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Abstract

This work addresses integrated line planning for inter-city bus lines which differs in several respects from
line planning in public transit. Passengers in inter-city transportation decide on specific timetabled services
to get to their destination. This is a contrast to an urban setting with higher frequencies, where it is
generally sufficient to choose a line. Furthermore, inter-city bus transportation in deregulated markets is
usually characterized by fierce competition within and across modes. Customers are highly sensitive to price,
time of day, duration, convenient access to stations, and service quality. Hence, bus line operators need to
decide thoroughly on every single timetabled service they offer in order to manage the cost and revenue
consequences of network design and timetable. We provide a schedule-based modeling approach integrating
aspects of dynamic demand, network planning, and timetabling. For a given line corridor, locations of
potential stations and ideal service times are determined simultaneously. We analyze the performance of
our branch-and-cut solution approach using data from a German inter-city bus carrier operating in a newly
deregulated and quickly developing market. Moreover, we show that the integrated and schedule-based line
planning often produces insightful new results that differ significantly from conventional approaches.

Key words: Integration, schedule-based modeling, inter-city bus transportation, dynamic demand,
branch-and-cut

1. Introduction

Passengers in inter-city bus transportation are highly sensitive to price, time of day, duration, conve-
nient access to stations, and service quality. They decide on specific timetabled services to get to their
destination. This distinguishes line planning for inter-city bus transportation from line planning in public
transit. The recent research on public transport often focuses on integrating the planning process because
treating several of the planning phases in a single model offers substantial opportunities for cost savings
and service improvements. While the majority of research focuses on transportation within cities, inter-city
transportation has its own characteristics that require and allow for even more integration.

On the one hand, there is usually strong competition between private operators and different modes,
hence the integration of dynamic demand models is required. Furthermore, passengers decide on timetabled
services rather than just lines. This already connects demand considerations with tactical planning steps,
which are usually separated, and necessitates schedule-based approaches. The longer duration of vehicle tours
also links peak and non-peaked traffic hours from an operational perspective, which prohibits disassembling
the planning into different time intervals. Finally, severe scheduling inefficiencies are more likely to occur
due to lower frequencies of traffic. Thus, neglecting the operational consequences of the network design and
timetable can result in significantly higher additional costs.

On the other hand, there is a higher quality of operational data that allows a better understanding of
demand patterns. Booking data usually even reveals the precise number of passengers on each segment of
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Figure 1: Planning process in public transportation showing classical and our approach to demand modeling

a service. In general, there are fewer potential stations than in public transit. Therefore, no continuous
analysis of station locations is required. Further, there are fewer transfers in inter-city transportation, in
particular in the case of buses, which facilitates traffic assignment. Altogether, it seems reasonable to assume
that the additional need for integration can be satisfied through better input data and certain complexity
reductions in the inter-city case.

Significant work has already been done in the integration of planning steps including the consideration
of dynamic demand approaches. We will present a brief overview of the literature in Section 2. Recently,
the focus has also shifted towards a schedule-based modeling of demand, i.e., representing supply by specific
timetabled services instead of just lines and frequencies. The characteristics of inter-city transportation
mentioned above suggest the need for integration to go one step further: We need to consider the schedule-
based nature of demand while taking simultaneous decisions about network design and timetable, thereby
augmenting schedule-based approaches from a descriptive to a prescriptive level.

Our paper aims at providing a first contribution in this context. We provide a new schedule-based model
for line planning that integrates aspects of dynamic demand, network planning, and timetabling. Figure 1
displays the difference in approach compared to the classical modeling: While demand is often assigned to
the network in a static manner right before or after the line planning step, we will only assign it based on
specific timetabled services. Furthermore, we consider the dynamic nature of demand with respect to the
prior planning steps.

The model allows us to determine optimal stations and the operating time for a specific line simul-
taneously while including a many-to-many demand structure which behaves dynamically with respect to
operating time and duration of the trip. Demand dynamics are taken into account in two ways: First,
overall demand is distributed unevenly across the day to reflect desired departure/arrival times. Second,
passengers are sensitive to travel time, which creates a tradeoff between travel time and network footprint.
For a given corridor, the model determines locations of potential stations and resulting travel times between
pairs of stations simultaneously.

Note that the methods to generate high-quality demand forecasts are not in scope of this paper and
will only be discussed briefly from a practical perspective in Section 6. Our work is based on an example
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from a German inter-city bus carrier operating in a newly deregulated and quickly developing market. We
continuously calibrate our model with the requirements and constraints of actual operations.

The new schedule-based model can, for small-sized instances, be solved with any mixed integer linear
programming (MIP) solver. Furthermore, we develop a tailored branch-and-cut algorithm that allows the
solution of instances of practically relevant size. We analyze the performance of our branch-and-cut approach
using real-world data from the German market. Moreover, we show that integrated and schedule-based line
planning often produces insightful new results that differ significantly from conventional approaches.

The remainder of this paper is structured as follows: After reviewing the existing literature in Section 2 we
present our new model in Section 3. The solution approach, which is based on a branch-and-cut algorithm, is
presented in Section 4. Subsequently, we discuss selected model outputs and their applications to practical
network design planning in Sections 5 and 6. We conclude by summarizing our findings and discussing
possible next steps for research in schedule-based public transport integration in Section 7.

2. Literature review

While it is certainly a long term ambition to treat aspects of the whole planning process in a single
model, computational power and the complexity of every single step do not allow us to do this just yet,
see (Desaulniers and Hickman, 2007) for a thorough overview of the isolated problems. Therefore, most
attempts focus on integrating two or three of the planning steps.

On the operational level the biggest lever to manage costs is to integrate vehicle and crew schedules.
Numerous works have addressed this topic, see e.g. the survey by Freling et al. (2003), and a wide range of
software solutions incorporating these algorithms is applied in industry. The interface between the tactical
and operational stages is reviewed and analyzed by Schmid and Ehmke (2015) comprising timetabling and
vehicle scheduling as well as by Michaelis and Schöbel (2009), who additionally include the line planning
stage.

Subsequently, we will mainly factor out the operational aspects and focus on the strategic and tactical
stages including their interplay with demand characteristics. An extensive survey on network design and
scheduling as well as their integration can be found in (Guihaire and Hao, 2008). Another survey (Schöbel,
2011) focuses on line planning and related integration, while Goerigk et al. (2013) provide a brief review of
overall integration in an inter-city context and a simulation-based approach to investigate the effects of line
plans on the successive planning phases.

In public transit, there is the additional challenge of integrating traffic assignment. On the one hand,
passenger routes depend on the timetable, yet on the other hand, optimization of the timetable requires
knowing the passenger routes (see e.g. Schmidt and Schöbel, 2014). As stated above, due to having fewer
transfers, this step is usually less complex in an inter-city context compared to public transit. However,
as noted before, the characteristics of inter-city transportation require demand to be assigned to specific
timetabled services and not just to a line. The term schedule-based modeling has been established in research
to describe this property. An example of schedule-based demand models can be found in (Nuzzolo et al.,
2007), where air, rail, and private car are considered as competing modes and passenger choices are modeled
with a nested logit approach. Cascetta et al. (1996) present a detailed analysis within rail transportation
based on a tree-logit choice model, while Nuzzolo et al. (2012) applies a schedule-based approach to an
urban transit network. Aspects of schedule-based modeling have also been included in (Kaspi and Raviv,
2013), where line planning and timetabling are combined using a cross-entropy metaheuristic. In this paper,
passengers are assigned to specific timetabled services rather than just to a line, however they reach the
stations independent of the actual timetable. This is only realistic for high frequency services like in the
example from Israel the authors are analyzing. An extensive paper selection on this topic is (Wilson and
Nuzzolo, 2004). While our paper does not concentrate on the demand modeling techniques to obtain a
realistic demand distribution, we aim at providing a model that is able to cope with detailed demand
inputs.

Up to now, the presented references assume a given demand and optimize service quality or costs on that
base. However, demand for a specific operator is clearly a function of its offered service and competitors’
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services. For example, additional passengers may result from a higher overall network attractiveness, while
stronger competition decreases the operator’s demand. Such a dynamic, elastic or endogenous demand
has been studied in a wide range of applications. We focus on the two following endogenous properties of
demand:

First, demand is distributed unevenly over the day, thus reflecting peak and off-peak times. Cascetta
and Coppola (2015) conclude that schedule-based approaches yield significantly more accurate results than
frequency-based ones when demand is not distributed uniformly, thus confirming our motivation. Verbas
et al. (2014) focuses on differentiating demand elasticities in public transit based on time of day and location.

Second, demand is sensitive to the journey time. For an urban setting, Klier and Haase (2014) present a
binary logit model that causes demand to adjust based on the overall journey time. In inter-city transporta-
tion, in particular in the case of buses, the main non-operational aspect that impacts travel time between
two stations is clearly the number of intermediate stops and the increased travel distance that results from
them. The effect of additional stations on journey time and thus demand has been studied in several papers
dating back to the works of Vuchic and Newell (1968) and Vuchic (1969), who used analytical methods to
optimize the non-linear objectives. More recent approaches can be found in (Repolho et al., 2013) dealing
with a high-speed railway line in Portugal, where passengers always choose the option with the shortest
duration, (Schöbel et al., 2009) looking at a network extension to cover additional demand while minimizing
passenger discomfort due to additional travel time, and (Laporte et al., 2005) maximizing demand heuris-
tically by considering mode choice between the transit line and a private car based on a logit model. An
analytic approach including multiple decision variables for line, frequency, and price with their effect on
demand is presented in (Li et al., 2012).

Finally, there are a few interesting papers outside of OR that provide insights in the dynamics of bus and
inter-city transportation. Empirical findings on passenger sensitivities and loyalty are presented in (Hensher
et al., 2014; Paulley et al., 2006; Wen et al., 2005), and (Bel, 1997). Effects of market deregulation for
inter-city buses are discussed in (Owen and Phillips, 1987) and (Cross and Kilvington, 1985) for the UK
after 1980, in (Button, 1987) for the US after 1982, and in the recent study (Augustin et al., 2014), which
compares early effects of the German deregulation with the established US market. Elaborations on demand
modeling and mode choice can be found in (Zhang et al., 2012; Moeckel et al., 2015; Arbués et al., 2015),
and (Miller, 2004).

Our main objective is to close the gap between schedule-based demand modeling and the integrated opti-
mization of the following planning steps, and thus to augment schedule-based approaches from a descriptive
to a prescriptive level. This requires dealing with dynamic demand, network planning, and timetabling
within a single model. As the bus type for a timetabled service is usually inflexible and there is no standing
room due to legislation, it is also necessary to consider capacity in this planning step. In order to emphasize
the innovation in terms of integration, we compare the different scopes of our work with a selection of the
reviewed papers in Table 1.

Model Integration Schedule-based

Paper objective linear setting demand dyn. station timetabl. timetabled capacity
struct. demand location decision services restr.

(Kaspi and Raviv, 2013) min cost & time no inter-city n:n − + + + −
(Klier and Haase, 2014) max demand yes urban n:n + + − − −
(Laporte et al., 2005) max demand no urban n:n + + − − −
(Li et al., 2012) max profit no urban n:1 + + − − +

(Nuzzolo et al., 2007) no optimization - inter-city 1:1 + − − + −
(Repolho et al., 2013) max time savings yes inter-city n:n + + − − −
(Schöbel et al., 2009) min add. time no urban n:n − + − − −

This paper max profit yes inter-city n:n + + + + +

Table 1: Scope and contribution of paper
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3. Integrated and schedule-based optimization model

We start with some general comments on the scope of the model: Demand is given on a very detailed
level, i.e., per pair of stations, departure time, and duration of the trip. This allows us to link the model with
sophisticated demand modeling approaches comprising, e.g., the explicit (static) timetables of competitors
from different modes, multiple user clusters with variational utility perceptions, and varying sensitivities
depending on the current time of day. Although the actual amounts of passengers per trip are integer, we do
not impose integrality, since we are dealing with the strategic/tactical planning stage. It still makes sense
to consider the capacity restriction, though, in order to avoid overestimating revenues.

Moreover, we determine only a single timetabled service in our model as it is quite common for operators
to offer different route variations in a travel corridor. Hence, the decision on included stations should not
be made for all timetabled services simultaneously. We will further comment on this issue in Section 6.

Detailed sensitivities with respect to travel prices have been excluded consciously. While it is possible to
reflect the yield characteristics per trip in the average prices, the specific decisions on the pricing strategy
will be taken at a later stage in practice.

3.1. Model formulation
In the following, the corridor of potential stations is s1, . . . , sn with stations si indexed by i, i ∈ I =

{1, . . . , n}. We assume that the line always starts at station s1 and ends at station sn. In order to cope
with dynamic demand given in the form of some discrete demand scenarios, we must discretize start time
and trip durations. Hence, the possible start times at stations are modeled using discrete time intervals
Tk = [ak−1, ak), where the index k runs in the discrete index set K. Similarly, we assume that Dl = [bl−1, bl)
are the duration intervals for a trip, where the index l runs in the discrete index set L. In our application,
e.g., we use start time intervals of two hours each and we divide the trip durations into blocks of 30 minutes
each.

In order to improve legibility, we will use indices i ∈ I and j ∈ I for stations always with i < j, k ∈ K for
departure time intervals, and l ∈ L for duration intervals. Further, we omit the index sets when summing
over the i, j, k, and l. Moreover, we assume that the three index sets I, K, and L are pairwise disjoint.

The following input data must be given:

dijkl demand for a trip between si and sj , which starts in Tk with duration in Dl;

tij travel time for a direct connection from si to sj including the stop time at sj ;

wi waiting time at station si for handling of luggage, boarding, schedule buffer etc.;

rij travel price (revenues from the operator’s perspective) of the trip from si to sj ;

cij variable cost to operate a connection from si to sj without intermediate stops;

fkl fixed cost to operate a trip from s1 to sn starting at the beginning of Tk with duration
in Dl;

C vehicle capacity (number of seats of a bus).

All these inputs are non-negative numbers. Moreover, let Mik∗k and Mijl be sufficiently large numbers (big
M constants), and let m ∈ R be a small time amount (e.g. one minute) that we use to transform < into ≤
conditions.

The following four types of variables are the main decision variables in our formulation:

xi ∈ {0; 1} binary variable to indicate whether station si is included;

yk ∈ {0; 1} binary variable indicating that the trip starts at s1 at the beginning of the interval Tk,
i.e., at ak−1;

pij ∈ R≥0 continuous variable for the number of passengers for a trip from si to sj ;

`i ∈ R≥0 continuous variable for the duration to reach si while considering all chosen intermediate
stations.
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In addition, we need six sets of auxiliary indicator variables to make the logical links between the stations
and time intervals. They will always take the value 1 in case the choice of stations, the departure time, and
the duration is consistent with the indices i, j ∈ I, k ∈ K, and l ∈ L. All these variables are binary variables
denoted by z having different index sets. Recall that I, K, and L are assumed disjoint so that the following
definitions are unambiguous:

zijkl there is a trip from si to sj , which starts in Tk with duration in Dl;

zij there is a direct connection (no intermediate stops) from si to sj ;

zkl the timetabled service starts in s1 at ak−1 with duration in Dl to reach the destination sn;

zik there is a trip which starts at si in Tk;

zik∗k there is a trip which starts at s1 in Tk∗ and at si in Tk;

zijl the duration for the trip from si to sj is in Dl.

Note that the independent decision variables are the xi, yk, and pij . In case the capacity constraint is
binding at some leg, the computation of optimal values for the pij becomes a multi-commodity network-flow
problem to decide how many passengers to transport per leg. All values of the other dependent variables
result from the independent variables.

Mixed integer linear formulation. The objective (1) is to maximize profit, thus, to maximize revenues minus
fixed and variable costs, where fixed costs depend on the departure time and the overall duration of the
timetabled service and variable costs depend on the bus route:

max
∑
i<j

rijpij −
∑
k,l

fklzkl −
∑
i<j

cijzij (1)

subject to ∑
k,l

zijkl ≤ xi ∀i < j (2a)

∑
k,l

zijkl ≤ xj ∀i < j (2b)

∑
l

zijkl ≤ zik ∀i < j, ∀k (2c)∑
k

zijkl = zijl ∀i < j, ∀l (2d)

Passengers may only enter or exit a bus at those stations si and sj , which have been included (2a)–(2b), in
those departure intervals Tk at si that actually contain a starting trip (2c), and the duration needs to be in
the correct duration interval Dl (2d).

pij ≤
∑
k,l

dijklzijkl ∀i < j (3a)

∑
i′≤i,j′>i

pi′j′ ≤ C ∀i < n (3b)

The number of passengers per trip is constrained by the demand (3a) and must not exceed the capacity C
of the bus on each connection (3b).

Contrary to the passengers the variables zij and zkl occur with a negative sign in the objective function
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and thus require lower bounds in the constraints:∑
j>1

z1j =
∑
i<n

zin = 1 (4a)

∑
j<i

zji =
∑
j>i

zij ∀1 < i < n (4b)

∑
j>i

zij = xi ∀1 < i < n (4c)

These flow conditions (4a)–(4c) ensure that the zij only take the value 1 if both stations are included and
there are no intermediate stations between them.

zkl + 1 ≥ yk + z1nl ∀k, ∀l (5)

The incorporation of fixed costs ckl results from zkl = 1 ensured if there is a trip from s1 to sn starting at
ak−1 with duration Dl (5).

x1 = xn = 1 (6)∑
k

yk = 1 (7)

`i =
∑

i1<j1≤i

ti1j1zi1j1 ∀i (8)

These constraints ensure consistency with the definition of the variables: The first and last station must be
included in the route (6), only one departure time is chosen (7), and the duration to reach station si results
from the selected connections to reach i (8).

∑
k∗

zik∗k = zik ∀i < n,∀k (9a)∑
k∗≤k

zik∗k = xi ∀i < n (9b)

∑
k

zik∗k ≤ yk∗ ∀i < n,∀k∗ (9c)

ak∗−1 + `i ≤ ak + (1− zik∗k)Mik∗k −m ∀i < n,∀k∗ ≤ k (9d)
ak∗−1 + `i ≥ ak−1zik∗k ∀i < n,∀k∗ ≤ k (9e)

Variable zik can only take the value 1 if there is a trip starting at a suitable time at s1 (9a). The link of the
zik∗k to the decision variables is modeled via (9b) and (9c), while consistency with the travel and departure
times results from (9d) and (9e).∑

l

zijl ≥ xi + xj − 1 ∀i < j (C1 )∑
l

zijl ≤ xi ∀i < j (10a)∑
l

zijl ≤ xj ∀i < j (10b)

`j − `i − wj ≤ bl + (1− zijl)Mijl −m ∀i < j, ∀l (10c)
`j − `i ≥ (bl−1 + wj)zijl ∀i < j, ∀l (C2 )
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One duration interval is selected if and only if both stations are included C1 , (10a), and (10b). Finally, (10c)
and C2 enforce this interval to be chosen consistent with actual travel time. Constraints C1 and C2 will
be discussed in more detail in the subsequent sections and therefore obtained different labels.

We considered reducing the amount of auxiliary variables by replacing for example the zijl variables by
zijkl via (2d) (similarly the zik variables can be replaced using (9a)). However, pretests revealed a slightly
negative effect on solution times due to the increased number of variables per inequality. Consequently, we
kept the model as stated in (1)–(C2 ).

3.2. Model extensions
The model can be extended flexibly in order to solve a range of related problems. We present two

examples to conclude this section.
In case we are interested in covering a back-and-forth trip of a bus in a selected corridor, we can simply

reverse the order of potential stations and append them at the end of the station list:

s1 → s2 → . . .→ sn−1 → sn → sn−1 → . . .→ s2 → s1.

Furthermore, the demand inputs need to be adjusted such that there is no demand between the forward and
the backward service and the stop time at station sn should be adjusted to mitigate potential delays and
consider driving time regulations. In most cases, it would also make sense to add another constraint that
requires each station to either be chosen in both directions or not at all.

In the second example, we account for the number of drivers in the solution, e.g., to guarantee feasibility
by one driver. This can be achieved by restricting the total duration of the timetabled service through
`n ≤ Tmax or even by allowing the model to choose longer stops at certain stations in order to abide by the
pause regulations. The decision on whether to impose a longer pause wp at some station si could be realized
by duplicating the station including all its demand and duration parameters once with the standard stop
time wi and once with wp. An additional constraint must ensure that a station and its duplicate cannot be
chosen simultaneously. Finally, we request that at least a certain number of the duplicated stations needs
to be included in the route.

4. Branch-and-cut-based solution algorithm

Due to the significant number of dependent auxiliary variables the model gets large rapidly. This means
that real-life instances may take unreasonable time to be solved to optimality using standard MIP solvers.
We tackle this issue by introducing additional preprocessing steps and identifying redundant constraints as
well as valid inequalities.

4.1. Preprocessing
We decrease the model size and strengthen the LP relaxation by exploiting the logical relations between

variables and inputs. As a first step, the values Mik∗k and Mijl in (9d) and (10c) are determined as small as
possible for each combination of the parameters. Further, for a given pair of stations si and sj , we exclude
all duration intervals shorter than a direct connection and longer than a trip stopping at all intermediate
stations. Moreover, for a given station si and a departure time ak at si, we exclude all the departure
times ak∗ too early or too late to reach si in Tk and thus reduce the number of zik∗k variables. Indeed, for
s1 the constraints (9a)–(9e) simply reduce to z1k ≤ yk. Finally, all demand items dijkl take a maximum
value of C.

4.2. Redundant constraints
Constraints (C1 ) are mainly redundant because the zijl constrain the number of passengers through (2d)

and therefore tend to be 1. The only exception is the case i = 1 and j = n, which is linked to the fixed costs
via (5). Thus, C1 can be reduced to the single constraint

∑
l z1nl = 1.

Also the constraints C2 are redundant. It is reasonable to assume that demand is non-increasing with
respect to travel time for fixed i, j and k. Now, constraints (10c) imply a lower bound on l in order for zijl
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to take the value 1. Monotonicity allows to abstain from introducing an additional upper bound on l as C2
would have done. This decreases the number of constraints significantly.

Note that zijl = 1 is possible even if the actual duration of a trip from i to j is faster than a duration
in Dl, e.g., when the capacity constraint is binding or there is no demand for this trip. In this case the zijl
do not represent exactly what we expect them to. However, we can easily construct a consistent solution
with identical objective value in a post-processing by manually forcing those zijl variables to take a value
consistent with actual travel time.

4.3. Valid inequalities
One reason for a weak LP relaxation stems from the main dependent variables zijl and zik∗k because

they are involved in the discretization constraints modeled with the help of big-M parameters. We introduce
some valid inequalities to mitigate this weakness.

While preprocessing looked at each zijl separately, we now link their choice for different stations and
durations. Once zi1j1l1 = 1 it is possible that certain durations l2 for given i2, j2 become infeasible. An
obvious example is given by i2 < i1, j2 > j1, and l2 < l1. In another preprocessing step, we determine
infeasible combinations and denote the set of infeasible l2 values by Ii1j1l1i2j2 . This translates into∑

l2∈Ii1j1l1i2j2

zi2j2l2 ≤ 1− zi1j1l1 ∀i1 < j1, i2 < j2,∀l1. (C3 )

By a similar argument, we obtain the inequalities for the departure times: Given the departure time interval
by k1 at i1 and another station given by i2, preprocessing determines infeasible k2 values as Ii1k1i2 . This
yields ∑

k2∈Ii1k1i2

zi2k2 ≤ 1− zi1k1 ∀i1 < i2,∀k1. (C4 )

Furthermore, we can start with some given zi1k∗k1 = 1 and another station given by i2. We can
determine an even larger set Ii1k∗k1i2 of infeasible values for k2 for departure at i2 using the two reference
points provided (the bus starts at s1 at ak∗−1 and reaches the station given by i1 in in an interval given by
k1). Furthermore, all the yk with k 6= k∗ will be zero, since zi1k∗k1

= 1 implies yk∗ = 1. Hence,∑
k2∈Ii1k∗k1i2

zi2k∗k2 +
∑
k 6=k∗

yk ≤ 1− zi1k∗k1 ∀i1, i2,∀k∗, k1. (C5 )

Note that no pair of summands from the left hand-side can be equal to 1 simultaneously so that the inequality
also holds when zi1k∗k1

= 0.
In the next step, we link the zijl with the flow variables zij . We consider paths P l

ij from i to j with a
duration given by `P l

ij
∈ Dl. The set of all such paths is denoted by P l

ij . All segments (=arcs) of a path in
P l
ij can be selected simultaneously only if zijl = 1 leading to

zijl ≥
∑

(i1,j1)∈P l
ij

zi1j1 − |P l
ij |+ 1 ∀i < j, ∀l,∀P l

ij ∈ P l
ij . (C6 )

Finally, we exploit the presence of paths P k
1i from s1 to station si with ak∗−1 + `Pk

1i
∈ Tk. The set of

these paths is denoted by Pk
1i giving

zik∗k ≥
∑

(i1,j1)∈Pk
1i

zi1j1 − |P k
1i|+ yk∗ ∀1 < i < n, ∀k∗ ≤ k, ∀P k

1i ∈ Pk
1i. (C7 )

All presented preprocessing steps that strengthen the formulation are applied whenever possible. How-
ever, it is not obvious a priori whether omitting constraints and adding cuts improves the solution perfor-
mance. While the last two sets of inequalities (C6 and C7 ) are exponential classes and therefore need to
be treated as cuts in the branch-and-cut approach, the other three types (C3 , C4 , and C5 ) may either
be added to the model initially or dynamically if violated. We will provide insights on those options in
Section 5.2 on computational results.
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4.4. Separation and branching
The most violated inequalities of type C6 can be identified with the following branch-and-bound ap-

proach. First, we enumerate all triplets (i, j, l). Second, we construct potential paths P l
ij from i to j that

have a duration in Dl. Starting with the initial partial path (i), for each possible intermediate station two
branches are created by including and excluding this station. When a station is included in the partial path,
the cumulative values for the left-hand side of the inequality are updated. We can stop if the cumulative
travel time exceeds the duration interval Dl or if the required inequality already holds for the cumulative
values because the right-hand side can only become smaller with additional inclusions of stations.

The separation of violated inequalities C7 proceeds starting with the enumeration of triplets (i, k∗, k)
and constructing paths with a similar branch-and-bound.

Efficient implementations yield cumulative separation times of less than 5% of the overall computation
time. This makes considerations like checking some types of cuts with priority or separating only on certain
node levels of the MIP solvers’s branch-and-cut redundant from a practical perspective. For the same
reason we do not stop the separation prematurely except when we have found nc cuts with violation 1.0
(the number nc is a parameter). We tested the inclusion of a sufficient violation parameter that causes the
premature termination once nc cuts with a sufficiently high violation have been found. However, this had
no positive effect. We will present a detailed computational analysis of different cut strategies including
parameters such as minimum violation vm and number nc of cuts in the following section.

Our node-selection strategy for the MIP solver relies on the fact that the independent binary decision
variables are the xi and yk. Therefore, we tested whether prioritized branching on them has a positive effect
on computation times. Pretests revealed a significant positive result and we use prioritized branching on
the xi and yk variables in the following.

5. Computational results

In this section we present selected model outputs and point out the advantages of using integrated and
schedule-based models for network planning. The set of sample instances and their parameter settings
are introduced in Section 5.1. Subsequently, we will comment on technical aspects in order to obtain fast
computation times, on the overall model performance with a focus on the innovative aspects as well as on
the presented model extensions in Section 5.2.

5.1. Computational setup
Our computational results are based on a total of 30 instances as summarized in Table 2. The charac-

teristics of the instances differ in the number of cities where the bus can stop, the corridor in which the
cities are located, and the demand scenarios.

12 Cities 15 Cities 18 Cities
Scenario Base Cons Opti Base Cons Opti Base Cons Opti

Corridor 1 + + + + + + + + +
Corridor 2 + + + + + + + + +
Corridor 3 + + + + + + + + +
Corridor 4 + + + − − − − − −

Table 2: Instances for computational results

The number of cities is the main driver of the complexity. There is always only one potential station in
every city. We have included a small, a medium, and a larger sized set of instances with 12, 15, and 18 cities,
respectively, in order to show different behavior depending on the model size.

The overall corridor in scope is structured by three main cities at the start, in the middle, and at the
end. There are two potential sub-corridors for connecting start and end with the middle city, respectively.
Hence, the overall picture can be abstracted as an eight (“8”) with four potential corridors leading from
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start to end (“from top to down”). Since two of the sub-corridors only contain a smaller number of potential
stations, we do not have any 15 or 18-city instances for Corridor 4, which passes through both of them.

Finally, we are looking at three different demand scenarios in each case. Scenario Base is the baseline
scenario based on the most likely demand data, Scenario Cons is conservative and assumes a higher sensitivity
of passengers towards travel time increases. The Scenario Opti is optimistic and assumes shorter stop times
at the stations as well as a higher overall demand.

The underlying demand inputs have been generated by a customized model developed in cooperation
with our industry partner. We will share insights on how to build such a model in Section 6. The remaining
input settings have been chosen as follows: We split the day in ten departure time intervals Tk (nine intervals
with two hour duration each and one interval from 12 a.m./midnight to 6 a.m.) and 14 duration intervals Dl

(30 minute intervals for travel times up to four hours and one hour intervals above). Travel distances, travel
times, ticket prices, and variable costs have been chosen in alignment with our cooperation partner from the
bus industry. We excluded fixed costs as current commercial agreements with transportation suppliers are
usually based on a price per kilometer. Finally, the capacity has been chosen as C = 52 and the auxiliary
parameter m = 1 minute.

5.2. Numerical results
All computational tests are performed on a standard PC with an Intel(R) Core(TM) i7-2600 running at

3.4 GHz with 16 GB of main memory using one thread. Algorithms are coded in C++ using CPLEX 12.5
and compiled in release mode with MS Visual Studio 2010.

5.2.1. Technical aspects
In the first round of experiments, we determine which constraints and cuts should be included in the

model in order to optimize computation times of the branch-and-cut and the straightforward MIP solver
approach. Recall that we identified seven sets of constraints that are logically redundant for the model (1)–
(C2 ): two sets of redundant constraints C1 and C2 that were included in the original model formulation,
three sets of valid inequalities C3 , C4 , C5 of polynomial size as well as exponential classes of cuts C6
and C7 . For C1–C5 we have three options: to add the constraints to the initial model, to generate them
dynamically, or to disregard them at all. For C6 and C7 we obviously do not have the first option.

In order to avoid testing all possible combinations (35 ∗ 22 = 972) for the 30 instances, we only analyze
the following two groups: The first group denoted by Constr allows constraints but omits cuts. This includes
keeping the model as small as possible, adding only one type of constraint to the model, adding all but one
type, and adding all types. The second group denoted by Cuts uses cuts and tries to keep the model as
small as possible. Again, we generate only one type of cuts, all but one type, and all types.

Computation times for the 18 cities instances takes a long time, in particular for the slower settings
(often more than the 1 hour time limit we set). In order to accelerate testing, while also ensuring that
deviating dynamics of the larger instances are not missed, we test the best five setups (w.r.t. the results for
12 and 15 cities) for the setups with and without cut generation, respectively. Since the best-performing
setups are similar for 12 and 15 cities, we end up with six setups to test in both cases.

In the case of dynamic cut generation, we add at most nc = 5 cuts per type with a minimum violation of
vm = 0.5 per cut-callback iteration. The results on average computation times, number of branch-and-bound
nodes, and number of separated cuts are given in Table 3.

The results allow us to determine a favorable constraint and cut selection strategy: For constraint sets
C1–C5 it is beneficial to add the constraints dynamically to the model rather than to add them all to the
initial model or disregard them. For example, take C1 and the 15-city case: not having constraints C1 in
the model yields 486.2 seconds average computation time, adding them to the initial model even increases
this to 508.8 seconds, while generating them dynamically accelerates the computation time to 428.3 seconds.

The results also reveal that C6 is the strongest set of cuts, since they have the biggest impact on
computation times. Further, the setups that add multiple types of cuts perform significantly better than
those that only include one type. Due to the limited number of instances investigated and the comparably
small variations in computation times it is not possible to make a final statement on the overall best setup.
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Selection Computation time [s]† Number of B&B nodes Number of cuts

Cities 12 15 18‡ 12 15 18 12 15 18

Constr. none 24.9 486.2 2748.1 (3) 3877 26378 48710
only C1 24.9 508.8 3888 28385
only C2 24.5 688.9 3161 28002
only C3 24.0 586.4 2777.2 (3) 1122 6168 8898
only C4 40.5 732.0 3079 21813
only C5 29.3 538.6 3209 22170
all but C1 36.2 870.5 1025 6479
all but C2 18.8 320.4 2587.0 (6) 426 3122 6035
all but C3 38.2 540.3 2207 11515
all but C4 13.3 218.1 2101.1 (9) 348 2655 6335
all but C5 16.5 234.8 2241.5 (6) 388 2520 5160
all 17.3 289.3 2295.6 (7) 357 2829 5103

Cuts only C1 19.7 428.3 4961 37555 30 70
only C2 20.5 441.4 4814 34051 20 67
only C3 23.8 406.3 2500 15677 470 1591
only C4 20.3 403.8 4431 34272 41 135
only C5 21.4 455.7 4410 32947 48 194
only C6 8.3 134.0 2391.2 (7) 418 3528 20477 565 4329 19340
only C7 23.1 444.2 4207 27204 265 2474
all but C1 8.2 66.6 604.3 (9) 210 1136 4388 647 2251 5576
all but C2 8.7 69.8 668.9 (9) 211 1116 4302 624 2227 5199
all but C3 8.9 149.2 398 3279 611 4412
all but C4 8.9 68.5 648.4 (9) 206 1097 4477 630 2192 4869
all but C5 9.2 78.6 211 1310 616 2292
all but C6 16.6 253.4 1154 7816 663 2497
all but C7 8.5 70.6 645.2 (9) 214 1135 4252 628 2189 5010
all 8.5 70.7 589.7 (9) 206 1103 3819 627 2211 4987

Table 3: Computation results for different constraint and cut selection strategies
† : Average across the 12 (resp. 9) instances per number of cities as described above
‡ : Numbers in brackets give the number of instances (out of 9) that are solved to optimality within 1 hour
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We decided for the strategy all but C1 for all further calculations, since computation times are slightly the
fastest on average. This also makes sense from a logical perspective, since the inequalities C1 are dominated
by the more specific constraints C6 . This yields the following benchmark average computation times for the
subsequent experiments: 8.2 seconds for 12 cities, 66.6 seconds for 15 cities, and 604.3 seconds for 18 cities.
Finally, we observe that the fastest computation times with the branch-and-cut approach are significantly
faster than just using the standard MIP solver and only adjusting the shape of the original model.

In the second series of experiments, we refine the cut separation strategy: We control the number nc of
cuts (1, 5, and 10) to be added per cut-callback iteration and the minimum violation vm (0.1, 0.5, and 0.9)
required for a constraint to be added. We control the separation of each type of cut C2–C7 independently.
The deviations as percentages of the benchmark run times are presented in Table 4. Note that for the 18-city
instances we only test varying the cuts C6 , which have the biggest impact on calculation times, in order to
reduce the effort of testing. Although we see slightly decreasing computation times in some setups, we are
not able to identify a coherently superior parameter set. We conclude that there is no significant lever for
reducing calculation times by further refining the cut settings.

12 Cities 15 Cities 18 Cities 12 Cities 15 Cities 18 Cities

Minimum violation vm Maximum number of cuts nc

Cut type 0.1 0.9 0.1 0.9 0.1 0.9 1 10 1 10 1 10

C2 +1.1 +1.0 –0.4 +8.1 +2.9 +1.8 +0.2 –0.1
C3 +27.1 +2.3 +24.2 +56.2 +6.8 +3.3 +6.6 +14.8
C4 +3.9 +8.1 +9.7 +1.1 +3.7 +4.6 +1.4 –2.0
C5 +7.6 +4.0 +9.4 –0.8 +6.3 +6.2 +0.8 +1.0
C6 +13.0 +23.9 –7.7 +21.4 +2.1 +27.6 +11.0 +6.9 +14.8 +4.8 +0.3 –4.0
C7 +3.9 +7.3 +10.5 +1.0 +3.0 +1.2 –0.2 +0.9

Table 4: Deviation from baseline calculation times in percent depending on separation strategy: minimum violation vm and
number of cuts nc

We now investigate whether further acceleration can be achieved by introducing a threshold N for the
total number of cuts of the six different types to be added in each callback iteration. Finally, we analyze
the impact of increasing the required minimum violation vm after each callback iteration by always setting
it to the minimum violation of the added cuts in this iteration. The result is that there are no significant
and systematic variations in the computation times as displayed in Table 5.

Setup 12 Cities 15 Cities 18 Cities

max 5 cuts 9.1 69.9
max 10 cuts 9.1 71.7 608.2
max 15 cuts 8.5 66.6
max 20 cuts 8.3 66.9 590.9
max 25 cuts 8.2 66.6
max 30 cuts 8.2 66.4 607.5

increase vm 8.1 73.6 639.6

Table 5: Computational times in seconds depending on threshold N or increasing vm

5.2.2. Instance characteristics
In addition to the technical settings, we first investigate the impact of the different groupings of the

instances on average computation times and objective values. Table 6 summarizes the results. We note
that Corridor 3 consistently yields lower objective values and therefore is the least attractive option. The
objective values for the different demand scenarios confirm the expectations: Profits are highest in the
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optimistic Scenario Opti and lowest in the conservative Scenario Cons. Computation times are fastest in
those groups with higher objective values.

Corridor Scenario

1 2 3 4 Base Cons Opti

Computation 12 Cities 8.5 5.4 12.1 7.0 9.9 10.2 4.6
time [s] 15 Cities 54.2 65.1 80.7 80.3 78.2 41.5

18 Cities 625.9 687.6 499.5 917.8 749.3 145.9

Objective 12 Cities 694 939 339 699 575 504 925
15 Cities 944 984 702 774 710 1147
18 Cities 1089 1127 804 915 859 1246

Table 6: Computation times in seconds and objective values per instance group

5.2.3. Modeling scope
The next study highlights the sensitivity of optimal solutions towards the schedule-based characteristics

of input data. We choose the first of the mid-sized instances (Corridor 1, demand Scenario Base, 15 cities).
Note that we are here not interested in the selection of specific stations but in the general dissimilarity of
(optimal) solutions.

Station (open +/closed −)

Scenario 2 3 4 5 6 7 8 9 10 11 12 13 14 Profit

Schedule−based demand, C = 52 + − + − − + − + − − + + + 878
Schedule−based demand, C =∞ + + + + − + + + − − + + + 1429
Day demand, C = 52 + + − + − + − + − + − + + 653
Day demand, C =∞ + + + + − + + − + + + + + 1045
Morning departure + − + + − + − + − + − + + 806
Noon departure − − + − − + − + − + − + + 654
Afternoon departure − − + − − + + − + − − − − -258

Table 7: Sensitivity of optimal solutions towards schedule-based demand

The first two scenarios shown in Table 7 describe the optimal solutions with schedule-based demand once
including the capacity constraints (3b) and once completely relaxing it. The following two scenarios use an
evenly distributed demand that would have been used in a classical, non schedule-based approach. Such a
non-schedule based approach considers capacity only on an aggregated level and therefore risks overfilling
specific timetabled services in peak times. Again, one scenario is with and the other one without capacity
constraints. In the three remaining rows, we further illustrate how the optimal schedule-based solutions
change when the start time is fixed a priori (morning, noon, afternoon departure at station s1). We can
clearly see that a classical approach risks generating deviant solutions and misjudging potential profits.
Furthermore, the optimal selection of stations depends significantly on the time of day.

Now that we have justified the integration of schedule-based and dynamic demand approaches, we eval-
uate the integration of the simultaneous scheduling decision in a single model. For the set of instances
described above, we iteratively run the models with all possible start times fixed and compare the compu-
tation times with those of the integrated model: Table 8 shows the average computation times. We can
conclude that the integrated approach yields faster calculation times than the iterative use of the disinte-
grated model (factors are between 1.5 and 2.0). However, there are certainly still reasonable applications for
the model without the scheduling decision, e.g., when we would like to compare optimal routes for different
departure times.

The remaining characteristic of our model that we analyze now is the capacity constraint. Tables 9 and 10
show how varying the capacity C from non-binding to binding impacts the percentage of the demand that
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Disintegrated Integrated
Fixed start time ak−1

12 am 6 am 8 am 10 am 12 pm 2pm 4pm 6pm 8pm 10 pm Sum

12 Cities 0.8 2.1 2.3 2.3 2.7 2.6 1.8 1.2 0.2 0.0 15.9 8.2
15 Cities 2.8 16.9 21.4 16.4 16.9 14.5 4.5 2.1 0.7 0.1 96.2 66.6
18 Cities 8.6 160.3 181.9 117.3 136.1 112.2 17.1 4.6 1.0 0.1 739.2 604.3

Table 8: Average computation times in seconds for iteratively solved disintegrated models and integrated models

can be served per station and per number of intermediate stations for our showcase instance (Corridor 1,
Scenario Base, 15 cities).

Start station

Capacity C 1 2 3 4 5 6 7 8 9 10 11 12 13 14

100 100 – 100 100 100 – 100 100 – – – 100 100 100
90 100 100 100 88 – – 100 100 – – – 100 100 100
80 100 – 100 99 – – 100 – 100 – 100 – 100 100
70 100 100 – 85 – – 100 – 100 – – 100 100 100
60 100 100 – 65 – – 100 – 100 – – 100 100 100
50 100 – 97 39 – – 100 – 100 – 100 – 100 100
40 100 – – 57 – 100 100 100 – 100 90 – 100 99
30 100 – – 26 – – 78 90 – 100 – 100 100 86
20 95 – – 10 – – 60 40 – 100 – 100 100 41
10 69 – – – – – – – 51 – – – – –

Table 9: Fulfilled demand per start station in percent (closed stations indicated by “–”)

Table 9 shows the percentage of demand per station that is fulfilled by the optimal solution. We only
consider the demand with respect to the stations that are actually included in the route and to the cor-
responding travel and departure time. There are two trends we can observe, both of which were expected
beforehand: First, decreasing capacity in general lowers the fulfilled demand per station and eventually
causes the station to close. Station 4 is the perfect example for this behavior. There are, of course, ex-
ceptions. Station 8, for example, is closed at capacity 80 and reopened at capacity 40. Second, fulfilled
demand significantly below 100% mainly occurs in the middle of the route, where aggregated demand for
the corresponding connections is highest.

Table 10 shows the percentage of demand that is fulfilled based on the number of intermediate stations
with respect to the selected stations (e.g., 71% of demand for capacity C = 60 between neighboring stations,
i.e., with 0 intermediate stations). We perform this analysis for our sample instance with constant prices
per kilometer for the passenger (Scenario Linear) and for an adjusted instance in which prices per kilometer
decrease for longer trips (Scenario NonLin). Again, the results are consistent with expectations: While
Scenario Linear favors longer trips with more intermediate stations, Scenario NonLin prioritizes shorter
trips as they yield higher revenues per kilometer for the operator (note that the 100% for C = 20 and
6 intermediate stations is based on a demand of 0.1 passengers and can therefore be disregarded).

We briefly comment on the decision of which part of the demand to serve: If there is still space left in
the bus for a certain connection, the operators clearly would not stop selling tickets despite the fact that the
model suggests reserving that space for fictitious passengers on another connection. However, operators can
use these insights to adjust their pricing accordingly and ensure they increase the prices for those passengers
excluded by the model.

5.2.4. Model extensions
To conclude this section, we present two specific examples of the model extensions introduced in Sec-

tion 3.2. In the first example, we determine an optimal bidirectional day timetable for a bus based on the
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Pricing scenario Linear Pricing scenario NonLin

Number of intermediate stations Number of intermediate stations

C 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
90 89 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
80 99 100 100 100 100 100 100 – 100 94 100 100 100 100 100 100
70 88 100 100 100 100 100 100 – 100 92 100 100 100 100 100 –
60 71 100 100 100 100 100 100 – 100 94 100 100 100 100 100 100
50 58 100 94 95 100 100 100 – 100 100 98 77 92 96 100 100
40 90 85 66 95 77 100 100 100 98 100 84 64 64 29 33 100
30 53 69 57 88 67 100 100 – 93 78 70 53 51 36 17 –
20 31 64 79 65 7 24 17 – 77 66 50 53 0 0 100 –
10 51 100 – – – – – – 65 63 18 14 – – – –

Table 10: Fulfilled demand per number of intermediate stations in percent

extended model. Since the total corridor we investigate is too long to allow the same bus to go back and
forth in one day, we create a 23-city instance that is based on the most dense sub-corridor segment with
twelve potential stations by adding the backwards direction and requiring each station to be chosen either
in both directions, or not at all. The stop time at the turnaround station is set to 45 minutes. We run the
model once in the extended version and once just in one direction for the twelve stations. The results are
displayed in Table 11. In this case, the optimal stations are indeed the same for the two versions, however,
we could easily construct instances which would yield different results. The profits do not double, though,
as one direction of the service needed to be operated at a less attractive time. The computation time for a
solution of the extended model is just 91.4 seconds. It seems that the requirement to include each station in
both directions or not at all simplifies the solution significantly. When relaxing this constraint, computation
times increase drastically to 1,015.3 seconds, however, the optimal station selection and thus profits remain
identical.

Station (open +/closed −)

Scenario 2 3 4 5 6 7 8 9 10 11 Profit

Both directions + − − − + − − − + − 713
Only forward direction + − − − + − − − + − 370

Table 11: Optimal solutions including and excluding return journey

Finally, we present an example of how to include considerations on the number of drivers in the model.
We start again with our 15-city sample instance and enforce one mandatory 45 minutes pause in the middle
of the journey by duplicating the stations s5 to s11. In order to ensure the service abides by regulations,
we request the parts of the service from s1 to the pause station as well as from the pause station to sn to
have a duration below 4.5 hours, which is the maximum duration that a single driver can operate the bus
without a pause:

`i − wi ≤ 270 + (1− xi)M ∀ duplicated stations si
`n − `i − wn ≤ 270 + (1− xi)M ∀ duplicated stations si

We actually solve our sample instance in just 15.4 seconds as the overall corridor is rather long and does
not allow for many stops in addition to the mandatory pause.
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6. Implementation and application aspects for the practitioner

In this section, we comment on the applicability of our model from the point of view of a practitioner
who wants to solve real-world problems using a model similar to (1)–(C2 ). In Section 6.1, we discuss options
for obtaining the input data, in particular for the fine-grained demand data dijkl. The embedding of the
model into the overall network planning process is discussed in Section 6.2.

6.1. Obtaining the input data
While the operational parameters around driving times, distances, prices, and costs are rather standard

and should be readily available in most circumstances, the crucial piece of data is the demand dijkl. Certainly,
we cannot present a definite answer on superior approaches for obtaining this data, as it is the output of
quite sophisticated transport modeling approaches (e.g. de Dios Ortúzar and Willumsen, 2011). However,
the following rough classification of the schedule-based demand forecasting approaches is helpful, they differ
in the scope for the application of the schedule-based techniques.

The most general approach is mode comprehensive modeling, where all mobility modes are represented
in a schedule-based manner. Here, the starting point is a data set of trip demand within the region in scope,
potentially even split by user group or motivation of travel. Such information can either be based on actual
mobility data or on (gravitation) models. This corresponds to the trip generation and trip distribution
stages in the classical four-step transport modeling process. Classically, the third step would now distribute
the overall demand across modes and the fourth step would assign passengers on specific routes. The
mode comprehensive schedule-based approach actually comprises these two steps, since mode and route
are determined simultaneously by the choice of a timetabled service (e.g. Nuzzolo et al., 2007). Obtaining
demand data for a specific timetabled service can either be realized by top-down assignment of overall
demand based on a utility function, e.g., by application of (nested) logit models, or by taking a standard
demand and adjusting it based on the characteristics of the timetabled service. An aspect to focus on is the
demand share between the modes in scope. In our case, we decided against a mode comprehensive modeling
approach, since the number of bus passengers is very small compared to the users of trains or even private
cars. Hence, the model would have been too sensitive towards small calibration errors.

The next approach, mode internal modeling only deals with schedule-based considerations within the
mode in scope (potentially following a classical mode-choice step). Thus, competition with other modes can
still be taken into account by adjusting the total transport volume of the mode based on the overall quality
of the service offering. Current market conditions in Germany represent a challenge towards schedule-based
considerations on a mode level because operators are radically extending and adjusting their offers while
new players are entering the market. Therefore, we decided to represent competition by the overall number
of services offered per pair of stations rather than by specific timetabled services. In the mid-term, after
stabilization of the market, we would definitely recommend using demand data specific to timetabled services
when modeling the bus-competition, in order to increase accuracy of planning.

Finally, with an operator specific modeling approach only the timetabled services of the operator in
scope are treated on a schedule-based level. However, we clearly cannot use a top-down approach based
on the overall volume for the operator as the volume is highly dependent on the timetable. Therefore,
we suggest using schedule-adjusted standard demands (i.e., modeling standard demand in the first step
and subsequently adjusting it based on the actual time of day of the trip) and calibrating demands on an
aggregated level against actual numbers or estimates.

Obviously, combinations of the approaches can and will usually be used in practice. Another crucial
aspect is calibration of the demand data whenever possible. Ideally, this is to be done with data that
have not been included in the modeling in order to avoid overspecification. Calibration will also help in
determining external factors and their impact on transportation demand that could be missed in particular
in the latter and narrower approaches.

6.2. Network planning process
Another important application aspect is the embedding of the schedule-based inter-city bus line planning

in the network planning process. In Germany, inter-city bus operators need to submit their timetables at least
17



three months before the actual operations in order to provide sufficient time for approval by the authorities.
Considering that vehicle and duty scheduling represent complex further planning steps, the presented model
should be used approximately four months before introducing a new timetable. The frequency for adjusting
timetables is beyond the scope of our modeling and requires balancing the cost-driven perspective of adjusting
supply to the volatility of demand, e.g., due to holiday seasons, and the market-driven approach aiming to
offer a stable and reliable product.

The reader might wonder how to apply the presented optimization of one frequency in a given corridor to
optimize the overall network. While there is certainly potential for further generalization of the model, we
experienced the iterative application of the model to be of great help in this context. Having fixed an ideal
route in the first modeling step, planners can adjust demand accordingly and run the model a second time
to determine the second timetabled service etc. Note that the further timetabled services may be allowed to
cover different stations than the first one, which allows for the creation of route variations. The presented
computation times for realistic instances allow for the repeated application of the model in a reasonable
time frame.

In addition, it is crucial to consider the consequences of network and timetable on the operational costs
resulting from vehicle and duty scheduling. Again, we suggest an iterative approach: after solving the model
determine the optimal vehicle and duty costs (the aforementioned reduced complexity of inter-city networks
should allow this to be done in an integrated way) and check whether the resulting costs are consistent to
the ones used in the model. If they need to be adjusted, the possibility of varying fixed costs based on the
share of the day when the bus is occupied allows operational feedback to be integrated into our model.

Finally, it is worth considering the robustness of the resulting timetable and to ensure that in particular
patronage is stable with respect to occasional delays, which are nearly unavoidable when sharing the roads
with private cars and freight transportation.

7. Conclusion and outlook

We have presented an exact and schedule-based model integrating aspects of dynamic demand, network
design, line structure, and scheduling that is able to deal with real-world instances in reasonable compu-
tational times. To our knowledge, this is the first model discussed in the literature comprising all these
aspects. For the resolution of the model, a branch-and-cut algorithm has been developed. It accelerates
computations for larger instances significantly.

Further research should focus on allowing multiple frequencies with route variations, extending the scope
to a network perspective including line pools, transfers etc., and also including even more operational aspects.
For the last point the fine-grained modeling of fixed costs in our model (that allows costs to vary depending
on the share of the day when crew and bus are employed) and the extension regarding maximum driving
times can be seen as first steps.

Challenges for achieving this additional integration besides the obvious increased model size and thus
difficulties in solving real-world instances also lie in obtaining reliable input data, in particular for the
demand. If models would be used to decide on frequencies, transfers, and multiple lines at once, then the
demand inputs would be sensitive to those choices. This would require demand to be modeled explicitly as
a function of multiple parameters (maybe ten or more) inside the MIP. An explicit demand description such
as our four-index-based demand scenarios (from, to, when, duration) could then serve as supporting points
in more sophisticated demand functions.
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