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Abstract

In social network analysis (SNA), relationships between members of a network are encoded in an undirected
graph where vertices represent the members of the network and edges indicate the existence of a relation-
ship. One important task in SNA is community detection, that is, clustering the members into communities
such that relatively few edges are in the cutsets, but relatively many are internal edges. The clustering is
intended to reveal hidden or reproduce known features of the network, while the structure of communities is
arbitrary. We propose decomposing a graph into the minimum number of relaxed cliques as a new method
for community detection especially conceived for cases in which the internal structure of the community
is important. Cliques, that is, subsets of vertices inducing complete subgraphs, can model perfectly cohe-
sive communities, but often they are overly restrictive because many real communities form dense, but not
complete subgraphs. Therefore, different variants of relaxed cliques have been defined in terms of vertex
degree and distance, edge density, and connectivity. They allow to impose application-specific constraints
a community has to fulfill such as familiarity and reachability among members and robustness of the com-
munities. By discussing the results obtained for some very prominent social networks widely studied in the
SNA literature we demonstrate the applicability of our approach.
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1. Introduction

In social network analysis (SNA, Wasserman and Faust, 1994; Scott, 2012) there is a growing interest in
studying social networks aiming at extracting knowledge from the herein identified structures and charac-
teristic numbers. The analysis of cohesive groups also known as communities (or clusters, modules, blocks)
has received a lot of attention from researchers of different areas like social and computer science, biology,
economics, physics, and discrete mathematics. Classically, cliques have been used to model cohesive groups.
They can be seen as extremal cohesive groups in the sense that all members are fully connected with each
other. This constraint has been found too restrictive in many applications and, therefore, various relaxations
of the clique concept, such as s-clique, s-plex, s-club, s-defective clique, and γ-quasi-clique, have been intro-
duced (see Pattillo et al., 2013a, and references given there). We refer to these structures as relaxed cliques
in the following.

To the best of our knowledge, the graph theory and Operations Research literature on clique relaxations
has almost exclusively studied questions related to identifying their structural properties or to solve op-
timization problems in which a maximal or maximum relaxed clique has to be determined. Surprisingly,
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no research has addressed the related problems of partitioning or covering a graph into/with the smallest
number of relaxed cliques, although this type of question was coined by Balasundaram et al. (2011, p. 141).

Decomposing a graph into the minimal number of cliques is well-known as the clique partitioning problem.
It is equivalent to finding a minimum vertex coloring for the complement graph, and has been discussed
intensively, e.g., by Mehrotra and Trick (1998); Nemhauser and Park (1991), and Held et al. (2012). We
extend this stream of research and propose decomposing a graph into the minimum number of relaxed cliques
as a new method for community detection. Note that minimizing the number of relaxed cliques is equivalent
to maximizing the average size of the communities.

We study the cases of partitioning (disjoint clusters) as well as covering (overlapping clusters). Any
subset of a clique is again a clique, a property known as hereditary (Yannakakis, 1978). However, for some
classes of relaxed cliques, this is not generally true. As a consequence, partitioning and covering a graph with
a minimum number of relaxed cliques can be a different problem, i.e., covering can be a proper relaxation
of partitioning. We provide a taxonomy of decomposition problems for the first-order clique relaxations also
taking into account that connectivity is often a desirable property of communities that is not automatically
fulfilled in some cases.

Our proposed approach is applicable in those cases in which one has a good understanding of the struc-
tural properties that a community must have. Aspects such as familiarity among members (few strangers),
reachability among members (quick communication), and robustness of the subgroup (not easily destroyable)
are often desirable properties of a community (Balasundaram et al., 2011). In a graph-theoretic description,
familiarity concerns vertex degrees, reachability concerns distances, and robustness concerns connectivity.
Clique relaxations (we give precise definitions in Section 2) like k-core/s-plex, s-club/clique, and k-block/s-
bundle, respectively, can model such desired characteristics of subgroups in SNA. Moreover, input data
describing a social network may stem from sources that contain errors. In that case using s-defective cliques
or γ-quasi-cliques offers a way of absorbing such inaccuracies.

1.1. Literature Review

The idea of decomposing a graph G = (V,E) into clusters is not new. We briefly review related research
fields such as graph partitioning, community detection, and graph clustering in order to point out the
similarities and differences to the new type of problems introduced within the paper at hand.

In graph partitioning, the task is to find a partitioning of the vertex set V into p blocks V1, V2, . . . , Vp.
Typically, a weight is associated to each vertex of the graph and a maximum capacity of each partition
must be respected. We refer to (Garey and Johnson, 1979) where the graph partitioning problem has been
formally defined and to (Buluç et al., 2013) for a recent comprehensive overview. In addition, balancing
constraints requiring that partitions are of (almost) equal size or weight can be considered. If weights are
associated to the edges of the graph, the objective can be to minimize the weight of the edge cutsets E(Vi, Vj)
comprising all edges connecting different partitions Vi and Vj with i < j. Applications of graph partitioning
are widespread and include, e.g., the distribution of work in parallel processing, image processing, sparse
matrix factorization, very large-scale integration (VLSI) design, and the pre-computation of information to
accelerate shortest-path queries in routing. The focus in graph partitioning is on the relationship between
different clusters, while the structure of a cluster is almost irrelevant except for its size or weight. In contrast,
the primary focus of our work is on the identification of clusters that have very specific structural properties,
i.e., that they are relaxed cliques of a specific type.

Community detection is strongly related to our work. The articles by Porter et al. (2009) and Schaeffer
(2007) and the survey by Fortunato (2010) provide comprehensive overviews showing that diverse methods
from various fields have found their way into community detection. Informally speaking, community detection
is concerned with clustering the vertex set V of a graph G = (V,E) into communities V1, V2, . . . , Vp such
that relatively few edges are found in the cutsets E(Vi, Vj) but relatively many are internal edges E(Vi). In
particular, the number p of communities within a given network is typically unknown. In contrast to the
balancing constraints in graph partitioning, the communities are generally of unequal size, moreover, their
density and structure (if any) can vary. Without explicitly formalizing the relaxed clique partitioning and
covering problem, Fortunato (2010) and others offer the concept of relaxed cliques as a viable and reasonable
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concept for identifying communities. However, methods for clustering a network into relaxed cliques in a
“best possible way” are not described there. This is probably because the standard objectives in community
detection assess a clustering by considering both internal edges and edges in the cutsets of the clusters. A
very common quality measure in this context is modularity, originally introduced by Newman and Girvan

(2004): Given p clusters V1, V2, . . . , Vp, the modularity isQ(V1, V2, . . . , Vp) =
∑p
i=1

(
|E(Vi)|
|E| − exp(Vi)

)
, where

exp(Vi) is the expected fraction of inner-cluster edges of a graph with the same degree distribution as G. A
common assumption on the underlying distribution (the so-called null model) is that an edge between two
vertices i and j appears with probability |N(i)||N(j)|/|E|, where N(i) and N(j) is the set of neighboring
vertices of i and j, respectively. The modularity value Q(V1, V2, . . . , Vp) varies between −0.5 and 1 depending
on the clustering. A value close to 1 indicates that a strong community structure has been identified. Indeed,
modularity maximization seems to be appropriate as a general tool for identifying communities with a
non-specified structure. Dozens of publications have used modularity to justify newly proposed heuristic
clustering methods. Nevertheless, the concept of modularity maximization has also been criticized as it can
lead to questionable results (Fortunato and Barthélemy, 2007). Aloise et al. (2010) were the first to propose
exact algorithms for the modularity maximization problem in networks allowing an absolute evaluation of
clustering heuristics. They compare a row-generation algorithm and a direct solution approach using CPLEX
to solve a 0-1 MIQP with three column-generation algorithms differing in the underlying formulation and
the algorithm used for solving the respective pricing problem. One result is that the column-generation
approach with a sparse quadratic subproblem formulation outperforms the other algorithms, while the
question of finally producing integer solutions via branching is not addressed in the article.

Clustering methods require a measure of distance (or similarity). In the context of graphs, it means that
vertices are considered as (data) points in a metric space. The goal is to find a partitioning of the points V into
p clusters (p is typically given) and to minimize or maximize an objective based on distances between points
and/or from points to cluster centroids (Fortunato, 2010, p. 93f). Examples are p-means clustering where the
average squared distance between points and centroids is minimized, p-centroid where the maximum distance
between points and centroids is minimized, and p-clustering sum where the sum of all intra-cluster distances
is minimized. While traditional clustering methods need p and additional attributes of vertices as inputs
(data points), we solely rely on adjacency information as an input. It is also possible to define a distance by
pure adjacency-based measures (e.g. Schaeffer, 2007, p. 36) such as the overlap |N(i)∩N(j)|/|N(i)∪N(j)|.
However, there are no well-defined structural requirements for sharply distinguishing between feasible and
infeasible clusters.

Finally, the work of Guo et al. (2010) has some relation to the problems studied here, but with a
completely different objective and context. The authors consider the so-called s-plex cluster editing problem
in which, for an undirected graph G = (V,E) and an integer p ≥ 0, the question is whether G can be
modified by up to p edge deletions and insertions into a graph whose connected components are s-plexes.
Chang et al. (2014) study the complexity of graph partitioning using subgraphs of bounded diameter for
restricted classes of graphs, e.g., chordal graphs. They show that the problem is NP -hard in general but
also identify some polynomially solvable cases.

1.2. Paper Contribution

The contributions of the paper at hand are the following:

• the formal introduction of a family of partitioning and covering problems with subsets of vertices that
are relaxed cliques as a new approach for community detection;

• the presentation of a generic compact formulation of these decomposition problems;

• the introduction of connectivity conditions that each relaxed clique has to respect;

• the first mathematical programming formulations for finding k-blocks and s-bundles, i.e., relaxed
cliques defined on the basis of vertex-connectivity;
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• the presentation of a computational study on the application of the new models for detecting com-
munities in some real-world social networks that are intensively studied in the SNA and community-
detection literature.

The remainder of this paper is organized as follows: In Section 2, we provide an overview over the
first-order clique relaxations. Moreover, we discuss a generic and relaxation-specific formulation for finding
maximum relaxed cliques in a graph. In Section 3, we formally introduce the decomposition problems and
derive a mixed integer programming (MIP) formulation for the partitioning and covering problem, which
is compact whenever the formulation for finding a relaxed clique is compact. Results on three widely used
social networks are presented and discussed in Section 4, and final conclusions and an outlook close the
paper with Section 5.

2. Clique Relaxations

In this section, we introduce the basic notation and different types of relaxed cliques following the tax-
onomy offered by Pattillo et al. (2013a). The precise definition of relaxed cliques, given in Section 2.1, is
essential because they form the feasible subsets admissible for the later presented partitioning and covering
problems. Problems related to the identification of large relaxed cliques are surveyed in Section 2.2. Sec-
tion 2.3 then presents known and also new MIP formulations enabling us to specify the generic compact
formulation for the graph decomposition problems.

From now on, we assume that a simple graph G = (V,E) with finite vertex set V and edge set E is given.
For any subset S ⊆ V , the vertex-induced subgraph of S is G[S] = (S,E ∩ (S × S)). A graph property Π is
hereditary on vertex induced subgraphs if for any S ⊆ V with G[S] has property Π it follows that also G[S′]
has property Π for any S′ ⊂ S, S′ 6= ∅.

In the following, i ∈ V is any vertex and S ⊆ V is any vertex set. Vertices adjacent to i are denoted
by N(i). A set S is a clique if G[S] is complete, i.e., all vertices are adjacent. Cliques S form extreme
subsets, since all vertices have maximum degree |S| − 1, the distance between any two vertices is 1, G[S]
has maximum density of 1, and is (|S| − 1)-connected.

2.1. Definitions of Relaxed Cliques

The following relaxed cliques are obtained by relaxing a single aspect of the clique definition. In the
literature, they are referred to as first-order clique relaxations, while the clique itself is named zero-order
clique relaxation (Pattillo et al., 2013a, p. 12).

Relaxing Degree. The vertex degree of i is |N(i)| and is denoted by degG(i). The minimum vertex degree
of G is δ(G) = mini∈V degG(i). For k ≥ 0, S is a k-core if δ(G[S]) ≥ k. For s ≥ 1, S is an s-plex if
δ(G[S]) ≥ |S| − s. Every s-plex is an (|S| − s)-core, and vice versa. The s-plex clique relaxation has been
studied, e.g., in the context of transmission network analysis in Tuberculosis contact investigations by Cook
et al. (2007).

Relaxing Distance. For two vertices i, j ∈ V , distG(i, j) is the minimum distance between i and j, i.e., the
minimum length of an i-j-path in G. Note that the length of a path is given by the number of its edges
and that distG(i, j) = ∞ if i and j are disconnected in G. For s ≥ 1, S is an s-clique if distG(i, j) ≤ s
for all i, j ∈ S. An s-clique is an ordinary clique (1-clique) in the sth power graph Gs = (V, {{i, j} : i, j ∈
V, i < j,distG(i, j) ≤ s}), and vice versa. Note that any subset of an s-clique is again an s-clique, but since
the distance is measured in the given graph G (and not in G[S]) the property of being an s-clique is called
weakly hereditary. The maximum distance is the diameter of G given by diam(G) = maxi 6=j distG(i, j). For
s ≥ 1, S is an s-club if distG[S](i, j) ≤ s for all i, j ∈ S or equivalently diam(G[S]) ≤ s. Any s-club is an
s-clique, but the reverse it not necessarily true. The s-club and s-clique relaxations have been intensively
studied and their relevance for network optimization applications in biology were pointed out by Almeida
and Carvalho (2012).
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Relaxing Density. For any S ⊆ V , the edge set E(S) is the set of edges in G with both endpoints in S.

Moreover, the edge density of a subgraph G[S] is defined as ρ(G[S]) = |E(S)|/
(|S|

2

)
. For 0 ≤ γ ≤ 1, S is a

γ-quasi-clique if ρ(G[S]) ≥ γ. While the density is a relative measure for existing/missing edges, one can

also count their number. For s ≥ 0, S is an s-defective clique if |E(S)| ≥
(|S|

2

)
− s. Hence, any s-defective

clique has a density of at least γ = 1− s/
(|S|

2

)
, i.e., is a γ-quasi-clique, and vice versa. The s-defective clique

has been used, e.g., to identify large protein interaction networks using noisy data collected from large-scale
(high-throughput) experiments (Yu et al., 2006).

Relaxing Connectivity. A set C ⊂ V is a vertex cut of a connected graph G = (V,E) if G[V \ C] is a
disconnected graph. Note that any vertex cut C has at most |V |− 2 elements. The vertex connectivity κ(G)
is the size of a minimum vertex cut. For cliques S, G[S] does not have any vertex cuts, and therefore one
defines κ(G[S]) = |S| − 1. A graph is called k-vertex-connected if its vertex connectivity is k or greater.
Let i, j ∈ V be two different, non-adjacent vertices. The local connectivity κG(i, j) is the minimum size of
a vertex cut C disconnecting i and j in G[V \ C]. For adjacent vertices i and j, one defines κG(i, j) = ∞.
Then, if G is not a clique, κ(G) equals the minimum of κG(i, j) over all pairs of different vertices i, j ∈ V .

Two i-j-paths are called vertex-disjoint if they have no vertices in common except i and j. According to
Menger’s theorem (Menger, 1927), the minimum size of a vertex cut disconnecting i and j is the maximum
number of vertex-disjoint paths connecting i and j. Therefore, for non-adjacent vertices i and j, κG(i, j)
is the maximum number of vertex-disjoint i-j-paths. For k ≥ 1, S is a k-block if κ(G[S]) ≥ k. For s ≥ 1,
S is an s-bundle if κ(G[S]) ≥ |S| − s. By definition, singleton sets S = {i} are no k-blocks but always
s-bundles. Connectivity and k-blocks have been comprehensively surveyed by Kammer and Täubig (2005).
To the best of our knowledge, the s-bundle relaxation coined in (Pattillo et al., 2013a) has only been studied
in (Gschwind et al., 2018).

Table 1 summarizes the definitions of the eight first-order relaxed cliques. In higher-order clique re-
laxations, more than one aspect of the clique definition is relaxed. For example, the (λ, γ)-quasi-clique is
a second-order relaxation relaxing degree and density so that each vertex must be connected to at least
λ(|S| − 1) vertices and the induced subgraph must have a density not smaller than γ. Note that in some
cases one property may already result from another property. For an overview of dependencies between
first-order relaxations see (Pattillo et al., 2013a, Table 2).

Type of relaxation Definition Based on Clique Hereditary Connected

k-core δ(G[S]) ≥ k Degree k = |S| − 1 no |S| ≤ 2k + 1
s-plex δ(G[S]) ≥ |S| − s Degree s = 1 yes |S| ≥ 2s− 1

s-clique distG(i, j) ≤ s for all i, j ∈ S Distance s = 1 yes, weakly s = 1
s-club diam(G[S]) ≤ s Distance s = 1 no always

γ-quasi-clique ρ(G[S]) ≥ γ Density γ = 1 no
⌈
γ
(|S|

2

)
−
(|S|−1

2

)⌉
≥ 1

s-defective clique |E(G[S])| ≥
(|S|

2

)
− s Density s = 0 yes |S| ≥ s+ 2

k-block κ(G[S]) ≥ k Connectivity k = |S| − 1 no always
s-bundle κ(G[S]) ≥ |S| − s Connectivity s = 1 yes |S| ≥ s+ 1

Table 1: Definition of different clique relaxations, similar to Table 1 in (Gschwind et al., 2017)
Note: The last column gives sufficient conditions for connectivity (Pattillo et al., 2013a, p. 17).

The literature distinguishes between “hereditary on induced subgraphs” (in the proper sense) where the
property Π can be directly tested on G[S] without knowing G, and “weakly hereditary” where the property
refers to the given graph G. We will use “hereditary” in the comprehensive sense because there are no
implications for the algorithmic components that we use.

Requiring Connectivity. In many practical applications, clusters need to be connected. For community de-
tection, e.g., Fortunato (2010, p. 84) stresses that connectedness is a required property. If a community
were disconnected, it could be considered as two or more smaller groups. A weakness of general relaxed
cliques is that they are not necessarily connected, see last column of Table 1, where sufficient conditions for
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Figure 1: Largest disconnected s-plex, s-defective clique, and s-bundle

connectivity are given. Indeed, arbitrarily large s-cliques can be disconnected because the removal of the
central vertex from a star graph induces an edgeless graph, which is however a 2-clique and therefore also an
s-clique for all s ≥ 2. Also, arbitrarily large disconnected γ-quasi-cliques exist resulting from the addition
of an isolated vertex to a clique. In contrast, this phenomenon occurs only for small-sized S ⊂ V in case of
s-plex, s-defective clique, and s-bundle, see Figure 1.

As a consequence, we suggest to consider connected relaxed cliques S as feasible structures, which result
from requiring connectivity of the induced subgraph G[S] in addition to the definition of the respective
relaxed clique. Note that for hereditary relaxed cliques (s-plex, s-clique, s-defective clique, and s-bundle)
the connectivity requirement makes the resulting structures non-hereditary. For example, a path with three
vertices forms a connected 1-defective clique, which becomes disconnected when the middle vertex is removed.

2.2. Large Relaxed Cliques

The scientific literature has focused mainly on finding a largest relaxed clique in a given graph. The
attribute large may refer to relaxed cliques S that either are of maximum cardinality, are maximal with
respect to inclusion, or have maximum weight. In this section, we briefly review the most successful exact
algorithms for this purpose, classify them into MIP-based and others, because only the MIP-based algorithms
can serve as a basis for the generic decomposition model that we present later.

Maximum-Cardinality Relaxed Cliques. Before we define the related optimization problems, it is helpful to
describe some properties in order to classify types of relaxed cliques. Let Π be the graph property, e.g.,
describing a specific clique relaxation. According to Yannakakis (1978), a property Π is nontrivial if it is
true for all graphs G[S] induced by singleton sets S = {i}, but not fulfilled for every graph. Property Π is
interesting if there exist arbitrarily large graphs satisfying it.

The problem of finding a relaxed clique S ⊆ V with largest cardinality |S| is known as the maximum
(-cardinality) relaxed clique problem (MC-RC). For nontrivial, interesting, and hereditary (on induced sub-
graphs, see Section 2) properties Π, Yannakakis (1978) has shown that MC-RC is NP -hard. It is straight-
forward to see that Π is hereditary for clique, s-plex, s-defective clique, and s-bundle. Consequently, MC-RC
is an NP -hard problem for these structures. The same holds for s-clique with s > 1 (equivalent to clique in
power graph).

The properties Π of being a k-core, s-club (for s > 1), γ-quasi-clique (for γ < 1), or k-block are not
hereditary. The theorem by Yannakakis (1978) is therefore not applicable. Indeed, the maximum-cardinality
k-core problem is polynomially solvable (see Kosub, 2004). The computation of the k-connected components
of a graph (solving the maximum-cardinality k-block problem and the k-block partitioning problem) can
be done in polynomial time for fixed k (see Kammer and Täubig, 2005). For s-club, the NP -hardness of
MC-RC was proven by (Bourjolly et al., 2002). Recently, Pattillo et al. (2013b) showed that MC-RC for
γ-quasi-cliques is NP -complete.

Table 2 summarizes the exact solution approaches for MC-RC for the first-order clique relaxations.
Exact algorithms for clique are too numerous to be listed here and we refer to (Carraghan and Pardalos,
1990; Abello et al., 1999; Österg̊ard, 2002). Note that these algorithms can solve MC-RC for s-cliques by
considering the sth power graph.
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Clique relaxation MIP-based other

k-core n.a. polynom. solvable, see (Kosub, 2004)
s-plex B&C: (Balasundaram et al., 2011) CB&B: (Trukhanov et al., 2013; Gschwind et al.,

2018)

s-clique B&C: (Nemhauser and Trotter Jr., 1974,
1975)

(any non-MIP-based for clique)

s-club MIP: (Bourjolly et al., 2000; Veremyev and
Boginski, 2012), B&C: (Almeida and Car-
valho, 2012, 2013)

CB&B: (Bourjolly et al., 2002; Mahdavi Pa-
jouh and Balasundaram, 2012; Shahinpour and
Butenko, 2013; Moradi and Balasundaram, 2015),
SAT:(Wotzlaw, 2014)

γ-quasi-clique MIP: (Pattillo et al., 2013b; Veremyev
et al., 2015)

s-defective clique B&C: (Sherali and Smith, 2006) CB&B: (Trukhanov et al., 2013; Gschwind et al.,
2018)

k-block n.a. polynom. solvable, see (Kammer and Täubig,
2005)

s-bundle n.a. CB&B:(Gschwind et al., 2018)

Table 2: Exact algorithms for MC-RC for different clique relaxations
Note: B&C=branch-and-cut, CB&B=combinatorial branch-and-bound, MIP=(mixed) integer model (no cutting planes),

SAT=formulation as a partial max-sat problem

Inclusion Maximal Relaxed Cliques. If a subset S ⊆ V is a largest relaxed clique with respect to inclusion
then S is a maximal relaxed clique. Obviously, any maximum relaxed clique is also maximal, but the reverse
is not necessarily true. For all variants, the question whether or not S induces a relaxed clique is efficiently
decidable. Therefore, for hereditary Π, finding inclusion maximal relaxed cliques can be done efficiently
by adding vertices in a one-by-one fashion. In contrast, the maximality test regarding subset inclusion is
NP -hard for s-club as shown by Mahdavi Pajouh and Balasundaram (2012).

Maximum-Weight Relaxed Cliques. If weights wi ∈ R are given for all vertices i ∈ V , the maximum-weight
relaxed clique problem (MW-RC) consists of finding a subset S ⊆ V such that w(S) =

∑
i∈S wi is maximum

and S is a relaxed clique. Clearly, with unit weights MW-RC reduces to MC-RC. For relaxed cliques with
hereditary Π, it is no restriction to assume that weights wi are non-negative because otherwise a vertex with
negative weight can be eliminated from the consideration.

2.3. Mathematical Formulations for Relaxed Cliques

Different formulations for the MC-RC and MW-RC variants have been suggested in the literature (see
Pattillo et al., 2012, 2013a, for an overview). All formulations use either variables xi ∈ {0, 1} to indicate that
vertex i ∈ V is in the relaxed clique S, or variables ye ∈ {0, 1} to indicate that G[S] contains edge e ∈ E,
or both. The properties defining Π can be formulated using MIP. The relaxed cliques can be described with
the help of a polytope describing a set F (G) of integer points such that (x,y) ∈ F (G) holds if and only if
G[S] with S = {i ∈ V : xi = 1} fulfills Π. We can write the following generic model for MW-RC:

max
∑
i∈V

wixi, s.t. (x,y) ∈ F (G) (1)

A possible way to ensure the compatibility of vertex and edge variables is setting xixj = yij for all {i, j} ∈ E
and to apply the McCormick (1976) linearization for binary variables. We assume that this or any alternative
coupling mechanism is already part of the definition of F (G). Note that additional variables, other than x
and y, may be used to define the set F (G) or that in some formulations the y variables are useless.

Several mathematical formulations describing the first-order relaxed cliques introduced in Section 2
can be found in the literature. An ordinary clique is described by F 1(G) = {xi ∈ {0, 1} : xi + xj ≤
1 for all i, j ∈ V, i < j with {i, j} /∈ E}. Polyhedral results can be found in (Nemhauser and Trotter Jr.,
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1974, 1975). These results transfer directly to s-cliques with s ≥ 2, since an s-clique is an ordinary clique in
the power graph Gs.

s-Plex. Balasundaram et al. (2011) provide the following compact formulation for s-plex. Here, F 2(G) =
{xi ∈ {0, 1} :

∑
j∈V \N(i),j 6=i xj ≤ (s − 1)xi + d̄i(1 − xi) for all i ∈ V }, where the constant d̄i is defined as

|V \N(i)| − 1.

s-Defective Clique. The complement of an s-defective clique is a generalized vertex packing (GVP-s, Sherali
and Smith, 2006). Therefore, s-defective cliques can be detected as GVP-s in the complement graph Ḡ =
(V, Ē), where Ē = {{i, j} : i, j ∈ V, i < j, {i, j} /∈ E}. The set F 3(G) is given by {xi ∈ {0, 1}, ȳij ≥ 0 : ȳij ≥
xi + xj − 1, {i, j} ∈ Ē;

∑
{i,j}∈Ē ȳij ≤ s}. It has additional ȳij variables for all {i, j} ∈ Ē.

γ-Quasi-Clique. Pattillo et al. (2013b) describe γ-quasi-cliques by F 4(G) = {xi ∈ {0, 1}, yij ≥ 0 :
∑
i<j(γ−

aij)yij ≤ 0; yij ≤ xi, yij ≤ xj , yij ≥ xi + xj − 1 for i, j ∈ V, i < j}, where (aij) is the adjacency matrix of G
and the yij variables are defined for every pair of vertices i, j ∈ V, i < j. The authors also present a more
compact formulation with |V | binary and |V | continuous variables and 4|V |+ 1 constraints; the associated
polytope is F 5(G).

In the more recent paper (Veremyev et al., 2015), four alternative formulations for the γ-quasi-cliques
are given and compared against F 4(G) and F 5(G). For the sake of brevity, we present only one of the
alternative formulations, i.e., the one that was identified as giving the most consistent results and best
bounds for maximum-cardinality (Veremyev et al., 2015, p. 210ff). The associated polytope F 6(G) uses
additional binary variables ts for s ∈ S := {1, 2, . . . , |V |} to indicate the size of the γ-quasi-clique. The
formulation of the maximum-cardinality γ-quasi clique problem is:

max
∑
i∈V

xi (2a)

s.t. yij ≤ xi, yij ≤ xj {i, j} ∈ E (2b)∑
e∈E

ye ≥ γ
∑
s∈S

s(s− 1)

2
ts (2c)∑

i∈V
xi =

∑
s∈S

sts (2d)∑
s∈S

ts = 1 (2e)

ts ≥ 0 s ∈ S (2f)

xi ∈ {0, 1}, ye ≥ 0 i ∈ V, e ∈ E (2g)

Here, the coupling between vertex and edge indicator variables is established via (2b), the γ-related constraint
on the number of edges in the induced graph is (2c), the coupling between the x- and t-variables is given by
(2d), and the unique cardinality of the induced graph is enforced via (2e). Veremyev et al. (2015) show that
a smaller formulation results from replacing the possible sizes S by {l, l + 1, . . . , u} when a lower bound l
and an upper bound u is known.

s-Club. Several formulations for maximum-cardinality s-club are known. Mahdavi Pajouh et al. (2016)
present a tailored model for 2-clubs. The first model for arbitrary s ≥ 2 is the path-based formulation by
Bourjolly et al. (2000) which uses indicator variables xi for the vertices and additional variables for all paths
of length at most s. With the coupling of both types of variables, the number of variables and constraints is
bounded by the number of paths, which is of the order of O (|V |s+1) for dense graphs. However, for fixed s
the formulation is compact, i.e., polynomial in |V | and |E| and valid inequalities together with a branch-and-
cut algorithm were presented by Carvalho and Almeida (2011); Almeida and Carvalho (2012). Veremyev
and Boginski (2012) proposed the first compact formulation with a polynomial number of variables and
constraints (polynomial in s, |V |, and |E|). Since this formulation (polytope F 7(G)) is relatively spacious,
we describe it in the following.
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2.3.1. MIP Formulation for Maximum s-Club

Following (Veremyev and Boginski, 2012), we assume that the simple graph G = (V,E) with vertex
weights wi for i ∈ V is given together with some integer s ≥ 2. In addition to vertex variables xi ∈ {0, 1}
defining S = {i ∈ V : xi = 1}, there are variables v`ij ∈ {0, 1} indicating that an i-j-path of length ≤ `
exists in G[S], i.e., distG[S](i, j) ≤ `. In (Veremyev and Boginski, 2012), the domain of the indices ` is
not completely defined. We therefore present a sightly modified version of the model in which a minimum
number of the path variables v`ij is needed. Since i-j-paths of length one are the edges {i, j}, the domain
of the index ` can be defined as dom2(i, j) = {max{2,distG(i, j)}, . . . , s}. Similarly, we define dom3(i, j) =
{max{3,distG(i, j)}, . . . , s}. With the definition U = {{i, j} : i, j ∈ V, i < j} for unordered pairs, the
formulation of the maximum-weight s-club problem is:

max
∑
i∈V

xi (3a)

s.t. v`ij ≤ xi, v`ij ≤ xj {i, j} ∈ U , ` ∈ dom2(i, j) (3b)∑
`∈dom2(i,j)

v`ij ≥ xi + xj − 1 {i, j} ∈ U \ E (3c)

v2
ij ≤

∑
p∈N(i)∩N(j)

xp {i, j} ∈ U ,distG(i, j) = 2 (3d)

v`ij ≤
∑

p∈N(i),dist(p,j)≤`−1

v`−1
pj {i, j} ∈ U , 2 ≤ distG(i, j) ≤ s, ` ∈ dom3(i, j) (3e)

xi ∈ {0, 1} i ∈ V (3f)

v`ij ∈ {0, 1} {i, j} ∈ U , ` ∈ dom2(i, j) (3g)

Due to (3b), the selection of a path associated with v`ij is only possible if both endpoints are present.
Conversely, the constraints (3c) allow the selection of both vertices i and j if and only if there exists a
path of length ≤ s between them in G[S]. The constraints (3d) and (3e) model the construction of paths
in G[S] connecting i and j. The first constraints guarantee that a vertex adjacent to i and j is selected for
the distance two, while the latter work recursively. A path of length ` between vertices i and j requires the
selection of a vertex p adjacent to i together with the presence of another path of length `−1 between p and
j. The domains of the vertex and path variables are defined by (3f) and (3g). Note that clique-like constraints
xi + xj ≤ 1 for incompatible vertices i, j ∈ V are present in the above formulation: If distG(i, j) > s for
i, j ∈ V , no s-club can contain both vertices, and dom2(i, j) is the empty set by definition so that the
corresponding constraint (3c) reduces to xi +xj ≤ 1. Hence, any valid inequalities for the clique polytope of
the corresponding power graph Gs are valid and may be used to strengthen the LP relaxation of the model.
Moreover, Veremyev and Boginski (2012) presented additional valid inequalities for F 7(G).

2.3.2. MIP Formulation for Maximum s-Bundle and k-Block

To the best of our knowledge, no MIP formulations for k-block and s-bundle have been presented in the
literature. We suggest the following formulations and denote the associated polyhedron by F 8(G). Recall
that a simple graph G = (V,E) with vertex weights wi for i ∈ V is given together with some integer s ≥ 2.

Let N = (N,A) be an auxiliary network associated with G defined as follows: For each vertex i ∈ V
there exist two vertices i− and i+ in N so that N = V + ∪ V −. The network N comprises two types of
arcs. First, for all i ∈ V , arcs (i−, i+) are present in A. Second, for each edge {i, j} ∈ E, the arcs (i+, j−)
and (j+, i−) are in A. Hence, A = {(i−, i+) : i ∈ V } ∪ {(i+, j−), (j+, i−) : {i, j} ∈ E}. All arcs have unit
capacity. Now, any two non-adjacent vertices i, j ∈ V are k-connected in G if and only if there exists a flow
of value k between i+ and j− in N . The same holds for G[S] and the induced network N [S+ ∪ S−] for any
S ⊆ V .

Three types of decision variables are in the MIP: The binary variables xi for i ∈ V indicate whether or
not vertex i ∈ V is in the selected s-bundle S = {i ∈ V : xi = 1}. The continuous variable u describes the
number |S| − s of vertex-disjoint paths that must exist between non-adjacent pairs of vertices of S. With
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the definition U = {{i, j} : i, j ∈ V, i < j} for unordered pairs, for each {i, j} ∈ U \ E, the binary variables
yija , a ∈ A model flows in N connecting i+ and j−.

max
∑
i∈V

xi (4a)

s.t. u ≥
∑
i∈V

xi − s (4b)∑
a∈δ+(i+)

yija ≥ u−M ij(2− xi − xj) {i, j} ∈ U \ E (4c)

∑
a∈δ+(n)

yija −
∑

a∈δ−(n)

yija = 0 {i, j} ∈ U \ E,n ∈ N,n 6= i+, j− (4d)

∑
a∈δ−(j−)

yija ≥ u−M ij(2− xi − xj) {i, j} ∈ U \ E (4e)

yijp−p+ ≤ xp {i, j} ∈ U \ E, p ∈ V (4f)

xi ∈ {0, 1} i ∈ V (4g)

yija ≥ 0 a ∈ A, {i, j} ∈ U \ E (4h)

u ≥ 0 (4i)

The objective (4a) maximizes the sum of the vertex weights in the selected s-bundle S. The constraint (4b)
guarantees u ≥ |S| − s. The next three groups of constraints (4c)–(4e) ensure a flow of at least u between
i+ and j− in case that i and j belong to the bundle. Herein, M ij > 0 is a sufficiently large number. The
coupling constraints (4f) guarantee that flows are positive only in N [S+ ∪S−]. The domains of all variables
are stated in (4g)–(4i).

In an s-bundle S, every vertex must have a degree degG[S](i) not smaller than |S| − s (see Pattillo et al.,

2013a, p. 17). Based on this observation, we can find a feasible, but small value for M ij in constraints (4c)
and (4e) in order to tighten the formulation:

M ij := max{k ∈ N : ∃S ⊆ V, |S| − s = k, ∀v ∈ S : max{degG\{i}(v),degG\{j}(v)} ≥ k}

This maximum can be computed by simply sorting all vertices decreasingly by the values
max{degG\{i}(v),degG\{j}(v)}.

Note that a similar formulation can be used to find maximum-weight k-blocks. The variable u can be
replaced by the constant k so that (4b) and (4i) are obsolete.

2.3.3. Handling Connectivity

As discussed above, some types of relaxed cliques are not necessarily connected. In the presented MIP
formulations, a straightforward way to impose connectivity is to add constraints∑

i∈S
xi +

∑
i∈V \S

(1− xi) ≤ |V | − 1 S ⊆ V : κ(G[S]) ≥ 2. (5)

In general, this is an exponential number of constraints requiring a cutting-plane procedure to solve the
MIP.

3. Partitioning and Covering a Graph with a Minimum Number of Relaxed Cliques

Community detection consists in partitioning or covering a graph into/with clusters. We propose a
new approach for community detection based on decomposing the graph into a minimum number of relaxed
cliques. No reasonable problem results for k-core because some vertices may have a degree smaller than k and
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Figure 2: Covering and partitioning into a minimum number of 2-clubs.

Connected General

Partitioning Covering Partitioning Covering with

Vertex coloring: clique

17 interesting new s-plex s-plex s-plex s ≥ 2

decomposition s-clique s-clique s ≥ 2
problems: s-club s-club s ≥ 2

γ-quasi-clique γ-quasi-clique γ-quasi-clique γ-quasi-clique 0 < γ < 1
s-defective clique s-defective clique s-defective clique s ≥ 1

s-bundle s-bundle s-bundle s ≥ 2

Table 3: Variants of partitioning and covering with relaxed cliques

cannot belong to any k-core. For k-block, the resulting problem is to determine the k-connected components,
for which efficient algorithms exist (Kammer and Täubig, 2005). Therefore, we restrict ourselves to the six
remaining first-order clique relaxations.

According to Porter et al. (2009) the “detection of network communities that overlap is especially appeal-
ing in the social sciences, as people belong simultaneously to several communities (constructed via colleagues,
family, hobbies, etc.)”. Clearly, covering is always a relaxation of partitioning and this relaxation is proper
for non-hereditary structures. The decomposition into 2-clubs shown in Figure 2 is an example.

The non-heredity of a particular structure may either result from the property Π defining the type
of relaxed clique or from the connectivity requirement. When connectivity is not already ensured by the
definition of the relaxed clique, the variants double and we analyze variants with and without connectivity
requirement.

All interesting variants of partitioning and covering with first-order relaxed cliques are summarized in
Table 3. Since partitioning and covering are identical for hereditary Π and without connectivity requirement,
s-plex, s-defective clique, and s-bundle are listed in the partitioning column only. Moreover, an s-clique is an
ordinary clique (1-clique) in the s-th power graph Gs = (V,Es) with Es = {{i, j} : i, j ∈ V,distG(i, j) ≤ s},
and vice versa. Hence, we do not consider partitioning and covering with general s-cliques. In contrast, for
s ≥ 2 and with connectivity imposed, partitioning and covering with connected s-cliques differ from clique
partitioning in the power graph Gs and differ from the VCP in the complement graph (also the vertex
coloring is beyond of the scope of this paper). Figure 3 provides an example.

Finally, it is a non-trivial result that partitioning and covering with connected s-cliques is generally not
equivalent. Figure 4 depicts the smallest example that we were able to construct (a graph with 67 vertices
and 84 edges). In this example we show that for s = 4 partitioning and covering into connected 4-cliques
results in a minimum of nine partitions but only eight covering subsets. It is straightforward to generalize
the example to s ≥ 5, but it remains an open question if there exist examples for s = 2 and 3 and examples
of smaller size.

3.1. Generic Compact Formulation

A generic compact mathematical formulation for all variants needs an upper bound r̄c(G) on the
minimum number rc(G) of relaxed cliques in a solution so that they can be numbered by h ∈ H =
{1, 2, . . . , r̄c(G)}. Then, binary variables zh, h ∈ H indicate whether or not the hth relaxed clique is non-
empty in the solution. The sets of variables (xh,yh) for h ∈ H model the hth relaxed clique Sh in the sense
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Figure 3: Partitioning into a minimum number of (four) general 2-cliques and (five) connected 2-cliques. Note that S =
{13, 14, 15} induces the disconnected subgraph G[S] = (S,∅).

that xhi and yhe expresses that vertex i and edge e belong to G[Sh], respectively. The generic formulation
reads as follows:

rc(G) = min
∑
h∈H

zh (6a)

s.t.
∑
h∈H

xhi = 1 (or ≥ 1) i ∈ V (6b)

zh ≥ xhi i ∈ V, h ∈ H (6c)

(xh,yh) ∈ F (G) h ∈ H (6d)

zh ∈ {0, 1} h ∈ H (6e)

The objective (6a) minimizes the number of relaxed cliques in the solution. (6b) are the partitioning/covering
constraints. Constraints (6c) ensure that Sh = {i ∈ V : xhi = 1} is the empty set whenever zh = 0. The
feasibility of Sh is ensured by (6d).

The following theorem shows that formulations eqrefmodel:generic-compact-part-cover have a very weak
linear relaxation.

Theorem 1. For the polyhedra F 1(G) (clique and s-clique), F 2(G) (s-plex), F 3(G) (s-defective clique),
F 4(G), F 5(G), and F 6(G) (γ-quasi-clique), F 7(G) (s-club), and F 8(G) (s-bundle), let lp(G) be the value
of the linear relaxation of the compact formulation (6).

(a) For every solution (x̂, ŷ, ẑ) to the linear relaxation, there always exists an equivalent perfectly symmetric

solution with x1
i = x2

i = · · · = x
r̄c(G)
i = 1

r̄c(G)

∑r̄c(G)
h=1 x̂hi for each i ∈ V , y1

e = y2
e = · · · = y

r̄c(G)
e =

1
r̄c(G)

∑r̄c(G)
h=1 ŷhe for each e ∈ E, and z1 = z2 = · · · = zr̄c(G) = 1

r̄c(G)

∑r̄c(G)
h=1 ẑh.

(b) For r̄c(G) = 1, the linear relaxation is tight, i.e., lp(G) = rc(G).

(c) For r̄c(G) ≥ 2, the linear relaxation is not tight and lp(G) = 1.

Proof: See Appendix, Section A.

3.2. Set-Partitioning and Set-Covering Formulations

Given the proposed compact formulation (6), a natural Dantzig-Wolfe decomposition can be derived
as follows: The partitioning/covering constraints (6b) become the coupling constraints and the constraints
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Figure 4: Graph with 67 vertices and 84 edges: (a) Covering solution with eight connected 4-cliques, vertex 67 is covered twice,
(b) Partitioning solution with nine connected 4-cliques

(6c)–(6e) form the subproblems, identical for each block h ∈ H, and thus blocks can be aggregated (cf.
Lübbecke and Desrosiers, 2005). Since each block contains the element (xh,yh, zh) = (0,0, 0) with cost
zero and the number of blocks was chosen sufficiently large, there is no generalized convexity constraint in
this Dantzig-Wolfe reformulation. Let Ω be the set of all feasible relaxed cliques. Then, the integer master
program (IMP) is:

min
∑
S∈Ω

λS (7a)

s.t.
∑

S∈Ω:i∈S
λS = 1 (or ≥ 1) ∀i ∈ V (7b)

λS ≥ 0 integer ∀S ∈ Ω. (7c)

The objective (7a) minimizes the number of relaxed cliques, (7b) are the covering/partitiong constraints,
and (7c) define the domain of the variables.

Already for relatively small graphs the size of the set Ω becomes huge. Therefore, IMP (7) must be
solved using column-generation techniques (Desaulniers et al., 2005). The starting point is a restricted master
program (RMP) which is the linear relaxation of (7) defined over a (small) subset Ω′ ⊂ Ω of the variables λS ,
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S ∈ Ω′. The column-generation process alternates between the (re-)optimization of the current RMP and
the generation of new variables with negative reduced cost, i.e., c̃S = 1 −

∑
i∈S πi < 0 for S ∈ Ω where

π = (πi)i∈V are optimal dual values to constraints (7b) of the RMP. These variables/columns are added to
the RMP as long as at least one negative reduced-cost variable exists. When the column-generation process
terminates, a solution to the linear relaxation of (7) is found providing a lower bound to IMP. To produce
integer solutions, the integration into branch-and-bound a.k.a. branch-and-price is required (for details see
Desaulniers et al., 2005). The branching scheme must finally guarantee that any fractional solution to the
RMP can be cut off.

The presentation of such a branch-and-price approach is far beyond the scope of this paper at hand.
Instead, our companion paper (Gschwind et al., 2017) focuses on the numerous algorithmic difficulties that
need to be overcome:

1. The pricing subproblem that has to be solved iteratively is a maximum-weight relaxed clique problem
max

∑
i∈V πixi subject to (x,y) ∈ F (G), where the dual solution π = (πi)i∈V of the RMP defines the

weights, see also Section 2.2.

Each and every type of first-order relaxed clique requires a relaxation-specific pricing algorithm. Typically
only algorithms for the maximum-cardinality problem are described in the literature, and they are often
either MIP-based algorithms or combinatorial branch-and-bound (CB&B) algorithms. In the latter case,
adaptations to the maximum-weight variant are non-trivial, e.g., for s-club.

Even worse, for partitioning the graph, some weights πi can become negative, and for non-hereditary/connected
relaxed cliques the known CB&B algorithms are often not able to cope with arbitrary weights. For ex-
ample, new CB&B need to be developed for connected s-clique, s-plex, s-defective clique, and s-bundle.

Whenever more that one pricing algorithm is available, the performance of these algorithms has to be
compared, using different types of graphs and parameters s or γ.

2. The development of branching schemes is non-trivial. As for pricing, branching rules strongly depend
on the clique-relaxation variant, since a desirable branching rule is subproblem-structure preserving. In
addition, branching rules also depend on whether a partitioning or covering decomposition has to be
found.

The well-known Ryan-Foster branching for partitioning models is not structure-preserving for relaxed
clique, opposed to the situation in vertex coloring and clique partitioning where together and separate
decisions can be imposed by some simple graph modifications. The companion paper (Gschwind et al.,
2017) compares Ryan-Foster branching for partitioning models with newly invented structure-preserving
branching rules for some of the 17 variants. Moreover, a new four-level branching scheme for covering a
graph with relaxed cliques is presented.

4. Interpretation of Results in Social Networks

In this section, we test the applicability of our graph decomposition methods for the purpose of detecting
community structures (cf. Fortunato, 2010). We have chosen karate, dolphins, and football as three very
prominent and intensively studied examples of real social networks for which the true community structure
is known and different methods of community detection have been tested. The networks are part of the
10th DIMACS challenge available at http://dimacs.rutgers.edu/Challenges/. Some characteristics of
these networks are listed in Table 4, such as density ρ(G), minimum degree δ(G), maximum independent set
size α(G), maximum clique size ω(G), chromatic number χ(G), chromatic number of the complement graph
χ(Ḡ), and maximal modularity µ(G) computed with our implementation of the second column-generation
algorithm of Aloise et al. (2010) (number of clusters in brackets).

The solutions presented in the following were either obtained with the generic compact formulation (6)
solved with the CPLEX 12.5.0 MIP solver on a standard PC with an Intel(R) Core(TM) i7-4790 3.6 GHz
processor and 8 GB of main memory using a single thread only. Note that we added constraints zh ≥ zh−1

for h < r̄c(G) and xhi = 0 for i < h to the compact formulation in order to break symmetries and facilitate
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G = (V,E) |V | |E| ρ(G) δ(G) α(G) ω(G) χ(G) χ(Ḡ) µ(G)

karate 34 78 0.1390 1 20 5 5 20 0.4198 (4)
dolphins 62 159 0.0841 1 28 5 5 28 0.5285 (5)
football 115 613 0.0935 7 21 9 9 22 0.6046 (10)

Table 4: Social networks and some of their features

the solution of the model. From the companion paper (Gschwind et al., 2017) we took the results of the
branch-and-price algorithm run on the same computer. Table 5 gives a brief overview over lower bounds
(LB), upper bounds (UB, bold if optimum), and computation times (Time, in seconds). Finally, for the
comparison with solutions of the partitioning problem that maximizes modularity, we implemented the
branch-and-price of (Aloise et al., 2010).

Network clique parameter decom- connec- compact formul. (6) formul. (7) with
relaxation s position tivity with CPLEX branch-and-price

LB UB Time [s] UB Time [s]

karate s-club s = 2 part. (yes) 4 0.3 4 < 0.1
s = 3 part. (yes) 2 < 0.1 2 1.1

dolphins s-clique s = 4 cover. yes 4 < 0.1 4 < 0.1
s = 5 cover. yes 2 < 0.1 2 < 0.1

football s-plex s = 3 part. no 5 – TL 16 6739.3
s = 4 part. no 4 – MEM 13 2802.4
s = 4 part. yes 5 – TL 13 4349.6

football s-plex s = 3 part. yes 5 – TL 14 323.2
(w/o indep. teams) s = 4 part. yes 5 – TL 12 1704.3

Table 5: Results compact formulation with CPLEX vs. branch-and-price from (Gschwind et al., 2017)
Note: MEM=out of memory, TL=time limit of 4 hours reached

4.1. Zachary’s Karate Club

Zachary (1977) introduced the formal description of a university-based karate club as an example of a
fission of a small anthropological group. The relevant background information is that due to a longer-lasting
conflict between the club president and the karate instructor the club finally separated into two new clubs,
one supporting the old club’s president and the other one following the instructor. Zachary’s study, however,
focused on the social interaction between members before the fission. He collected the information “if two
individuals consistently were observed to interact outside the normal activities of the club”. The crisis in the
club had the effect of “pulling apart the (sub)networks of friendship ties”. The resulting social network has
one vertex for each active member of the club, and two vertices are adjacent if and only if the corresponding
members consistently interacted. The Karate club network is depicted in Figure 5(a). It became a useful
benchmark for community detection approaches, since algorithmically computed clusters can be compared
with the real memberships in one of the two clubs after the division. For example, Girvan and Newman
(2002) applied a hierarchical clustering via tree decomposition. Their first split “corresponds almost perfectly
with the actual division of the club members” with only vertex 3 being misclassified (Girvan and Newman,
2002, p. 7823).

The same authors, Newman and Girvan (2004), later introduced modularity in order to measure the
quality of a decomposition (see Section 1.1). Their decomposition method (i) calculates the so-called be-
tweenness for all edges of the network, (ii) removes an edges with maximum betweenness, (iii) repeats the
steps (i) and (ii) for the resulting reduced network until it is edgeless. This creates a hierarchical decom-
position of a graph, often displayed using a decomposition tree. With the shortest-path betweenness, the
method produces a first decomposition into two components with vertex 3 incorrectly classified, while with
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Figure 5: Zachary’s karate club (a) Situation as described by Zachary (1977), modularity µ = 0.3715; (b) 3-club partitioning,
µ = 0.3600; (c) 2-club partitioning, µ = 0.3432. Note that the graph is a 5-club

random-walk betweenness the two groups are identified correctly. However, with both decomposition meth-
ods the clustering into five/four groups achieves a higher modularity. Recall from Table 4 that the maximum
modularity is µ(G) = 0.4198 (four clusters) indicating that modularity maximization can lead to many more
clusters compared to the real-world community structure.

With the knowledge that the new clubs were formed around the polarizing persons that brought the
conflict into the club, it seems natural to decompose the graph using a distance-based clique relaxation:
The subgroups should have the property that any two members are close to a central person and, therefore,
the two members must also be in close distance from each other. Moreover, the resulting subgroups should
be connected. Also Almeida and Carvalho (2013) suggest the use of s-clubs in SNA arguing that “social
relations are frequently established through intermediaries”.

The results of a decomposition into s-clubs (s = 2 or 3) are shown in Figure 5(b) and (c). Note that
vertex 1 is the club’s president and vertex 34 is the instructor. The depicted solutions are at the same time
solutions to the covering and partitioning problems. The mismatch of vertex 3 in the 3-club partitioning
is actually by chance because the two real groups also form a decomposition into 3-clubs. Moreover, the
decomposition into four 2-clubs as depicted in Figure 5(c) is not unique, but fits with the four clusters
determined using the method of Newman and Girvan (2004) with random-walk betweenness. Furthermore,
the 2-club {17} can be enlarged to {5, 6, 7, 11, 17}, which is one of the clusters identified by Newman and
Girvan (2004). The same holds for the 2-club {25, 26}, which can be extended to {25, 26, 29, 32} without
making the other 2-clubs infeasible in the resulting partitioning.

4.2. Dolphins

We consider a network of 62 bottlenose dolphins living in Doubtful Sound (New Zealand). Lusseau (2003)
defined the edges of the network as indicators of “preferred companionships” meaning that pairs of dolphins
were seen together more often than expected by chance. Figure 6(a) depicts the dolphins network. After
dolphin SN100 left the place for some time, the dolphins separated into two groups (Lusseau and Newman,
2004) indicated with the two colors.

Similar to the karate club, the dolphin network is an example of a social network in which fission and
fusion was observed. As the connection between the dolphins is rather lose, a distance-based clique relaxation
seems appropriate for a decomposition. Moreover, the network is larger but less dense compared to the karate
club (see Table 4) so that we have chosen larger values of the maximum distance s. As Fortunato (2010,
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Figure 6: Dolphins (a) Real split (b) Covering with connected 5-cliques, two clusters (c) Covering connected 4-cliques, four
clusters

Section 11) points out, the identification of overlapping clusters is an important task in community detection.
We now show that interesting and interpretable results can be obtained with our graph covering algorithms.

Figure 6(b) shows a decomposition of the dolphins network into connected 5-cliques that are allowed to
overlap. Two communities result and are indicated by the red and green colors. The dolphins displayed with
bicolored vertices are those that belong to both communities. To be precise, we computed a (non-unique)
covering solution and extended each of the two communities to the depicted cardinality-maximal 5-cliques.

Obviously, the result shown in Figure 6(b) perfectly matches the real split into two communities as
described in (Lusseau and Newman, 2004). Moreover, our intersection that consists of ten dolphins includes
the five dolphins DN63, Knit, Oscar, PL, and SN89 that Lancichinetti et al. (2009) identify as members
of both groups. Their method is a greedy algorithm, where in an outer loop a single uncovered vertex is
randomly chosen and in an inner loop a cluster containing this vertex is determined by maximizing a fitness
function.

Finally, we reduced the maximum distance to s = 4. The result is four overlapping clusters as depicted in
Figure 6(c). Note that no vertex belongs to all four clusters, i.e., vertices are either monochrom, bicolored,
or three-colored. Interestingly, Girvan and Newman (2002) also find four communities with their algorithm.
Lusseau and Newman (2004) argue that Girvan and Newman (2002) found a natural decomposition of
the larger community (green vertices in Figure 6(a)) into three sub-communities, where this subdivision is
correlated with the gender and age of the dolphins. In comparison, our depicted decomposition consists of
slightly larger clusters, but reflects well that three sub-communities can be identified in the larger community.

4.3. Football

Girvan and Newman (2002) introduced another social network in which the vertices are American Foot-
ball college teams and edges represent regular-season games between them. The 115 teams are divided into
eleven conferences containing between six and 13 teams each. Generally, teams play more intraconference
than interconference games so that conferences form clusters. Moreover, there are eight independent teams
that do not belong to a specific conference. Their game schedule is less structured than for the conference
teams meaning that games among independent teams are as likely as games between independent teams and
conference teams. Overall, the interconference games are not uniformly distributed because games between
geographically close teams are more frequent. The football network is depicted in Figure 7(a).
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(a) (b)

(c) (d)

Figure 7: Football (a) Eleven Conferences and Independent Teams (blue •), modularity µ = 0.5877; (b) Partitioning with 3-
plexes, 16 clusters, µ = 0.4958; (c) Partitioning with 4-plexes, 13 clusters, µ = 0.5345; (d) Partitioning with connected 4-plexes,
13 clusters, µ = 0.5508
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It is important to mention that the instance as provided on Marc Newman’s webpage (http://www-personal.
umich.edu/~mejn/netdata/) incorrectly assigns seven teams to conferences. To be precise, Boise State
and Utah State belong to the conference Sun Belt (Big West), Texas Christian belongs to the confer-
ence Western Athletic, and Louisiana Tech, Louisiana Monroe, Middle Tennessee State, and Louisiana
Lafayette are independent teams. We used https://en.wikipedia.org/wiki/2000_NCAA_Division_I-A_

football_season and http://www.phys.utk.edu/sorensen/cfr/cfr/Output/2000/CF_2000_Main.html

as independent sources. The consequence is that several works base their presentation on an incorrect ref-
erence solution (e.g., Girvan and Newman, 2002; Zhou, 2003a,b). However, the 613 games as given by Marc
Newman seem to reflect the schedule of the 2000 season. Note that Evans (2010), independently finds similar
inconsistencies in this data.

The hierarchical decomposition methods used by Girvan and Newman (2002) and Zhou (2003a,b) provide
many possible clusterings but do not answer the question what the “best” number of clusters is. Later, with
the definition of modularity, Newman and Girvan (2004) made it possible to assess the quality of different
decompositions. With the objective of modularity maximization, Aloise et al. (2010) find that a clustering
into ten groups is optimal. As can be seen from Figure 11 of Section 4.4, the clustering with maximum
modularity cannot discriminate between the smallest conference (Big West, 6 teams, gray diamonds) and
Mountain West (8 teams, light blue boxes), however, team assignments are generally correct. On the contrary,
all of our solutions presented next do not combine the two conferences.

For decomposing the football network into relaxed cliques, we expect that conferences are well rep-
resented by s-plexes because games within the same conference are predominant. More precisely, with the
corrected conference assignment, there are 414 intra-conference games (including 10 games among the inde-
pendent teams) and 199 inter-conference games. On average, there are ten teams per conference and each
team plays seven games within its conference. Thus, the average conference constitutes a 3-plex (s = 10−7).
Due to the above mentioned irregularities, also larger values of s make sense.

We start our analysis of the football network with a partitioning into 3-plexes. Figure 7(b) shows that
in this case the minimum number of partitions is 16. While eight of the eleven conferences are detected, the
remaining three are structured into two or three groups that also contain some of the independent teams.
The split conferences are the three largest conferences which are actually subdivided into two divisions of
six or seven teams each. We later see that good decompositions can uncover this type of substructure.

In order to better meet the correct number of conferences, we partition the network using 4-plexes, see
Figure 7(c). Also here three conferences are mixed with independent teams. However, only nine conference
teams are misclassified compared to 14 conference teams in the 3-plex solution. Even with this improvement,
the solution has the defect that one cluster is disconnected (teams depicted as red triangles). We therefore
impose connectivity. The resulting partitioning into connected 4-plexes is shown in Figure 7(d). The number
of clusters does not increase compared to the disconnected solution (13 groups). Now, one more conference
is correctly detected.

In the three solutions given in Figure 7(b)–(d), the independent teams are assigned very differently. This
may be an indication that the independent teams do not form a community encoded by the graph. In a
series of additional experiments, we therefore removed the independent teams from the network. The new
network consists of 107 vertices and 551 edges, as shown in Figure 7(a) but with the independent teams
removed (dark blue circles). For the sake of brevity, we omit the explicit depiction of the new network.

We present the partitioning with connected 3-plexes and connected 4-plexes in Figure 8(a) and (b). The
3-plex partitioning consists of 14 clusters. Eight of them perfectly reproduce the smaller conferences, while
three pairs of the remaining six clusters exactly form the three largest conferences. Recall that these three
conferences do have subdivisions in reality. The 4-plex partitioning identifies twelve groups, one more than
there are conferences. However, this is the best solution in the sense that only six teams are misclassified.
The conference with the most mismatches is Mid American (depicted with rose hexagons). It is the only
conference with 13 teams and it does not form an s-plex for s ≤ 5 because four teams have a degree of
seven. Thus, the real conferences do not form a feasible partitioning into 5-plexes. If we run our algorithm
for partitioning with 5-plexes, the solution perfectly matches the correct number of eleven conferences, but
it groups teams of four conferences incorrectly.
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(a) (b)

Figure 8: Football without Independent Teams with maximum modularity µ(G) = 0.6392 (ten clusters) and modularity of
the real-world solution of µ = 0.6381 with eleven clusters (a) Partitioning into connected 3-plexes, 14 clusters, µ = 0.5301;
(b) Partitioning in connected 4-plexes, twelve clusters, µ = 0.5850

4.4. Solutions from Modularity Maximization

We have implemented the second column-generation algorithm of Aloise et al. (2010) to obtain the clus-
terings resulting from modularity maximization. These results are compared with the real-world community
structures. Figure 9 shows the comparison for the network Karate, Figure 10 for Dolphins, and Figure 11
for Football.

5. Conclusions

In this paper, we have introduced the problem of decomposing a graph into a minimum number of
relaxed cliques as a new method for community detection. While in prior works the resulting clusters
generally do not have any structure, the different clique relaxations allow to impose application-specific
constraints a cluster has to fulfill. Using the eight types of first-order clique relaxations as defined by
Pattillo et al. (2013a), we identified 17 new relevant types of decompositions with first-order relaxed cliques.
In particular, for non-hereditary relaxed cliques one must distinguish between partitioning and covering
the network. Moreover, since a basic requirement for communities is connectivity, we have introduced the
concept of connected relaxed cliques. As a consequence, decomposing into connected or general relaxed
cliques gives rise to different problem variants. Our type of approach is useful in cases where one has a good
understanding of what defines a community. For three prominent examples from social network analysis, we
have demonstrated that decomposition into relaxed cliques reproduces some known features of the networks.

Modularity maximization is the predominant method in community detection to assess the quality of
a clustering. Our decomposition approach is independent of modularity and might be a valid alternative
to overcome the limitations of modularity maximization as discussed by Fortunato and Barthélemy (2007).
They prove that modularity maximization can incorrectly identify clusters in some cases. For example, for a
network composed of the union of sufficiently large cliques Kn arranged in a cycle, modularity maximization
joins pairs of Kn. Our (relaxed) clique partitioning approach would correctly identify each Kn as a single
cluster for reasonable choices of s or γ.

From an optimization point of view, decomposing into relaxed cliques is a hard problem. A brief compu-
tational analysis has shown that applying a commercial MIP solver to a standard compact formulation of the
problem is not a viable approach. Instead, tailored solution algorithms are needed to tackle at least medium-
sized instances. Our companion paper (Gschwind et al., 2017) proposes a branch-and-price framework that
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Figure 9: Zachary’s karate club (a) Real-world split, modularity µ(G) = 0.3715; (b) Decomposition with maximum modularity
µ = 0.4198

(a) (b)

Figure 10: Dolphins (a) Real-world split, modularity µ(G) = 0.3735; (b) Decomposition with maximum modularity µ = 0.5285
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(a) (b)

Figure 11: Football (a) Real-world split, modularity µ(G) = 0.5877; (b) Decomposition with maximum modularity µ = 0.6046

provides promising results for the exact solution of the different decomposition problems on some medium-
sized networks. Clearly, large-scale networks require heuristic and metaheuristic solution approaches.

There is also room for alternative structures that define the clusters, e.g., additional types of relaxed
cliques such as second-order relaxed cliques and k-connected/k-hereditary relaxed cliques (see Pattillo et al.,
2013a). Alternatively, two or more different types of relaxed cliques can be allowed meaning that a cluster
can, e.g., either be a 2-plex or a 5-defective clique. Moreover, new relaxed clique definitions result when
additional attributes are associated with vertices or edges. An example is a distance-d-clique defined as a set
of vertices with a pairwise distance not exceeding d (measured by the sum of edge distances dij). Also, the
overall objective of minimizing the number of clusters can be replaced by one in which the clusters receive
a weight, e.g., computed as a function (maximum, sum, average, or product) of its vertex and edge weights.

Appendix

A. Strength of LP Bounds of the Compact Decomposition Model

Proof of Theorem 1:
(a) For every solution (x̂, ŷ, ẑ) to the linear relaxation of formulation (6), we can arbitrarily permute the
indices h ∈ H. The resulting solution is then also a solution to the linear relaxation. Since any convex
combination of solutions is again a solution to the linear relaxation, it follows the uniform convex combination

over all permutations gives x1
i = x2

i = · · · = x
r̄c(G)
i for all i ∈ V , y1

ij = y2
ij = · · · = y

r̄c(G)
ij for all {i, j} ∈ E,

and z1 = z2 = · · · = zr̄c(G).
(b)+(c) We now prove that xhi = 1

r̄c(G) for all i ∈ V, h ∈ H is feasible. Note first that for r̄c(G) = 1 the

entire graph G is a relaxed clique of the considered type. Therefore, there exists a feasible solution in F (G)
with xi = 1 for all i ∈ V , which proves the theorem in this case.

From now on, we assume that r̄c(G) ≥ 2 holds. We consider the polytopes one by one and show first that
setting xi = 1

r̄c(G) is feasible for every polytope. For the remainder of the proof, we skip the superscript h

for simplicity.
Case F 1(G) (clique and s-clique): The only constraints are xi+xj ≤ 1 for i, j ∈ V, i < j with {i, j} /∈ E,
which are fulfilled for xi = 1

r̄c(G) ≤
1
2 .

Case F 2(G) (s-plex): Recall the definition of the number d̄i = |V \ N(i)| − 1 for all i ∈ V . The only
constraints are

∑
j∈V \N(i),j 6=i xj ≤ (s− 1)xi + d̄i(1− xi) for all i ∈ V . Inserting xi = 1

r̄c(G) gives the value
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d̄i
r̄c(G) of the left-hand side. The right-hand side is

s− 1

r̄c(G)
+
d̄i(r̄c(G)− 1)

r̄c(G)
=

s− 1

r̄c(G)︸ ︷︷ ︸
≥0

+
d̄i

r̄c(G)
(r̄c(G)− 1)︸ ︷︷ ︸

≥1

≥ d̄i
r̄c(G)

,

proving the statement.
Case F 3(G) (s-defective clique): Recall that Ḡ = (V, Ē) is the complement graph of G and that there are
non-negative variables ȳij ≥ 0 for all {i, j} ∈ Ē. The constraints of the polytope are given by ȳij ≥ xi+xj−1
for all {i, j} ∈ Ē and

∑
{i,j}∈Ē ȳij ≤ s. Setting ȳij = 0 for all {i, j} ∈ Ē and xi = 1

r̄c(G) is clearly feasible.

Case F 4(G) (γ-quasi-clique): Recall that there are additional variables yij ≥ 0 for i, j ∈ V, i < j and that
(aij) is the adjacency matrix of G. The polytope is described by

∑
i<j(γ − aij)yij ≤ 0, yij ≤ xi, yij ≤ xj ,

and yij ≥ xi + xj − 1 for all i, j ∈ V, i < j. Setting yij = 0 for all i, j ∈ V, i < j and xi = 1
r̄c(G) is feasible,

proving the statement.
Case F 5(G) (γ-quasi-clique): First, note that there are additional variables yi for all i ∈ V and recall
that (aij) is the adjacency matrix of G. The constraints of the polytope are (cf. Pattillo et al., 2013b):∑

i∈V
yi ≥ 0 (8a)

yi ≤ (1− γ)
∑
j∈V

aijxi i ∈ V (8b)

yi ≥ −

n− 1−
∑
j∈V

aij

 γxi i ∈ V (8c)

yi ≥ γxi +
∑
j∈V

(aij − γ)xj − (1− γ)
∑
j∈V

aij(1− xi) i ∈ V (8d)

yi ≤ γxi +
∑
j∈V

(aij − γ)xj +

n− i−∑
j∈V

aij

 γ(1− xi) i ∈ V (8e)

With xi = 1
r̄c(G) and yi = 0 for all i ∈ V the first three constraints (8a)–(8c) are clearly fulfilled. To

show that also the latter two are satisfied define di =
∑
j∈V aij for all i ∈ V for convenience. The right-hand

sides of constraints (8d) then write

γ

r̄c(G)
+

di
r̄c(G)

− nγ

r̄c(G)
− (1− γ)di

(
1− 1

r̄c(G)

)
=

γ

r̄c(G)
− nγ

r̄c(G)
+ di

(
1

r̄c(G)
+ (γ − 1)

(
1− 1

r̄c(G)

))
︸ ︷︷ ︸

=: α

.

If α < 0, then the expression is maximized by choosing the smallest possible value for di, i.e., di = 0. Because
γ

r̄c(G) −
nγ
r̄c(G) ≤ 0, the constraint is clearly satisfied in this case. In the case α ≥ 0, the right-hand side is

maximized by setting di to its largest value di = n− 1 resulting in

γ

r̄c(G)
+
n− 1

r̄c(G)
− nγ

r̄c(G)
− (1− γ)(n− 1)

(
1− 1

r̄c(G)

)
= (γ + n− 1− nγ)

1

r̄c(G)
− (1− γ)(n− 1)

(
1− 1

r̄c(G)

)
= (n− 1)(1− γ)

1

r̄c(G)
− (1− γ)(n− 1)

(
1− 1

r̄c(G)

)
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= (1− γ)︸ ︷︷ ︸
≥0

(n− 1)︸ ︷︷ ︸
≥0

(
2

r̄c(G)
− 1

)
︸ ︷︷ ︸

≤0

≤ 0

showing that xi = 1
r̄c(G) and yi = 0 fulfill constraints (8d).

The right-hand sides of constraints (8e) write

γ

r̄c(G)
+

di
r̄c(G)

− nγ

r̄c(G)
+ (n− 1− di)γ

(
1− 1

r̄c(G)

)
=

γ

r̄c(G)
− nγ

r̄c(G)
+ (n− 1)γ(1− 1

r̄c(G)
)︸ ︷︷ ︸

(n−1)γ(1− 2
r̄c(G) )

+di

(
1 + γ

r̄c(G)
− γ
)

︸ ︷︷ ︸
=: β

The case β ≥ 0 means that di = 0 minimizes the right-hand side and because (n − 1)γ(1 − 2
r̄c(G) ) ≥ 0 the

constraint is satisfied. In the case β < 0, the value di = n − 1 has to be verified resulting in a right-hand
side of

γ

r̄c(G)
+
n− 1

r̄c(G)
− nγ

r̄c(G)
+ (n− 1− n− 1)γ

(
1− 1

r̄c(G)

)
=

(n− 1)(1− γ)

r̄c(G)

≥ 0

which completes the proof.
Case F 6(G) (γ-quasi-clique): We set xi = 1

r̄c(G) for all i ∈ V and set ye = 1
r̄c(G) for all e ∈ E. With this

inequalities (2b) are fulfill with equality. Now we consider two cases.

If |V |
r̄c(G) is integer, we define s̄ as this integer number and set ts̄ = 1 and ts = 0 for all other s ∈ S \ {s̄}.

Obviously, we have now
∑
s∈S ts = 1 and

∑
s∈S sts = s̄ = |V |

r̄c(G) so that (2e) and (2d) are fulfilled. It remains

to show that (2c) is fulfilled. We have

∑
e∈E

ye =
1

r̄c(G)
· |E| ≥ 1

r̄c(G)
·
r̄c(G)∑
p=1

|E(Vi)| ≥
1

r̄c(G)

r̄c(G)∑
p=1

γ
|Vi|(|Vi| − 1)

2
= γ · 1

r̄c(G)

r̄c(G)∑
p=1

|Vi|(|Vi| − 1)

2

for any partitioning V = V1∪V2∪ · · ·∪Vr̄c(G) into r̄c(G)-many γ-quasi-cliques. As r̄c(G) is an upper bound,
we know that such a feasible partitioning exists. Now, the RHS in the above inequality can be interpreted as
γ times the average lower bound on the size of a γ-quasi-clique in the partitioning. It is straightforward to

proof that this latter value is minimal if all terms in the average are equal. Equal terms implies |Vi| = |V |
r̄c(G) .

Hence, the value |Vi| = s =
∑
s∈S sts, which proves that (2c) is fulfilled.

If |V |
r̄c(G) is fractional, we can no longer define a unique s̄. Instead we define s = b |V |r̄c(G)c and s̄ = s+ 1 =

d |V |r̄c(G)e. Moreover, with

ts = s̄− |V |
r̄c(G)

and ts̄ = 1− ts, we again obtain
∑
s∈S ts = 1 and

∑
s∈S sts = |V |

r̄c(G) so that (2e) and (2d) are fulfilled. Note

that because s(s− 1)/2 is a convex function in s, the convex combination ts · s(s−1)
2 + (1− ts) · s̄(s̄−1)

2 is not

smaller than the function at the respective intermediate point between s and s̄, in particular for |V |
r̄c(G) . The

remainder of the proof can follow the same line of arguments as in the first case.
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Case F 7(G) (s-club): The set of all unordered pairs is U = {{i, j} : i, j ∈ V, i < j} and the index set for
paths lengths is dom2(i, j) = {max{2,distG(i, j)}, . . . , s}. There are additional variables v`ij for {i, j} ∈ U
and ` ∈ dom2(i, j). Similar to γ-quasi-clique, setting v`ij = 0 for all {i, j} ∈ U and ` ∈ dom2(i, j) and

xi = 1
r̄c(G) is feasible for constraints (3b) and (3c). The remaining constraints (3d) and (3e) are obviously

also fulfilled.
Case F 8(G) (s-bundle): Recall that the auxiliary network N = (N,A) associated with G has, for each
vertex i ∈ V , two vertices i− and i+ inN . The arc set A is {(i−, i+) : i ∈ V }∪{(i+, j−), (j+, i−) : {i, j} ∈ E}.
As before, U = {{i, j} : i, j ∈ V, i < j}.

There are additional variables u ≥ 0 and yija for each a ∈ A and {i, j} ∈ U \E. Inserting xi = 1
r̄c(G) into

constraint (4b) gives a lower bound on u. Accordingly, we set u = ( n
r̄c(G) − s)

+.

The right-hand side of constraints (4c) and (4e) is u−M ij(2−xi−xj), which is at least n
r̄c(G) −s−M

ij .

Herein, M ij + s is an upper bound on the size of an s-bundle in G\{i} or G\{j}. Since n
r̄c(G) is the average

size of an s-bundle in a decomposition we have n
r̄c(G) − s ≤M

ij . Consequently, the right-hand sides do not

exceed zero so that constraints (4c) and (4e) are fulfilled by setting yija = 0 for all a ∈ A and {i, j} ∈ U \E.
The remaining constraints (4d) and (4f) are trivially satisfied.

In summary, setting x1
i = x2

i = · · · = x
r̄c(G)
i = 1

r̄c(G) for each i ∈ V and z1 = z2 = · · · = zr̄c(G) = 1
r̄c(G)

is a feasible solution to the linear relaxation of the decomposition problem (6). Note that the coupling
constraints (6c) are fulfilled with equality. Since the solution is feasible for partitioning it is also feasible for
covering.

The described solution has objective value 1. Summing (6c) over h ∈ H we see lp(G) ≥
∑
h∈H z

h ≥∑
h∈H x

h
i ≥ 1, where the last inequality results from (6b). �
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