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Abstract

Many governments worldwide have imposed hours of service regulations for truck drivers to ensure that break
and rest periods are regularly taken. Transport companies have to take these into account and plan the
routes and schedules of their truck drivers simultaneously. This problem is called vehicle routing and truck
driver scheduling problem (VRTDSP). With their paper “An exact method for vehicle routing and truck
driver scheduling problems” [Technical Report No. 33, Jacobs University, School of Engineering and Science,
Bremen, Germany] Goel and Irnich presented the first exact approach to the VRTDSP. They include hours of
service regulations in a vehicle routing problem with time windows and use a branch-and-price algorithm to
solve it. The main contribution of the paper at hand is to present a sophisticated branch-and-price-and-cut
algorithm for the VRTDSP that is based on the parameter-free auxiliary network and the resource extension
functions (REFs) defined in the work of Goel and Irnich. Their labeling algorithm is extended by means
of defining backward REFs in order to build a bidirectional labeling. Feasible routes are constructed by a
non-trivial merge procedure. Different acceleration techniques are used to speed up the solution process of
the pricing problem. In addition, several classes of known valid inequalities are used to further strengthen
the LP-relaxation of the master program. We present a detailed computational study to analyze the impact
of the different techniques. The resulting algorithm is able to solve all VRTDSP benchmark instances with
25 customers and 44 out of 56 instances with 50 customers in two hours of computation time to proven
optimality.
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1. Introduction

Many governments worldwide have imposed hours of service regulations for truck drivers to avoid fatigue-
related accidents. These regulations ensure that break and rest periods are regularly taken, i.e. they define
a minimum amount of break and rest times for truck drivers as well as a maximum driving time between
two break or rest periods. Transport companies have to take these into account when planning the routes
and schedules of their truck drivers. All kinds of such regulations strongly restrict the feasibility of vehicle
routes that last several days and are assigned to a single driver. Two approaches can be used to construct
feasible vehicle routes while minimizing overall costs: In a two-phase approach, routes are first built without
considering hours of service regulations and later modified to take them into account. Solving the problem
exactly makes it necessary to use an integrated approach: Vehicle routes and truck driver schedules have to
be planned simultaneously, which is usually more complex but provides lower-cost solutions. This problem
is called vehicle routing and truck driver scheduling problem (VRTDSP).

The paper at hand deals with the current hours of service regulations of the United States (U.S.) for
property-carrying drivers, that entered into force in 2013 (Federal Motor Carrier Safety Administration,
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2011). According to these regulations, the day of a truck driver can be separated into four parts: Driving,
working that does not include driving, e.g. loading and unloading the truck, break periods and rest periods.
These parts are subject to the following restrictions:
(1) The accumulated driving time between two consecutive rest periods is at most eleven hours.

(2) The minimum duration of a break period is 30 minutes.

(3) The minimum duration of a rest period is ten hours.

(4) Driving can only be done until at most eight hours since the last break or rest period has elapsed.

(5) Driving can only be done until at most 14 hours since the last rest period has elapsed.
Note that these regulations only limit a truck driver in terms of driving, i.e. there are no limitations for

working that does not include driving.
Recently, Goel and Irnich (2014) presented the first exact approach to the VRTDSP. They include hours

of service regulations into a vehicle routing problem with time windows (VRPTW) and use a branch-and-price
algorithm to solve it. The main contribution of the paper at hand is to present a sophisticated branch-and-
price-and-cut algorithm for the VRTDSP that is based on the parameter-free auxiliary network and the
resource extension functions (REFs, see Irnich (2008)) defined in (Goel and Irnich, 2014). We extend their
labeling algorithm by means of defining backward REFs in order to build a bidirectional labeling. To obtain
feasible routes a non-trivial merge procedure is presented. The concept of using a dynamic half-way point
(Tilk et al., 2016) and the ng-path relaxation (Baldacci et al., 2011) are used to speed up the solution
process of the pricing problem. In addition, different families of known valid inequalities are used to further
strengthen the linear relaxation of the master program, namely subset-row (Jepsen et al., 2008), two-path
(Kohl et al., 1999) and strong-degree inequalities (Contardo et al., 2014) as well as a dynamic extension of the
ng-neighborhood (Roberti and Mingozzi, 2014; Bode and Irnich, 2015). We present a detailed computational
study to analyze the impact of the different techniques. The resulting algorithm is able to solve to proven
optimality all VRTDSP benchmark instances with 25 customers and 44 out of 56 instances with 50 customers
in two hours of computation time.

The remainder of this paper is as follows. Section 2 briefly reviews the literature on vehicle routing
problems with hours of service regulations. In Section 3, an extensive formulation is given. Section 4
presents the pricing problem and its solution. Families of valid inequalities are discussed in Section 5.
Section 6 presents a computational analysis of the algorithmic components. Concluding remarks are given
in Section 7.

2. Literature

To the best of our knowledge, the first work considering hours of service regulations in a vehicle routing
problem is (Savelsbergh and Sol, 1998). The break and rest rules considered in this work were similar to the
regulations in the European Union (EU) that were in force at that time. A branch-and-price approach was
used to solve the problem heuristically. Xu et al. (2003) investigated a pickup-and-delivery problem with
several complicating side constraints, including the U.S. hours of service regulations that were in force at
that time. Ceselli et al. (2009) solved a rich vehicle routing problem with a column-generation algorithm.
Among other constraints, they impose an upper limit on the number of consecutive driving hours and enforce
drivers’ rest periods.

With the introduction of new hours of service regulations in the EU in 2007, several heuristic approaches
for combined vehicle routing and truck driver scheduling have been proposed: Zäpfel and Bögl (2008)
developed a two-phase algorithm for a VRPTW with certain driver rules. In the first phase, a metaheuristic
is used to solve a vehicle routing problem, while in the second phase a personnel assignment problem is solved
with a simple heuristic. Goel (2009) proposed a large neighborhood framework for a VRPTW including
only a subset of the EU regulations. Bartodziej et al. (2009) designed a column-generation heuristic and
three metaheuristics for solving a combined vehicle and crew scheduling problem with time windows and
rest regulations. Drexl and Prescott-Gagnon (2010) investigated how European regulations can be formally
modeled in an elementary shortest path problem with resource constraints (ESPPRC). Kok et al. (2010)
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developed a heuristic dynamic-programming algorithm that can solve a VRPTW with all EU regulations.
Prescott-Gagnon et al. (2010) also investigated the VRPTW with EU regulations and presented a large
neighborhood search method that relies on a column-generation heuristic. Derigs et al. (2011) solved a
real-world vehicle routing problem respecting the EU regulations.

The literature about the U.S. hours of service regulations is rather scarce. Rancourt et al. (2013)
developed a tabu search approach to the VRTDSP with respect to the regulations that were in force until
July 2013. Rancourt and Paquette (2014) designed a tabu search to solve a multi-objective VRTDSP with
respect to the same regulations. Goel (2014) presented a simple heuristic to analyze the impact of the
change in the regulations in 2013 in terms of cost and accident risks. Goel and Vidal (2014) presented a
hybrid genetic search that has been used for different regulations worldwide, especially also with the new
U.S. regulations. To the best of our knowledge, Goel and Irnich (2014) are the only authors presenting an
exact solution approach to the VRTDSP. They developed a branch-and-price algorithm for the VRTDSP
with the old and new U.S. regulations. Solutions of benchmark instances with up to 100 customers are
reported.

3. Extensive Formulation

Using column-generation techniques to solve vehicle routing problems exactly is quite standard (De-
saulniers et al., 2010). In order to solve the VRTDSP with branch-and-price-and-cut, we use a set-
partitioning formulation. In this setting, the master problem is quite easy, while capacity and time window
constrains as well as hours of service regulations are tackled in the pricing problem (see Section 4).

The VRTDSP can be defined as follows: Let C := {1..n} be the set of customer vertices, o be the start
depot and d be the end depot. A time window [ai, bi], a non-negative demand qi and a non-negative service
time si are associated with every vertex i. Service times and demands at the start and end depot are defined
as zero, i.e. qo=qd := 0 and so = sd := 0. Service at a vertex must start inside but may end outside of
its time window. Let A = {(i, j) ∈ V × V : i 6= j} be the set of arcs. Each arc (i, j) is associated with
a non-negative travel time tij (excluding break and rest times) and a non-negative travel cost cij . Note
that we can remove all arcs that can not be feasibly traversed due to time window or capacity restrictions.
Furthermore, let K be a fleet of homogeneous vehicles with capacity Q. A vehicle route is defined as a path
starting at o, ending at d and visiting a subset of the customer vertices in between. A route is feasible if
the capacity of the vehicle is not exceeded and if there exists a schedule complying with hours of service
regulations and the time windows of the visited vertices. The cost of a route is defined as the sum of the
travel cost of the traversed arcs. The goal of the VRTDSP is to find a set of feasible routes visiting each
customer exactly once while minimizing the overall travel cost. Assuming that we know the set of all feasible
routes R, the VRTDSP can be stated as follows:

min
∑
r∈R

crλr (1a)

s.t.
∑
r∈R

airλr = 1 ∀i ∈ C (1b)∑
r∈R

λr <= |K| (1c)

λr ∈ {0, 1} ∀r ∈ R (1d)

The binary variables λr indicate if route r is used or not. The coefficients cr denote the travel cost of
route r and coefficients air denote the number of times route r visits customer i. Hence, (1a) minimizes the
overall travel cost. Constraints (1b) ensure that each customer is visited exactly once. The number of used
vehicles is limited by (1c) and the variable domains are given in (1d).

In the following, the linear relaxation of Formulation (1) in which the set of all feasible routes is addi-
tionally replaced by a subset R̄ is denoted as the restricted master program (RMP). For solving the RMP,
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a column-generation algorithm (Desaulniers et al., 2005) is employed. The column-generation algorithm
alternates between the LP re-optimization of the RMP and the column-generation pricing problem that
adds additional variables (=columns) to the RMP. Let πi be the dual prices of the constraints (1b) of the
RMP and let µ be the dual price of the convexity constraint (1c). The pricing problem asks for a route r
with negative reduced cost c̄r := cr − µ −

∑
i∈C airπi. The reduced cost of an arc (i, j) ∈ A is defined as

c̄ij := cij − 1
2πi −

1
2πj with πo = πd = µ. We initialize the set R̄ with a set of dummy columns with infinite

cost, each visiting one customer and having no impact on constraint (1c). Branching on arcs is required to
finally ensure integer solutions of (1).

In order to stabilize the column-generation process, the partitioning constraints (1b) can be replaced
by covering constraints if the triangle inequality holds for travel costs and times. This replacement is also
possible if the triangle inequality does not hold. Then we have to add to the RMP the additional constraint
that the number of visited vertices must not exceed |C|, i.e.

∑
r∈R lrλr ≤ |C| , where lr is the number of

times route r visits a customer. The effect is that all dual prices πi for i ∈ C are non-negative. To incorporate
the added constraint in the pricing problem, its dual price has to be subtracted from the reduced cost of all
arcs (i, j) with j ∈ C.

4. Pricing Problem

In this section, we discuss the pricing problem of the branch-and-price-and-cut algorithm. First, in
Subsection 4.1, we recapitulate the parameter-free model, the resources, and the REFs developed by Goel
and Irnich (2014). This is the basis for the bidirectional labeling presented in Subsection 4.2. Subsection
4.3 deals with the ng-path relaxation (Baldacci et al., 2011) for the VRTDSP. Finally, in Subsection 4.4,
different techniques to accelerate the solution of the pricing problem are presented.

4.1. Forward Labeling
The pricing problem is an ESPPRC that can be solved with a labeling algorithm. It tries to find a

negative reduced-cost route that is feasible with respect to load, time windows and the hours of service
regulations. According to the current U.S. hours of service regulations, a driver may take break or rest
periods at any time and with any duration larger than 30 minutes and ten hours, respectively. However,
driving periods can be scheduled only depending on the current state of the driver, and no limitations
regarding service periods are specified. The relevant parameters are summarized in Table 1.

Symbol Value Description
tdrive 11 hours The maximum accumulated driving time between two consecutive rest

periods

tbreak 1
2

hours The minimum duration of a break period

trest 10 hours The minimum duration of a rest period
tel|B 8 hours The maximum time after the end of the last break or rest period until

which a driver may drive

tel|R 14 hours The maximum time after the end of the last rest period until which a
driver may drive

Table 1: Parameters imposed by the new U.S. hours of service regulations (Table 1 in Goel and Irnich, 2014)

Goel and Irnich (2014) defined an auxiliary network to tackle the difficulty of including hours of service
regulations in a VRPTW. In this auxiliary network, a drivers’ working day can be separated into a sequence of
four different periods: working, service, break and rest. We assume that service times can not be interrupted
by a break or a rest. Except for this assumption, a driver can take a rest or break at any point in time and
space, especially between two customer location. To model this aspect an intermediate vertex nij is created
for each feasible arc (i, j) ∈ A. Now, a drivers’ state can be modeled with nine resources and his possible
activities with five REFs.
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Beside the standard VRPTW resources cost, load and time, the other resources are needed to keep track
of the drivers’ current state. Namely, the accumulated driving time since the last rest, the remaining driving
time to reach the next customer, the time elapsed since the last break, and the time elapsed since the last
rest. Goel and Irnich (2014) have shown that it is beneficial in the labeling algorithm to keep rest and
break periods as short as possible and to perform driving periods as long as possible. Obviously, this avoids
time periods in which the driver is unproductive, however, this may cause unnecessary waiting times at
subsequent customers due to time window restrictions. To overcome this issue, break and rest periods can
be scheduled longer than required later on in the labeling algorithm. Therefore, two additional resources
are needed to keep track of the latest possible points in time to which the end of the last rest and break
period can be extended without violating any time window constraints. In the following, the nine resources
needed to represent a drivers’ state are listed:
• T cost: the accumulated reduced cost of a route

• T load: the accumulated load of a route

• T time: the current time of day

• T dist: the remaining driving time to reach the next customer

• T drive: the accumulated driving time since the last rest

• T el|B : the time elapsed since the last break

• T el|R: the time elapsed since the last rest

• T la|B : The latest possible point in time to which the end of the last break period can be extended
without violating any resource constraints

• T la|R: The latest possible point in time to which the end of the last rest period can be extended
without violating any resource constraints

The possible activities of a driver are represented by the following REFs: First, the REF fstartij models
the starting point for going from vertex i to vertex j immediately after i was served. Second, the REF fdriveij

is used to model driving from i to j for ∆ij time units. The amount of driving time can be computed as
∆ij = min{T dist, tdrive − T drive, tel|B − T el|B , tel|R − T el|R}. Note that ∆ij is the maximal driving time that
violates no resource constraints. Third, taking a 30-minute break or a ten-hour rest between the visit of
customers i and j is modeled with the REFs f breakij and frestij , respectively. Last, performing the service at
customer j is modeled with the help of the REF fvisitij . This REF also extends the length of the last rest
and break period taken to avoid unnecessary waiting. The subnetwork defined by an arc (i, j) ∈ A with the
corresponding REFs represented as different arcs is depicted in Figure 1.

i nij j
fstartij

fdriveij

frestijf breakij

fvisitij

Figure 1: Subnetwork for arc (i, j) ∈ A

Now, a forward path P = (o, .., u) in the auxiliary network defines a label Lu = (u, Su, Tu), where u is the
last visited vertex, Su the set of all visited vertices and Tu := (T costu , T loadu , T timeu , T distu , T driveu , T

el|B
u , T

el|R
u ,

5



T
la|B
u , T

la|R
u ) the resource vector. The initial label representing a fully rested driver at the start depot

o is defined as Lo = (o, {o}, To) with To = (T costo , T loado , T timeo , T disto , T driveo , T
el|B
o , T

el|R
o , T

la|B
o , T

la|R
o ) :=

(0, 0, ao, 0, 0, 0, 0,∞,∞).
When propagating a label Lu = (u, S, Tu) forward over an arc in the auxiliary network corresponding to

a REF f∗ij , some preconditions must be fulfilled to create a feasible new label. The REF fstartij produces a
new feasible label if j was not yet visited, the demand of j fits in the vehicle and j can be reached in its time
window, i.e. if j /∈ S, T load + qj ≤ Q and T time + tij ≤ bj , respectively. Driving is only possible if the driver
is fit, i.e. fdriveij creates a feasible new label only if ∆ij > 0. Contrariwise, the REFs f breakij and frestij return
a feasible label only if ∆ij <= 0. Finally, the service at vertex j is possible only if the full distance between
i and j was driven and j is reached before the end of its time window, i.e. fvisitij returns a feasible new label
only if T dist = 0 and T time ≤ bj . Note that fvisitij can be used independently of the value of ∆ij . Thus, the
time elapsed since break or rest resources can exceeded tel|B and tel|R, respectively. As a consequence, ∆ij

can have a negative value in the newly created labels.
The resources T cost, T load and the set S are only updated when the REF fstartij is used while their resource

values are kept by all other REFs. It holds: T costnij
= fstartij (T costi ) = T costi + c̄ij , T loadnij

= fstartij (T loadi ) =

T loadi + qj , and Snij = Si ∪ {j}. All other resource updates of the REFs are summarized in Table 2. Blank
entries indicate that the resource value is kept.

REF T time T dist T drive T el|B T el|R T la|B T la|R

fstartij tij

fdriveij T time + ∆ij T dist −∆ij T drive + ∆ij T el|B + ∆ij T el|R + ∆ij min{T la|B , T la|R+

tel|R − T el|B −∆ij}
f breakij T time + ∆ij 0 T el|R + ∆ij ∞

frestij T time + ∆ij 0 0 0 ∞ ∞

fvisitij max{T time, aj}+ sj max{T el|B , max{T el|R, min{T la|B , min{T la|R,

aj − T la|B}+ sj aj − T la|R}+ sj bj − T el|B} bj − T el|R}

Table 2: Resource extension functions

Note that all REFs are non-decreasing in the resources T cost, T load, T time, T dist, T drive, T el|B and T el|R
as well as non-increasing in the resources T la|B and T la|R. Hence, a standard dominance rule can be defined
(Irnich and Desaulniers, 2005). Additionally, Goel and Irnich (2014) have developed a second dominance
rule to further reduce the number of labels.

Rule 1. (Dominance 1) Let L = (u, S, T ) and L′ = (u, S′, T ′) be two labels with identical last vertex u. Let
P = P (L) and P ′ = P (L′) be the respective partial paths. If S ⊆ S′, T cost ≤ T ′cost, T load ≤ T ′load, T time ≤
T
′time, T dist ≤ T

′dist, T drive ≤ T
′drive, T el|B ≤ T

′el|B , T el|R ≤ T
′el|R, T la|B ≥ T

′la|B and T la|R ≥ T
′la|R,

then any feasible extension of P ′ towards d is also a feasible extension of P with non-smaller cost. Hence,
L′ can be discarded.

Rule 2. (Dominance 2) Let L = (u, S, T ) and L′ = (u, S′, T ′) be two labels with identical last vertex u. Let
P = P (L) and P ′ = P (L′) be the respective partial paths. If S ⊆ S′, T cost ≤ T

′cost, T load ≤ T
′load, T dist ≤

T
′dist and T time + tel|R ≤ T ′time, then any feasible extension of P ′ towards d is also a feasible extension of

P with non-smaller cost. Hence, L′ can be discarded.

4.2. Bidirectional Labeling
This subsection presents the bidirectional labeling. First, a backward labeling is defined and the differ-

ences to forward labeling are emphasized. Then a non-trivial merge procedure for forward and backward
labels is presented.
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In order to use the same resources and similar REFs as in the forward labeling, the backward labeling
is defined on an inverted network. To be precise, the time window of a vertex i is defined as [abwi , bbwi ] :=
[−bi − si,−ai − si] and the direction of all arcs in the auxiliary backward network is reversed. The time
window is shifted by si because service at a vertex i must start inside but can end outside the time window.
The change in the arc direction leads to a role reversal of the REFs: REF fvisitBWij models the starting
point for going backward from vertex j to vertex i and REF fstartBWij models the service at customer i when
coming backward from customer j.

Additionally, we have to take care of another aspect of the problem: Since waiting and service times
do not count as driving times, performing service is still possible although the resource T el|R would exceed
the maximum value tel|R. In chronological order, this implies that a rest period must succeed the service
period that cause this exceeding before any driving period can be executed. In the forward labeling, this is
implicitly managed by allowing the use of REF fvisitki , even if the new resource value T el|Ri = fvisitki (T

el|R
nki )

exceeds tel|R due to the service and waiting times at vertex i. In this case, a rest is implicitly enforced at
the next intermediate vertex due to ∆ ≤ 0 .

The same situation means in the reversed chronological order of the backward labeling that the resource
T el|R can exceed tel|R by the service and waiting times at vertex i if and only if REF frestBWij was applied
immediately before REF fstartBWij . To model this, two aspects of REF fstartBWij have to be changed. First,
when applying REF fstartBWij , the service and waiting times at vertex i are not taken into account for
computing the new resource values T el|Ri and T

la|R
i if and only if REF frestBWij was applied immediately

before. Note that the resources T el|R and T la|R are both affected since they are interdependent. Second,
the resource T el|R may never exceed tel|R since the service and waiting times that allow an exceeding are
not taken into account for the computation. Therefore, applying REF fstartBWij returns no feasible new
label if the new resource value T el|Rj = fstartBWij (T

el|R
nij ) exceeds tel|R. A similar argumentation holds for the

resource T el|B and the value tel|B.
Hence, the REFs in the backward labeling are defined as follows: The REFs fdriveBWij , frestBWij , f breakBWij

and fvisitBWij use the same preconditions and resource updates as their counterparts fdriveij , frestij , f breakij

and fstartij in the forward labeling. Besides the preconditions of its counterpart fvisitij , the REF fstartBWij

has two additional preconditions to create a feasible label:

fstartBWij (T el|Bnij
) ≤ tel|B and fstartBWij (T el|Rnij

) ≤ tel|R.

Furthermore, fstartBWij updates the set S and the resources T cost, T load, T time, T dist and T drive as the REF
fvisitij updates them in the forward labeling. The updates of T el|B , T el|R, T la|B and T la|R change as stated
below. Note that a value T el|R = 0 implies that the last used REF was frestBWij . Similarly, a value T el|B = 0

implies that the last used REF was either frestBWij or f breakBWij .

fstartBWij (T el|Bnij
) =

{
0 if T el|Bnij = 0

max{T el|Bnij , abwi − T la|B}+ si otherwise

fstartBWij (T el|Rnij
) =

{
0 if T el|Rnij = 0

max{T el|Rnij , abwi − T la|R}+ si otherwise

fstartBWij (T la|Bnij
) =

{
∞ if T el|Bnij = 0

min{T la|Bnij , bbwi − T el|B} otherwise

fstartBWij (T la|Rnij
) =

{
∞ if T el|Rnij = 0

min{T la|Rnij , bbwi − T el|R} otherwise

Now, a backward path P = (u, .., d) in the auxiliary backward network defines a label Lu = (u, Su, Tu),
where u is the first visited vertex, Su the set of all visited vertices and Tu := (T costu , T loadu , T timeu , T distu ,
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T driveu , T
el|B
u , T

el|R
u , T

la|B
u , T

la|R
u ) the resource vector. The initial backward label representing a fully rested

driver at the end depot d is defined as Ld = (d, {d}, Td) with Td = (T costd , T loadd , T timed , T distd , T drived , T
el|B
d ,

T
el|R
d , T

la|B
d , T

la|R
d ) := (0, 0, abwd , 0, 0, 0, 0,∞,∞). Since all backward REFs are non-decreasing in the re-

sources T cost, T load, T time, T dist, T drive, T el|B and T el|R as well as non-increasing in the resources T la|B and
T la|R, the dominance rules 1 and 2 can be applied as in the forward labeling.

Example 1. We give a concrete numerical example to emphasize the difference in forward and backward
labeling. A feasible schedule in which T el|B exceeds tel|B is depicted in Figure 2.

DEPOT

o

DRIVE

8h

SERVICE

si=3h

REST

10h

DRIVE

8h

DEPOT

d

Figure 2: A feasible schedule in which T el|B exceeds tel|B corresponding to a route o-i-d

We assume that the demand of vertex i fits in the vehicle and all time windows are not binding, e.g. [aj , bj ] =
[0, 100] for j = o, i, d. Hence, no waiting time can occur making the resources T la|B and T la|R obsolete. For
the sake of simplicity, we also omit the resources T cost and T load. The forward path generated by applying
the corresponding REF in the auxiliary network is as follows:


T time
o = 0

Tdist
o = 0

Tdrive
o = 0

T el|B
o = 0

T el|R
o = 0

 fstart
oi−−−−→
toi=8


0
8
0
0
0

 fdrive
oi−−−−−→

∆oi=8


8
0
8
8
8

 fvisit
oi−−−→
si=3


11
0
8
11
11

 fstart
id−−−−→
tid=8


11
8
8
11
11

 frest
id−−−−−−→

∆id=−3


21
8
0
0
0

 fdrive
id−−−−−→

∆id=8


29
0
8
8
8

 fvisit
id−−−−→
sd=0


29
0
8
8
8



The forward path starts from vertex o, then toi = 8 hours of driving are allowed due to ∆oi. When
reaching vertex i, the service can still be performed although ∆ gets a negative value. Afterward, a rest is
enforced due to ∆ ≤ 0 complying with the given schedule. Finally, realizing another driving period of eight
hours is allowed to reach the depot.

The backward path generated by applying the corresponding REFs in the auxiliary backward network is
given by:

T time
o = −100
Tdist
o = 0

Tdrive
o = 0

T el|B
o = 0

T el|R
o = 0

fvisitBW
id−−−−→
tid=8


−100

8
0
0
0

fdriveBW
id−−−−−→
∆id=8


−92
0
8
8
8

frestBW
id−−−−→
∆id=0


−82
0
0
0
0

fstartBW
id−−−−−→

si=3


−79
0
0

�3 0

�3 0

fvisitBW
oi−−−−→
toi=8


−79
8
0

�3 0

�3 0

fdriveBW
oi−−−−−→
∆oi=�5 8


−71
0
8
8
8

fstartBW
oi−−−−−→

so=0


−71
0
8
8
8



The backward path starts at vertex d and initially tid = 8 hours of driving are allowed. Subsequently, a
rest can be performed due to ∆id = 0 complying with the given schedule. The driver can now serve vertex i
and here the first difference to the forward REFs occurs: The REF fstartBWid is used immediately after the
REF frestBWid was applied indicated by T el|R = 0. Hence, the service time is not taken into account for the
computation of T el|B and T el|R. The crossed-out values show the resource values without that alternation.
Afterward, the trip to the start depot o is started, and a driving period of eight hours should be performed
according to the schedule. As can be seen from the crossed-out values, it would not be possible to drive
eight hours if the service time would have been added to T el|B and T el|R. Hence, without the alternation of
the REF fstartBWid , the given feasible schedule could not be reproduced in the backward labeling. However,
according to the values resulting from the correctly adjusted REF, eight hours of driving are allowed and the
depot is reached complying with the given schedule.

In bidirectional labeling algorithms, forward labels are not necessarily propagated until the end depot,
and backward labels are not necessarily propagated until the start depot. Instead, labels are propagated
only up to a so-called half-way point, thus limiting the overall number of created labels. Suitable forward
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and backward labels must then be merged to obtain complete o-d-paths. As described by Salani (2005),
this is done using a half-way point test to avoid creating the same path from different pairs of forward and
backward labels.

When using the half-way point h := bd/2, we propagate forward labels at a vertex i ∈ V in the auxiliary
network only if T timei ≤ h, and backward labels at a vertex j ∈ V only if −T timej > h. Labels at an
intermediate vertex are always propagated irrespective of their time value. When forward and backward
labeling is finished, we merge forward and backward labels at all original vertices i ∈ V . A forward label
Lfw = (i, Sfw, Tfw) at a vertex i ∈ V is a candidate for merging if i = d or T timefw > h. This condition
prevents the creation of identical paths from different pairs of forward and backward labels. We check all
backward labels at vertex i whether or not they can be merged with the chosen forward label. A merge of a
forward label Lfw = (i, Sfw, Tfw) and a backward label Lbw = (i, Sbw, Tbw) is feasible if the resulting path
fulfills the following conditions:

• the path is elementary: |Sfw ∩ Sbw| = 1

• the path respects the vehicle capacity: T loadfw + T loadbw − qi ≤ Q

• the path is feasible with respect to the time resource T timefw − si ≤ −T timebw

• the accumulated driving time does not exceed the maximum time allowed: T drivefw + T drivebw ≤ tdrive

• The time between the last break and rest period of the forward and the backward label do not exceed
the maximum time allowed: −T la|Bbw − T la|Bfw ≤ tel|B and −T la|Rbw − T la|Rfw ≤ tel|R

• Either the sum of the elapsed time since break resources respects the maximum time allowed or a rest
or break was performed immediately before the visit in one of both labels:
T
el|B
fw + T

el|B
bw − si ≤ tel|B or T el|Bfw ≤ si or T el|Bbw ≤ si

• Either the sum of the elapsed time since rest resources respects the maximum time allowed or a rest
was performed immediately before the visit in one of both labels:
T
el|R
fw + T

el|R
bw − si ≤ tel|R or T el|Rfw ≤ si or T el|Rbw ≤ si

The last two conditions model that exceeding the maximum elapsed time allowed at the merge vertex i
is possible if only service and waiting times immediately before a rest cause this exceeding. Note that all
backward resources referring to a point in time are multiplied with -1 due to the inversion of the network.
Moreover, the demand qi and the service time si at vertex i are subtracted in the capacity and time conditions
because they are taken into account in both labels.

The reduced cost of a merged path can be obtained as c̄r = T costfw + T costbw . After the merge, we perform
a final dominance test with dominance rules 1 and 2 for all routes resulting from merged labels. Finally, we
add all undominated negative reduced-cost routes to the RMP.

4.3. Elementarity
It is well known that the elementary shortest-path problem with resource constraints is NP-hard in the

strong sense (Dror, 1994). Hence, in column-generation algorithms for VRPTWs, many authors solve non-
elementary SPPRCs as pricing problems (Desaulniers et al., 2014). This can be done in pseudo-polynomial
time (Irnich and Desaulniers, 2005). Although this yields weaker lower bounds and routes with cycles must
be removed in the branching process, solving only a relaxed pricing problem often pays off with respect to
overall computation time. One recent approach that has been very successfully used for different types of
vehicle routing problems is the ng-path relaxation introduced by Baldacci et al. (2011).

We use the ng-path relaxation in the VRTDSP as follows: A specific ng-path relaxation requires the
definition of neighborhoods Ni ⊂ C with i ∈ Ni for all vertices i ∈ C. A forward ng-path P = (o, .., i) is
a non-necessarily elementary path starting at vertex o, ending at vertex i and visiting all vertices within
their time window. P defines a forward ng-label L = (i, Sngi , Ti), where i is the last visited vertex and
Sngi is a (generally proper) subset of the visited vertices. The vector Ti contains the same resources as
in the elementary formulation. The key point of this relaxations is the update of the set Sngi via REF
fstartij , which differs from the update of the set Si in the elementary formulation: Forward propagation of
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a label L = (i, Sngi , Ti) via fstartij , produces the new label L = (nij , S
ng
nij
, Tnij ), where Tnij = fstartij (Ti) and

Sngnij
= (Sngi ∪ {j})∩Nj . The interpretation is that the new label forgets the visited vertices that are not in

the set Nj , so that cycles become possible. This change implies that more labels become comparable in the
dominance rules, and hence, more labels can be dominated. The definition of a backward ng-label and its
backward propagation are analogous. For the sake of simplicity, we skip the index ng and write S instead
of Sng in the following.

The quality of the root lower bound computed by an ng-path relaxation strongly depends on the choice
of the neighborhoods Ni. We limit the number of neighbors by a constant ν and test different values of ν in
our computational experiments. For each vertex i ∈ C, we use an ng-neighborhood Ni containing i and the
ν closest customers j for which a cycle (j, i, j) would be feasible with respect to time windows and travel
and service times. Determining if cycles are possible and defining a good closeness criterion requires the
computation of a lower bound for the driving time from i to j that takes the minimum number of rest and
break periods between customers i and j into account. Goel and Irnich (2014) have computed the minimum
number of mandatory rest and break periods (krestij and kbreakij ) between two customers i, j ∈ C as

krestij := max

{
0,

⌈
tij
tdrive

− 1

⌉}
and kbreakij :=

⌈
max{0, tij − (krestij + 1)tel|B}

tdrive − tel|B

⌉
.

With the help of these two values, a lower bound on the duration of a trip along arc (i, j) ∈ A can be
easily computed as:

t̂ij = tij + krestij trest + kbreakij tbreak

Now, a cycle (j, i, j) may be possible if max{ai + t̂ij , aj}+ t̂ji ≤ bi and closeness can be defined as t̂ij + t̂ji.

4.4. Acceleration techniques
The labeling takes by far the most time in the overall branch-and-price-and-cut algorithm. To speed

up the labeling four acceleration techniques are used. First, instead of using a static half-way point in
bidirectional labeling, a dynamic half-way point is used to balance the time spent in forward and backward
labeling (Tilk et al., 2016). Second, an additional set of unreachable customers is defined to strengthen the
dominance as proposed by Feillet et al. (2004). Third, the labeling is solved heuristically using a limited
discrepancy search (LDS, see Feillet et al. (2007)). Fourth, a heuristic dominance rule is applied to further
strengthen the dominance. Goel and Irnich (2014) used the last three techniques in a similar manner.

Dynamic half-way point. The forward and backward labeling can take a very different amount of time
due to the asymmetry arising from the time windows and dual prices. This also affects the bidirectional
labeling because the number of created and dominated labels in the forward and backward part may differ
significantly resulting in a huge difference in the computation times of both parts. Tilk et al. (2016) have
introduced a dynamic determination of the half-way point to balance the forward and backward parts of the
bidirectional labeling.

We adapt this approach to the VRTDSP as follows: Since the time resource T time is non-decreasing,
labels can be propagated in ascending order of the time resource. Thereby, the possibility is given to alternate
between forward and backward extensions depending on the number of non-processed labels in both parts.
Let zfw and zbw be the current time resource values of the next label that should be propagated in forward
and backward labeling. Note that zbw is negative due to the inversion of the auxiliary network in backward
labeling. Now, the idea is to use different dynamic half-way points hfw and hbw in forward and backward
labeling that are initialized at the opposite ends of the time horizon and updated depending on zbw and
zfw, respectively. More precisely, initially the half-way points are set to hfw = bd and hbw = a0. Every
time a forward label is propagated the backward half-way point is updated to hbw = min{zfw, hfw}. Vice
versa, when processing a backward label, the forward half-way point is updated to hfw = max{−zbw, hbw}.
Obviously, as soon as hfw and hbw are equal, both half-way points are fixed and the rest of the labeling
continues as the bidirectional labeling with a static half-way point value hfw. The impact of this technique
is analyzed in the computational results in Section 6.
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Unreachable Customers. Feillet et al. (2004) proposed the use of a set of unreachable customers instead of
the set S to strengthen the dominance. Here, we use an additional resource set U in each label to manage
the unreachable customers because replacing S by U leads to a problem in the merge step: Given a forward
and a backward label with unreachable set Ufw and Ubw, respectively, a customer i can be unreachable in
both labels resulting in |Ufw ∩Ubw| > 1 which violates the merge condition although none of the labels has
visited i and the merge could be feasible. Therefore, the merge conditions are still tested with the set S
while REF preconditions and the dominance are realized with the set U .

The update of U is done just as the update of S in fvisitij and fstartBWij , respectively. Afterwards,
unreachable customers are identified and added to U . A customer can become unreachable due to capacity
or time window restrictions. While capacity restrictions are easy to check, checking time window restrictions
in the VRTDSP is rather complicated due to break and rest periods. However, Goel and Irnich (2014) have
proposed a heuristic method to determine an appropriate subset of all unreachable customers using t̂ij .
Given a label L = (i, S, T ) a customer j is unreachable if T load + qj > Q or T time + t̂ij > bj .

Limited discrepancy search. Using heuristic solvers for the pricing problem in branch-and-price algorithms
to find negative reduced-cost columns quickly is quite standard. If all heuristic solvers fail in finding a
negative reduced-cost column, the exact solver has to be invoked. Feillet et al. (2007) have proposed LDS
as a heuristic solver. They divide the set of all arcs in good and bad arcs and limit the overall number of
bad arcs used in a path by a parameter κ.

We adapt this method to the VRTDSP as follows: In each iteration of the pricing problem, the set of
good arcs is newly determined with respect to the current reduced cost of the arcs. All arcs are sorted by
increasing reduced cost and scanned in that order. An arc (i, j) is then added to the set of good arcs, if the
number of outgoing good arcs from i and ingoing good arcs in j do not exceed five. In addition, all outgoing
arcs of the start depot o and all ingoing arcs in the end depot d are added to the set of good arcs. A binary
resource nbad is added to each forward and backward label to count the number of bad arcs traversed in the
label. nbad is initialized to zero. The REFs fstartij and fvisitBWij increase nbad by one if (i, j) is a bad arc.
Afterwards, the REFs check if nbad is greater than κ, and if so, the label extension is discarded.

We do not include nbad in the dominance and we also do not forbid merging two labels when the sum
of their nbad resources exceed κ. The former is done to strengthen the (heuristic) dominance. The latter
increases the number of generated paths and thereby raises the probability of finding a negative reduced-cost
path while not increasing the computational effort. In our computational experiments, we use several solvers
with increasing values of κ, see Section 6.

Heuristic dominance. In order to further speed up the solution process of the heuristic solvers, we use
a heuristic dominance rule similar to the one proposed by Goel and Irnich (2014). The advantage of a
heuristic dominance rule is that more labels are comparable and hence, more labels can be discarded. On
the downside, a label may be discarded although it will lead to a pareto-optimal or even a minimum-cost
solution. However, this path will be found by the exact pricing problem solver at the latest. In our dominance
rule, two labels are only compared with respect to the set S and the resources T cost, T load, T time, T dist and
T drive. The other resources remain disregarded. We combine LDS with the heuristic dominance rule in our
computational experiments.

5. Valid Inequalities

This section describes the four classes of valid inequalities that are used in our branch-and-price-and-cut
algorithm to strengthen the linear relaxation of the master problem. In the computational results, we test
different cutting strategies and the combination of these classes of valid inequalities (see Section 6).

5.1. 2-path inequalities
The k-path inequalities were introduced by Kohl et al. (1999) for the VRPTW. For the special case k=2,

we adapt the 2-path inequalities for the VRTDSP as follows: Let W ⊂ C be a subset of customers that
can not be visited by one single vehicle due to capacity or time window restrictions. Moreover, let δ−(W )
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be the set of all arcs (i, j) ∈ A with i ∈ W and j /∈ W . The corresponding 2-path inequality is given by∑
r∈R

∑
(i,j)∈δ−(W ) b

r
ijλr ≥ 2, where brij is the number of times route r traverses arc (i, j) ∈ A.

Let λ̄r be the value of variable λr in the current solution of the RMP. We use the heuristic proposed by
Kohl et al. (1999) to generate candidate sets W of maximal cardinality with

∑
r∈R

∑
(i,j)∈δ−(W ) b

r
ij λ̄r < 2.

Each candidate set is then tested whether or not it has to be served by at least two vehicles. The capacity
test is done by simply summing up all demands of vertices in W if it fails at least two vehicles are needed. If
the capacity fits, we have to check the time window restrictions. This requires the solution of an ESPPRC
in the auxiliary network induced by W ∪ {0, d} where all arcs have identical reduced cost c̄ij = −1. Now,
the candidate set can be served by a single vehicle, if there exists a path with reduced cost c̄r < −|W |. This
decision problem is very time-consuming for larger sets W , therefore, we limit the maximal cardinality of
candidate sets W by a constant parameter wmax.

The 2-path inequalities are robust, hence incorporating them needs no adjustments in the structure of
the pricing problem. We only need to subtract the current dual value of each 2-path inequality present in the
master problems from the reduced cost of the corresponding arcs: Let ηk ≥ 0 be the dual price of the 2-path
inequality corresponding to Wk, then ηk is subtracted from the reduced cost of all arcs (i, j) ∈ δ−(Wk).

5.2. Subset-row inequalities
Subset-row inequalities were first introduced by Jepsen et al. (2008) for the VRPTW. They are Chvatal-

Gomory rank-1 cuts based on a subset of the constraints in the master program. For the VRTDSP, a
subset-row inequality is defined on a subset of customers in the original network. We restrict ourselves
to those inequalities defined on three customers as proposed by Jepsen et al. (2008) because they can be
separated by straightforward enumeration. The inequality for a customer set Uk ⊂ C, in the following
denoted by SR(Uk), is given by

∑
r∈Rb

hr

2 cλr ≤ 1, where hr is the number of times route r visits a customer
in Uk.

The addition of subset-row inequalities in the master problem requires the following adjustments to our
pricing problem: Let σk ≤ 0 be the dual price of the subset-row inequality SR(Uk). The value σk must be
subtracted from the reduced cost for every second visit to vertices in Uk. Therefore, an additional binary
resource srk, one for each inequality SR(Uk), is necessary in the labeling algorithm for indicating the parity
of the number of times a vertex in Uk is visited. Note that the same vertex may be visited more than once
in an ng-path relaxation.

Jepsen et al. (2008) have proposed a tailored dominance rule that avoids a point-wise comparison of all
resources srk and thereby reduces the number of incomparable labels significantly. Here, the dominance
rules change in the condition regarding the resource T cost as follows: Let L = (u, S, T ) and L′ = (u, S′, T ′)
be two labels with identical last vertex u and let H := {k : srkL′ = 0, srkL = 1} be the index set of the new
resources on which L is inferior compared to L′. The condition regarding the resource T cost for label L to
dominate label L′ changes to T cost −

∑
k∈H σk ≤ T

′cost.
The dominance rules can be strengthened further by taking unreachable inequalities into account. A

subset-row inequality SR(Uk) is unreachable for a label, if none of the vertices in Uk can be reached due to
capacity or time window restrictions. More precisely, SR(Uk) is unreachable for a forward label L = (u, S, T )
if T load > Q −minv∈Uk

{qv} or T time > maxv∈Uk
{bv − t̄uv}. Each unreachable inequality is not taken into

account for the dominance procedure, i.e. it is removed from H. A similar rule can be defined for backward
labels. We can compute the values at the right-hand side of the two inequalities above in a preprocessing step.
Note that the computation is not exact, i.e. an inequality could be unreachable although the computations
disagree. An exact computation would require the consideration of break and rest times for each label
independently which would be too time-consuming.

In addition, the computation of the reduced cost of a merged path in the bidirectional labeling algorithm
slightly changes. Let Lfw = (u, Sfw, Tfw) and Lbw = (u, Sbw, Tbw) be a forward and a backward label,
respectively. The computation of the reduced cost changes in two cases: First, if forward and backward
label have both visited an odd number of customers in Uk, i.e. srkfw = srkbw = 1, and u /∈ Uk, then the dual
price σk of the subset-row inequality SR(Uk) has to be subtracted from the reduced cost. Second, if forward
and backward label have both visited an even number of customers in Uk, i.e. srkfw = srkbw = 0, and u ∈ Uk,
then the dual price σk of the subset-row inequality SR(Uk) has to be added to the reduced cost.
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5.3. Strong degree inequalities
Strong degree inequalities were first introduced by Contardo et al. (2014) for the capacitated location-

routing problem. A strong degree inequality SD(i) in the VRTDSP can be defined for each customer vertex
i ∈ C as

∑
r∈R girλr ≥ 1, where gir = 1 if route r visits i at least once and gir = 0 otherwise. SD(i) enforces

partial elementary regarding vertex i. Separation is done by straightforward enumeration.
The addition of strong degree inequalities in the master problem requires the following adjustments to

our pricing problem: Let ψi ≥ 0 be the dual price of the strong degree inequality SD(i). The value ψi must
be subtracted from the reduced cost of a label only when vertex i is visited for the first time. Therefore,
an additional binary resource sdi, one for each inequality SD(i), is necessary for the labeling algorithm to
indicate if i was visited or not. Recall that the same vertex may be visited more than once in an ng-path
relaxation.

Similarly to the subset row inequalities, we can also avoid a point-wise comparison of all resources sdi
to strengthen the dominance as proposed by Contardo et al. (2015). The dominance rules of the VRTDSP
change the condition regarding resource T cost as follows: Let L = (u, S, T ) and L′ = (u, S′, T ′) be two
labels with identical last vertex u and let G := {k : sdkL′ = 0, sdkL = 1} be the index set of the new
resources on which L is inferior compared to L′. The condition regarding the resource T cost for label L to
dominate label L′ changes to T cost+

∑
i∈G ψi ≤ T

′cost. We can again use unreachable inequalities to further
strengthen the dominance. A strong degree inequality SD(i) is unreachable for a forward label L = (u, S, T ),
if T load > Q−ui or T time > bi− t̄ui. Each unreachable inequality is removed from the set G. A similar rule
can be defined for backward labels.

In bidirectional labeling, we have to slightly change the merge procedure. The dual price ψi of a strong
degree inequality SD(i) must be added to the reduced cost of a merged path if forward and backward label
have visited node i.

5.4. Dynamic neighborhood extension
As mentioned in Subsection 4.3, the quality of the root lower bound computed by an ng-path relaxation

strongly depends on the choice of the neighborhoods (Ni)i∈C , but it is not obvious what a good choice
is. To overcome this issue, a dynamic neighborhood extension was proposed for several different vehicle
and arc routing problems (Roberti and Mingozzi, 2014; Bode and Irnich, 2015; Tilk and Irnich, 2016). This
procedure can be seen as adding valid inequalities to the RMP that forbid routes with certain cycles. Herein,
the ng-neighborhood is determined as proposed in Subsection 4.3 and the linear relaxation is solved. Now,
the solution is scanned for cycles. Let D = (i, ..., i) be a cycle in a route in the current solution. The node
i is added to the ng-neighborhoods Nj of all vertices j ∈ D to forbid cycle D in subsequent solutions of
the pricing problem. Adding new vertices to a neighborhood strengthens the resulting relaxation so that a
formerly feasible route can become infeasible. Routes that become infeasible are removed from the RMP.
This can be done simply by inspection. Clearly, a larger neighborhood leads to a more difficult pricing
problem. Therefore, we limit the maximal size of all neighborhoods Ni by a constant νmax.

6. Computational Results

The results reported in this section were obtained using a standard PC with an Intel(R) Core(TM)
i7-5930k 3.5 GHz processor and 64 GB of main memory. The algorithms were coded in C++ and com-
piled at 64 bit with MS-Visual Studio 2013. The callable library of CPLEX 12.6 was used for solving the
linear relaxations of the restricted master program in the column-generation algorithm. We tested our algo-
rithm on the 56 benchmark instances for the VRTDSP proposed by Goel (2009) which can be obtained at
http://www.telematique.eu/research/downloads. These instances are derived from the VRPTW benchmark
instances of Solomon (1987) that can be grouped in six different classes: Randomly distributed customers
(R1 and R2), clustered customers (C1 and C2) and a mixed distribution (RC1 and RC2). Instance classes
R1, C1 and RC1 have tight time windows and strict vehicle capacity, while C2, RC2, and R2 have wide time
windows and loose vehicle capacity. Each instance contains 100 customers and the service time at every
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customer is set to 60 minutes. Like Goel and Irnich (2014), we create smaller instances by considering only
the first 25 or 50 customers.

In the following, we compare different variants of the labeling algorithm, different sizes of the ng-
neighborhoods and various cutting strategies. Finally, we give detailed results of the best setting found. We
set a CPU time limit of two hours for all computations. Preliminary tests showed that applying LDS and
heuristic dominance is beneficial. In total, we use six different heuristic solvers with LDS, each with five
good arcs. The first three solvers use heuristic dominance and a bad arc limit κ = 0, 1 or 2. The last three
solvers use the exact dominance and the same bad arc limits as above. Moreover, we stop each labeling
procedure as soon as 500 or more negative reduced-cost routes have been found.

6.1. Dynamic half-way point
This subsection analyzes the impact of using a dynamic half-way point. We run two different tests, each

with an ng-neighborhood size of ν = 10: In a first test, we compare the solution of the linear relaxation of
the RMP when either the dynamic or the static version of the half-way point is used in the pricing problem.
Table 3 summarizes the results aggregated over the different instance sizes. The table contains the number
of successfully solved linear relaxations, the average time in seconds and the average number of pricing
problem iterations needed in the static and dynamic version, respectively. The last column indicates the
average of the absolute values of the difference in the number of pricing problem iterations. All average
values are computed only over the instances that were solved by both versions.

|C| no. solved avg time avg no. pricing

sta dyn sta dyn stat dyn |stat-dyn|

25 56 56 96.80 39.11 35.71 34.68 10.39
50 51 54 702.08 388.32 105.55 102.20 48.20
100 19 26 2123.98 1023.38 220.84 234.74 35.47

all 126 136 646.60 327.92 91.68 92.02 29.18

Table 3: Comparison between using the dynamic and static half-way point

The results of the first test show that the labeling with a dynamic half-way point is superior to the static
version. Ten more linear relaxations can be solved and the solution of a single instance takes on average
nearly half the time. The average number of pricing problem iterations needed to solve a single instance is
nearly identical for both versions but the absolute value of the difference fluctuates over all instances. This
is due to the different columns added in the static and dynamic version during the algorithm when using
pricing heuristics. Therefore a second test is necessary: We solve the linear relaxation of the RMP while
the pricing problem is solved with the static as well as with the dynamic half-way point in each iteration.
Thereby, a fair comparison of both labeling algorithms is given because they are solved with the same
reduced cost in each iteration.

In the second test, we computed the following values per instance: the ratio dynamic to static of the
values for added labels, extended labels, and time needed in pricing. The ratios are computed as the
geometrical mean over all pricing iterations. Additionally, we compute for all instances the coefficient of
variation (COV) of the dynamic half-way point as standard deviation divided by arithmetic mean. Whenever
the linear relaxation is not completely solved within the time limit, the values are taken over the iterations
solved up to this point. Table 4 contains the minimum, geometrical mean and maximum of these values,
aggregated over the different instance sizes.

The results of the second test confirm the superiority of the dynamic version. The average ratio of the
added and extended labels is for all instance sizes nearly identical around 0.87 and 0.74, respectively. This
denotes that only 87 % of the labels needed in the static version, are needed in the dynamic version and
that only 74 % of the labels extended in the static version are extended in the dynamic version. This results
in an average computation time of 63 % for the dynamic version in relation to the static. Moreover, the
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|C| added labels extended labels time COV

min avg max min avg max min avg max min avg max

25 0.48 0.86 1.07 0.45 0.73 0.90 0.11 0.64 1.68 0.02 0.10 0.72
50 0.75 0.87 1.02 0.59 0.75 0.95 0.32 0.67 1.02 0.02 0.14 0.50
100 0.65 0.87 0.96 0.56 0.75 0.87 0.21 0.59 0.86 0.02 0.11 0.55
all 0.87 0.74 0.63 0.12

Table 4: Ratios for using the dynamic and static half-way point with identical reduced cost

detailed results show that the overall problem can be solved faster with the static half-way point in only
eleven out of 168 instances, where none of these instances take more than 20 seconds to solve. The coefficient
of variation of the dynamic half-way point denotes that during the solution of a single instance, the value of
the dynamic half-way point varied by twelve percent on average. This illustrates the positive impact of the
dynamic half-way point, because the value of the computational optimal half-way point for a single instance
is different for each iteration of the pricing problem due to the current reduced cost. Therefore, we use the
labeling with the dynamic half-way point in the following computations.

6.2. Neighborhood size
In this subsection, we compare the results for different ng-path relaxations with sizes of ν = 6, 8, 10, 12, 14

and 16 when only the linear relaxation is solved. Table 5 contains for all instance sizes the number of times
the linear relaxation was successfully solved in the time limit and the average time it has taken. Table 6
contains for all instance sizes the average and maximum improvement of the linear relaxation value when
the ng-neighborhood size ν is increased. In order to provide a fair comparison, the maximum and average
times and linear relaxation values are taken only over those instances for which the linear relaxation was
solved by all ng-path relaxations.

|C| no. of solved root nodes time [sec]

6 8 10 12 14 16 6 8 10 12 14 16

25 56 56 56 56 56 56 46.01 39.28 28.58 68.45 138.61 320.67
50 52 52 54 54 51 49 691.32 637.75 393.38 576.42 739.07 846.01

100 25 27 26 26 26 27 1414.72 1617.15 1556.30 1387.65 1505.89 1694.18

all 133 135 136 136 133 132 515.15 524.53 416.38 477.06 590.38 744.75

Table 5: Comparison of the solution time for different ng-neighborhoods

|C| average increase of the root lower bound [%] maximum increase of the root lower bound [%]

6->8 8->10 10->12 12->14 14->16 6->8 8->10 10->12 12->14 14->16

25 0.38 0.08 0.07 0.00 0.01 6.11 2.46 1.35 0.24 0.23
50 0.36 0.15 0.02 0.01 0.00 4.55 3.63 0.31 0.16 0.06

100 0.21 0.03 0.05 0.01 0.01 1.57 0.21 0.39 0.07 0.09

all 0.35 0.10 0.05 0.01 0.00 6.11 3.63 1.35 0.24 0.23

Table 6: Comparison of the root lower bound for different ng-neighborhoods

As can be seen from Table 5, the number of successfully solved linear relaxations takes the maximum
value for ν = 10 and 12. Moreover, the time to solve the linear relaxation takes its minimum for ν = 10.
This is surprising because one would expect that a smaller value of ν would lead to smaller computation
times. We ascribe this result to the increasing number of feasible routes for smaller values of ν. Table 6
shows that the increase in the value of the linear relaxation decreases as the value of ν gets larger, e.g. the

15



average increase is only 0.05 and the maximum 1.35 percent when ν is increased from 10 to 12. Therefore,
we take an ng-neighborhood size of ν = 10 for all following computations.

6.3. Cutting strategy
This subsection presents the results for solving Formulation (1) with different cutting strategies. After

cutting is finished, we branch on the arcs of the original network to finally ensure integer solutions. Branching
is implemented by deleting arcs from the auxiliary network. The following variable-selection strategy is used:
Among all arcs (i, j) with a fractional value in the current solution, we choose the one closest to 0.5. Ties are
broken by preferring arcs with higher cost cij . Moreover, nodes in the branch-and-bound tree are processed
according to the minimum solution value of their linear relaxation.

In a first test, we compare the results for using each class of valid inequalities on its own. A valid
inequality is generated when it is violated by more than 0.05. We use the following parameters to define the
further cutting strategy: The node level up to which the cuts can be added in the branch-and-bound tree,
as well as the maximum number of cuts in total and per iteration. The level of a node in the branch-and-
bound-tree is defined as the number of branching decisions taken up to this node. In addition, there are some
class specific parameters: The maximum size νmax up to which the ng-neighborhood can be dynamically
extended, the maximum size wmax of the candidate sets W for the 2-path inequalities and the maximum
number smax of subset row cuts a customer can be included in. Pre-tests have shown that it is important to
carefully choose these parameters. The best settings found for each class of valid inequalities are summarized
in Table 7.

class level maximum number miscellaneous

in total per iteration

Strong Degree 0 20 10 -
Dyn. Ext. 0 - 10 νmax = 20

2-path 0 100 50 wmax = 8
Subset Row ∞ 20 10 smax = 2

Table 7: Best settings for applying each class of valid inequalities individually

Table 8 compares the results of applying each class of valid inequalities on its own and the results when
no valid inequalities are used. To ensure a fair comparison, we take only the instances into account for
which the linear relaxation was solved in the time limit with a fractional solution. The table contains for
each instance size the number of remaining instances, the number of solved instances and the average time
the solution process has taken in seconds for each setting. The results show that applying strong degree
inequalities or the dynamic neighborhood extension has only little impact on the number of solved instances
and the solution time. However, the dynamic neighborhood extension is superior to the strong degree
inequalities. Applying 2-path inequalities increases the number of solved instances by two and decreases the
solution time on average by nearly five percent. Moreover, detailed results show that these two instances
can not be solved by any other of the settings. However, the best results are obtained with applying subset
row inequalities.

|C| no. no. of solved instances time [sec]

inst none SD DynEx 2Path SR none SD DynEx 2Path SR

25 21 21 21 21 21 21 439.64 441.10 391.04 416.71 281.60
50 27 10 10 10 11 14 4754.41 4752.17 4730.83 4484.04 4526.05

100 15 3 3 4 4 4 5993.77 5993.77 5986.75 5815.30 5643.69

all 63 34 34 35 36 39 3650.06 3649.62 3622.45 3488.34 3419.78

Table 8: Results for applying each class of valid inequalities individually

Based on this results we decided to combine the subset row inequalities and the 2-path inequalities to-
gether with one or none of the other two classes. Note that we do not combine strong degree inequalities and

16



dynamic neighborhood extension together since they are both used to ensure elementarity. Moreover, we
separate them in order: First, 2-path-inequalities because they are robust. Second, subset-row-inequalities
because they have the biggest influence. Third, dynamic neighborhood extension or strong degree inequali-
ties. Further tests have confirmed that this order is superior to all other orders. Table 9 contains the number
of solved instances and the average solution time per instance size for the three resulting settings. The results
for all three settings are similar but all three are superior to applying a single class of valid inequalities on its
own. However, applying 2-path inequalities, subset-row inequalities and dynamic neighborhood extensions
lead to the best results. This confirms the superiority of the dynamic neighborhood extension compared to
the strong degree inequalities.

|C| no. of solved instances time[sec]

2path+SR +DynEx +SD 2path+SR +DynEx +SD

25 21 21 21 186.68 183.63 182.54
50 16 17 13 4138.18 3937.09 4178.47

100 5 5 5 5344.13 5332.41 5342.31

all 42 43 39 3156.59 3067.05 3176.51

Table 9: Results for applying classes of valid inequalities together

6.4. Comparison with Goel and Irnich (2014)
In this subsection, we compare our best setting found in the previous tests with the results of Goel and

Irnich (2014). We also give detailed results of our best setting for each instance individually.
Table 10 shows the results of the comparison aggregated per instance-size. The table contains the number

of successfully solved root nodes, the number of the instances solved to optimality, the time the solution of
the root node takes on average, the time the overall solution process takes on average over all instances and
the time the overall solution process takes on average only over those instances that were solved by both
algorithms.

In total, we can solve 24 more instances and the solution time decreases around 21%. Moreover, the
average solution time for the instances solved by both algorithms decreases in our setting about more than
60%. The results for solving only the root node are similar: Our algorithm is able to solve 21 more linear
relaxations and the solution time decreases around 24 %.

Best Setting Goel and Irnich (2014)

no. solved time[Sec] no. solved time[Sec]

|C| root tree root tree solved root tree root tree solved

25 56 56 37.86 90.51 48.86 56 54 117.03 404.25 152.55
50 54 44 1052.13 2460.74 236.58 45 28 2069.04 3955.56 711.12

100 26 12 4951.06 6000.44 419.31 14 6 5733.51 6530.21 948.63

all 136 112 2013.69 2850.56 133.85 115 88 2639.86 3630.01 384.56

Table 10: Comparison of our best setting with the results in (Goel and Irnich, 2014)

Table 11 contains the detailed results of the best setting for all instances. The first column contains the
name of the instance, followed by the solution time in seconds, the gap at the root node in percent, the
percentage the root gap was closed at the end of the optimization and the value of the best known solution
for instance sizes 25, 50 and 100. Values marked with an * are optimal solution values. The algorithm is
able to solve all 25 customer instances in 90 seconds on average. Moreover, the computation time never
exceeds 30 minutes. 44 out of 56 instances with 50 customers are solved to optimality and for only seven
of them, the computation time exceeds 45 minutes. The 100 customer instances are hard to solve and only
twelve optimal solutions can be found.
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inst 25 customer 50 customer 100 customer

Time Gap UB Time Gap UB Time Gap UB

Root clo. Root clo. Root clo.

C101 0.10 0.0 - 191.17* 0.45 0.0 - 362.17* 6.56 0.0 - 826.83*
C102 9.05 0.0 - 190.08* 10.06 0.0 - 361.08* 1683.34 0.0 - 826.83*
C103 52.23 0.0 - 189.42* 354.91 0.0 - 360.42* 7200.00 0.0 - 825.17*
C104 856.35 0.1 100.0 186.67* 7200.00 - - 358.17 7200.00 - - 821.08
C105 0.27 0.0 - 191.17* 1.17 0.0 - 362.17* 13.01 0.0 - 826.83*
C106 0.20 0.0 - 191.17* 1.68 0.0 - 362.17* 64.79 0.0 - 826.83*
C107 0.60 0.0 - 191.17* 4.32 0.0 - 362.17* 148.92 0.0 - 826.83*
C108 2.08 0.0 - 189.75* 18.58 0.0 - 360.75* 599.26 0.1 100.0 825.42*
C109 39.58 0.1 100.0 187.83* 192.19 0.1 100.0 358.83* 7200.00 1.0 9.7 823.50
C201 2.58 8.7 100.0 248.00* 272.85 11.7 100.0 434.75* 3199.48 18.1 100.0 825.42*
C202 3.39 0.0 - 217.83* 7200.00 4.9 46.9 390.50 7200.00 17.5 0.0 782.08
C203 10.06 0.0 - 217.83* 941.54 0.0 - 362.75* 7200.00 - - 703.42
C204 32.79 0.0 - 214.17* 7200.00 - - 349.50 7200.00 - - 652.58
C205 1.07 0.0 - 214.42* 81.01 0.0 - 359.33* 7200.00 5.2 0.0 627.00
C206 1.36 0.0 - 214.42* 171.61 0.0 - 359.33* 2121.84 0.0 - 585.33*
C207 38.17 0.0 - 214.17* 754.42 0.0 - 358.58* 7200.00 - - 642.67
C208 4.76 0.0 - 214.17* 597.41 0.0 - 359.08* 7200.00 - - 639.00
R101 0.29 1.3 100.0 502.25* 1.89 0.0 - 847.83* 1021.34 0.6 100.0 1280.50*
R102 0.33 0.0 - 446.25* 33.71 0.5 100.0 753.92* 7200.00 1.0 66.0 1152.08
R103 1.04 0.0 - 401.08* 1450.91 1.1 100.0 649.08* 7200.00 12.7 0.0 1013.33
R104 1.47 0.0 - 359.42* 7200.00 0.6 51.6 536.42 7200.00 - - 935.58
R105 0.48 0.7 100.0 438.17* 90.81 0.8 100.0 749.58* 7200.00 2.4 49.1 1076.67
R106 1.49 0.0 - 407.08* 1429.34 1.4 100.0 687.67* 7200.00 12.5 0.0 1059.08
R107 8.64 1.4 100.0 391.83* 4147.12 1.4 100.0 610.58* 7200.00 - - 907.00
R108 359.27 1.6 100.0 349.42* 7200.00 1.4 0.0 530.17 7200.00 - - 932.75
R109 4.66 2.3 100.0 385.08* 6457.09 1.9 100.0 637.83* 7200.00 7.7 3.8 964.25
R110 99.12 1.1 100.0 354.42* 2540.30 0.6 100.0 571.92* 7200.00 - - 926.58
R111 5.96 0.8 100.0 387.67* 7200.00 6.6 17.6 615.58 7200.00 - - 972.67
R112 700.96 1.7 100.0 337.33* 7200.00 1.8 34.3 529.42 7200.00 - - 851.08
R201 0.44 0.7 100.0 463.58* 17.21 0.2 100.0 798.92* 2726.06 0.7 100.0 1157.00*
R202 0.61 0.0 - 410.75* 255.73 0.4 100.0 714.33* 7200.00 2.9 31.9 1063.25
R203 5.54 1.4 100.0 391.83* 2092.42 1.6 100.0 626.00* 7200.00 - - 952.33
R204 34.27 1.6 100.0 355.17* 4540.60 0.8 100.0 516.17* 7200.00 - - 905.33
R205 1.42 0.3 100.0 404.08* 173.77 0.6 100.0 695.25* 7200.00 4.0 18.2 994.08
R206 19.76 0.5 100.0 378.08* 5325.31 1.4 100.0 642.17* 7200.00 - - 997.42
R207 3.64 0.0 - 367.17* 6325.04 1.5 100.0 578.42* 7200.00 - - 961.67
R208 102.35 1.4 100.0 341.08* 7200.00 7.0 0.0 527.33 7200.00 - - 944.17
R209 7.25 1.9 100.0 376.75* 2037.77 0.8 100.0 615.58* 7200.00 12.0 0.0 976.58
R210 10.47 0.9 100.0 411.75* 7200.00 5.2 27.6 681.58 7200.00 11.4 0.0 1015.33
R211 23.10 0.2 100.0 351.17* 7200.00 8.1 13.5 595.25 7200.00 - - 858.17

RC101 0.30 0.0 - 358.25* 2.45 0.0 - 632.58* 7200.00 5.0 15.6 1287.75
RC102 3.78 0.0 - 335.92* 41.59 0.0 - 604.42* 7200.00 7.4 0.0 1177.08
RC103 9.14 0.0 - 327.08* 841.76 0.0 - 584.67* 7200.00 - - 1119.67
RC104 91.48 0.0 - 299.75* 3460.04 0.0 - 522.92* 7200.00 - - 996.67
RC105 0.62 0.0 - 334.75* 16.43 0.0 - 613.75* 7200.00 7.7 0.0 1217.92
RC106 3.18 0.0 - 310.83* 92.33 0.0 - 564.92* 7200.00 5.7 0.0 1111.67
RC107 31.57 0.0 - 296.33* 1152.58 0.0 - 522.67* 7200.00 - - 1066.17
RC108 821.22 0.0 - 294.50* 5131.88 0.0 - 517.67* 7200.00 - - 1008.08
RC201 0.17 0.0 - 360.50* 2.31 0.0 - 684.83* 439.94 0.2 100.0 1294.58*
RC202 1.15 0.0 - 338.17* 13.65 0.0 - 613.83* 7200.00 2.5 0.0 1144.92
RC203 4.34 0.0 - 327.08* 63.32 0.0 - 594.92* 7200.00 - - 1068.25
RC204 77.41 0.0 - 299.75* 7200.00 1.5 0.0 491.58 7200.00 - - 937.08
RC205 0.28 0.0 - 338.08* 11.65 0.0 - 631.83* 7200.00 1.2 54.6 1184.25
RC206 0.52 0.0 - 324.25* 23.85 0.0 - 610.17* 7200.00 3.8 31.8 1104.75
RC207 2.67 0.0 - 298.33* 226.49 0.0 - 560.00* 7200.00 - - 1041.75
RC208 1573.67 1.4 100.0 294.50* 7200.00 2.2 0.0 517.67 7200.00 - - 879.08

all 90.51 0.5 100.0 2460.74 1.2 70.1 6000.44 4.6 32.5

Table 11: Detailed results for best cutting strategy
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7. Conclusion

This paper has investigated a branch-and-price-and-cut algorithm for the vehicle routing and truck driver
scheduling problem (VRTDSP) with U.S. hours of service regulations. We presented backward resource
extension functions in order to build a bidirectional labeling with a sophisticated merge procedure. The
concept of using a dynamic half-way point and different other known techniques, e.g. the ng-path relaxation
and limited discrepancy search, were used to speed up the solution process of the pricing problem. In
addition, valid inequalities for the vehicle routing problem with time windows were adapted to strengthen
the linear relaxation. In the computational experiments, we tested the impact of using a dynamic half-way
point, different ng-neighborhood sizes and cutting strategies. Our findings are the following: First, using
a dynamic half-way point reduces the number of extended labels significantly resulting in a huge gain in
terms of computation time. Second, choosing a moderate ng-neighborhood size of ten provides an excellent
tradeoff between the strength of the resulting bounds and the computational effort. Third, a careful choice
of the parameters is necessary when applying valid inequalities. Using subset-row inequalities with the
right parameters has by far the biggest impact when applying a single class of valid inequalities on its own.
Fourth, using a dynamic neighborhood extension is superior to applying strong degree inequalities. Fifth,
when combining different classes of valid inequalities the choice of the classes and the order of applying
them are crucial. The best setting found was applying 2-path, subset-row inequalities, and the dynamic
neighborhood extension in that order. The computational experiments with this setting show that our
method delivers improved results for the VRTDSP benchmark instances introduced by Goel (2009). Our
algorithm is able to solve all 25 customer instances in less than half an hour to optimality. In addition,
nearly 80% of the 50 customer instances were solved to optimality in two hours of computation time. In
total, 24 new optimal solutions could be found and the solution time could be significantly reduced compared
to Goel and Irnich (2014).
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