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Abstract

In social network analysis (SNA), relationships between members of a network are encoded in an undirected
graph where vertices represent the members of the network and edges indicate the existence of a relationship.
One important task in SNA is community detection, that is, clustering the members into communities such
that relatively few edges are in the cutsets but relatively many are internal edges. The clustering is intended
to reveal hidden or reproduce known features of the network, while the structure of communities is arbitrary.
We propose decomposing a graph into the minimum number of relaxed cliques as a new method for commu-
nity detection especially conceived for cases in which the internal structure of the community is important.
Cliques, that is, subgraphs with pairwise connected vertices, can model perfectly cohesive communities, but
often they are overly restrictive because many real communities form dense but not complete subgraphs.
Therefore, different variants of relaxed cliques have been defined in terms of vertex degree and distance, edge
density, and connectivity. They allow to impose application-specific constraints a community has to fulfill
such as familiarity and reachability among members and robustness of the communities. Standard com-
pact formulations fail in finding optimal solutions even for small instances of such decomposition problems.
Hence, we develop exact algorithms based on Dantzig-Wolfe reformulation and branch-and-price techniques.
Extensive computational results demonstrate the effectiveness of all components of the algorithms and the
validity of our approach when applied to social network instances from the literature.

Key words: Graph decomposition, community detection, clique relaxations, social network analysis,
branch-and-price

1. Introduction

In social network analysis (SNA, Wasserman and Faust, 1994; Scott, 2012) there is a growing interest in
studying social networks aiming at extracting knowledge from the herein identified structures and charac-
teristic numbers. The analysis of cohesive groups also known as communities (or clusters, modules, blocks)
has received a lot of attention from researchers of different areas like social and computer science, biology,
economics, physics, and discrete mathematics. Classically, cliques have been used to model cohesive groups.
They can be seen as extremal cohesive groups in the sense that every member is fully connected with each
other. This constraint has been found too restrictive in many applications and, therefore, various relax-
ations of the clique concept, such as s-clique, s-plex, s-club, s-defective clique, and γ-quasi-clique, have been
introduced (see Pattillo et al., 2013a, and references given there). We refer to these structures as relaxed
cliques in the following.
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To the best of our knowledge, the graph-theory and OR literature on clique relaxations has almost exclu-
sively studied questions related to identifying their structural properties or to solve optimization problems in
which a maximal or maximum relaxed clique has to be determined. Surprisingly, no research has addressed
the related problems of partitioning or covering a graph by the smallest number of relaxed cliques, although
this type of question was coined by Balasundaram et al. (2011, p. 141).

Decomposing a graph into the minimal number of cliques is well-known as the clique partitioning problem.
It is equivalent to finding a minimum vertex coloring for the complement graph, and has been discussed
intensively, e.g., by Mehrotra and Trick (1998); Nemhauser and Park (1991), and Held et al. (2012). We
extend this stream of research and propose decomposing a graph into the minimum number of relaxed cliques
as a new method for community detection.

We study the cases of partitioning (disjoint clusters) as well as covering (overlapping clusters). Any
subgraph of a clique is again a clique, a property known as hereditary (Yannakakis, 1978). However, for
some classes of relaxed cliques, this is not generally true. As a consequence, partitioning and covering a
graph with a minimum number of relaxed cliques can be a different problem, i.e., covering can be a proper
relaxation of partitioning.

The proposed method is applicable in those cases in which one has a good understanding of the structural
properties that a community must have. Aspects such as familiarity among members (few strangers),
reachability among members (quick communication), and robustness of the subgroup (not easily destroyable)
are often desirable properties of a community (Balasundaram et al., 2011). In a graph-theoretic description,
familiarity concerns vertex degrees, reachability concerns distances, and robustness concerns connectivity.
Clique relaxations like k-core/s-plex, s-club/clique, and k-block/s-bundle, respectively, can model such
desired characteristics of subgroups in SNA. Moreover, input data describing a social network may stem
from sources that contains errors. In that case using s-defective cliques or γ-quasi-cliques offers a way of
absorbing such inaccuracies.

1.1. Literature Review
The idea of decomposing a graph G = (V,E) into partitions is not new. We briefly review related

research fields such as graph partitioning, community detection, and graph clustering in order to point out
the similarities and differences to the new type of problems introduced within the paper at hand.

In graph partitioning, the task is to find a partitioning of the vertex set V into p blocks V1, V2, . . . , Vp.
Typically, a weight is associated to each vertex of the graph and a maximum capacity of each partition
must be respected. We refer to (Garey and Johnson, 1979) where the graph partitioning problem has been
formally defined and to (Buluç et al., 2013) for a recent comprehensive overview. In addition, balancing
constraints requiring that partitions are of (almost) equal size or weight can be considered. If weights are
associated to the edges of the graph, the objective can be to minimize the weight of the edge cutsets E(Vi, Vj)
comprising all edges connecting different partitions Vi and Vj with i < j. Applications of graph partitioning
are widespread and include, e.g., the distribution of work in parallel processing, image processing, sparse
matrix factorization, very large-scale integration (VLSI) design, and the pre-computation of information to
accelerate shortest-path queries in routing. The focus in graph partitioning is on the relationship between
different clusters, while the structure of a cluster is almost irrelevant except for its size or weight. In contrast,
the primary focus of our work is on the identification of clusters that have very specific structural properties,
i.e., they are relaxed cliques of a specific type.

Community detection is strongly related to our work. The articles by Porter et al. (2009) and Schaeffer
(2007) and the survey by Fortunato (2010) provide comprehensive overviews showing that diverse methods
from various fields have found their way into community detection. Informally speaking, community detec-
tion is concerned with clustering the vertex set V of a graph G = (V,E) into communities V1, V2, . . . , Vp such
that relatively few edges are found in the cutsets E(Vi, Vj) but relatively many are internal edges E(Vi). In
particular, the number p of communities within a given network is typically unknown. In contrast to the
balancing constraints in graph partitioning, the communities are generally of unequal size, moreover, their
density and structure (if any) can vary. Without explicitly formalizing the relaxed clique partitioning and
covering problem, Fortunato (2010) and others offer the concept of relaxed cliques as a viable and reasonable
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concept for identifying communities. However, methods for clustering a network into relaxed cliques in a
“best possible way” are not described there. This is probably because the standard objectives in community
detection asses a clustering by considering both internal edges and edges in the cutsets of the clusters. A
very common quality measure in this context is modularity, originally introduced by Newman and Gir-
van (2004): Given p clusters V1, V2, . . . , Vp, the modularity is Q(V1, V2, . . . , Vp) =

∑p
i=1

(
|E(Vi)|
|E| − exp(Vi)

)
,

where exp(Vi) is the expected fraction of inner-cluster edges of Vi. A common assumption on the underlying
distribution (the so-called null model) is that an edge between two vertices i and j appears with probabil-
ity |N(i)||N(j)|/|E|, where N(i) and N(j) is the set of neighboring vertices of i and j, respectively. The
modularity value Q(V1, V2, . . . , Vp) varies between 0 and 1 depending on the clustering. A value close to 1
indicates that a strong community structure has been identified. Indeed, modularity maximization seems
to be appropriate as a general tool for identifying communities with a non-specified structure. Aloise et al.
(2010) propose new column-generation algorithms to exactly solve the modularity maximization problem in
networks. They compare a row-generation algorithm and a direct solution approach using CPLEX to solve
a 0-1 MIQP with three column-generation algorithms differing in the underlying formulation and algorithm
to solve the respective pricing problem. One result is that the column-generation approach with a sparse
quadratic subproblem formulation outperforms the other algorithms, while the question of finally producing
integer solutions via branching is not addressed in the article.

Clustering methods require a measure of distance (or similarity). In the context of graphs, it means
that vertices are considered as (data) points in a metric space. The goal is to find a partitioning of the
points V into p clusters (p is typically given) and to minimize or maximize an objective based on distances
between points and/or from points to cluster centroids (Fortunato, 2010, p. 93f). Examples are p-means
clustering where the average squared distance between points and centroids is minimized, p-centroid where
the maximum distance between points and centroids is minimized, and p-clustering sum where the sum
of all intra-cluster distances is minimized. While traditional clustering methods need p and additional
attributes of vertices as inputs (data points), we solely rely on adjacency information as an input. It is
also possible to define a distance by pure adjacency-based measures (e.g. Schaeffer, 2007, p. 36) such as the
overlap |N(i)∩N(j)|/|N(i)∪N(j)|. However, there are no well-defined structural requirements for sharply
distinguishing between feasible and infeasible clusters.

Finally, the work of Guo et al. (2010) has some relation to the problems studied here, but with a
completely different objective and context. The authors consider the so-called s-plex cluster editing problem
in which, for an undirected graph G = (V,E) and an integer p ≥ 0, the question is whether G can be
modified by up to p edge deletions and insertions into a graph whose connected components are s-plexes.

1.2. Paper Contribution
The contributions of the paper at hand are the following:

• the formal introduction of various relaxed clique partitioning and covering problems as a new approach
for community detection;

• the development of branch-and-price algorithms for their exact solution;

• the introduction of connectivity conditions that each relaxed clique has to respect and the discussion
of their implications on pricing algorithms and branching;

• two new mathematical formulations for finding k-blocks and s-bundles, respectively;

• new combinatorial branch-and-bound algorithms for finding maximum weight s-clubs and connected
hereditary relaxed cliques able to cope with general weights;

• the presentation of branching rules that are structure preserving in the sense that the pricing problem
remains structurally unchanged;

• the proof that covering and partitioning a graph with connected s-cliques is equivalent;
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• the presentation of a comprehensive computational study including the application of the new models
and algorithms for detecting communities in some real-world social networks that are intensively
studied in the SNA and community-detection literature.

The remainder of this paper is organized as follows: In Section 2, we provide an overview over the
first-order clique relaxations. In Section 3, we present and discuss a generic formulation for finding a
maximum cardinality or maximum weight relaxed clique in a graph. In Section 4, we derive a mixed integer
programming (MIP) formulation for the partitioning and covering problem, which is compact whenever the
formulation for finding a relaxed clique is compact. The branch-and-price solution algorithm is explained
in Section 5: Besides the presentation of the column-generation master and pricing problem, the heart of
this section is the development and discussion of possible branching schemes for both the partitioning and
covering case. Computational results are presented and discussed in Section 6. Final conclusions and an
outlook in Section 7 close the paper.

2. Clique Relaxations

In this section, we introduce the basic notation and different types of relaxed cliques following the
taxonomy offered by Pattillo et al. (2013a). From now on, we assume that a simple graph G = (V,E) with
finite vertex set V and edge set E is given. For any subset S ⊆ V , the vertex-induced subgraph of S is
G[S] = (S,E ∩ (S × S)).

In the following, i ∈ V is any vertex and S ⊆ V is any vertex set. Vertices adjacent to i are denoted
by N(i). A set S is a clique if G[S] is complete, i.e., all vertices are adjacent. Cliques S form extreme
subsets, since all vertices have maximum degree |S| − 1, the distance between any two vertices is 1, G[S]
has maximum density of 1, and is (|S| − 1)-connected.

2.1. Definitions of Relaxed Cliques
The following relaxed cliques are obtained by relaxing a single aspect of the clique definition. In the

literature, they are referred to as first-order clique relaxations, while the clique itself is named zero-order
clique relaxation (Pattillo et al., 2013a, p. 12).

Relaxing Degree.. The vertex degree of i is |N(i)| and is denoted by degG(i). The minimum vertex degree
of G is δ(G) = mini∈V deg(i). For k ≥ 0, S is a k-core if δ(G[S]) ≥ k. For s ≥ 1, S is an s-plex if
δ(G[S]) ≥ |S| − s. Every s-plex is an (|S| − s)-core, and vice versa. The s-plex clique relaxation has been
studied, e.g., in the context of transmission network analysis in Tuberculosis contact investigations by Cook
et al. (2007).

Relaxing Distance.. For two vertices i, j ∈ V , distG(i, j) is the minimum distance between i and j, i.e., the
minimum length of an i-j-path in G. Note that the length of a path is given by the number of its edges
and that distG(i, j) = ∞ if i and j are disconnected in G. For s ≥ 1, S is an s-clique if distG(i, j) ≤ s
for all i, j ∈ S. An s-clique is an ordinary clique (1-clique) in the sth power graph Gs = (V, {{i, j} :
i, j ∈ V, i < j, dG(i, j) ≤ s}), and vice versa. The maximum distance is the diameter of G given by
diam(G) = maxi 6=j distG(i, j). For s ≥ 1, S is an s-club if distG[S](i, j) ≤ s for all i, j ∈ S or equivalent
diam(G[S]) ≤ s. Any s-club is an s-clique, but the reverse it not necessarily true. The s-club and s-clique
relaxations have been intensively studied and their relevance for network optimization applications in biology
were pointed out by Almeida and Carvalho (2012).

Relaxing Density.. For any S ⊆ V , the edge set E(S) is the set of edges in G with both endpoints in S.
Moreover, the edge density of a subgraph G[S] is defined as ρ(G[S]) = |E(S)|/

(|S|
2

)
. For 0 ≤ γ ≤ 1, S is a

γ-quasi-clique if ρ(G[S]) ≥ γ. While the density is a relative measure for existing/missing edges, one can
also count their number. For s ≥ 0, S is an s-defective clique if |E(S)| ≥

(|S|
2

)
− s. Hence, any s-defective

clique has a density of at least γ = 1− s/
(|S|

2

)
, i.e., is a γ-quasi-clique, and vice versa. The s-defective clique

has been used, e.g., to identify large protein interaction networks using noisy data collected from large-scale
(high-throughput) experiments (Yu et al., 2006).
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Relaxing Connectivity.. A set C ⊂ V is a vertex cut of a connected graph G = (V,E) if G[V \ C] is a
disconnected graph. Note that any vertex cut C has at most |V | − 2 elements. The vertex connectivity
κ(G) is the size of a minimum vertex cut. For cliques S, G[S] does not have any vertex cuts, and therefore
one defines κ(G[S]) = |S| − 1. A graph is called k-vertex-connected if its vertex connectivity is k or greater.
Let i, j ∈ V be two different, non-adjacent vertices. The local connectivity κG(i, j) is the minimum size of
a vertex cut C disconnecting i and j in G[V \ C]. For adjacent vertices i and j, one defines κG(i, j) = ∞.
Then, if G is not a clique, κ(G) equals the minimum of κG(i, j) over all pairs of different vertices i, j ∈ V .

Two i-j-paths are called vertex-disjoint if they have no vertices in common except i and j. According to
Menger’s theorem (Menger, 1927), the minimum size of a vertex cut disconnecting i and j is the maximum
number of vertex-disjoint paths connecting i and j. Therefore, for non-adjacent vertices i and j, κG(i, j)
is the maximum number of vertex-disjoint i-j-paths. For k ≥ 1, S is a k-block if κ(G[S]) ≥ k. For s ≥ 1,
S is an s-bundle if κ(G[S]) ≥ |S| − s. By definition, singleton sets S = {i} are no k-blocks but always
s-bundles. Connectivity and k-blocks have been comprehensively surveyed by Kammer and Täubig (2005).
To the best of our knowledge, the s-bundle relaxation coined in (Pattillo et al., 2013a) has only been studied
in (Gschwind et al., 2015).

Table 1 summarizes the definitions of the eight first-order relaxed cliques. In higher-order clique re-
laxations, more than one aspect of the clique definition is relaxed. For example, the (λ, γ)-quasi-clique is
a second-order relaxation relaxing degree and density so that each vertex must be connected to at least
λ(|S| − 1) vertices and the induced subgraph must have a density not smaller than γ. Note that in some
cases one property may already result from another property. For an overview of dependencies between
first-order relaxations see (Pattillo et al., 2013a, Table 2).

Table 1: Definition of different clique relaxations

Type of relaxation Definition Based on Clique Hereditary Connected

k-core δ(G[S]) ≥ k Degree k = |S| − 1 no |S| ≤ 2k + 1
s-plex δ(G[S]) ≥ |S| − s Degree s = 1 yes |S| ≥ 2s− 1

s-clique distG(i, j) ≤ s for all i, j ∈ S Distance s = 1 yes s = 1
s-club diam(G[S]) ≤ s Distance s = 1 no always

γ-quasi-clique ρ(G[S]) ≥ γ Density γ = 1 no
⌈
γ
(|S|

2

)
−
(|S|−1

2

)⌉
≥ 1

s-defective clique |E(G[S])| ≥
(|S|

2

)
− s Density s = 0 yes |S| ≥ s+ 2

k-block κ(G[S]) ≥ k Connectivity k = |S| − 1 no always
s-bundle κ(G[S]) ≥ |S| − s Connectivity s = 1 yes |S| ≥ s+ 1

Note: The last column gives sufficient conditions for connectivity (Pattillo et al., 2013a, p. 17).

Requiring Connectivity.. In many practical applications, clusters need to be connected. For community
detection, e.g., Fortunato (2010, p. 84) stresses that connectedness is a required property. If a community
were disconnected, it could be considered as two or more smaller groups. A weakness of general relaxed
cliques is that they are not necessarily connected, see last column of Table 1. Indeed, arbitrarily large s-
cliques can be disconnected because the removal of the central vertex from a star graph induces an edgeless
graph, which is however a 2-clique and therefore also an s-clique for all s ≥ 2. Also, arbitrarily large
disconnected γ-quasi-cliques exist resulting from the addition of an isolated vertex to a clique. In contrast,
this phenomenon occurs only for small-sized S ⊂ V in case of s-plex, s-defective clique, and s-bundle, see
Figure 1.

As a consequence, we suggest to consider connected relaxed cliques S as feasible structures, which result
from requiring connectivity of the induced subgraph G[S] in addition to the definition of the respective
relaxed clique. Note that for hereditary relaxed cliques (s-plex, s-clique, s-defective clique, and s-bundle)
the connectivity requirement makes the resulting structures non-hereditary. For example, a path with
three vertices forms a connected 1-defective clique, which becomes disconnected when the middle vertex is
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Figure 1: Largest disconnected s-plex, s-defective clique, and s-bundle

removed. This has important consequences for the applicability of existing algorithms, and we discuss this
issue in Section 5.1.

2.2. Related Optimization Problems
The scientific literature has focused mainly on finding relaxed cliques that are large. The attribute large

may refer to relaxed cliques S that either are of maximum cardinality, are maximal with respect to inclusion,
or have maximum weight.

Maximum Cardinality Relaxed Cliques.. Before we define the related optimization problems, it is helpful
to describe some properties in order to classify types of relaxed cliques. Let Π be the graph property, e.g.,
describing a specific clique relaxation. According to Yannakakis (1978), a property Π is nontrivial if it is
true for all graphs G[S] induced by singleton sets S = {i}, but not fulfilled for every graph. Π is interesting
if there exist arbitrarily large graphs satisfying Π. Moreover, it is hereditary on induced subgraphs if for any
S ⊆ V with G[S] has property Π it follows that also G[S′] has property Π for any S′ ⊂ S, S′ 6= ∅.

The problem of finding a relaxed clique S ⊆ V with largest cardinality |S| is known as the maximum
(cardinality) relaxed clique problem (MC-RC). For nontrivial, interesting, and hereditary properties Π, Yan-
nakakis (1978) has shown that MC-RC is NP -hard. It is straightforward to see that Π is hereditary for
s-plex, s-clique, s-defective clique, and s-bundle. Consequently, MC-RC is an NP -hard problem for this
type of relaxed cliques.

The properties Π of being a k-core, s-club (for s > 1), γ-quasi-clique (for γ < 1), or k-block are not
hereditary. The theorem by Yannakakis (1978) is therefore not applicable. Indeed, the maximum cardinality
k-core problem is polynomially solvable (see Kosub, 2004). The computation of the k-connected components
of a graph (herewith also solving the k-block partitioning problem) can be done in polynomial time for fixed
k (see Kammer and Täubig, 2005). For s-club, the NP -hardness of MC-RC was proven by (Bourjolly et al.,
2002). Recently, Pattillo et al. (2013b) showed that MC-RC for γ-quasi-cliques is NP -complete.

Table 2 summarizes the exact solution approaches for MC-RC for the first-order clique relaxations. Exact
algorithms for clique are too numerous to be listed here and we refer to (Carraghan and Pardalos, 1990;
Östergård, 2002) and the survey (Abello et al., 1999). Note that these algorithms can solve MC-RC for
s-cliques by considering the sth power graph.

Inclusion Maximal Relaxed Cliques.. If a subset S ⊆ V is a largest relaxed clique with respect to inclusion
then S is a maximal relaxed clique. Obviously, any maximum relaxed clique is also maximal, but the reverse
is not necessarily true. For all variants, the question whether or not S induces a relaxed clique is efficiently
decidable. Therefore, for hereditary Π, finding inclusion maximal relaxed cliques can be done efficiently
by adding vertices in a one-by-one fashion. In contrast, the maximality test regarding subset inclusion is
NP -hard for s-club as shown by Mahdavi Pajouh and Balasundaram (2012).

Maximum Weight Relaxed Cliques.. If weights wi ∈ R are given for all vertices i ∈ V , the maximum weight
relaxed clique problem (MW-RC) consists of finding a subset S ⊆ V such that w(S) =

∑
i∈S wi is maximum

and S is a relaxed clique. Clearly, with unit weights MW-RC reduces to MC-RC. For relaxed cliques with
hereditary Π, it is no restriction to assume that weights wi are non-negative because otherwise a vertex
with negative weight can be eliminated from the consideration. For non-hereditary Π, vertices with negative
weight need to be considered as discussed in Section 5.1.
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Table 2: Exact algorithms for MC-RC for different clique relaxations

Clique relaxation Exact approach and reference

k-core polynom. solvable, see (Kosub, 2004)
s-plex B&C:(Balasundaram et al., 2011), CB&B:(Trukhanov et al., 2013; Gschwind et al.,

2015)
s-clique (any algorithm for clique)
s-club B&C:(Almeida and Carvalho, 2012, 2013), CB&B:(Bourjolly et al., 2002; Mahdavi Pa-

jouh and Balasundaram, 2012; Shahinpour and Butenko, 2013), MIP:(Bourjolly et al.,
2000; Veremyev and Boginski, 2012), SAT:(Wotzlaw, 2014)

γ-quasi-clique MIP:(Pattillo et al., 2013b)
s-defective clique B&C:(Sherali and Smith, 2006), CB&B:(Trukhanov et al., 2013; Gschwind et al.,

2015)
k-block polynom. solvable, see (Kammer and Täubig, 2005)
s-bundle CB&B:(Gschwind et al., 2015)
B&C=branch-and-cut, CB&B=combinatorial branch-and-bound, MIP=(mixed) integer model (no cutting

planes), SAT=formulation as a partial max-sat problem

3. Mathematical Formulations for Relaxed Cliques

Different formulations for the MC-RC and MW-RC variants have been suggested in the literature (see
Pattillo et al., 2012, 2013a, for an overview). All formulations use either variables xi ∈ {0, 1} to indicate that
vertex i ∈ V is in the relaxed clique S, or variables ye ∈ {0, 1} to indicate that G[S] contains edge e ∈ E, or
both. The properties defining Π can be formulated using MIP. The relaxed cliques can be described with
the help of a polytope describing a set F (G) of integer points such that (x,y) ∈ F (G) holds if and only if
G[S] with S = {i ∈ V : xi = 1} fulfills Π. We can write the following generic model for MW-RC:

max
∑
i∈V

wixi, s.t. (x,y) ∈ F (G) (1)

A possible way to ensure the compatibility of vertex and edge variables is setting xixj = yij for all {i, j} ∈ E
and to apply the McCormick (1976) linearization for binary variables. We assume that this or any alternative
coupling mechanism is already part of the definition of F (G). Note that additional variables, other than x
and y, may be used to define the set F (G) or that in some formulations the y variables are useless.

Several mathematical formulation describing the first-order relaxed cliques introduced in Section 2
can be found in the literature. An ordinary clique is described by F (G) = {xi ∈ {0, 1} : xi + xj ≤
1 for all i, j ∈ V, i < j with {i, j} /∈ E}. Polyhedral results can be found in (Nemhauser and Trotter Jr.,
1974, 1975). These results transfer directly to s-cliques with s ≥ 2, since an s-clique is an ordinary clique in
the power graph Gs.

s-Plex.. Balasundaram et al. (2011) provide the following compact formulation for s-plex. Here, F (G) =
{xi ∈ {0, 1} :

∑
j∈V \N(i) xj ≤ (s − 1)xi + d̄i(1 − xi) for all i ∈ V }, where the constant d̄i is defined as

|V \N(i)| − 1.

s-Defective Clique.. The complement of an s-defective clique is a generalized vertex packing (GVP-s, Sherali
and Smith, 2006). Therefore, s-defective cliques can be detected as GVP-s in the complement graph Ḡ =
(V, Ē), where Ē = {{i, j} : i, j ∈ V, i < j, {i, j} /∈ E}. The set F (G) is given by {xi ∈ {0, 1}, ȳij ≥ 0 : ȳij ≥
xi + xj − 1, {i, j} ∈ Ē;

∑
{i,j}∈Ē ȳij ≤ k}. It has additional ȳij variables for all {i, j} ∈ Ē.

γ-Quasi-Clique.. Pattillo et al. (2013b) describe γ-quasi-cliques by F (G) = {xi ∈ {0, 1}, yij ≥ 0 :
∑
i<j(γ−

aij)yij ≤ 0; yij ≤ xi, yij ≤ xj , yij ≥ xi + xj − 1 for i, j ∈ V, i < j}, where (aij) is the adjacency matrix of G
and the yij variables are defined for every pair of vertices i, j ∈ V, i < j. The authors also present a more
compact formulation with |V | binary and |V | continuous variables and 4|V |+ 1 constraints.
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Figure 2: Covering and partitioning into a minimum number of 2-clubs.

s-Club.. Several formulations for maximum cardinality s-club are known. The path-based formulation by
Bourjolly et al. (2000) uses indicator variables xi for the vertices and additional variables for all paths of
length at most s. With the coupling of both types of variables, the number of variables and constraints
is bounded by the number of paths, which is of the order of O (|V |s+1) for dense graphs. However, for
s = 2 and s = 3 the formulation is compact, i.e., polynomial in |V | and |E| and valid inequalities together
with a branch-and-cut algorithm were presented by Carvalho and Almeida (2011); Almeida and Carvalho
(2012). Veremyev and Boginski (2012) proposed the first compact formulation with a polynomial number
of variables and constraints (polynomial in s, |V |, and |E|). Since this formulation is relatively spacious, we
describe it in Section A of the Appendix.

To the best of our knowledge, no MIP formulations for k-block and s-bundle have been presented in the
literature. We suggest formulations in Section B of the Appendix.

As discussed above, some types of relaxed cliques are not necessarily connected. In the presented MIP
formulations, a straightforward way to impose connectivity is to add constraints∑

i∈S
xi +

∑
i∈V \S

(1− xi) ≤ |V | − 1 S ⊆ V : κ(G[S]) ≥ 2. (2)

In general, this is an exponential number of constraints requiring a cutting-plane procedure to solve the
MIP.

4. Partitioning and Covering a Graph with Relaxed Cliques

Community detection consists in partitioning or covering a graph with clusters. We propose a new
approach for community detection based on decomposing the graph into a minimum number of relaxed
cliques. No reasonable problem results for k-core because some vertices may have a degree smaller than k and
cannot belong to any k-core. For k-block, the resulting problem is to determine the k-connected components,
for which efficient algorithms exist (Kammer and Täubig, 2005). Therefore, we restrict ourselves to the six
remaining first-order clique relaxations.

According to Porter et al. (2009) the ‘detection of network communities that overlap is especially appeal-
ing in the social sciences, as people belong simultaneously to several communities (constructed via colleagues,
family, hobbies, etc.)’. Clearly, covering is always a relaxation of partitioning and this relaxation is proper
for non-hereditary structures. The decomposition into 2-clubs shown in Figure 2 is an example. The non-
heredity of a particular structure may either result from the property Π defining the type of relaxed clique
or from the connectivity requirement.

When connectivity is not already ensured by the definition of the relaxed clique, the variants double and
we analyze variants with and without connectivity requirement.

All interesting variants of partitioning and covering with first-order relaxed cliques are summarized in
Table 3. Since partitioning and covering are identical for hereditary Π and without connectivity requirement,
s-plex, s-defective clique, and s-bundle are listed in the partitioning column only. Moreover, for s ≥ 2 and
with connectivity imposed, partitioning and covering with connected s-cliques differ from clique partitioning
in the power graph Gs or vertex coloring in the complement graph (not considered in this paper here).
Figure 3 provides an example.

Finally, the following non-trivial result explains why partitioning and covering with connected s-cliques
is equivalent, resulting in a single entry for s-clique partitioning in Table 3:
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Table 3: Variants of partitioning and covering with relaxed cliques

Partitioning Covering Subproblem algorithm

Connected s-plex s-plex mRDS, MIP-CP
s-clique† mRDS, MIP-CP
γ-quasi γ-quasi MIP-CP
s-defective s-defective mRDS, MIP-CP
s-bundle s-bundle mRDS, MIP-CP

General s-plex RDS, MIP
s-club s-club CB&B, MIP
γ-quasi γ-quasi MIP
s-defective RDS, MIP
s-bundle RDS, MIP

(m)RDS=(modified) Russian Doll Search; MIP(-CP)=Mixed Integer Programming solver (with Cutting
Plane algorithm); CB&B=Combinatorial Branch-and-Bound; † for the equivalence of partitioning and

covering see Theorem 1
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Figure 3: Partitioning into a minimum number of (four) general 2-cliques and (five) connected 2-cliques. Note that S =
{13, 14, 15} induces the disconnected subgraph G[S] = (S, ∅).

Theorem 1. Partitioning and covering a graph with a minimum number of connected s-cliques are equivalent
problems for all s ≥ 1. There exists a constructive procedure to transform a covering solution into a
partitioning solution using an identical number of s-cliques.

The detailed proof is given in Section F of the Appendix.
A generic compact mathematical formulation for all variants needs an upper bound r̄c(G) on the number

of relaxed cliques in a solution so that they can be numbered by h ∈ H = {1, 2, . . . , r̄c(G)}. Then, binary
variables zh, h ∈ H indicate whether or not the hth relaxed clique is non-empty in the solution. The sets of
variables (xh,yh), h ∈ H model the hth relaxed clique Sh in the sense that xhi and yhe expresses that vertex
i and edge e belong to G[Sh], respectively. The generic formulation reads as follows:

min
∑
h∈H

zh (3a)

s.t.
∑
h∈H

xhi = 1 (or ≥ 1) i ∈ V (3b)

zh ≥ xhi i ∈ V, h ∈ H (3c)

(xh,yh) ∈ F (G) h ∈ H (3d)

zh ∈ {0, 1} h ∈ H (3e)
9



The objective (3a) minimizes the number of relaxed cliques in the solution. (3b) are the partitioning/covering
constraints. Constraints (3c) ensure that Sh = {i ∈ V : xhi = 1} is the empty set whenever zh = 0. The
feasibility of Sh is ensured by (3d).

5. Branch-and-Price

Given the proposed compact formulation (3), a natural Dantzig-Wolfe decomposition can be derived
as follows: The partitioning/covering constraints (3b) become the coupling constraints and the constraints
(3c)–(3e) form the subproblems, identical for each block h ∈ H, and thus blocks can be aggregated (cf.
Lübbecke and Desrosiers, 2005). Since each block contains the element (xh,yh, zh) = (0,0, 0) with cost
zero and the number of blocks was chosen sufficiently large, there is no generalized convexity constraint in
this Dantzig-Wolfe reformulation. Let Ω be the set of all feasible relaxed cliques. Then, the integer master
program (IMP) is:

min
∑
S∈Ω

λS (4a)

s.t.
∑

S∈Ω:i∈S
λS = 1 (or ≥ 1) ∀i ∈ V (4b)

λS ≥ 0 integer ∀S ∈ Ω. (4c)

The objective (4a) minimizes that number of relaxed cliques, (4b) are the covering/partitiong constraints,
and (4c) define the domain of the variables.

In the following, the linear relaxation of (4) is referred to as the master program (MP). Due to the gen-
erally very large number of variables, it has to be solved with column-generation techniques (cf. Desaulniers
et al., 2005). The column-generation process starts from a restricted master program (RMP) that comprises
a (typically small) subset of the variables. It is a restriction of MP and is solved, e.g., with the simplex
algorithm. Let πi, i ∈ V be the dual variables associated with constraints (4b). The pricing subproblem
is model (1) with weights wi := πi for all i ∈ V . When one or several negative reduced-cost columns are
found, i.e., a set S ∈ Ω with 1 −

∑
i∈S πi < 0, the corresponding variables are added to the RMP, the

RMP is re-optimized, and the process is iterated. The MP is solved to optimality when no more negative
reduced-cost columns exist. In order to solve IMP, column generation is embedded into branch-and-bound.

There are two important aspects to be described: First, the solution of the pricing problem requires
problem-specific solution algorithms depending on the clique relaxation at hand. Algorithms are surveyed
in the next subsection. Second, there exist competing branching schemes with the general tradeoff between
either being subproblem-structure preserving and being effective in dividing the search space. We derive
and discuss them in Section 5.2.

5.1. Pricing Algorithms
The first type of approach is based on solving the respective MIP formulation (as the ones presented

in Section 3) of the pricing subproblem (1) directly using a MIP solver. The connectivity requirements
complicate the MIP-based solution, since constraints (2) have to be added in a cutting-plane (CP) fashion
leading to a branch-and-cut algorithm. Table 3 therefore distinguishes between MIP and MIP-CP when
giving the overview of applicable pricing algorithms for the 16 variants to be solved with model (4).

The second type of approach are combinatorial branch-and-bound (CB&B) algorithms. The Russian doll
search (RDS) originally developed for the identification of maximal hereditary structures (Verfaillie et al.,
1996) is such an approach. The well-known cliquer algorithm for identifying maximum-weight cliques
by Östergård (2002) follows the RDS principle without explicitly making the connection to RDS. Another
CB&B algorithm was presented in (Held et al., 2012), where the authors use cliquer for relatively sparse
graphs and their own new algorithm for denser graphs in order to benefit from the better performance of
the respective algorithm. Trukhanov et al. (2013) present RDS algorithms for s-plex and s-defective clique.
Gschwind et al. (2015) revisit these RDS algorithms, suggest several techniques to accelerate the search, and
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present a first exact algorithm for s-bundle. Overall, these algorithms cover the hereditary cases of s-clique,
s-plex, s-defective clique, and s-bundle.

The RDS principle was not designed to handle connectivity. Indeed, RDS may return a solution that is
disconnected, as shown by the examples given in Figure 1. Also, covering and partitioning with connected
s-cliques for s ≥ 2 renders the indirect solution as a clique partitioning problem in the sth power graph
infeasible. In Section C of the Appendix, we therefore present a new adaptation of RDS, in the following
referred to as modified RDS (mRDS), to handle connected versions of s-clique, s-plex, s-defective clique,
and s-bundle. Note further that mRDS must have the ability to handle arbitrary weights wi ∈ R for i ∈ V ,
since negative weights can arise in the partitioning case.

Two CB&B have been proposed for maximum cardinality s-club (Bourjolly et al., 2002; Mahdavi Pajouh
and Balasundaram, 2012). There is no need to modify the algorithms for ensuring connectivity, since an
s-club is always connected. However, as s-club is not hereditary, any negative vertex weights require their
careful handling in bounding procedures. A new CB&B for maximum-weight s-club is proposed for this
purpose in Section D of the Appendix.

5.2. Branching
The design of a branching scheme is crucial for the performance of a branch-and-price algorithm (Van-

derbeck, 2011). First and foremost, it must ensure that integrality can be imposed in all cases. The perfect
branching-scheme would be one that lets the algorithm find and prove an optimal solution quickly, i.e., it
creates a small search tree, allows a fast solution of each node, and does not require modifications neither
on the master problem nor the subproblem algorithm. The latter means that branching should not alter
the structure of the respective pricing problem (structure preserving) so that the best performing algorithm
can be applied during the entire search. Such a perfect branching scheme does not exist for partitioning and
covering a graph into relaxed cliques as we explain next. We present competing branching schemes that are
generic and applicable to all 16 variants allowing us to reuse all pricing algorithms presented in the previous
section. We first discuss two alternative branching rules for partitioning before we reuse some of the results
to introduce branching schemes for covering.

Let λ be a solution of the RMP. The support graph of λ is the weighted undirected graph Gλ = (V,Eλ)
defined by Eλ := {{i, j} : i, j ∈ V, i 6= j, fλij > 0} with fλij :=

∑
S∈Ω:i,j∈S λS . It follows fλij ≥ 0 and, for

partitioning, also fλij ≤ 1.

5.2.1. Ryan-Foster Branching for Relaxed Clique Partitioning.
Ryan-Foster branching has been proven as one of the most effective branching rules when solving set-

partitioning problems with LP-based branch-and-bound (Ryan and Foster, 1981): When λ is a fractional
solution to the LP-relaxation Aλ = 1,λ ≥ 0 (with binary matrix A = (aik)), then there exist at least
two rows of A, say i and j, such that 0 <

∑
k:aik=ajk=1 λk < 1. In any integer solution, however, this

value is 0 or 1. For any i-j-pair with fractional value, two branches can be created, the so-called together-
branch forcing variables λk with aik + ajk = 1 to zero, and the separate-branch forcing variables λk with
aik = ajk = 1 to zero. The fractional values fλij allow the direct detection of branching opportunities, where
the together-branch results in fλij = 1 and the separate-branch in fλij = 0.

The impact on the compact formulation (3) is additional constraints xhi = xhj in the together-branch
and constraints xhi + xhj ≤ 1 in the separate-branch for all h ∈ H. For the extensive formulation (4), the
subproblems must then respect xi = xj and xi+xj ≤ 1, respectively. Such constraints are simple to enforce
if the subproblem is solved with a MIP solver.

Moreover, instead of considering every possible i-j-pair, Ryan-Foster branching can be implemented by
using only edges {i, j} ∈ E in case of connected relaxed cliques. Figure 4 shows that the connectivity
requirement is crucial. The validity of this statement is straightforward to prove.

Ryan-Foster branching is a generic branching rule, since it is applicable to the MIP formulations of
the subproblem. In addition, Section 5.3 shows how to apply it in situations where it is impossible or
inconvenient to directly modify pricing algorithms such as CB&B. However, Ryan-Foster branching is not
structure preserving.
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Figure 4: Partitioning with (possibly disconnected) 2-plexes. Example shows (a) the graph G, (b) the fractional solution
λ{1,2,3,4} = 1 and λ{5,6} = λ{5,7} = λ{6,7} = 0.5, (c) the support graph having binary fλij for all {i, j} ∈ E

5.2.2. Generic Branching Rule for Relaxed Clique Partitioning.
The here proposed generic branching rule (GBR) is a complete and subproblem-structure preserving rule

applicable when partitioning with several relaxed clique variants. The rule is straightforward to implement
because it suffices to remove edges from the given graph G. It does neither impose additional constraints
nor require a repeated solution of the subproblem, and can be shown to be a complete branching rule for
hereditary Π in the presence of connectivity constraints.

Let S1, S2, . . . , Sp be the vertices inducing the connected components of Gλ, that is, Gλ = Gλ[S1] ∪
Gλ[S2] ∪ · · · ∪ Gλ[Sp]. When all vertex-induced subgraphs G[Sq] for q = 1, . . . , p fulfill Π no branching is
required, since a feasible partition into p relaxed cliques has been found. Moreover, when connectivity is re-
quired the master problem has objective

∑
S∈Ω λS = p. Figure 4 shows that, for solutions with disconnected

structures, λ can be fractional although all component G[Sq] are feasible. In this case,
∑
S∈Ω λS < p, and

the GBR fails.
We now assume that at least one of the sets S = Sq does not induce a feasible relaxed clique. We

exclude the occurrence of the component Gλ[S] via branching by removing its edges one by one. This
creates |E(Gλ[S])| branches, where in each branch just one edge is removed from G. The following property
is helpful for drastically reducing the number of branches.

Property 1. Let Π be hereditary and connectivity be required. Given a subset S ⊆ V with G[S] does not
fulfill Π, let T = (S,ET ) be an arbitrary tree spanning S. Then, any feasible solution (xh,yh, zh)h∈H to (3)
fulfills

∑
h∈H

∑
e∈ET

yhe ≤ |S| − 2.

Proof: Since the tree contains exactly |S| − 1 edges, the constraint
∑
e∈ET

ye ≤ |S| − 2 means that at
least one of the tree edges is not present in the solution. Otherwise, the simultaneous presence of all edges
e ∈ ET would imply that there exists a relaxed clique S′ in the solution with S′ ⊇ S. Due to the heredity
of Π this is impossible. �

If Π is hereditary and connectivity is required, this gives rise to the GBR formalized in Algorithm 1,
which guarantees that after a finite number of branchings the solution of the RMP is integral.

Proposition 1. The GBR is a complete rule for partitioning into relaxed cliques with hereditary Π and
connectivity constraints.

Proof: The requirement of Gλ[S] to be connected ensures that a spanning tree exists. Thus, by con-
struction, the value fλij is strictly positive for the tree edges, cutting off the current solution λ in each of
the resulting branches. Branching can be repeated only up to |E| times because each branch eliminates one
edge from G, finally leading to an edgeless graph. Consequently, solutions λ must finally become integral.
�

GBR is a non-binary branching scheme because generally the tree T contains more than two edges.
The optional Step 4 reduces the number of branches that are created. The reduction raises a new type of
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Algorithm 1: Generic Branching Rule (GBR)
Input : Support graph Gλ and weights fλij

1 Determine the connected components S1, S2, . . . , Sp of Gλ.
2 Identify one component S for which G[S] does not fulfill Π.
3 If no such component exists, then stop (the solution is already a union of feasible relaxed cliques).
4 (Optional) Replace S by one of its subsets such that

(a) G[S] does not fulfill Π, (b) Gλ[S] is connected, and (c) |S| is minimal.
5 Determine a maximum weight spanning tree T = (S,E(T )) of Gλ[S] using the weights fλij .

Output : E(T ), the set of edges to eliminate one by one
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Figure 5: Partitioning with 2/3-quasi-cliques. (a) the graph G, (b) the factional solution λ{6,7,8,9,10,11} = 1 and λ{1,2,3} =
λ{2,3,4} = λ{3,4,5} = λ{1,4,5} = λ{1,2,5} = 1/3, (c) the support graph in which the component S = {1, 2, 3, 4, 5} is no
2/3-quasi-clique, but S′ = S ∪ {6} = {1, 2, 3, 4, 5, 6} is a 2/3-quasi-clique

optimization problem that we briefly discuss in Section E of the Appendix. The computation of the spanning
tree in Step 5 is computationally cheap (using Prim’s or Kruskal’s algorithm). The selection of maximum
weight edges is intended to produce branches that improve the lower bounds as much as possible.

The non-hereditary case.. A prerequisite of GBR as presented in Algorithm 1 is that Π is hereditary.
However, even for non-hereditary Π a modified version of GBR can be used. Note that heredity of Π has
only been exploited in order to ensure that no superset of S′ ) S is a feasible relaxed clique. If S has no
such superset and the optional reduction in Step 4 of GBR is skipped, branching on the edges of the tree
spanning Gλ[S] is valid.

However, two drawbacks have to be pointed out: First, the average number of branches created with
GBR can be expected to be larger due to the skipped reduction step. Second, and more serious is that,
for non-hereditary Π, GBR may not be applicable at all and, thus, it is incomplete. This happens if all
connected components which do not fulfill Π have a superset satisfying Π. Figure 5 provides an example
when partitioning with 2/3-quasi-cliques.

For s-club, we can derive a simple branching rule creating exactly s + 1 branches in each step: If a
component S is infeasible, there must exist two vertices i, j ∈ V with distG[S](i, j) = s+ 1. If these vertices
also fulfill distG(i, j) = s+ 1 (recall that generally distG[S](i, j) ≥ distG(i, j) holds), then S can be chosen as
V (Pij), where Pij is a path of length s+ 1 connecting i with j in G. It remains an open question whether
this variant of the GBR is complete. During our experiments, we never found an example (as the one for
quasi-clique shown in Figure 5) for s-club and any s ≥ 2.

The column Partitioning of Table 4 summarizes the possible branching schemes presented in this section.

5.2.3. Generic Branching Rules for Relaxed Clique Covering.
For covering with relaxed cliques, we propose a multi-level branching scheme, where the first two levels

decide on so-called vertex contacts and the lower levels assure integrality and apply branching rules known
for partitioning, i.e., Ryan-Foster branching or the GBR.
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Table 4: Branching schemes

Partitioning Covering

Branching P1: P2: P3: C1–C3:
scheme | 1. Ryan Foster | 1. GBR | 1. GBR | 1. Vertex contacts fractional

| 2. Ryan Foster | 2. Vertex contacts fixation
| 3. P1 or P2 or P3 on V=1

| 4. Vertex duplication

Applicable s-plex s-plex, connected s-plex, general all variants
to s-clique s-clique, connected s-clique, general

s-club s-defective, connected s-club‡
γ-quasi-clique s-bundle, connected γ-quasi-clique
s-defective clique s-defective, general
s-bundle s-bundle, general

Branching schemes C1, C2, and C3 for covering results from the use of appropriate branching rules P1, P2, and P3, respectively,
at level 3. of the scheme. ‡: If GBR is a complete branching rule for s-club, P2 is applicable instead of P3.

For any subset T ⊆ V , the number of vertex contacts is defined as g(T ) =
∑
S∈Ω |T ∩ S|λS . In order

to distinguish between variables and values, we write g(T ) for the sum of the variables and gλ(T ) for the
resulting value. For the sake of convenience, we also define gi = g({i}) and gλi = gλ({i}) for vertices i ∈ V .
Branching on the number of vertex contacts preserves the structure of the subproblem. Indeed, enforcing
g(T ) ≤ bgλ(T )c or g(T ) ≥ dgλ(T )e only changes the weights wi, i ∈ T in the subproblem’s objective according
to the dual price of the constraint. In case of less-or-equal inequalities, weights can become negative.

It may happen that all vertices i ∈ V have integer vertex contacts gλi , but the solution λ is still fractional.
Such a situation is certainly not unusual because in the set-partitioning case all vertex contacts are equal
to one and fractional solutions are predominant. Therefore, additional branching actions need to be taken
(in the following referred to as vertex contact fixation). The intention of our higher-level branching is to fix,
for a large subset P ⊆ V , the vertex contacts to its minimum, i.e., g(P ) = |P |, in order to then treat this
subset as in the partitioning case. Beside fixation, an alternative branch g(P ) ≥ |P | + 1 must be created,
too. Deeper in the tree, branches g(P ) = |P | + 1 and g(P ) ≥ |P | + 2, and generally g(P ) = |P | + p and
g(P ) ≥ |P |+ p+ 1 are created. Note that g(P ) ≥ |V |+ 1 is certainly suboptimal so that this process always
stops.

If g(P ) is fixed as well as all vertex contacts of vertices in P , i.e., all gi for all i ∈ P are fixed to
specific values, then one can proceed as follows. All vertices with their vertex contacts fixed to 1 form
the set V=1 = {i ∈ V : gi is fixed to 1}. Ryan-Foster branching or the GBR can be applied to V=1 for
which the smaller support graph Gλ[V=1] must be considered. If no branching is possible, a final graph
modification procedure can always be applied (referred to as vertex duplication). The remaining vertices
V>1 = {i ∈ V : gi is fixed to a value > 1} are replaced by exactly gi clones i1, . . . , igi . The clones are
adjacent to exactly the same vertices as i. Moreover, the additional separate-constraints that no two clones
ik and i` for k 6= ` occur together in a relaxed clique are imposed. In all experiments, it was never necessary
to apply vertex duplication, since solutions were already integral.

The column Covering of Table 4 summarizes the branching schemes for the covering variants.

5.3. Generic Handling of Together- and Separate-Constraints in Pricing
For vertex coloring (clique partitioning of the complement graph), the Ryan-Foster constraints can be

imposed solely by graph modifications. In the together-branch, the vertices i and j are merged, while in
the separate-branch the new edge {i, j} is added (Mehrotra and Trick, 1998; Held et al., 2012). However,
for relaxed cliques, such graph modifications generally change distance, density, and connectivity on many
subsets S and, therefore, do not reproduce the original situation with the separate/together constraint
added.

A single separate-constraint can be implemented by solving two different subproblems, since the removal
of one vertex, either i or j, ensures that the two vertices never occur together in a relaxed clique. A
removal of vertex i is equivalent to assigning a huge negative weight wi = −M (using a big-M). Also a
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Table 5: Instance features
G = (V,E) |V| |E| ρ(G) δ(G) α(G) ω(G) χ(G) χ(Ḡ)

karate 34 78 0.1390 1 20 5 5 20
chesapeake 39 170 0.2294 3 17 5 5 17
dolphins 62 159 0.0841 1 28 5 5 28
lesmis 77 254 0.0868 1 35 10 10 35
polbooks 105 441 0.0808 2 43 6 6 43
adjnoun 112 425 0.0684 1 53 5 5 55
football 115 613 0.0935 7 21 9 9 22
jazz 198 2742 0.1406 1 40 30 30 40
celegansneural 297 2148 0.0489 1 110 8 [8,9] 115

single together-constraint for i and j can be realized by solving two different subproblems, where in one
subproblem both vertices are removed, while in the other both are enforced by assigning a huge positive
weight wi = wj = M .

Although this approach seems appealing, it has the drawback that when q Ryan-Foster constraints are
active up to 2q different subproblems have to be solved. In order to mitigate this explosion, we propose the
following branch-and-bound algorithm. At its root node, no constraints are active. At each node, the relaxed
subproblem is solved and if infeasible, a single separate- or together-constraint creates two new branches. A
depth-first node selection is applied in order to have lower bounds available at an early stage. Note that this
branch-and-bound approach is truly generic as it can be used in combination with any of the subproblem
algorithms (see Section 5.1 and last column of Table 3).

6. Computational Results

The results reported in this section were obtained using a single thread of a standard PC with an Intel(R)
Core(TM) i7-4790 3.6 GHz processor and 8 GB of main memory. The algorithms were coded in C++ and
compiled with MS Visual Studio 2010. The callable library of CPLEX 12.5 was used for solving all LPs and
MIPs.

Since the number of considered problems is already large (16 variants of partitioning and covering
with values s ∈ {2, 3, 4, 5} and γ = {.95, .9, .85, .8, .75}), we have restricted our computational anal-
ysis to the nine networks from the 10th DIMACS challenge with less than 300 vertices (available at
http://dimacs.rutgers.edu/Challenges/). This gives rise to an overall of 1296 instances. Table 5 lists
the nine networks G = (V,E) and their characteristics: density ρ(G), minimum degree δ(G), maximum in-
dependent set size α(G), maximum clique size ω(G), chromatic number χ(G), and chromatic number of the
complement graph χ(Ḡ). Note that unlike for maximum cardinality relaxed cliques, no graph reduction by
a peeling procedure is possible when decomposing the entire network. For all experiments, the computation
time is limited to 600 seconds.

Recall that for hereditary Π (non-connected), partitioning and covering are equivalent. Hence, we solve a
set-covering master program in which the dual values are more stable and post-process the solution to obtain
a feasible partitioning. In order to stabilize the column-generation process also in the proper partitioning
cases, we replace partitioning by covering constraints (4b) and add the additional constraint that the number
of vertex contacts must not exceed n = |V |, i.e.,

∑
S∈Ω |S|λS ≤ n, to the master program (4). The effect is

that all dual prices πi for i ∈ V are non-negative. The resulting weight for vertex i ∈ V is then wi := πi+µ,
where µ is the (non-positive) dual price of the added constraint.

Moreover, we use a multi-column pricing strategy: For MIPs, all integer feasible solutions with negative
reduced cost found by CPLEX are added to the master. Similarly, all different solutions found in the main
loop of (m)RDS are added. For s-club, we use a different acceleration strategy, i.e., the CB&B prematurely
stops as soon as a solution with reduced cost smaller than −0.1 is found.
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Table 6: Comparison of pricing algorithms

s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 405.5 150.1 35.4 4.3
Covering Connected 319.5 103.6 26.0 6.3

Part./Cover. General 269.7 36.4 4.0 0.6
s-club Partitioning General 57.3 124.1 153.7 215.6

Covering General 45.9 79.4 116.8 326.8
s-bundle Partitioning Connected 525425.1 89556.1 18944.2 2772.4

Covering Connected 1374606.2 154631.5 15714.0 3112.4
Part./Cover. General 390207.8 124293.4 14491.8 2169.8

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 5.7 2.7 1.3 0.9 0.8
clique Covering Connected 6.5 3.0 1.4 0.9 0.7

Partitioning General 4.0 2.3 1.0 1.0 0.7
Covering General 4.5 2.5 1.1 0.9 0.7

Factors are the average ratios tMIP
PP /tCB&B

PP and tF1
PP /t

F2
PP

6.1. Linear Relaxation Results
In a first series of experiments, we analyze the performance of alternative pricing algorithms (see Sec-

tion 5.1). For s-plex, we compare the IP formulation of Balasundaram et al. (2011) with the (m)RDS (see
Section C of the Appendix). For s-club, we compare the IP formulation of Veremyev and Boginski (2012)
with our CB&B presented in Section D of the Appendix. For s-bundle, we compare our MIP formulation
presented in Section B of the Appendix with the (m)RDS. Finally, for γ-quasi-clique, we compare the two
MIP formulations of Pattillo et al. (2013b). When connectivity is required, we impose it in all MIPs by
separating constraints (2).

Table 6 presents aggregated results over all nine benchmark networks. The numbers are ratios of the
average times that a single pricing iteration consumes. Whenever the linear relaxation of (4) is not completely
solved within the time limit, the average is taken over the iterations solved up to this point. For s-bundle,
CPLEX is only able to solve the pricing problem for the two smallest instances karate and chesapeake
(the others caused an out-of-memory exception). When comparing MIP with CB&B, a ratio tMIP

PP /tCB&B
PP

of more than 1 indicates that CPLEX needs more time than the respective CB&B, while for γ-quasi-clique
a ratio tF1

PP /t
F2
PP greater than 1 means that CPLEX takes longer for solving the first MIP (F1) than for the

second MIP (F2) of Pattillo et al. (2013b).
Overall, the CB&B algorithms perform better than the MIPs and with increasing s the effect becomes less

pronounced for s-plex and s-bundle. In contrast, the results for s-club show that the MIP-based approach
becomes less attractive when s increases. For γ-quasi-clique, none of the two MIPs completely dominates
the other. Therefore, in all following experiments we solve F1 whenever γ ≤ 0.8 and F2 in all other cases.
The results also seem to indicate that for general s-plex and s ≥ 5 pricing with MIP is superior to RDS. For
consistency among different s values, however, all following results are computed with RDS.

In Table 7, we present absolute computation times for solving the linear relaxations. Numbers is brackets
show the number of instances for which the linear relaxation is solved within the time limit; (*) means that
all nine instances are solved. If an instance is not solved, it contributes to the presented average with 600
seconds. In all cases, pricing consumes more than 99% of the computation time.

The column-generation algorithm for covering with s-club is able to solve all 36 linear relaxations. For
the other problem variants, the algorithms are not able to solve all instances for all values of s or γ.
The hardest variants are those for γ-quasi-clique, while for the hereditary structures almost all instances
are solved with s = 2 and s = 3. Larger values of s and smaller values of γ lead to harder to solve
pricing problems, larger generated relaxed cliques, more degenerate master programs typically requiring
more iterations, and herewith to longer computation times for the linear relaxation. An exception are the
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Table 7: Linear programming relaxation average computation times

s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 0.7 (*) 47.8 (*) 168.3 (7) 360.4 (4)
Covering Connected 0.5 (*) 39.9 (*) 161.6 (7) 351.3 (4)

Part./Cover. General 0.5 (*) 38.9 (*) 168.2 (7) 350.9 (4)
s-clique Part./Cover. Connected 67.4 (8) 66.9 (8) 0.1 (*) 0.1 (*)
s-club Partitioning General 214.1 (7) 372.8 (5) 335.7 (4) 95.9 (8)

Covering General 3.5 (*) 8.7 (*) 0.1 (*) 0.1 (*)
s-defective Partitioning Connected 0.5 (*) 3.1 (*) 41.3 (*) 86.2 (8)
clique Covering Connected 0.4 (*) 2.2 (*) 39.4 (*) 76.2 (8)

Part./Cover. General 0.4 (*) 2.4 (*) 32.0 (*) 78.9 (8)
s-bundle Partitioning Connected 0.8 (*) 53.7 (*) 175.3 (7) 362.7 (4)

Covering Connected 0.6 (*) 43.4 (*) 172.4 (7) 347.5 (4)
Part./Cover. General 0.6 (*) 40.4 (*) 166.2 (7) 355.9 (4)

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 279.7 (6) 356.6 (4) 395.4 (4) 434.5 (3) 444.1 (3)
clique Covering Connected 251.7 (6) 349.5 (4) 366.7 (4) 434.7 (3) 435.6 (3)

Partitioning General 314.1 (6) 357.2 (4) 400.3 (4) 427.5 (3) 434.5 (3)
Covering General 261.5 (6) 345.2 (4) 369.9 (4) 405.2 (4) 426.9 (3)

distance-based relaxations s-clique and s-club, where for larger s the decomposition becomes trivial because
the given graph is already an s-clique/club. Among the other hereditary structures, the linear relaxation
for s-defective clique is solved faster than for s-plex and s-bundle, which seem to be similar. The latter
result is somewhat unexpected when comparing with the results of Gschwind et al. (2015) where maximum
cardinality s-bundle was harder than s-plex.

The only variant for which partitioning is much more time consuming than covering is s-club: the
presence of some negative weights seems to substantially complicate the pricing. We observe that single
instances of the pricing problem require significantly more time than the average. The results for the other
variants show that covering is slightly easier than partitioning, but the differences are not substantial. We
also observe that pricing consumes more time for partitioning due to some negative weights, but the multiple-
pricing strategy at the same time produces more relaxed cliques leading to a comparable number of pricing
iterations. Comparing covering with connected relaxed cliques and decomposing with general relaxed cliques
(both formulated as a set covering master) shows that computation times are strongly correlated.

6.2. Integer Results
For s-plex, s-club, and s-bundle, we tried to decompose the networks using the compact formulation (3).

Results were very disappointing, since not even the smallest network karate could be decomposed even after
providing the optimal number rc(G) of necessary relaxed cliques. The poor performance can be attributed
to the weak lower bound provided by the linear relaxation and the inherent symmetry of the compact
formulation.

We next analyze the performance of the branching rules of Section 5.2 for partitioning into relaxed
cliques. Depending on the problem variant, we compare P1 (Ryan Foster) against P2 (GBR) or P3 (GBR
followed by Ryan Foster). The node-selection strategy is depth-first in order to find upper bounds early in
the search.

Table 8 shows average computation times for solving the integer model. As before, numbers in brackets
indicate the number of instances solved to proven optimality with (*) when all instances are solved. Fur-
thermore, for those instances solved to optimality with both branching schemes, Table 9 gives the size of
the branch-and-bound tree (minimum, average, and maximum over the instances).

The branching rules based on GBR are clearly inferior: Average computation times of P1 are always
smaller than those of P2 and P3. There are, however, a few instances for which P1 takes longer. Scheme
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Table 8: Comparison of branching schemes for relaxed clique partitioning: Average computation time and number of optimal
solutions

s = 2 s = 3 s = 4 s = 5

P1 P2/P3 P1 P2/P3 P1 P2/P3 P1 P2/P3
s-plex Connected 133.8 (7) 210.4 (6) 230.1 (6) 357.5 (4) 344.7 (4) 541.5 (1) 443.2 (3) 546.2 (2)

General 133.9 (7) 200.2 (6) 217.7 (6) 297.0 (5) 345.7 (4) 413.8 (3) 473.4 (2) 475.4 (2)
s-clique Connected 68.0 (8) 133.9 (7) 66.9 (8) 66.9 (8) 0.1 (*) 0.1 (*) 0.1 (*) 0.1 (*)
s-club General 335.5 (4) 337.9 (4) 401.3 (3) 401.3 (3) 335.6 (4) 335.6 (4) 94.6 (8) 94.7 (8)

s-defective Connected 76.3 (8) 335.0 (4) 155.0 (7) 268.0 (5) 214.7 (6) 400.8 (3) 278.7 (5) 351.4 (4)
General 72.7 (8) 218.1 (6) 169.8 (7) 268.7 (5) 219.4 (6) 339.6 (4) 241.0 (6) 412.2 (3)

s-bundle Connected 133.8 (7) 210.9 (6) 184.0 (7) 401.2 (3) 347.7 (4) 472.9 (2) 444.7 (3) 521.4 (2)
General 133.9 (7) 200.3 (6) 258.4 (6) 336.5 (4) 358.2 (4) 419.0 (3) 477.3 (2) 498.8 (2)

Table 9: Comparison of branching schemes for relaxed clique partitioning: Tree size (min/avg/max)
s = 2 s = 3 s = 4 s = 5

P1 P2/P3 P1 P2/P3 P1 P2/P3 P1 P2/P3
s-plex Connected 5/11/31 3/1007/5701 1/12/19 1/972/3345 19/19/19 537/537/537 10/15/20 256/729/1201

General 1/9/20 1/16/37 9/17/22 7/491/2359 9/17/21 13/468/1343 23/25/26 63/81/99
s-clique Connected 1/1/4 1/1/4 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1
s-club General 1/2/2 1/34/48 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1 1/1/1

s-defective Connected 5/12/18 8/1086/4241 2/6/9 2/109/365 5/523/1550 27/121/294 5/14/25 4/758/2675
General 11/3059/18151 32/2275/11734 7/17/24 11/62/217 4/16/21 20/51/79 11/22/39 38/46/51

s-bundle Connected 5/11/31 3/1007/5701 1/4/6 1/29/83 15/17/18 214/259/304 20/21/22 291/333/375
General 1/9/20 1/16/37 7/13/26 2/115/423 21/28/42 41/61/91 14/20/26 48/91/133

P1 is superior also with respect to the number of optima. All instances solved with P2 or P3 are also solved
with P1. An explanation for this outcome is that GBR-based rules create, with a few exceptions, many more
branches than the pure Ryan-Foster rule, see Table 9. Analyzing times and tree sizes together reveals that
for GBR-based rules a single branch-and-bound node is solved faster. This is intuitive because GBR is a
structure-preserving rule as opposed to the Ryan-Foster rule which requires the use of less effective pricing
algorithms (see Section 5.3).

Based on these findings, the final series of experiments applies branching scheme P1 for partitioning and
the corresponding scheme C1 for covering problems. Since linear relaxation bounds are generally tight, the
overall performance of our algorithms very much depends on the ability to find good feasible decompositions
(upper bounds) fast. Therefore, we solve the master program as an integer model with CPLEX at every
branch-and-bound node. Pre-tests have shown that such a heuristic is particularly helpful for covering
variants which often require massive branching before reaching an integer solution. In order to avoid long
MIP runs, CPLEX is limited 10 seconds. Moreover, we change the node-selection rule in our branch-and-
price algorithms to best-first search.

Table 10 is organized as Table 8 and displays the average computation times and the number of optima
for the branch-and-price. With the help of the upper bounds provided by CPLEX, 383 instances are solved
to proven optimality compared to only 356 optima without using the upper bounds. The upper bounds seem
to be particularly helpful for larger values of s. This is also true for variants with intricate subproblems
such as s-bundle and γ-quasi-cliques. Overall, computation times are also slightly reduced.

In summary, decomposing into relaxed cliques is a computationally challenging problem. The difference is
more between different types of relaxed cliques than between partitioning and covering and between general
and connected relaxed cliques. A main indicator for the hardness of the decomposition is the hardness of
the corresponding pricing problem. It is therefore not surprising that the decomposition with s-clique and
s-defective clique works better than with γ-quasi-clique. Finally, the determination of clusters that maximize
modularity, as done by Aloise et al. (2010), seems at least comparably challenging as decomposition into
relaxed cliques because computation times of their fastest algorithm quickly grow with the network size (they
allow a maximum of 100 000 seconds). Even more, modularity maximization produces a single solution only
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Table 10: Branch-and-price average computation time and number of optimal solutions found

s = 2 s = 3 s = 4 s = 5

s-plex Partitioning Connected 136.9 (7) 233.2 (6) 328.8 (5) 395.4 (4)
Covering Connected 133.5 (7) 333.6 (4) 289.1 (5) 348.1 (4)

Part./Cover. General 133.4 (7) 139.1 (7) 219.0 (6) 452.5 (3)
s-clique Part./Cover. Connected 67.2 (8) 66.8 (8) 0.1 (*) 0.1 (*)
s-club Partitioning General 336.4 (4) 401.4 (3) 335.8 (4) 97.6 (8)

Covering General 85.2 (8) 9.9 (*) 0.1 (*) 0.1 (*)
s-defective Partitioning Connected 145.3 (7) 135.1 (7) 201.0 (6) 154.4 (7)
clique Covering Connected 179.4 (7) 133.7 (7) 137.0 (7) 141.7 (7)

Part./Cover. General 136.5 (7) 136.0 (8) 200.8 (6) 78.7 (8)
s-bundle Partitioning Connected 136.9 (7) 180.7 (7) 285.5 (5) 435.9 (3)

Covering Connected 133.5 (7) 335.0 (5) 232.6 (7) 403.8 (3)
Part./Cover. General 133.4 (7) 247.6 (6) 280.7 (5) 350.3 (4)

γ = 0.95 γ = 0.90 γ = 0.85 γ = 0.80 γ = 0.75

γ-quasi- Partitioning Connected 286.2 (6) 352.6 (4) 385.9 (4) 427.5 (3) 435.1 (3)
clique Covering Connected 243.0 (6) 347.0 (4) 362.6 (4) 429.0 (3) 430.7 (3)

Partitioning General 300.4 (6) 353.5 (4) 406.8 (4) 422.3 (3) 427.9 (3)
Covering General 252.3 (6) 343.4 (4) 363.5 (4) 421.6 (3) 423.3 (3)

and seems to be less precise with respect to the true number of clusters. Unfortunately, Aloise et al. (2010)
do not provide the actual partitions so that one can hardly check whether clusters match known features,
as analyzed in the next section.

6.3. Interpretation of Results in Social Networks
In this section, we test the applicability of our graph decomposition methods for the purpose of detecting

community structures (cf. Fortunato, 2010). We have chosen karate, dolphins, and football as three
prominent and intensively studied examples of social networks for which different methods of community
detection have be tested.

6.3.1. Zachary’s Karate Club.
Zachary (1977) introduced the formal description of a university-based karate club as an example of

a fission of a small anthropological group. The relevant background information is that due to a longer-
lasting conflict between the club president and the karate instructor the club finally separated into two new
clubs, one supporting the old club’s president and the other one following the instructor. Zachary’s study,
however, focused on the social interaction between members before the fission. He collected the information
‘if two individuals consistently were observed to interact outside the normal activities of the club’. The
crisis in the club had the effect of ‘pulling apart the (sub)networks of friendship ties’. The resulting social
network has one vertex for each active member of the club, and two vertices are adjacent if and only if the
corresponding members consistently interacted. This network became a useful benchmark for community
detection approaches, since algorithmically computed clusters can be compared with the real memberships
in one of the two clubs after the division.

Moreover, Zachary measured the degree of interaction between members in the form of edge weights
(using an ordinary scale between 1 and 8; we and the majority of methods from community detection do
not exploit this additional data). He demonstrated that the two conflicting groups (the two clubs after
the formal separation) can be identified using a max-flow min-cut computation on the edge-weighted graph
(with accuracy 97%, one vertex being misclassified).

The unweighted karate club network, depicted in Figure 6(a), was used by several researchers to test
their approaches. For example, Girvan and Newman (2002) applied a hierarchical clustering via tree decom-
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Figure 6: Zachary’s karate club (a) Solution as given in (Zachary, 1977); (b) 3-club partitioning; (c) 2-club partitioning. Note
that the graph is a 5-club

position. Their first split ‘corresponds almost perfectly with the actual division of the club members’ with
only vertex 3 being misclassified (Girvan and Newman, 2002, p. 7823).

The same authors, Newman and Girvan (2004), later introduced modularity in order to measure the
quality of a decomposition (see Section 1.1). Their decomposition method (i) calculates the so-called be-
tweenness for all edges of the network, (ii) removes an edges with maximum betweenness, (iii) repeats the
steps (i) and (ii) for the resulting reduced network until it is edgeless. This creates a hierarchical decomposi-
tion of a graph, often displayed using a decomposition tree. With the shortest-path betweenness, the method
produces a first decomposition into two components with vertex 3 incorrectly classified, while with random-
walk betweenness the two groups are identified correctly. However, with both decomposition methods the
clustering into five/four groups achieves a higher modularity.

With the knowledge that the new clubs were formed around the polarizing persons that brought the
conflict into the club, it seems natural to us to decompose the graph using a distance-based clique relaxation:
The subgroups should have the property that any two members are close to a central person and, therefore,
the two members must also be in close distance from each other. Moreover, the resulting subgroups should
be connected. Also Almeida and Carvalho (2013) suggest the use of s-clubs in SNA arguing that ‘social
relations are frequently established through intermediaries’.

The results of a decomposition into s-clubs (s = 2 or 3) are shown in Figure 6(b) and (c). Note that
vertex 1 is the club’s president and vertex 34 is the instructor. The depicted solutions are at the same time
solutions to the covering and partitioning problems. The mismatch of vertex 3 in the 3-club partitioning is
actually by chance because the two real groups also form a decomposition into 3-clubs.

Moreover, the decomposition into four 2-clubs as depicted in Figure 6(c) is not unique, but fits with the
four clusters determined using the method of Newman and Girvan (2004) with random-walk betweenness.
Furthermore, the 2-club {17} can be enlarged to {5, 6, 7, 11, 17}, which is one of the clusters identified by
Newman and Girvan (2004). The same holds for the 2-club {25, 26}, which can be extended to {25, 26, 29, 32}
without making the other 2-clubs infeasible in the resulting partitioning.

6.3.2. Dolphins.
We next consider a network of 62 bottlenose dolphins living in Doubtful Sound (New Zealand). Lusseau

(2003) defined the edges of the network as indicators of ‘preferred companionships’ meaning that pairs of
dolphins were seen together more often than expected by chance. Figure 7(a) depicts the network. After
dolphin SN100 left the place for some time, the dolphins separated into two groups (Lusseau and Newman,
2004) indicated with the two colors.
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Figure 7: Dolphins (a) Real split (b) Covering with connected 5-cliques, two clusters (c) Covering connected 4-cliques, four
clusters

Similar to the karate club, the dolphin network is an example of a social network in which fission and
fusion was observed. As the connection between the dolphins is rather lose, a distance-based clique relaxation
seems appropriate for a decomposition. Moreover, the network is larger but less dense compared to the karate
club (see Table 5) so that we have chosen larger values of the maximum distance s. As Fortunato (2010,
Section 11) points out, the identification of overlapping clusters is an important task in community detection.
We now show that interesting and interpretable results can be obtained with our graph covering algorithms.

Figure 7(b) shows a decomposition of the dolphins network into connected 5-cliques that are allowed to
overlap. Two communities result and are indicated by the red and green colors. The dolphins displayed with
bicolored vertices are those that belong to both communities. To be precise, we computed a (non-unique)
covering solution and extended each of the two communities to the depicted cardinality-maximal 5-cliques.

Obviously, the result shown in Figure 7(b) perfectly matches the real split into two communities as
described in (Lusseau and Newman, 2004). Moreover, our intersection that consists of ten dolphins includes
the five dolphins DN63, Knit, Oscar, PL, and SN89 that Lancichinetti et al. (2009) identify as members
of both groups. Their method is a greedy algorithm, where in an outer loop a single uncovered vertex is
randomly chosen and in an inner loop a cluster containing this vertex is determined by maximizing a fitness
function.

Finally, we reduced the maximum distance to s = 4. The result is four overlapping clusters as depicted in
Figure 7(c). Note that no vertex belongs to all four clusters, i.e., vertices are either monochrom, bicolored,
or three-colored. Interestingly, Girvan and Newman (2002) also find four communities with their algorithm.
Lusseau and Newman (2004) argue that Girvan and Newman (2002) found a natural decomposition of
the larger community (green vertices in Figure 7(a)) into three sub-communities, where this subdivision is
correlated with the gender and age of the dolphins. In comparison, our depicted decomposition consists of
slightly larger clusters, but reflects well that three sub-communities can be identified in the larger community.

6.3.3. Football.
Girvan and Newman (2002) introduced another social network in which the vertices are American Foot-

ball college teams and edges represent regular-season games between them. The 115 teams are divided into
eleven conferences containing between six and 13 teams each. Generally, teams play more intraconference
than interconference games so that conferences form clusters. Moreover, there are eight independent teams
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Figure 8: Football (a) Eleven Conferences and Independent Teams (blue •), (b) Partitioning with 3-plexes, 16 clusters, (c) Par-
titioning with 4-plexes, 13 clusters, (d) Partitioning with connected 4-plexes, 13 clusters

that do not belong to a specific conference. Their game schedule is less structured than for the conference
teams meaning that games among independent teams are as likely as games between independent teams and
conference teams. Overall, the interconference games are not uniformly distributed because games between
geographically close teams are more frequent. The football network is depicted in Figure 8(a).

It is important to mention that the instance as provided on Marc Newman’s webpage (http://www-personal.
umich.edu/~mejn/netdata/) incorrectly assigns seven teams to conferences. To be precise, Boise State
and Utah State belong to the conference Sun Belt (Big West), Texas Christian belongs to the confer-
ence Western Athletic, and Louisiana Tech, Louisiana Monroe, Middle Tennessee State, and Louisiana
Lafayette are independent teams. We used https://en.wikipedia.org/wiki/2000_NCAA_Division_I-A_
football_season and http://www.phys.utk.edu/sorensen/cfr/cfr/Output/2000/CF_2000_Main.html
as independent sources. The consequence is that several works base their presentation on an incorrect ref-
erence solution (e.g., Girvan and Newman, 2002; Zhou, 2003a,b). However, the 613 games as given by Marc
Newman seem to reflect the schedule of the 2000 season.

The hierarchical decomposition methods used by Girvan and Newman (2002) and Zhou (2003a,b) provide
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(a) (b)

Figure 9: Football without Independent Teams (a) Partitioning into connected 3-plexes, 14 clusters (b) Partitioning in connected
4-plexes, twelve clusters

many possible clusterings but do not answer the question what the “best” number of clusters is. Later, with
the definition of modularity, Newman and Girvan (2004) made it possible to assess the quality of different
decompositions. With the objective of modularity maximization, Aloise et al. (2010) find that a clustering
into ten groups is optimal. Unfortunately, they do not provide the actual solution.

For decomposing this network into relaxed cliques, we expect that conferences are well represented by
s-plexes because games within the same conference are predominant. More precisely, with the corrected
conference assignment, there are 414 intraconference games (including 10 games among the independent
teams) and 199 interconference games. On average, there are ten teams per conference and each team plays
seven games within its conference. Thus, the average conference constitutes a 3-plex (s = 10 − 7). Due to
the above mentioned irregularities, also larger values of s make sense.

We start our analysis of the football network with a partitioning into 3-plexes. Figure 8(b) shows that
in this case the minimum number of partitions is 16. While eight of the eleven conferences are detected, the
remaining three are structured into two or three groups that also contain some of the independent teams.
The split conferences are the three largest conferences which are actually subdivided into two divisions of
six or seven teams each. We later see that good decompositions can uncover this type of substructure.

In order to better meet the correct number of conferences, we decomposed the network using 4-plexes.
The partitioning into 4-plexes is depicted in Figure 8(c). Also here three conferences are mixed with in-
dependent teams. However, only nine conference teams are misclassified compared to 14 conference teams
in the 3-plex solution. Even with this improvement, the solution has the defect that one cluster is dis-
connected (teams depicted as red triangles). We therefore impose connectivity. The resulting partitioning
into connected 4-plexes is shown in Figure 8(d). The number of clusters does not increase compared to the
disconnected solution (13 groups). Now, one more conference is correctly detected, only two conferences are
mixed with the independent teams.

We briefly mention that partitioning with 5-plexes does not decrease the number of partitions. Therefore,
we omit the presentation of these results.

In the three solutions given in Figure 8(b)–(d), the independent teams are assigned very differently.
This may be an indication that the independent teams do not form a community encoded by the graph.
In a series of additional experiments, we therefore removed the independent teams from the network. The
new network consists of 107 vertices and 551 edges, see Figure 8(a) with the independent teams (dark blue
circles) removed. For the sake of brevity, we omit the explicit depiction of the new network.

We present the partitioning with connected 3-plexes and connected 4-plexes in Figure 9(a) and (b). The
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3-plex partitioning consists of 14 clusters. Eight of them perfectly reproduce the smaller conferences, while
three pairs of the remaining six clusters exactly form the three largest conferences. Recall that these three
conferences do have subdivisions in reality. The 4-plex partitioning identifies twelve groups, one more than
there are conferences. However, this is the best solution in the sense that only six teams are misclassified.
The conference with the most mismatches is Mid American (depicted with rose hexagons). It is the only
conference with 13 teams and it does not form an s-plex for s ≤ 5 because four teams have a degree of
seven. Thus, the real conferences do not form a feasible partitioning into 5-plexes. If we run our algorithm
for partitioning with 5-plexes, the solution perfectly matches the correct number of eleven conferences, but
groups teams of four conferences incorrectly.

7. Conclusions

In this paper, we have introduced the problem of decomposing a graph into a minimum number of relaxed
cliques as a new method for community detection. While in prior work the resulting clusters generally do not
have any structure, the different clique relaxations allow to impose application-specific constraints a cluster
has to fulfill. Using the eight types of first-order clique relaxations as defined by Pattillo et al. (2013a),
we identified 16 new relevant types of decompositions. In particular, for non-hereditary relaxed cliques one
must distinguish between partitioning and covering the network. Moreover, since a basic requirement for
communities is connectivity, we have introduced the concept of connected relaxed cliques. As a consequence,
decomposing into connected or general relaxed cliques gives rise to different problem variants. Our type of
approach is useful in cases where one has a good understanding of what defines a community. For three
prominent examples from social network analysis, we have demonstrated that decomposition into relaxed
cliques reproduces some known features of the network.

Modularity maximization is the predominant method in community detection to assess the quality of
a clustering. Our decomposition approach is independent of modularity and might be a valid alternative
to overcome the limitations of modularity maximization as discussed by Fortunato and Barthélemy (2007).
They prove that modularity maximization can incorrectly identify clusters in some cases. For example, for a
network composed of the union of sufficiently large cliques Kn arranged in a cycle, modularity maximization
joins pairs of Kn. Our (relaxed) clique partitioning approach would correctly identify each Kn as a single
cluster.

From an optimization point of view, decomposing into relaxed cliques is a hard problem. Our exact
solution approach is based on branch-and-price, where pricing requires the design of new effective algorithms
and branching the development of complete and preferably structure-preserving branching rules. For pricing,
we propose a new CB&B for s-club, a modified version of RDS for hereditary relaxed cliques that is able to
handle connectivity and negative weights, and new MIP models for s-bundle and k-block. For branching,
a comparison of different branching schemes revealed that Ryan-Foster branching is superior although it is
not structure preserving for the pricing problem.

We see several avenues for future research: For all variants, the pricing problem is a maximum-weight
relaxed clique problem which is NP -hard and also practically challenging. Effective (meta)heuristics for the
solution of these problems are not available, but would certainly accelerate the column-generation process.
Moreover, large-scale networks require heuristics and metaheuristics for the overall decomposition. The new
column-generation algorithms analyzed here can provide tight lower bounds for assessing the metaheuristics’
performance.

There is also room for alternative structures that define the clusters, e.g., additional types of relaxed
cliques such as second-order relaxed cliques and k-connected/k-hereditary relaxed cliques (see Pattillo et al.,
2013a). Alternatively, two or more different types of relaxed cliques can be allowed meaning that a cluster
can, e.g., either be a 2-plex or a 5-defective clique. Moreover, new relaxed clique definitions result when
additional attributes are associated with vertices or edges. An example is a distance-d-clique defined as a set
of vertices with a pairwise distance no exceeding d (measured by the sum of edge distances dij). Also, the
overall objective of minimizing the number of clusters can be replaced by one in which the clusters receive
a weight, e.g., computed as function (maximum, sum, average, or product) of its vertex and edge weights.
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Appendix

A. MIP Formulation for Maximum-Weight s-Club

We assume that the simple graph G = (V,E) with vertex weights wi, i ∈ V is given together with some
s ≥ 2.

Veremyev and Boginski (2012) proposed the first compact formulation for the maximum cardinality s-club
problem, i.e., a formulation with a polynomial number of variables and constraints (polynomial in s, |V |, and
|E|). In addition to vertex variables xi ∈ {0, 1} defining S = {i ∈ V : xi = 1}, there are variables v`ij ∈ {0, 1}
indicating that an i-j-path of length ≤ ` exists in G[S], i.e., dG[S](i, j) ≤ `. In (Veremyev and Boginski,
2012), the domain of the indices ` is not completely defined. We therefore present a sightly modified version
of the model in which a minimum number of the path variables v`ij is needed. Since i-j-paths of length
one are the edges {i, j}, the domain of the index ` can be defined as dom2(i, j) = {max{2, dG(i, j)}, . . . , s}.
Similarly, we define dom3(i, j) = {max{3, dG(i, j)}, . . . , s}. With the definition U = {{i, j} : i, j ∈ V, i < j}
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for unordered pairs, the formulation of the maximum weight s-club problem is:

max
∑
i∈V

wixi (5a)

s.t. v`ij ≤ xi, v`ij ≤ xj {i, j} ∈ U , ` ∈ dom2(i, j) (5b)∑
`∈dom2(i,j)

v`ij ≥ xi + xj − 1 {i, j} ∈ U \ E (5c)

v2
ij ≤

∑
p∈N(i)∩N(j)

xp {i, j} ∈ U , distG(i, j) = 2 (5d)

v`ij ≤
∑

p∈N(i),dist(p,j)≤`−1

v`−1
pj {i, j} ∈ U , 2 ≤ distG(i, j) ≤ s, ` ∈ dom3(i, j) (5e)

xi ∈ {0, 1} i ∈ V (5f)

v`ij ∈ {0, 1} {i, j} ∈ U , ` ∈ dom2(i, j) (5g)

Due to (5b), the selection of a path associated with v`ij is only possible if both endpoints are present.
Conversely, the constraints (5c) allow the selection of both vertices i and j if and only if there exists a path
of length ≤ s between them in G[S]. The constraints (5d) and (5e) model the construction of paths in G[S]
connecting i and j. The first constraints guarantee that a vertex adjacent to i and j is selected for the
distance two, while the latter work recursively. A path of length ` between vertices i and j requires the
selection of a vertex p adjacent to i together with the presence of another path of length ` − 1 between p
and j. The domains of the vertex and path variables are defined by (5f) and (5g). Note that clique-like
constraints xi+xj ≤ 1 for incompatible vertices i, j ∈ V are present in the above formulation: If dG(i, j) > s
for i, j ∈ V , no s-club can contain both vertices, and dom2(i, j) is the empty set by definition so that the
corresponding constraint (5c) reduces to xi + xj ≤ 1. Hence, any valid inequalities for the clique polytope
of the corresponding power graph Gs are valid and may be used to strengthen the LP relaxation of the
model. Moreover, Veremyev and Boginski (2012) presented additional valid inequalities for F (G), but in
our computational test on maximum cardinality and maximum weight s-club (pricing) problems they did
not improve the performance.

B. MIP Formulation for Maximum-Weight s-Bundle and k-Block

We assume that the simple graph G = (V,E) with vertex weights wi, i ∈ V is given together with some
s ≥ 2. We now present a compact MIP formulation for the maximum-weight s-bundle problem.

Let N = (N,A) be the auxiliary network associated with G defined as follows: For each vertex i ∈ V
there exist two vertices i− and i+ in N so that N = V + ∪ V −. The network N comprises two types of
arcs. First, for all i ∈ V , arcs (i−, i+) are present in A. Second, for each edge {i, j} ∈ E, the arcs (i+, j−)
and (j+, i−) are in A. Hence, A = {(i−, i+) : i ∈ V } ∪ {(i+, j−), (j+, i−) : {i, j} ∈ E}. Now, any two
non-adjacent vertices i, j ∈ V are k-connected in G if and only if there exists a flow of value k between i+
and j− in N . (All arcs have unit capacity.) The same holds for G[S] and the induced network N [S+ ∪ S−]
for any S ⊆ V .

Three types of decision variables are in the MIP: The binary variables xi, i ∈ V indicate whether or not
vertex i ∈ V is in the selected s-bundle S = {i ∈ V : xi = 1}. The continuous variable z describes the
number |S| − s of vertex-disjoint paths that must exists between non-adjacent pairs of vertices of S. With
the definition U = {{i, j} : i, j ∈ V, i < j} for unordered pairs, for each {i, j} ∈ U \ E, the binary variables
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yija , a ∈ A model flows in N connecting i+ and j−.

max
∑
i∈V

wixi (6a)

s.t. z ≥
∑
i∈V

xi − s (6b)∑
a∈δ+(i+)

yija ≥ z −M ij(2− xi − xj) {i, j} ∈ U \ E (6c)

∑
a∈δ+(n)

yija −
∑

a∈δ−(n)

yija = 0 {i, j} ∈ U \ E,n ∈ N,n 6= i+, j− (6d)

∑
a∈δ−(j−)

yija ≥ z −M ij(2− xi − xj) {i, j} ∈ U \ E (6e)

yijp−p+ ≤ xp {i, j} ∈ U \ E, p ∈ V (6f)

xi ∈ {0, 1} i ∈ V (6g)

yija ≥ 0 a ∈ A, {i, j} ∈ U \ E (6h)
z ≥ 0 (6i)

The objective (6a) maximizes the sum of the vertex weights in the selected s-bundle S. The constraint (6b)
guarantees z ≥ |S| − s. The next three groups of constraints (6c)–(6e) ensure a flow of at least z between
i+ and j− in case that i and j belong to the bundle. Herein, M ij > 0 is a sufficiently large number. The
coupling constraints (6f) guarantee that flows are positive only in N [S+ ∪S−]. The domains of all variables
are stated in (6g)–(6i).

In an s-bundle S, every vertex must have a degree degG[S](i) not smaller than |S| − s (see Pattillo et al.,
2013b, p. 17). Based on this observation, we can find a feasible, but small value for M ij in constraints (6c)
and (6e) in order to tighten the formulation:

M ij := max{k ∈ N : ∃S ⊆ V, |S| = k,∀v ∈ S : max{degG\{i}(v), degG\{j}(v)} ≥ k}

This maximum can be computed by simply sorting all vertices decreasingly by the values
max{degG\{i}(v), degG\{j}(v)}.

Note that a similar formulation can be used to find maximum-weight k-blocks. The variable z can be
replaced by the constant k so that (6b) and (6i) are obsolete.

C. Handling Connectivity Constraints and Negative Weights in RDS

Recall from Section 5.1 that the Russian doll search (RDS) is an algorithm for finding maximum weight
relaxed cliques, which are defined by a hereditary property Π. We now present the necessary modifications
that allow us to find connected relaxed cliques. The resulting structure of a connected relaxed clique is
no longer hereditary, which implies that negative vertex weights generate additional complications. Such
negative vertex weights result form three facts: (i) the weights (before branching) are equal to the dual
prices of the constraints (4b) which can be negative in case of partitioning, (ii) the implementation of
separate-constraints imposes large negative weights on the vertices (see Section 5.3), and (iii) dual prices of
constraints that bound the number of vertex contacts from above are non-positive summands of the weights
(see Section 5.2.3). The modified RDS is applicable to s-clique, s-plex, s-defective clique, and s-bundle. Our
description of RDS follows the presentation of Trukhanov et al. (2013) and our own work (Gschwind et al.,
2015).

In standard RDS (Algorithm 2), the n of vertices V are ordered into a sequence (v1, v2, . . . , vn). Instead of
one depth-first branch-and-bound search, n searches are performed in the main loop of RDS (Steps 3-6 of Al-
gorithm 3). Starting from i = n, the ith search determines a maximum weight Π set for G[{vi, vi+1, . . . , vn}]
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Algorithm 2: RDS for the Maximum Weight
Π Problem

Input: G = (V,E,wi) with wi ∈ R+
0 ; Π

1 Order vertices (v1, v2, . . . , vn)
2 Set LB := 0 and S := ∅
3 for i := n, n− 1, . . . , 1 do
4 Set C := {vj : j > i, {vi, vj} satisfies Π}
5 Call FindMax(C, {vi})
6 LBi := LB

Output: S ⊆ V inducing a maximum weight Π
subgraph G[S]

Algorithm 3: Modified RDS for the Maxi-
mum Weight Connected Π Problem

Input: G = (V,E,wi) with wi ∈ R, Π
1 Order vertices (v1, v2, . . . , vn)
2 Set LB := 0, LBc := 0, and S := ∅
3 for i := n, n− 1, . . . , 1 do
4 Set C := {vj : j > i, {vi, vj} satisfies Π}
5 Call FindMaxConnected(C, {vi})
6 LBi := LB

Output: S ⊆ V inducing a maximum weight
connected Π subgraph G[S]

Procedure FindMax(C, P )
Input: Candidate set C, current set P

1 if C = ∅ then
2 if w(P ) > LB then
3 Set LB := w(P ) and S := P

4 return

5 while C 6= ∅ do
6 if w(C) + w(P ) ≤ LB then return
7 Set i := min{j : vj ∈ C}
8 if LBi + w(P ) ≤ LB then return
9 Set C := C \ {vi} and P ′ := P ∪ {vi}

10 PrepareAuxiliaryInformation(C, P ′)
11 Set C′ := {v ∈ C : P ′ ∪ {v} satisfies Π}
12 Call FindMax(C′, P ′)

Procedure FindMaxConnected(C, P )
Input: Candidate set C, current set P

1 if C = ∅ then
2 if w(P ) > LB then
3 Set LB := w(P )

4 Set P ∗ := argmax
R connected comp. of G[P ]

∑
r∈R wr

5 if w(P ∗) > LBc then
6 Set LBc := w(P ∗) and S := P ∗

7 return

8 while C 6= ∅ do
9 if w+(C) + w(P ) ≤ LBc then return

10 Set i := min{j : vj ∈ C}
11 if LBi + w(P ) ≤ LBc then return
12 Set C := C \ {vi} and P ′ := P ∪ {vi}
13 PrepareAuxiliaryInformation(C, P ′)
14 Set C′ := {v ∈ C : P ′ ∪ {v} satisfies Π}
15 Call FindMaxConnected(C′, P ′)

16 Call FindMaxConnected(∅, P )
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with the initial set S = {vi} by means of the recursion FindMax. In every iteration, i is decreased by 1
so that a sequence of lower bounds LBn, LBn−1, . . . , LB2, LB1 is computed, where LBi corresponds to the
value of a maximum weight S ⊆ {vi, . . . , vn} fulfilling Π. The value of the best solution found so far is
retained in the overall lower bound LB. At each stage of the RDS search, the current solution P satisfies
Π. Moreover, a set of candidates C with P ∪ {c} satisfies Π for all c ∈ C is maintained. Whenever P is
enlarged, C has to be adjusted, i.e., candidate vertices not compatible with the new set P are removed from
C.

The positive part of a number w is denoted by w+ = max{0, w}. We use the shorthand notation
w(P ) =

∑
v∈P wv and w+(P ) =

∑
v∈P w

+
v .

The modified RDS (Algorithm 3) uses two types of overall lower bounds instead of just one: LB is, as
in the standard RDS, the maximum weight of subset P ⊆ V fulfilling Π either connected or not. LBc is the
maximum weight of subset P ⊆ V fulfilling Π that is connected.

Furthermore, the pruning criteria of the standard RDS and the modified RDS differ. The standard
weight-based pruning (w(C)+w(P ) ≤ LB, Step 6 in Procedure FindMax) is adapted so that it takes possibly
negative weights into account and compares against the connected bound, i.e., w+(C)+w(P ) ≤ LBc in Step 9
of Procedure FindMaxConnected. The RDS-specific pruning Step 11 of Procedure FindMaxConnected
compares LBi + w(P ) against LBc instead of LB. Note that LBi is the maximum weight of a general
(connected or not) P ⊆ {vi, . . . , vn} fulfilling Π. Both modified pruning steps are less effective compared to
the pruning steps of the standard RDS.

When the candidate set C becomes empty, the modified RDS does three things: First, the lower bound
LB is updated whenever P is improving (Steps 2 and 3 in Procedures FindMax and FindMaxConnected).
Second, the connected components R of G[P ] are computed. For s-plex, s-defective clique, and s-bundle, this
step is obsolete whenever |P | is sufficiently large (see Table 1), while for smaller |P | we use a straightforward
enumeration. For s-clique, the connected components are determined with an efficient union-find algorithm
(see Cormen et al., 2009, § 21.3). In all cases, the component P ∗ with largest weight w(P ∗) is determined.
Third, if w(P ∗) improves the connected lower bound LBc, a new improving connected relaxed clique is
found and LBc as well as S are updated.

Finally, the additional Step 16 of FindMaxConnected is required, since all candidates C may have a
negative weight so that the current set P without any vertex additions has the largest weight among all
subsets S with P ⊆ S ⊆ P ∪ C.

Note that it is sufficient to consider only the connected components of G[P ] instead of all connected
subsets of P in Steps 4-6 of the recursion. The reason is that for given sets P and C the RDS enumerates all
subsets of P∪C as long as no pruning occurs. Indeed, the modified pruning Step 11 guarantees that no subset
of P ∪C fulfilling Π (connected or not) and therefore no connected subset of P ∪C fulfilling Π is excluded.
Thus, connected subsets of P that are not connected components of G[P ] are found as connected components
of the induced subgraph of a different current set P ′ in another iteration of Procedure FindMaxConnected.

D. New Combinatorial Branch-and-Bound for Maximum Weight s-Club

We developed a new combinatorial branch-and-bound algorithm for maximum weight s-club which is
able to handle arbitrary vertex weights wi ∈ R. Since s-club is non-hereditary, we have to cope with negative
weights. As before, we assume that the simple graph G = (V,E) with vertex weights wi, i ∈ V is given
together with some s ≥ 2.

Throughout the branch-and-bound, we partition the vertices V into three sets, the included vertices I
with xi = 1 for all i ∈ I, the free vertices F with xi ∈ {0, 1} for all i ∈ F , and the excluded vertices X with
xi = 0 for all i ∈ X. The algorithm is initialized with F = V and I = X = ∅. All partitions with F 6= ∅
are partial solutions, while those with F = ∅ are complete solutions. We always assume that the partition
V = I + F +X must admit that a subset S of the admissible vertices I ∪ F is a feasible s-club with S ⊇ I.
In particular, the distance between all admissible vertices i ∈ F ∪ I and the included vertices j ∈ I must not
exceed s, i.e., distG[I∪F ](i, j) ≤ s, meaning that I ∪ {j} is an s-clique for all j ∈ F . This is similar to the
branch-and-bound algorithm by Mahdavi Pajouh and Balasundaram (2012). However, our approach differs

30



in the computation of upper and lower bounds and it has an additional component for fixing vertices and
detecting infeasible partial solutions.

Upper Bounds.. A straightforward upper bound is

ub1(I + F ) = π(I) + π+(F ) =
∑
i∈I

wi +
∑
i∈F

w+
i

with the standard shorthand notation w+
i := max{0, wi} for referring to the positive part.

In the course of the algorithm, the induced graph G[I ∪ F ] can become disconnected with compo-
nents C1, . . . , Cp. Since every s-club is connected, the component with the largest weight provides a tighter
bound in this case:

ub2(I + F ) = min
j=1,...,p

ub1(Cj).

A third upper bound results from the fact that every s-club is also an s-clique. This is a (1-)clique the
sth power graph Gs. Therefore,

ub3(I + F ) = w(I) + z(w,Gs[F ]),

where z(w,Gs[F ]) is the maximum weight of a clique that can be found in the induced subgraph by F in
Gs. Any algorithm for computing maximum weight cliques can be used to compute z(w,Gs[F ]) (or any
algorithm for maximum weight independent sets in the complement graph of Gs). We used the publicly
available code from the paper (Held et al., 2012).

Lower Bounds.. For computing an initial lower bound, we adapt the Constellation heuristic of Bourjolly
et al. (2002). Constellation first determines a start vertex i with maximum value wi +

∑
j∈N(i) w

+
j . The

start solution is S = {i} ∪ {j ∈ N(i) : wj ≥ 0}. Then, s − 2 times additional vertices are added. For all
vertices j ∈ S, one with maximum

∑
i∈N(j)\S w

+
i is determined and all vertices N(j) \ S are added to S.

Note that this step increases the diameter of G[S] by at most one so that after s− 2 iterations the diameter
of S cannot exceed s, i.e., G[S] is an s-club. Since no computation of distances in induced subgraphs is
needed, the Constellation heuristic provides a lower bound very quickly. Preliminary test revealed that
the Drop heuristic of Bourjolly et al. (2002) is in many cases too time consuming, and we do not use it.

The only primal heuristic that we employ at every branch-and-bound node is the check whether or not
I ∪ F induces a feasible s-club. It requires the computation of a distance matrix for G[I ∪ F ] (with unit
costs), which is implemented as a straightforward breadth-first-search (BFS). It requires not more than
O (nI∪F ·mI∪F ) time, where nI∪F = |I ∪ F | is the number of vertices and mI∪F is the number of edges of
G[I ∪ F ].

Vertex Fixation and Infeasibility Detection.. In the branch-and-bound algorithm, branches result from the
inclusion or exclusion of a free vertex, i.e., we select a free vertex v ∈ F , remove it from F , and add it to
either I or X. Obviously, the inclusion of a free vertex does not change distances of G[I ∪ F ]. In contrast,
the exclusion of a free vertex requires the re-computation of the distances in the graph G[I ∪F ] using BFS.
For the sake of brevity, let dij be the short notation for distG[F∪I](i, j). The following cases are interesting:

1. If dij > s for i, j ∈ I then the partial solution is infeasible.
2. If dij > s for i ∈ I, j ∈ F then vertex j can be excluded, i.e., X ′ = X ∪ {j} and F ′ = F \ {j}.
3. If dij = s for i, j ∈ I and there exists a 0 < d < s and a unique vertex k ∈ F with dik = d and
dkj = s− d, then vertex k can be included, i.e., I ′ = I ∪ {j} and F ′ = F \ {j}.

If case 2 applies, distances need to be recalculated. If one of the cases 2 or 3 applies, the variable fixation
and infeasibility detection procedure is repeated. This can create a longer sequence of fixations.
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Branching.. None of the bounding procedures can cope precisely with negative weights, and therefore we
start branching by first selecting a free vertex v ∈ F with smallest negative weight wv < 0 (if any). Then, at
the second level, the selection of a vertex for branching is based on the idea of choosing a highly influential
free vertex v ∈ F . It is a vertex v maximizing the number of included vertices to which the distance is
exactly s. Formally, the vertex v ∈ F maximizes |{i ∈ I : div = s}| and ties are brocken by preferring larger
weights wv. Finally, the overall branching strategy is depth-first, where the branch in which the free vertex
is included is inspected before the branch in which the free vertex is excluded.

The overall branch-and-bound is summarized in Algorithm 4 and the recursion in Procedure Recursion.

Algorithm 4: Combinatorial B&B Algorithm
1 Input: Graph G = (V,E), vertex weights w = (wi)
2 SET lb := Constellation(G,w), ub :=∞, I = ∅, F = V , and X = ∅
3 Recursion(I, F,X)
4 Output: maximum weight s-Club S∗ with weight lb

Procedure Recursion(I, F,X)
1 if lb > ub1(I ∪ F ) or lb > ub2(I ∪ F ) or lb > ub3(I ∪ F ) then RETURN
2 if I ∪ F induces s-club and w(I ∪ F ) > lb then SET lb := w(I ∪ F )
3 Select branching vertex j ∈ F
4 for branches (I ∪ {j}, F \ {j}, X) and (I, F \ {j}, X ∪ {j}) do
5 DETECT infeasibility, FIX additional vertices with result (I ′, F ′, X ′)
6 if infeasible then RETURN
7 if F ′ = ∅ then
8 if w(I ′) > lb then SET lb = w(I ′) and S∗ := I ′

9 RETURN

10 Recursion(I ′, F ′, X ′)

We briefly compare our new algorithm with the fastest algorithms from the literature. Wotzlaw (2014)
presents two MAX-SAT formulations that are solved by a state-of the art SAT solver (clasp 2.1.3). His
comparison shows that these implementations often outperform the older algorithms presented in (Veremyev
and Boginski, 2012; Mahdavi Pajouh and Balasundaram, 2012; Shahinpour and Butenko, 2013). Table 11
shows the computation times for computing a maximum-cardinality s-club for s ∈ {2, 3, 4}. For the sake of
brevity, column Other is the shortest runtime obtained with any of the algorithms compared in (Wotzlaw,
2014), while New is our computation time (computed on different machines of comparable performance). It
seems that our implementation is competitive, in particular, it scales well for larger instances and s > 2.

E. Reduction Problem

The reduction problem in Step 4 of Algorithm 1 of the generalized branching rule (GBR) is the following:
We are given a property Π, a graph H = (S,E(S)) not fulfilling Π, and a connected subgraph (S,E′)
spanning S. Find a set S? ⊆ S of minimum cardinality such that G′[S?] is connected and G[S?] does not
fulfill Π. (Note that the connected subgraph (S,E′) takes the role of Gλ[S] in GBR.)

We suspect that the reduction problem is NP -hard for arbitrary relaxed cliques defined via Π and,
thus, propose a simple greedy procedure for its resolution. The procedure is inspired by Prim’s algorithm
for computing a minimum spanning tree, and it works as follows: In a first step, the vertices are sorted by
increasing degree. Second, we chose a vertex i ∈ S with smallest vertex degree and set S? = {i}. Iteratively,
vertices j ∈ S \S? are tested whether or not j is adjacent to S? in (S,E′). The first vertex j, in the order of
increasing degree, which fulfills the condition is added to S?. The greedy algorithm stops with the solution
S? as soon as H[S?] does not fulfill Π.
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Table 11: Computation times of s-club algorithms.

Instance s = 2 s = 3 s = 4

Other New Other New Other New

adjnoun 0.010 0.003 0.020 0.059 0.340 0.017
football 0.020 0.015 0.320 4.118 0.001 0.003
jazz 0.060 0.005 1.050 0.125 8.870 0.075
celegansneutral 0.430 1.060 1.060 1.058 45.300 0.435
email 16.100 0.037 TL TL TL TL
polblogs 46.900 0.086 TL TL TL TL

F. Equivalence of Partitioning and Covering with a Mimimum Number of Connected s-Cliques

In this section, we prove the theorem stated in Section 4.

Theorem 1. Partitioning and covering a graph with a minimum number of connected s-cliques are
equivalent problems for all s ≥ 1. There exists a constructive procedure to transform a covering solution into
a partitioning solution using an identical number of subsets.

Proof: Due to the heredity and connectedness of (1-)cliques the statement is certainly true for s = 1. We
only consider the case s ≥ 2 in the following. We show that for any set-covering solution S1, S2, . . . , Sp with
more than |V | vertex contacts, i.e., |S1|+ |S2|+ · · ·+ |Sp| > |V |, we can construct a new solution which has
a smaller number of vertex contacts. A solution with |V | vertex contacts, i.e., a set-partitioning solution,
then results by iteratively applying the procedure.

We assume that the number of vertex contacts exceeds |V |. Then, there exists at least one vertex v with
at least two vertex contacts. Without loss of generality we can assume that v ∈ S1 ∩S2 holds. If G[S1 \ {v}]
is connected, we can replace S1 by S1 \ {v} in the solution, the number of vertex contacts decreases by
one, and the statement follows. The same reduction can be done with S2 instead of S1. We can, therefore,
restrict our analysis to the case that v is a vertex separator of G[S1] and G[S2] (the removal of a vertex
separator disconnects a graph). Let C1

1 , C
2
1 , . . . , C

p1
1 (p1 ≥ 2) be the components of G[S1 \ {v}]. Similarly,

let C1
2 , C

2
2 , . . . , C

p2
2 (p2 ≥ 2) be the components of G[S2 \ {v}].

Now we consider the maximal distance between the vertex separator v and the vertices in the components.
Let, dji = maxw∈Cj

i
distG(v, w) be the maximum distance per component for all i = 1, 2 and j = 1, 2, . . . , pi.

Since distG(u,w) ≤ s for all vertices u,w ∈ S1 (similarly u,w ∈ S2), we know that 1 ≤ dji ≤ s− 1 holds for
all i = 1, 2 and j = 1, 2, . . . , pi.

Before we consider the general case, we start with an analysis for s = 2: Here, the only possible value
is dji = 1 for all i = 1, 2 and j = 1, 2, . . . , pi. Hence, G[S1 ∪ S2] fulfills distG[S1∪S2](i, j) ≤ 2 for any pair
i, j ∈ V . We can therefore replace S1 and S2 by S1 ∪ S2 in the solution.
For simplification, we assume from now on that

(i) the distances are sorted decreasingly, i.e., d1
1 ≥ d2

1 ≥ · · · ≥ d
p1
1 and d1

2 ≥ d2
2 ≥ · · · ≥ d

p2
2 and

(ii) d1
1 ≥ d1

2 (otherwise one can swap S1 and S2).

For s = 3, the only possible values are dji ∈ {1, 2} for all i = 1, 2 and j = 1, 2, . . . , pi. Moreover,
d1

1 = d2
1 = 2 (or d1

2 = d2
2 = 2) is impossible because otherwise diamG[S1] = 4 > s (diamG[S2] = 4 > s).

Hence, d2
1 = · · · = dp11 = 1. Then, S′2 := S2 ∪ (C2

1 ∪ . . .∪C
p1
1 ) = ({v}∪C1

2 ∪C2
2 ∪ . . .∪C

p2
2 )∪ (C2

1 ∪ . . .∪C
p1
1 )

fulfills diamG[S′2] = 3 ≤ s. Also S′1 := S1 \ ({v} ∪ C2
1 ∪ . . . ∪ C

p1
1 ) = C1

1 fulfills diamG[S′1] ≤ s. Consequently,
one can replace S1 and S2 by S′1 and S′2 in the solution. Note that S′1 ∪ S′2 = S1 ∪ S2 by construction, but
|S′1|+ |S′2| = |S1|+ |S2| − 1 due to v /∈ S′1.

We can now consider the general with case s ≥ 4: If d1
1 ≤ s/2 then all distances fulfill dji ≤ s/2 for all

i = 1, 2 and j = 1, 2, . . . , pi, and one can replace S1 and S2 by S1 ∪ S2. We have |S1 ∪ S2| = |S1|+ |S2| − 1
completing this case.
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Thus, we assume d1
1 > s/2. Since diamG[S1] ≤ s, we know that

d2
1, . . . , d

p1
1 ≤ s− d1

1 ≤ s− d1
2 ≤ s− d

j
2 for all j = 1, . . . , p2,

where the second inequality results from simplification (ii) and the third from simplification (i). We define
S′2 := S2∪(C2

1∪. . .∪C
p1
1 ) and the above inequality implies that diam(G[S′2]) ≤ s. Moreover, we set S′1 := C1

1

clearly having diam(G[S′1]) ≤ s. As before, one can replace S1 and S2 by S′1 and S′2 in the solution. Note
finally that S′1 ∪ S′2 = S1 ∪ S2 holds by construction, but |S′1|+ |S′2| = |S1|+ |S2| − 1 due to v /∈ S′1, which
decreases the number of vertex contacts by one and completes the proof. �
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