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Abstract

For the exact solution of many types of vehicle-routing problems, column-generation based algorithms have
become predominant. The column-generation subproblems are then variants of the shortest-path problem
with resource constraints which can be solved well with dynamic-programming labeling algorithms. For
vehicle-routing problems with a pickup-and-delivery structure, the strongest known dominance between two
labels requires the delivery triangle inequality (DTI) for reduced costs to hold. When the direction of
labeling is altered from forward labeling to backward labeling, the DTI requirement becomes the pickup
triangle inequality (PTI). DTI and PTI cannot be guaranteed at the same time. The consequence seemed
to be that bidirectional labeling, one of the most successful acceleration techniques developed over the last
years, is not applicable with a strong dominance in both directions for problems with a pickup-and-delivery
structure. Surely, relying on a weak dominance in one direction is feasible but makes the bidirectional
approach less powerful. In this paper, we show that bidirectional labeling with the strongest dominance
rules in forward as well as backward direction is possible and computationally beneficial. A full-fledged
branch-cut-and-price algorithm is tested on the pickup-and-delivery problem with time windows (PDPTW).

Key words: vehicle routing, pickup-and-delivery, shortest-path problem with resource constraints,
bidirectional labeling, column generation

1. Introduction

The classical pickup-and-delivery problem (PDP) is concerned with the transportation of passengers
or goods from request-specific pickup points to their delivery points (Parragh et al., 2008). The case of
passenger transportation is also known as the dial-a-ride problem (DARP, Doerner and Salazar-González,
2014). Pickup-and-delivery for goods transportation has been recently surveyed in (Battarra et al., 2014).
Variants of the PDP include time windows (PDPTW), loading constraints (such as LIFO loading and
multiple compartments, Cherkesly et al., 2016), and handling operations (Veenstra et al., 2017). Thus, the
PDP and its variants are an important family of vehicle-routing problems (VRPs, Toth and Vigo, 2014).

For the exact solution of many types of VRPs, column-generation based algorithms have become pre-
dominant (Desaulniers et al., 2005). The column-generation subproblems are then variants of the elemen-
tary shortest-path problem with resource constraints (ESPPRC) which can be solved well with dynamic-
programming labeling algorithms (Irnich and Desaulniers, 2005). For ESPPRCs with a pickup-and-delivery
structure, the strongest known dominance between two labels requires the delivery triangle inequality (DTI)
for reduced costs to hold (Ropke and Cordeau, 2009). When the direction of labeling is altered from forward
labeling to backward labeling, the DTI requirement becomes the pickup triangle inequality (PTI). DTI and
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PTI cannot be guaranteed at the same time. The consequence seemed to be that bidirectional labeling
(Righini and Salani, 2006), one of the most successful acceleration techniques developed over the last years,
is not applicable with a strong dominance in both directions for problems with a pickup-and-delivery struc-
ture. Clearly, relying on a weak dominance in one direction is feasible but makes the bidirectional approach
less powerful.

The main theoretical contribution of this paper is to show that bidirectional labeling with the strongest
dominance rule in forward as well as backward direction is possible. This is achieved by constructing different
cost matrices fulfilling DTI and PTI, respectively. We use the PDPTW as a test case to empirically prove the
effectiveness of that dominance principle. Our new labeling algorithm is compared against pure forward and
backward labeling as well as bidirectional approaches that use the strong dominance only in one direction.
Furthermore, we integrate one of the most recent developments in bidirectional labeling which is the use of
dynamic half-way points as suggested in (Tilk et al., 2017). We implement a full-fledged branch-cut-and-
price algorithm that uses state-of-the-art cutting planes and a PDP-specific branching scheme. We then
test all labeling algorithms on thousands of PDPTW pricing problems that need to be solved in column-
generation iterations. The new bidirectional labeling with strong dominance in both directions turns out
superior to all these alternative labeling algorithms.

The remainder of this paper is structured as follows: Section 2 formally defines the PDPTW and sketches
the column-generation algorithm by discussing its extended set-covering master program and ESPPRC
subproblem. Moreover, the role of the DTI/PTI for weak and strong dominance in ESPPRC labeling
algorithms is clarified. The section also derives the main theoretical result of the paper. Computational
results are provided in Section 3. Final conclusions are drawn in Section 4.

2. Branch-Cut-and-Price for PDPTW

The PDPTW can be formally defined as follows: Let n be the number of requests and R = {(i, i+ n) :
i = 1, . . . , n} be the set of pickup-and-delivery requests, where i represents the pickup operation and i + n
the corresponding delivery operation. We define the PDPTW on a directed graph G with vertex set V and
arc set A. The set of vertices V = {0, 1, . . . , 2n+1} comprises two copies of the depot with origin depot 0
and destination depot 2n+1, the set of pickup vertices P = {1, . . . , n}, and the set of delivery vertices
D = {n + 1, . . . , 2n}. For each vertex i ∈ V , a time window [ai, bi] representing the time interval in which
service must start is given. For each request (i, i + n) ∈ R, the demand at its pickup and delivery vertices
satisfies qi = −qi+n > 0. For convenience, we define q0 = q2n+1 = 0. Furthermore, a fleet of K homogeneous
vehicles with capacity Q is available at the depot. With each arc (i, j) ∈ A are associated a travel time
tij and a routing cost cij . We assume that the travel time tij of arc (i, j) ∈ A already includes a service
duration at vertex i. We also assume that the triangle inequality holds for both routing costs (cij) and
travel times (tij).

2.1. Master Program
The branch-cut-and-price for the PDPTW uses an extended set-covering formulation that we describe

now. Let Ω be the set of all feasible PDPTW routes. A route r ∈ Ω is defined as an elementary 0-(2n+ 1)-
path. It is feasible if it fulfills time-window, capacity, and pairing and precedence constraints (see Dumas
et al., 1991, for details). The cost cr of a route r ∈ Ω is defined as the sum of the travel costs of the traversed
arcs. The goal of the PDPTW is to find a set of feasible routes serving each request exactly once minimizing
the total routing costs. The set-covering formulation uses binary variables λr indicating whether route r ∈ Ω
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is used or not.

min
∑
r∈Ω

crλr (1a)

s.t.
∑
r∈Ω

airλr ≥ 1 ∀(i, i+ n) ∈ R (1b)∑
r∈Ω

λr ≤ K (1c)

λr ∈ {0, 1} ∀r ∈ Ω (1d)

The objective (1a) minimizes the total travel costs. Due to the validity of the triangle inequalities for travel
times and routing costs, the covering constraints (1b) ensure that each request is served exactly once. Herein,
the binary coefficients air are equal to 1 if and only if request (i, i+n) ∈ R is served by route r. The number
of routes is limited by (1c), and the variable domains are given in (1d).

For solving the linear relaxation of formulation (1), a column-generation algorithm (Desaulniers et al.,
2005) is employed. Starting with a subset Ω̄ ⊂ Ω of the feasible routes, the linear relaxation of formula-
tion (1) defined over Ω̄ is denoted as the restricted master program (RMP). The column-generation algorithm
alternates between the re-optimization of the RMP and the solution of the column-generation pricing prob-
lem that adds negative reduced-cost variables (=columns) to the RMP, if one exists. The linear relaxation
can be strengthened by adding valid inequalities (see Section 2.3), and branching is required to finally ensure
integer solutions (see Section 2.4). The most time-consuming part of this branch-cut-and-price algorithm is
the solution of the pricing subproblem, described in the following.

2.2. Subproblem
Let πi for (i, i + n) ∈ R be the dual prices of the covering constraints (1b) and µ the dual price of

constraint (1c). The pricing problem must compute at least one feasible route r ∈ Ω with negative reduced
cost c̄r := cr − µ−

∑
(i,i+n)∈R airπi (or guarantee that no such route exists). This problem is an ESPPRC

which can be solved by means of a dynamic-programming labeling algorithm (Irnich and Desaulniers, 2005).
Herein, for defining reduced costs of arcs, note that the dual price πi for fulfilling request (i, i+n) ∈ R can be
associated to the pickup vertex i, the delivery vertex i+n, or be arbitrarily split among them. Accordingly,
for any given and fixed α ∈ R, define

π̄i(α) := απi and π̄i+n(α) := (1− α)πi

and π̄0(α) := π̄2n+1(α) := µ. The associated reduced cost of an arc (i, j) ∈ A is then defined as

c̄ij(α) := cij −
1

2
π̄i(α)− 1

2
π̄j(α).

With this definition, c̄r =
∑

(i,j)∈r c̄ij(α) holds for all routes r ∈ Ω. In the following, we will use different
values for α depending on the direction in which the subproblem is solved.

Labeling Algorithms. A forward labeling algorithm starts with an initial label at the origin depot 0. It
propagates forward labels over arcs toward the destination depot with the help of so-called resource extension
functions (REFs, see Desaulniers et al., 1998). Each forward label stores the resource consumption of the
corresponding partial path (0, . . . , i) starting at the origin depot 0 and ending at some vertex i ∈ V . To
avoid the enumeration of all feasible paths, provably redundant labels are eliminated through a dominance
criterion.

Righini and Salani (2006) and several subsequent works have shown that bounded bidirectional labeling
algorithms are usually superior to their monodirectional counterparts. A requirement for bidirectional
labeling is that REFs can be inverted, as discussed by Irnich (2008). The respective backward labeling
component starts with an initial label at the destination depot and propagates labels in backward direction,
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i.e., against the orientation of the arcs, toward the origin depot. Each backward label stores the resource
consumption of a partial path (i, . . . , 2n+1) starting at some vertex i ∈ V and ending at the destination
depot 2n+1. A major design decision for bidirectional labeling is the definition of a so-called half-way point.
Its purpose is to alleviate combinatorial explosion, since both forward and backward labels are extended
only up to the half-way point. When labeling terminates, suitable forward and backward labels are merged
to obtain complete feasible 0-(2n+1)-paths. For VRPs with time windows, traditional (static) approaches
often choose the middle (a0 +b2n+1)/2 of the planning horizon as the half-way point. The recent work of Tilk
et al. (2017) has shown that dynamically adjusting the half-way point by carefully estimating the remaining
workload in the forward and backward labeling can improve the overall performance.

Up to now, bidirectional labeling has not been used for solving ESPPRC with a pickup-and-delivery
structure, because it was not possible to apply strong dominance rules in both forward and backward
labeling. By introducing the PTI, we show at the end of this section how forward and backward paths can
be merged even if their labels are built on the basis of different cost matrices. We start however with the
description of monodirectional forward and backward labeling.

Forward Labeling. A forward partial path (0, . . . , i) in G is represented by a forward label Lf =
(i, c̄f , tf , lf , Sf , Of ). Its attributes are the last visited vertex i, the accumulated reduced cost c̄f , the earliest
feasible start of service tf at vertex i, the accumulated load lf , the set of completed requests Sf , and the
set of open requests Of at vertex i. Requests are open if they have been picked up but not yet delivered.
The initial forward label is given by (0, 0, a0, 0,∅,∅).

Propagating a forward label Lf over an arc (i, j) ∈ A only results in a feasible extension L′f at vertex j
if either j ∈ P and (j, j+n) /∈ Of ∪Sf , or j ∈ D and (j−n, j) ∈ Of , or j = 2n+1 and Of = ∅. Otherwise,
pairing and precedence constraints are violated resulting in an infeasible label. Furthermore, consistency
with respect to time-window and capacity constraints is ensured by requiring tf + tij ≤ bj and lf + qj ≤ Q,
respectively.

If the extension of Lf along arc (i, j) ∈ A is feasible, then a new forward label L′f = (j, c̄′f , t
′
f , l
′
f , S

′
f , O

′
f )

is created by the following REFs:

c̄′f = c̄f + c̄ij(α) (2a)

t′f = max{tf + tij , aj} (2b)

l′f = lf + qj (2c)

S′f =

{
Sf ∪ {(j − n, j)} if j ∈ D
Sf otherwise

(2d)

O′f =


Of ∪ {(j, j + n)} if j ∈ P
Of \ {(j − n, j)} if j ∈ D
Of otherwise

(2e)

Note that the load resource (lf and l′f ) is redundant as lf =
∑

(o,o+n)∈Of
qo and l′f =

∑
(o,o+n)∈O′

f
qo. It is

however convenient to use the attributes for a quick test of the feasibility of extensions.
Since the forward REFs are non-decreasing in the resources c̄f , tf , and Sf , the following dominance rule

is directly applicable (Dumas et al., 1991):

Rule 1. (Weak Dominance Forward) A forward label Lf = (i, c̄f , tf , lf , Sf , Of ) dominates another forward
label L′f = (i, c̄′f , t

′
f , l
′
f , S

′
f , O

′
f ) with identical last vertex i if c̄f ≤ c̄′f , tf ≤ t′f , Sf ⊆ S′f , and Of = O′f hold.

Using α = 1 in the forward labeling, the dual prices of covering requests are completely assigned to
the pickup vertices as already suggested by Dumas et al. (1991). Formally, α = 1 gives π̄i(α) = πi for all
pickup vertices i ∈ P and π̄i+n(α) = 0 for all delivery vertices i+ n ∈ D. With this definition, the forward
reduced-cost matrix (c̄fij) := (c̄ij(1)) satisfies c̄fij ≤ c̄

f
ik+ c̄fkj for all (i, j) ∈ A and k ∈ D. Ropke and Cordeau

(2009) call this property the DTI. Roughly speaking, the DTI ensures that visiting an additional delivery
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vertex is never beneficial. This property enables the use of the following stronger dominance rule (Dumas
et al., 1991):

Rule 2. (Strong Dominance Forward) Let the forward reduced-cost matrix fulfill the DTI. A forward label
Lf = (i, c̄f , tf , lf , Sf , Of ) dominates another forward label L′f = (i, c̄′f , t

′
f , l
′
f , S

′
f , O

′
f ) with identical last vertex

i if c̄f ≤ c̄′f , tf ≤ t′f , Sf ⊆ S′f , and Of ⊆ O′f hold.

Backward Labeling. In analogy to the forward labeling, a backward path (j, . . . , 2n+ 1) in G defines a
backward label Lb = (j, c̄b, tb, lb, Sb, Ob). Its attributes are the first visited vertex j, the accumulated reduced
cost c̄b, the latest feasible start of service tb at vertex j, the accumulated load lb, the set of completed requests
Sb, and the set of open requests Ob at vertex j. Requests are open if they have been delivered but not yet
picked up. The initial backward label is given by Lb = (2n+1, 0, b2n+1, 0,∅,∅).

Propagating a backward label Lb against the orientation of arc (i, j) ∈ A only results in a feasible
extension L′b at vertex i if either i ∈ P and (i, i + n) ∈ Ob, or i ∈ D and (i − n, i) /∈ Ob ∪ Sb, or i = 0
and Ob = ∅. Furthermore, consistency with respect to time-window and capacity constraints is ensured by
requiring tb − tij ≥ ai and lb + qi ≤ Q, respectively.

If the backward extension of Lb against the orientation of arc (i, j) is feasible, the new backward label
L′b = (i, c̄′b, t

′
b, l
′
b, S
′
b, O

′
b) is created by the following REFs:

c̄′b = c̄b + c̄ij(α) (3a)
t′b = min{tb − tij , bi} (3b)
l′b = lb + qi (3c)

S′b =

{
Sb ∪ {(j, j + n)} if j ∈ P
Sb otherwise

(3d)

O′b =


Ob ∪ {(j − n, j)} if j ∈ D
Ob \ {(j, j + n)} if j ∈ P
Ob otherwise

(3e)

As in the forward case, also backward REFs are non-decreasing in the resources c̄f and Sf as well as
non-increasing in the resource tf so that the following dominance rule is valid:

Rule 3. (Weak Dominance Backward) A backward label Lb = (j, c̄b, tb, lb, Sb, Ob) dominates another back-
ward label L′b = (j, c̄′b, t

′
b, l
′
b, S
′
b, O

′
b) with identical last vertex j if c̄b ≤ c̄′b, tb ≥ t′b, Sb ⊆ S′b, and Ob = O′b

hold.

Using α = 0 in the backward labeling, the dual prices of covering requests are completely assigned to
the delivery vertices, i.e., π̄i(α) = 0 for all pickup vertices i ∈ P and π̄i+n(α) = πi for all delivery vertices
i+ n ∈ D. The backward reduced-cost matrix (c̄bij) := (c̄ij(0)) satisfies c̄bij ≤ c̄bik + c̄bkj for all (i, j) ∈ A and
k ∈ P . We call this property the PTI. It ensures that, for any backward partial path, visiting an additional
pickup vertex is never beneficial. As with DTI in the forward labeling, PTI enables the use of a strong
dominance rule in the backward labeling:

Rule 4. (Strong Dominance Backward) Let the backward reduced-cost matrix fulfill the PTI. A backward
label Lb = (j, c̄b, tb, lb, Sb, Ob) dominates another backward label L′b = (j, c̄′b, t

′
b, l
′
b, S
′
b, O

′
b) with identical last

vertex j if c̄b ≤ c̄′b, tb ≥ t′b, Sb ⊆ S′b, and Ob ⊆ O′b hold.

Bidirectional Labeling. For the bidirectional labeling algorithm, we assume that the forward reduced-cost
matrix is (c̄fij) := (c̄ij(1)) and the backward reduced-cost matrix is (c̄bij) := (c̄ij(0)) so that the DTI and
PTI are fulfilled, respectively. This enables the use of the strong dominance rules in both directions (Rule 2
and Rule 4).

The bidirectional labeling limits the effort in both directions, since not all forward (backward) labels are
propagated to the destination (origin) depot. Instead, labels are propagated only up to a so-called half-way
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point, thus limiting the overall number of created labels. In the PDPTW, the half-way point h is best defined
on the time resource so that forward labels Lf are propagated only if tf ≤ h and backward labels Lb only if
tb > h. Compatible forward and backward labels must then be merged to obtain complete 0-(2n+1)-paths.

To avoid creating the same path multiple times from different pairs of forward and backward labels,
Righini and Salani (2006) introduced a half-way point test : A forward label Lf at a vertex i ∈ V is a
candidate for merging if i = 2n+1 or tf > h. All backward labels Lb at vertex i are then checked whether
or not they can be merged with this candidate forward label Lf . The resulting path is feasible if the two
labels Lf and Lb fulfill the following three merge conditions:

Sf ∩ Sb = ∅ (4a)
tf ≤ tb (4b)
Ob = Of \ {(i, i+ n)} if i ∈ P
Of = Ob \ {(i− n, i)} if i ∈ D
Ob = Of otherwise

(4c)

where (4a) ensures that each request is fulfilled at most once, (4b) guarantees that the path is feasible with
respect to the time resource, and (4c) requires that the concatenation completes all open requests.

Recall that reduced costs of partial paths in the forward and backward labeling rely on different cost
matrices (c̄fij) and (c̄bij), respectively. Hence, the reduced cost of a path resulting from a merge is generally
not the sum of the reduced costs of its forward and backward labels. The next proposition shows how
reduced costs can, however, be computed.

Proposition 1. The reduced cost of a route r generated by a feasible merge of a forward label Lf and a
backward label Lb can be obtained as

c̄r = c̄f + c̄b +
∑

(k,k+n)∈
{Ob∩Of}

πk +
∑

(k,k+n)∈
{Ob∪Of}\{Ob∩Of}

πk
2
. (5)

Proof. Obviously, for all requests (k, k + n) ∈ R that are completely fulfilled (picked up and delivered)
either in Lf or Lb, the dual price πk is correctly incorporated. Let i be the vertex at which the merge is
performed. For all requests (k, k + n) ∈ R with k 6= i and k + n 6= i that are open in both directions, i.e.,
(k, k+n) ∈ Of ∩Ob, the dual price πk was subtracted twice (once in c̄f and once in c̄b). This is corrected by
adding it once to c̄f + c̄b. Finally, if the merge vertex i is a pick-up or a delivery vertex, the corresponding
request is open either in Lf or Lb and its dual price πi (πi−n) for i ∈ P (i ∈ D) was subtracted exactly 1.5
times, which is corrected by adding πi/2 in (5).

The following proposition shows that our bidirectional labeling algorithm is exact, although we perform
forward and backward labeling on different cost matrices.

Proposition 2. A bidirectional labeling algorithm that uses the strong dominance (Rule 2 and Rule 4) in
both directions and the described merge procedure with (4) and (5) finds an optimal solution to the pricing
subproblem of the PDPTW.

Proof. Let P be an optimal path, i.e., an elementary, feasible 0-(2n+ 1)-path with minimum reduced cost.
We have to show that the bidirectional labeling algorithm finds this path or one with the same reduced cost.

Note that the pure forward labeling algorithm using the strong dominance Rule 2 is clearly valid because
the reduced cost matrix (c̄fij) satisfies the DTI (see, e.g., Dumas et al., 1991). This has two consequences:
First, all paths that arrive at the destination depot 2n+1 with feasible start of service not later than h are
found in the forward part of the bidirectional labeling. Hence, we can restrict ourselves to cases where all
optimal P result from a merge of a forward and a backward label. Second, it can be assumed that P is a
path that is generated by the complete forward labeling algorithm. In addition, we assume that P has a
minimum number of fulfilled requests. Then, P can be represented as P = (F,B), where F is its forward
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partial path ending at the merge vertex i, the label Lf = (i, c̄f , tf , lf , Sf , Of ) is the label of F generated in
the forward part of the bidirectional labeling algorithm, and B is the backward partial path starting at the
merge vertex i.

Note first that backward labeling with Rule 4 is also valid because (c̄bij) fulfills the PTI. If the backward
part of the bidirectional labeling produces the label Lb = (i, c̄b, tb, lb, Sb, Ob) associated with B, then the
merge step generates P = (F,B) and nothing remains to show. Otherwise, the label Lb does not exist in
the backward part. However, there must exist a backward label L′b = (i, c̄′b, t

′
b, l
′
b, S
′
b, O

′
b) that dominates Lb,

i.e., t′b ≥ tb, S′b ⊆ Sb, O′b ⊆ Ob, and c̄′b ≤ c̄b, where the latter inequality refers to the reduced costs given by
the backward reduced cost matrix (c̄bij).

If O′b = Ob, then Lf and L′b fulfill the merge conditions (4), since Lf and Lb fulfill it due to the feasibility
of P = (F,B). Moreover, the reduced cost of the path P ′ = (F,B′) resulting from the merge of Lf and
L′b has reduced cost not greater than P = (F,B), because the only difference in (5) is that c̄b is replaced
by c̄′b ≤ c̄b. Thus, P ′ = (F,B′) must be another feasible 0-(2n+ 1)-path with minimum reduced cost. It is
found in the bidirectional labeling algorithm.

Assume now that O′b ( Ob holds. One can then remove all pickup vertices of requests (k, k+n) ∈ O′b \Ob
from the forward partial path F . Let F ′ be the resulting partial path. The path P ∗ = (F ′, B′) is feasible
and it fulfills a smaller number of requests than P because S′b ⊆ Sb. Note that the latter implication relies
on elementarity of feasible paths. We now show that the reduced cost of P ∗ is not greater than the reduced
cost of P leading to a contradiction to the request-minimality of P : Consider P ∗ = (F ′, B′) as a backward
path. Due to the PTI, the backward reduced costs of F ′ and F fulfill c̄b(F ′) ≤ c̄b(F ). Moreover, c̄′b ≤ c̄b
due to the dominance between L′b and Lb. Hence, the reduced cost c̄b(F ′) + c̄′b of P

∗ is not greater than the
reduced cost c̄b(F ) + c̄b of P .

2.3. Cutting Planes
We now present details on the cutting planes that are used in our branch-cut-and-price algorithm with

a focus on their implication for the pricing subproblem.

Robust Cuts. We use two families of robuts cuts, i.e., inequalities on the aggregated flows of arcs (i, j) ∈ A,
which can be incorporated into the master problem using expressions x(δ+(S)) ≤ rhs or x(δ+(S)) ≥ rhs.
Here, δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S} denotes the set of arcs leaving the vertex subset S ⊂ V and
x(δ+(S)) :=

∑
r∈Ω

∑
(i,j)∈δ+(S) bijrλr gives the flow out of the corresponding set S. Parameter bijr denotes

the number of times route r ∈ Ω traverses arc (i, j). The two families of cuts that we use are rounded
capacity cuts and 2-path cuts (Kohl et al., 1999). Details on these cuts and the corresponding separation
strategies can be found in (Ropke and Cordeau, 2009).

The implication of both families of cuts are additional dual prices on arcs (i, j) that have to be included
in the reduced costs c̄fij and c̄bij in the pricing subproblem. As a result, the forward (backward) reduced
cost matrix does generally not fulfill the DTI (PTI). In order to use the strong dominance rule in forward
(backward) labeling, however, the DTI (PTI) is indispensable. Ropke and Cordeau (2009) have shown how
to transform an arbitrary cost matrix into one that that fulfills the DTI while at the same time keeping the
reduced costs of all feasible routes unchanged. They compute for each request (j, j + n) ∈ R the maximum
violation θfj = maxi,k∈V {c̄fik − (c̄fi,j+n + c̄fj+n,k)}+ of the DTI. Then, θfj /2 is subtracted from the reduced
cost c̄fij and c̄

f
ji of all in- and outgoing arcs of the corresponding pickup vertex j ∈ P . For the delivery vertex

j + n ∈ D, the same amount θfj /2 is added to the reduced costs c̄fi,j+n and c̄fj+n,i of all in- and outgoing
arcs. Since each feasible route either visits both the pickup and the delivery vertex of a request or none of
the two, its reduced cost remains unchanged with this transformation. Clearly, an analog transformation
can be performed to ensure the PTI for the backward reduced cost matrix c̄bij , i, j ∈ V using the terms
θbj = maxi,k∈V {c̄bik − (c̄bij + c̄bjk)}+ for all (j, j + n) ∈ R.

The merge procedure has to take into account the modified cost matrices in forward and backward
labeling. When merging suitable forward and backward labels Lf and Lb the reduced cost of the resulting
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route r can be computed as:

c̄r = c̄f + c̄b +
∑

(k,k+n)∈
{Ob∩Of}

(
πk + θbk + θfk

)
+

∑
(k,k+n)∈

{Ob∪Of}\{Ob∩Of}

πk + θbk + θfk
2

.

The correctness follows straightforwardly by analog considerations as in the proof of Proposition 1. Note
also that the proof of Proposition 2 is not affected by the altered reduced-cost formula.

Subset-Row Cuts. Subset-row cuts were first introduced by Jepsen et al. (2008) for the vehicle-routing
problem with time windows (VRPTW). They are Chvatal-Gomory rank-1 cuts based on a subset of the
constraints in the master program. Because they change the structure of the ESPPRC pricing subproblem
(each additional cut requires an additional resource), the subset-row cuts are non-robust. For the PDPTW,
a subset-row cut is defined on a subset of requests. The cut for a request set Uk ⊂ P and a parameter
1 ≤ l ≤ |Uk|, in the following denoted by SR(Uk, l), is given by

∑
r∈Ωb(

∑
i∈Uk

air)/lcλr ≤ b|Uk|/lc. We
restrict ourselves to those cuts defined for l = 2 and |Uk| = 3 as proposed by Jepsen et al. (2008) because they
can be separated by straightforward enumeration. In the following, we write SR(Uk) instead of SR(Uk, 2).

The addition of subset-row cuts in the master problem requires the following adjustments to the pricing
problem: Let σk ≤ 0 be the dual price of the subset-row cut SR(Uk). In forward labeling, the value σk
must be subtracted from the reduced cost for every second visit to a request (i, i + n) ∈ Uk. Thereby, it
is beneficial in terms of dominance to incorporate this penalty as early as possible into the reduced cost
of a respective path. Thus, we subtract σk at the second visit to pickup vertices i with (i, i + n) ∈ Uk.
Contrary, in backward labeling, the value σk is subtracted from the reduced cost for every second visit to
delivery vertices i with (i − n, i) ∈ Uk. Therefore, additional binary resources srf (k) and srb(k), one for
each cut SR(Uk), are necessary in forward and backward labeling, respectively, for indicating the parity of
the number of times a pickup or delivery vertex of a request in Uk is visited.

Jepsen et al. (2008) have proposed a tailored dominance rule that avoids a point-wise comparison of all
resources srf (k) and srb(k) reducing the number of incomparable labels significantly. In forward labeling,
the dominance condition regarding the resource c̄f changes as follows: Let Lf and L′f be two labels with
identical last vertex i and let H := {k : srf (k) = 0 ∧ sr′f (k) = 1} be the index set of the new resources
on which Lf is inferior compared to L′f . Then, c̄f −

∑
k∈H σk ≤ c̄′f has to hold if Lf dominates L′f . The

tailored dominance rule in backward labeling regarding the resource c̄b can be defined analogously.
The computation of the reduced cost of a merged path in the bidirectional labeling algorithm also has

to account for the new resources and dual prices associated with each cut SR(Uk). Let Lf and Lb be a
pair of forward and backward labels fulfilling the merge conditions (4). If both Lf and Lb have visited
an odd number of requests in Uk, i.e., srf (k) = srb(k) = 1, then the dual price σk of the subset-row cut
SR(Uk) has to be subtracted once more in the reduced cost of the merged path. This is similar to the
merge procedure in labeling algorithms for many other ESPPRC variants. Additional care has to be taken
in the proposed bidirectional labeling for the PDPTW because visited requests (i, i + n) ∈ Uk are counted
at the pickups in forward and at the deliveries in backward direction. Thus, if some requests (i, i+ n) ∈ Uk
are open in the forward label Lf or in the backward label Lb, they have been counted twice (once at the
pickup vertex in Lf and once at the delivery vertex in Lb) and, therefore, the dual price σk might have been
subtracted too often. To repair this defect, we compute the number of requests that have been counted twice
as cntk := |Uk ∩ (Of ∪Ob)|. Furthermore, let Θk := 1−|srf (k)−srb(k)| be the indicator telling whether the
sum of counted visits in both directions is even. If this sum is even, we have to add the dual price for every
odd number of double-counts. Vice versa, if the sum of counted visits is odd, we have to add the dual price
for every even number of double-counts. Consequently, we have to add b cntk+Θk

2 c times σk to the reduced
cost of the merged path to adjust for possible double-inclusions. Again, these changes in the computation
of the reduced cost of the merge of labels Lf and Lb do not influence the validity of the arguments of the
proof of Proposition 2.
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2.4. Branching
Note first that branching on arcs is not possible in PDPs if one wants to preserve the DTI or PTI (see

Ropke and Cordeau, 2009, for details). We therefore use the following hierarchical branching scheme: First,
we try to branch on the number of vehicles. If the number of vehicles is integer, we branch on the outflow
of a set of vertices as proposed for the CVRP by Naddef and Rinaldi (2002) and applied to the PDPTW by
Ropke and Cordeau (2009). Both branching decisions can be implemented by including a single inequality
of the form x(δ+(S)) ≤ rhs or x(δ+(S)) ≥ rhs (see Section 2.3) in the master problem.

3. Computational Results

In this section, we report our computational results on the comparison of monodirectional and bidirec-
tional labeling for the solution of PDPTW pricing problems. All results were obtained using a standard PC
with an Intel(R) Core(TM) i7-5930k processor clocked at 3.5 GHz, 64 GB RAM, and Windows 7 Enterprise.
The algorithms were implemented in C++ and compiled into 64-bit single-thread code with MS Visual
Studio 2010. The callable library of CPLEX 12.6.0 was used for solving the RMPs.

Benchmark Instances. The computational studies use two groups of instances from the literature, the 40
instances of Ropke and Cordeau (2009) called RC, and 30 instances of Li and Lim (2001) denoted by LL. The
RC instances comprise 30 to 75 requests and have high vehicle fixed costs such that the minimization of the
number of vehicles is the primary objective. Moreover, they are characterized by small vehicle capacities,
narrow time windows, and time windows of corresponding pickup and delivery locations that are very close
to each other. Consequently, these instances rarely allow multiple open requests at the same time. To be
precise, on average only 22% of the generated labels during a forward labeling have more than one open
request. As a result, most routes visit the pickup and delivery vertices of each request in direct sequence.
Thus, the RC instances resemble more VRPTW instances without capacity restrictions rather than being
true PDPTW instances. As a consequence, there is no considerable difference between weak and strong
dominance in the labeling algorithm on such instances. We therefore created an additional set of “real”
PDPTW instances based on the RC instances by increasing the right hand side of all time windows by 25
units and the vehicle capacity by 10 units. These instances are denoted RC+.

The LL instances comprise around 100 requests and are based on the Solomon benchmark set for the
VRPTW. No fixed costs for the vehicles are assumed. Furthermore, the lengths of the time windows
vary strongly between the instances so that multiple open requests at the same time are possible, i.e., the
LL instances constitute proper PDPTW instances.

In preliminary tests, we also detected that in almost all instances the time windows were distributed
asymmetrically over the time horizon. As a result, the instances are much harder when solving them in
backward direction. To achieve a balanced ratio of forward and backward labeling, we additionally built
reversed instances by inverting the time windows, i.e., swapping pickup and delivery and taking new time
windows [b2n+1 − bi, b2n+1 − ai] for each vertex i ∈ V . To obtain instances that are really different from the
original ones, we also permuted the demands of the requests randomly. The inverse instance sets is denoted
by RC←, RC+←, and LL← for RC, RC+, and LL instances, respectively.

Computational Setup. To compare different labeling strategies for solving the PDPTW, they are all em-
bedded into the same basic branch-cut-and-price algorithm. It has the following components: To speed up
the column-generation process, the heuristic pricer uses arc-reduced networks (Irnich and Desaulniers, 2005,
p. 58). When the solution of the RMP is fractional, we first separate robust cuts (rounded capacity cuts and
2-path cuts) followed by the separation of the non-robust SR cuts. If no more cuts are found, branching is
performed. As done in the literature (Ropke and Cordeau, 2009), we branch on the number of vehicles be-
fore separating cuts for the RC, RC+, RC←, and RC+← instances. Cuts are separated at all branch-and-bound
nodes. For the SR cuts, however, we set a limit of 60 cuts in total.

Overall, we compare six different labeling strategies for the solution of the ESPPRC pricing problems:
Pure (monodirectional) forward and backward labeling (Fw-S and Bw-S), bidirectional labeling with a static
half-way point using strong dominance in the forward part and weak or strong dominance in the backward
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part (Bi-St-SW or Bi-St-SS), and the two analog strategies Bi-Dy-SW and Bi-Dy-SS for bidirectional
labeling with a dynamic half-way point as described in (Tilk et al., 2017). The different strategies are
summarized in Table 1.

Direction(s) Half-way Point Dominance Fw Dominance Bw

Strategy Forw. Backw. Static Dynamic Strong Weak Strong Weak

Fw-S × ×
Bw-S × ×
Bi-St-SW × × × × ×
Bi-St-SS × × × × ×
Bi-Dy-SW × × × × ×
Bi-Dy-SS × × × × ×

Table 1: Labeling strategies

Experimental Results. We conduct two types of tests to measure the impact of the different labeling strate-
gies. In the first type of test, every instance of the ESPPRC pricing problem is solved using all considered
labeling strategies in each iteration of the linear relaxation of the master program. In this way, it is possible
to directly compare the different labeling strategies because they all solve the exact same ESPPRC instances
(identical dual prices) in the course of the branch-cut-and-price algorithm. Because each pricing problem
has to be solved with all six labeling strategies, the time limit is set to two hours per instance in these tests.

For each PDPTW instance and labeling strategy, we compute the average ratio of the pricing time
compared to the baseline strategy Fw-S as the geometric mean over all pricing iterations. In order to reduce
inaccuracies in time measurement, we take into account only those pricing iterations that consumed more
than 0.1 seconds of computation time for all six labeling strategies. Whenever the linear relaxation is not
completely solved within the time limit, the average is taken over the iterations solved by all strategies up
to this point.

Table 2 summarizes the results for this first type of experiment. The first column indicates whether
only the pricing iterations for the linear relaxation of (1) (LP) or those of the entire branch-and-bound tree
(B&B) are considered. The second column (Group) gives the instance group and the third column (#inst)
gives the number of instances for which there was at least one pricing iteration requiring at least the minimal
time of 0.1 seconds. The remaining columns present the geometric means over the instances of the pricing
time ratios of the different labeling strategies compared to forward labeling.

The results reveal that employing the strong dominance in both directions of a bidirectional labeling
algorithm is beneficial: Both strategies Bi-St-SS and Bi-Dy-SS dominate their respective counterpart
Bi-St-SW or Bi-Dy-SW that uses the weak dominance in the backward part. Moreover, strategy Bi-Dy-SS
clearly outperforms the other strategies and can on average decrease the pricing time by more than 40 percent
when compared to the forward labeling which constitutes the state of the art. It is also approximately 15
percent faster than the runner-up strategy Bi-Dy-SW. Noticeable is that the advantage of the bidirectional
labeling strategies compared to their monodirectional counterparts becomes significant when going beyond
the linear relaxation. Apparently, they can better handle the increasing difficulty of the pricing problems
that stems from the addition of the non-robust SR cuts. The only marginal difference between the linear
relaxation and the entire branch-and-bound tree for the 21 considered LL instances can be explained by the
fact that only for three of these instances additional pricing iterations were performed after solving the root
node (either because the LP solution was already integer or the run time limit was reached).

Table 2 also shows that bidirectional labeling with a static half-way point and weak dominance in the
backward part performs rather disappointing: Bi-St-SW is clearly inferior to strategy Fw-S. These findings
are especially true for the original instance sets (recall that they are much harder to solve in backward than
in forward direction, see also column Bw-S of Table 2) and are in line with the findings of Ropke and Cordeau
(2009) for their prototype implementation of strategy Bi-St-SW.
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Geometric mean of ratio of pricing times relative to Fw-S

Group #inst Bw-S Bi-St-SW Bi-St-SS Bi-Dy-SW Bi-Dy-SS

LP

RC 13/40 1.23 1.34 1.23 1.11 1.08
RC+ 33/40 1.41 1.85 1.44 1.04 0.93
LL 21/30 1.21 2.67 1.02 1.10 0.90
RC← 13/40 0.96 1.11 0.99 1.06 1.01
RC+← 32/40 0.87 1.06 0.86 0.98 0.83
LL← 21/30 0.86 4.12 0.95 1.05 0.77
Total 133/220 1.07 1.78 1.06 1.06 0.92

B&B

RC 17/40 1.05 0.48 0.45 0.40 0.38
RC+ 35/40 1.61 1.11 0.89 0.67 0.58
LL 21/30 1.21 2.63 1.01 1.09 0.90
RC← 14/40 1.15 0.63 0.58 0.50 0.48
RC+← 35/40 1.04 0.83 0.68 0.64 0.55
LL← 21/30 0.86 4.03 0.94 1.05 0.77
Total 143/220 1.13 1.20 0.73 0.68 0.58

Table 2: Comparison of different labeling strategies on same ESPPRC instances (identical dual prices)

Figure 1 displays two scatter plots of the solution times of individual pricing iterations of Bw-S and
Bi-Dy-SS compared to Fw-S. Figure 1a (on the left-hand side) shows that solution times of the two pure
monodirectional strategies Bw-S to Fw-S behave almost randomly. Indeed, it seems impossible to predict
whether forward or backward labeling requires more computational effort for a given ESPPRC instance.
Figure 1b (on the right-hand side) shows the same plot for the new and best-performing labeling strategy
Bi-Dy-SS in comparison to Fw-S. The majority of the data points lay under the diagonal showing that in
almost all cases Bi-Dy-SS is performing at least as well as Fw-S. The many data points close to the abscissa
stand for those cases in which Bi-Dy-SS is strongly superior to Fw-S.

In a second type of experiments, we compare the six full-fledged branch-cut-and-price algorithms orig-
inating from the use of the six different labeling strategies. Clearly, the generation of different columns
when using different labeling algorithms in the pricing problems leads to a different course of the algorithms
resulting in different ESPPRC instances, different results of the RMPs, and different branch-and-bound
trees for the six algorithms. The test aims at showing the impact of the labeling strategies on the solution
of the overall problem and at the analysis whether the structure of the generated columns has an influence
on the overall solution time. To further accelerate pricing and to obtain reasonable overall results, an ad-
ditional pricing heuristic that uses a heuristic dominance relation ignoring the open requests was included
in the algorithms in these experiments. Note that the heuristic dominance reduces the difference between
branch-cut-and-price algorithms using labeling strategies with strong and weak dominance in the backward
part. The time limit per PDPTW instance was set to one hour for these experiments.

The results of the second type of experiment can be found in Table 3. It reports for each instance
group (Group) and each of the six labeling strategies the following values: the number of instances solved
to proven optimality within the time limit (#opt) and the average solution time in seconds. The average
is taken only over those instances that were solved to optimality with at least one of the six branch-cut-
and-price algorithms (counting the time limit for labeling strategies that did not finish). Overall, Table 3
confirms the result of the first type of test: The branch-cut-and-price algorithm with labeling strategy
Bi-Dy-SS produces the best results concerning both number of solved instances and total solution times.
Moreover, all algorithms using bidirectional labeling outperform those using monodirectional labeling.

These observations are also confirmed by the performance profiles of the six branch-cut-and-price al-
gorithms depicted in Figure 2. According to Dolan and Moré (2002), given a set A = {A1, A2, . . . , Ap} of
algorithms, the performance profile ρA(τ) of an algorithm A ∈ A is the fraction of instances that algorithm A
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Figure 1: Comparison of individual pricing times (in seconds) of three labeling strategies

Fw-S Bw-S Bi-St-SW Bi-St-SS Bi-Dy-SW Bi-Dy-SS

Group #opt time #opt time #opt time #opt time #opt time #opt time

RC 32 372.2 33 483.3 32 215.6 32 215.6 33 147.2 33 181.6
RC+ 13 1607.7 12 1949.0 18 896.5 18 824.7 18 783.6 18 804.9
LL 17 502.0 18 521.7 12 1404.6 17 474.6 17 553.5 18 251.4
RC← 34 557.9 31 640.4 35 336.2 35 330.9 36 306.8 35 338.9
RC+← 16 1441.4 13 1667.2 19 1201.4 19 1036.2 19 746.5 20 629.6
LL← 16 662.5 16 650.6 12 1549.1 17 450.4 18 338.1 18 323.2

Total 128 734.2 123 818.4 128 727.1 138 498.1 141 423.3 142 389.3

Table 3: Comparison of different labeling strategies on separate runs: number of instances solved to proven
optimality (#opt) and average run times (in seconds)

can solve within a factor τ of the fastest algorithm of A. Any unsolved instances are taken into account
with infinite run time. In particular, ρA(1) is the percentage of instances on which A wins. For the same
algorithm A, 100− ρA(∞) is the percentage of unsolved instances.

Overall, the performance profiles in Figure 2 confirm that the branch-cut-and-price with labeling strategy
Bi-Dy-SS clearly dominates all other algorithms on the 220 PDPTW test instances. Indeed, it is at most
1.5 times slower than the fastest algorithm for more than 90% of the instances solved by at least one
algorithm. Moreover, the branch-cut-and-price algorithms with bidirectional labeling and strong dominance
in both directions are consistently and significantly superior to their counterparts with weak dominance in
the backward labeling.

Comparison with Baldacci et al. (2011). A dedicated exact approach for the PDPTW based on a set-
partitioning formulation, bounding procedures, cut-and-column generation procedures, and route enumer-
ation was suggested by Baldacci et al. (2011). The integer programming solver CPLEX is finally used
to obtain integer solutions. The authors use two different algorithmic setups for the RC and LL instances
exploiting their specific characteristics. Although this approach is based on a different column-generation
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Figure 2: Performance profiles of branch-cut-and-price algorithms using the six different labeling strategies

principle, the overall results are comparable: For the RC benchmark, they solved 32 of the 40 instances to
proven optimality within one hour (Bi-Dy-SS produces 33 optima, see Table 3). Seven of the LL benchmark
instances remain completely untractable for both approaches, since the algorithm of Baldacci et al. runs out
of memory and ours fails to solve the linear relaxation (root node). Within one hour of computation time,
the approach of Baldacci et al. cannot close the integrality gap for one other instance while ours fails on
another five instances. As the enumeration approach is very much tailored to the PDPTW, it seems hard
to generalize it to other vehicle-routing problems with pickup-and-delivery structure.

4. Conclusions

In this paper, we introduced a bidirectional labeling algorithm to be used in column-generation based
algorithms for the PDPTW. We construct different cost matrices in forward and backward direction that
fullfill the DTI and the PTI, respectively. This enables, for the first time, the use of strong dominance rules
in both directions. Extensive computational tests showed that the new bidirectional labeling outperforms
former labeling strategies.

Moreover, the new bidirectional labeling can be generalized to other variants of vehicle-routing problems
with a pickup-and-delivery structure. It can be expected that bidirectional labeling with strong dominance
performs even better for more difficult PDPs, since the advantage of bidirectional over monodirectional
approaches typically increases with problem difficulty, e.g., more ESPPRC resources or weaker dominance.

A promising avenue for future research is the extension of the bidirectional labeling to the ng-path
relaxations of the ESPPRC (Baldacci et al., 2012). Such an extension is, however, not straightforward.
When using an ng-path relaxation in the PDPTW with LIFO loading, Cherkesly et al. (2016) have shown
that non-elementary paths can be incorrectly dominated. Note that similar anomalies result from the widely-
used preprocessing and arc-elimination techniques in non-elementary pricing for PDPs. As a consequence,
the lower bounds computed with these relaxations are not unique. However, bounds are valid as exploited in
the selective pricing paradigm of Desaulniers et al. (2016). The incorrect dominance is particularly critical
in the bidirectional labeling because the existence of compatible forward and backward pairs of labels can
no longer be ensured with arguments similar to those used in the proof of Proposition 2.
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