branch-and-cut-and-price
algorithm and report extensive computational results. The paper ends with a short conclusion.

2. Problem definition and column-generation formulations

In this section, we give a formal definition of the SPDP and describe different column-generation formu-
lations of it.

2.1. Definition of the SPDP
The SPDP is defined on a directed graph G = (N,A) with node set N = P ∪ D ∪ {0, 2n + 1} and

arc set A. The subsets P = {1, ..., n} and D = {n + 1, ..., 2n} contain the pickup and delivery nodes of
n transportation requests, respectively. Node 0 denotes the origin depot and node 2n + 1 the destination
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depot. For each request i = 1, ..., n, a minimum ride time Li and a maximum ride time Li are specified,
coupling the service times at the pickup node i and the delivery node i+ n.

With each node i ∈ N , a non-negative service duration si and a demand di such that di = −di+n for all
i = 1, ..., n are associated. We assume d0 = d2n+1 = 0. A time window [ai, bi] in which the service has to
be started is associated with each node i ∈ N . When arriving at node i prior to ai, the vehicle has to wait
until time ai before starting its service. Furthermore, it is allowed to delay the start of service voluntarily
at any node and any time. We assume that there is no restriction on the length of the waiting times. The
possibility of delaying the start of service at some nodes is crucial for the feasibility of routes in the presence
of ride times and time windows (see Hunsaker and Savelsbergh, 2002; Gschwind and Irnich, 2014).

With each arc (i, j) ∈ A, a routing cost cij and a travel time tij are associated. We assume that
both routing costs and travel times are non-negative and satisfy the triangle inequality. To serve the n
transportation requests, a fleet K of identical vehicles with capacity C is located at the depot 0.

The SPDP consists in finding |K| vehicle routes starting and ending at the depot nodes 0 and 2n + 1,
respectively, such that each request is served exactly once and the total routing costs are minimal. Thereby,
the routes have to satisfy the following conditions:

Pairing and precedence: For each request i, pickup node i and delivery node i + n are visited on the
same route, and the pickup node i is visited first.

Capacity: The load of the vehicle must not exceed C at any time.

Time windows: For each node i, the start of service must lie within the time window [ai, bi].

Ride times: The service at a delivery node i+n has to start at least Li and at most Li units of time after
the service at the corresponding pickup node i has been completed.

Note that it is not straightforward to decide on the feasibility of a route in the SPDP sense due to the
presence of the different types of potentially contrasting temporal constraints. More precisely, to verify the
feasibility of a given route r = (h1, ..., hq) with h1 = 0 and hq = 2n + 1 one has to find a time schedule
Tr = (τ1, ..., τq) satisfying

τi + shi
+ thihi+1

≤ τi+1 ∀i = 1, ..., q − 1, (1)
ahi
≤ τi ≤ bhi

∀i = 1, ..., q, (2)
τi + shi

+ Lhi
≤ τj if hi + n = hj , (3)

τi + shi
+ Lhi ≥ τj if hi + n = hj , (4)

where τi denotes the start of service at node hi. Constraints (1) ensure consistency of the service times along
the route. Inequalities (2) impose time windows, while (3) and (4) are minimum and maximum ride-time
constraints, respectively. A schedule satisfying (1)–(4) is called feasible. We denote by Tr the set of all
feasible schedules for a route r. Furthermore, let Tr(t) = {Tr ∈ Tr : τq ≤ t} be the set of feasible schedules
with start of service τq at the last node hq not later than t. All definitions and notations for routes and
schedules are also used for partial routes, i.e., with hq 6= 2n+ 1, and corresponding partial schedules. Note
that for partial routes it is possible to visit only the pickup node of a request i. In this case, no ride-time
constraints (3) or (4) have to be respected for this request in a partial schedule.

2.2. Column-generation formulations of the SPDP
To formulate the SPDP as a set-partitioning problem, let Ω be the set of all SPDP-feasible routes. The

cost of a route r ∈ Ω is denoted by cr. Moreover, for each route r and each request i ∈ P denote by air ∈ Z
the number of times request i is performed by route r. Let λr be binary variables indicating if route r is
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used in the solution. The SPDP can then be formulated as follows:

(IMP) min
∑
r∈Ω

crλr (5)

s.t.
∑
r∈Ω

airλr = 1 ∀i ∈ P, (6)∑
r∈Ω

λr = |K|, (7)

λr ∈ {0, 1} ∀r ∈ Ω. (8)

The objective function (5) minimizes the total routing costs. Partitioning constraints (6) ensure that all
requests are served exactly once. Equality (7) imposes the number of routes in the solution, while (8) are
binary conditions for route variables.

Typically, the number |Ω| of feasible routes is very large so that model IMP cannot be solved directly.
We, therefore, use an integer column-generation approach to solve it. The linear relaxation of the so-called
integer master program IMP is initialized with a proper subset of routes and missing routes with negative
reduced cost are added dynamically. Integrality is ensured by integrating this process into a branch-and-
bound algorithm (Lübbecke and Desrosiers, 2005).

To identify negative reduced-cost routes the column-generation subproblem has to be solved. Let πi, i ∈ P
and µ be the dual variables associated with constraints (6) and (7), respectively. The reduced cost of arc
(i, j) ∈ A is defined as

c̃ij =

{
cij − πi if i ∈ P,
cij otherwise.

(9)

The reduced cost c̃r of a route r ∈ Ω is c̃r =
∑

(i,j)∈A(r) c̃ij − µ where A(r) denotes the sequence of arcs
traversed by route r. The subproblem is then given by

min
r∈Ω
{c̃r}. (10)

The set-partitioning model IMP is the most natural formulation for column-generation based approaches
to VRP-variants including the SPDP in the following sense: The variable set Ω consists of all routes that are
feasible for the problem at hand, i.e., the subproblem takes care of all constraints relating to single routes,
while the master program comprises only coupling constraints. Decisive for the success of approaches based
on such a formulation is that an effective solution procedure for generating feasible routes with negative
reduced cost is available. For the SPDP, this means being able to simultaneously handle time-window and
ride-time constraints, among others, that together impose a complex scheduling problem. The key difficulty
lies in the trade-off between servicing nodes as early as possible, which is the best strategy for time windows
and minimum ride times, and servicing them as late as possible, which is preferable for maximum ride times.
Integrating this trade-off into a solution procedure is highly intricate and, therefore, the natural subproblem
of the SPDP is significantly more complex than the natural subproblem of many related VRPs (see also
Section 3.4).

An alternative approach is to formulate the master program in relaxed routing variables r ∈ Ω′ ⊇ Ω
that may violate one or several types of constraints relating to a single route. This can be promising
when generating routes r ∈ Ω is complex, while working with the relaxed set Ω′ results in a well-solvable
subproblem. A relaxation that is used in many column-generation approaches to VRPs is to drop the
elementarity condition of routes, i.e., to allow multiple visits at the same node. This has the advantage
that the resulting subproblems are solvable in pseudo-polynomial time (Desrochers et al., 1992) while the
original elementary versions are NP -hard in the strong sense (Dror, 1994). In this case, the partitioning
constraints (6) ensure that non-elementary routes can never be part of an integer solution. Thus, IMP with
variable set Ω′ has the same set of optimal solutions as IMP with variable set Ω.
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This property, however, does not hold for all relaxations Ω′ of Ω and a route r ∈ Ω′ \Ω that is infeasible
for the original problem might then be part of an integer solution. Consequently, the constraints that have
been relaxed in the subproblem must be enforced in the master program to ensure feasibility of the solutions.
Adding infeasible path elimination constraints (IPEC) is one way of doing this. Let I be the set of all paths
that are infeasible with respect to the constraints that have been relaxed in the subproblem. Moreover, for
any infeasible path I ∈ I and any route r let bIr be the number of times route r traverses arcs of path I.
The IPEC can then be written as ∑

r∈Ω′

bIrλr ≤ |I| − 1 ∀I ∈ I, (11)

where |I| denotes the length of the infeasible path I, i.e., the number of its arcs. We denote by IMP-I a
master program that incorporates the set-partitioning model (5)–(8) formulated on a relaxed variable set
Ω′ together with the IPEC (11) to handle the remaining route constraints.

Obviously, approaches based on formulation IMP benefit from stronger LP-bounds compared to ap-
proaches using formulation IMP-I. The reason is that SPDP-infeasible routes, which are excluded in the
former, may be convex-combined to form routes that do not violate the IPEC in the latter. Typically, the
tighter LP-bounds lead to smaller search trees for IMP -based approaches. This comes at the cost of a harder
to solve subproblem and it is a priori not clear which formulation enables the overall strongest algorithm.

In the following sections, we consider branch-and-price algorithms for the SPDP based on four different
column-generation formulations. We denote by IMPmaxmin the approach working on variable set Ω in the
master program. The addition of IPEC is not necessary in this case and the master program comprises only
coupling constraints. The corresponding subproblem SPmaxmin has to generate SPDP-feasible routes.

The other approaches formulate their master programs in routing variables r ∈ Ω′ that relax either the
minimum ride times, the maximum ride times, or both. By IMP-I we denote the algorithm that ignores
both minimum and maximum ride times in the subproblem (denoted SP) and handles them using IPEC
in the master program. SP is the natural subproblem of the PDPTW and generates routes that respect
pairing and precedence, capacity, and time-window constraints, i.e., a time schedule satisfying constraints
(1) and (2) exists for such routes.

The approach that handles only the maximum ride times in the subproblem and uses routing variables
where the minimum ride times have been relaxed is denoted by IMP-Imax. The corresponding subproblem
is SPmax. It is the natural subproblem of the DARP. Routes generated by SPmax satisfy pairing and
precedence, and capacity constraints. Moreover, these routes can be assigned a time schedule respecting
constraints (1), (2), and (4). IMP-Imin and SPmin are the analog to IMP-Imax and SPmax where minimum
ride rimes are handled in the subproblem.

3. Column-generation subproblems

In this section, we describe solution algorithms for the different subproblems SP, SPmax, SPmin, and
SPmaxmin . All four subproblems are ESPPRC which are typically solved using dynamic-programming labeling
algorithms (Irnich and Desaulniers, 2005). In a labeling algorithm, partial paths are gradually extended in a
graph G seeking to find a minimum-cost path from the source node to the sink node. The partial paths are
represented by labels that store the accumulated cost and resource consumption along the path. We denote
by P` the partial path corresponding to label `. Decisive for the effectiveness of a labeling algorithm is the
use of strong dominance rules to eliminate unpromising labels. A more detailed discussion on ESPPRC and
labeling algorithms can be found, e.g., in (Irnich and Desaulniers, 2005).

Note that for the rest of this paper we consider the non-elementary versions of the four subproblems
for the following two reasons: First, preliminary computational results indicated that the linear-relaxation
lower bounds of the master programs obtained by subproblems with the elementarity conditions were rarely
stronger compared to the corresponding non-elementary subproblems. This resulted in slightly weaker
overall algorithms for the former. Second, the extension of all dominance rules and labeling algorithms to
the elementary case is straightforward (see Ropke and Cordeau, 2009; Gschwind and Irnich, 2014). In the
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presence of pairing and precedence, non-elementarity means that a request can be picked up again, after
it has been picked up and delivered. Hence, several pickup-and-delivery pairs of the same request can be
present in a path. For ease of notation, however, we assume for the rest of the paper that all partial paths
are elementary. Furthermore, we assume that the service duration is zero for all nodes. All proofs and
arguments are analog when considering non-elementary partial paths and non-zero service durations.

Also, we assume that the reduced-cost matrix satisfies c̃ij ≤ c̃ik + c̃kj for all (i, j) ∈ A, k ∈ D. Ropke and
Cordeau (2009) call this property the delivery triangle inequality (DTI). It enables the use of stronger dom-
inance rules for all considered subproblems. Roughly speaking, the DTI ensures that visiting an additional
delivery node is never beneficial. Ropke and Cordeau (2009) also show how to transform a reduced-cost
matrix that does not satisfy the DTI into one that does, while maintaining the cost of each route unchanged.
Hence, working with this assumption is no restriction.

All notation previously introduced for (partial) routes is also used for (partial) paths in the following.
Moreover, we use the same notation for all subproblems. The meaning should be clear from the context. The
set of feasible schedules TP for a path P, e.g., always refers to feasibility regarding the temporal constraints
that are present in the considered subproblem.

3.1. SP - subproblem without ride-time constraints
SP is an elementary shortest-path problem with pairing and precedence, capacities, and time windows.

It is the natural subproblem of the PDPTW. In this context, it has been subject to prior research (Dumas
et al., 1991; Ropke and Cordeau, 2009; Baldacci et al., 2011) and strong dominance rules exist for its solution
by a labeling algorithm.

In what follows, we summarize the main concepts of Dumas et al. (1991) and Ropke and Cordeau (2009)
for solving SP. Both the dominance rule and the labeling strategy for SP also serve as basis for the solution
approaches to the other subproblems in Sections 3.2 - 3.4. Table 1 summarizes all resources that are needed
in the solution algorithms for the different subproblems and indicates which resource is relevant for which
subproblem.

Dominance rule for SP. Within each label `, the following information has to be stored: the node η` the
label belongs to, its reduced cost c̃`, the earliest start of service t` at node η`, and the set of open requests
O` (requests that have been picked up but not yet delivered). Then, the following dominance rule is valid
for SP (Dumas et al., 1991):

Proposition 1. (Dom-SP) A feasible label `1 dominates a label `2 if

η`1 = η`2 , c̃`1 ≤ c̃`2 , t`1 ≤ t`2 , O`1 ⊆ O`2 . (12)

Labeling algorithm for SP. We now briefly describe the labeling algorithm of Dumas et al. (1991) for solving
SP. In addition to the resources needed for dominance in Proposition 1, they store at each label ` the load
l` of the vehicle when leaving η`, enabling a fast consistency check regarding capacity. The extension of a
label ` along arc (η`, x) ∈ A is only allowed if either x /∈ O` if x ∈ P , or x − n ∈ O` if x ∈ D, or O` = ∅
if x = 2n + 1 holds. Otherwise, pairing and precedence are not satisfied resulting in an infeasible label.
Furthermore, consistency with respect to time-window and capacity constraints is ensured by requiring
t` + tη`,x ≤ bx and l` + dx ≤ C, respectively.

If extending label ` along arc (η`, x) ∈ A is feasible, a new label `′ is created. Its resources are determined
according to the following resource extension functions (REFs):

η`′ = x, c̃`′ = c̃` + c̃η`,x, t`′ = max{ax, t` + tη`,x}, l`′ = l` + dx, (13)

O`′ =

{
O` ∪ {x} if x ∈ P,
O` \ {x− n} if x ∈ D.

(14)

To reduce the number of labels that have to be processed in the algorithm, unpromising labels are
eliminated using dominance rule Dom-SP. Moreover, labels that cannot be feasibly completed to node
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Resource Description SP SPmax SPmin SPmaxmin

η` The node of the label • • • •
c̃` The reduced cost • • • •
t` The earliest start of service at the node η` • • • •
l` The current load • • • •
O` The set of open requests • • • •
b̃` The latest feasible start of service at node η` • •
ldi`(t) The latest possible delivery time of request i ∈

O`

• •

Bi` The point of time when ldi`(t) becomes constant • •
ldi`(t) The latest possible delivery time of request i ∈

O` such that all other open requests j ∈ O` \{i}
are picked up as early as possible

•

Bi` The point of time when ldi`(t) becomes constant •
edi` The earliest feasible start of service at node η` • •
ed
i

`(t) The earliest possible delivery time of request i ∈
O` such that all other open requests j ∈ O` \{i}
are picked up as late as possible

•

B
i

` The point of time when ed
i

`(t) becomes constant •

Table 1: Resources of a label `. A bullet indicates that the resource is relevant for the respective subproblem.

2n+ 1 can be discarded. For SP, pairing constraints require that each feasible completion to a label ` must
visit the delivery nodes i+ n of all open requests i ∈ O` and thereby obey all time-window constraints (see
Dumas et al., 1991, for details).

3.2. SPmax - subproblem with maximum ride-time constraints
In SPmax, the natural subproblem of the DARP, paths have to respect pairing and precedence, capacities,

time windows, and maximum ride times. The latter two impose that for each feasible path a time schedule
satisfying inequalities (1), (2), and (4) must exist. The main difficulty for solution approaches to SPmax is to
deal with these partially contrasting temporal constraints. In fact, they impose a trade-off between servicing
all nodes as early as possible and servicing pickup nodes as late as possible. The implication for labeling
algorithms is as follows. Considering only the earliest start of service (as in Dom-SP) is not sufficient to
guarantee dominance with respect to the temporal constraints of SPmax (see Example 1 of Gschwind and
Irnich, 2014). Thus, one either has to include additional time-related resources in a dominance rule based
on Dom-SP or come up with a different strategy to deal with the temporal constraints of SPmax.

Recently, Gschwind and Irnich (2014) proposed an effective labeling algorithm for solving SPmax that
uses an extended version of Dom-SP as dominance rule. The basic idea is the following: Let ` be a label
with O` 6= ∅. For each open request i ∈ O`, the corresponding maximum ride-time constraint (4) imposes
an upper bound on the start of service at delivery node i + n restricting the set of feasible completions
to `. Clearly, a larger value for this bound is preferable. As a result, dominance between two labels is
only possible if for each of its open requests the dominating label has a larger upper bound value for the
start of service at the respective delivery node. Determining these bounds, however, is not straightforward.
They obviously depend on the actual service times at the corresponding pickup nodes within the path P`.
Thereby, the possibility to delay the start of service at some nodes has to be incorporated.

Dominance rule for SPmax. To formalize their approach in a dominance rule, Gschwind and Irnich (2014)
first define the latest possible delivery time ldi`, i.e., the latest feasible start of service at the delivery node,
of an open request i ∈ O` as a function in the start of service t ≥ t` at the current node η`. Let P` =
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(h1, ..., hq = η`) be the path corresponding to label `. Then, ldhi

` (t) with t ≥ t` and hi ∈ O` is given by

ldhi

` (t) = min{bhi+n, τ i(t) + Lhi}, (15)

where τ i(t) = maxTP`
∈TP`

(t){τi} is the latest feasible start of service at the pickup node hi while τq ≤ t.
Moreover, two important properties of ldhi

` (t) are proven. First, they show that all open requests and
the associated latest delivery times can be treated independently in the dominance criterion. Second, they
show that the functions ldhi

` (t) are of the form ldhi

` (t) = min{ki1 + t, ki2} with constants ki1 and ki2. With this
property, the comparison of two such functions can be simplified to comparing them at two distinct points
of time.

Let Bi` be the point of time when ldi`(t) becomes constant. The following proposition describes a valid
dominance rule for SPmax (Gschwind and Irnich, 2014):

Proposition 2. (Dom-SPmax) A feasible label `1 dominates a label `2 if

η`1 = η`2 , c̃`1 ≤ c̃`2 , t`1 ≤ t`2 , O`1 ⊆ O`2 , and (16)

ldi`1(t`1) + (t`2 − t`1) ≥ ldi`2(t`2) and ldi`1(Bi`1) ≥ ldi`2(Bi`2) ∀i ∈ O`1 . (17)

Labeling algorithm for SPmax. The labeling algorithm of Gschwind and Irnich (2014) for solving SPmax is
analog to that of Dumas et al. (1991) for SP sketched in Section 3.1. The additional presence of maximum
ride times and the use of dominance rule Dom-SPmax involve only some minor modifications (see Gschwind
and Irnich, 2014, for details). A key factor for the effectiveness of the labeling algorithm is that the infor-
mation on the latest possible delivery times ldi`, i ∈ O` significantly enhances the elimination of labels that
cannot be feasibly completed to node 2n+ 1.

3.3. SPmin - subproblem with minimum ride-time constraints
Subproblem SPmin is an elementary shortest path problem with pairing and precedence, capacity, time-

window, and minimum ride-time constraints. To the best of our knowledge, SPmin has not been considered
before and an effective labeling algorithm for its solution is presented here for the first time.

Similar to SPmax, different types of temporal constraints are present in SPmin. More precisely, a schedule
satisfying inequalities (1)–(3) must be assignable to each feasible path. The main task for a labeling approach
to SPmin based on Dom-SP is to ensure consistency of the dominance rule with these constraints.

In contrast to SPmax, however, the temporal constraint system of SPmin is rather straightforward to
handle in a labeling algorithm. Both types of constraints that couple the service times at two different nodes
are less or equal constraints (from front to back of the path). Consequently, the optimal strategy regarding
time-window constraints, i.e., servicing all nodes as early as possible, is also an optimal strategy in the
additional presence of minimum ride-time constraints. This implies that waiting and delaying the service
at some node is never beneficial and the possibility to do so can be neglected. Still, inequalities (3) induce
that a time schedule in SPmin is linked not only between consecutive nodes. Thus, for a label ` not only
the service time at the current node η`, but also the service times at the pickup nodes of all open requests
i ∈ O` are important.

Dominance rule for SPmin. To obtain a formal dominance criterion for SPmin, we follow the approach of
Gschwind and Irnich (2014) for SPmax. For each open request i ∈ O` of label `, the minimum ride-time
constraints impose a lower bound on the start of service at the delivery node i+ n. We define this earliest
possible delivery time edhi

` for request hi ∈ O` as

edhi

` = max{ahi+n, t` + tη`,hi+n, τ i + Lhi
}, (18)

where τ i = minTP`
∈TP`

{τi} with P` = (h1, ..., hq = η`) is the earliest feasible start of service at the pickup
node hi. Regarding the set of feasible completions to `, a small value edhi

` is obviously less restrictive than
a larger one. Furthermore, the following lemma shows that for each feasible path P the time schedule TP
which assigns each node its earliest feasible start of service is feasible. Thus, the values edhi

` can be treated
independently in a dominance rule.
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Lemma 1. Let P = (h1, ..., hq) be a feasible partial path. Then, TP = (τ1, ..., τ q) ∈ TP .

The proofs of all lemmas and propositions are presented in Section A of the appendix.

Using the values edi`, we obtain the following extension to Dom-SP that is a valid dominance criterion
for SPmin:

Proposition 3. (Dom-SPmin) A feasible label `1 dominates a label `2 if

η`1 = η`2 , c̃`1 ≤ c̃`2 , t`1 ≤ t`2 , O`1 ⊆ O`2 , and edi`1 ≤ ed
i
`2 ∀i ∈ O`1 . (19)

Labeling algorithm for SPmin. SPmin can be solved using the labeling algorithm of Section 3.1 for solving
SP. Let `′ be the label resulting from the extension of label ` along arc (η`, x). The REFs for the additional
resources edi`′ , i ∈ O`′ are

edi`′ =

{
max{ax+n, t`′ + tx,x+n, t`′ + Lx} if i = x,

max{edi`, t`′ + tx,i+n} otherwise.
(20)

Moreover, the REF (13) for the earliest start of service t` has to be replaced by

t`′ =

{
max{edx−n` , t` + tη`,x} if x ∈ D,
max{ax, t` + tη`,x} otherwise.

(21)

Again, the information edi` is used for eliminating labels that cannot be completed to feasible 0− (2n+ 1)-
paths.

3.4. SPmaxmin - subproblem with minimum and maximum ride-time constraints
Subproblem SPmaxmin is the natural subproblem of the SPDP in which generated paths represent SPDP-

feasible routes, i.e., they have to respect pairing and precedence, capacities, time windows, and minimum
and maximum ride times. The implied scheduling problem is (1)–(4). It simultaneously includes both
minimum and maximum ride times which significantly complicates SPmaxmin compared to SPmax and SPmin.
The key problem is the interference of different types of ride-time constraints of different requests so that a
straightforward combination of the approaches of Sections 3.2 and 3.3 is not possible. We demonstrate this
in more detail in the following.

Generalizing the basic idea of Gschwind and Irnich (2014), the minimum and maximum ride times of
an open request i ∈ O` impose a lower bound (edi`) and an upper bound (ldi`) on the start of service at
the delivery node i+ n. Again, a small value edi` and a large value ldi` are preferable. The implied optimal
strategies for the start of service at the pickup node i, i.e., an early-as-possible service to minimize edi`
and a late-as-possible service to maximize ldi`, are clearly opposing. Even more, different strategies for the
pickup times of different open requests may interfere. More precisely, servicing one node late may imply
that another one cannot be serviced early, and vice versa. As a result, there is generally no feasible time
schedule that minimizes the values edi` for some i ∈ O` and at the same time maximizes the values ldj` for
some other j ∈ O`. Thus in SPmaxmin , the open requests and the associated earliest and latest delivery times
cannot be treated independently in a dominance rule. Table 2 gives a small example to illustrate this.

Let `1 and `2 be two labels representing the paths P`1 = (0, i, j, k) and P`2 = (0, j, i, k). Assume
identical travel times of 10 between all nodes. Furthermore, let the minimum and maximum ride times
for all requests be 40 and 50, respectively. The time windows of nodes 0, i, j, and k are specified in
Table 2, while the time windows at the corresponding delivery nodes are assumed to be not binding ([0,∞]).
Then, the earliest possible delivery times of requests i and j for label `1 (as defined in Section 3.3) are
edi`1 = max{0, 50 + 10, 10 + 40} = 60 and edj`1 = max{0, 50 + 10, 20 + 40} = 60. The latest possible delivery
times ldi`1 and ldj`1 as defined in Section 3.2 are, in general, functions in the start of service at the current
node η`1 = k. Here, the only feasible start of service at node k is at time 50. Thus, we only need to consider

10



Label `1 for
path (0, i, j, k)

Nodes in P(`1) 0 i j k

Time window [a·, b·] [0, 100] [0, 30] [20, 50] [50, 50]
Earliest start of service t`1 0 10 20 50

Earliest possible delivery ed·`1 − 60 60 90
Latest possible delivery ld·`1 − 80 90 100

Label `2 for
path (0, j, i, k)

Nodes in P(`2) 0 j i k

Time window [a·, b·] [0, 100] [20, 50] [0, 30] [50, 50]
Earliest start of service t`2 0 20 30 50

Earliest possible delivery ed·`2 − 60 70 90
Latest possible delivery ld·`2 − 70 80 100

Table 2: Label `1 dominates label `2 in the sense of Dom− SPmax and Dom− SPmin. This does not imply a valid dominance
relation for SPmax

min .

the values ldi`1(50) = min{∞, 30 + 50} = 80 and ldi`1(50) = min{∞, 40 + 50} = 90, which imply delaying the
start of service at node i until time 30 and at node j until time 40. It is easy to see, however, that there is
no feasible time schedule TP`1

that at the same time allows a latest possible delivery time of 80 for request
i and an earliest possible delivery time of 60 for request j. Note that the former implies a service time not
smaller than 30 at node i while the latter implies a service time not larger than 20 at node j.

As a result, simply combining the relations for edi` and ldi` of dominance rules Dom-SPmin and Dom-
SPmax does not lead to a valid dominance criterion for SPmaxmin . The completion Q = (j+n, i+n, k+n, 2n+1),
e.g., is feasible for label `2 but infeasible for `1, although edx`1 < edx`2 and ldx`1(50) > ldx`2(50) hold for
x = i, j, k (see Table 2).

Dominance rule for SPmaxmin . The example above has shown that the interdependence of different open
requests has to be incorporated when trying to dominate labels in SPmaxmin . Roughly speaking, this means
that one has to be careful when determining the earliest and latest delivery times of the open requests of a
label.

On the one hand, there are completions where one or more requests can only be delivered at the earliest
or latest possible time. Consequently, for a dominated label ` we have to consider the best possible values
for feasible delivery times of all open requests i ∈ O`, i.e., we consider edi` and ldi`(t), t ≥ t` as defined
in Sections 3.3 and 3.2, respectively. Note again that here TP`

refers to the set of all schedules satisfying
constraint system (1)–(4).

On the other hand, a completion might generally require picking up some open requests early and some
other open requests late. For a dominating label ` with P` = (h1, ..., hq = η`) we, therefore, determine two
bounds on the service time of an open request hi ∈ O` that are independent of the service times at the other
open requests hj ∈ O` \ {hi}.

First, we use the following upper bound τOi (t) for an early-as-possible service at a pickup node hi
within path P`. Practically speaking, τOi (t) gives the earliest service time at hi that can be attained
without restricting the pickup times of the other open requests. Or from the opposite perspective, when
scheduling all other open requests hj ∈ O` \ {hi} in the most unfavorable way for picking up hi early, i.e.,
as late as possible, then the earliest possible service time at hi that is still feasible is τOi (t). Formally,
τOi (t) = minTP`

∈T i
P`

(t){τi} with T i
P`

(t) = {TP`
∈ TP`

(t) : τj ≥ τ j(t) ∀hj ∈ O` \ {hi}}. Note that τOi (t) is
a function in t, as the times τ j(t) depend on t.

Second and analog to τOi (t), a lower bound for a late-as-possible service at node hi is denoted by τOi (t).
It gives the latest feasible start of service at the pickup node hi such that the start of service at all other
open requests hj ∈ O` \ {hi} takes its minimal value τ j and τq ≤ t, i.e., τOi (t) = max

TP`
∈T

i
P`

(t)
{τi} with

T
i

P`
(t) = {TP`

∈ TP`
(t) : τj ≤ τ j ∀hj ∈ O` \ {hi}}. Maximizing the service at hi may delay the start of

service τq at the current node η`. Thus, τOi (t) is also a function in t.
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Using τOi (t) and τOi (t) we have the following upper and lower bounds for the earliest and latest delivery
times of an open request hi ∈ O, respectively:

ed
hi

` (t) = max{ahi+n, t` + tη`,hi+n, τ
O
i (t) + Lhi

}, (22)

ldhi

` (t) = min{bhi+n, τ
O
i (t) + Lhi

}. (23)

Denote by b̃` the latest feasible start of service at node η` for a label ` whose parent label is `′. The value
b̃` is given by min{bη` , ld

η`−n
` (b̃`′)} if η` ∈ D and bη` otherwise. Then, a valid dominance rule for SPmaxmin is

as follows:

Proposition 4. (Dom∗-SPmaxmin ) A feasible label `1 dominates a label `2 if

η`1 = η`2 , c̃`1 ≤ c̃`2 , t`1 ≤ t`2 , O`1 ⊆ O`2 , and (24)

ed
i

`1(t) ≤ edi`2 and ldi`1(t) ≥ ldi`2(t) ∀i ∈ O`1 , t ∈ [t`2 , b̃`2 ]. (25)

Applying dominance rule Dom∗-SPmaxmin requires the comparison of different functions in inequalities
(25) which is clearly not practicable for general functions within a labeling algorithm. The following lemma
characterizes the shape of the functions ed

i

`(t), ldi`(t), and ld
i
`(t) allowing for a simplified version of Dom∗-

SPmaxmin .

Lemma 2. Let X be the set of all X = (x1, ..., xq) ∈ Rq satisfying

ai ≤ xi ≤ bi ∀i = 1, ..., q, (26)
xi + cij ≤ xj ∀j = 2, ..., q; i < j, (27)
xi + dij ≥ xj ∀j = 2, ..., q; i < j, (28)

with real-valued constants ai, bi, cij, and dij. Denote X (t) = {X ∈ X : xq ≤ t}, t ∈ R. Let also be
xi = maxX∈X {xi}, xi = minX∈X {xi}, xi(t) = maxX∈X (t){xi}, and xi(t) = minX∈X (t){xi}. Furthermore,
define by XS(t) = {X ∈ X (t) : xi ≤ xi(t) ∀i ∈ S} and by XS(t) = {X ∈ X (t) : xi ≥ xi(t) ∀i ∈ S}
with S, S ⊆ {1, ..., q}. Denote xSi (t) = maxX∈XS(t){xi} and xSi (t) = minX∈XS(t){xi}. Finally, let t∗ be the
smallest t with X (t) 6= ∅. Then, the following properties hold:

1. xi(t) = min{k1
i , k

2
i + t} for all i = 1, ..., q, t ≥ t∗ with constants k1

i and k2
i .

2. xi(t) = xi for all i = 1, ..., q, t ≥ t∗.

3. xSi (t) = min{k1
i , k

2
i + t} for all i = 1, ..., q, t ≥ t∗ with constants k1

i and k2
i .

4. xSi (t) = max{k1
i ,min{k2

i , k
3
i + t}} for all i = 1, ..., q, t ≥ t∗ with constants k1

i , k2
i , and k3

i .

Clearly, the scheduling problem (1)–(4) of SPmaxmin is a special case of the constraint system (26)–
(28) considered in Lemma 2. Thus, the functions ed

i

`(t), ldi`(t), and ldi`(t) are of the forms ed
i

`(t) =
max{k1

i ,min{k2
i , k

3
i + t}}, ldi`(t) = min{k4

i , k
5
i + t}, and ldi`(t) = min{k6

i , k
7
i + t}, where all k·i are con-

stants. Herewith, the comparison of the functions in Dom∗-SPmaxmin can be reduced to comparing them
at two distinct points of time. Denote by Bi` and B

i

` the points of time such that ldi`(t) = ldi`(B
i
`) and

ed
i

`(t
′) = ed

i

`(B
i

`) holds for all t ≥ Bi` and t′ ≥ B
i

`, respectively. Then, the following dominance rule for
SPmaxmin results:

Proposition 5. (Dom-SPmaxmin ) A feasible label `1 dominates a label `2 if

η`1 = η`2 , c̃`1 ≤ c̃`2 , t`1 ≤ t`2 , O`1 ⊆ O`2 , (29)

ed
i

`1(t`1) ≤ edi`2 and ed
i

`1(B
i

`1)−max{0, Bi`1 − b̃`2} ≤ ed
i
`2 ∀i ∈ O`1 , and (30)

ldi`1(t`1) + (t`2 − t`1) ≥ ldi`2(t`2) and ldi`2(Bi`1) ≥ ldi`2(Bi`2) ∀i ∈ O`1 . (31)
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Note that for determining valid bounds ed
hi

` and ldhi

` on the earliest and latest delivery times of request
hi that do not restrict the pickup times of other open requests hj ∈ O` \{hi}, it is generally not necessary to
consider the maximum and minimum values τ j and τ j for the starts of service at the nodes hj . Instead, it is
sufficient to ensure that all hj can be delivered at their earliest or latest possible delivery times edhj

` and ldhj

` .
These times induce starting the service not later than edhj

` −Lhj
≥ τ j and not earlier than ldhj

` −Lhj
≤ τ j .

Hence, bounds that are stronger than ed
i

` and ldi` can be obtained enabling more dominance when used
in Dom-SPmaxmin . For simplicity of notation and exposition this has been disregarded in the derivation of
Dom-SPmaxmin . All proofs, however, are analog.

Dom-SPmaxmin can further be strengthened by using a concept proposed by Gschwind and Irnich (2014)
for Dom-SPmax. Let ` be the parent label of `′. The information edi` and ld

i
` on the feasible delivery times

of open requests i ∈ O` can be used to determine an upper bound on the start of service at node η`′ for
which P`′ can be completed to a feasible 0 − (2n + 1)-path. This bound, which is generally smaller than
b̃`′ , strengthens the dominance relation in Dom-SPmaxmin (see Section 4.6 in Gschwind and Irnich, 2014, for
details).

Labeling algorithm for SPmaxmin . The basic course of our labeling algorithm with Dom-SPmaxmin for solving
SPmaxmin is identical to those in Sections 3.1-3.3. When creating a new label `′, the resources η`′ , c̃`′ , l`′ ,
and O`′ are updated using the REFs (13) and (14). The earliest start of service t`′ is set according to the
adapted REF (21).

Determining the values of the resources related to feasible delivery times of open requests i ∈ O`′

is intricate. Because of the simultaneous handling of minimum and maximum ride-time constraints, the
information on the earliest and latest delivery is interdependent. As a consequence, the determination of
these values is much more complex than in the isolated cases in SPmin and SPmax. The key problems
are the following: When creating a new label `′, the implied scheduling problem has additional constraints
compared to the scheduling problem implied by the parent label `. These constraints impose bounds on the
start of service at the current node η`′ that may restrict other service times within the schedule. The impact
on these service times may further propagate throughout the constraint system (see proofs of Proposition 4
and Lemma 2) so that their effect on the earliest and latest pickup times at the open requests i ∈ O`′ is non-
trivial to identify. Moreover, if the extended label `′ ends at a delivery node η`′ ∈ D, then the corresponding
request η` − n is no longer open. For all open requests hi ∈ O`′ , this reduces the set of requests whose
latest and earliest service times have to be taken into account when determining the bounds τOi and τOi ,
respectively. Thus, the relation between the resource values ed

i

`′(t`′), ed
i

`′(B
i

`′), ld
i
`′(t`′), and ld

i
`′(B

i
`′) with

i ∈ O`′ and the corresponding values ed
i

`(t`), ed
i

`(B
i

`), ld
i
`(t`), and ldi`(B

i
`) of the parent label ` is highly

complex.
As a result, we were not able to derive simple update formulas for the resources related to feasible

delivery times of open requests. We suspect that if there are REFs for these resources carrying along several
auxiliary resources needed for the calculations is necessary. It seems also mandatory for the computation of
these resources to know the actual node sequence P`′ represented by label `′.

In our algorithm, the earliest and latest delivery times are computed from scratch within each label. To
do so, we use a generalized version of the feasibility test of Tang et al. (2010) for the DARPto obtain a feasible
schedule with early-as-possible service times for all nodes which provides the values edi`′ , i ∈ O`′ . Starting
from this schedule, we repeatedly delay the service at distinct nodes to obtain the remaining delivery times.
This is done using the concept of forward time slack originally introduced by Savelsbergh (1992) for the
TSPTW. Note that it is not necessary to consider the complete path P`′ for these computations. Instead, it
is sufficient to take into account the subpath between the node at which the vehicle was empty for the last
time and the current node η`′ . For technical details on the adapted feasibility test of Tang et al. (2010) and
the adapted version of the forward time slack we refer to a companion paper (Gschwind, 2015).

The elimination of labels with no feasible completion to node 2n+1 makes use of both the earliest possible
delivery times edi` and the latest possible delivery times ldi`. With this information, the label elimination
strategy is very effective.
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4. Computational results

This section summarizes the computational experiments that we have conducted to compare the perfor-
mance of the four different branch-and-cut-and-price approaches to the SPDP.

4.1. Branch-and-cut-and-price algorithm
In the following, we briefly describe the main components of the basic branch-and-cut-and-price algo-

rithm. Based on this algorithm, we devise our four different integer column-generation approaches to the
SPDP. Each of the approaches formulates the master problem on a different variable set implying subprob-
lem SP, SPmin, SPmax, or SPmaxmin . The subproblems are solved using the respective labeling algorithms of
Sections 3.1 - 3.4.

Preprocessing. Time-window tightening and arc elimination is performed according to the rules proposed
by Desrochers et al. (1992), Dumas et al. (1991), and Cordeau (2006) for the VRPTW or tailored to the
PDPTW or the DARP. The integration of minimum and maximum ride-time constraints into these rules is
straightforward.

Pricing problem heuristics. To speed up the column-generation process, heuristics can be used to identify
negative reduced-cost columns fast. When the heuristics are unable to find additional columns, one has to
resort to an exact method to solve the subproblem. In our algorithms, we tried two straightforward pricing
problem heuristics. The first is to solve a more relaxed subproblem, e.g., solving SP when actually having to
solve SPmax, and to drop all routes that are infeasible for the actual subproblem. The other is to solve the
subproblem on a reduced network only. Preliminary computational tests indicated that the benefits from
using these heuristics were rather limited for all algorithms.

Cutting Planes. In our branch-and-cut-and-price algorithms, we use the following types of valid inequalities:
2-path inequalities (Kohl et al., 1999), rounded capacity inequalities in a form proposed by Ropke and
Cordeau (2009) for the PDPTW, fork inequalities (Ropke et al., 2007), and two different liftings of IPEC
introduced by Ascheuer et al. (2000) for the TSPTW and Cordeau (2006) for the DARP. Heuristic separation
procedures proposed by Ropke and Cordeau (2009) are used to separate 2-path inequalities, rounded capacity
inequalities, and fork inequalities. For the exact separation of the lifted IPEC we use a straightforward
enumeration procedure (see Ascheuer et al., 2000). SPDP-feasibility of an integer solution obtained by
approaches using a relaxed variable set Ω′ is, thus, guaranteed by the lifted IPEC.

Branching strategy and node selection. A hierarchical branching scheme is used to obtain integer solutions
in our algorithms. We first branch on the number of vehicles, if fractional. We then branch on the outflow
of a node set of cardinality two. Both branching rules are enforced by adding a single linear constraint to
the master problem. The structure of the subproblems remains unchanged. The branch-and-bound tree is
explored with a best-first strategy and no upper bounds are given to the algorithm.

All algorithms described in this paper were implemented in C++ using CPLEX 12.2 as LP-solver. Arc
costs and travel times are computed with double precision. The experiments were performed on a standard
PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz with 16.0 GB main memory using a single thread only.
The time limit was set to one hour.

4.2. Test instances
The test instances used in the computational study are all based on the benchmark set for the DARP

originally introduced by Cordeau (2006) and later extended by instances with larger problem sizes by Ropke
et al. (2007). For a detailed description of these instances and their generation we refer to (Cordeau, 2006).

The DARP benchmark set consists of random Euclidean instances with problem sizes reaching from two
vehicles and 16 customer requests to eight vehicles and 96 customer requests. Additional larger instances
with up to ten vehicles and 120 customer requests were generated in the same fashion as the DARP instances.
All these instances are characterized by small vehicle capacities and narrow time windows. To also consider
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harder instances in which these constraints are less restrictive, three new instances were constructed from
each original instance by enlarging both capacities and time-window lengths by factors of 4/3, 5/3, and 6/3.

In the original benchmark set, there are two subsets of instances (type a and type b) with different
characteristics regarding customer demand and vehicle capacity. Moreover, the maximum ride times are
specified by a fixed value L for each subset and are identical for all requests and all instances of the given
subset. In the way the instances are constructed (the time windows are specified either for the pickup
or the delivery node of a request) the maximum ride-time constraint of each request is always restrictive,
independent of how small or large L is chosen. Specifying the minimum ride times analogously, i.e., setting
them to one identical value L for each request raises the following issue: If the value L is chosen small,
the minimum ride-time constraints of many requests are redundant because the direct travel time between
pickup and delivery node of the request is already larger than L. If L is chosen large enough so that none of
the minimum ride-time constraints is redundant, many instances of the benchmark become infeasible. We,
therefore, chose not to use fixed values for the ride times in our test instances. Instead, we modeled both
maximum and minimum ride times for each request proportional to the direct travel time between pickup
and delivery node. As a result, it is assured that none of the ride-time constraints is redundant, which
in our opinion provides the fairest benchmark for the comparison of the different algorithms. Moreover,
it allows us in a good way to create instances with different characteristics regarding the tightness of the
ride-time constraints. More precisely, in our instances the maximum ride time of a request is equal to the
product of the direct travel time and a random number chosen according to a uniform distribution over a
given interval. We considered the two intervals [2.25, 2.75] (for more restrictive maximum ride times) and
[2.75, 3.25] (for less restrictive maximum ride times). The minimum ride times were specified in a similar
fashion using the intervals [1.75, 2.25] and [1.25, 1.75] for generating instances with more restrictive and less
restrictive minimum ride times, respectively.

The complete benchmark comprises 864 instances labeled in the form RT-TW-iK-n, where n denotes
the number of requests, K denotes the number of vehicles, and i ∈ {a, b} denotes the subset the instance
originates from. Moreover, TW = A refers to the original instances with small vehicle capacities and time-
window lengths, while TW = B, TW = C and TW = D denote the instances in which these values have been
enlarged by factor 4/3, 5/3, and 6/3, respectively. The characteristics regarding ride times are specified by
RT ∈ {MM, ML, LM, LL}, where M and L indicate the more restrictive and less restrictive cases, respectively, while
the first character refers to minimum ride times and the second character refers to maximum ride times.
Note that some of the small instances are infeasible in the presence of minimum and maximum ride-time
constraints. We allowed the use of additional vehicles to obtain well-defined instances in these cases. All
instances are available at http://logistik.bwl.uni-mainz.de/Dateien/SPDP.zip.

4.3. Analysis of results
Table 3 summarizes our results averaged over all benchmark instances. Tables 4 and 5 present averaged

results for the subclasses A, B, C, D and MM, LM, ML, MM, respectively. In each table, we also report the
results averaged only over the larger instances with n > 80 requests. More detailed results can be found in
Tables 6–13 in Section B of the appendix. The columns of the tables have the following meaning:

tree number of optimal solutions (opt), average computation time in seconds (t [s]), and average
percentage integrality gap (%gap) of the respective branch-and-cut-and-price algorithm

root number of optimal solutions (opt) and average percentage integrality gap (%gap) in the root
node

% time average percentage time spent for the solution of the subproblem (sp), separation (sep), and
reoptimization of the master program (lp)

# solved number of solved branch-and-bound nodes (nd) and subproblems (sp)
# gen number of generated columns (col) and cuts (cut)

The results in Table 3 indicate that algorithms IMPmaxmin and IMP-Imax are clearly superior to IMP-Imin
and IMP-I. The overall performance of the two stronger approaches IMPmaxmin and IMP-Imax is comparable.
In total, IMPmaxmin is able to solve 786 out of the 864 instances to optimality, four more than IMP-Imax.
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (864)
IMPmaxmin 786 466 0.05 381 0.18 80 13 6 29 2296 160082 11
IMP-Imax 782 474 0.05 320 0.25 53 28 20 82 4595 181881 65
IMP-Imin 612 1180 0.33 312 0.54 34 20 45 47 2669 95890 280
IMP-I 598 1274 0.38 278 0.60 28 21 51 43 2807 92173 308

Instances with n > 80 (192)
IMPmaxmin 127 1532 0.20 22 0.37 90 6 4 58 5784 474642 21
IMP-Imax 127 1545 0.21 14 0.47 67 12 22 174 12544 582031 126
IMP-Imin 62 2603 1.02 13 1.20 38 7 55 62 4209 215036 515
IMP-I 58 2725 1.13 10 1.32 32 8 61 63 4533 214094 551

Table 3: Summary results aggregated over all 864 instances

Both approaches solve 127 out of the 192 instances with n > 80. Regarding computation times, IMP-Imaxmin

is on average also slightly faster than IMP-Imax. Algorithm IMP-Imin is inferior to both of the former
approaches regarding number of solved instances, computation times and remaining integrality gap. IMP-I
performs even worse on all these numbers.

The superiority of IMPmaxmin and IMP-Imax over IMP-Imin and IMP-I can be attributed to the following
reasons: First, the root node lower bounds of IMPmaxmin and IMP-Imax are significantly stronger resulting
in smaller search trees for these approaches. Second, for IMP-Imin and IMP-I substantially more cuts
are added to the master programs severely complicating their reoptimization. This is also the reason why
the average number of solved nodes is smaller for approaches IMP-Imin and IMP-I compared to approach
IMP-Imax. While IMP-Imax explores a huge number of nodes when solving difficult instances, algorithms
IMP-Imin and IMP-I spend a lot of time reoptimizing the master programs and, thus, can solve only few
nodes within the time limit. When comparing instances solved by all approaches, the number of explored
nodes is indeed much higher for approaches IMP-Imin and IMP-I.

The more disaggregated results in Tables 4 and 5 indicate that all findings from the overall results
regarding the performance of the different approaches do also hold for all subclasses of instances. This
means that the characteristics of the ride-time constraints have only limited influence on the relation of
the strengths of the considered algorithms. This is also true for vehicle capacity, customer demands, and
time-window lengths.

Another interesting result of our experiments is that handling the maximum ride-time constraints in the
subproblem seems to be more important than integrating the minimum ride times into the subproblem. Our
interpretation is that the minimum ride-time constraints are often satisfied without explicitly considering
them for the following reasons: When the time windows are narrow, many customer requests are picked up
at their origin node i at time ai. In these cases, the time-window tightening rules ensure that the minimum
ride times are respected. With wide time windows, on the other hand, several other customer nodes are
often visited in between the pickup and delivery of a request. This increases the ride times of the respective
request compared to the direct travel times so that the minimum ride-time constraints might already be
satisfied.

5. Conclusion

In this paper, we introduced the Synchronized Pickup and Delivery Problem (SPDP) as the prototypical
VRP with temporal intra-route synchronization. In the SPDP, vehicle routes have to satisfy pairing and
precedence, capacities, and time windows. Additionally, temporal synchronization constraints couple the
service times at the pickup and delivery locations of the customer requests in the following way: A delivery
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (216 each)

A
(o
ri
g.
) IMPmaxmin 212 167 0.00 128 0.07 77 14 9 19 2211 136508 7

IMP-Imax 212 167 0.00 114 0.10 50 31 19 40 2987 105862 32
IMP-Imin 198 389 0.01 120 0.11 40 27 32 29 2045 73045 106
IMP-I 196 425 0.02 108 0.13 33 30 37 29 1999 64006 122

B
(4
/3
) IMPmaxmin 206 242 0.00 108 0.09 78 15 7 20 1690 113264 9

IMP-Imax 208 242 0.01 89 0.12 51 32 17 44 3169 127318 46
IMP-Imin 179 735 0.08 84 0.22 34 24 42 37 2386 87613 207
IMP-I 175 858 0.10 74 0.25 27 24 49 38 2633 85351 234

C
(5
/3
) IMPmaxmin 193 560 0.04 84 0.20 81 14 5 31 2911 243361 13

IMP-Imax 191 574 0.05 69 0.28 53 27 20 98 5297 210325 79
IMP-Imin 138 1479 0.34 63 0.60 30 17 53 60 2971 105573 342
IMP-I 134 1628 0.40 54 0.66 23 18 60 53 3213 101596 377

D
(6
/3
) IMPmaxmin 175 893 0.16 61 0.36 86 10 4 47 2370 147196 16

IMP-Imax 171 913 0.16 48 0.51 57 22 21 145 6925 284020 103
IMP-Imin 97 2115 0.90 45 1.22 33 13 54 62 3273 117329 464
IMP-I 93 2187 1.01 42 1.36 27 13 59 54 3382 117739 497

Instances with n > 80 (48 each)

A
(o
ri
g.
) IMPmaxmin 44 623 0.01 11 0.13 86 6 8 52 7001 498632 12

IMP-Imax 45 621 0.00 10 0.18 63 18 19 121 9660 383002 63
IMP-Imin 35 1308 0.04 9 0.21 40 12 48 73 5695 215803 225
IMP-I 33 1421 0.06 8 0.24 33 14 53 68 5775 206167 249

B
(4
/3
) IMPmaxmin 38 963 0.01 6 0.15 86 10 5 56 5815 444128 19

IMP-Imax 40 946 0.02 3 0.22 63 17 20 130 10828 481830 100
IMP-Imin 22 2142 0.28 3 0.48 34 8 59 80 5608 257743 439
IMP-I 21 2402 0.33 2 0.53 24 6 70 76 5940 244192 481

C
(5
/3
) IMPmaxmin 29 1805 0.18 5 0.37 93 4 3 60 5634 540175 22

IMP-Imax 28 1867 0.19 1 0.49 69 8 23 204 13924 645650 151
IMP-Imin 5 3360 1.11 1 1.34 29 4 67 56 3485 204250 650
IMP-I 4 3476 1.26 0 1.45 24 5 71 54 3544 192288 707

D
(6
/3
) IMPmaxmin 16 2737 0.59 0 0.80 96 2 2 65 4684 415632 32

IMP-Imax 14 2744 0.62 0 1.01 72 4 24 240 15763 817641 191
IMP-Imin 0 3600 2.63 0 2.77 48 6 46 38 2046 182347 744
IMP-I 0 3600 2.88 0 3.05 45 6 49 53 2873 213731 767

Table 4: Aggregated results for subclasses A, B, C, and D
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (216 each)

MM

IMPmaxmin 209 252 0.01 116 0.11 78 14 8 24 1689 112534 10
IMP-Imax 204 312 0.02 92 0.17 46 30 24 59 3265 109589 73
IMP-Imin 166 986 0.21 97 0.34 31 20 48 35 1887 64692 296
IMP-I 162 1068 0.25 84 0.39 23 21 56 22 1776 58741 331

LM

IMPmaxmin 201 364 0.02 99 0.13 78 14 8 31 2109 160862 11
IMP-Imax 202 316 0.02 91 0.17 52 29 19 62 3497 154340 51
IMP-Imin 158 1100 0.29 82 0.43 30 20 51 19 1648 67254 325
IMP-I 156 1169 0.32 78 0.48 25 21 54 22 1712 59723 343

ML

IMPmaxmin 191 566 0.10 80 0.26 82 13 5 28 1910 113225 11
IMP-Imax 184 695 0.12 64 0.39 54 26 20 113 5989 211589 85
IMP-Imin 147 1288 0.41 65 0.67 36 22 42 57 3098 104723 257
IMP-I 143 1417 0.49 56 0.78 28 22 50 57 3421 103122 290

LL

IMPmaxmin 185 681 0.07 86 0.23 83 12 5 34 3474 253708 12
IMP-Imax 192 574 0.06 73 0.29 60 25 15 93 5627 252007 50
IMP-Imin 141 1345 0.42 68 0.71 40 20 40 76 4043 146891 242
IMP-I 137 1443 0.47 60 0.74 34 21 45 72 4319 147106 266

Instances with n > 80 (48 each)

MM

IMPmaxmin 41 955 0.05 8 0.22 88 7 5 55 5404 426134 19
IMP-Imax 37 1086 0.08 6 0.31 57 13 30 117 9240 365199 143
IMP-Imin 21 2344 0.67 5 0.77 29 9 62 40 3367 163060 610
IMP-I 17 2548 0.82 4 0.91 22 9 69 26 3079 140107 666

LM

IMPmaxmin 35 1308 0.08 4 0.24 89 6 5 59 6031 586758 22
IMP-Imax 37 1075 0.07 3 0.28 66 13 21 130 10206 534659 105
IMP-Imin 16 2604 0.87 3 0.95 28 8 64 20 2185 132582 663
IMP-I 16 2570 0.92 2 1.02 22 8 69 21 2183 122956 679

ML

IMPmaxmin 26 1851 0.41 5 0.57 93 4 3 54 4244 295062 22
IMP-Imax 24 2132 0.47 2 0.79 71 8 22 230 14829 628445 160
IMP-Imin 13 2693 1.31 2 1.56 45 6 49 80 4707 230725 413
IMP-I 13 2887 1.50 2 1.77 39 6 55 92 5701 247585 446

LL

IMPmaxmin 25 2014 0.25 5 0.43 92 5 3 66 7456 590613 22
IMP-Imax 29 1886 0.23 3 0.51 74 13 13 217 15901 799820 96
IMP-Imin 12 2770 1.22 3 1.52 50 6 44 108 6576 333776 372
IMP-I 12 2894 1.29 2 1.58 44 7 49 112 7169 345731 413

Table 5: Aggregated results for subclasses MM, LM, ML, and LL
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node has to be serviced within prespecified minimum and maximum time lags (called ride times) after the
service at the corresponding pickup node has been completed.

The minimum and maximum ride-time constraints severely complicate the subproblem of the natural
column-generation formulation of the SPDP and it is not clear if their integration into the subproblem
pays off in an integer column-generation approach. We, therefore, developed four solution approaches to
the SPDP based on column-generation formulations with differing subproblems. Two of these subproblems,
the natural subproblem of the SPDP that integrates all constraints relating to single routes and the one
in which the maximum ride-time constraints are relaxed, were considered for the first time in this paper.
New dominance rules and labeling algorithms for their solution have been derived. Extensive computational
experiments demonstrate the applicability of these labeling algorithms in the sense that they are capable of
solving subproblems arising in state-of-the-art benchmark instances in reasonable time.

The computational results also indicate a clear ranking of the four presented algorithms for solving the
SPDP. The strongest approaches are the approach based on the natural column-generation formulation
and the one that handles only the maximum ride times in the subproblem. They performed comparably
well and were consistently significantly stronger than the approach with only the minimum ride times in
the subproblem. This was in turn slightly stronger than the approach in which both ride-time constraints
are relaxed in the subproblem. We conclude that the integration of temporal intra-route synchronization
constraints into the column-generation subproblem is beneficial for the SPDP and that it is particularly
rewarding for the maximum ride-times.
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Appendix

A. Proofs

For the presentation of the proofs some additional notation is necessary. For any set of numbers M
and any number n, let n + M = {n + m : m ∈ M}. Moreover, given a sequence P = (h1, ..., hq) (path or
schedule) and a set of numbers M , let P \M be the sub-sequence of P where hi is removed if hi = m for
all m ∈M .

We first sketch the proof of Proposition 1 (see Dumas et al., 1991) which is the basis for Propositions 3
and 4.

Proof of Proposition 1: The basic idea of the proof is as follows. Let Q2 be a feasible completion to `2,
i.e., Q2 is a extension of P`2 to node 2n+ 1 such that the path P2 = (P`2 , Q2) is feasible. Consider the path
P1 = (P`1 , Q1) where Q1 = Q2 \ {n + (O`2 \ O`1)} is the completion to `1 resulting from Q2 by skipping
the delivery nodes of all additional open requests of `2. Clearly, pairing and precedence constraints are then
satisfied by P1. Using that P2 is feasible, the relations in Proposition 1 also ensure that P1 is feasible with
respect to capacity and time windows. Furthermore, when the DTI holds the cost of P1 is always not higher
than that of P2. �

Proof of Lemma 1: TP is feasible if it satisfies inequalities (1)–(3). By definition of τ i, there exists for
each i = 1, ..., q a feasible schedule T iP = (τ i1, ..., τ i, ..., τ

i
q) with τ ij ≥ τ j for all j 6= i. It follows immediately

that TP satisfies (2) for all i = 1, ..., q. Using τ i+1
i + thihi+1

≤ τ i+1 and τ i ≤ τ i+1
i it follows that TP satisfies

(1) for all i = 1, ..., q − 1. Also, using τ ji + Lhi
≤ τ j and τ i ≤ τ ji it follows that TP satisfies (3) for all

hi = hj − n. �

Proof of Proposition 3: The proof is similar to the proof of Proposition 1. Following the same argumen-
tation and using the same notation, it remains to show that P1 also respects minimum ride-time constraints,
i.e., we have to show that there exists a feasible time schedule TP1

for P1.
Let TP2 = (TP`2

, TQ2) be a feasible schedule for P2 with TQ2 = (τq+1, ..., τr). Denote by TP`1
=

(τ1, ..., τ q) ∈ TP`1
the time schedule for P`1 that minimizes the start of service at all nodes and by TQ1 =

TQ2
\ {τi : hi − n ∈ O`2 \O`1} the schedule for Q1 that assigns each node hi of Q1 the same start of service

τi as in TQ2
. Then, using that TP`1

and TP2
are feasible, τ q = t`1 ≤ t`2 , and ed

hi

`1
≤ edhi

`2
≤ τi for all nodes

hi of Q1 with hi − n ∈ O`1 it follows that the schedule TP1 = (TP`1
, TQ1) is feasible. �

Proof of Proposition 4: The basic course of the proof is similar to that in the proof of Proposition 3. With
the same argumentation and notation, it again remains to show that there exists a feasible time schedule
TP1

for P1.
Let τ `2q be the start of service at the current node hq = η`1 within the schedule TP2 . Denote by τ ′i(τ `2q ) =

max
TP`1

∈TP`1
(τ

`2
q ),τj=τ ′j ∀hj∈O`1

\{hi}
{τi} the latest feasible start of service at node hi ∈ O`1 given a feasible choice

τ ′j for the values τj , hj ∈ O`1 \ {hi}, i.e., a choice such that a feasible schedule TP`1
= (τ1, ..., τq) ∈ TP`1

(τ `2q )

with τj = τ ′j for all hj ∈ O`1 \ {hi} exists. We first show that τ ′i(τ `2q ) ≥ τOi (τ `2q ) holds.
The proof is constructive. Denote by τ ′k(τ `2q ) and τOk (τ `2q ) also the latest start of service at all other nodes

hk 6= hi subject to the choices τ ′j and τ j for all hj ∈ O`1 \ {hi}, respectively. Moreover for ease of notation,
the explicit functional dependence on the start of service at the current node is omitted in the following, as all
considered values relate to schedules with τq ≤ τ `2q . We start from the schedule T

′
P`1

= (τ ′1, ..., τ
′
q) ∈ TP`1

.

Feasibility of T
′
P`1

follows analog to the proof of Lemma 1. Thus, T
′
P`1

satisfies the constraint system
(1)–(4), τq ≤ τ `2q , and τj = τ ′j , hj ∈ O`1 \ {hi} of the maximization problems of τ ′k, k = 1, ..., q. Replacing
equalities τj = τ ′j by τj = τ j for all hj ∈ O`1 \ {hi} leads to the constraints system for the maximization
problems of τOi , k = 1, ..., q. The modified equalities directly impose stronger bounds on all values τj−1

because of inequalities (1). The case hj−1 ∈ O`1 \ {hi} can be neglected, as the value of τj−1 is then fixed
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to τ j−1 and consistency of τ j−1 and τ j follows directly from feasibility of the choice τk, hk ∈ O`1 which can
again be shown analog to the proof of Lemma 1.

In the case hj−1 /∈ O`1 \ {hi}, the maximal value at position j − 1 decreases from τ ′j−1 to τ
O`1
j−1 =

min{τ ′j−1, τ j− thj−1hj
} = τ ′j−1 + ∆j−1 with ∆j−1 ≤ 0. A reduced value τO`1

j−1 compared to τ ′j−1 may in turn
influence the maximal values at positions j − 2, k with hk = hj−1 − n, and l with hl = hj−1 + n because
of inequalities (1), (3), and (4), respectively. W.l.o.g. consider the impact on the maximal value at position
j − 2 which decreases from τ ′j−2 to

τ
O`1
j−2 = min{τ ′j−2, τ

O`1
j−1 − thj−2hj−1

}

= τ ′j−2 + min{0, τO`1
j−1 − thj−2hj−1 − τ ′j−2}

= τ ′j−2 + min{0, τ ′j−1 + ∆j−1 − thj−2hj−1
− τ ′j−2}

= τ ′j−2 + ∆j−2,

with ∆j−2 ≤ 0. As τ ′j−1 − thj−2hj−1 − τ ′j−2 ≥ 0 it follows that 0 ≤ ∆j−2 ≤ ∆j−1. Thus, the value by
which τO`1

j−2 is decreased compared to τ ′j−2 is strictly not larger than the value by which τO`1
j−1 is decreased

compared to τ ′j−1. The same result is obtained for the maximal values at positions k with hk = hj−1 − n
and l with hl = hj−1 + n.

Decreased values τO`1
j−2, τ

O`1

k with hk = hj−1 − n, and τ
O`1

l with hl = hj−1 + n in turn constrain the

maximal values at several other positions m within the path in an analog fashion as τO`1
j−1 constrained

themselves as shown above. As a result, we get τO`1
m = τ ′m + ∆m with ∆m ≤ 0. Moreover, 0 ≤ ∆m ≤

∆j−2,∆k,∆l also holds, i.e., again the decreasing effects on values τO`1
m compared to τ ′m are strictly not

larger than the decreasing effect on τO`1
j−2, τ

O`1

k , and τO`1

l compared to τ ′j−2, τ
′
k, and τ

′
l, respectively.

Iteratively propagating the stronger conditions resulting from decreased values τO`1

k , k = 1, ..., q compared
to τ ′k in the constraint system allows to construct T

O`1 = (τ
O`1
1 , ..., τ

O`1
q ) with τO`1

k = τ ′k + ∆k and ∆k ≤ 0
for all k = 1, ..., q. If there are more than just one decreasing effects that have not been propagated yet,
they are processed in non-increasing absolute values. Using the property that the decreasing effects ∆k are
non-increasing from propagation step to propagation step, there exists a unique value by which the maximal
start of service at each position is decreased and no cycle effects can occur. As a result, τ ′i(τ `2q ) ≥ τO`1

i (τ `2q )
holds for any feasible choice τ ′j of the values τj , hj ∈ O`1 \ {hi}.

In an analog fashion, we can show that τ ′i(τ `2q ) ≤ τOi (τ `2q ) holds. Clearly, we also have that τ ′i(τ `2q ) ≤
τ ′i(τ

`2
q ). Moreover, it is easy to see that any convex combination of two feasible schedules is also a feasible

schedule. Thus, given any feasible choice τ ′j for the values τj , hj ∈ O`1 \ {hi} there exists for each τ∗i ∈[
τ ′i(τ

`2
q ), τ ′i(τ

`2
q )
]
with τ ′i(τ `2q ) ≤ τOi (τ `2q ) and τ ′i(τ `2q ) ≥ τO`1

i (τ `2q ) a feasible schedule with start of service τ∗i
at node hi ∈ O`1 .

Using this property, we can construct a feasible schedule TP1
= (T ∗P`1

, TQ1
) as follows. As defined in the

proof of Proposition 3, fix TQ1
= TQ2

\ {τi : hi − n ∈ O`2 \ O`1} to the schedule for Q1 that assigns each
node hi of Q1 the same start of service τi as in TQ2

. Let TP`1
= (τ1, ..., τq) ∈ TP`1

(τ `2q ). For T ∗P`1
= TP`1

,
schedule TP1

clearly satisfies inequalities (1) and (2). Also, it satisfies inequalities (3) and (4) for each
request hi /∈ O`1 .

If TP1 also respects inequalities (3) and (4) for each request hi ∈ O`1 , TP1 is feasible and the proof is
complete. Otherwise, consider any request hi for which either constraint (3) or (4) is violated. Denote by
τk the start of service at the delivery node hk = hi + n as fixed in schedule TQ1

. To satisfy inequalities (3)
and (4), τi ≤ τk − Lhi

and τi ≥ τk − Lhi
must hold, respectively, for the start of service τi at pickup node

hi within schedule T ∗P`1
. Let τ ′i(τ `2q ) and τ ′i(τ `2q ) be the minimal and maximal starts of service at node hi,

respectively, given the values τj , hj ∈ O`1 \{hi} as fixed within schedule TP`1
. Then, τk−Lhi

≥ edhi

`2
−Lhi

≥
ed
hi

`1 (τ `2q )−Lhi
≥ τOi (τ `2q ) ≥ τ ′i(τ `2q ) and τk −Lhi ≤ ld

hi

`2
(τ `2q )−Lhi ≤ ld

hi

`1
(τ `2q )−Lhi ≤ τ

O`1
i (τ `2q ) ≤ τ ′i(τ `2q )
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hold. Using the property shown above, there exists a feasible schedule T ′P`1
= (τ ′1, ..., τ

′
q) with τ ′j = τj for all

hj ∈ O`1 \ {hi} and any τ ′i = τ∗i ∈
[
τ ′i(τ

`2
q ), τ ′i(τ

`2
q )
]
. Thus for T ∗P`1

= T ′P`1
, TP1 satisfies constraints (3) and

(4) for request hi. Moreover, all other constraints that have been respected in the case T ∗P`1
= TP`1

are still
respected.

If for TP1
inequalities (3) and (4) are still violated for some requests, we can iteratively repeat the same

procedure just described. In each iteration one constraint that was previously violated gets satisfied. Thus,
a feasible schedule TP1 for path P1 eventually results which completes the proof. �

Proof of Lemma 2: Note first that X (t) /∈ ∅ for all t ≥ t∗. Also note that X = (x1, ..., xq) ∈ X , X =
(x1, ..., xq) ∈ X , X(t) = (x1(t), ..., xq(t)) ∈ X (t), X(t) =

(x1(t), ..., xq(t)) ∈ X (t), X
S

(t) = (x
S
1 (t), ..., x

S
q (t)) ∈ XS(t), and XS(t) = (xS1 (t), ..., xSq (t)) ∈ XS(t). The

proofs are analog to the proof of Lemma 1.

1. The proof is constructive. We start from X ∈ X , i.e., the q-tuple with maximal values for all xi, i =
1, ..., q satisfying (26)–(28). When considering X (t), t ≥ t∗ instead of X , we have the additional
constraint xq ≤ t. The case xq ≤ t is trivial. If xq > t for some t ≥ t∗, the maximal value at position q
decreases to xq(t) = min{xq, t} = xq + min{0, t− xq} = xq + ∆q(t) with ∆q(t) = min{k1

q , k
2
q + t} ≤ 0.

If inequalities (27) are satisfied for the decreased value xq(t) and all xi, i < q, then clearly xj(t) =
xj = min{k1

i , k
2
i + t} for all j = 1, ..., q with constants k1

i and k2
i .

If xi + ciq > xq(t) holds for some i < q and t ≥ t∗, then xi(t) = min{xi, xq(t) − ciq} which can be
rewritten in the forms

xi(t) = min{xi, xq(t)− ciq}
= min{k1

i , k
2
i + t}

= xi + min{0, xq(t)− ciq − xi}
= xi + min{0, xq − ciq − xi + ∆q(t)}
= xi + ∆i(t),

where ∆i(t) = min{k̃1
i , k̃

2
i + t} ≤ 0 with constants k̃1

i and k̃2
i . As xq − ciq − xi ≥ 0, it follows that

0 ≤ ∆i(t) ≤ ∆q(t). Thus, the value by which xi(t) is decreased compared to xi is strictly not larger
than the value by which xq(t) is decreased compared to xq.

Decreased values xi(t) in turn impose stronger bounds compared to xi on the maximal values at all
positions j < i and k > i because of inequalities (27) and (28), respectively. Thus, the decreasing
effects propagate through the constraint system in the same fashion as in the proof of Proposition 4.
A schedule X(t) = (x1(t), ..., xq(t)) ∈ X (t) with xi(t) = max{k1

j , k
2
j + t}} for all i = 1, ..., q, t ≥ t∗ can

then be constructed analog to there.

2. It is straightforward to verify that X ∈ X (t) and X (t) ⊆ X for all t ≥ t∗. Thus, xi(t) = xi for all
i = 1, ..., q, t ≥ t∗.

3. xSi (t) is given by max{xi}, s.t. (26)–(28), xq ≤ t, and xj ≤ xj , j ∈ S. Obviously, the latter maximiza-
tion problem is of the same structure as the one for xi(t) and, thus, xSi (t) = max{k1

i , k
2
i + t} with

constants k1
i and k2

i for all i = 1, ..., q, t ≥ t∗.

4. Comparing the minimization problems for xi(t) and xSi (t), there are addi-
tional constraints xj ≥ xj(t), j ∈ S in the latter. When constructingXS(t) = (xS1 (t), ..., xSq (t)) ∈ XS(t)

starting from X(t) = (x1, ..., xq) ∈ X (t), these constraints may force xSj (t) to be increased compared
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to xj for j ∈ S and we have

xSj (t) = max{xj , xj(t)}
= max{xj ,min{k1

j , k
2
j + t}}

= xj + max{0,min{k1
j , k

2
j + t} − xj}

= xj + ∆j(t),

with ∆j(t) = max{k̃1
j ,min{k̃2

j , k̃
3
j + t}} ≥ 0. Increased values xSj (t) compared to xj might in turn

influence other values and the increasing effects propagate throughout the constraint system.

A schedule XS(t) = (xS1 (t), ..., xSq (t)) ∈ XS(t) with xSi (t) = max{k1
j ,min{k2

j , k
3
j + t}} for all i =

1, ..., q, t ≥ t∗ can then be constructed in the same fashion as X(t) was constructed in the proof of the
first property. �

Proof of Proposition 5: We need to show that (30) implies ed
i

`1(t) ≤ edi`2 , t ∈ [t`2 , b̃`2 ] and that (31)
implies ldi`1(t) ≥ ldi`2(t), t ∈ [t`2 , b̃`2 ]. The latter follows directly from Proposition 5 of Gschwind and Irnich

(2014). For the former, recall that ed
i

`1(t) = max{k1
i ,min{k2

i , k
3
i + t}} and note that ed

i

`1(t) is clearly
non-decreasing in t.

Consider first the case B
i

`1 ≤ b̃`2 . Using that ed
i

`1(t) is constant for all t ≥ B
i

`1 , we have that ed
i

`1(t) =

ed
i

`1(B
i

`1) ≤ edi`2 for all B
i

`1 ≤ t ≤ b̃`2 . For all t`2 ≤ t ≤ B
i

`1 , clearly ed
i

`1(t) ≤ edi`1(B
i

`1) ≤ edi`2 holds.

Consider now the case B
i

`1 > b̃`2 . If ed
i

`1(b̃`2) ≤ ed
i

`1(B
i

`1) − (B
i

`1 − b̃`2), then ed
i

`1(t) ≤ ed
i

`1(b̃`2) ≤
ed
i

`1(B
i

`1) − (B
i

`1 − b̃`2) ≤ edi`2 holds for all t`2 ≤ t ≤ b̃`2 . If ed
i

`1(b̃`2) > ed
i

`1(B
i

`1) − (B
i

`1 − b̃`2) we

differentiate two cases. First, if B
i

`1 = t`1 it follows directly that ed
i

`1(t) = ed
i

`1(B
i

`1) = ed
i

`1(t`1) ≤ edi`2 for

all t`2 ≤ t ≤ b̃`2 . Second, if B
i

`1 > t`1 we have that ed
i

`1(t) < ed
i

`1(B
i

`1) for all t < B
i

`1 and consequently
ed
i

`1(B
i

`1) = k2
i = k3

i +B
i

`1 must hold. Using ed
i

`1(b̃`2) > ed
i

`1(B
i

`1)− (B
i

`1 − b̃`2) it follows that ed
i

`1(b̃`2) >

k3
i + b̃`2 and, thus, ed

i

`1(b̃`2) = k1
i . As a result, we have ed

i

`1(t) = ed
i

`1(b̃`2) = k1
i = ed

i

`1(t`1) ≤ edi`2 for all
t`2 ≤ t ≤ b̃`2 . �

B. Detailed computational results

Tables 6–9 show aggregated results for all algorithms and subclasses. In each table, we also report
the results averaged only over the larger instances with n > 80 requests. The columns have the following
meaning:

tree number of optimal solutions (opt), average computation time in seconds (t [s]), and average
percentage integrality gap (%gap) of the respective branch-and-cut-and-price algorithm

root number of optimal solutions (opt) and average percentage integrality gap (%gap) in the root
node

% time average percentage time spent for the solution of the subproblem (sp), separation (sep), and
reoptimization of the master program (lp)

# solved number of solved branch-and-bound nodes (nd) and subproblems (sp)
# gen number of generated columns (col) and cuts (cut)
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (54 each)

A
(o
ri
g.
) IMPmaxmin 54 63 0.00 34 0.07 75 14 11 12 1232 53591 6

IMP-Imax 54 50 0.00 31 0.08 51 30 19 19 1517 49607 29
IMP-Imin 53 226 0.00 32 0.07 40 28 32 18 1561 56796 96
IMP-I 51 309 0.00 31 0.09 31 30 40 22 2123 77004 115

B
(4
/3
) IMPmaxmin 53 154 0.00 36 0.06 75 16 9 16 1595 123213 8

IMP-Imax 52 183 0.00 27 0.09 44 36 21 35 2586 83695 53
IMP-Imin 48 530 0.04 28 0.13 35 23 42 25 1497 58034 201
IMP-I 48 578 0.04 23 0.14 25 23 51 19 1222 37184 238

C
(5
/3
) IMPmaxmin 52 266 0.01 27 0.12 79 14 7 25 1880 162287 10

IMP-Imax 51 361 0.01 20 0.20 45 28 26 71 3923 127967 87
IMP-Imin 38 1282 0.20 23 0.37 25 17 57 41 2165 74150 356
IMP-I 35 1496 0.27 18 0.44 20 18 62 30 2194 66324 397

D
(6
/3
) IMPmaxmin 50 524 0.04 19 0.20 82 12 6 44 2050 111044 16

IMP-Imax 47 655 0.06 14 0.30 44 26 30 110 5035 177086 123
IMP-Imin 27 1905 0.59 14 0.79 24 13 63 56 2326 69789 532
IMP-I 28 1887 0.70 12 0.89 18 12 70 19 1564 54454 574

Instances with n > 80 (12 each)

A
(o
ri
g.
) IMPmaxmin 12 270 0.00 2 0.16 88 3 9 44 4761 217909 8

IMP-Imax 12 199 0.00 2 0.19 66 13 21 52 5230 188930 46
IMP-Imin 11 971 0.00 2 0.16 42 8 50 63 5976 227597 206
IMP-I 9 1254 0.01 2 0.19 32 13 55 54 6529 242554 236

B
(4
/3
) IMPmaxmin 11 667 0.01 4 0.12 80 14 6 49 5924 518448 18

IMP-Imax 10 787 0.02 3 0.18 52 21 26 102 9254 328495 113
IMP-Imin 7 1660 0.19 2 0.32 30 14 56 68 4351 199817 443
IMP-I 7 1834 0.19 2 0.29 17 9 74 31 2617 103413 529

C
(5
/3
) IMPmaxmin 10 1028 0.04 2 0.22 89 6 4 46 5581 622632 20

IMP-Imax 9 1281 0.07 1 0.31 54 12 35 124 9287 370515 182
IMP-Imin 3 3144 0.71 1 0.81 17 5 79 23 2372 134757 775
IMP-I 1 3503 0.96 0 1.03 15 7 78 16 2222 120613 813

D
(6
/3
) IMPmaxmin 8 1856 0.17 0 0.39 95 3 2 80 5351 345545 31

IMP-Imax 6 2078 0.24 0 0.56 54 6 39 192 13187 572858 233
IMP-Imin 0 3600 1.79 0 1.79 28 8 64 4 769 90067 1016
IMP-I 0 3600 2.12 0 2.13 24 7 69 4 949 93847 1087

Table 6: Results aggregated by subclass for MM instances
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (54 each)

A
(o
ri
g.
) IMPmaxmin 54 24 0.00 33 0.04 76 15 9 6 519 23733 7

IMP-Imax 54 31 0.00 31 0.06 50 31 20 10 874 33537 23
IMP-Imin 52 264 0.01 30 0.07 39 27 34 10 1523 73134 111
IMP-I 52 228 0.01 28 0.09 36 29 35 11 877 30538 118

B
(4
/3
) IMPmaxmin 52 177 0.00 27 0.06 76 16 8 19 1593 112939 10

IMP-Imax 52 167 0.00 24 0.08 51 31 18 33 2406 107659 37
IMP-Imin 46 648 0.06 22 0.15 28 22 50 16 1247 47057 236
IMP-I 45 722 0.07 21 0.17 25 22 53 18 1404 48272 251

C
(5
/3
) IMPmaxmin 50 441 0.01 23 0.13 76 16 8 27 2486 231066 12

IMP-Imax 50 366 0.01 22 0.17 52 31 17 65 3999 184217 58
IMP-Imin 34 1475 0.32 17 0.50 26 16 58 23 1874 73298 400
IMP-I 34 1598 0.35 17 0.54 19 19 63 30 2220 75353 419

D
(6
/3
) IMPmaxmin 45 813 0.07 16 0.27 83 10 6 73 3838 275707 16

IMP-Imax 46 701 0.06 14 0.35 55 24 22 142 6710 291948 85
IMP-Imin 26 2014 0.77 13 0.99 25 13 62 25 1946 75526 552
IMP-I 25 2129 0.84 12 1.11 20 14 66 28 2347 84728 585

Instances with n > 80 (12 each)

A
(o
ri
g.
) IMPmaxmin 12 87 0.00 3 0.07 84 8 8 13 1310 75719 11

IMP-Imax 12 120 0.00 3 0.08 61 22 17 27 2349 111207 48
IMP-Imin 10 1098 0.03 2 0.15 36 11 53 30 2987 137530 247
IMP-I 10 928 0.03 2 0.17 31 14 56 29 2505 103290 262

B
(4
/3
) IMPmaxmin 10 758 0.01 1 0.13 84 10 6 59 5899 464365 24

IMP-Imax 10 729 0.00 0 0.17 64 14 22 118 9475 445407 88
IMP-Imin 6 2118 0.25 1 0.35 25 7 68 28 2610 128091 544
IMP-I 5 2306 0.26 0 0.39 20 5 75 31 3294 143883 540

C
(5
/3
) IMPmaxmin 8 1827 0.06 0 0.28 92 4 4 78 9136 941338 20

IMP-Imax 9 1265 0.04 0 0.32 73 7 20 158 12899 660848 112
IMP-Imin 0 3600 1.05 0 1.15 17 5 78 20 2289 147984 821
IMP-I 1 3447 1.10 0 1.20 15 6 79 19 2005 127869 846

D
(6
/3
) IMPmaxmin 5 2560 0.25 0 0.46 94 3 3 86 7778 865610 33

IMP-Imax 6 2185 0.22 0 0.55 67 8 25 218 16101 921174 170
IMP-Imin 0 3600 2.15 0 2.15 34 8 58 4 855 116722 1042
IMP-I 0 3600 2.30 0 2.30 24 8 68 4 926 116781 1069

Table 7: Results aggregated by subclass for LM instances
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (54 each)

A
(o
ri
g.
) IMPmaxmin 52 223 0.00 29 0.09 79 14 7 28 2629 125535 7

IMP-Imax 51 325 0.00 25 0.13 49 31 20 66 4860 159192 45
IMP-Imin 47 500 0.02 29 0.14 39 30 31 41 2383 76904 108
IMP-I 47 554 0.03 25 0.17 31 32 37 36 2207 63504 134

B
(4
/3
) IMPmaxmin 51 284 0.01 23 0.10 80 13 6 17 1338 89769 8

IMP-Imax 51 312 0.02 19 0.15 53 30 17 50 3276 120326 56
IMP-Imin 44 795 0.09 18 0.24 35 26 38 40 2375 84908 200
IMP-I 43 973 0.12 16 0.29 26 28 47 41 2484 74332 233

C
(5
/3
) IMPmaxmin 48 691 0.05 16 0.25 82 14 3 32 2238 156461 13

IMP-Imax 45 850 0.07 11 0.39 55 24 21 133 6938 247400 107
IMP-Imin 34 1563 0.35 10 0.69 32 19 50 70 3411 109603 314
IMP-I 33 1731 0.45 7 0.81 23 17 61 67 3988 116236 355

D
(6
/3
) IMPmaxmin 40 1064 0.36 12 0.58 88 9 3 33 1437 81136 16

IMP-Imax 37 1292 0.40 9 0.87 58 20 22 201 8884 319439 131
IMP-Imin 22 2292 1.17 8 1.60 39 13 48 78 4225 147475 406
IMP-I 20 2412 1.36 8 1.85 32 13 55 85 5003 158416 439

Instances with n > 80 (12 each)

A
(o
ri
g.
) IMPmaxmin 10 761 0.01 2 0.14 87 7 7 69 6383 321086 16

IMP-Imax 10 1120 0.01 2 0.21 63 13 24 181 14178 527528 95
IMP-Imin 7 1581 0.05 2 0.24 43 13 45 100 6880 249099 225
IMP-I 7 1757 0.09 2 0.30 35 13 52 88 6683 217550 258

B
(4
/3
) IMPmaxmin 9 1104 0.03 1 0.19 89 7 3 41 3791 317222 19

IMP-Imax 9 1169 0.07 0 0.34 69 10 21 148 9688 408005 129
IMP-Imin 5 2227 0.33 0 0.57 34 7 58 83 4983 216713 410
IMP-I 5 2668 0.44 0 0.70 24 4 72 95 6412 225071 464

C
(5
/3
) IMPmaxmin 6 2200 0.23 2 0.41 97 1 2 58 4044 326811 23

IMP-Imax 5 2638 0.29 0 0.65 72 6 22 282 17455 735455 192
IMP-Imin 1 3363 1.22 0 1.54 38 2 60 75 4073 218260 524
IMP-I 1 3523 1.45 0 1.75 31 3 66 80 4590 225975 584

D
(6
/3
) IMPmaxmin 1 3338 1.36 0 1.56 98 1 1 48 2757 215131 31

IMP-Imax 0 3600 1.50 0 1.97 78 1 20 309 17996 842792 226
IMP-Imin 0 3600 3.64 0 3.88 64 4 32 60 2891 238828 492
IMP-I 0 3600 4.02 0 4.34 65 3 32 105 5120 321742 477

Table 8: Results aggregated by subclass for ML instances
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tree root % time # solved # gen

algorithm opt t [s] %gap opt % gap sp sep lp nd sp col cut

All instances (54 each)

A
(o
ri
g.
) IMPmaxmin 52 359 0.00 32 0.09 79 13 9 31 4465 343174 7

IMP-Imax 53 264 0.00 27 0.11 52 30 18 65 4699 181112 29
IMP-Imin 46 566 0.03 29 0.15 44 24 32 44 2714 85345 109
IMP-I 46 608 0.04 24 0.16 37 28 36 45 2787 84979 122

B
(4
/3
) IMPmaxmin 50 354 0.00 22 0.14 81 14 6 27 2236 127133 8

IMP-Imax 53 305 0.00 19 0.16 56 30 14 57 4406 197591 36
IMP-Imin 41 968 0.11 16 0.35 37 25 39 65 4426 160455 191
IMP-I 39 1160 0.15 14 0.38 30 24 46 76 5423 181615 214

C
(5
/3
) IMPmaxmin 43 843 0.10 18 0.30 85 12 4 39 5042 423629 15

IMP-Imax 45 720 0.09 16 0.36 61 23 16 122 6330 281715 63
IMP-Imin 32 1597 0.48 13 0.83 37 17 46 105 4434 165241 299
IMP-I 32 1687 0.52 12 0.85 29 18 53 84 4449 148470 339

D
(6
/3
) IMPmaxmin 40 1170 0.16 14 0.41 89 9 2 38 2153 120897 17

IMP-Imax 41 1005 0.14 11 0.52 70 18 12 127 7072 347608 73
IMP-Imin 22 2248 1.07 10 1.50 43 13 44 88 4597 176525 368
IMP-I 20 2319 1.16 10 1.58 39 14 47 83 4615 173360 389

Instances with n > 80 (12 each)

A
(o
ri
g.
) IMPmaxmin 10 1373 0.02 4 0.16 86 7 7 81 15551 1379814 13

IMP-Imax 11 1046 0.00 3 0.22 62 22 16 224 16884 704345 62
IMP-Imin 7 1583 0.08 3 0.28 42 15 43 101 6939 248986 223
IMP-I 7 1745 0.12 2 0.31 35 16 49 99 7382 261273 243

B
(4
/3
) IMPmaxmin 8 1323 0.01 0 0.16 90 7 3 76 7646 476477 17

IMP-Imax 11 1098 0.01 0 0.19 66 21 12 150 14896 745414 71
IMP-Imin 4 2564 0.37 0 0.69 45 4 52 141 10489 486350 358
IMP-I 4 2800 0.44 0 0.75 37 4 59 147 11438 504402 391

C
(5
/3
) IMPmaxmin 5 2166 0.39 1 0.57 93 5 2 61 3775 269917 26

IMP-Imax 5 2285 0.37 0 0.69 79 8 13 251 16056 815782 118
IMP-Imin 1 3335 1.47 0 1.84 46 2 51 105 5207 315998 481
IMP-I 1 3429 1.51 0 1.83 36 3 61 101 5359 294695 585

D
(6
/3
) IMPmaxmin 2 3193 0.59 0 0.81 98 1 1 47 2852 236242 34

IMP-Imax 2 3114 0.54 0 0.96 87 2 11 241 15770 933740 134
IMP-Imin 0 3600 2.94 0 3.27 69 3 29 85 3670 283771 428
IMP-I 0 3600 3.09 0 3.43 67 5 28 101 4498 322553 435

Table 9: Results aggregated by subclass for LL instances
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Tables 10-13 present optimal solution/lower bound values for all instances together with the respective
computation times of algorithms IMPmaxmin and IMP-Imax. The meaning of the table entries are as follows:

inst name of the instance
opt indicates if the instances is solved to proven optimality
lb value of best known lower bound
IMPmaxmin computation time in seconds of algorithm IMPmaxmin , 1h if unable to solve instance within time

limit
IMP-Imax computation time in seconds of algorithm IMP-Imax, 1h if unable to solve instance within

time limit
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