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Abstract

This paper presents a branch-and-price algorithm for the exact solution of the active-passive vehicle-routing
problem (APVRP). The APVRP covers a range of logistics applications where pickup-and-delivery requests
necessitate a joint operation of active vehicles (e.g., trucks) and passive vehicles (e.g., loading devices such as
containers or swap bodies). The problem supports a flexible coupling and decoupling of active and passive
vehicles at customer locations in order to achieve a high utilization of both resources. Accordingly, the
operations of the vehicles have to be synchronized carefully in the planning. The contribution of the paper
is twofold: Firstly, we present an exact branch-and-price algorithm for this class of routing problems with
synchronization constraints. To our knowledge, this algorithm is the first such approach that considers
explicitly the temporal interdependencies between active and passive vehicles. The algorithm is based on
a non-trivial network representation that models the logical relationships between the different transport
tasks necessary to fulfill a request as well as the synchronization of the movements of active and passive
vehicles. Secondly, we contribute to the development of branch-and-price methods in general, in that we
solve, for the first time, an ng-path relaxation of a pricing problem with linear vertex costs by means of
a bidirectional labeling algorithm. Computational experiments show that the proposed algorithm delivers
improved bounds and solutions for a number of APVRP benchmark instances. It is able to solve instances
with up to 76 tasks, 4 active, and 8 passive vehicles to optimality within two hours of CPU time.
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1. Introduction

Many applications in the area of transport logistics involve problems in which the execution
of transport requests calls for a joint operation of different resources such as trucks, tractors,
drivers, trailers, semi-trailers, swap bodies, containers, or accompanying staff. A typical example
is found in the transportation of containerized goods, where not just a manned truck but also an
empty container is required for executing a request. Further examples are found in the health care
sector or in the security industry, where the transportation of patients and valuable items must
be accompanied by medics and security guards respectively. In general, we can distinguish two
classes of transport resources. The first class is constituted by means of transport that can move
on their own from one location to another such as, for example, manned trucks. We refer to these
resources as active vehicles. The second class consists of resources that cannot move autonomously
but require an active vehicle for being repositioned. This class comprises trailers, semi-trailers, all
kinds of loading devices, equipment, and accompanying staff. For simplicity, we refer to all these
resources jointly as passive vehicles.
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In the literature on vehicle-routing problems (VRPs, see Irnich et al., 2014, for an overview),
the distinction of active and passive vehicles is usually ignored, and operations are planned for
active vehicles only (cf. the recent survey by Lahyani et al., 2015). This restricts the applicability
of the developed models and algorithms to real-world problems in which either passive vehicles
do not play a role or where active and passive vehicles are paired to fixed units. Although the
latter eases the solution of the VRP, it may hinder an effective utilization of the resources. If, for
example, a manned truck (active vehicle) and an empty container (passive vehicle) are considered
a unit in operations planning, the truck and its driver have to wait at a customer location while
the container is being stuffed. Therefore, in order to support a more flexible use of such resources,
Meisel and Kopfer (2014) introduced what we denote here as the active-passive vehicle-routing
problem (APVRP), in which an explicit distinction between active and passive vehicles is made.
This distinction enables the modeling of complex transport operations in which an active vehicle
carries a passive vehicle (e.g., an empty container) to some pickup location, drops it off there, and
leaves this location for performing transports of other passive vehicles elsewhere. Later, when the
container has been stuffed, the same or some other active vehicle returns to the customer, picks
up the container, and carries it to the delivery location. The problem introduces multiple interde-
pendencies between vehicles and raises the need to synchronize the operations and the movements
of active and passive vehicles in time and space. According to the survey by Drexl (2012), such a
combination of synchronization requirements is rarely addressed in the VRP literature. This fact
is in marked contrast to the abovementioned practical relevance of the APVRP. It therefore seems
appropriate to devote further studies to this generic and complex problem.

Our paper addresses this research gap and provides a twofold contribution: Firstly, we present
an exact algorithm for the APVRP which, to the best of our knowledge, is the first branch-
and-price approach that considers explicitly the temporal interdependencies between active and
passive vehicles and the resulting synchronization requirements. Because of these synchronization
requirements, the adaptation of the branch-and-price concept to the APVRP is not straightforward.
Our algorithm is based on an extended set-partitioning formulation which, in turn, uses a non-trivial
network representation that models the logical relationships between the different transport tasks
necessary to fulfill a request as well as the synchronization of the movements of active and passive
vehicles. Secondly, we contribute to the development of branch-and-price methods for routing with
synchronization in general: We provide solutions to the pricing subproblem, which is an elementary
shortest-path problem with time windows and with linear vertex costs, by solving, for the first time,
its ng-path relaxation (Baldacci et al., 2011) by means of a bidirectional labeling algorithm. We
actually apply a refined ng-path relaxation, taking into account partial requests (henceforth called
tasks) and precedences between these tasks instead of individual vertices or complete requests. The
pricing problem structure and the use of the ng-path relaxation, moreover, require a sophisticated
merge step in the labeling algorithm. Computational experiments show that the proposed algorithm
delivers improved bounds and solutions for the APVRP benchmark suite of Meisel and Kopfer
(2014), solving instances with up to 76 tasks, 4 active, and 8 passive vehicles to optimality within
two hours of CPU time.

The paper is organized as follows. Related literature is reviewed in Section 2. In Section 3, we
formally describe the APVRP. A corresponding extended set-partitioning formulation is provided
in Section 4. The branch-and-price algorithm is presented in Section 5, and the method is compu-
tationally evaluated in Section 6. Finally, Section 7 summarizes the paper and discusses potential
avenues for further research.

2. Literature

The manifold real-world logistics applications for vehicle-routing problems with synchroniza-
tion requirements have motivated several studies. Most papers consider applications in which active
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vehicles have to be synchronized. One example is the operations planning for cross-docks where
different trucks deliver less-than-truckload shipments that are then merged to full-truckload ship-
ments before being sent out to customers (see, e.g., Buijs et al., 2014; Morais et al., 2014). Another
active research field is found in the management of home care operations. Here, service operations
have to be synchronized if a person requires the help of two caregivers at the same time (see Bred-
ström and Rönnqvist, 2008; Mankowska et al., 2013; Labadie et al., 2014; Afifi et al., 2015). Further
research addresses forestry applications where trucks have to be served by forest loaders (Hachemi
et al., 2013), intermodal transportation via ships, trains, and trucks for the supply of automotive
factories (Mues and Pickl, 2005), scheduling of cooperating technician teams at customer locations
(Dohn et al., 2009), and ship routing where cargoes from different origins have to be delivered to
one and the same client simultaneously (Andersson et al., 2011). Eventually, there are also arc
routing problems that include synchronization of active vehicles, e.g. when planning snow plowing
operations (see Laporte, 2013) and road marking (see Salazar-Aguilar et al., 2013).

The mentioned applications all involve active vehicles that move autonomously to those loca-
tions where synchronized services are required. By contrast, in the APVRP, an active vehicle and
a passive vehicle must both traverse route segments synchronously in order to perform a service.
Typical applications are found in routing problems where trucks pull trailers or swap bodies (see
Smilowitz, 2006; Cheung et al., 2008; Drexl, 2013). Obviously, trailers and swap bodies are pas-
sive vehicles that are immobile without a truck. Usually, they play the role of optional capacity
extensions of trucks rather than being mandatory for the execution of transport operations. An
exceptional case is when an individual customer has such a large demand that it must be served
jointly by a truck with a swap body (see Huber and Geiger, 2014). A further application of such
a synchronization requirement is found in the drayage operations of container terminals, where
empty and loaded containers are moved between customer locations and transshipment points.
In this field of logistics, the containers constitute the passive vehicles that are mandatory for the
transport of goods (see Cheung et al., 2008; Xue et al., 2014; Zhang et al., 2010, 2013, 2014).
Movement synchronization en route is also found in VRPs where driver crews can be assigned flex-
ibly to trucks (see Hollis et al., 2006; Drexl et al., 2013). In such problems, the exchange of crews
enables a better utilization of the trucks in compliance with work regulations for truck drivers.
Further applications of a synchronization of vehicles and crews are considered in the papers by
Kim et al. (2010), where technicians have to be carried to customer locations, and by Kergosien
et al. (2011, 2013), where ambulances carry patients and accompanying physicians from one care
unit to another.

Drexl (2007, 2014) studies the VRP with trailers and transshipments (VRPTT), a problem
which also requires the synchronization of operations and movements of active and passive vehi-
cles. Two branch-and-cut algorithms are presented, but only very small instances can be solved. For
a deeper investigation of VRPs with synchronization of operations and vehicle movements, Meisel
and Kopfer (2014) provide mixed-integer programming (MIP) formulations, a branch-and-cut al-
gorithm, an adaptive large neighborhood search (ALNS) metaheuristic, and benchmark instances
for the APVRP. To our knowledge, the branch-and-price algorithm by Smilowitz (2006) is the only
other exact method for the APVRP so far. To facilitate understanding, the differences between the
algorithm of Smilowitz (2006) and ours as well as the extensions and improvements our approach
provides will be discussed in Section 5.2.1, when the difficulties arising from the synchronization
requirements will have been thoroughly explained.

A few other papers provide exact methods (typically based on column generation techniques)
for VRPs with synchronization requirements, but merely for problems that involve active vehicles
only (see Mues and Pickl, 2005; Dohn et al., 2009, 2011; Andersson et al., 2011). However, the
features of the VRPTT and the APVRP, which include simultaneous operations planning of active
and passive vehicles together with the possibility to couple and decouple them flexibly on their
routes, are not supported by any of these approaches.
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3. Problem description and modeling

The problem considered in this paper can be formally described as follows. We are given a set of
pickup-and-delivery requests R, a set A of classes of active vehicles and a set P of passive vehicles.
For each class a ∈ A of active vehicles, Ka denotes the number of vehicles in the class. (Aggregating
identical active vehicles into classes while at the same time considering individual passive vehicles
is convenient when setting up the network on which our problem formulation is based, ensures
that each network arc is traversed by at most one active and/or at most one passive vehicle in
any feasible solution, and makes branching easier.) Each request r ∈ R consists of transporting a
loading unit from a pickup location `+r to a delivery location `−r . To fulfill a request r, an active
vehicle must carry a passive vehicle to `+r for loading. Each passive vehicle can load only one
request at a time, and each active vehicle can transport only one passive vehicle at a time. Hence,
the loaded passive vehicle must then be transported directly to `−r for unloading. Afterwards, the
empty passive vehicle must be carried away from `−r . From the point of view of an active vehicle,
the fulfillment of a request comprises three transport tasks:
(i) providing an empty passive vehicle at the pickup location of a request,
(ii) direct transport of a loaded passive vehicle from the pickup to the delivery location, and
(iii) carrying away the emptied passive vehicle from the delivery location.
One or two or three different active vehicles may perform these tasks for a request.

There are compatibility relationships between the requests and the active and the passive
vehicles. P r denotes the set of passive vehicles that can be used to perform request r. Likewise, Rp

denotes the set of requests that can be performed with passive vehicle p. P a indicates the set of
passive vehicles that can be carried by an active vehicle from class a, and Ap is the set of classes
of active vehicles compatible with passive vehicle p.

All active vehicles are initially based at the same start depot o and end their routes at the same
end depot d. Each passive vehicle p has its own start and end positions: It is initially located at op
and must be brought to dp at the end, whether or not it is used to fulfill a request. Hence, there
are two tasks associated with each passive vehicle p, namely, to pickup and to deliver the vehicle
at op and dp respectively.

Let s+
r indicate the time necessary to load an empty passive vehicle with request r and s−r

indicate the time to unload r. Times for coupling and uncoupling of passive vehicles to or from
active vehicles are assumed to be zero (but could easily be incorporated into the model). Picking
up a loaded request r at its pickup location can be finished no earlier than at time er. Waiting
is allowed. Unloading a request r at its delivery location must be finished no later than lr. The
overall planning horizon is [0, tmax ]. Requests that cannot be fulfilled imply a penalty, but may be
executed in a later period.

The objective is to minimize a weighted sum of the total distance traveled, the total completion
time of the routes, and the number of unserved requests. The respective weights are α, β, γ ∈ R+.

The APVRP as described above can be modeled as an optimization problem over a set of
graphs Ga = (V a, Ea), one for each class a of active vehicles. Each set V a of vertices contains o
and d, i.e., the initial and the final location of all active vehicles, op and dp, i.e., the initial and the
final locations of all passive vehicles p ∈ P a, and the set Na containing the following four vertices
for each passive vehicle p ∈ P a and each compatible request r ∈ Rp:

v−rp delivery of an empty passive vehicle p into which request r is loaded;

w+
rp pickup of request r loaded in passive vehicle p;

w−rp delivery of request r loaded in passive vehicle p;

v+
rp pickup of the empty passive vehicle p in which request r was transported.

Thus Na = ∪p∈Pa,r∈Rp{v−rp, w+
rp, w

−
rp, v

+
rp}. For each request r ∈ R, we define V −r = {v−rp : p ∈ P r},

W+
r = {w+

rp : p ∈ P r}, W−r = {w−rp : p ∈ P r}, and V +
r = {v+

rp : p ∈ P r}. The vertices in
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NR =
⋃
r∈R (V −r ∪W+

r ∪W−r ∪ V +
r ) are henceforth referred to as request vertices.

Arcs in Ea between each pair of vertex types are represented in Figure 1. In the figure, solid
bold arcs ( ) can be traversed by an active vehicle while traveling together with a passive vehicle
attached. Dotted arcs ( ) are service arcs and are traversed by the same passive vehicle p alone
or by p together with an active vehicle, while solid and dashed arcs ( and ) are traversed
by the active vehicle alone. In particular, all dashed arcs ( ) exist only if p′ 6= p 6= p′′. For the
four request vertices in the shaded rectangle, all types of ingoing and outgoing arcs are depicted.
It is easy to see that the graphs constructed in this way allow an active vehicle to perform any
of the three transport tasks of any compatible request. For example, assume that active vehicle
a1 performs the first task of request r, and that active vehicle a2 performs the second and the
third task of r, i.e., vehicle a2 transports some passive vehicle p loaded with r from w+

rp to w−rp and
afterwards moves away the empty passive vehicle. In this case, a2 reaches w+

rp without a passive

vehicle, coming from either o or from a vertex v−r′p′ , w
−
r′p′ , or dp′ , with r′ 6= r and p′ different from

p. (If p′ = p, dp′ is the final location of passive vehicle p, and an arc from dp′ to w+
rp for some r ∈ R

is impossible because of the uniqueness of the passive vehicles.) After that, a2 visits vertices w−rp
and v+

rp and leaves v+
rp heading towards either dp or towards a vertex v−r′′p with r 6= r′ 6= r′′ 6= r.

The travel distances between any pair (i, j) ∈ Ea of vertices are denoted by cij and are given by
the distance between the associated locations. The same holds for the travel and service time tij
for (i, j) ∈ Ea with tij equal to s+

r and s−r for arcs (v−rp, w
+
rp) and (w−rp, v

+
rp) respectively. Following

the specifications given by Meisel and Kopfer (2014), the time windows at the vertices are given in
Table 1. The complete notation used throughout the paper is also summarized in the Appendix.

Same passive vehicle p

o dp′ v−r′p′ w−r′p′ r′ 6= r

v+
r′p op

v−rp w+
rp w−rp v+

rp

dp v−r′′p

r′′ 6= r w+
r′′p′′ v+

r′′p′′ op′′ d

Active and passive vehicle together

Active vehicle alone

Active vehicle alone, only possible if p′ 6= p 6= p′′

Passive vehicle alone or active and passive vehicle together

Figure 1: Arc set of graph Ga = (V a, Ea)

The request vertices take up an idea described by Drexl (2007, Sect. 4.3.3). They essentially
correspond to pairs of operations and passive vehicles. This ensures that the itineraries of the
passive vehicles are implicit, i.e., need not be determined explicitly, but can be unequivocally
reconstructed from given routes for the active vehicles. Hence, a feasible solution to the APVRP
is a set of scheduled routes for the active vehicles that fulfills:
• Each route starts at vertex o and terminates at vertex d.
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Vertex i Earliest time ei Latest time li

v−rp toop + topv−
rp

lw+
rp
− (s+r + tw+

rpw
−
rp

+ s−r )

w+
rp max{ev−

rp
+ s+r , er} lw−

rp
− (tw+

rpw
−
rp

+ s−r )

w−rp ew+
rp

+ tw+
rpw

−
rp

min{lv+
rp
, lr} − s−r

v+rp ew−
rp

+ s−r tmax − (tv+
rpdp

+ tdpd)

Other 0 tmax

Table 1: Vertex time windows

• All visited vertices are visited within their prescribed time windows.
• For each r ∈ R, at most one vertex per set is visited in sets V −r , W+

r , and V +
r . This ensures the

synchronization of task fulfillment of requests within and between active vehicles. Note that it
is not necessary to impose that at most one vertex is visited in set W−r , because vertices in this
set can be reached only via an arc coming from a vertex in W+

r .
• For each r ∈ R, p ∈ P r, vertex w+

rp is visited if and only if vertex v−rp has been visited, and vertex
v+
rp is visited if and only if vertex w+

rp has been visited. This requirement is necessary to preserve
consistency with respect to the passive vehicle used to satisfy a request in its different stages.
Moreover, given that the final locations dp of any passive vehicle p ∈ P can only be reached from
the corresponding initial location op or from vertices in

⋃
r∈R V

+
r , this requirement preserves the

flow of the unique passive vehicle used to satisfy a request through vertices v−rp, w
+
rp, w

−
rp, and

v+
rp.

• Tv−r + s+
r ≤ Tw+

r
and Tw−r + s−r ≤ Tv+r for each r ∈ R, where Tv−r , Tw+

r
, Tw−r , and Tv+r are the

service start times at the vertices possibly selected in sets V −r , W+
r , W−r , and V +

r respectively.
This ensures temporal synchronization of tasks within and between active vehicles.
• Each passive vehicle is picked up at its initial location and placed at its final location.
• Each active vehicle performs at most one feasible route (the trivial route from o to d does not

exist), so that at most Ka routes are performed for each class a of active vehicles.
The first two requirements are intra-route constraints, the subsequent four represent both intra-
route and inter-route constraints, and the last one is an inter-route constraint.

Note that, along a route, an active vehicle of class a ∈ A can be associated with different passive
vehicles p ∈ P a. This is due to the structure of the graphs Ga = (V a, Ea). Moreover, a passive
vehicle p ∈ P can be associated with different routes traveled by different active vehicles.

4. An extended set-partitioning formulation

In order to solve the APVRP with branch-and-price, we use an extended set-partitioning for-
mulation. This extensive formulation can be derived from a compact APVRP model, e.g., the one
by Meisel and Kopfer (2014), using a Dantzig-Wolfe reformulation for integer programs (see De-
saulniers et al., 1998; Lübbecke and Desrosiers, 2005). For the sake of brevity, though, we omit the
formal derivation.

For each class a ∈ A of active vehicles, let Ωa be the set of all feasibly scheduled routes. In
contrast to many other branch-and-price algorithms for vehicle routing described in the literature,
a column in the APVRP does not only represent a path, i.e., the sequence of visited vertices.
A column in the APVRP provides a path (in the graph Ga = (V a, Ea)) and a feasible schedule
for this path. For simplicity, however, we will refer to routes in the following, but use the terms
path and schedule to describe the routing and the scheduling components. The following attributes
characterize a route q:

Xq
ij number of times arc (i, j) is traversed by route q;

T qi service start time at a vertex i ∈ NR ∪ {d};
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bqi number of times vertex i is visited on route q;

cq total costs of route q.

The route costs are defined as cq = α
∑

(i,j)∈Ea cijX
q
ij + βT qd , i.e., they are a weighted sum of

the length of the route and the arrival time at the destination. Note that service start times are
well-defined because a feasible route is elementary.

The formulation uses the following types of variables: continuous variables λaq measuring the
flow of active vehicles of class a ∈ A along route q ∈ Ωa, binary variables xaij indicating whether
or not arc (i, j) ∈ Ea is traversed by an active vehicle of class a ∈ A, and binary variables
ur indicating whether or not request r ∈ R remains unfulfilled. Recall that the penalty for not
performing a request is γ. Now, the extended set-partitioning formulation for the APVRP is as
follows:

min
∑
a∈A

∑
q∈Ωa

cqλaq + γ
∑
r∈R

ur (1a)

s.t.
∑
a∈A

∑
q∈Ωa

∑
p∈P r∩Pa

bq
v−rp
λaq + ur = 1 r ∈ R (1b)

∑
a∈Ap

∑
q∈Ωa

(
bq
v−rp
− bq

w+
rp

)
λaq = 0 r ∈ R, p ∈ P r (1c)

∑
a∈Ap

∑
q∈Ωa

(
bq
w−rp
− bq

v+rp

)
λaq = 0 r ∈ R, p ∈ P r (1d)

∑
a∈A

∑
q∈Ωa

∑
p∈P r∩Pa

(
T q
w+

rp
− T q

v−rp

)
λaq + s+

r ur ≥ s+
r r ∈ R (1e)

∑
a∈A

∑
q∈Ωa

∑
p∈P r∩Pa

(
T q
v+rp
− T q

w−rp

)
λaq + s−r ur ≥ s−r r ∈ R (1f)

∑
a∈Ap

∑
q∈Ωa

bqopλ
aq = 1 p ∈ P (1g)

∑
q∈Ωa

λaq ≤ Ka a ∈ A (1h)

xaij =
∑
q∈Ωa

Xq
ijλ

aq a ∈ A, (i, j) ∈ Ea (1i)

λaq ≥ 0 a ∈ A, q ∈ Ωa (1j)

xaij ∈ {0, 1} a ∈ A, (i, j) ∈ Ea (1k)

ur ∈ {0, 1} r ∈ R (1l)

(1a) is the objective function. (1b) are the set partitioning constraints, which ensure that each
request is either performed exactly once or the penalty γ is paid for leaving the request unfulfilled.
(1c) and (1d) preserve consistency with respect to the passive vehicle used to satisfy a request in
its different stages. (1e) and (1f) are time synchronization constraints ensuring that the different
vertices corresponding to a request are visited at correct points in time, taking into account their
precedence relationships. (1g) and (1h) are quantity constraints for passive vehicles and for classes
of active vehicles respectively. Constraints (1g) are valid only if it is not allowed to temporarily park
a passive vehicle at its initial or final location. (1i) link the route and the arc variables. (1j)–(1l)
indicate the domains of the variables.

Note that there are no binary restrictions on the λaq variables. The reason for this is that a
solution may be fractional in terms of λaq variables for a class of active vehicles. The λaq variables
may correspond to the same path with different schedules, i.e., to the same sequence of vertices
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visited at different points in time, so that the arc variables are integral and no branching is necessary.
This issue is discussed in detail by Desaulniers et al. (1998) and Jans (2010).

In the following, the linear relaxation of formulation (1) is denoted as the master program. It
does not contain the coupling constraints (1i) and the integer constraints (1k)–(1l). For solving the
master program, a column generation algorithm (Desaulniers et al., 2005) is employed. Branching
is required to finally ensure integer solutions of (1).

5. A branch-and-price algorithm

In this section, we present the branch-and-price algorithm we devised for solving the APVRP.
First, in Subsection 5.1, we give a MIP model of the pricing problems for generating new columns.
In Subsection 5.2, we describe a labeling algorithm for actually solving these pricing problems.
Then, in Subsection 5.3, we describe our branching strategy.

5.1. Pricing problems

As is common for branch-and-price algorithms for vehicle-routing problems, the pricing prob-
lems for the APVRP are shortest-path problems with resource constraints (SPPRCs) on graphs
with negative cost cycles (Irnich and Desaulniers, 2005). For each class a ∈ A of active vehicles,
there is one such pricing problem. Its goal is to find at least one route with negative reduced costs
or to prove that no such route exists. The dual variables of those constraints in which the λaq vari-
ables occur in the restricted master program, the resulting linear vertex costs, and the resulting
reduced costs of the arcs can be read from Table 2.

Constraint Dual Range

variable

(1b) πr R
(1c) φ+rp R
(1d) φ−rp R
(1e) τ+r ≥ 0

(1f) τ−r ≥ 0

(1g) µP
p R

(1h) µA
a ≤ 0

(a)

Vertex i Linear vertex

costs c̃i

v−rp τ+r

w+
rp −τ+r

w−rp τ−r

v+rp −τ−r
d β

otherwise 0

(b)

Arc Reduced

(i, j) costs c̃ij

(i, op) αciop − µP
p

(i, dp) αcidp

(i, v−rp) αciv−
rp
− πr − φ+rp

(i, w+
rp) αciw+

rp
+ φ+rp

(i, w−rp) αciw−
rp
− φ−rp

(i, v+rp) αciv+
rp

+ φ−rp

(i, d) αcid − µA
a

(c)

Table 2: (a) Dual variables and their ranges; (b) Linear vertex costs; (c) Reduced costs of arcs

We use binary variables xij indicating whether or not arc (i, j) ∈ Ea is traversed and continuous
Ti variables indicating the point in time when the service at vertex i ∈ V a begins. The symbols
δ+(i) and δ−(i) denote the forward and backward star of vertex i respectively. The pricing problem
for a class a of active vehicles can be specified as:

min
∑

(i,j)∈Ea

c̃ijxij +
∑
i∈Na

c̃iTi + βTd (2a)

s.t.
∑

(o,j)∈δ+(o)

xoj = 1 (2b)

∑
(j,i)∈δ−(i)

xji −
∑

(i,j)∈δ+(i)

xij = 0 i ∈ V a \ {o, d} (2c)
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∑
(i,d)∈δ−(d)

xid = 1 (2d)

Ti + tij ≤ Tj + tmax (1− xij) (i, j) ∈ Ea (2e)

ei ≤ Ti ≤ li i ∈ {o, d} (2f)

ei
∑

(i,j)∈δ+(i)

xij ≤ Ti ≤ li
∑

(i,j)∈δ+(i)

xij i ∈ V a \ {o, d} (2g)

xij ∈ {0, 1} (i, j) ∈ Ea (2h)

(2a) is the objective of minimizing the reduced costs of the route. (2b)–(2d) are path-flow constraints
and (2e)–(2g) ensure time-window feasibility. All arc variables are binary, as imposed by (2h).

5.2. Dynamic programming labeling algorithms

The usual solution approach for SPPRC pricing problems is a dynamic-programming based
labeling algorithm. As has been shown by Salani (2005), solving such pricing problems by bidirec-
tional dynamic programming, i.e., by propagating labels forward from the start depot vertex and
backward from the end depot vertex, allows considerable speedups compared to a unidirectional
procedure. We therefore adopt this approach and adapt it to the APVRP pricing problem.

In what follows, we first point out the specific characteristics resulting from the linear vertex
costs in the APVRP pricing problem and briefly review similar problems and solution approaches
encountered in the literature. We then discuss issues related to (non-)elementarity of SPPRC
solutions and present our adaptation of the ng-path relaxation. Afterwards, we describe the forward
label extension step and the dominance procedure we apply. Then, we elaborate on the backward
label extension and the method for merging forward and backward labels, and, finally, we present
some techniques for accelerating the pricing process.

5.2.1. Labeling algorithms for SPPRCs with linear vertex costs

Due to the linear vertex costs c̃i in model (2), which are not present in pricing problems for
standard VRPs, there is a tradeoff in the APVRP pricing problem: In a path in which the linear
vertex costs are non-negative at all vertices, it is best to visit all vertices as early as possible.
Similarly, in a path in which the linear vertex costs are non-positive at all vertices, it is best to
visit all vertices as late as possible. However, paths in the APVRP may visit vertices with positive
as well as vertices with negative vertex costs. Hence, determining a cost-optimal schedule even for
a given path is a non-trivial optimization problem in itself. For a labeling algorithm, this means
that the linear vertex costs and the resulting tradeoff between costs and time create an infinite
number of possible states that do not dominate one another. Such a situation was first studied
by Ioachim et al. (1998) on an acyclic time-space network in the context of aircraft fleet routing
and scheduling. Their approach of storing cost functions (with time as the independent variable)
as labels and propagating these functions instead of scalar values forms the basis of our method,
which is described in detail in Section 5.2.3.

Other authors that consider shortest-path pricing problems with linear vertex costs in branch-
and-price algorithms for routing problems are Christiansen and Nygreen (1998) (for a ship routing
and scheduling problem with inventory constraints), Dohn et al. (2009, 2011) (for VRPs with
precedences and temporal dependencies between visits to customers), Liberatore et al. (2011) (for
a VRP with soft time windows) and Spliet and Gabor (2014) (for a VRP with time windows that
have to be assigned before customer demand is known). The pricing problem of Christiansen and
Nygreen (1998) is solved with the Ioachim et al. (1998) algorithm. Dohn et al. (2009, 2011) describe
two alternative approaches for dealing with the linear vertex costs: They consider a so-called time-
indexed formulation with an implicit representation of precedence constraints and the possibility
of branching on time windows to handle temporal dependencies. Liberatore et al. (2011) and Spliet
and Gabor (2014) also base their procedures on the Ioachim et al. (1998) approach.
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The main differences between the problems and solution procedures presented by Ioachim et al.
(1998), Liberatore et al. (2011), Spliet and Gabor (2014), and ours are as follows: Ioachim et al.
(1998) consider an acyclic network, all others have networks with cycles. Due to the soft time
windows, the Liberatore et al. (2011) problem is, on the one hand, simpler with respect to time
windows, as the complete planning horizon is feasible. On the other hand, it is more difficult with
respect to the cost (penalty) function at each single vertex : This penalty function is decreasing until
the beginning of the desired time window, then constant until the end of the desired time window,
and then increasing. By contrast, the cost functions in the papers by Ioachim et al. (1998), Spliet
and Gabor (2014) as well as in our paper are either constant or only increasing or only decreasing
at each vertex.

Both the Liberatore et al. (2011) and the Spliet and Gabor (2014) pricing problem feature a
capacity constraint, which is not present in the Ioachim et al. (1998) problem or in the APVRP.
Liberatore et al. (2011) handle the capacity constraint in the dominance procedure by allowing a
label L to dominate another label L′ only if the load of L is less than or equal to that of L′. Spliet
and Gabor (2014) construct an auxiliary acyclic graph in which the capacity constraint is taken
into account implicitly at the cost of a weaker dominance.

The branch-and-price algorithm by Smilowitz (2006) mentioned in the literature review section,
although considering an APVRP use case, does not take into account the time synchronization
aspect in an exact manner, contrary to our approach. Instead, the interdependencies between tasks
are modeled away by assuming that a passive vehicle which is used to perform a task τ is available
for performing other tasks at the earliest after the end of τ ’s time window plus the service time for
τ . In this way, the underlying network does not contain arcs between tasks with overlapping time
windows, no linear vertex costs occur, and standard labeling approaches can be used for solving
the pricing problem.

5.2.2. Elementarity and precedences

In an optimal solution to the set-partitioning formulation (1), no task will be performed more
than once. This implies that all columns in an optimal solution correspond to elementary paths in
the network. It is well known that the elementary shortest-path problem with resource constraints
is NP-hard in the strong sense (Dror, 1994). Hence, in branch-and-price algorithms for VRPs, many
authors solve as pricing problems non-elementary SPPRCs (see the survey by Desaulniers et al.,
2014). This can be done in pseudo-polynomial time (Irnich and Desaulniers, 2005). Although this
yields weaker lower bounds, and although routes with cycles must be removed in the branching
process, solving only a relaxed pricing problem often pays off with respect to overall computation
time. One such approach that has been very successfully used for different types of VRPs is the
ng-path relaxation introduced by Baldacci et al. (2011).

We adapt this approach to the APVRP as follows. Our ng-path relaxation is based on tasks
instead of vertices, thus leading to a stronger relaxation on the network we use. For each vertex
i ∈ Na ∪ {op, dp : p ∈ P a}, we use an ng-neighborhood Ni containing the task associated to i (see
Table 3) and the ν closest tasks associated to vertices j for which a cycle (j, . . . , i, . . . , j) would be
feasible with respect to time windows and travel and service times. (We use different values of the
parameter ν in our computational experiments.) In an ng-path in the APVRP, it is possible that
a task τ is performed more than once if, between two visits to a vertex i associated with the task,
at least one other vertex j is visited such that τ /∈ Nj .

In addition, to foster elementarity of partial paths without weakening dominance, we use the
following approach: Consider the second line of Table 3. As described in Section 3, we associate
three tasks with each request, and two tasks with each passive vehicle, for pickup and delivery
at the initial and final location. Obviously, these tasks must be performed in the chronological
sequences τ1

r , τ2
r , τ3

r and τ op , τdp (but not necessarily by the same active vehicle). Now, at each
request vertex i, we consider two subsets of these tasks, T test

i and T set
i , as indicated in the third
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Vertex i op v−rp w+
rp w−rp v+rp dp

Associated task τop τ1r τ2r τ2r τ3r τdp
Tasks to test T test

i τop , τ
d
p τ1r , τ

2
r , τ

3
r , τ

d
p τ2r , τ

3
r , τ

d
p τ3r , τ

d
p τ3r , τ

d
p τdp

Tasks to set T set
i τop τop , τ

1
r τop , τ

1
r τop , τ

1
r , τ

2
r τop , τ

1
r , τ

2
r , τ

3
r τop , τ

d
p

Table 3: Chain of precedences for each pair (p, r) ∈ P ×Rp

and fourth line in the table. Before extending a label L at vertex i to vertex j, we test the tasks
in the associated set T test

j . If any of these tasks has already been fulfilled along the partial path
represented by L, then L is not extended to j, because such a path is not feasible for the APVRP.
Similarly, upon extending a label L at vertex i to vertex j, we mark the tasks in T set

j as fulfilled,
because visiting them would lead to an infeasible path regarding task precedences. Note that it is
unnecessary to include the tasks in the sets T test and T set in the ng-neighborhood. This is because
these tasks are irrelevant for dominance, as dominance checks occur only between labels resident at
the same vertex, and as all tasks to test and all tasks to set are the same for all labels at the same
vertex. With respect to the ng-path relaxation, on the one hand, the tasks to set allow making
labels more comparable from the dominance point of view, and, on the other hand, the tasks to test
prevent the construction of infeasible paths. This improvement can always be applied whenever a
subset of tasks associated with some vertices of the graph must be executed according to a given
precedence relation.

5.2.3. Forward label extension

As mentioned, our approach is based on the one by Ioachim et al. (1998), who store cost functions
as labels instead of scalars. Such a cost function c provides the minimal costs c(T ) incurred by a
path when the service at the last vertex of the path starts at time T . Ioachim et al. (1998) prove
that this function is piecewise linear, convex, and contains at most as many linear pieces as there
are vertices in the path. Moreover, they show that pieces with positive slope can be replaced by a
single piece with slope zero. Hence, for the APVRP, a label comprises the following components:

n number of time-slope pairs (in the following called pieces);

(tp, sp)np=1 the n pieces; sp < 0 for p = 1, . . . , n− 1, and sn ≤ 0

c1 (reduced) costs at start time of piece 1;

tn+1 end time of last piece n;

S tasks that have already been performed or are unreachable along the route and
which are taken into account for checking elementarity in the label extension step
according to the ng-path relaxation;

k number of intervals on which the label is dominated;

(Id)kd=1 the k intervals on which the label is dominated.

The following information can then be derived:

c∗ = c1 +
∑n

p=1 s
p(tp+1 − tp); the optimal (reduced) costs;

t∗ = tn for sn = 0, and tn+1 otherwise; the earliest time to obtain costs c∗;

c(T ) = c1 +
∑q−1

p=1 s
p(tp+1 − tp) + sq(T − tq) for tq ≤ T ≤ tq+1; the tradeoff curve;

sn+1 = 0 defined so for convenience.

Figure 2 depicts two typical situations. In Figure 2(a), the slope of the function is strictly
negative over its complete range, so that the minimal (reduced) costs are achieved when starting
the service at the vertex as late as possible. In Figure 2(b), the slope of the function is zero on
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Time T

Cost c(T )

c1

c∗

t1 t2 t3 t4 = t∗

s1

s2

s3

n = 3

(a)

Time T

Cost c(T )

c1

c∗

t1 t2 = t∗ t3

s1

s2

n = 2

(b)

Figure 2: Example of labels; (a) A label with n = 3 linear pieces and final slope sn < 0; (b) A label with n = 2 linear
pieces and final slope sn = 0.

the positive-length interval from t2 to t3, and any time value in this interval yields the minimal
(reduced) costs c∗. Note that the figures imply that the paths whose cost functions are depicted in
2(a) and (b) contain at least three and two vertices respectively.

Now we describe the label extension step. (We present the extension step here because the paper
by Ioachim et al. (1998) omits several details.) Let Li = ((tpi , s

p
i )
ni+1
p=1 , c

1
i , Si, (I

d
i )kid=1) be a label at

vertex i. The extension of Li along the arc (i, j) is feasible if t1i + tij ≤ lj and Si ∩ T test
j = ∅. In

this case, a new label Lj at vertex j is created. The attributes of Lj are computed in the following
way:

First, extending some of the existing pieces may be obsolete (cf. Ioachim et al., 1998, p. 200),
either because the extended pieces arrive too early or too late at j or because several resulting new
slopes are zero. We compute the indices f and g of the first and last new piece to be kept:

f := max{p ∈ {0, . . . , ni + 1} : tpi + tij ≤ ej}

and
g := min{ni, p ∈ {0, . . . , ni} : spi + c̃j ≥ 0 or tp+1

i + tij ≥ lj}

It may also happen that a new piece must be created (cf. Ioachim et al., 1998, p. 200). Thus, we
define the new-piece indicator

δ :=

{
1 if (g = ni, t

∗
i = tn+1

i , and t∗i + tij < lj) or (f = ni + 1)
0 otherwise

,

so that the new label Lj comprises the

nj := max{0, g − f + 1}+ δ (3)

new pieces.
Second, non-obsolete pieces (t, s) are extended using the function fij(t, s) :=

(max{ej , t+ tij},min{0, s+ c̃j}) so that the new pieces are

(tpj , s
p
j ) := fij(t

f+p−1
i , sf+p−1

i ) for all p = 1, . . . , nj (4a)

and the new end time of the pieces associated with slope 0 is

(t
nj+1
j , s

nj+1
j ) := (lj , 0). (4b)
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Third, with the help of the tradeoff curve ci(T ) of Li and the already computed attributes, the
costs at the start time t1j of the new pieces can be expressed as

c1
j := ci(min{t∗i , t1j − tij}) + c̃ij + c̃jt

1
j . (4c)

Note that the formula for the cost update given by Ioachim et al. (1998, p. 202) is not always
correct.

Fourth, the remaining attributes are

Sj := (Si ∩Nj) ∪ T set
j and kj := 0. (4d)

The latter definition means that at the time of its creation, the new label is undominated. This

completes the description of the new label Lj = ((tpj , s
p
j )
nj+1
p=1 , c1

j , Sj , (I
d
j )
kj
d=1).

From a label Ld at the end depot d, the corresponding o-d-path is reconstructed, as usual, by
iterating backward through the predecessor labels. Let (d = i+ 1, i, . . . , 0 = o) be the backtracked
path from a label Ld. The optimal schedule (Ti+1, . . . , T0) is then given by the following recursion:

Ti+1 = t∗d, (5a)

Ti = min{t∗i , Ti+1 − ti,i+1}. (5b)

We now proceed to the discussion of the dominance procedure and details of its implementation.

5.2.4. Dominance between labels

When checking a label L for dominance, it is compared one by one with all other undominated
labels residing at the same vertex. During each such comparison between L and another label
L′, first, the sets SL and SL′ are compared. If SL′ ⊆ SL, a pointwise dominance is performed
with respect to each point on the tradeoff curve of L, and the intervals on which L is dominated,
i.e., where cL′(T ) ≤ cL(T ) holds, are tentatively stored. We compute these domination intervals
efficiently by determining the intersection points of cL(T ) and cL′(T ). Ioachim et al. (1998) have
shown that even if the intersection points may be non-integer real numbers, it suffices to describe the
intervals with integer bounds. Also Liberatore et al. (2011) exploit domination intervals, however,
they delete the dominated intervals from the tradeoff curves so that they can become discontinuous.

After having compared L with all other labels in this way, these intervals are used to update
(Id)kd=1, the intervals on which the tradeoff curve of L is dominated, and k, the number of intervals
on which L is dominated. If the complete tradeoff curve of a label is dominated, the label itself is
dominated and can be discarded. Note that this means that the decision on whether or not a label
is obsolete will regularly be based on comparisons with more than one other label. Put differently,
in most cases, only several other labels together will make one label obsolete. This is in contrast to
dominance procedures for classical VRPs, where a pairwise dominance is applicable and one label
dominates another one or not.

To avoid that two labels L and L′ dominate each other on an interval Id when SL = SL′ and
cL(T ) = cL′(T ) for all T ∈ Id, we use a tie-breaking rule, similar as in standard VRPs where it
must be avoided that two identical labels eliminate each other.

Refinements of the dominance procedure that speed up the pricing process are the elimination
of dominated pieces at the beginning or at the end of the range of the tradeoff curve and the
replacement of consecutive dominated pieces by one aggregated piece.

5.2.5. Bidirectional labeling

We start by briefly describing the backward label extension before we detail the bidirectional
labeling approach.
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Time T

Cost c(T )

c∗

c1

t1bwt2bwt3bw = t∗bwt4bw

s1
bw

s2
bw

s3
bw

Figure 3: Example of a backward label with n = 3 pieces

Time T

Cost c(T )

c1

c∗

t1fw t∗fw

∆1

Ti

(a)

Time T

Cost c(T )

c∗

c1

t1bwt∗bw

∆2

Tj

(b)

Figure 4: Example of a merge step, forward and backward label with optimal times Ti and Tj for their concatenation

Given the forward label extension process, the backward label extension process is rather simple:
It is sufficient to invert all time windows and to invert the linear vertex costs. To be precise, a time
window [er, lr] for a request r is replaced by [tmax − lr, tmax − er], c̃ is replaced by −c̃, and then the
same algorithm as in the forward labeling is applied. Note that it suffices to compute tmax − T to
recalculate the real time for a given point in time T on the tradeoff curve of the backward label.
For simplicity, when a point in time on the tradeoff curve of the backward label is mentioned in the
following, we refer to the real time. Hence, the pieces are numbered from 1 to n with decreasing,
non-negative slopes, and t1 is the latest feasible time for a backward label. Figure 3 summarizes
the notation for backward labels.

In bidirectional labeling algorithms, forward labels are not necessarily propagated until the end
depot, and backward labels are not necessarily propagated until the start depot. Instead, labels
are propagated only up to a so-called half-way point, thus limiting the overall number of created
labels. Suitable forward and backward labels must then be merged to obtain complete o-d-paths.
As described by Salani (2005, Sect. 4.6.4), this is done using a half-way point test to avoid creating
the same path from different pairs of forward and backward labels. Setting tmax/2 as half-way
point, we propagate forward labels at a vertex i only if t1i ≤ tmax/2, and backward labels at a
vertex j only if t1j > tmax/2.

We then merge on vertices, i.e., we consider forward and backward labels at the same vertex i.
A forward label at a vertex i qualifies for merging if i = d or its earliest service start time is
t1fw > tmax/2. This condition prevents the creation of identical paths from different pairs of forward
and backward labels. We check all backward labels at vertex i for whether or not they can be
merged with the chosen forward label. The procedure becomes simpler if instead of the backward
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label itself, its predecessor label is considered. Let this predecessor be resident at vertex j. Note
that this is a kind of merging along the resulting arc (i, j). However, with the merge on vertices we
benefit from the fact that both the forward and the backward label are Pareto-optimal. This is in
contrast to the situation when merging is directly performed over arcs, where neither the forward
extension of the forward label along (i, j) nor the backward extension of the backward label along
(i, j) is guaranteed to be Pareto-optimal, leading to considerably more pairs of labels to be checked.

We consider forward labels at a vertex i for a merge with predecessor backward labels at a
vertex j if the following conditions are fulfilled to obtain a feasible path:

Sfw ∩ Sbw = ∅ and t1fw + tij ≤ t1bw (6)

The first condition is necessary to avoid paths violating the partial elementarity required by the
ng-path relaxation, the second is needed to ensure overall temporal feasibility. Now assume that
these conditions are fulfilled for a forward label at a vertex i and a backward label at a vertex j,
and consider Figure 4. On the left hand side of Figure 4, an exemplary forward cost function at i
is depicted. The predecessor backward label with an exemplary backward linear cost function at j
is depicted on the right hand side. We have to compute the optimal service start times Ti and Tj
at the vertices i and j, respectively, so that all other service start times at the vertices in the path
can be derived from these values, see Eqs. (5). There are two cases:
(i) t∗fw + tij ≤ t∗bw.

This is unproblematic: Ti = t∗fw and Tj = t∗bw are the optimal service start times for vertices
i and j.

(ii) ∆ = t∗fw + tij − t∗bw > 0.
In this case, Ti must be set to an earlier point in time than t∗fw, and/or Tj must be set to
a later point in time than t∗bw. To ensure optimality, we compute the optimal times Ti and
Tj by distributing the total required time shift ∆ between the forward and the backward
label. To distribute ∆, we initialize Ti = t∗fw and Tj = t∗bw and update them in the following

manner. We consider the slopes of the cost function pieces. If, for example, t∗fw = tn+1
fw ,

t∗bw = tnbw and |snfw| ≤ |s
n−1
bw |, as it is the case in Figure 4, setting Ti to an earlier time

than t∗fw will increase the costs of the merged path by at most as much as pushing Tj to a
later point in time than t∗bw. Hence, we shift Ti backward by ∂1 := min{Ti − tnfw,∆} units,
i.e., Ti := Ti − ∂1. The remaining time shift is ∆ := ∆ − ∂1. Now, if ∆ = 0, we are done.
Otherwise, we compare the slope of the preceding forward piece, here sn−1

fw , with sn−1
bw and

select the piece with the smaller absolute slope. If, as depicted in the figure, |sn−1
bw | < |s

n−1
fw |,

we shift Tj forward by ∂2 := min{tn−1
bw −Tj ,∆} units, i.e., Tj := Tj +∂2. Again, the remaining

time shift is ∆ := ∆−∂2. We iterate until ∆ = 0, and this is guaranteed to happen because of
condition (6). The overall algorithm is depicted in Algorithm 1. Note that if the next forward
piece to consider does not exist, i.e., if the merge point Ti is already equal to the start time
t1fw of the forward tradeoff curve, we take the backward one, and vice versa. This can be

achieved by defining s0
fw := −∞ and s0

bw := +∞.
In the merge procedure just described, the cost functions of backward labels are relevant only in
the interval [tmax/2, tmax ] from the half-way point to the end of the planning horizon. Therefore, it
is sufficient to construct the tradeoff curve of a backward label only up to tmax/2. This saves some
computation time when constructing the linear cost function while maintaining optimality of the
procedure.

The reduced cost of a merged path can be obtained by c∗m := cfw(Ti) + cbw(Tj) + c̃ij . After the
merge, we perform a final dominance test as described in Subsection 5.2.4 for all routes resulting
from merged labels. Finally, we add all undominated negative reduced-cost routes to the master
problem.
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Algorithm 1: Computation of optimal service start times Ti and Tj when merging

1 ∆ := t∗fw + tij − t∗bw, Ti := t∗fw, Tj := t∗bw
2 if (snfw < 0) then pfw := n else pfw := n− 1

3 if (snbw > 0) then pbw := n else pbw := n− 1
4 while (∆ > 0) do

5 if (|spfwfw | < |s
pbw
bw )| then

6 ∂ := min{Ti − t
pfw
fw ,∆}

7 Ti := Ti − ∂, pfw := pfw − 1

8 else
9 ∂ := min{tpbwbw − Tj ,∆}

10 Tj := Tj + ∂, pbw := pbw − 1

11 ∆ := ∆− ∂
Result: Optimal service start times Ti and Tj

5.2.6. Acceleration techniques

To accelerate the pricing process, we use a heuristic pricing procedure, the so-called limited
discrepancy search (LDS) introduced by Feillet et al. (2007), and a heuristic dominance.

LDS works as follows. In each pricing iteration, the outgoing arcs of each vertex are partitioned
into “good” and “bad” arcs. The arcs with the lowest current modified arc costs and all arcs
incident to the start or the end depot are considered good arcs, the others are regarded as bad
arcs. The labels have an additional attribute storing the number of bad arcs used in the associated
path. The value of this attribute is incremented by one each time a label is extended along a bad
arc. Only those labels are considered feasible for which the number of bad arcs used is below a
specified upper bound, the discrepancy limit. This limit is set to a fixed value during the complete
solution process.

As for heuristic dominance, we use a pairwise comparison of two labels L and L′, and if c∗L < c∗L′
and t1L < t1L′ , we discard L′. The limited discrepancy search as well as the heuristic dominance are
applied in each column generation iteration. Only if they fail to produce a negative reduced cost
column, the exact pricing and dominance algorithms are applied.

5.3. Branching strategy

Let λ̃aq, ũr, and x̃aij =
∑

q∈Ωa X
q
ij λ̃

aq be the values of the corresponding decision variables
λaq, ur, and xaij . We apply the following five-stage hierarchical branching scheme: First, if the
overall number of unserved requests, i.e., uΣ =

∑
r∈R ũr, is fractional, we create the two branches∑

r∈R ur ≤ buΣc and
∑

r∈R ur ≥ duΣe. If the objective (1a) prioritizes request fulfillment, i.e.,
γ � α, β, the latter branch is obsolete. Second, we branch on the individual ur variables, where
one request r∗ with ũr∗ closest to 1/2 is selected, and the two branches ur∗ = 0 and ur∗ = 1 are
created. Third, we branch on the overall number of active vehicles in use: If aΣ =

∑
a∈A

∑
q∈Ωa λ̃aq

is fractional, the resulting branches are given by
∑

a∈A
∑

q∈Ωa λaq ≤ baΣc and
∑

a∈A
∑

q∈Ωa λaq ≥
daΣe. All these branching rules are put into effect by adding a constraint to the master program (1).
In addition, when the second branching rule is applied and ur∗ is set to 1, all the subgraphs induced
by vertices in V −r∗ ∪W

+
r∗ ∪W

−
r∗ ∪ V

+
r∗ can be removed from all networks Ga, a ∈ A.

Fourth, note that for arcs (ip, jp′) ∈ E that have both endpoints in NR, at most one of the
arcs

⋃
q,q′∈P {(iq, jq′)} of one of the networks Ga, a ∈ A, can be present in a solution. Hence, if

Σij =
∑

a∈A
∑

q,q′∈Pa x̃aiq ,jq′ is fractional, we create two branches by setting
∑

a∈A
∑

q,q′∈Pa xaiq ,jq′
to zero and one respectively. If only one of the endpoints is in NR, we can apply a similar branching
rule. If several Σij are fractional, we choose a pair (i, j) with value closest to 1/2. The zero-branch
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is implemented by eliminating the associated arcs from all networks Ga, a ∈ A. The one-branch
first fixes ur = 0 for the corresponding request(s) r associated with ip and jp′ and eliminates
incompatible arcs from all networks Ga, a ∈ A.

The fifth and last rule is branching on individual arcs, which finally ensures integrality of the
xaij and ur variables. (Recall that model (1) poses no integer requirement on the λaq variables.) If
x̃aij for an arc (i, j) ∈ Ea is fractional, then one can branch on xaij = 0 and xaij = 1, where we select
the combination (a, i, j) for which x̃aij is closest to 1/2. Branching on individual arcs (i, j) ∈ Ea is
implemented by eliminating (i, j) from the underlying network Ga for xaij = 0, while for the branch

xaij = 1, all ingoing arcs δ−(i) are eliminated for networks Ga
′
, a′ 6= a and all arcs δ+(i) \ {(i, j)}

are eliminated from the network Ga.
As branch-and-bound node-selection rule, we apply a best-bound-first strategy, because our

primary goal is to improve the dual bound.

6. Experimental results

The results reported in this section were obtained using a standard PC with an Intel(R)
Core(TM) i7-2600 3.4 GHz processor and 16 GB of main memory. The algorithms were coded
in C++ with MS-Visual Studio 2010. The callable library of CPLEX 12.5 was used for solving the
linear relaxations of the restricted master program in the column generation algorithm.

6.1. Test instances

Meisel and Kopfer (2014) created a set of 180 APVRP test instances (henceforth referred to as
MK instances) with the following characteristics: The instances range in size from 38-1600 tasks,
2-25 active vehicles, 4-50 passive vehicles, and a planning horizon tmax of 2500-5000 time units.
Locations are randomly placed in a 100 × 100 area, distances and travel times are set to the
Euclidean distance, time windows are of width 1000 with random start times in [0, tmax − 1000],
and service times for loading and unloading range between 50 and 100 time units. Each passive
vehicle is compatible with 2 active vehicles, each request is compatible with 3 passive vehicles. Due
to their huge planning horizon tmax where time units can model minutes of a working week, these
instances are very hard to solve with an exact approach.

Hence, we additionally created a new set of instances, in which a time unit can model 10 minutes
of a working week. It is clear that our new instances are on average easier to solve than the MK
instances, however, the chosen time discretization is fine enough for many practical situations. The
new set contains 20 instances with 38 tasks, 2 active, and 4 passive vehicles (leading to extended
networks with approximately 170 vertices and 3500 arcs), and 20 instances with 76 tasks, 4 active,
and 8 passive vehicles (resulting in extended networks with ca. 650 vertices and 4000 arcs). The
instances have a planning horizon of 1000 time units, and service times s+

r and s−r vary between
25 and 50. To each of the 40 instances, we assigned time windows that allow different levels of
flexibility: For each request r ∈ R, we first compute the travel time between its pickup and its
delivery location. Initially, each request time window [er, lr] (refer to Table 1 for the definition of
er and lr) is set so that the time window width lr − er is equal to the computed travel time plus
the service times s+

r and s−r . By adding a time window flexibility of F = 25, 50, 100, and 200, we
create 160 new instances. A time window flexibility of F means that er and lr are further shifted
apart by exactly F time units (it is ensured that the new [er, lr] is in the overall planning horizon
[0, tmax]). All other characteristics of the new instances are the same as in the MK instances.

6.2. Algorithmic setup

For all experiments, we used objective function weights of α = 10, β = 1, and γ = 10,000, i.e.,
a hierarchical objective of first fulfilling as many requests as possible, then minimizing traveled
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distance, and then minimizing route completion time. We set a CPU time limit of 2 hours. Pre-
liminary tests showed that bidirectional labeling was superior to the unidirectional variant, that
the best results were obtained with an ng-neighborhood size of 15, applying limited discrepancy
search and heuristic dominance during the pricing as described in Section 5.2.6, and stopping each
labeling procedure as soon as 100 or more negative reduced cost routes have been found.

6.3. Algorithmic performance

As for the MK instances, Meisel and Kopfer (2014) could not solve any of these to optimality
with the branch-and-cut algorithm presented in their paper. Our algorithm was able to solve to
optimality one 38-task MK instance within the 2-hour time limit. For this solved instance the
previous upper bound was improved by 10.05 %. The average gap between the upper and the lower
bound after 2 hours was 6.79 % for the MK instances, with a minimum non-zero gap of 3.47 %
and a maximum gap of 13.90 %. The average increase in the lower bound at the root node of the
branch-and-bound tree compared to the one of the branch-and-cut by Meisel and Kopfer (2014)
was a significant 18.35 %.

Tables 4 and 5 report the results on the test instances we created. Both tables have the same
columns. The first column indicates the time window flexibility F of the instances considered in
each row, the second specifies the number of instances solved to optimality. The next columns
indicate minimal, average, and maximal values of (i) the CPU times, (ii) the gap between the value
of the LP relaxation at the root node and the best known upper bound (also using upper bounds for
instances with smaller F as bounds for instances with a bigger F ), (iii) the percentage of the root
gap closed at the end of the optimization (100.0 % for instances that were solved to optimality),
and (iv) the number of branch-and-bound nodes solved. It can be seen from the tables that we are
able to consistently solve instances with 38 tasks and a time window flexibility of up to 100. In
general, the instances become more difficult with increasing time window flexibility, and timeout
is reached for most 76-task instances, with significant gaps remaining. For the 76-task instances
with a time window flexibility of 100 and 200, the number of solved branch-and-bound nodes even
decreases, on average, compared to the instances with shorter time windows. This means that the
time needed to solve a node increases considerably. Analyses showed that this is mostly caused
by the slow convergence of the master program as well as the increasing solution times for the
pricing problems, which, in turn, are due to the increasing number of labels created because of the
increasing flexibility offered by longer time windows.

Table 6 shows that there is a positive impact of increasing time window flexibility on possible
solution quality. The values in the table reflect the objective function improvement obtained with
increasing time window flexibility. For example, for the 38-task instances, the average objective
function value improves by 1.20 % if the time window flexibility is increased from 25 to 50.

TW flex. # Solved Time [sec] Gap at root [%] Gap closed [%] # Nodes solved

min avg max min avg max min avg max min avg max

25 20/20 36 191 931 0.00 0.43 1.66 100.00 100.00 100.00 1 5.40 23
50 20/20 43 362 2485 0.00 0.55 2.12 100.00 100.00 100.00 1 8.30 47

100 19/20 38 1076 7200 0.00 0.99 3.00 64.22 98.21 100.00 1 16.95 56
200 14/20 109 3466 7200 0.00 2.68 9.90 8.91 79.91 100.00 1 26.20 106

All 73/80 1274 1.16 94.53 14.21

Table 4: Results on 38-task instances
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TW flex. # Solved Time [sec] Gap at root [%] Gap closed [%] # Nodes solved

min avg max min avg max min avg max min avg max

25 17/20 131 3594 7200 0.00 0.80 2.39 46.60 90.54 100.00 1 22.70 49
50 8/20 282 5419 7200 0.28 1.55 4.31 21.22 67.91 100.00 3 25.90 46

100 2/20 2814 6882 7200 0.47 3.53 6.95 10.70 34.08 100.00 11 25.50 45
200 0/20 7200 7200 7200 6.10 8.48 13.47 1.77 6.28 15.39 5 11.60 19

All 27/80 5775 3.59 49.70 21.43

Table 5: Results on 76-task instances

TW flex. increase Objective improvement [%]

38 tasks 76 tasks

25→ 50 1.20 1.54
50→ 100 1.94 1.56

100→ 200 5.84 N/A

Table 6: Impact of time window flexibility

7. Conclusions

This paper has investigated the exact solution of the active-passive vehicle-routing problem
(APVRP) by means of a branch-and-price method. The problem includes synchronization con-
straints for the operations and the movement of active and passive vehicles. It supports a flexible
coupling of these transport resources in order to achieve an efficient resource utilization and high-
quality transport solutions. The synchronization constraints introduce linear vertex costs in the
ESPPRC pricing problem, thus significantly complicating its solution. To solve the pricing prob-
lems, we use a bidirectional labeling algorithm and apply a refinement of the ng-path relaxation
approach. What is more, we propose a sophisticated procedure for merging forward and backward
labels. Computational experiments show that our method delivers improved results for the APVRP
benchmark instances introduced by Meisel and Kopfer (2014). For a newly created benchmark set,
it is capable of solving instances with 76 tasks, 4 active, and 8 passive vehicles to optimality.

In its current form, the APVRP already covers a number of relevant applications from the areas
of distribution logistics, health care management, the security industry and others. Nevertheless,
there are several further features of real-world problems that are not yet supported by the presented
model. This includes, for example, the possibility of a temporary drop-off of passive vehicles at
intermediate locations (e.g., public parking lots) that neither belong to the set of initial or final
locations nor to the set of pickup and delivery locations. Such drop-off locations could reduce the
detours needed by active vehicles for the exchange of passive vehicles. Furthermore, a rendezvous
of active vehicles is required in some applications where passive vehicles cannot be left behind but
must be handed over directly from one active vehicle to another. This is the case if only one of
the active vehicles is equipped with a certain loading equipment, if the passive vehicle cannot be
left unattended for security reasons, or if cargo documents need to be exchanged among the active
vehicles. Moreover, in many or even most practical applications, vehicles with a capacity of more
than one are used, and performing load transshipments between such vehicles is quite common in
practice. These features and their corresponding synchronization requirements represent practically
relevant and mathematically non-trivial extensions of the APVRP and will be a subject of our
future research.
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Appendix: Notation

Sets

R Set of all requests

r A request

A Set of classes of active vehicles

a A class of active vehicles

Ka Number of active vehicles of class a

P Set of passive vehicles

p A passive vehicle

Rp Set of requests compatible with passive vehicle p

P r Set of passive vehicles compatible with request r

P a Set of passive vehicles compatible with active vehicle a

Ap Set of classes of active vehicles compatible with passive vehicle p

Locations

`+r The pickup location of request r

`−r The delivery location of request r

o Initial location of all active vehicles

d Final location of all active vehicles

op Initial location of passive vehicle p

dp Final location of passive vehicle p

Cost parameters

α Weight for travel distance

β Weight for arrival time at the final depot d

γ Penalty for not fulfilling a request

cij Travel distance from vertex i to vertex j

Time parameters

tij Travel and service time from vertex i to vertex j

[er, lr] Time window for fulfilling request r ∈ R
s+r The service duration to process an empty passive vehicle at request r

s−r The service duration to process a loaded passive vehicle at request r

[0, tmax ] Planning horizon

Network parameters

Ga =

(V a, Ea) Extended graph for active vehicle class a ∈ A with vertex set V a and arc set Ea

δ+(i) {j ∈ V a : (i, j) ∈ Ea}; forward star of vertex i ∈ V a

δ−(i) {j ∈ V a : (j, i) ∈ Ea}; backward star of vertex i ∈ V a

NR
⋃

r∈R (V −r ∪W+
r ∪W−r ∪ V +

r ); set of request vertices

For each passive vehicle p ∈ P a and each compatible request r ∈ Rp:

v−rp Vertex where empty passive vehicle is delivered

w+
rp Vertex where loaded passive vehicle is picked up

w−rp Vertex where loaded passive vehicle is delivered

v+rp Vertex where empty passive vehicle is picked up

(Continued on next page)
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(Continued from previous page)

Na ∪p∈Pa,r∈Rp{v−rp, w+
rp, w

−
rp, v

+
rp}; set of request vertices for each passive vehicle p ∈ P a and

each compatible request r ∈ Rp

For each request r ∈ R:

V −r {v−rp : p ∈ P r}; set of vertices where empty passive vehicle may be delivered for pickup
of r

W+
r {w+

rp : p ∈ P r}; set of vertices where passive vehicle loaded with r may be picked up

W−r {w−rp : p ∈ P r}; set of vertices to where passive vehicle loaded with r may be delivered

V +
r {v+rp : p ∈ P r}; set of vertices where empty passive vehicle may be picked up after

delivery of r

Set-partitioning formulation parameters

Ωa Set of all routes that can be defined in graph Ga = (V a, Ea), a ∈ A
q A route in

⋃
a∈A Ωa

Xq
ij Number of times arc (i, j) is traversed on route q

T q
i Service start time at request vertex i on route q

bqi Number of times vertex i is visited on route q

cq Cost of route q; weighted sum of arrival time at the destination d and length of the route

λaq Continuous variables measuring the flow of active vehicles of class a ∈ A along route
q ∈ Ωa

xaij Binary variables indicating the number of times arc (i, j) ∈ Ea is traversed by an active
vehicle of class a ∈ A

ur Binary variable indicating whether or not request r ∈ R remains unfulfilled

Pricing problem parameters

πr Unrestricted dual variable of constraint (1b)

φ+rp Unrestricted dual variable of constraint (1c)

φ−rp Unrestricted dual variable of constraint (1d)

τ+r Nonnegative dual variable of constraint (1e)

τ−r Nonnegative dual variable of constraint (1f)

µP
p Unrestricted dual variable of constraint (1g)

µA
a Nonpositive dual variable of constraint (1h)

c̃ij Reduced costs of arc (i, j)

c̃i Linear vertex costs of vertex i

xij Binary variable indicating whether or not arc (i, j) ∈ Ea is traversed

Ti Continuous variable indicating the point in time when the service at vertex i ∈ V a

begins

Labeling algorithm parameters

τ A task

Ni ng-neighborhood at vertex i; Ni ⊂ NR; Ni contains i and the ν closest request vertices j
for which a cycle (j, . . . , i, . . . , j) would be feasible when taking time windows and travel
and service times into account

ν Size of ng-neighborhood

τop Task of picking up the passive vehicle p ∈ P at its initial location

τ1r Task of delivering an empty passive vehicle for request r ∈ R
(Continued on next page)
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τ2r Task of picking up and delivering a passive vehicle loaded with request r ∈ R
τ3r Task of picking up an empty passive vehicle after delivering request r ∈ R

τdp Task of delivering the passive vehicle p ∈ P at its final location

L L = ((tp, sp)n+1
p=1 , c

1, S, (Id)kd=1); a label

n Number of time-slope pairs/pieces in tradeoff curve

(tp, sp)np=1 The n pieces of the tradeoff curve; sp < 0, p = 1, . . . , n− 1 and sn ≤ 0

tn+1 End time of last piece n in tradeoff curve

c(T ) = c1 +
∑q−1

p=0 s
p(tp+1 − tp) + sq(T − tq) for tq ≤ T ≤ tq+1; the piecewise linear cost

function/tradeoff curve of a label, i.e., a label’s associated partial path; provides the
minimal costs c(t) incurred by the path when the service at the last vertex of the path
starts at time t

c1 Reduced costs at start time of first piece in tradeoff curve

S Tasks that have already been performed or are unreachable along the route and which
are taken into account for checking elementarity in the label extension step according to
the ng-path relaxation

k Number of intervals on which the associated label is dominated

(Id)kd=1 The k intervals on which the associated label is dominated

c∗ = c1 −
∑n

p=1 s
p(tp+1 − tp); optimal (reduced) costs

t∗ = tn for sn = 0, tn+1 otherwise; earliest time to obtain costs c∗

sn+1 = 0; slope of (n+ 1)th piece; defined for convenience

T test
j Before extending a label L at vertex i to vertex j, tasks in T test

j are tested and L is
extended only if none of these tasks has already been fulfilled along the partial path
represented by L

T set
j Upon extending a label L at vertex i to vertex j, tasks in T set

j are marked as fulfilled

f Index of first linear slope piece to be kept when extending a label

g Index of last linear slope piece to be kept when extending a label

δ Piece indicator; one if a new linear slope piece must be created upon extension of a
label, zero otherwise

fij(t, s) = ({max{ej , t+ tij}},min{0, s+ c̃j}); function for extending pieces during label
extension
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Ramı́rez, F. Schulte, S. Voß, and J. Ceroni Dı́az, editors, Computational Logistics, volume 8760 of Lecture Notes
in Computer Science, pages 16–30. Springer International Publishing.

Ioachim, I., Gélinas, S., Soumis, F., and Desrosiers, J. (1998). A dynamic programming algorithm for the shortest
path problem with time windows and linear node costs. Networks, 31(3), 193–204.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers,
J. Desrosiers, and M. Solomon, editors, Column Generation, pages 33–65. Springer, New York.

Irnich, S., Toth, P., and Vigo, D. (2014). The family of vehicle routing problems. In D. Vigo and P. Toth, editors,
Vehicle Routing, chapter 1, pages 1–33. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Jans, R. (2010). Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems.
European Journal of Operational Research, 204(2), 251–254.
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