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Abstract

The Synchronized Pickup and Delivery Problem (SPDP) consists of finding a set of minimum-cost routes
servicing user-specified transportation requests from pickup to delivery locations subject to pairing and
precedence, capacity, time-window, and minimum and maximum time-lag constraints. The temporal con-
straints of the SPDP impose a complex scheduling problem for the service times at the customer locations
which makes the efficient feasibility checking of routes intricate. We present different route feasibility tests
for the SPDP and compare their practical runtime on a huge number of randomly generated routes. Fur-
thermore, we generalize to the SPDP the concept of forward time slack, which has proven a versatile tool
for feasibility testing of customer or request insertions into a given (feasible) route for many VRP variants.
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1. Introduction

The Synchronized Pickup and Delivery Problem (SPDP, Gschwind, 2015) is the prototypical Vehicle
Routing Problem (VRP) with temporal intra-route synchronization constraints. It seeks to find a set of
minimum-cost routes servicing n user-specified transportation requests from origin (or pickup) to destination
(or delivery) points subject to pairing and precedence, capacity, and time-window constraints. Moreover, the
service times at the pickup and delivery locations of the customer requests are synchronized in the following
way: After completing the service at a pickup point, the corresponding delivery has to be performed within
prespecified minimum and maximum time lags (or Ride Times, RTs). From a modeling point of view, the
SPDP generalizes the Dial-A-Ride Problem (DARP, see Cordeau and Laporte, 2007, for a survey) in which
no minimum RTs are present.

Applications of the SPDP arise, e.g., in home health care where patients need to be monitored repeatedly
within given time intervals (Eveborn et al., 2006; Rasmussen et al., 2012) and, for personnel consistency
reasons, it may be necessary that these visits are always performed by the same nurse (Kovacs et al., 2014).
Similar problems can be found in the planning of security guards where locations have to be inspected several
times a day/night (Bredström and Rönnqvist, 2008). In the airline industry, minimum and maximum RTs
are relevant, e.g., in fleet assignment models or crew scheduling problems. In the former, they constrain
the allowed time between consecutive flights serving the same origin-destination pair (spacing constraints,
Bélanger et al., 2006). In the latter, they correspond to minimum and maximum idle times between two
sequential flights of the same crew (Barnhart et al., 2003).

Because of the complex temporal constraints of the SPDP, deciding whether or not a given route is
feasible is a non-trivial task. The efficient feasibility testing of routes, however, is a crucial part in many
exact and heuristic algorithms for VRPs. Sophisticated feasibility tests for a DARP with an additional
constraint on the maximum waiting time at the customer nodes have been proposed by Tang et al. (2010)
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and Firat and Woeginger (2011). The time complexity of these approaches is O (n2) and O (n), respectively.
In the SPDP, the additional presence of minimum RT constraints further complicates the route feasibility
problem.

Another crucial aspect for some solution approaches to VRP variants is the ability to quickly evaluate
the feasibility of insertions of single nodes or requests into a given (feasible) route. The concept of Forward
Time Slack (FTS) originally introduced by Savelsbergh (1992) for the VRP with Time Windows (VRPTW)
can be a useful tool for this kind of evaluation. Generalized versions of the FTS have been used to asses
the feasibility of insertions in heuristic algorithms, e.g., for the Technician Routing and Scheduling Problem
(Pillac et al., 2012) and the Pickup and Delivery Problem with Transfers (PDPT) (Masson et al., 2013). In
a companion paper (Gschwind, 2015), the FTS principle is used within a dynamic-programming labeling
algorithm for the solution of the column-generation subproblem of the SPDP.

The contribution of this paper is twofold. First, we derive different route feasibility checks for the
SPDP by adapting the approaches for the DARP presented in Firat and Woeginger (2011) and Tang et al.
(2010) and conduct a computational study over a large number of randomly generated routes to compare the
practical runtime of the proposed procedures. Our results indicate that the adapted versions of the algorithm
of Tang et al. (2010) clearly outperform the other approaches. Second, we generalize the concept of FTS to
the SPDP and demonstrate why the definition of the FTS is not unique for problems with maximum RT
constraints.

The remainder of the paper is structured as follows: Section 2 defines the SPDP. Section 3 derives
feasibility tests for individual routes and presents results comparing their practical runtime. The adaptation
of the FTS concept to the SPDP is described in Section 4. Short conclusions are drawn in Section 5.

2. Problem Definition

Note again, that this paper is not about solving the SPDP but on route feasibility testing and FTS. For
the sake of completeness, however, we still provide a definition of the problem as a whole in the following.
The SPDP is defined on a complete digraph G = (V,A) with node set V and arc set A. The node set V
comprises the origin and destination depots 0 and 2n+1, the set of pickup nodes P = {1, ..., n}, and the set
of delivery nodes D = {n+1, ..., 2n}. For each node i ∈ V a time window [ai, bi], a service duration si, and
a demand qi with qi = −qi+n are given. We assume w.l.o.g. that the beginning of the planning horizon is at
time zero, i.e., a0 = 0. A travel time tij and a routing cost cij are associated with each arc (i, j) ∈ A. Both
travel times and routing costs are assumed to satisfy the triangle inequality.

Each transportation request i = 1, ..., n consists of transporting a specific good from the pickup node
i ∈ P to the delivery node i+n ∈ D. A minimum RT Li and a maximum RT Li are associated with each
transportation request i.

A fleet K of homogeneous vehicles each with a capacity of Q is located at the origin depot 0 to serve
the transportation requests. The task of the SPDP is to find a set of |K| routes starting and ending at the
depot nodes 0 and 2n+1 such that each transportation request is performed exactly once. Thereby, vehicle
capacities have to be respected and the service at each node has to be started within its time window. If
a vehicle arrives prior to ai at node i, it has to wait until the time window opens. Moreover, waiting, i.e.,
voluntarily delaying the start of service, is allowed at any node at any time. For each transportation request
i, the pickup and delivery nodes have to be served on the same route and the pickup has to be serviced
before. Furthermore, the service at the delivery node i+n has to be started at least Li and at most Li units
of time after the service at the pickup has been completed.

3. Route Feasibility Testing

Consider a given route R = (v1, ..., v2r+2) with v1 = 0 and v2r+2 = 2n+1. We use the notation vi ∈ R to
indicate that a node vi is part of route R. Furthermore, given a pickup (delivery) node vi ∈ P (vi ∈ D), we
indicate by vi− and i− (vi+ and i+) the corresponding delivery (pickup) node and its associated notation,
while the corresponding request is referred to by using the visit index i of node vi.
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Testing the feasibility of a route R means checking its consistency with all constraints of the SPDP that
relate to individual routes. The verification of pairing and precedence as well as the capacity constraint is
independent of each other and of the temporal constraints. For these types of constraints the verification in
linear time is straightforward. We assume in the following that they are respected. Checking whether or not
the temporal constraints are satisfied is intricate. Indeed, one has to verify if there exists a time schedule
TR = (τ1, ..., τ2r+2) satisfying

avi ≤ τi ≤ bvi ∀vi ∈ R, (1)
τi + svi + tvivi+1

≤ τi+1 ∀vi ∈ R, i 6= 2r+2, (2)

τi + svi + Lvi
≥ τi− ∀vi ∈ R ∩ P, (3)

τi + svi + Lvi
≤ τi− ∀vi ∈ R ∩ P, (4)

where τi denotes the start of service at node vi. This is called the scheduling problem of the SPDP. Constraints
(1) are time-window constraints. Consistency of the service times along the route is ensured by constraints
(2), while (3) and (4) are maximum and minimum RT constraints, respectively. For ease of notation, we
assume service durations of zero and omit them in all formulae in the following. The extension of all concepts
to non-zero service durations is straightforward.

In Tang et al. (2010) and Firat and Woeginger (2011), feasibility tests for a similar scheduling problem,
i.e., with constraints (1)–(3) and an additional constraint on the waiting time at each node vi ∈ R, were
presented. In the following, we sketch both algorithms and extend them to solve the scheduling problem of
the SPDP. Also, we highlight the increased complexity coming from the additional presence of the minimum
RT constraints that leads to increased worst-case running times for some of the adapted procedures.

3.1. Adapted Feasibility Test of Firat and Woeginger
The basic idea of Firat and Woeginger (2011) is to rewrite the considered scheduling problem as a system

of difference constraints. It is well-known (see, e.g., Cormen et al., 2001, Section 24.4) that such a system
has a solution if and only if an associated digraph (called constraint graph) has no negative-weight cycle.
Moreover, they formulate the difference-constraint system over an appropriate set of variables allowing the
cycle-detection test to be performed in linear time by a transformation of the constraint graph into a specific
interval graph.

Note that Firat and Woeginger start from a slightly more complex formulation of the scheduling problem
using variables for the arrival times, the departure times, and the actual service times at the nodes. The
service time at a given node is then required to lie between arrival and departure times at that node. It
is easy to verify, however, that the condensed formulation (1)–(3) using only variables for the service times
is equivalent to their formulation. Even more, the slightly different formulation of the scheduling problem
leads to a constraint graph with the same general structure that was exploited by Firat and Woeginger
(2011). This is also true when adding minimum RT constraints to both formulations.

Before we sketch their approach, some additional notation is necessary. For each node vi ∈ R, the
constant Ti denotes the sum of the travel times along the route R up to node vi. The total waiting time up
to node vi ∈ R is given by wi.

Original Algorithm for the DARP. The first step of Firat and Woeginger (2011) is to rewrite constraints
(1)–(3) of the considered scheduling problem in terms of Ti and wi yielding

avi ≤ Ti + wi ≤ bvi ∀vi ∈ R, (5)
wi − wi+1 ≤ 0 ∀vi ∈ R, i 6= 2r+2, (6)

wi− − wi ≤ Ti + Lvi − Ti− ∀vi ∈ R ∩ P. (7)

Next, two additional dummy variables w0 and w2r+3 are introduced representing values w0 = 0 and w2r+3 =
b2n+1 − a0, i.e., they constitute lower and upper bounds for all wi, i = 1, ..., 2r+2. Using w0, w2r+3, and
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defining M = b2n+1 − a0, constraints (5) can be written as the difference constraints

w2r+3 − wi ≤M + Ti − avi ∀vi ∈ R, (8)
wi − w0 ≤ bvi − Ti ∀vi ∈ R. (9)

The final set of difference constraints is (6)–(9) together with

w2r+3 − w0 ≤M, (10)
w0 − w2r+3 ≤ −M, (11)

to enforce w2r+3 − w0 = M . The constraint graph associated with this system has a node for each wi, i =
0, ..., 2r+3 and an arc with weight dij from node wj to node wi for each constraint wi − wj ≤ dij of the
system (6)–(11). It has O (r) nodes and O (r) arcs. Thus, negative-weight cycles can be detected in O (r2),
e.g., by using the Bellman-Ford algorithm (BF).

The key observation of Firat and Woeginger (2011) to obtain a linear-time feasibility check is the fol-
lowing: They call an arc from wj to wi a forward arc if j < i, otherwise it is a backward arc. All arcs in
the constraint graph are either forward arcs with non-negative weights (otherwise the scheduling problem
would be trivially infeasible) or backward arcs with weight zero. The only exception is the arc correspond-
ing to constraint (11) which is a backward arc with negative weight. Using this structure, they are able to
transform the graph into a specific interval graph for which the cycle-detection test can be done in linear
time.

Adapted Algorithm for the SPDP. The adaptation of the approach to the SPDP requires to perform the
same transformation described above also to constraints (4) yielding:

wi − wi− ≤ Ti− − Ti − Lvi
∀vi ∈ R ∩ P. (12)

The additional difference constraints (12) correspond to additional arcs in the constraint graph. Still, the
total number of arcs is O (r) and the application of BF gives a O (r2) feasibility test.

To show that feasibility testing in linear time is not possible for the SPDP (with the technique of Firat
and Woeginger, 2011), we have to analyze the new arcs: They are backward arcs and have non-negative
weight if Ti− −Ti ≥ Lvi

, i.e., if the minimum RT of request i is trivially satisfied on the given route because
the travel time from vi to vi− is already larger than Lvi

. Otherwise, the arc weight is negative. As a result,
the specific structure of the constraint graph that was exploited to obtain a linear time cycle-detection test
is lost.

Note that a direct reformulation, i.e., using the original variables, of the scheduling problem (1)–(4)
as a system of difference constraints also leads to a constraint graph with the same number of nodes and
arcs as in the approach of Firat and Woeginger (2011). Thus in the additional presence of minimum RTs,
both reformulations lead to equivalent feasibility tests. Moreover, the direct reformulation as a system of
difference constraints is essentially identical to the modeling of the feasibility problem as a simple temporal
problem as proposed by Masson et al. (2014) for a DARP with transfer possibilities between routes.

Summing up, we have the following result.

Remark 1. The different transformations into cycle-detection problems and their direct solution with appro-
priate shortest-path algorithms yield O (r2) feasibility tests for the scheduling problem (1)–(4) of the SPDP.

�

However, these algorithms require building a constraint graph for each route to be tested which might
negatively affect the practical runtime. In Section 3.3, we evaluate the practical runtime of two cycle-
detection algorithms for feasibility testing of SPDP-routes. The first algorithm is based on a straightforward
implementation of basic BF that detects negative cycles by solving a shortest-path problem in the constraint
graph using a labeling strategy (see, e.g., Cherkassky et al., 2009, for details on the general labeling method).
The second algorithm uses an implementation of BFCT (Tarjan, 1981) which is a variant of BF and is one of
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Algorithm 1: Algorithm of Tang et al. (2010)
for the DARP
Result: true if feasible schedule exists, false

otherwise
// Pass 1 (forward)

1 τ1 := av1
2 for i = 2, ..., 2r+2 do
3 τi := max

{
τi−1 + tvi−1vi

, avi
}

4 if τi > bvi then return false

// Pass 2 (backward)
5

6

7

8 for i = 2r+1, ..., 1 do
9 if vi ∈ P then

10 ∆i := τi− − τi − Lvi

11 if ∆i > 0 then
12 τi := τi + ∆i

13

14 if τi > bvi then return false

15

16

17 for j = i+ 1, ..., 2r+2 do
18 τj := max

{
τj−1 + tvj−1vj , avj

}
19 if τj > bvj then return false

20 if τi− − τi − Lvi > 0 then return false

21 return true

Algorithm 2: Adapted algorithm of Tang et al. (2010) for the
SPDP without inner forward loop
Result: true if feasible schedule exists, false otherwise

// Pass 1 (forward)
1 τ1 := av1
2 for i = 2, ..., 2r+2 do

3 τi :=

max
{
τi−1 + tvi−1vi , avi , τi+ + Lvi+

}
if vi ∈ D,

max
{
τi−1 + tvi−1vi , avi

}
otherwise.

4 if τi > bvi then return false

// Pass 2 (backward)
5 i∗ := 2r+1, cnt := 0
6 while i∗ > 0 do
7 i∗ := −1, cnt := cnt+ 1
8 for i = 2r+1, ..., 1 do
9 if vi ∈ P then

10 ∆i := τi− − τi − Lvi

11 if ∆i > 0 then
12 τi := τi + ∆i

13 i∗ := i
14 if τi > bvi then return false

15 if i∗ > 0 then
16 if cnt > 2r then return false
17 for j = i∗ + 1, ..., 2r+2 do

18 τj :=

max
{
τj−1+tvj−1vj , avj , τj+ +Lvj+

}
if vj ∈ D,

max
{
τj−1+tvj−1vj , avj

}
otherwise.

19 if τj > bvj then return false
20

21 return true

the best performing cycle-detection algorithms (Cherkassky et al., 2009). In BFCT, it is checked for negative
cycles whenever a node is relabeled. This can be done with little additional effort and does not increase the
O (r2) total running time by using auxiliary data that can be maintained in amortized constant time.

3.2. Adapted Feasibility Test of Tang et al.
Tang et al. (2010) proposed a different feasibility test for the same scheduling problem as considered

by Firat and Woeginger (2011), but with weaker, quadratic worst-case runtime. However, their algorithm
seems more intuitive as it gradually constructs the schedule TR directly on the original route/network. This
also means that some information that is needed might already be available within an exact or heuristic
approach in which the feasibility test is employed. Therefore, their algorithm might be sufficiently fast (or
even faster than the algorithm of Firat and Woeginger, 2011) in practice, especially if the given routes are
not too long (see, e.g., Gschwind and Irnich, 2015)).

Again, we first sketch the original algorithm before we present our adaptations to the SPDP.

Original Algorithm for the DARP. The algorithm of Tang et al. (2010) tries to construct a feasible schedule
TR satisfying (1)–(3) by traversing the route twice: once forward and once backward. If no feasible schedule
can be found, the route is infeasible. Note that the third traversal of the original algorithm is redundant.

The whole procedure is described in Algorithm 1. The forward pass (Steps 1–4) builds a schedule of
service times τi that satisfy constraints (1) and (2). Thereby, all times are scheduled as early as possible.
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The backward pass (Steps 8–20) checks for consistency with the maximum RT constraints (3) adjusting
some values τi if necessary: At each pickup node vi ∈ P ∩ R it is checked if the current schedule satisfies
the maximum RT of request i (Steps 9–11). If not, the algorithm tries to shift waiting time that occurs
between pickup and delivery of request i before the pickup node vi in order to decrease the ride time of
request i. Thereto, the service at node vi is delayed by as much as necessary to meet the maximum RT
(Step 12). This requires shifting the service times τj of all succeeding nodes vj , j = i+ 1, ..., 2r+2 forward
in time (Steps 17–19) and is done in the same fashion as in the first pass, i.e., accounting for constraints (1)
and (2). If there is not enough waiting time between pickup and delivery of request i, the maximum RT of
i cannot be satisfied and the route is infeasible (Step 20). Note that this adjustment of the service times
can never increase the RT of a request that is picked up later than vi meaning that the maximum RT
constraint of such a request never gets violated. Thus, after traversing a pickup node vi in the backward
pass we have a schedule that respects constraints (1) and (2), and the maximum RT constraints (3) of those
requests for which the pickup node is not visited before vi in the route. Moreover, all service times are still
scheduled as early as possible with respect to the constraints that are satisfied at that point of the algorithm.
Consequently, whenever a rescheduling results in a service time τj > bvj no feasible schedule exists and the
route is infeasible.

Both forward and backward pass traverse the route once. Because of the inner forward loop (Steps 17–
19), the backward pass has a quadratic worst-case running time and, hence, the overall algorithm also has
time complexity O (r2).

Adapted Algorithm for the SPDP. Solving the scheduling problem of the SPDP with the technique of Tang
et al. (2010) requires the integration of the minimum RT constraints into the scheduling process. The
adapted procedure is detailed in Algorithm 2 and is presented side-by-side with the original algorithm for
the DARP to highlight the necessary modifications: In the forward pass, Step 3 changes to

τi :=


max

{
τi−1 + tvivi−1

, avi , τi+ + Lvi+

}
if vi ∈ D,

max
{
τi−1 + tvivi−1

, avi

}
otherwise.

The resulting service times after the first pass satisfy constraints (1), (2), and (4) and they are scheduled in
an earliest-possible fashion.

In the backward pass, whenever a shifting of service times is necessary because of some violated maximum
RT (Steps 11–20), we need to change Step 18 in the same way as Step 3 in order to maintain feasibility
with respect to constraints (1), (2), and (4). In contrast to the original algorithm, however, the shifting
of waiting times can increase the RT of requests that are picked up later in the route. Decisive is that we
might be forced to re-introduce waiting time somewhere in the route due to the minimum RT constraints
of other requests. As a result, the property that after traversing a pickup node vi in the backward pass all
maximum RTs of requests which are not picked before vi are respected, is lost.

Consider the example given in Table 1. The travel times between all nodes are assumed to be 10. The
maximum RTs of requests i and m are 30. The minimum RT of request j is 52. The time window of each
node is specified in Table 1. All other constraints are assumed to be never binding.

Table 1 gives the service times at each node at different stages of the algorithm. Waiting times at nodes
are in brackets. Pairs of service times that do not satisfy the RT constraints are highlighted in italics. After
the first pass of the algorithm, the maximum RT constraint of requests i and m are violated by 1 unit of
time. Therefore, the second pass successively delays the service times τm at m and τi at i by 1 unit trying
to shift waiting time that occurs between m and m− before m and between i and i− before i, respectively.
However, the removed waiting time at node k decreases the RT of request j so that it has to be re-introduced
before starting the service at node j−. Otherwise, the minimum RT constraint of j would be violated. As
a consequence, the RT of request m increases again and the schedule after the backward pass is infeasible
which, however, does not imply that the route is infeasible.

A straightforward way to fix this defect of the algorithm is to loop over the second pass as long as an
adjustment of the service times was necessary because of a violated maximum RT (Steps 6–20). For the
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Node 0 i j k i− m k− j− m− 2n+1

[a·, b·] [0, 100] [10, 20] [20, 30] [31, 41] [41, 51] [51, 61] [62, 72] [72, 82] [82, 92] [0, 100]

L·/L· — 0/30 52/100 0/100 — 0/30 — — — —

After pass 1 τ· 0 10 20 (1) 31 41 51 (1) 62 72 82 92
1st pass 2, at node m τ· 0 10 20 (1) 31 41 (1) 52 62 72 82 92
1st pass 2, at node i τ· 0 (1) 11 21 31 41 (1) 52 62 (1) 73 83 93

After 2nd pass 2 τ· 0 (1) 11 21 31 41 (2) 53 63 73 83 93

Table 1: Example showing the necessity to loop over second pass in Algorithm 2

example above, one additional backward pass identifies a feasible schedule (see Table 1). This modification
has two major effects. First, it is no longer mandatory to perform the inner forward loop (Steps 17–19) of the
backward pass directly after every shifting of a service time due to a violated maximum RT. Alternatively,
the update of the service times at all nodes vj with j > i∗ can be done only once, after the backward
traversal in each iteration of the second pass. Thereby, vi∗ is the pickup node with the smallest index i∗ for
which a delay of the service time τi∗ was necessary in Step 12. This variant of the algorithm is presented in
Algorithm 2. It generally requires to iterate over the second pass more often than with the inner forward
loop. The complexity of Pass 2 itself, however, decreases to linear. In Section 3.3, we compare the practical
performance of the versions with (Algo2-w) and without (Algo2-w/o) the inner forward loop performed after
each adjustment in Pass 2.

The second and more severe consequence of having to loop over Pass 2 is that it leads to a significant
deterioration of the worst-case complexity if the number of iterations of Pass 2 cannot be bounded. Consider
the example as given in Table 2. The time windows of the nodes and the ride-time constraints of the requests
are specified in the table. All other data is equivalent to the previous example. Apparently, the three requests
i, j, and m are nested in a way that Algorithm 2 cyclically shifts waiting times that occur in between pickup
and delivery of the requests i and m. In the example, this continues until one of the time windows is
violated. Generally, this can lead to an unbounded number of iterations and, hence, a superlinear runtime
of the algorithm.

In the following, we show that it is, however, possible to derive an upper bound on the number of
iterations of Pass 2 that are necessary to decide on the (in)feasibility of a route. Recall that a general
infeasibility certificate for the scheduling problem is the presence of a negative-weight cycle (cf. Cormen
et al., 2001, Section 24.4). In Table 2, e.g., the cyclic shifting of waiting times is caused by the constraints
linking the nodes (i, j, j−,m−,m, i−). It is easy to verify that these constraints form a negative-weight cycle
(the weight of the cycle is −1). To see that a negative-weight cycle in the scheduling problem always leads to
a cyclic shifting of waiting times in Algorithm 2, note that Algorithm 2 can be interpreted as a shortest path
labeling algorithm (like, e.g., BF or BFCT) on the constraint graph associated with the difference-constraint
system resulting from a direct reformulation of the scheduling problem (1)–(4): Whenever the service time
τi of a node vi is adjusted for a certain constraint of (1)–(4) in any step of Algorithm 2, this is equivalent to
a relabeling of the corresponding node in the constraint graph due to the ‘relax’ operation in BF of the arc
associated with this constraint. Thus, Algorithm 2 essentially is an alternative approach to implicitly solve
the shortest path/cycle-detection problem in the constraint graph. Thereby, it uses knowledge about the
problem structure to only check those constraints (i.e., arcs in the constraint graph) that are relevant for
other service times after a specific service time (i.e., node label in the constraint graph) has been adjusted.
Moreover, several relevant constraints are checked (i.e., relax operations are performed) simultaneously in a
single step, e.g., in Step 3 of Algorithm 2: Time window of node vi, travel time from node vi−1 to vi, and
minimum RT of request i. Also, the algorithm immediately stops once a time window is violated without
the need to explicitly identify a cycle that includes the corresponding time-window constraint.

We now comment on how to detect the presence of a negative-weight cycle with Algorithm 2. Apparently,
the necessity to delay the service time at the same pickup node at different iterations of Pass 2 does not
imply a negative-weight cycle as it can result from different adjustments that are propagated through the
constraint system. Consider again the example in Table 1: In the first iteration of Pass 2, τm needs to be
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Node 0 i j m i− j− m− 2n+1

[a·, b·] [0, 100] [10, 20] [20, 30] [31, 41] [41, 51] [51, 61] [61, 71] [0, 100]

L·/L· — 0/30 31/100 0/30 — — — —

After pass 1 τ· 0 10 20 (1) 31 41 51 61 71
1st pass 2, at node i τ· 0 (1) 11 21 31 41 (1) 52 62 72

2nd pass 2, at node m τ· 0 (1) 11 21 (1) 32 42 52 62 72
2nd pass 2, at node i τ· 0 (2) 12 22 32 42 (1) 53 63 73

Table 2: Example showing nested requests leading to a cyclic shifting of waiting times in Algorithm 2

delayed by 1 unit of time because of a violated maximum RT of request m. In the second iteration of Pass 2,
another delay of τm by 1 unit of time is necessary, this time caused by a violation of the maximum RT of
request i that propagates through the constraint system in the two iterations. Even more, there is no direct
way in Algorithm 2 to track the propagation of a shifting and therewith to decide if the repeated adjustment
of the service time at the same node is caused by a negative-weight cycle or by the propagation of several
different and independent shiftings.

However, if there is no negative-weight cycle, the number of iterations of Pass 2 that can occur is
bounded, which can be seen as follows. After the first pass of Algorithm 2, we have a schedule of service
times satisfying constraints (1), (2), and (4). For one or more requests, the schedule may be infeasible with
respect to the maximum RT constraint (3). Algorithm 2 tries to repair this defect by delaying the service
time at the corresponding pickup nodes in the first iteration of the second pass. In the further course of the
algorithm, each of these time shiftings may be successively propagated to other nodes through the constraint
system. Clearly, if there is no negative-weight cycle, none of the nodes can require more than one such time
shifting for each of the infeasibilities detected in the first iteration. Even more, an additional iteration of
the backward pass can only be caused by a time shifting at a pickup node. This can directly be seen in
Algorithm 2 from the condition of the loop of the backward pass (i∗ > 0, Line 6) and a possible update of i∗
(Line 13) only for pickup nodes (Line 9). Thus, in this case the number of possible iterations is obviously
bounded by the number of customer requests r in the route. As a result, the algorithm can stop after the
(r + 1)st iteration.

Overall, the adapted algorithm of Tang et al. (2010) without inner forward loop (Algo2-w/o) given in
Algorithm 2 traverses the route once in forward direction with complexity O (r), followed by O (r) iterations
of Pass 2 each requiring linear effort. Thus, we have the following result.

Proposition 1. Algorithm 2 (Algo2-w/o) solves the scheduling problem (1)–(4) of the SPDP in O (r2)
time. �

In the algorithmic variant Algo2-w, i.e., with the inner forward loop performed after each adjustment in
the backward Pass 2, it is possible to further reduce the number of iterations needed to detect a negative-
weight cycle in the constraint system. Recall that a subsequent iteration of the backward pass is only
forced if in the current iteration the maximum RT constraint (3) of some request is violated and tried to
be repaired by adjusting the respective service at the corresponding pickup. This adjustment may then
propagate through the constraint system. To trigger an additional iteration in the subsequent one, the
propagated adjustment must lead to a violation of the maximum RT of another request. Even more, the
pickup of this request has to be later on the route (i.e., earlier in the backward pass). Otherwise, this RT-
violation would be detected and tried to be repaired already in the further course of the current iteration of
the backward Pass 2 so that no additional iteration is forced. Consequently, it takes at least two requests i
and j to force an additional iteration of Pass 2 in the subsequent iteration: Request i whose pickup is delayed
because its maximum RT constraint is violated and another request j that re-introduces the waiting time
that was shifted before node vi later on the route due to its minimum RT constraint. This re-introduction of
waiting time might then lead to a violation of the maximum RT constraint of a third request which is picked
up later than vi so that the violated RT constraint is detected and repaired in the subsequent iteration of
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Pass 2 and, hence, an additional iteration is forced. Summarizing, any adjustment that propagates through
the constraint system and is not part of a negative-weight cycle can cause a maximum of dr/2e additional
iterations of Pass 2, because (i) it can trigger at most one time shifting at each of the nodes and (ii) any
additional iteration requires shifting the service time of customer nodes of at least two different requests.
Thus, the algorithm Algo2-w can stop already after the (dr/2e+ 1)st iteration.

Overall, the worst-case number of necessary iterations of Pass 2 decreases to dr/2e + 1 for Algo2-w
(compared to the 2r + 1 iterations needed for variant Algo2-w/o), but is still in O (r). However, the inner
forward loop in Pass 2 leads to a weaker worst-case runtime of O (r3) for Algo2-w.

3.3. Computational Comparison
To compare the practical performance of the approaches of Sections 3.1 and 3.2, we evaluate their runtime

on a huge number of randomly generated routes with lengths reaching from r = 15 to r = 200 requests.
Details on the generation of the routes and more detailed results can be found in the online supplement of
this paper. Note that in our analysis we do not include routes that are identified as infeasible already in the
first pass of the adapted Algorithm 2.

Table 3 summarizes our results. BF and BFCT denote our implementations of BF and BFCT that solve
the feasibility problem by cycle-detection in the constraint graph associated with (1)–(4) reformulated as
difference constraints. Algo2-w and Algo2-w/o denote the two versions of the adapted algorithm of Tang
et al. (2010) as described in the previous section. Each row aggregates over a total of 20 000 routes. In order
to obtain reliable computation times, we run each algorithm 10 000 consecutive times on each individual
route. Table 3 reports the average time in milliseconds per instance needed by the algorithms for these
10 000 runs. In addition, we give the ratios for the average run times of algorithms BFCT, Algo2-w, and
Algo2-w/o relative to BF. Finally, we report the average number of iterations of the second pass for Algo2-w
and Algo2-w/o.

Table 3 reveals that for small to medium-sized values of r < 50, the additional effort in BFCT to
aggressively search for cycles after each relabeling does not pay off and the straightforward implementation
of BF is faster for these routes. With increasing r, however, BFCT is superior to BF. Regarding the two
versions of Algorithm 2, it can be seen that Algo2-w/o performs slightly better than Algo2-w in terms of
computation times except for very short routes although it requires more iterations of Pass 2 on average.
Overall, the dedicated feasibility tests Algo2-w/o and Algo2-w that work directly on the given route are
clearly superior to the approaches that rely on general shortest-path algorithms in the constraint graph.

Avg. time in ms Time rel. to BF # Iterations

r B
F

B
F
C
T

A
lg
o2
-w

A
lg
o2
-w
/o

B
F
C
T

A
lg
o2
-w

A
lg
o2
-w
/o

A
lg
o2
-w

A
lg
o2
-w
/o

15 40.4 123.9 4.3 4.9 3.07 0.11 0.12 1.9 2.5
25 102.7 203.3 8.4 9.0 1.98 0.08 0.09 2.3 3.0
50 405.9 426.6 23.4 21.0 1.05 0.06 0.05 2.8 3.8
100 1694.1 867.3 83.8 66.4 0.51 0.05 0.04 4.6 6.2
200 7180.1 1754.5 195.0 165.1 0.24 0.03 0.02 6.2 7.7

Table 3: Aggregated computational results

4. Forward Time Slack

The concept of FTS was originally introduced by Savelsbergh (1992) in the context of the VRPTW. Let
TR = (τ1, ..., τ2r+2) be a feasible schedule for route R. Savelsbergh (1992) defines the FTS F Ti for a node
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vi ∈ R as the maximum value by which the start of service τi at vi can be increased without causing the
route to become infeasible. Different authors have generalized the concept of FTS to other problems, e.g.,
Cordeau and Laporte (2003) for the DARP or Masson et al. (2013) for the PDPT.

VRPTW. The slack at a node vj , j ≥ i with respect to node vi is given by the cumulative waiting time
between vi and vj and the difference between the end of the time window and the start of service at node vj .
The FTS F Ti at node vi is the minimum of all slacks at nodes vj with i ≤ j ≤ 2r+2. Given a schedule T ,
denote by W Ti the waiting time at node vi, by tWT Tij =

∑
vk∈R:i<k≤j W

T
k the total waiting time between

nodes vi and vj , and by sTW Ti = bvi − τi the time window slack at node vi. Then (Savelsbergh, 1992):

F Ti = min
i≤j≤2r+2

{
tWT Tij + sTW Tj

}
. (13)

Note that once the service time τi at vi is fixed this definition of F Ti is independent of the service times
τj , j < i, i.e., it is unique with respect to the route segment preceding vi. This property is related to the fact
that scheduling all service times as early as possible is an optimal strategy regarding the feasibility of routes
for many VRPTW variants. It is also a crucial property for the standard constant-time feasibility test for
the Pickup and Delivery Problem with Time Windows (PDPTW) and many of its variants when inserting
a request i into a given feasible route R, i.e., inserting its corresponding pickup and delivery nodes i and i−
into route R at two given positions (Lu and Dessouky, 2006): In a preprocessing step, the earliest-possible
schedule T e

R of the original route R as well as the associated (unique) FTS-values are computed (which
requires O (r2) computation time). The actual feasibility test then proceeds by first inserting pickup node i
as early as possible at the given position and evaluating the resulting time shift at the succeeding node by
means of the precomputed FTS-values. The same procedure is then repeated with the delivery node i−.

Note that it is not necessary to update the FTS-values after the pickup node i has been inserted in
order to check the validity of the insertion of the delivery node i−. The reason is that the FTS at the
successor node j of i−, i.e., the maximum feasible value by which the start of service at j can be delayed,
does only depend on the schedule segment succeeding j and not the part that precedes it. Thus, the only
relevant information is the actual value of the delay at j. It is not important if this delay is caused by the
insertion of only one node, a pair of nodes, or even more nodes prior to j. As a result, the actual feasibility
test for inserting one request at given positions runs in constant time provided that T e

R and the associated
FTS-values have been precomputed. Note further that the FTS-values are valid for testing the insertion of
any request i at all possible positions for the pickup and delivery nodes i and i−.

DARP. For problems with RTs, shifting the start of service at some node may cause infeasibilities also with
respect to the RT constraints. This has to be incorporated in the definition of the FTS for such problems.
For example, postponing the service at node vi may increase the RT of a request j with j < i and j− > i.
Consequently, Cordeau and Laporte (2003) define the following generalization of the FTS for the DARP:

F Ti = min
i≤j≤2r+2

{
tWT Tij + min

(
sTW Tj , sRT

T
ij

)}
, (14)

where sRT Tij is the maximum RT slack given by Lvj+
−
(
τj − τj+

)
if vj ∈ D; i > j+ and +∞ otherwise.

In contrast to (13), the FTS (14) of a node vi for the DARP (and similarly for other problems with
maximum RTs) is not unique with respect to the route segment preceding vi. Indeed, it may be possible
for some vj ∈ D with j+ < i and j > i to increase τj+ such that τi stays the same while sRT Tij and F Ti
also increase. For that reason, the standard feasibility test of request insertions for PDPTW variants based
on FTS (see Lu and Dessouky, 2006, and sketched above) is not exact in the presence of maximum RT
constraints.

Consider the route given in Table 4. Feasibility of the insertion of another request k is to be evaluated.
Assume a travel time of ten between all nodes, Li = 40, and time windows [0, 20] and [0, 100] at the nodes
k and k−, respectively. Inserting node k before i and node k− before j− results in a feasible route. When
using the FTS-values of the earliest-possible schedule T e (with τei = 10), however, the insertion appears to
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Node 0 i j j− i− 2n+1

[a·, b·] [0, 100] [10, 30] [30, 50] [40, 60] [50, 70] [0, 100]

L·/L· — 0/40 0/100 — — —

(Earliest-possible) schedule T e τe· 0 10 (10) 30 40 50 60
FTS for nodes after vi with τei = 10 F T

e

· — — 0 0 0 40

Schedule T ′ τ ′· 0 20 30 40 50 60

FTS for nodes after vi with τ ′i = 20 F T
′

· — — 10 10 10 40

Table 4: Example route for which feasibility checking of request insertions based on FTS is problematic

be infeasible because τej− is increased by 10 > F T
e

j− = 0. The reason is that the restriction to the earliest
possible service time τei = 10 at node i results in an underestimation of the FTS at node j− that is valid
for this particular insertion. As described above, larger values for the service times at the nodes preceding
j− can lead to larger FTS-values for the same service time at node j−. Indeed, considering FTS-values
based on schedule T ′ that services node i at time 20 correctly determines feasibility of this insertion. On
the other hand, using the latter FTS-values results in misjudging the insertion of k before j and k− before
j− as feasible. In this case, the problem is that F T

′

j− = 10 relies on the service time τ ′i = 20 at i which is
not possible with the additional visit of node k before j in the new route. Generally speaking, the insertion
of an additional node k before a node j limits the service times of all nodes preceding j on the route and,
therewith, restricts the set of FTS-values for j and all succeeding nodes that can be legitimately used for
evaluating the particular insertion.

Summing up, the main issue for feasibility testing in the presence of maximum RTs is the following:
Choosing different schedules of the original route can lead to different FTS-values for a specific node, even
with identical service time at that node. Depending on the actual insertion that is tested, however, not all of
them are valid. Clearly, this effect is not known during the preprocessing phase in which FTS-values should
be computed. Moreover, it is different for each request i to be inserted and all the possible positions for the
insertion of the corresponding pickup and delivery nodes i and i−. As a result, no single FTS-value that
could be used for the exact feasibility evaluation of all possible insertions exists for the nodes of the original
route. The consequence is that the adaptation of the standard FTS-based procedure for PDPTW variants
does not lead to a valid feasibility check of request insertions in the presence of maximum RT constraints.
However, the same technique can be used as a constant-time verifiable sufficient condition: Given a route R,
compute the earliest-possible schedule T e. The FTS-value F T

e

i of a node vi ∈ R given the earliest-possible
schedule is clearly valid for all insertions of a node prior to vi on the route. Thus, no insertion can be
incorrectly classified as feasible when using F T

e

i (unlike in the second part of the above example). The value
F T

e

i might, however, be a too pessimistic estimation of the actual slack time (see first part of the above
example). The insertion of new requests can then be evaluated based on the earliest-possible schedule and
its associated FTS-values. Additionally, the maximum RT constraint of the newly inserted request has to
be checked. As shown in the example above, failing these tests does not imply infeasibility of the insertion.

SPDP. The presence of minimum RTs raises two additional issues compared to the DARP. First, shifting
the service time at a pickup node is constrained by the minimum RT of this request. Second, not necessarily
all of the cumulative waiting time between two nodes vi and vj is slack. Decisive is that some waiting time
may have to be included between them because of the minimum RT of some requests. Denote by UWTij the
usable waiting time between vi and vj , i.e., the waiting time between vi and vj that can be incorporated
into the slack. Then, the FTS for a node vi is given by

F Ti = min
i≤j≤2r+2

{
UWTij + min

(
sTW Tj , sRT

T
ij

)}
, (15)
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with

sRT Tij =


bvj− −

(
Lvj + τj

)
if vj ∈ P,

Lvj+
−
(
τj − τj+

)
if vj ∈ D; i > j+,

+∞ otherwise.

To determine UWTij , we first define for each delivery node vj− the necessary waiting time

NWj− =

Lj −
∑

vk∈R:j<k≤j−
tk−1,k

+

for request j which is the amount of waiting time that inevitably occurs between pickup and delivery of
request j and, hence, can never be part of the slack between nodes vi and vj− if j− > i. Note that NWj− is
independent of the actual schedule TR for which the FTS is determined. If there is another request k with
positive NWk− in between vi and vj− , it has to be ensured that the overlapping necessary waiting times
NWj− and NWk− are not considered twice in the definition of UWTij . Therefore, we define for each delivery
node vj− after vi the already included waiting time between them, which is also independent of the base
schedule TR, as

IWij− =
∑

vk−∈R:i<k−<j−

vk−∈D,k+≥i,k−>j+

(NWk− − IWik−)
+
.

The term
(
NWj− − IWij−

)+ then gives the amount of waiting time that will always be present at a delivery
node vj− ∈ D (because of the minimum RTs of the requests) if there is no other waiting time in between
nodes vj+ and vj− on a schedule. Consequently, this needed amount of waiting time is never slack and has
to be deducted from the cumulative waiting time of any considered schedule when computing usable waiting
times.

In addition to these schedule-independent times, there may also be non-slack waiting times that are
induced by the considered base schedule TR. This can happen if in the considered schedule TR, there is
a deficit in waiting times for a request j and a node vk, k ≥ i in between pickup and delivery of j, i.e.,
vj ≤ vk < vj− . It means that the difference

∆Tijk = tWT Tjj− −
∑

vm−∈R:k<m−≤j−

vm−∈D,m+≥i

(NWm− − IWim−)
+

is negative. The value ∆Tijk is the difference of the cumulative waiting time between vj and vj− and the
cumulative needed amount of waiting time at the delivery nodes vm− ∈ D with m+ > i on the partial route
between node vk and the delivery node v−j of request j. This is possible whenever request j is nested with
another request p whose delivery node vp− lies in between vk and vj− on route R and has a positive need
for waiting time NWp− − IWip− > 0.

If for TR the deficit in waiting times
(

∆Tijk

)−
is larger than δj = Lj − (τj− − τj), i.e., the slack with

respect to the maximum RT constraint of vj , the amount
(

∆Tijk

)−
− δj must not be incorporated into the

usable waiting time of node vk. The reason is that shifting this waiting time (by delaying the service at vi)
before nodes vj , vk, and vp causes the re-introduction of waiting times right before the delivery node vp− to
meet the associated minimum RT Lvp

of request p due to NWp− − IWip− > 0. This in turn increases the
RT of request j compared to the initial schedule TR so that the services at all nodes on the partial route
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from vj to vk have to be delayed by
(

∆Tijk

)−
− δj .

Formally, we have for each j > i the schedule-dependent additional amount of time

AWTij =

 max
vk∈R:i<k≤j
vk∈P,k−>j

(
∆Tikj

)− − δk


+

that has to be deducted from the cumulative waiting times at node vj . For convenience, we define AWTij = 0

for all j ≤ i. Furthermore, if for a request j the times AWTij and AWTij− differ they may imply additional,
schedule-dependent waiting times that are necessary between the pickup and delivery nodes. Consequently,
schedule-dependent necessary waiting times and schedule-dependent already included waiting times at deliv-
ery nodes vj− , j− > i are defined as

NWTij− = NWj− +
(
AWTij+ −AWTij−

)+
and

IWTij− =
∑

vk−∈R:i<k−<j−

vk−∈D,k+≥i,k−>j+

(
NWTik− − IWTik−

)+
,

respectively.
Then, the usable waiting time UWTij , j ≥ i is given by

UWTij = tWT Tij −
∑

vk−∈R:i<k−≤j
vk−∈D,k+≥i

(
NWTik− − IWTik−

)+
−AWTij .

Consider the small example in Table 5 that demonstrates the computation of the usable waiting times UWT0·
between the origin depot and the other nodes based on the earliest-possible schedule given by the service
times τe· . The travel times between all nodes are assumed to be 10. All remaining data is specified in
the table. The interesting part of the computation relates to the waiting time that is not slack due to the
interplay of the minimum RT of request i and the maximum RT of request j. From the node order in the
route, it follows that there must be a waiting time of NWi = 13 between pickup and delivery of request i
so that its minimum RT is satisfied. In the earliest-possible schedule, 3 units of this necessary waiting time
occur between nodes i and j while the remaining 10 units lie between nodes j and i−. Moreover, also the
cumulative waiting time between j and j− is only 10 so that the consumption of the 3 units of waiting time
between nodes i and j by delaying the service at the origin depot would increase the actual RT of request j
by this 3 time units because of the re-introduction of the same amount of waiting time before node i− to
meet the minimum RT Li. Consequently, there is a deficit in waiting times of this 3 time units, i.e., ∆T0j· = 3,
for nodes j, k, and m in between pickup and delivery of request j. As the slack regarding the maximum RT
constraint of j is only δj = 2, one has to deduct an additional AWT0· = ∆T0j· − 2 = 1 unit of waiting time at
these nodes to obtain UWT0·. The intuition behind the different times used in the computation of the usable
waiting time can be seen quite nicely also from the actual service times τ5· that result from delaying the
service at the origin depot by 5 units of time which equals the cumulative waiting time between the origin
depot and node j, but is 1 unit more than the usable waiting time UWT0j = 4: With τ50 = 5, node j could
still be reached at time 25 from its predecessors. However, since τ5i = 15 and Li = 63, service at i− cannot
start before τ5i− = 78 meaning that the waiting time that was removed between i and j has to be re-inserted
somewhere before i−. Consequently, service at j− cannot start before τ5j− = 88 which implies that the ride
time of j would increase by ∆T0jj = 3 units of time compared to the earliest-possible schedule, while only an
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Node 0 i j k m m− i− j− k− 2n+1

[a·, b·] [0, 200] [12, 24] [25, 35] [35, 45] [45, 55] [55, 70] [75, 87] [85, 97] [95, 110] [0, 200]
L·/L· — 63/200 0/62 65/200 15/200 — — — — —

τe· 0 (2) 12 (3) 25 35 45 (5) 60 (5) 75 85 (5) 100 110

NW· — — — — — 5 13 0 15 —
IW0· — — — — — 0 5 13 13 —
∆T0j· — — −3 −3 −3 0 0 — — —
AWT0· 0 0 1 1 1 0 0 0 0 0

NWT0· — — — — — 6 13 1 16 —
IWT0· — — — — — 0 6 13 13 —
UWT0· 0 2 4 4 4 4 2 2 4 4

τ4· (4) 4 14 (1) 25 35 45 (5) 60 (7) 77 87 (3) 100 110
τ5· (5) 5 15 (1) 26 36 46 (5) 61 (7) 78 88 (3) 101 111

Table 5: Example demonstrating the computation of UWT0· in the case of nested requests. The travel times between all nodes
are assumed to be 10.

increase of δj = 2 units is feasible. Thus, the start of service τ5j at node j has to be delayed by AWT0j = 1
unit of time compared to the earliest time it could be reached from its predecessor i which is exactly the
difference between the delay at the origin and the usable waiting time between UWT0j . In contrast, when
delaying the service at the origin depot by no more that UWT0j , the service time at j remains unchanged as
can be seen from the service times τ4· .

As in the DARP, the FTS (15) for a node vi is not unique with respect to the route segment preceding
vi and the standard technique for PDPTW variants cannot be used for exact feasibility testing of request
insertions. However, it enables a constant time verifiable sufficient condition similar to the one described
above for the DARP that can be used within insertion-based approaches to the SPDP in order to reduce the
number of calls to one of the computationally expensive feasibility tests of Section 3. To analyze the possible
benefits of using such a sufficient condition, we test it on the route set of Section 3.3 as follows. Given a
feasible route, we remove one of the requests, calculate the earliest-possible schedule and associated FTS-
values for the resulting route and evaluate the reinsertion of the removed nodes at their original positions
based on the sufficient condition. This is done for all routes and all requests on the routes (one at a time).
Overall, the condition appears to be very effective as it was able to prove feasibility of the insertions in
approximately 96% of the 3 900 000 calls. More detailed results are presented in the online supplement of
this paper. They reveal that the condition is especially effective for routes with few nested requests.

5. Conclusions

The SPDP is the prototypical VRP variant with temporal intra-route synchronization constraints. Be-
cause of these constraints, the efficient feasibility testing of routes in the SPDP is non-trivial. Many exact
and heuristic solution approaches to VRP variants, however, rely on such efficient feasibility tests. In this
paper, we derived different route feasibility checks for the SPDP and compared their practical performance
on a huge number of randomly generated routes. The described feasibility tests can provide a basis to adapt
existing solution frameworks for VRP variants to tackle the SPDP.

Moreover, we extended to the SPDP the concept of FTS that has proven to be a useful tool for efficient
feasibility testing in approaches that are based on insertion heuristics like, e.g., (adaptive) large neighborhood
search which is one of the most widely used heuristics for VRP variants. We demonstrated that in problems
with maximum RTs the FTS of a node vi is not unique with respect to the route segment preceding vi. As
a consequence, the standard feasibility test of request insertions for PDPTW variants based on FTS is not
exact in these problems. However, the same technique can be used as a constant-time verifiable sufficient
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condition. Complementing this strategy with other sufficient or necessary conditions might significantly
reduce the number of calls to a computationally more expensive exact feasibility test in an insertion-based
approach. Similar strategies for problems with costly exact feasibility test have been used, e.g., by Braekers
et al. (2014) for the DARP or Masson et al. (2014) for a DARP with transfer possibilities.

Because of the prototypical character of the SPDP, we believe that the presented concepts are also relevant
for other routing problems with temporal synchronization constraints. For example, the feasibility tests of
Section 3.1 can be adapted to a SPDP with transfer possibilities between routes in a straightforward way.
Likewise, the proposed definition of the FTS can be generalized to the problem with transfer possibilities
using the technique of Masson et al. (2013).
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Online Supplement

A. Detailed Computational Results

In this section, we give additional details on the computational comparison of the different feasibility
checks of Sections 3.1 and 3.2 and on the performance of the FTS-based sufficient condition for evaluating
the feasibility of request insertions as described in Section 4. The algorithms are tested on a huge number of
randomly generated routes. Furthermore, a separate analysis is conducted for integer and double precision
input parameters. Euclidean distances (rounded up in the case of integer inputs) are used as travel times
between the nodes. Minimum and maximum RTs are specified proportional to the Euclidean distances
between pickup and delivery location. Details on the parameters used for the generation of the routes are
given in Table 6. The columns have the following meaning:

r Number of requests
Cust. loc. Intervals from which the customer locations are drawn. The depots are located at (0, 0).
Horizon Time horizon
TW Mean value for the length of the time windows
Min RT Mean value for the factor specifying the minimum RT
Max RT Mean value for the factor specifying the maximum RT

n Cust. loc. Horizon TW Min RT Max RT

15 [10, 10]×[10, 10] 450 60 2 10
25 [10, 10]×[10, 10] 750 100 2 10
50 [10, 10]×[10, 10] 1500 200 2 10
100 [10, 10]×[10, 10] 3000 400 2 15
200 [10, 10]×[10, 10] 6000 500 2 30

Table 6: Details on the parameters used for route generation

For each value of r, we generate routes with different characteristics regarding the number of requests
that are open at the nodes in the following way: At each node another request is picked up with probability
p, otherwise one of the open requests is delivered. The considered values of p reach from 0.15 to 0.50 in
steps of 0.05. For each probability p, a pretest filters 625 feasible and 625 infeasible routes so that a total of
10 000 routes is considered for each value of r. Note that we consider only routes that are not identified as
infeasible already in the first pass of the adapted Algorithm 2.

Tables 7 and 8 summarizes our results on the comparison of the different feasibility checks of Sections 3.1
and 3.2. The columns and rows have the following meaning:

r Number of requests
Max # open The maximum number of open requests at a node; we give average, maximum, and

minimum values over the routes
BF (BFCT ) Our implementation of BF (BFCT) that solves the feasibility problem by cycle-detection

in the constraint graph (see Section 3.1)
Algo2-w (Algo2-w/o)The version of Algorithm 2 with (without) the inner forward loop performed after each

adjustment in Pass 2 (see Section 3.2)
Solution time The time in milliseconds to run the respective algorithm 10 000 consecutive times on a

route; we present average, maximum, and minimum values over the routes
# Iterations The number of iterations of the second pass for Algo2-w and Algo2-w/o

16



r =

15 25 50 100 200 avg.

Max # open
avg. 2,7 3,3 4,2 5,5 6,8 4,5
max 6,0 8,0 11,0 19,0 23,0 13,4
min 1,0 1,0 2,0 2,0 2,0 1,6

So
lu
ti
on

ti
m
e

BF
avg. 38,7 97,9 382,8 1569,4 6593,4 1736,4
max 141,0 235,0 968,0 3953,0 19171,0 4893,6
min 0,0 15,0 47,0 156,0 497,0 143,0

BFCT
avg. 132,8 202,2 426,1 841,2 1755,3 671,5
max 234,0 360,0 672,0 1172,0 2188,0 925,2
min 109,0 172,0 374,0 687,0 1406,0 549,6

Algo2-w
avg. 4,5 9,0 25,6 91,2 208,4 67,7
max 47,0 110,0 625,0 2172,0 6449,0 1880,6
min 0,0 0,0 0,0 15,0 31,0 9,2

Algo2-w/o
avg. 5,0 9,5 22,6 73,2 175,4 57,1
max 79,0 188,0 718,0 2828,0 11562,0 3075,0
min 0,0 0,0 0,0 15,0 31,0 9,2

#
It
er
at
io
ns Algo2-w

avg. 1,8 2,3 3,0 4,9 6,6 3,7
max 9,0 14,0 26,0 51,0 101,0 40,2
min 1,0 1,0 1,0 1,0 1,0 1,0

Algo2-w/o
avg. 2,1 2,7 3,6 6,2 7,7 4,5
max 31,0 51,0 101,0 201,0 401,0 157,0
min 1,0 1,0 1,0 1,0 1,0 1,0

Table 7: Detailed computational results for the different feasibility tests and integer inputs

r =

15 25 50 100 200 avg.

Max # open
avg. 2,7 3,3 4,2 5,5 6,8 4,5
max 6,0 6,0 11,0 19,0 23,0 13,0
min 1,0 1,0 1,0 2,0 2,0 1,4

So
lu
ti
on

ti
m
e

BF
avg. 42,2 107,5 428,9 1818,7 7766,8 2032,8
max 110,0 328,0 1265,0 5235,0 24340,0 6255,6
min 0,0 15,0 62,0 187,0 625,0 177,8

BFCT
avg. 115,0 204,4 427,1 893,4 1753,7 678,7
max 219,0 344,0 656,0 1156,0 2171,0 909,2
min 93,0 172,0 359,0 734,0 1375,0 546,6

Algo2-w
avg. 4,1 7,8 21,2 76,4 181,7 58,2
max 47,0 78,0 453,0 2531,0 6037,0 1829,2
min 0,0 0,0 0,0 0,0 15,0 3,0

Algo2-w/o
avg. 4,9 8,6 19,3 59,6 154,8 49,4
max 63,0 172,0 625,0 2578,0 12359,0 3159,4
min 0,0 0,0 0,0 0,0 15,0 3,0

#
It
er
at
io
ns Algo2-w

avg. 1,9 2,3 2,7 4,3 5,8 3,4
max 9,0 14,0 26,0 51,0 101,0 40,2
min 1,0 1,0 1,0 1,0 1,0 1,0

Algo2-w/o
avg. 2,8 3,4 4,0 6,1 7,6 4,8
max 31,0 51,0 101,0 201,0 401,0 157,0
min 1,0 1,0 1,0 1,0 1,0 1,0

Table 8: Detailed computational results for the different feasibility tests and double inputs
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Table 9 presents details on the performance of the FTS-based sufficient condition proposed in Section 4
for evaluating the feasibility of request insertions into given feasible routes. The columns and rows have the
following meaning:

Param. Type of input data (integer or double precision) of the routes
p Probability for delivering one of the open requests that was used in the generation of

the routes. A higher value implies that on average more requests are open at the same
time, i.e., the requests are more nested.

Max # open The maximum number of open requests at a node; we give average, maximum, and
minimum values over the routes

Insertion tests The overall number of evaluated request insertions (total); the absolute (# pos.) and
relative (% pos.) number of evaluations for which the sufficient condition successfully
detects feasibility of the insertion

Max # open Insertion tests

Param. p avg. max min total # pos. % pos.

integer

0.15 2.8 7 1 243750 242540 99.50
0.20 3.1 8 1 243750 241784 99.19
0.25 3.4 10 1 243750 240771 98.78
0.30 3.8 10 1 243750 239016 98.06
0.35 4.1 11 1 243750 236936 97.20
0.40 4.5 15 1 243750 234274 96.11
0.45 4.8 13 2 243750 230505 94.57
0.50 5.0 16 2 243750 226653 92.99

double

0.15 2.8 7 1 243750 242192 99.36
0.20 3.2 8 1 243750 241354 99.02
0.25 3.5 9 1 243750 239739 98.35
0.30 3.8 12 1 243750 237747 97.54
0.35 4.2 11 2 243750 234592 96.24
0.40 4.5 13 1 243750 230732 94.66
0.45 4.8 14 2 243750 226077 92.75
0.50 5.1 13 2 243750 220482 90.45

Table 9: Detailed computational results for FTS-based sufficient condition
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