
Branch-and-Cut for the Split Delivery Vehicle Routing Problem with Time
Windows

Nicola Bianchessi∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The Split Delivery Vehicle Routing Problem with Time Windows (SDVRPTW) is a notoriously hard com-
binatorial optimization problem. First, it is hard to find a useful compact Mixed-Integer Programming
(MIP) formulation for the SDVRPTW. Standard modeling approach either suffer from inherent symmetries
(MIPs with a vehicle index) or cannot exactly capture all aspects of feasibility. Due to the possibility to
visit customers more than once, the standard mechanisms to propagate load and time along the routes fail.
Second, the lack of useful formulations has rendered any direct MIP-based approach impossible. Up to now,
the most effective exact algorithms for the SDVRPTW are branch-and-price-and-cut approaches using a
path-based formulation. In this paper, we propose a new and tailored branch-and-cut algorithm to solve the
SDVRPTW. It is based on a new relaxed compact model, in which some integer solutions are infeasible to
the SDVRPTW. We use known and introduce some new classes of valid inequalities in order to cut off such
infeasible solutions. One new class is path-matching constraints that generalize infeasible-path constraints.
However, even with the valid inequalities, some integer solutions to the new compact formulation remain to
be tested for feasibility. For a given integer solution, we built a generally sparse subnetwork of the original
instance. On this subnetwork, all time-window feasible routes can be enumerated and a path-based residual
problem is then solved in order to decide on the selection of routes, the delivery quantities, and herewith the
overall feasibility. All infeasible solutions need to be cut off. For this reason, we derive some strengthened
feasibility cuts exploiting the fact that solutions often decompose into clusters. Computational experiments
show that the new approach is able to prove optimality for several previously unsolved instances from the
literature.

Key words: Vehicle routing problem, split delivery, time windows, valid inequalities

1. Introduction

In classical vehicle routing problems, it is usually assumed that each customer is served by exactly one
vehicle in exactly one visit. When however multiple visits to customers are allowed in goods distribution,
this option is called split delivery. Allowing split deliveries is somehow inevitable when the demand of some
customers exceeds the capacity of every available vehicle. When there is no such a need, allowing split
deliveries is nevertheless attractive because it can lead to significant cost reductions.

The Split Delivery Vehicle Routing Problem (SDVRP) is the counterpart of the classical Vehicle Routing
Problem (VRP, Toth and Vigo, 2014), where in the latter problem multiple visits to a customer are forbidden.
The SDVRP has been introduced in the literature by Dror and Trudeau (1989, 1990), who showed that very
significant savings are possible when allowing split deliveries, both in terms of the total distance traveled
and the number of vehicles employed. In particular, Archetti et al. (2006b) proved that savings up to 50 %
are possible in distance traveled, and this bound is tight (assuming the validity of the triangle inequality).
In the last decade, the interest towards the class of vehicle routing problems with split deliveries was rapidly
increasing. The reader is referred to the recent surveys by Archetti and Speranza (2012) and Irnich et al.
(2014) on the topic.

Despite of the increasing of interest over time, the Split Delivery Vehicle Routing Problem with Time
Windows (SDVRPTW) has received limited attention. The SDVRPTW is the relaxation of the Vehicle

∗Corresponding author.
Email address: nbianche@uni-mainz.de (Nicola Bianchessi)

Technical Report LM-2016-07 October 26, 2016

Routing Problem with Time Windows (VRPTW, Desaulniers et al., 2014) in which split deliveries are al-
lowed. Frizzell and Giffin (1995), Mullaseril et al. (1997), and Sepúlveda et al. (2014) addressed the problem
by means of constructive and improvement heuristics. In (Ho and Haugland, 2004), a tabu search algorithm
is presented. Gendreau et al. (2006) introduced the first exact algorithm to solve the problem. Their branch-
and-price-and-cut algorithm was able to solve instances with up to 50 customers. Later, Desaulniers (2010)
proposed an alternative branch-and-price-and-cut algorithm. While Gendreau et al. (2006) decide on the
quantities to deliver at the master problem level, Desaulniers (2010) handles the quantities to deliver at
the subproblem level, avoiding the dynamic insertion of an exponential number of constraints in the mas-
ter problem, that is, one capacity constraint for each generated route. The new branch-and-price-and-cut
algorithm was able to solve 176 benchmark instances to optimality within one hour of computational time,
including one 100-customer instance. Afterwards, Archetti et al. (2011b) proposed an enhanced version of
the algorithm of Desaulniers (2010). The authors proposed a tabu search algorithm for accelerating the
solution of the subproblem. To improve the value of the lower bounds computed in the search tree, they
introduced extensions of several classes of valid inequalities together with a new heuristic separation algo-
rithm for the k-path cuts, originally proposed by Kohl et al. (1999). Thanks to these enhancements, the
number of benchmark instances solved to optimality within one hour of computational time increased from
176 to 262. A recent paper by Luo et al. (2016) considers a generalization of the SDVRPTW in which linear
weight-related costs are considered. To test their branch-and-price-and-cut algorithm on the SDVRPTW
benchmark, the authors disregard any weight-related costs so that their approach becomes very similar to
the one of Archetti et al. (2011b), finally delivering 264 of 504 optimally solved instances.

In this paper, we propose a new and tailored branch-and-cut algorithm to solve the SDVRPTW. It is
based on a new compact formulation, which in fact defines a relaxation of the problem. This means that
some integer solutions to the relaxed formulation are infeasible to the SDVRPTW. We use known and
introduce two new classes of valid inequalities in order to strengthen the relaxed compact formulation and
possibly cut off solutions which are infeasible to the SDVRPTW. The first class of new valid inequalities
is the extension to the SDVRPTW of the infeasible-path constraints proposed in Ascheuer et al. (2000,
2001) for the asymmetric Traveling Salesman Problem with Time Windows (TSPTW). The other new class
is the path-matching constraints that generalize infeasible-path constraints. However, even with these valid
inequalities, integer solutions to the new compact formulation remain to be tested for feasibility. Any given
integer solution to the relaxed formulation induces a generally sparse subnetwork of the original instance. On
this subnetwork, all time-window feasible routes can be enumerated. An extended set covering problem is
then solved to decide on the selection of routes, the delivery quantities, and herewith the overall feasibility. All
proved infeasible solutions are cut off from the feasible region of the relaxed problem. The solution approach
extends and improves the branch-and-cut algorithm coined by Archetti et al. (2014) for the SDVRP. One
important improvement is that we derive strengthened feasibility cuts exploiting the fact that solutions often
decompose into clusters. Computational experiments show that our new solution approach is able to solve
several previously unsolved benchmark instances, increasing overall the number of benchmark instances
solved to optimality within one hour of computational time.

The remainder of the paper is organized as follows. In Section 2, we recall the definition of the SD-
VRPTW and summarize several properties that are known to hold for some optimal SDVRPTW solutions.
In Section 3, we present the branch-and-cut algorithm for solving the SDVRPTW. Experimental results are
presented in Section 4 before final conclusions are drawn in Section 5.

2. Problem Definition

The SDVRPTW can be defined on a directed graph G = (V,A) with vertex set V and arc set A. The
vertex set V consists of the set N = {1, . . . , n} that represents the n customers and vertices 0 and n+ 1
that both represent the depot where vehicle routes start and end, respectively. Each customer i ∈ N has a
positive demand di that has to be fulfilled by one or more visits starting within a given time window [ei, li].
If a vehicle arrives at customer i prior to ei, it must wait until ei before starting the delivery. The planning
horizon is modeled with the help of the time window [e0, l0] = [en+1, ln+1] of the depot. Each arc (i, j) ∈ A
represents a feasible movement of a vehicle from the location of i to the location of j characterized by a
non-negative travel time tij and travel cost cij . As common practice, the additional arc (0, n+ 1) is used to
model idle vehicle. We assume that the travel time tij includes the service time (if any) at i. For each pair
of vertices i, j ∈ V, i 6= j, there exists an arc (i, j) ∈ A if ei + tij ≤ lj . A fleet of K homogeneous vehicles
each with a capacity of Q is available. The vehicles are initially housed at the depot 0 and have to return
to the depot n+ 1 at the end.

2

A route is modeled as a path from 0 to n+ 1 in G. It is feasible if the total demand delivered at the
visited customers does not exceed the vehicle capacity and the time window constraints are respected at
the visited locations. The SDVRPTW consists of determining a set of least-cost feasible routes such that all
customers’ demands are met.

From now on, throughout the paper we will assume that the triangle inequality holds for travel times tij
and costs cij , and that the service times at the customers are constant and, in particular, independent of
the quantity delivered. Given these assumptions, it is possible to prove that there exists an optimal solution
to the SDVRP(TW) in which:

Property 1. Two routes share at most one split customer (Dror and Trudeau, 1990);

Property 2. Each arc between two vertices representing customers is traversed at most once (Gendreau
et al., 2006);

Property 3. For each pair of reverse arcs between two customers at most one of them is traversed (De-
saulniers, 2010);

Property 4. All routes are elementary (Desaulniers, 2010).

Moreover, we will assume that all customer time windows are reduced so that ei ≥ e0 + t0i and li ≤
ln+1 − ti,n+1 holds for all customers i ∈ N .

If the vehicle capacity Q and all demands di for i ∈ N are integer, then there exists an optimal solution
to the SDVRPTW fulfilling Properties 1–4 and

Property 5. All delivery quantities are positive integers (Archetti et al., 2006a, 2011a).

3. Branch-and-Cut Algorithm

In this section, we present the branch-and-cut algorithm we devised for solving the SDVRPTW. In
Section 3.1, we define the relaxed compact formulation for the SDVRPTW and show how an optimal
solution to this formulation may not be feasible to the original problem. In Section 3.2, we recall the old
and introduce the new feasibility checking procedure and feasibility cuts. Finally, in Section 3.3, we present
the valid inequalities used in order to strengthen the relaxed formulation and to cut off solutions which are
infeasible to the SDVRPTW.

3.1. Relaxed Compact Formulation

The fundamental difficulty of developing a good compact formulation for the SDVRPTW comes from
several sources. First, as we want to use such a formulation within a MIP solver, it should not have variables
with vehicle indices (three-index formulation). Otherwise, the inherent symmetry makes any known branch-
ing scheme ineffective. Symmetry breaking constraints (see, e.g., Fischetti et al., 1995) can only mitigate
the negative effects of symmetry. Second, the fact that customers can be visited by several vehicles make
it impossible to attach unique resource variables to the vertices, e.g., variables indicating the accumulated
customer demand and the service time. Hence, MTZ-like formulations (see Miller et al., 1960) are not di-
rectly applicable in the split-delivery context. Third, the formulation proposed by Maffioli and Sciomachen
(1997) for the sequential ordering problem shows that resource variables may be associated with arcs. Even
if we can exploit Property 2 and associate time variables with arcs between customers, there remains the
problem that arcs between depot and customers (or vice versa) may be traversed by more than one vehicle.
Hence, no unique time variables can be associated with these arcs.

Our relaxed compact formulation is a two-commodity flow formulation with additional variables and
constraints. The first commodity represents the available vehicles and the second represents the service time
imposed by the routes. The formulation uses

(i) integer variables zi indicating the number of times vertex i ∈ N is visited by the vehicles,
(ii) integer flow variables xij indicating the flow of vehicles along arc (i, j) ∈ A, and

(iii) non-negative continuous flow variables Tij indicating the service start time at i ∈ N if a vehicle directly
travels from i ∈ N to j ∈ N .

3

Note that the continuous flow variables are defined only for arcs in N×N . In this sense, time flows originate
and terminate at vertices in N . In the remainder, we will refer to Tij as service time flow variables.

We use the following notation. Symbols Γ+(S) and Γ−(S) denote the forward and backward star of
S ⊆ N , respectively. For the sake of simplicity, we write Γ+(i) and Γ−(i) for singleton sets S = {i}. We
define A(N) = {(i, j) ∈ A : i ∈ N, j ∈ N}, Γ+

N (S) = Γ+(S) ∩ A(N), and Γ−N (S) = Γ−(S) ∩ A(N). Again,
we write Γ+

N (i) and Γ−N (i) for singleton sets S = {i}. Finally, we define KS = d
∑

i∈S di/Qe as the minimum
number of vehicles required to serve customers in set S ⊆ N .

The relaxed two-commodity flow formulation for the SDVRPTW is as follows:

min
∑

(i,j)∈A

cijxij (1a)

∑
(h,i)∈Γ−(i)

xhi =
∑

(i,j)∈Γ+(i)

xij = zi i ∈ N (1b)

∑
(0,j)∈Γ+(0)

xij = K (1c)

∑
(i,j)∈Γ+(S)

xij ≥ KS S ⊆ N, |S| ≥ 2 (1d)

eix0i +
∑

(h,i)∈Γ−N (i)

Thi +
∑

(h,i)∈Γ−N (i)

thixhi ≤
∑

(i,j)∈Γ+
N (i)

Tij + lixin+1 i ∈ N (1e)

eixij ≤ Tij ≤ lixij (i, j) ∈ A(N) (1f)

zi ≥ ddi/Qe and integer i ∈ N (1g)

xij ∈ {0, 1} (i, j) ∈ A(N) (1h)

xij ≥ 0 and integer (i, j) ∈ A \A(N) (1i)

The objective function (1a) calls for the minimization of the total travel costs. Constraints (1b) impose flow
conservation for the vehicle flow variables. The fleet size constraint is (1c). Constraints (1d) partially impose
capacity constraints and prevent the generation of paths that are not connected to the depot; an example
showing that (1d) is not sufficient is discussed below. Constraints (1e) and (1f) impose conservation for
the service time flow, ensure consistency between the Tij and xij variable values, and partially ensure time
window prescriptions. Finally, constraints (1g) and (1i) define the domains of the integer variables. Note
that the binary requirement in (1h) results from Property 2.

An optimal solution to (1) may not be feasible for the SDVRPTW as illustrated in Figure 1. The instance
depicted in Figure 1(a) shows that time window constraints can be violated by an integer solution to (1).
In this instance, the depicted arcs have cost and travel time equal to 1, while all other arcs (not shown)
have cost and travel time equal to 2. The demand di and the time window [ei, li] of the n = 5 customers are
presented close to each customer i ∈ {1, 2, . . . , 5}. The depot time window is assumed to be non-constraining,
i.e., [e0, l0] = [en+1, ln+1] = [0, 10]. The capacity of the vehicles is Q = 10. The depicted arcs having flow 1
form the unique optimal solution to the relaxed model (1). With regard to demands and vehicle capacity,
this solution can be converted into a feasible SDVRP solution, e.g., using the two routes (0, 1, 3, 4, n + 1)
and (0, 2, 3, 5, n + 1). However, with regard to time-window constraints, there is no feasible SDVRPTW
solution because neither the route (0, 1, 3, 4, n + 1) nor the route (0, 1, 3, 5, n + 1) is time-windows feasible
so that customer 1 cannot be visited by a feasible route using exclusively arcs with positive flow. However,
the following assignments T13 = 3, T23 = 1, and T34 = T35 = 3 to the service time flow variables are feasible
for model (1).

In Figure 1(b), we present another example showing that integer solutions to (1) can violate the capacity
constraints. We consider the same setting as in Figure 1(a) except that time windows are not binding and
demands have changed according to the depicted values. Note first that the solution does not violate any
capacity constraints (1d). However, neither route (0, 1, 3, 4, n+ 1) nor route (0, 2, 3, 4, n+ 1) is feasible, since
the demand of the customers with only one visit, i.e., d1 + d4 = d2 + d4 = 11 exceeds the capacity Q = 10.
Hence, customer 4 cannot be serviced by any feasible SDVRPTW route resulting from arc flows equal to 1
in the depicted solution.

3.2. Feasibility Checking

Recall that every time a feasible integer solution to the relaxed formulation (1) is found, a procedure
must check if the solution is also feasible to the SDVRPTW. If not, a feasibility cut must be inserted to

4

0

1

[e1, l1] = [3, 4]

d1 = 2

2

[e2, l2] = [1, 3]

d2 = 3

3

[e3, l3] = [2, 4]

d3 = 6

4

[e4, l4] = [3, 4]

d4 = 5

5

[e5, l5] = [3, 4]

d5 = 4

6

(a)

0

1

d1 = 4

2

d2 = 4

3

d3 = 4

4

d4 = 7

5

d5 = 1

6

(b)

Figure 1: Optimal solutions to formulation (1) that are infeasible for the SDVRPTW.

cut off the proved infeasible solution from the feasible region of the relaxed problem. In Section 3.2.1, we
first describe how the approach proposed by Archetti et al. (2014) for the SDVRP can be extended to the
SDVRPTW. Then, in Section 3.2.2, we present improvements to this basic approach.

3.2.1. Basic Approach

Let s̄ = (x̄, z̄, T̄) be an integer solution to the relaxed formulation (1), possibly augmented by branching
and cutting constraints. Let w̄ = c̄>x̄ denote the cost of the solution.

For any subset V̄ ⊆ V , we define a residual network induced by the active vehicle flow variables. We
will do this not only for V̄ = V but also for partial solutions as explained in the next section. Moreover, let
H(V̄, x̄) = (V̄, Ā) be defined by Ā = {(i, j) ∈ A ∩ (V̄ × V̄) : x̄ij ≥ 1}. Let R̄ be the set of all elementary
0-(n+ 1)-paths (routes) in H(V̄, x̄) satisfying all time-window constraints. We generate the route set R̄ by
exploring H(V̄, x̄) in a depth-first way.

An instance of the SDVRPTW, defined on the basis of V̄ and x̄ imposing the route set R̄, can be modeled
by a path-based formulation. Some additional notation is required. Let cr be the cost of route r ∈ R̄ and
N̄(r) ⊆ N̄ be the subset of customers visited by route r ∈ R̄ using the definition N̄ = V̄ \ {0, n + 1}. We
distinguish between routes R̄s visiting a single customer, i.e., routes of the form (0, v, n+ 1) for v ∈ N , and
routes R̄m visiting more than one customer. Obviously, R̄ = R̄m ∪ R̄s and R̄m ∩ R̄s = ∅. Moreover, let brij
be a binary arc indicator equal to 1 if arc (i, j) ∈ Ā(N̄) is used in route r ∈ R̄, and 0 otherwise.

The path-based formulation for the SDVRPTW, defined relatively to V̄ and x̄, uses
(i) nonnegative integer and binary variables λr indicating the number of vehicles assigned to route r ∈ R̄s

and R̄m, respectively, and
(ii) non-negative continuous variables δri indicating the quantity delivered to customer i ∈ N̄(r) by route

r ∈ R̄,
and it reads as follows:

wR̄ = min
∑
r∈R̄

crλr (2a)

s.t.
∑

r∈R̄:i∈N̄(r)

δri ≥ di i ∈ N̄ (2b)

∑
i∈N̄(r)

δri ≤ Qλr r ∈ R̄ (2c)

5

∑
r∈R̄

λr ≤ K (2d)

∑
r∈R̄

(brij + brji)λ
r ≤ 1 (i, j), (j, i) ∈ Ā(N̄), i < j (2e)

δri ≥ 0 i ∈ N̄, r ∈ R̄ (2f)

λr ∈ {0, 1} r ∈ R̄m (2g)

λr ≥ 0 and integer r ∈ R̄s (2h)

The objective function (2a) minimizes the cost of all routes in use. If the model (2) is infeasible, we set
w̄R̄ =∞. Constraints (2b) ensure that customer demands are met. Vehicle capacity constraints are imposed
by (2c). Constraint (2d) guarantees that the fleet size is respected. Property 3 implies constraints (2e).
Finally, constraints (2f)–(2h) define the domains of the δri and λr variables.

Note that constraints (2b)–(2h) do not impose that each arc (i, j) ∈ Ā is traversed exactly x̄ij times by
the selected routes. Hence, alternative SDVRPTW solutions are possible, and improving solutions are found
whenever w̄R̄ < w̄. Moreover, customer visits with zero deliveries are possible in (2), i.e., λr > 0 but δri = 0
for some i ∈ N̄(r). Due to the validity of the triangle inequality, improving (or at least not worse) feasible
solutions can be derived by removing customers with a delivery quantity of 0 from the routes in a solution
to (2). Thus, we apply a greedy post-processing procedure in order to identify high quality solutions as early
as possible in the course of the branch-and-cut. For the sake of exposition, we assume that wR̄ is updated
to the value of such an improving solution whenever one is detected.

We strengthen formulation (2a)–(2h) by the following additional constraint:∑
r∈R̄

crλr ≤ w̄∗ (2i)

This constraint imposes an upper bound on the objective value w̄R̄, where w̄∗ is the upper bound to the
SDVRPTW stored in the branch-and-cut algorithm.

In the basic approach, we restrict ourselves to residual networks H(V̄, x̄) for the complete vertex set
V̄ = V and x̄ values that are the arc flow variables of a solution s̄ = (x̄, z̄, T̄) to the relaxed model. We
summarize what actions the possible outcomes of formulation (2) impose:

(i) w̄R̄ ≤ w̄: Since also w̄ ≤ w̄∗ holds, a new and globally improving feasible integer solution to the
SDVRPTW has been found. The best known solution (value) can be updated by w̄∗ := w̄R̄ and the
branch-and-bound node can be terminated.

(ii) w̄R̄ > w̄: The current integer solution s̄ is infeasible. A feasibility cut must be added (see below).
Moreover, the resulting branch-and-bound node must be further examined. It is worth noting that the
upper bound w̄∗ can however be updated by w̄∗ := w̄R̄ if w̄R̄ < w̄∗ holds.

As in the branch-and-cut of Archetti et al. (2014) for the SDVRP, the feasibility cut that excludes the
current integer solution s̄ = (x̄, z̄, T̄), here independent from the time schedule given by T̄, is∑

(i,j)∈A\Ā

xij ≥ 1. (3)

Inequality (3) imposes that the set of active vehicle flow variables must be different from the one defining
the solution s̄. The inequality is globally valid for formulation (1).

3.2.2. Improvements

Three types of improvements compared to the basic approach are implemented in our branch-and-cut
implementation. We present them now.

Extended Arc Set Ā. Increasing the underlying arc set Ā defining the residual network H(V̄, x̄) = (V̄, Ā)
leads to a larger set of routes R̄ and herewith to generally better feasible integer SDVRPTW solutions when
solving the path-based formulation (2). At the downside, the size of the the path-based formulation (2)
increases leading to generally longer computation times. However, we found that adding all depot arcs is
often beneficial because the resulting formulation (2) remains solvable and often more and better improving
integer solutions (w.r.t. the current objective value w̄) are found. Hence, we enlarge Ā and define it as

Ā = {(i, j) ∈ A : x̄ij ≥ 1} ∪ {(0, j) : j ∈ N̄} ∪ {(i, n+ 1) : i ∈ N̄}.

The resulting larger set of routes R̄ offers the possibility to use subroutes of the original routes generated
from the residual network H(V̄, x̄).

6

0

1

2

3

12

4

5

9

6

8

7

10

11

13

14

(a)

0

1

2

3

12

4

5

9

6

8

7

10

11

13

14

(b)

Figure 2: (a) An integer solution to the relaxed formulation which is infeasible for SDVRPTW and the associated residual
network H(V, x̄), (b) Arcs that occur in the left-hand side of the standard feasibility cut (3) but not in the left-hand side of
the lifted feasibility cut (5).

Reduced Path-Based Formulation. In order to accelerate the solution of (2) by the MIP solver, we can
significantly reduce the number of continuous variables δri in this formulation. Let S̄ = {i ∈ N̄ : z̄i ≥ 2} be
the set of customers receiving split deliveries (split customers) in solution s̄. We can define variables δri only
for split customers i ∈ S̄ and routes r ∈ R̄ with i ∈ N̄(r). For the non-split customers i ∈ N̄ \ S̄, we know
that the delivery quantity (before modeled by a variable δri) is identical to diλ

r. Hence, we can reformulate
demand fulfillment and capacity constraints (2b) and (2c) and variable domains (2f) as∑

r∈R̄ :i∈N̄(r)

δri ≥ di i ∈ S̄ (4a)

∑
r∈R̄ :i∈N̄(r)

λri ≥ 1 i ∈ N̄ \ S̄ (4b)

∑
i∈S̄∩N̄(r)

δri +
∑

i∈(N̄\S̄)∩N̄(r)

diλ
r
i ≤ Qλr r ∈ R̄ (4c)

δri ≥ 0 r ∈ R̄, i ∈ S̄ ∩ N̄(r) (4d)

so that the improved formulation becomes (2a), (2e), (2g)–(2d), and (4). While (4a) is the pendant to (2b)
for the split customers, constraints (4b) ensure that each non-split customer receives its entire demand when
visited once (note that we assume that travel costs and times fulfill the triangle inequality). The new vehicle
capacity constraints are given by (4c).

Lifting of Feasibility Cuts. We now show how the feasibility cuts (3) can be lifted. Integer solutions s̄
to (1) often consist of independent clusters. Formally, let {N̄ c : c ∈ C} be the set of weakly connected
components of H(V, x̄)(N), i.e., of the vertex-induced subgraph of H(V, x̄) induced by the customers N .
Smaller SDVRPTW instances can now be defined by V̄ c = N̄ c ∪ {0, n+ 1}.

An example of an integer solution to the relaxed formulation which is infeasible for the SDVRPTW is
displayed in Figure 2(a). Here, one can see H(V, x̄) and the three weakly connected component consist of
N̄1 = {1, 2, 3, 4, 12}, N̄2 = {5, 6, 7, 8, 9}, and N̄3 = {10, 11, 13}.

The lifting procedure considers each weakly connected component: For each c ∈ C, we define x̄cij =

x̄ij if (i, j) ∈ V̄ c × V̄ c, and 0 otherwise. Then, we build H(V̄ c, x̄c), generate the routes R̄ over H(V̄ c, x̄c),
and solve the resulting formulation (2). Note that, in order to speed up the solution process, we do not
consider an extended arc set here, and we impose using each arc (i, j) ∈ V̄ c × V̄ c exactly x̄cij times. The
additional constraints to insert into formulation (2) are of the form

∑
r∈R̄ b

r
ijλ

r = x̄cij , (i, j) ∈ A. The

objective value wc
R̄

:= wR̄ must be compared against w̄c := c̄>x̄c. If (2) is infeasible or wc
R̄
> w̄c, then we

7

add the following lifted feasibility cut defined w.r.t. the weakly connected component N̄ c:∑
(i,j)∈Âc

xij ≥ 1, (5)

where the arc set Âc defining the left-hand side is

Âc = {(i, j) ∈ A ∩ (V̄ c × V̄ c) : x̄ij = 0} ∪ Γ+
N (N̄ c) ∪ Γ−N (N̄ c).

The lifted feasibility cut (5) imposes that either the set of active vehicle flow variables associated with the
internal arcs of the component N̄ c must be different from the ones positive in the solution s̄ or the component
N̄ c itself must change. The inequality is globally valid. Thus, whenever s̄ has been proved to be infeasible
to the SDVRPTW, it can be cut off by imposing to change the current solution for at least one connected
component c′ ∈ C. It happens regularly that lifted feasibility cuts for several components can be added at
the same time.

Note that Âc ⊆ A\Ā holds by definition of Ā. Therefore, the left-hand side of (5) comprises less variables
(in case of two or more components) as the original feasibility cut (3). In the example of the infeasible integer
solution Figure 2(a), the first weakly connected component N̄1 = {1, 2, 3, 4, 12} imposes a lifted feasibility
cut. The relationship between the two arc sets is displayed in Figure 2(b), where the dashed arcs are those
present in the left-hand side of the standard but not the lifted feasibility cut.

3.3. Valid Inequalities

In classical branch-and-cut algorithms the valid inequalities are used to strengthen the formulation of the
problem addressed. Since (1) is a relaxed formulation, in our algorithm the valid inequalities are also used
to cut off integer solutions to (1) that are infeasible to the SDVRPTW. While the inequalities presented in
Sections 3.3.2–3.3.5 are known from the literature, the inequalities proposed in Sections 3.3.6 and 3.3.7 are
new. The infeasible-path constraints proposed in Ascheuer et al. (2000, 2001) for the TSPTW are adapted
to the SDVRPTW in Section 3.3.6. These inequalities are then generalized to so-called path-matching
constraints in Section 3.3.7.

The inequalities presented in Section 3.3.2 are static in the sense that we insert them right from the
beginning into (1). All the other inequalities are dynamically separated at each node of the branch-and-cut
tree.

Our overall separation strategy can be summarized as follows: Only inequalities exceeding a violation of
ε = 0.05 are inserted. The classes of valid inequalities are hierarchically considered according to the order
with which they are presented in this section. The separation procedure stops as soon as violated inequalities
are found in a given class. A maximum of 500 cuts is added in each call of the separation algorithm.

3.3.1. Preliminaries

Let P be the polyhedron formed by feasible solutions to the SDVRPTW fulfilling Properties 2–5. The
polyhedron formed by solutions to the relaxed formulation (1) is denoted by PR and fulfills PR ⊇ P. While
the inequalities presented in Sections 3.3.3 and 3.3.5 are valid for P and PR, all other presented inequalities
are valid only for P.

In order to introduce valid inequalities, some additional notation is required: A path P = (v0, v1, . . . , v`)
is any sequence of vertices with (vi−1, vi) ∈ A for i ∈ {1, . . . , `}. The start vertex of the path is s(P) = v0

and the end vertex is t(P) = v`. The length of the path is ` = `(P) ≥ 1. The arcs of P are denoted by
A(P), and we define AN (P) = A(P) ∩ A(N). The vertices of P are V (P) = {v0, . . . , v`} and the internal
vertices are V int(P) = {v1, . . . , v`−1}. Note that in the SDVRPTW the internal vertices of a feasible route
are customers, i.e., V int(P) ⊆ N . For the demand of the internal vertices we use the shorthand notation
d(V int(P)) for

∑
v∈V int(P) dv. Paths of length 1 have V int(P) = ∅.

A path P with |{v1, . . . , v`}| = |{v0, v1, . . . , v` − 1}| = ` is said to be almost-elementary. All the internal
vertices of an almost-elementary path are distinct. An almost-elementary path P = (v0, v1, . . . , v`) is time-
window infeasible if there do not exist numbers T0, T1, . . . , T` such that evi ≤ Ti ≤ lvi holds for all i =
0, 1, . . . , ` and Ti−1+tvi−1,vi

≤ Ti holds for i = 1, . . . , `. Given an almost-elementary path P = (v0, v1, . . . , v`),
we define the minimum quantity d(P) to deliver along the path as

d(P) = α
(
1− δs(P),0

)
+ d(V int(P)) + α

(
1− δt(P),n+1

)
, (6)

8

where δxy ∈ {0, 1} is the Kronecker delta which is equal to 1 if x = y and 0 otherwise, and α ∈ {0, 1} is equal
to 1 if di ∈ Z+ for all i ∈ N , and Q ∈ Z+. The α-terms defining the minimum quantity to deliver exploit
Property 5. An almost-elementary path P with P 6= (0, i, n+ 1) for any i ∈ N is load infeasible if d(P) > Q.
Note that all paths P = (0, i, n+ 1) for i ∈ N of length `(P) = 2 are feasible even if d(P) = di > Q.

An almost-elementary path P = (v0, v1, . . . , v`), is said to be infeasible (for the SDVRPTW) if it does
not occur as a subpath in any route of a feasible solution to the SDVRPTW fulfilling Properties 2–5.

Definition 3.1. An almost-elementary path P = (v0, v1, . . . , v`), is infeasible if at least one of the following
condition is satisfied:

(i) P is time-window infeasible;
(ii) P is load infeasible;

(iii) P is a cycle, i.e. s(P) = t(P).

Definition 3.2. For a path P = (v0, v1, . . . , v`−1, v`) in G, the associated depot-reduced path is dr(P) equal
to

(i) P = (v0, v1, . . . , v`−1, v`) if v0 6= 0 and v` 6= n+ 1,
(ii) (v1, . . . , v`−1, v`) if v0 = 0 and v` 6= n+ 1,

(iii) (v0, v1, . . . , v`−1) if v0 6= 0 and v` = n+ 1, and
(iv) (v1, . . . , v`−1) if v0 = 0 and v` = n+ 1.

Lemma 3.3. Given an infeasible almost-elementary path P = (v0, v1, . . . , v`) with
(a) v0 = 0 and v` 6= n + 1. Then, any almost-elementary path P ′ of the form (S, dr(P)) is infeasible for

any path S, `(S) ≥ 1.
(b) v0 6= 0 and v` = n + 1. Then, any almost-elementary path P ′ of the form (dr(P), T) is infeasible for

any path T , `(T) ≥ 1.
(c) v0 = 0 and v` = n+ 1. Then, any almost-elementary path P ′ of the form (S, dr(P), T) is infeasible for

any pair of paths S, `(S) ≥ 1, and T , `(T) ≥ 1.

Proof. (a): P is time-window infeasible or load infeasible. Defining S = (0, v1) would result in P ′ = P . Any
other 1-arc path S would lead to the definition of almost-elementary path P ′ which is time-window infeasible
if P is time-window infeasible and such that d(P ′) ≥ d(P).
(b)+(c): Straightforward using similar arguments.

For the presentation of separation procedures, we assume that the current (fractional) solution of (1) is
given by s̄ = (x̄, z̄, T̄). Moreover, for any customer i ∈ N visited less than twice, i.e., z̄i < 2, π(i) and σ(i)
denote a predecessor and a successor of i in the graph induced by s̄, respectively. The different separation
procedures use individual tie-breaker rules if predecessors or successors are not unique.

3.3.2. Static Inequalities

Due to Property 3, the inequalities

xij + xji ≤ 1 (i, j), (j, i) ∈ A(N) : i < j (7)

can be imposed.

3.3.3. Capacity Cuts

Capacity cuts (1d), i.e., inequalities
∑

(i,j)∈Γ+(S) xij ≥ KS for all S ⊆ N , |S| ≥ 2, have been stated as a

part of formulation (1). We separate violated capacity cuts by applying two shrinking heuristics presented
in (Belenguer et al., 2000) and (Ralphs et al., 2003), namely the extended shrinking heuristic and the greedy
shrinking heuristic. The reader is referred to the latter reference for details.

3.3.4. 2-Path Cuts

Kohl et al. (1999) introduced 2-path cuts in order to strengthen path-based formulations of the VRPTW.
However, these inequalities solely refer to the vehicle flow on the arcs, and thus they can also be applied to
arc-based formulations. Whenever a subset S ⊆ N of the customers cannot be served with a single vehicle,
the 2-path cuts ∑

(i,j)∈Γ+(S)

xij ≥ 2 (8)

9

is valid. The precondition is fulfilled if KS > 1, i.e., the demand of the customers S exceeds the vehicle
capacity, or S ∪ {0, n+ 1} cannot be visited by a single vehicle due to time window restrictions. The latter
means that the TSPTW induced by S ∪ {0, n+ 1} is infeasible. We separate violated 2-path cuts with the
help of the greedy heuristic proposed in Kohl et al. (1999). Given the current arc-flow values x̄, the heuristic
first identifies inclusion-maximal candidate sets S with

∑
(i,j)∈Γ+(S) x̄ij < 2. Then, for each candidate set S,

an exact dynamic programming algorithm for the associated TSPTW over S ∪ {0, n + 1} is applied. If no
feasible TSPTW solution exists, a violated 2-path cut is identified.

3.3.5. Connectivity Cuts

Already the capacity cuts ensure that any subset of customers is connected to the depot. A more general
type of connectivity cuts has been used in three-index VRP formulations (Toth and Vigo, 2002, p. 15). In
the SDVRPTW, connectivity cuts are of the form∑

(i,j)∈Γ+(S)

xij ≥ zu S ⊆ N, |S| ≥ 2, u ∈ S. (9)

We identify violated connectivity cuts by solving a maximum flow problem for each customer i ∈ N using
the software library devised by Boykov and Kolmogorov (2004). Only the violated connectivity cuts with
u? = argmaxu∈S{zu} are inserted into (1).

3.3.6. Infeasible-Path Constraints

The generalization of infeasible-path constraints first introduced by Ascheuer et al. (2000, 2001) for the
TSPTW is as follows:

Proposition 3.4. For all infeasible almost-elementary paths P with `(P) ≥ 3, the infeasible-path constraint∑
(i,j)∈AN (P)

xij −
∑

v∈V int(P)

zv ≤ −δs(P),0 − δt(P),n+1 (10)

is valid for the polyhedron P.

Proof. Note first that if s(P) = 0, i.e., the path P starts at the depot, then the first arc of the path does not
contribute to the left-hand side, since only arcs in AN (P) are considered. At the same time the right-hand
side decreases by 1 due to the term −δs(P),0. The respective statement is true if t(P) = n+ 1, i.e., when the
path ends at the depot n+ 1.

In any case, a violation
∑

(i,j)∈AN (P) x̄ij−
∑

v∈V int(P) z̄v > −δs(P),0−δt(P),n+1 of the above inequality (10)

by an integer solution is only possible if x̄ij = 1 for all (i, j) ∈ AN (P) and z̄v = 1 for all vertices v ∈ V int(P).
This means that the vertices in V int(P) are visited only once and exactly in the sequence defined by path P .
Hence, dr(P) must be a subpath of a feasible SDVRPTW route, which is impossible due to the infeasibility
of P and Lemma 3.3.

Infeasible-path constraints (10) are separated as follows. The predecessors π(i) and successors σ(i) for
i ∈ N are undefined if z̄i ≥ 1.5. We repeat the separation heuristic three times using one of the following
rules to determine predecessors and successors for the other customers i with z̄i < 1.5:

π(i) = argmin
h∈N

{|1− x̄hi|}, σ(i) = argmin
j∈N

{|1− x̄ij |}; (Rule 1)

π(i) = argmax
h∈N

{max(ei, eh + thi)x̄hi}, σ(i) = argmax
j∈N

{max(lj , ei + tij)x̄ij}; (Rule 2)

π(i) = argmax
h∈N

{dhx̄hi}, σ(i) = argmax
j∈N

{dj x̄ij}. (Rule 3)

After the initialization step, for each customer i ∈ N , we start with the almost-elementary path P = (i)
and extend it iteratively adding predecessors of s(P) or successors of t(P) to the respective endpoint. The
extension stops when s(P) has an undefined predecessor and t(P) has an undefined successor. The resulting
almost-elementary path P , if infeasible (see Definition 3.1), is then checked to violate the corresponding
infeasible-path constraint (10) that is eventually added.

Each time a load infeasible almost-elementary path P is found, we also check if the corresponding capacity
cut (1d) for S = V int(P) is violated. If so, we add the violated capacity cut.

10

P in
1

P in
2

P in
3

P out
1

P out
2

P out
3

i

(a)

P in
1

P in
2

P in
3

P out
1

P out
2

P out
3

i

(b)

P in
1

P in
2

P in
3

P out
1

P out
2

P out
3

i

(c)

P in
1

P in
2

P in
3

P out
1

P out
2

P out
3

i

(d)

P in
1

P in
2

P in
3

P out
1

P out
2

P out
3

i

(e)

Figure 3: Examples of stretched stars S(i, 3, P in, P out).

3.3.7. Path-Matching Constraints

Path-matching constraints generalize infeasible-path constraints (10). We introduce them in order to cut
off infeasible configurations such as those depicted in Figure 1.

Definition 3.5. Let i ∈ N , p ≥ 1, and P in
1 , P in

2 , . . . , P in
p and P out

1 , P out
2 , . . . , P out

p be paths with the following
properties:

(i) All paths P in
1 , P in

2 , . . . , P in
p have end vertex i (in-paths), i.e., t(P in

j) = i for 1 ≤ j ≤ p.
All paths P out

1 , P out
2 , . . . , P out

p have start vertex i (out-paths), i.e., s(P out
k) = i for 1 ≤ k ≤ p.

(ii) Internal vertices of all in- and out-paths are disjoint: V int(P in
j) ∩ V int(P in

j′) = ∅ for 1 ≤ j, j′ ≤ p,

j 6= j′; V int(P out
k) ∩ V int(P out

k′) = ∅ for 1 ≤ k, k′ ≤ p, k 6= k′; V int(P in
j) ∩ V int(P out

k) = ∅ for
1 ≤ j, k ≤ p.

(iii) All concatenations of in-paths and out-paths, in the following denoted by (P in
j , P out

k), are almost-
elementary for all 1 ≤ j, k ≤ p.

(iv) If there is an in-path P in
j = (0, i), then (P in

j , P out
k) is not infeasible for all out-paths P out

k for 1 ≤ k ≤ p.

If there is an out-path P in
k = (i, n + 1), then (P in

j , P out
k) is not infeasible for all in-paths P in

j for
1 ≤ j ≤ p.

(v) In-paths P in
j = (0, i) and out-paths P in

k = (i, n+ 1) do not occur together.

Such a set of in-paths P in = {P in
1 , P in

2 , . . . , P in
p } and out-paths P out = {P out

1 , P out
2 , . . . , P out

p } is called a

stretched star and denoted by S(i, p, P in, P out).

Examples of five different stretched stars are depicted in Figure 3.

Given a stretched star S(i, p, P in, P out), any concatenated path (P in
j , P out

k) for 1 ≤ j, k ≤ p can be
tested for infeasibility. While we use identical definitions of time-window infeasible paths and cycles as in
Definition 3.1, a modified definition of load infeasible paths is required here. It is based on another definition
of the minimum quantity d(P) to deliver along a path P , cf. (6), now defined as

d(P in
j , P out

k) = α(1− δs(P in
j),0) + d(V int(P in

j)) + α+ d(V int(P out
k)) + α(1− δt(P out

k),n+1). (11)

Thus, a path (P in
j , P out

k) is load infeasible if d(P in
j , P out

k) > Q.

Definition 3.6. Let M ∈ {0, 1}m×n be any binary matrix. We define the associated bipartite graph B(M) =
(P ∪ Q,EM) by vertices P = {p1, . . . , pm} and Q = {q1, . . . , qn} (the bi-partition), and edges EM =
{{pi, qj} : mij = 1 for 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

11

Let M(P in, P out) = (mjk) denote the compatibility matrix between the in-paths and out-paths, with
mjk = 0 if path (P in

j , P out
k) is infeasible, and mjk = 1 otherwise. We define the compatibility number

nM = nM (P in, P out) as the size of a maximum-cardinality matching in the bipartite graph B(M(P in, P out)).

Definition 3.7. A stretched star S(i, p, P in, P out) is called infeasible if nM (P in, P out) < p.

Define the number nD = nD(P in, P out) of paths with a depots in the stretched star S(i, p, P in, P out) by
nD = |{j : 1 ≤ j ≤ p, s(P in

j) = 0}|+ |{k : 1 ≤ k ≤ p, t(P out
k) = n+ 1}|.

Theorem 3.8. For all infeasible stretched stars S(i, p, P in, P out), the path-matching constraint

p∑
j=1

 ∑
(g,h)∈AN (P in

j)

xgh −
∑

v∈V int(P in
j)

zv

+

p∑
k=1

 ∑
(g,h)∈AN (P out

k)

xgh −
∑

v∈V int(P out
k)

zv

− zi ≤ nM − nD (12)

with nM = nM (P in, P out) and nD = nD(P in, P out) is valid for the polyhedron P.

Proof. For convenience, we define the number of short-depot paths (length 1) and long-depot paths (length
greater than 1) as

nshortD := |{1 ≤ j ≤ p : P in
j = (0, i)}|+ |{1 ≤ k ≤ p : P out

k = (i, n+ 1)}|

nlongD := |{1 ≤ j ≤ p : s(P in
j) = 0, `(P in

j) > 1}|+ |{1 ≤ k ≤ p : t(P out
k) = n+ 1, `(P out

k) > 1}|.

Then, nD = nshortD + nlongD .
Let s̄ = (x̄, z̄, T̄) be a feasible integer solution to the SDVRPTW. The multiset A(x̄) comprises exactly

x̄ij copies of each arc (i, j) ∈ A. We will show that s̄ is not cut off by any path-matching constraint associated
with an infeasible stretched star S(i, p, P in, P out). For the sake of exposition, we distinguish the following
two cases for the infeasible stretched star:

(i) All in-paths and out-paths consist of single arcs;
(ii) Arbitrary in-paths and out-paths.

Case (i): All in-paths are of the form P in
j = (vj , i) with vj ∈ V and all out-path are of the form P out

k = (i, vk)

with vk ∈ V as shown in Figure 3(a–c). With the definitions A(N)in = {(vj , i) : 1 ≤ j ≤ p, vj ∈ N} and
A(N)out = {(i, vk) : 1 ≤ k ≤ p, vk ∈ N}, the path-matching constraint (12) reduces to∑

(h,i)∈A(N)in

xhi +
∑

(i,h)∈A(N)out

xih − zi ≤ nM − nD.

Moreover, we know that in the given feasible integer solution the customer i is visited exactly z̄i times.
Consider the star (i, z̄i,Γ

−(i) ∩ A(x̄),Γ+(i) ∩ A(x̄)) imposed by the integer feasible solution. It induces
a compatibility matrix M̄ = (m̄jk) of dimension z̄i × z̄i and a maximum-cardinality matching of value
nM̄ = z̄i = |Γ−(i) ∩A(x̄)| = |Γ+(i) ∩A(x̄)|.

Since the value of the left-hand side of the path-matching constraint is |A(N)in ∩ A(x̄)| + |A(N)out ∩
A(x̄)|, we now consider the submatrix M ′ of M̄ corresponding to the rows/arcs A(N)in ∩ A(x̄) and the
columns/arcs A(N)out ∩ A(x̄). Note that M ′ results from M̄ by the elimination of exactly nin = |Γ−(i) ∩
A(x̄)| − |A(N)in ∩ A(x̄)| rows and nout = |Γ+(i) ∩ A(x̄)| − |A(N)out ∩ A(x̄)| columns. This operation is
equivalent to the removal of nin vertices from the first and of nout vertices from the second partition of
B(M̄). The maximum-cardinality matching in B(M̄) of size z̄i hence induces a matching in B(M ′) of size
not smaller than z̄i − nin − nout. (Note that in general, the elimination of exactly w vertices from a graph
cannot remove more than w edges from any matching.)

Consider then the submatrix M̂ of M = M(P in, P out) resulting from the elimination of nshortD rows
or columns associated with the arcs (0, i) or (i, n + 1). (Note that condition (v) in the Definition 3.5 of
a stretched star ensures that it is either rows or columns but not both.) According to condition (iv) of
Definition 3.5, the nshortD arcs are part of the maximum-cardinality matching in B(M), since otherwise the
matching would not have had maximum cardinality. Then, the size of a maximum-cardinality matching in
B(M̂) cannot be greater than nM − nshortD .

Since M ′ is a submatrix of M̂ , it follows

nM − nshortD ≥ n
M̂
≥ nM ′ ≥ z̄i − nin − nout. (13)

12

Now, we have ∑
(h,i)∈A(N)in

x̄hi +
∑

(i,h)∈A(N)out

x̄ih

= |A(N)in ∩A(x̄)|+ |A(N)out ∩A(x̄)|
= (z̄i − nin) + (z̄i − nout) (14a)

= z̄i + z̄i − nin − nout

≤ z̄i + nM − nshortD (14b)

= z̄i + nM − nD (14c)

where (14a) results from the definition of nin and nout using z̄i = |Γ−(i)∩A(x̄)| = |Γ+(i)∩A(x̄)|, (14b) uses
(13), and (14c) is the assumption nD = nshortD of Case (i). Subtracting z̄i from (14) shows that the feasible
integer solution satisfies the path-matching constraint in Case (i).

Case (ii): This is the case of in-paths and out-path of arbitrary length as shown in Figure 3(d–e). Consider
the largest star (i, z̄i, P̄

in, P̄ out) fulfilling conditions (i)–(iv) of Definition 3.5 imposed by the integer feasible
solution. Such a star is unique because conditions (ii) and (iii) impose that all internal vertices are non-split
customers so that in a largest star all in-paths/out-paths either start/end at the depot 0/n + 1 or at split
customers. Moreover note that condition (iv) is not restrictive for the definition of the largest star. Indeed, if
condition (iv) would not be fulfilled, then at least one in-path or out-path would be infeasible, i.e., the integer
solution s̄ would be infeasible, which contradicts with our assumption of a feasible integer solution. The star
(i, z̄i, P̄

in, P̄ out) induces a compatibility matrix M̄ = (m̄jk) of dimension z̄i× z̄i and a maximum-cardinality
matching of value nM̄ = z̄i = |P̄ in| = |P̄ out|.

We now consider the star S(i, p, P in
j , P out

k) defining the path-matching constraint (12). For each in-path

P in
j 6= (0, i), its depot-reduced path dr(P in

j) may occur as a subpath of the integer solution s̄. We define the
set of these in-paths by

P ′
in

:= {P in
j : 1 ≤ j ≤ p, P in

j 6= (0, i), P̄ in
j′ = (Sj′ , dr(P

in
j)) for some j′ and some path Sj′ , `(Sj′) ≥ 1}.

Similarly, for each out-path P out
k 6= (i, n + 1), its depot-reduced path dr(P out

k) may occur as a subpath of
the integer solution, and we define the corresponding set

P ′
out

:={P out
k : 1≤k≤p, P out

k 6=(i, n+ 1), P̄ out
k′ =(dr(P out

k), Tk′) for some k′ and some path Tk′ , `(Tk′) ≥ 1}.

Note that by definition both sets do not include short-depot paths. Each in-path P in
j ∈ P ′in is uniquely

associated with an in-path P̄ in
j′ ∈ P̄ ′in ⊆ P̄ in, and vice versa. Similarly, each out-path P out

k ∈ P ′
out

is

uniquely associated with an out-path P̄ out
k′ ∈ P̄ ′out ⊆ P̄ out, and vice versa. The following equalities hold:

|P ′in| = |P̄ ′in|, (15a)

|P ′out| = |P̄ ′out|. (15b)

We will consider the submatrix M ′ of M̄ corresponding to the rows inducing P ′
in

and the columns
inducing P ′

out
. It results from M̄ by the elimination of exactly nin = |P̄ in| − |P̄ ′in| rows and nout =

|P̄ out| − |P̄ ′out| columns. There is also a submatrix ̂̂M of M = M(P in, P out) corresponding to the rows

P ′
in

and the columns P ′
out

. Since compatibility is conserved on subpaths, the relation M ′ ≤ ̂̂M holds
(componentwise) so that we know nM ′ ≤ n̂̂

M
. Similar to Case (i), we define a submatrix M̂ of M resulting

from the elimination of nshortD rows (or columns) associated with the short depot-paths (0, i) and (i, n+ 1).

The matrix ̂̂M is a submatrix of M̂ so that n̂̂
M
≤ n

M̂
holds. Also here the nshortD arcs are part of the

maximum-cardinality matching in B(M) so that the size of a maximum-cardinality matching in B(M̂)
cannot be greater than nM − nshortD . Putting all these results together, we get

nM − nshortD ≥ n
M̂
≥ n̂̂

M
≥ nM ′ ≥ z̄i − nin − nout, (16)

which is the analogue to (13) of Case (i).

13

For the jth in-path P in
j with P in

j 6= (0, i), the term∑
(g,h)∈AN (P in

j)

xgh −
∑

v∈V int(P in
j)

zv + δs(P in
j),0 (17a)

is bounded by 1 (from above) and is 1 if x̄gh = 1 for all (g, h) ∈ AN (P in
j) and z̄v = 1 for all v ∈ V int(P in

j).
This means that all internal vertices are customers that are visited exactly once and exactly in the sequence
defined by P in

j , which is equivalent to the condition P in
j ∈ P ′in. Note the similarity of the arguments to

those used in the proof of the infeasible-path constraints (10) (proof of Proposition 3.4).
The same can be said for the term∑

(g,h)∈AN (P out
k)

xgh −
∑

v∈V int(P out
k)

zv + δt(P out
k),n+1 (17b)

of the kth out-path P out
k , P out

k 6= (i, n + 1). A contribution of 1 occurs only if the internal vertices are
non-split customers that are served exactly in the sequence defined by P out

k , equivalent to P out
k ∈ P ′out;

otherwise the contribution is 0 or negative.
The following inequalities result:

p∑
j=1

 ∑
(g,h)∈AN (P in

j)

x̄gh −
∑

v∈V int(P in
j)

z̄v

+

p∑
k=1

 ∑
(g,h)∈AN (P out

k)

x̄gh −
∑

v∈V int(P out
k)

z̄v

+ nlongD

=
∑

P in
j 6=(0,i)

 ∑
(g,h)∈AN (P in

j)

x̄gh −
∑

v∈V int(P in
j)

z̄v + δs(P in
j),0

︸ ︷︷ ︸
=1, if dr(P in

j) is in the solution s̄; ≤ 0, otherwise

(18a)

+

p∑
P out

k 6=(i,n+1)

 ∑
(g,h)∈AN (P out

k)

x̄gh −
∑

v∈V int(P out
k)

z̄v + δt(P out
k),n+1

︸ ︷︷ ︸
=1, if dr(P out

k) is in the solution s̄; ≤ 0, otherwise

≤ |P ′in|+ |P ′out| (18b)

= |P̄ ′in|+ |P̄ ′out| (18c)

= (z̄i − nin) + (z̄i − nout) (18d)

= z̄i + z̄i − nin − nout

≤ z̄i + nM − nshortD (18e)

Equality (18a) holds because short-depot paths P in
j = (0, i) and P out

k = (i, n + 1) contribute with 0 to the

sum, and nlongD is identical to the sum of the δ-values of the non-depot paths in the star. Inequality (18b)
follows from (17), (18c) from (15), and (18d) from the definition ofM ′ having dimension (z̄i−nin)×(z̄i−nout).
For the inequality (18e), we use (16), i.e., z̄i − nin − nout ≤ nM − nshortD .

Subtracting nlongD and z̄i from (18) and using the equality nD = nshortD + nlongD shows that the path-
matching constraint (12) does not cut off the feasible integer solution s̄ in Case (ii).

Example 3.9. Consider the infeasible integer solution to the 5-customer SDVRPTW depicted in Fig-
ure 1(a). Defining the stretched star (i = 3, p = 2, P in, P out) with P in

1 = (1, 3), P in
2 = (2, 3), P out

1 = (3, 4),
and P out

2 = (3, 5), we can immediately see that (P in
1 , P out

1) = (1, 3, 4) and (P in
1 , P out

2) = (1, 3, 5) are time-
window infeasible, while (P in

2 , P out
1) = (2, 3, 4) and (P in

2 , P out
2) = (2, 3, 5) are time-window feasible. This

leads to

M =

(
0 0
1 1

)
with nM = 1 < p = 2

and the associated path-matching constraint is

x13 + x23 + x34 + x35 − z3 ≤ 1− 0 = 1,

14

which cuts off the infeasible integer solution.
Now consider the instance and solution given in Figure 1(b). Using the same stretched star, we compute

d(P in
1 , P out

1) = d(P in
1 , P out

2) = d(P in
2 , P out

1) = d(P in
2 , P out

2) = 1 + 1 + 1 = 3. With a capacity Q = 10, all
in-paths are compatible with all out-paths leading to nM = 2. Hence, the stretched star is not infeasible in
this case. Indeed, the above constraint x13 + x23 + x34 + x35 − z3 ≤ 1 is not valid for the polyhedron P
of the second instance. For example, the routes (0, 1, 3, 4, n + 1), (0, 2, 3, 5, n + 1), and (0, 1, 4, n + 1) with
appropriate delivery quantities form a feasible integer solution that does not fulfill the inequality.

However, we can define the larger stretched star (i = 3, p = 2, P in, P out) with P in
1 = (0, 1, 3), P in

2 =
(0, 2, 3), P out

1 = (3, 4, n+ 1), and P out
2 = (3, 5, n+ 1) for the second instance. Then, the minimum quantities

to deliver are

d(P in
1 , P out

1) = d(P in
2 , P out

1) = 0 + 4 + 1 + 7 + 0 = 11 > Q

d(P in
1 , P out

2) = d(P in
2 , P out

2) = 0 + 4 + 1 + 1 + 0 = 6 ≤ Q.

We get

M =

(
1 0
1 0

)
with nM = 1 < p = 2 and nD = 4,

and the associated path-matching constraint is

(x13 − z1) + (x23 − z2) + (x34 − z4) + (x35 − z5)− z3 ≤ 1− 4 = −3,

which cuts off the infeasible integer solution (−2 6≤ −3). However, the feasible solution with routes (0, 1, 3, 4, n+
1), (0, 2, 3, 5, n+ 1), and (0, 1, 4, n+ 1) is not cut off because the left-hand side is -4 (note that z̄1 = z̄4 = 2
in this solution).

For p = 1, properties (i)-(iii) and (v) of Definition 3.5 impose the stretched star S(i, 1, P in, P out) to be
an almost-elementary path P = (P in

1 , P out
1) = (v0, v1, . . . , v`) such that `(P) ≥ 2. Moreover, property (iv)

ensures that P is not infeasible if v1 = i and v0 = 0, or v`−1 = i and v` = n + 1. The set of infeasible
almost-elementary paths induced by the stretched stars S(i, 1, P in, P out) is thus included in the set of all
infeasible almost-elementary paths. For this reason, path-matching constraints (12) are separated only for
infeasible stretched stars with p ≥ 2.

Separation proceeds as follows: For each customer i ∈ N , we define p = p(i) = bzi+ 1
2c, and if p ≥ 2 we try

to find violated inequalities for stretched stars of the form S(i, p, P in, P out). Tentative in-paths P in
1 , . . . , P in

p

and out-paths P out
1 , . . . , P out

p are iteratively constructed. Initially, all in-paths and out-path consist of single
arcs only (like in Figure 3(a–c)) resulting from the p arcs (v, i) ∈ Γ−(i) and the p arcs (i, v) ∈ Γ+(i) with
maximum flow x̄vi and x̄iv (depot arcs with flow greater than 1 can lead to multiple copies of these arcs). In
each iteration, it is first tested wether the current stretched star S(i, p, P in, P out) imposes a violated path-
matching constraint. To do this, the difference between left-hand and right-hand side of (12) is computed.
This requires to determine nM for M = M(P in, P out) for which we compute the compatibility matrix M
and then solve a (small) matching/assignment problem using a network flow solver. If nM = p the next
steps for computing the possible violation of (12) can be skipped. Otherwise (the stretched star is infeasible
in this case), the values of the left-hand side of (12) and of nD = nD(P in, P out) are computed. This latter
computation is rather simple because from one iteration to the next we always add only a single arc to
only one of the in-paths or out-paths. This next arc is one giving the highest contribution to the left-hand
side of the path-matching constraint (12). More precisely, for arcs (g, h) ∈ A that can extend an in-path
P in
j , i.e., h = s(P in

j) for some j ∈ {1, 2, . . . , p}, the contribution is x̄gh − z̄h, while arcs (g, h) ∈ A that
can extend an out-path P out

k , i.e., g = t(P out
k) for some k ∈ {1, 2, . . . , p}, the contribution is x̄gh − z̄g.

Moreover, we require g = π(h) for in-paths and σ(g) = h for out-paths to make the extensions unique,
where predecessors and successors are defined as in Section 3.3.6 by Rule 1; this also includes that all
internal vertices v ∈ V int(P in

j) ∪ V int(P out
k) fulfill z̄v < 1.5. Iterations stop as soon as all in-paths have no

predecessor π(s(P in
j)) of their start vertex s(P in

j) and all out-paths have no successor σ(t(P out
k)) of their

last vertex t(P out
k).

4. Experimental Analysis

We test the branch-and-cut algorithm on the same benchmark instances also considered by Gendreau
et al. (2006), Desaulniers (2010), and Archetti et al. (2011b). These instances have been derived from the

15

Table 1: Results obtained with the Baseline branch-and-cut algorithm not using the new classes of valid inequalities.

Instances Results

Class Q # Solved Time z∗ Nodes Feas. checks

R1 30 12 3 1 617.9 15 459.9 13 553.5 71.3
50 12 2 1 530.3 10 674.7 16 554.9 59.5

100 12 2 1 500.8 7 640.6 18 400.3 23.0
C1 30 9 3 1 372.7 15 986.4 13 525.0 2 691.7

50 9 6 687.2 10 131.8 12 793.8 1 090.3
100 9 6 725.7 5 835.5 11 331.3 346.4

RC1 30 8 8 17.6 27 395.1 148.3 18.1
50 8 8 64.7 18 151.3 2 696.4 140.0

100 8 7 470.5 10 238.0 28 291.2 48.7
R2 30 11 0 1 800.1 15 281.0 14 989.9 87.6

50 11 1 1 656.1 10 411.4 16 727.8 173.5
100 11 1 1 643.3 6 931.4 17 415.0 66.4

C2 30 8 0 1 800.1 17 547.3 13 445.4 258.1
50 8 1 1 614.2 11 450.6 17 653.9 173.4

100 8 5 1 142.2 6 847.6 16 367.3 773.4
RC2 30 8 8 19.0 27 395.0 301.1 22.9

50 8 8 87.3 16 996.3 6 634.6 148.0
100 8 8 81.7 9 348.1 6 216.6 12.6

Total/Weighted Avg. 168 77 1 067.4 13 182.7 13 068.2 329.6

VRPTW benchmark of Solomon (1987) by allowing split deliveries. The 56 instances are divided into six
classes R1, C1 , RC1, R2, C2, and RC2 with 100 customers each, where customers in the C instances are
clustered in a 100 x 100 square, in the R instances they are randomly located, and in the RC instances the
locations are mixed. The time window constraints of the R1, C1, and RC1 instances are more restrictive
than those of the R2, C2, and RC2 instances. For each of the 100-customer instances, smaller instances have
been constructed by considering the first 25 and 50 customers only. For defining SDVRPTW instances with
different split characteristics, the vehicle capacity is varied by Q = 25, 50 and 100. The total number of
benchmark instances for the SDVRPTW is thus 504 = 56× 3× 3.

The branch-and-cut algorithm is implemented in C++ using CPLEX 12.6.0.1 with Concert Technology,
compiled in release mode with MS Visual C++ 2013, experiments are carried out on a 64-bit Windows 10
PC with the Intel Xeon processor E5-1650v3, 3.50 GHz, and 64 GB of RAM allowing a single thread for
each run. CPLEX built-in cuts have been used in all experiments. Due to numerical instability we set
IloCplex::NumericalEmphasis = CPX ON and IloCplex::EpGap = 1.0e-5. CPLEX’s default values are
kept for all the remaining parameters. At each run, we provide an initial feasible solution computed with a
straightforward greedy constructive heuristic described in Section A of the Appendix.

4.1. Analysis of New Components of Branch-and-Cut

For the analysis of the branch-and-cut components, we restrict ourselves to the 168 instances with 50
customers because the other instances are generally either very easy or prohibitively hard to solve. We
define Baseline as the version of the branch-and-cut algorithm in which all the classical valid inequalities,
i.e., static inequalities (7), capacity cuts (1d), 2-path cuts (8), and connectivity cuts (9) are available,
but no infeasible-path and no path-matching constraints are separated. Regarding feasibility, the improved
feasibility cuts (5) are used. Here and in the following experiments, the run time for each SDVRPTW
instance is limited to 1,800 seconds.

The results of the Baseline branch-and-cut algorithm are presented in Table 1. We report, for each
group of instances, the number of instances solved to proven optimality (Solved), the average computation
time (Time) in seconds, the average lower bound (z∗), the average number of branch-and-bound nodes
inspected (Nodes), and the average number of feasibility checks performed (Feas. checks). In total, 77 of the
168 instances are solved to optimality with the Baseline branch-and-cut algorithm.

In a first experiment, we compare Baseline against ClassicalFeasCut, that is, the branch-and-cut
algorithm with classical feasibility cuts (3) instead of improved cuts (5). Table 2 summarizes values for
computation time (Time), number of branch-and-bound nodes (Nodes), and number of feasibility checks
(Feas. checks) as average ratios relative to Baseline. More precisely, the numbers presented under columns

16

Table 2: Results obtained without using the new classes of valid inequalities and by using feasibility cuts (3) instead of (5).

Classical Feasibility Cuts (3)

Instances Ratio

Class Q # Solved Time Nodes Feas. checks

R1 30 12 2 1.05 1.00 1.36
50 12 2 1.07 1.13 1.37

100 12 2 1.00 1.01 1.17
C1 30 9 2 1.05 0.80 1.04

50 9 1 5.34 2.15 7.69
100 9 5 1.19 0.91 1.61

RC1 30 8 7 6.31 5.96 13.14
50 8 1 13.36 2.70 10.98

100 8 5 6.00 3.96 22.07
R2 30 11 0 1.00 0.97 1.08

50 11 1 1.02 1.02 1.26
100 11 1 1.05 1.04 1.12

C2 30 8 0 1.00 1.59 2.16
50 8 0 1.24 1.15 1.66

100 8 5 1.28 1.10 1.98
RC2 30 8 8 1.04 0.79 4.44

50 8 3 6.87 2.46 9.28
100 8 7 4.20 4.14 10.50

Total/Geom. Mean 168 52 1.83 1.45 2.74

Ratio are geometric means of the ratios of Time, Nodes, and Feas. checks taken over the eight to twelve
instances of each class. For example, the number 1.05 in the first row means that the average ratio
TimeClassicalFeasCut

TimeBaseline is above 1, indicating that the use of strengthened feasibility cuts accelerates the branch-
and-cut by this factor on average for the group R1 with 50 customers and with capacity Q = 30. The last
row of Table 2 is the geometric mean over all 168 instances.

The most striking result is that only 52 of the 168 instances are solved to optimality with classical
feasibility cuts compared to 77 instances solved with the Baseline algorithm. Moreover, computation times
of the version with classical cuts are consistently longer, on average the factor is 1.83. The impact on run
times however strongly depends on the group of instances. It is most pronounced for the groups RC1 and
RC2. The effect on the number of feasibility checks is also substantial as for groups RC1 and group RC2
with Q = 100 the average number of feasibility checks is reduced by a factor of more than 10 when improved
feasibility cuts (5) are applied. Summing up, closing the very last percentages of the optimality gap often
requires a large number of feasibility tests because many integer solutions are then found close the optimum.
When many of them are infeasible, feasibility cuts have to be applied. What distinguishes our branch-and-
cut from previous branch-and-cut algorithms such as the one by Archetti et al. (2014) for the SDVRP is
that the new feasibility cuts keep lower bounds improving, while with the classical feasibility cuts (3) the
process is often stalling. The results shown in Table 2 are a very clear indication that strengthening feasibility
cuts is crucial for branch-and-cut using relaxed formulations. All following results therefore compare with
Baseline, which includes the improved feasibility cuts (5).

In the next series of experiments, we analyze how much the new classes of valid inequalities contribute
to the performance of the branch-and-cut algorithms. We compare Baseline against branch-and-cut al-
gorithms in which (a) only infeasible-path constraints (InfPathOnly), (b) only path-matching constraints
(PathMatchOnly), and (c) both types of constraints (Both) are separated. Table 3 is composed as Table 2.

Overall, Baseline solves only 77 instances, while all variants using new valid inequalities solve 92, 87, and
94 instances to proven optimality. The combination of infeasible-path constraints (10) and path-matching
constraints (12) in Both is not only superior regarding the number of optimal solutions, it is also faster on
average, reducing the average runtime to a factor of 0.65. Only for groups R1 with Q = 50 and Q = 100, RC1
with Q = 30, and R2 with Q = 30, the average run time is superior with the setting PathMatchOnly. With
Both, the number of feasibility checks is reduced to less than one forth on average compared to Baseline.
Interestingly, the number of inspected branch-and-bound nodes is higher in Both than in InfPathOnly,
which is however a positive result, as more nodes are processed in less time.

We originally planned to also include a comparison of the best lower bounds z∗ into Table 3. However, it

17

Table 3: Effectiveness of the new classes of valid inequalities.

Instances Infeasible-Path Constr. (10) Path-Matching Constr. (12) Both (10) and (12)

Ratio Ratio Ratio

Class Q # Sol. Time Nodes Feas. ch. Sol. Time Nodes Feas. ch. Sol. Time Nodes Feas. ch.

R1 30 12 3 1.03 0.72 0.61 2 1.04 0.93 0.53 3 0.93 0.88 0.38
50 12 3 1.07 0.77 0.61 2 0.96 0.90 0.39 3 1.14 1.13 0.23

100 12 2 1.07 0.71 0.64 2 1.00 0.91 0.43 2 1.05 0.91 0.44
C1 30 9 9 0.35 0.18 0.02 8 0.58 0.53 0.43 8 0.27 0.16 0.05

50 9 9 0.43 0.24 0.08 8 0.84 0.71 0.29 9 0.38 0.23 0.05
100 9 9 0.62 0.39 0.15 7 0.62 0.60 0.16 9 0.44 0.37 0.07

RC1 30 8 8 1.47 0.43 0.40 8 1.23 1.08 1.18 8 1.57 0.68 0.58
50 8 8 0.13 0.03 0.04 8 0.27 0.13 0.06 8 0.13 0.02 0.04

100 8 7 0.73 0.40 0.45 7 0.63 0.51 0.33 8 0.34 0.25 0.28
R2 30 11 0 1.00 0.70 0.76 1 0.99 0.86 0.43 0 1.00 0.81 0.49

50 11 1 1.07 0.71 1.01 2 0.99 0.88 0.37 2 0.95 0.80 0.52
100 11 1 1.01 0.67 0.64 1 1.04 0.93 0.22 1 1.00 0.85 0.22

C2 30 8 1 0.97 0.59 0.39 0 1.00 1.05 1.01 1 0.96 1.41 0.29
50 8 1 0.99 0.66 0.56 1 0.95 0.94 0.56 2 0.95 0.82 0.64

100 8 6 0.98 0.61 0.56 6 0.78 0.83 0.18 6 0.70 0.67 0.21
RC2 30 8 8 0.98 0.29 0.56 8 1.27 0.73 1.01 8 0.76 0.15 0.42

50 8 8 0.20 0.01 0.07 8 0.26 0.06 0.10 8 0.17 0.01 0.06
100 8 8 1.21 0.57 0.78 8 0.97 0.82 0.62 8 0.74 0.49 0.55

Total/Geom. Mean 168 92 0.76 0.37 0.34 87 0.81 0.65 0.36 94 0.65 0.40 0.23

turned out that the best lower bounds z∗ do not differ much between the Baseline setup and the variants
InfPathOnly, PathMatchOnly, and Both. Indeed, all ratios are 1.00, possibly different in the following digits.
In particular, for the instances that are not solved, the remaining optimality gap is less than 1 % in about
one fifth of the cases (16 out of 74 instances).

We conclude our study of the different classes of valid inequalities on the behavior of the branch-and-cut
with an overview on number of separated cuts and separation times. We analyze the overall separation
strategy described in at the beginning of Section 3.3. In Table 4, we report for each group of instances
and each class of valid inequalities (all classes are available), the average number of generated cuts (#cuts)
and the percentage of time (%time) spent with separation. It is clearly shown in the table that, with a few
exceptions, capacity cuts are most frequently separated, which does not seem unusual because they are on
the first level of the separation hierarchy. However, the average time for capacity cut separation remains
below 4.8 % never exceeding 11.1 % in the maximum. All other classes of cuts are less frequently separated
and consume even less time. The average remaining computing time of 86.1 % is consumed by internal
procedures of the CPLEX solver for LP re-optimization, internal cuts separation, and primal heuristics etc.

4.2. Comparison with Branch-and-Price-and-Cut Algorithms

Up to now, the predominant exact solution algorithms for the SDVRPTW are based on path-based formu-
lations solved with branch-and-price (see Section 1). We compare our new branch-and-cut approach against
the currently leading branch-and-price(-and-cut) implementations presented by Archetti et al. (2011b) and
Luo et al. (2016). In line with their experimental setups, we extend the computation time and set the run
time limit to 1 hour. All 504 instances with n = 25, 50, and 100 customers are considered. The results are
summarized in Table 5, again with one entry for each group of instances, i.e., grouped by n, classes (R1,
C1, RC1, R2, C2, RC2), and capacity Q = 30, 50, 100. In addition to the already introduced indicators,
we report the average number vehicles/routes (Veh.), and the average number of split customers (Splits).
Reported values are averages per group and solved instances.

The total number of 277 optimally solved instances compared to 262 and 264 optimal solutions in the
respective branch-and-price algorithms clearly shows that our branch-and-cut approach is competitive. In
summary, 22 instances are solved to proven optimality for the first time. Looking into the details, all three
approached solve all 168 instances with 25 customers. Compared to Archetti et al. (2011b), our computation
times on these small-sized instances are most of the time significantly smaller or at least comparable with
the exception of group R1 with Q = 100. Here, outliers r102, r103, and r110 consume 758, 206, and 219

18

Table 4: Performance indicators: 50-customer instances.

Capacity 2-Path Connectivity Infeasible-Path Path-Match. Feasibility
Instances Cuts (1d) Cuts (8) Cuts (9) Constr. (10) Constr. (12) Cuts (5)

Class Q # #cuts %time #cuts %time #cuts %time #cuts %time #cuts %time #cuts %time

R1 30 12 8 071.2 2.7 8.3 0.7 0.3 2.1 219.3 0.5 56.8 0.1 23.4 0.4
50 12 5 469.9 4.4 68.5 2.4 4.8 3.4 293.9 0.8 115.4 0.1 7.9 0.1

100 12 2 039.1 6.7 651.9 8.9 74.3 3.6 669.3 0.9 190.1 0.1 1.0 0.8
C1 30 9 6 076.8 2.5 0.2 0.5 0.0 1.7 218.4 0.4 11.8 0.0 35.9 1.5

50 9 3 721.9 4.9 1.3 1.5 2.0 4.0 172.3 0.7 27.0 0.1 16.2 1.0
100 9 1 486.0 5.4 18.3 8.5 18.3 3.6 197.9 0.8 53.7 0.1 9.4 0.3

RC1 30 8 2 624.6 5.4 0.0 0.3 0.0 2.1 26.1 0.3 2.3 0.0 12.0 16.0
50 8 1 674.1 7.0 0.0 0.9 0.7 3.3 20.8 0.6 4.3 0.1 4.7 2.6

100 8 996.4 11.1 18.6 8.2 23.3 7.7 112.9 1.7 53.1 0.3 0.2 0.5
R2 30 11 8 360.4 2.4 0.0 0.6 0.0 2.0 188.6 0.4 28.9 0.1 49.5 1.0

50 11 6 136.3 3.1 0.0 1.8 3.0 2.5 191.3 0.7 59.5 0.1 32.4 0.1
100 11 3 753.7 3.4 0.3 11.5 88.4 2.8 498.8 0.8 125.6 0.1 5.4 0.0

C2 30 8 8 633.0 2.1 0.0 0.4 0.6 1.8 545.0 0.3 22.9 0.1 94.5 1.9
50 8 6 762.0 3.0 0.0 1.2 6.3 2.7 494.1 0.6 66.9 0.1 81.8 2.2

100 8 3 222.9 4.3 0.0 5.8 19.5 3.9 317.4 0.9 66.3 0.1 67.0 0.7
RC2 30 8 2 496.5 4.8 0.0 0.2 0.0 1.4 25.1 0.2 1.4 0.1 4.8 3.3

50 8 1 416.1 7.6 0.0 0.3 0.6 2.6 13.1 0.7 1.4 0.0 0.4 3.2
100 8 815.5 8.7 0.1 5.7 14.6 5.0 40.0 1.0 15.9 0.0 0.5 1.4

Total/Weighted Avg. 168 4 276.2 4.8 54.0 3.4 15.9 3.1 249.5 0.7 56.0 0.1 24.0 1.8

seconds, respectively. Moreover, our solutions seem to tend towards less split customers, while the number
of employed vehicles is most of the time identical to the results of Archetti et al. (2011b).

For the 50-customer instances, there is no clear picture regarding a comparison of computation times.
However, our algorithm really outperforms the others on this subset (17 and 13 more instance solved).
Moreover, for 8 (11) instances with 50 customers for which an optimal solution is unknown, the optimality
gap is below 0.5 % (1 %). Detailed results for every 50-customer instance are reported in Section B of the
Appendix.

Finally, the branch-and-price of Archetti et al. (2011b) wins with three more instances solved on the
100-customer instances. Nevertheless, we have been able to solve to proven optimality two new instances
in this subset, i.e., C101 and C105 for Q = 100, with optimal values 13,911 and 13,893, respectively. This
subset, with only 8 out of 168 solved instances, is a hard challenge for all algorithms.

5. Conclusions

In this paper, we presented a new branch-and-cut-based algorithm for the SDVRPTW. The proposed
algorithm and its components were thoroughly tested and it was shown to be competitive with recent
branch-and-price-and-cut algorithms. We computed 22 new optimal solutions in the standard SDVRPTW
benchmark derived from Solomon’s (1987) VRPTW instances. Moreover, several lower and upper bounds
were improved.

While path-based formulations of Desaulniers (2010), Archetti et al. (2011b), and Luo et al. (2016)
underlying the branch-and-price-and-cut approaches can easily ensure feasible routes, feasibility modeling is
the fundamental problem of any two-index formulation for the SDVRPTW. The major complication is that
customers can or must be visited several times so that time and load-related attributes cannot be directly
attached to the vertices of the associated digraph. Our new two-index formulation exploits several properties
known to be valid for at least some optimal solution to an SDVRP(TW) instance. In particular, we attach
time-related attributes to arcs because one property guarantees that no arc is traversed more than once.
However, the model we propose is still a relaxation of the SDVRPTW.

Although being an SDVRPTW relaxation, our new formulation is fairly compact, enabling short LP
re-optimization times, and it is free of symmetries making branching more effective compared to three-index
formulations. Overall, the success of the new branch-and-cut algorithm can be attributed to two major
innovations: First, we found a new way to cut off infeasible integer solutions. Our strengthened feasibility cuts
refer to individual clusters that are induced by the infeasible integer solution at hand. Former approaches for

19

Table 5: Comparison with branch-and-price-and-cut algorithms.

Instances Archetti et al. (2011b) Luo et al. (2016) Our method

n Class Q # Sol. Veh. Splits Time Sol. Sol. Veh. Splits Time

25 R1 30 12 12 12.0 3.8 48 12 12 12.0 2.8 2.3
50 12 12 7.2 1.1 5 12 12 7.3 0.3 1.4

100 12 12 4.9 0.1 2 12 12 5.1 0.1 108.7
C1 30 9 9 16.0 5.2 9 9 9 16.0 4.0 4.1

50 9 9 10.0 2.1 5 9 9 10.0 1.0 1.2
100 9 9 5.0 0.0 15 9 9 5.0 0.0 0.6

RC1 30 8 8 17.8 7.1 5 8 8 18.0 5.8 0.4
50 8 8 10.6 1.8 5 8 8 11.0 1.3 0.7

100 8 8 6.0 0.4 2 8 8 6.0 0.0 0.3
R2 30 11 11 12.0 3.9 165 11 11 12.0 2.1 3.5

50 11 11 7.0 1.1 15 11 11 7.0 0.1 0.4
100 11 11 3.8 0.1 24 11 11 4.0 0.0 3.7

C2 30 8 8 16.0 6.4 9 8 8 16.0 4.0 10.3
50 8 8 10.0 2.5 11 8 8 10.0 1.0 5.6

100 8 8 5.0 1.0 19 8 8 5.0 0.0 2.2
RC2 30 8 8 18.0 6.6 9 8 8 18.0 6.1 0.5

50 8 8 10.8 1.8 12 8 8 11.0 1.0 0.7
100 8 8 6.0 0.4 4 8 8 6.0 0.0 0.2

50 R1 30 12 0 — — — 0 4 25.0 12.8 1 331.1
50 12 2 15.0 4.0 533 1 5 15.0 4.0 1 638.3

100 12 6 9.7 0.8 553 6 2 10.5 0.0 7.8
C1 30 9 3 29.0 10.7 219 9 9 29.0 4.0 460.8

50 9 9 18.0 4.3 114 9 9 18.0 2.8 128.0
100 9 8 8.8 1.0 353 7 9 9.0 0.2 297.9

RC1 30 8 8 33.0 8.9 50 8 8 33.0 6.6 24.4
50 8 8 20.0 4.4 11 8 8 20.0 2.6 3.9

100 8 8 10.0 1.0 22 8 8 10.0 0.5 123.0
R2 30 11 0 — — — 0 2 25.0 13.0 3 004.1

50 11 0 — — — 0 3 15.0 6.3 1 249.9
100 11 1 8.0 1.0 134 2 2 8.0 0.5 928.7

C2 30 8 0 — — — 0 1 29.0 6.0 1 160.5
50 8 7 18.0 7.1 395 8 3 18.0 3.0 1 557.3

100 8 2 9.0 3.0 1 314 1 7 9.0 0.3 840.9
RC2 30 8 8 33.0 9.2 161 8 8 33.0 6.5 10.4

50 8 8 20.0 4.8 30 8 8 20.0 2.8 3.3
100 8 8 10.0 0.9 94 8 8 10.0 0.6 24.7

100 R1 100 12 1 20.0 0.0 5 1 1 20.0 0.0 2.1
C1 100 9 5 19.0 2.4 1 667 4 4 19.0 0.8 441.5
C2 100 8 2 19.0 5.5 1 407 0 0 — — —

Total 262 264 277

the SDVRP considered the entire vertex set instead of a generally much smaller cluster to define a feasibility
cut. Second, we introduced two new classes of valid inequalities for the SDVRPTW, namely infeasible-path
constraints and path-matching constraints. They both have the purpose to strengthen the formulation so
that fractional solutions as well as infeasible integer solutions are cut off from the solution space. While
the generalization of infeasible-path constraints must exclude any interaction of the considered path with
other routes, the path-matching constraints focus on the interdependency of routes that share a customer
receiving split deliveries. Indeed, what path-matching constraints are cutting off is infeasible configurations
formed by two or more routes. As far as we know, this is the first class of valid inequalities in the vehicle
routing context that addresses infeasibilities resulting from violations of timing and capacity constraints
provoked by more that one route. We think that such a technique may also be helpful for other variants of
vehicle routing problems, in which certain vertices or arcs are traversed more than once, e.g., in VRPs with
intermediate replenishment (Muter et al., 2014) or for routing battery electric vehicles that can be recharged
at recharging stations (Desaulniers et al., 2016).

20

Acknowledgement

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under grants no. IR 122/5-2 and
DR 963/2-1.

References

Archetti, C. and Speranza, M. G. (2012). Vehicle routing problems with split deliveries. International Transactions in
Operational Research, 19, 3–22.

Archetti, C., Hertz, A., and Speranza, M. (2006a). A tabu search algorithm for the split delivery vehicle routing problem.
Transportation Science, 40, 64–73.

Archetti, C., Savelsbergh, M., and Speranza, M. G. (2006b). Worst-case analysis for split delivery vehicle routing problems.
Transportation Science, 40, 226–234.

Archetti, C., Bianchessi, N., and Speranza, M. G. (2011a). A column generation approach for the split delivery vehicle routing
problem. Networks, 58, 241–254.

Archetti, C., Bouchard, M., and Desaulniers, G. (2011b). Enhanced branch and price and cut for vehicle routing with split
deliveries and time windows. Transportation Science, 45(3), 285–298.

Archetti, C., Bianchessi, N., and Speranza, M. (2014). Branch-and-cut algorithms for the split delivery vehicle routing problem.
European Journal of Operational Research, 238(3), 685–698.

Ascheuer, N., Fischetti, M., and Grötschel, M. (2000). A polyhedral study of the asymmetric traveling salesman problem with
time windows. Networks, 36(2), 69–79.

Ascheuer, N., Fischetti, M., and Grötschel, M. (2001). Solving the asymmetric travelling salesman problem with time windows
by branch-and-cut. Mathematical Programming, 90(3), 475–506.

Belenguer, J., Martinez, M., and Mota, E. (2000). A lower bound for the split delivery vehicle routing problem. Operations
Research, 48, 801–810.

Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization
in vision. In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI).

Desaulniers, G. (2010). Branch-and-price-and-cut for the split delivery vehicle routing problem with time windows. Operations
Research, 58, 179–192.

Desaulniers, G., Madsen, O. B., and Ropke, S. (2014). The Vehicle Routing Problem with Time Windows, chapter 5, pages
119–159. In Toth and Vigo (2014).

Desaulniers, G., Errico, F., Irnich, S., and Schneider, M. (2016). Exact algorithms for electric vehicle-routing problems with
time windows. Operations Research. DOI: 10.1287/opre.2016.1535.

Dror, M. and Trudeau, P. (1989). Savings by split delivery routing. Transportation Science, 23, 141–145.
Dror, M. and Trudeau, P. (1990). Split delivery routing. Naval Research Logistics, 37, 383–402.
Fischetti, M., Salazar-González, J.-J., and Toth, P. (1995). Experiments with a multi-commodity formulation for the symmetric

capacitated vehicle routing problem. In Proceedings of the 3rd Meeting of the EURO Working Group on Transportation.
Frizzell, P. and Giffin, J. W. (1995). The split delivery vehicle scheduling problem with time windows and grid network

distances. Computers and Operations Research, 22, 655–667.
Gendreau, M., Dejax, P., Feillet, D., and Gueguen, C. (2006). Vehicle routing with time windows and split delivery. Technical

Report 2006-851, Laboratoire Informatique d’Avignon, Avignon, France.
Ho, S. and Haugland, D. (2004). A tabu search heuristic for the vehicle routing problem with time windows and split deliveries.

Computers and Operations Research, 31, 1947–1964.
Irnich, S., Schneider, M., and Vigo, D. (2014). Four variants of the vehicle routing problem. In P. Toth and D. Vigo, editors,

Vehicle Routing: Problems, Methods, and Applications, Second Edition, MOS-SIAM Series on Optimization, pages 241–271.
SIAM, Philadelphia.

Kohl, N., Desrosiers, J., Madsen, O. B. G., Solomon, M. M., and Soumis, F. (1999). 2-path cuts for the vehicle routing problem
with time windows. Transportation Science, 33(1), 101–116.

Luo, Z., Qin, H., Zhu, W., and Lim, A. (2016). Branch and price and cut for the split-delivery vehicle routing problem with
time windows and linear weight-related cost. Transportation Science. DOI: 10.1287/trsc.2015.0666.

Maffioli, F. and Sciomachen, A. (1997). A mixed-integer model for solving ordering problems with side constraints. Annals of
Operations Research, 69, 277–297.

Miller, D., Tucker, A., and Zemlin, R. (1960). Integer programming formulations of traveling salesman problems. J. Assoc.
Comput. Mach., 7, 326–329.

Mullaseril, P. A., Dror, M., and Trudeau, P. (1997). Split-delivery routing heuristics in livestock feed distribution. Journal of
the Operational Research Society, 48, 107–116.

Muter, I., J.-F., C., and Laporte, G. (2014). A branch-and-price algorithm for the multidepot vehicle routing problem with
interdepot routes. Transportation Science, 48(3), 425–441.

Ralphs, T., Kopman, L., Pulleyblank, W., and Trotter, L. (2003). On the capacitated vehicle routing problem. Mathematical
Programmming, 94, 343–359.

Sepúlveda, J., Escobar, J., and Adarme-Jaimes, W. (2014). An algorithm for the routing problem with split deliveries and time
windows (SDVRPTW) applied on retail SME distribution activities. DYNA (Colombia), 81(187), 223–231.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problem with time window constraints. Operations
Research, 35, 254–265.

Toth, P. and Vigo, D., editors (2002). The Vehicle Routing Problem. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA.

Toth, P. and Vigo, D., editors (2014). Vehicle Routing. MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

21

Appendix

A. Simple Construction Heuristic

The following greedy algorithm is used for computing initial feasible SDVRPTW solutions: Customers
are considered in the sequence according to their identifiers (from the smallest to the largest). A set of routes
defining a feasible solution is then built incrementally. When a new route is created, the first customer in
the sequence not completely served is inserted into the route. When the route is non-empty, the customer
remaining unfulfilled demand that can be feasibly visited along the route at the cheapest cost is selected and
inserted into the route. Each time a customer is inserted into a route, the quantity delivered to the customer
is set to the maximum of the residual demand of the customer and the residual capacity of the vehicle. These
residual quantities are then updated accordingly. The construction of a route terminates when no further
customer can be feasibly inserted. When all the customers are fully served, a feasible solution is available.

The solution computed by the constructive heuristic depends on the sequence in which customers are
considered. Therefore, we execute the constructive heuristic n times, retaining the best among the n com-
puted solutions. In the kth iteration, customers are cyclicly exchanged so that the sequences then begins
with customer k instead of customer 1.

B. Detailed Computational Results

We report in Tables 6-11 the detailed results for the 50-customer instances. Each table shows the vehicle
capacity (Q), the name of the instance (Name), the known optimal value (Opt.), the final upper bound
(z̄∗) and lower bound (z∗) computed by the branch-and-cut algorithm, the percentage gap 100 %(z̄∗ −
z∗)/z∗ (Gap (%)), the number of vehicles/routes (Veh.) and split customers (Splits) in the upper bound
solution, and, when the optimality gap is null, the computation time (Time) required to solve the instance
to optimality (in seconds). The symbol † is reported close to each known optimal value if found by Luo
et al. (2016) for the first time. All the other optimal values are taken from (Archetti et al., 2011b). When
our branch-and-cut algorithm is able to solve an instance to optimality for the first time, the corresponding
upper and lower bounds as well as the optimality gap are highlighted in bold. Conversely, when our branch-
and-cut algorithm is not able to solve an instance for which an optimal value is known, the optimal value is
highlighted in bold.

Finally, whenever our values in columns z∗ and z̄∗ are inconsistent what was reported in previous papers,
the symbol * is attached. This happens in 8 out of 92 cases. To explain this discrepancy, note that the triangle
inequality is assumed to hold for travel times and costs. Therefore, in order to fulfill these assumptions, at
pre-processing time we apply the Floyd-Warshall algorithm to travel times and costs independently. Archetti
et al. (2011b) informed us that they assumed the validity of the triangle inequality, but they did however not
pre-process the instances. Luo et al. (2016) informed us that they also assumed the validity of the triangle
inequality, but they did a slightly different pre-processing. In their approach, they kept the distinction
between travel and service times, and therefore they did not add service times to the travel times. Hence,
travel times and costs are both identical to distances. To ensure the validity of the triangle inequality, they
updated the distances by applying a shortest path algorithm. As a result, their times can be smaller than
times produced with our pre-processing.

22

Table 6: Detailed results for class R1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r101 16191 16191.0 0 25 9 912
r102 15813 15813.0 0 25 14 3059
r103 15679 15511.5 1.08 25 15
r104 15522 15234.4 1.89 25 14
r105 15803 15803.0 0 25 14 545
r106 15596 15596.0 0 25 14 809
r107 15624 15316.8 2.01 25 13
r108 15855 15174.6 4.48 25 13
r109 15628 15523.2 0.68 25 11
r110 15877 15247.3 4.13 25 10
r111 15649 15371.2 1.81 25 14
r112 16119 15156.1 6.35 27 9

50 r101 11911 11911 11911.0 0 15 3 25
r102 11142 11142 11112.3 0.27 15 4
r103 10868 10615.8 2.38 15 10
r104 10787 10327.0 4.45 15 7
r105 11325 11325.0 0 15 5 1129
r106 10802 10802.0 0 15 5 741
r107 10846 10496.2 3.33 15 6
r108 10637 10254.3 3.73 16 5
r109 10818 10818.0 0 15 3 3577
r110 12381 10335.5 19.79 17 5
r111 10615 10615.0 0 15 4 2719
r112 10711 10290.5 4.09 16 4

100 r101 10440 10440 10440.0 0 12 0 0
r102 9132 9144 8404.7 8.8 11 0
r103 8047 8113 7419.4 9.35 10 0
r104 7268 6865.1 5.87 8 2
r105 9182 9182 9182.0 0 9 0 15
r106 8215 8238 7731.1 6.56 9 1
r107 8132 7011.4 15.98 9 1
r108 7417 6766.4 9.62 8 2
r109 8042 8105 7664.4 5.75 9 0
r110 7697 6940.3 10.9 8 0
r111 7659 7097.7 7.91 8 1
r112 8205 6696.5 22.53 8 1

23

Table 7: Detailed results for class C1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c101 15995† 15995 15995.0 0 29 4 187
c102 15995† 15995 15995.0 0 29 4 296
c103 15983 15983 15983.0 0 29 4 1911
c104 15983 15983 15983.0 0 29 4 853
c105 15995† 15995 15995.0 0 29 4 102
c106 15995† 15995 15995.0 0 29 4 170
c107 15995† 15995 15995.0 0 29 4 107
c108 15983† 15983 15983.0 0 29 4 421
c109 15983 15983 15983.0 0 29 4 100

50 c101 10158 10158 10158.0 0 18 3 44
c102 10130 10130 10130.0 0 18 3 132
c103 10123 10123 10123.0 0 18 3 322
c104 10102 10102 10102.0 0 18 2 249
c105 10158 10158 10158.0 0 18 3 18
c106 10158 10158 10158.0 0 18 3 37
c107 10158 10158 10158.0 0 18 3 54
c108 10119 10119 10119.0 0 18 3 82
c109 10101 10101 10101.0 0 18 2 215

100 c101 5876 5876 5876.0 0 9 0 8
c102 5847 5847 5847.0 0 9 0 77
c103 5821 5821 5821.0 0 9 0 814
c104 5788 5788.0 0 9 0 1220
c105 5876 5876 5876.0 0 9 0 4
c106 5876 5876 5876.0 0 9 0 3
c107 5876 5876 5876.0 0 9 0 12
c108 5841 5841 5841.0 0 9 1 58
c109 5798 5798 5798.0 0 9 1 485

Table 8: Detailed results for class RC1 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc101 27395 27395 27395.0 0 33 7 5
rc102 27395 27395 27395.0 0 33 7 7
rc103 27395 27395 27395.0 0 33 7 8
rc104 27395 27395 27395.0 0 33 6 113
rc105 27396 27396 27396.0 0 33 6 10
rc106 27395 27395 27395.0 0 33 7 14
rc107 27395 27395 27395.0 0 33 7 5
rc108 27395 27395 27395.0 0 33 6 34

50 rc101 17083 17083 17083.0 0 20 2 2
rc102 17005 17005 17005.0 0 20 1 8
rc103 16968 16968 16968.0 0 20 3 3
rc104 16967 16967 16967.0 0 20 3 3
rc105 17001 17001 17001.0 0 20 1 4
rc106 16990 16990 16990.0 0 20 3 6
rc107 16986 16986 16986.0 0 20 4 3
rc108 16967 16967 16967.0 0 20 4 4

100 rc101 9905 9905 9905.0 0 10 2 10
rc102 9602 9602 9602.0 0 10 1 183
rc103 9362 9362 9362.0 0 10 0 652
rc104 9159 9159 9159.0 0 10 0 4
rc105 9574 9574 9574.0 0 10 0 121
rc106 9364 9364 9364.0 0 10 1 12
rc107 9151 9151 9151.0 0 10 0 1
rc108 9119 9119 9119.0 0 10 0 1

24

Table 9: Detailed results for class R2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 r201 15786 15786.0 0 25 12 2989
r202 15596 15596.0 0 25 14 3019
r203 15661 15264.0 2.6 25 11
r204 16030 15196.5 5.48 25 10
r205 15666 15480.8 1.2 25 11
r206 15569 15493.3 0.49 25 13
r207 15553 15312.9 1.57 25 14
r208 15937 15188.3 4.93 26 10
r209 15587 15368.3 1.42 25 13
r210 15688 15422.3 1.72 25 14
r211 16180 15186.2 6.54 26 10

50 r201 11078 11078.0 0 15 6 263
r202 10802 10802.0 0 15 6 645
r203 10644 10447.7 1.88 15 5
r204 10676 10312.5 3.52 15 7
r205 10859 10749.2 1.02 15 5
r206 10715 10715.0 0 15 7 2841
r207 10629 10413.5 2.07 15 11
r208 10535 10264.3 2.64 15 5
r209 10545 10437.5 1.03 15 4
r210 10729 10646.9 0.77 15 4
r211 10909 10249.3 6.44 16 5

100 r201 8430† 8432* 8432.0* 0 8 0 71
r202 7716 7500.8 2.87 8 2
r203 7206 6983.7 3.18 8 2
r204 6919 6754.2 2.44 8 4
r205 7589 7588* 7588.0* 0 8 1 1786
r206 7281 7247.5 0.46 8 2
r207 7086 6923.0 2.35 8 5
r208 7196 6700.4 7.4 8 3
r209 7204 7021.5 2.6 8 1
r210 7454 7227.1 3.14 8 1
r211 7024 6706.7 4.73 8 0

Table 10: Detailed results for class C2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 c201 17790 17790.0 0 29 6 1161
c202 17788 17709.5 0.44 29 6
c203 17785 17639.0 0.83 29 6
c204 17788 17583.8 1.16 29 6
c205 17786 17731.4 0.31 29 6
c206 17784 17718.4 0.37 29 6
c207 17784 17730.0 0.3 29 6
c208 17784 17737.7 0.26 29 6

50 c201 11598 11597* 11597.0* 0 18 3 204
c202 11573 11572* 11572.0* 0 18 3 2893
c203 11571 11576 11417.5 1.39 18 3
c204 11569† 11682 11384.3 2.62 18 4
c205 11571 11570* 11570.0* 0 18 3 1575
c206 11571 11570* 11484.9 0.74 18 3
c207 11571 11570* 11464.0 0.92 18 3
c208 11571 11570* 11532.1 0.33 18 3

100 c201 6931 6931.0 0 9 2 166
c202 6862 6862 6862.0 0 9 0 803
c203 6854 6827.7 0.38 9 0
c204 6848 6848.0 0 9 0 2703
c205 6848 6848 6848.0 0 9 0 223
c206 6848 6848.0 0 9 0 594
c207 6848 6848.0 0 9 0 896
c208 6848 6848.0 0 9 0 501

25

Table 11: Detailed results for class RC2 and n = 50 customers.

Q Name Opt. z̄∗ z∗ Gap (%) Veh. Splits Time

30 rc201 27395 27395 27395.0 0 33 7 7
rc202 27395 27395 27395.0 0 33 7 7
rc203 27395 27395 27395.0 0 33 6 5
rc204 27395 27395 27395.0 0 33 6 14
rc205 27395 27395 27395.0 0 33 7 14
rc206 27395 27395 27395.0 0 33 6 9
rc207 27395 27395 27395.0 0 33 6 15
rc208 27395 27395 27395.0 0 33 7 13

50 rc201 17083 17083 17083.0 0 20 2 2
rc202 17005 17005 17005.0 0 20 1 4
rc203 16968 16968 16968.0 0 20 3 6
rc204 16967 16967 16967.0 0 20 4 4
rc205 17004 17004 17004.0 0 20 1 2
rc206 16990 16990 16990.0 0 20 4 1
rc207 16986 16986 16986.0 0 20 4 2
rc208 16967 16967 16967.0 0 20 3 4

100 rc201 9662 9662 9662.0 0 10 2 1
rc202 9465 9465 9465.0 0 10 1 151
rc203 9264 9264 9264.0 0 10 1 33
rc204 9159 9159 9159.0 0 10 0 1
rc205 9467 9467 9467.0 0 10 1 3
rc206 9408 9408 9408.0 0 10 0 2
rc207 9241 9241 9241.0 0 10 0 5
rc208 9119 9119 9119.0 0 10 0 1

26

	Introduction
	Problem Definition
	Branch-and-Cut Algorithm
	Relaxed Compact Formulation
	Feasibility Checking
	Basic Approach
	Improvements

	Valid Inequalities
	Preliminaries
	Static Inequalities
	Capacity Cuts
	2-Path Cuts
	Connectivity Cuts
	Infeasible-Path Constraints
	Path-Matching Constraints

	Experimental Analysis
	Analysis of New Components of Branch-and-Cut
	Comparison with Branch-and-Price-and-Cut Algorithms

	Conclusions
	Simple Construction Heuristic
	Detailed Computational Results

