
Exact Solution of the Soft-Clustered Vehicle-Routing Problem

Timo Hintsch∗,a, Stefan Irnicha

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The soft-clustered vehicle-routing problem (SoftCluVRP) extends the classical capacitated vehicle-routing
problem by one additional constraint: The customers are partitioned into clusters and feasible routes must
respect the soft-cluster constraint, that is, all customers of the same clusters must be served by the same
vehicle. In this article, we design and analyze different branch-and-price algorithms for the exact solution
of the SoftCluVRP. The algorithms differ in the way the column-generation subproblem, a variant of the
shortest-path problem with resource constraints (SPPRC), is solved. The standard approach for SPPRCs
is based on dynamic-programming labeling algorithms. We show that even with all the recent accelera-
tion techniques and tricks (e.g., partial pricing, bidirectional labeling, decremental state space relaxation)
available for SPPRC labeling algorithms, the solution of the subproblem remains extremely difficult. The
main contribution is the modeling and solution of the subproblem using a branch-and-cut algorithm. The
conducted computational experiments prove that branch-and-price equipped with this integer programming-
based approach outperforms sophisticated labeling-based algorithms by one order of magnitude. The largest
SoftCluVRP instances solved to optimality have more than 400 customers or more than 50 clusters.

Key words: Vehicle Routing, branch-and-price, shortest-path problem with resource constraints,
dynamic-programming labeling, branch-and-cut

1. Introduction

The clustered vehicle-routing problem (CluVRP, Sevaux and Sörensen, 2008) is a variant of the classical
capacitated vehicle-routing problem (CVRP, Vigo and Toth, 2014) in which the customers are grouped into
disjoint clusters. A feasible CluVRP route must serve each cluster integrally, that is, all customers of a
cluster must be served by the same vehicle and in consecutive visits. This problem has been approached
by exact optimization algorithms (Battarra et al., 2014) as well as metaheuristics (Barthélemy et al., 2010;
Expósito Izquierdo et al., 2013; Vidal et al., 2015; Expósito-Izquierdo et al., 2016; Defryn and Sörensen,
2017; Hintsch and Irnich, 2018; Pop et al., 2018). We consider a relaxation of the CluVRP, the soft-clustered
vehicle-routing problem (SoftCluVRP), in which the only additional constraint compared to the CVRP is
that all customers of a cluster must be served by the same vehicle. In contrast to the CluVRP, visits to
customers of the same cluster may or may not be interrupted by visits to other customers. The SoftCluVRP
has been introduced by Defryn and Sörensen (2017).

CluVRP and SoftCluVRP arise in applications where the routing decision must take into account already
taken clustering decisions. For example, Sevaux and Sörensen (2008) mention parcel/small-package delivery
in courier companies as an application field: In a first step, parcels are sorted according to given districting
(see Butsch et al., 2014, for districting). Typically, the sorting policy, i.e., the sorting of parcels e.g. by
regional zones and/or ZIP codes, is altered only once in a while. Note that the sorting policy must always

∗Corresponding author.
Email address: thintsch@uni-mainz.de (Timo Hintsch)

Technical Report LM-2018-04 September 24, 2018

be fixed before the actual demand distribution over the zones is known. In a second step, the batches of
parcels, as they result from the sorting, are delivered to the recipients.

An instance of the SoftCluVRP is defined over a complete undirected graph G = (V,E) with the vertex
set V = {0, . . . , n} and the edge set E. The vertex set comprises the depot vertex 0 and the customer vertices
V \ {0} = {1, . . . , n}. The vertices are partitioned into N + 1 clusters V0, V1, V2, . . . , VN , where we define
the depot cluster V0 = {0} for convenience. The customer clusters are indexed by h ∈ H = {1, 2, . . . , N}
and a positive demand dh > 0 is associated with cluster Vh, while the depot cluster V0 has zero demand
d0 = 0. For h ∈ H ∪ {0}, the cardinality of a cluster is nh = |Vh| and h(i) ∈ H ∪ {0} refers to the index of
the cluster to which vertex i ∈ V belongs. A homogenous fleet of m vehicles with capacity Q is hosted at
the depot 0. Non-negative routing costs cij are associated with every edge {i, j} ∈ E.

A route r = (i0, i1, . . . , ir, ir+1) is a cycle inG passing through the depot 0, i.e., a cycle with i0 = ir+1 = 0.
The customer clusters touched by the route r, i.e., with Vh ∩ {i1, . . . , ir} 6= ∅, are denoted by H(r) ⊆ H.
The route r is feasible for the SoftCluVRP if
(i) i1, . . . , ir are all different, (elementarity constraint)
(ii) for all h ∈ H(r), Vh ⊆ {i1, . . . , ir}, (soft-cluster constraints)
(iii) and

∑
h∈H(r) dh ≤ Q. (capacity constraint)

Note that for the CluVRP the constraints (ii) must be replaced by the following conditions:
(ii’) for all h ∈ H(r), there exists an index k ∈ {1, 2, . . . , r − nh + 1}

such that Vh = {ik, ik+1, . . . , ik+nh−1}. (hard-cluster constraints)
The contribution of this paper is the design and computational analysis of different branch-and-price

algorithms for the exact solution of the SoftCluVRP. Branch-and-price is the leading solution approach for
many variants of the VRP (recently surveyed by Irnich et al., 2014) and can be summarized as follows:
A route/path-based extended formulation of the VRP variant, the so-called master program, is solved via
column generation (Desaulniers et al., 2005). The starting point is always a restricted master program
(RMP) that comprises a (small) subset of routes and relaxes the integrality constraints on the route variables
(integrality is later enforced via branching). Missing routes for the solution of the linear relaxation of the
master program are dynamically and iteratively generated with the help of a pricing subproblem. This
pricing problem can be formulated as a shortest-path problem with resource constraints (SPPRC, Irnich and
Desaulniers, 2005). For almost all VRP variants, the associated SPPRCs are best solved with dynamic-
programming labeling algorithms (e.g. Feillet et al., 2004; Irnich and Villeneuve, 2006; Righini and Salani,
2008; Baldacci et al., 2011). To our surprise, the SPPRCs that result from the SoftCluVRP are extremely
difficult to solve even for instances of rather moderate size. The paper at hand will show that even with
all the recent acceleration techniques and tricks available for the SPPRC dynamic-programming labeling
algorithms, the situation hardly improves. For example, bidirectional labeling has proven very effective for
many VRP variants (Righini and Salani, 2006; Tilk et al., 2017) but the soft-cluster constraints are so loose
constraints that the combinatorial explosion is often not effectively suppressed (Gschwind et al. (2017) report
a similar phenomenon for some loosely-constrained VRPs with pickup-and-delivery structure). Our most
important finding is, therefore, that a relatively simple integer programming (IP) formulation solved with a
standard IP-solver is highly effective for the SoftCluVRP pricing problems. This result is rather remarkable
because IP-based approaches such as branch-and-cut have almost never reached the performance of labeling-
based pricing algorithms (we refer to the discussion in Drexl and Irnich, 2012).

The remainder of this paper is structured as follows. Section 2 provides a compact three-index formu-
lation for the SoftCluVRP that we use to derive the path-based reformulation and the pricing subproblem.
Section 3 presents the two exact solution approaches for the pricing subproblem that are based on dynamic-
programming labeling and branch-and-cut. Moreover, a primal heuristic pricer tailored to the SoftCluVRP
is presented. The overall pricing strategies as well as branching and its impact on the subproblem is dis-
cussed in Section 4. Section 5 summarizes the comprehensive computational studies conducted on the new
branch-and-price algorithms. Final conclusions are drawn in Section 6.

2

2. Three-Index, Extensive, and Subproblem Formulation

A three-index formulation for the asymmetric version of the SoftCluVRP was presented by Defryn and
Sörensen (2017). In Section 2.1, we present another three-index formulation for the symmetric version of the
SoftCluVRP, because the available benchmark instances are all symmetric. From this three-index model, we
derive an extensive route-based formulation via IP Dantzig-Wolfe decomposition (Lübbecke and Desrosiers,
2005) in Section 2.2. Moreover, the associated SPPRC subproblem is formulated as an IP in Section 2.3.

For the models and any subset S ⊆ V , we use the notation δ(S) for the set of edges e = {i, j} ∈ E
with exactly one endpoint in S, i.e., either i ∈ S and j ∈ V \ S or i ∈ V \ S and j ∈ S. For singleton
sets S = {i} with i ∈ V , we write δ(i) instead of δ({i}). Finally, we define r(S) as the minimum number
of vehicles needed to serve the customers S ⊆ V \ {0}. For the models presented subsequently, the lower
bound r(S) = d(

∑
h∈H:Vh∩S 6=∅ dh)/Qe is sufficient. As for other purely capacitated VRP variants, exact

bounds can be determined by solving the corresponding bin-packing problem.

2.1. Three-Index Formulation
The following three-index formulation explicitly models the routes performed by each of the m vehicles.

We therefore define the fleet as K = {1, 2, . . . ,m}. The three-index formulation uses two types of integer
decision variables both indexed by k ∈ K. First, for each edge e ∈ E and vehicle k ∈ K there is a routing
variable xke indicating how often vehicle k traverses edge e (leading to three indices i, j, k for e = {i, j} ∈ E
and k ∈ K). Recall that edges adjacent to the depot 0 may be traversed twice. The cluster-assignment
variable zkh, one for each cluster index h ∈ H and vehicle k ∈ K, indicates that vehicle k serves cluster Vh.
The model is:

min
∑
k∈K

∑
e∈E

cex
k
e (1a)

subject to
∑
k∈K

zkh = 1 ∀h ∈ H (1b)∑
e∈δ(0)

xke = 2 ∀k ∈ K (1c)

∑
e∈δ(i)

xke = 2zkh(i) ∀i ∈ V \ {0},∀k ∈ K (1d)

∑
k∈K

∑
e∈δ(S)

xke ≥ 2r(S) ∀S ⊆ V \ {0}, S 6= ∅ (SEC)

xke ∈ {0, 1, 2} ∀e ∈ δ(0),∀k ∈ K (1e)

xke ∈ {0, 1} ∀e ∈ E \ δ(0),∀k ∈ K (1f)

zkh ∈ {0, 1} ∀h ∈ H,∀k ∈ K (1g)

The objective (1a) minimizes the routing costs over all vehicles. Constraints (1b) ensure that each cluster
is served exactly once. The fleet size is set to m by condition (1c). The routing and cluster-assignment
variables are coupled via (1d) making sure that each customer i ∈ Vh (for each h ∈ H) is served by vehicle k,
i.e.,

∑
e∈δ(i) x

k
e = 2, if and only if the cluster Vh is assigned to that vehicle k. The exponentially-sized

family of subtour-elimination constraints is given by (SEC). Note that these aggregated subtour-elimination
constraints (SEC) can also be written in disaggregated form as∑

e∈δ(S)

xke ≥ 2zkh(i) ∀S ⊆ V \ {0}, S 6= ∅,∀i ∈ S, ∀k ∈ K (1h)

together with explicit capacity constraints∑
h∈H

dhz
k
h ≤ Q ∀k ∈ K. (1i)

3

With this replacement, i.e., (SEC) replaced by (1h) and (1i), the only constraints of model (1) that are
not vehicle-specific are the constraints (1b).

2.2. Extensive Route-Based Formulation
An IP Dantzig-Wolfe decomposition on the non-vehicle specific constraints (1b) and a subsequent ag-

gregation over the vehicles k ∈ K (see Lübbecke and Desrosiers, 2005) leads to an extensive formulation
with one binary decision variable for each feasible route. Let Ω be the set of all feasible SoftCluVRP routes
fulfilling conditions (i)–(iii) of Section 1 (feasible w.r.t. elementarity, soft-cluster, and capacity constraints).
Let yr be the binary decision variable indicating whether route r ∈ Ω is chosen in the solution or not.
Moreover, let cr be the cost of route r defined as the sum of the routing costs for all edges traversed by r.
Finally, we define ahr as the binary indicator whether route r serves cluster Vh or not.

The extensive path-based formulation is the following extended set-partitioning model:

min
∑
r∈Ω

cryr (2a)

subject to
∑
r∈Ω

ahryr = 1 ∀h ∈ H (2b)∑
r∈Ω

yr = m (2c)

yr ∈ {0, 1} ∀r ∈ Ω (2d)

The objective (2a) minimizes the total routing costs. The partitioning constraints (2b) ensure that each
cluster is served exactly once. Condition (2c) is the aggregated convexity constraint of the Dantzig-Wolfe
decomposition saying that the number of routes to choose in the solution is m.

For a subset Ω̄ ⊂ Ω of the routes, the linear relaxation of (2) defined over Ω̄ is the corresponding RMP.
Missing routes are determined by solving the following pricing subproblem.

2.3. Subproblem Formulation
The task of the subproblem is to identify negative reduced-cost variables (=routes) or to prove that there

exist none. Let πh for h ∈ H be the dual prices of the partitioning constraints (2b) and let µ be the dual
price of the fleet-size constraint (2c). Since we assume the triangle inequality to hold for the costs (cij),
the partitioning constraints (2b) can always be replaced by covering constraints. Therefore, πh ≥ 0 can be
assumed for all h ∈ H.

Recall that for any feasible route r ∈ Ω, the clusters served by route r are given by the indices h ∈ H(r).
The set H(r) can be written as {h ∈ H : ahr = 1}. Hence, the reduced cost of a route r denoted by c̃r is
given by cr −

∑
h∈H ahrπh − µ.

Note first that the optimal routing cost cr can be computed by solving a traveling salesman problem (TSP,
Gutin and Punnen, 2002) over the vertex set V (r) = V0 ∪

⋃
h∈H(r) Vh. Note second that

∑
h∈H ahrπh =∑

h∈H(r) πh and that µ is independent of the route r.
The formulation of the subproblem can be formally derived from the original three-index formula-

tion (1) by (i) dropping the vehicle index k ∈ K from the routing variables x and cluster-assignment
variables z, (ii) incorporating the dual prices into the objective, and (iii) leaving out the non-vehicle-specific
constraints (1b). The resulting model has integer routing variables xe describing how often edges e ∈ E are

4

traversed and binary variables zh for the selection of the served clusters h ∈ H:

c̃(πh, µ) = min
∑
e∈E

cexe −
∑
h∈H

πhzh − µ (3a)

subject to
∑
e∈δ(0)

xe = 2 (3b)

∑
e∈δ(i)

xe = 2zh(i) ∀i ∈ V (3c)

∑
e∈δ(S)

xe ≥ 2zh(i) ∀S ⊆ V \ {0}, S 6= ∅, i ∈ S (3d)

∑
h∈H

dhzh ≤ Q (3e)

xe ∈ {0, 1, 2} ∀e ∈ δ(0) (3f)
xe ∈ {0, 1} ∀e ∈ E \ δ(0) (3g)
zh ∈ {0, 1} ∀h ∈ H (3h)

The objective (3a) is the minimization of the reduced cost. Constraint (3b) ensures that the route starts and
ends at the depot, and constraints (3c) couple the routing decision with the cluster selection, i.e., customer
i ∈ V \ {0} is visited if and only if its cluster Vh(i) is selected. Subtour-elimination constraints are given
by (3d). Constraint (3e) is the capacity constraint. Note that these constraints (3b)–(3e) are derived from
constraints (1c), (1d), (1h), and (1i), respectively.

The subproblem (3) generalizes the well known two-matching model of the TSP (see, e.g., Gutin and
Punnen, 2002). Indeed, without the capacity constraint (3e) and for large positive dual prices πh � 0,
an optimal solution would select all clusters (i.e., zh = 1 for all h ∈ H) so that (3b) and (3c) become the
two-matching constraints. With the capacity constraints, the subproblem is a TSP with profits (Feillet et al.,
2005), even if profits πh are associated to clusters and not individual customers/vertices. According to the
classification by Feillet et al. (2005), on the one hand, the subproblem is a profitable tour problem because
it combines the routing cost minimization and the maximization of the cluster profits πh in its objective.
On the other hand, the capacity constraint imposes a lower bound on the not-chosen clusters. Considering
the not-selected clusters introduces a penalty for not choosing clusters into the objective function so that
the subproblem can also be characterized as a prize-collecting TSP (in the sense of Balas, 1989).

3. Solution of the Subproblem

In this section, we describe the two competing solution methods for the solution of the pricing subprob-
lem (3). We start with the traditional and established solution approach based on dynamic-programming
labeling in Section 3.1. Our goal is to concisely define the basic components of a SoftCluVRP-tailored
labeling algorithm (definition of attributes, initial label, label extension, and feasibility conditions as well as
the dominance principle). Moreover, we refine the basic labeling algorithm by integrating the most recent
algorithmic enhancements including bidirectional labeling, several acceleration techniques, and the adap-
tations for the ng-path relaxation. The most important novelty of this paper is however the presentation
of an IP-based solution approach in Section 3.2. Our branch-and-cut algorithm bases directly on formula-
tion (3) for which we present the initial model and separation procedures for cutting off infeasible integer
solutions as well as for finding violated inequalities in fractional solutions. Finally, we developed a direct
primal heuristic solver for SoftCluVRP subproblems that searches for negative reduced-cost routes by ap-
plying cluster-based add- and drop-exchanges. The primal heuristic solver is used as a heuristic acceleration
technique in conjuction with the labeling or branch-and-cut algorithms. It is summarized in Section 3.3.

3.1. Labeling Algorithms
In this subsection, we define the SPPRC on the corresponding directed graph G′ = (V ′, A). The vertex

set V ′ comprises all customer vertices V \ {0} and two copies of the depot denoted by 0 and 0′, where the
5

origin depot 0 has no ingoing arcs and the destination depot 0′ has no outgoing arcs. Hence, the arc set is
A = {(i, j) : i, j ∈ V \ {0}, i 6= j} ∪ {(0, i) : i ∈ V \ {0}} ∪ {(i, 0′) : i ∈ V \ {0}}. Recall that a route r in G
was defined as a cycle through 0. Any (feasible) route r in G imposes a 0-0′-path r′ = (i0, i1, . . . , ir, ir+1)
in G′ (fulfilling conditions (i)–(iii) of Section 1), and vice versa.

3.1.1. Monodirectional Labeling
A forward monodirectional labeling algorithm starts with an initial label at the origin depot 0 that

represents the partial path (0). It propagates labels over arcs toward the destination depot 0′ with the help
of so-called resource extension functions (REFs, Desaulniers et al., 1998). Each label stores the resource
consumption of the corresponding partial path (0, ..., i) that starts at 0 and ends at some vertex i ∈ V ′.
To avoid the enumeration of all feasible partial paths, provably redundant labels are eliminated through a
dominance criterion.

In the SoftCluVRP, a partial path p = (0, . . . , i) is represented by a label L that has the following
attributes a.k.a. resources:

Lcost: the accumulated reduced cost of the partial path p;
Lload: the total demand of clusters touched by p;

(Lremh)h∈H : for each h ∈ H, the number of remaining customers i ∈ Vh that must be visited by a
feasible completion of path p; the initial value is set to −1 to indicate that cluster Vh has
not yet been visited;

(Lvisitv)v∈V \{0}: the binary visit attributes for customers indicating whether or not customer v ∈ V \ {0}
has been visited along path p.

The attribute Lvisitvi can also be set to 1 and the attribute Lremh
i set to 0, if cluster Vh = Vh(v) has not yet

been visited but it is unreachable for all completions of p. The latter condition is fulfilled if the demand dh
exceeds the residual capacity Q− Lloadi of p (for details see Feillet et al., 2004).

The initial label for p = (0) is defined as L0 = (Lcost0 , Lload0 , Lrem0 , Lvisit0) = (0, 0, (−1), (0)), where −1
and 0 are vectors with all entries equal to -1 and 0, respectively, of appropriate size.

Next we describe the extension of a label Li belonging to a feasible partial path (0, . . . , i) along an arc
(i, j) ∈ A to vertex j. The REFs create a new label Lj = (Lcostj , Lloadj , Lremj , Lvisitj) with the following
attributes:

Lcostj = Lcosti + cij −

{
πh(j), if Lremh(j)

i = −1

0, otherwise
−

{
µ/2, if i = 0 or j = 0′

0, otherwise
(4a)

Lloadj = Lloadi +

{
dh(j), if Lremh(j)

i = −1

0, otherwise
(4b)

Lremh
j =

nh − 1, if h = h(j) and Lremh(j)

i = −1

Lremh
i − 1, if h = h(j) and Lremh(j)

i > 0

Lremh
i , otherwise

∀h ∈ H (4c)

Lvisitvj =

{
Lvisitvi + 1, if v = j

Lvisitvi , otherwise
∀v ∈ V \ {0} (4d)

The condition L
remh(j)

i = −1 in (4a), (4b), and (4c) tests whether the next visit to vertex j is one to a
non-visited cluster Vh(j). Accordingly, the dual prices πh(j) and demands dh(j) are incorporated only if Vh(j)

has not been visited yet.
The new label Lj for j ∈ V \ {0, 0′} and the associated partial path (p, j) = (0, . . . , i, j) is feasible if and

only if
Lloadj ≤ Q and L

visitj
j ≤ 1,∀j ∈ V \ {0}. (5a)

For an extension to the destination depot j = 0′, the additional feasibility conditions

Lremh
j ≤ 0 ∀h ∈ H (5b)

6

are needed to guarantee that no cluster is served incompletely.

Weak Dominance. Let L and L′ be two labels of different partial paths p and p′, respectively, that end at
the same vertex i. Domination of labels generally uses the following auxiliary criterion: If for each feasible
completion q′ of p′ into a feasible 0-0′-path r′ = (p′, q′) there exists a feasible completion q of p into a feasible
0-0′-path r = (p, q) and the reduced cost of r is not greater than the reduced cost of r′, then label L′ is
dominated by L. A dominated label can be discarded (if the dominating label is kept).

For many VRP variants, a simplified criterion is applied by choosing the completion q identical to the
completion q′. Using this simplified criterion is unnecessarily restrictive for the SoftCluVRP as it is also
too restrictive in VRPs with pickup-and-delivery structure (see discussion in Section 3.1.5). However, the
following weak dominance rule can be directly derived from the simplified criterion:

Rule 1. (Weak Dominance Rule) Let L and L′ be two labels of different partial paths that end at the same
vertex i. Label L = (Lcost, Lload, Lrem , Lvisit) dominates label L′ = (L′

cost
, L′

load
, L′

rem
, L′

visit
) if all of the

following conditions are fulfilled:

Lcost ≤ L′cost (6a)

Lload ≤ L′load (6b){
(Lremh = L′

remh and Lvisitvi = L′i
visitv ,∀v ∈ Vh)

or (Lremh = −1 and L′
remh = 0)

}
∀h ∈ H (6c)

The conditions (6c) ensure that Li dominates Li′ only if either (i) both partial paths have visited exactly
the same vertices v ∈ Vh of a cluster or (ii) path p has not visited a cluster Vh that is already completely
served by p′.

Example 1. We consider a SoftCluVRP instance and two routes that visit only one cluster V1 = {1, 2, 3},
but customers are visited in different sequences. The relevant part of the (symmetric) cost matrix (cij) is:

cij 0′ 1 2 3
0 − 4 3 4
1 4 − 4 3
2 3 4 − 3
3 4 3 3 −

Let the two routes be r = (0, 1, 3, 2, 0′) and r′ = (0, 1, 2, 3, 0′). Moreover, we assume that the dual prices
π1 and µ are zero because they are irrelevant for the exposition. Figure 1 depicts the propagation of the
attributes Lcost, Lremh , and Lvisitv along the routes. The attribute Lload is only altered along arc (0, 1) and
not presented in order to keep the example as small as possible.

Note first that both routes share the same partial path (0, 1), for which only one label is created, so that
there is no dominance between subpaths of r and r′ at vertex 1. In contrast, there are two labels at vertex
2, say L2 and L′2 but with the weak dominance rule neither label dominates the other one. The same holds
at vertex 3 for the corresponding labels. However, at the destination vertex 0′, the label of r dominates the
label of r′ due to its better cost but otherwise identical attributes.

Strong Dominance. A stronger dominance can be achieved if the distance matrix (cij) respects the triangle
inequality (TI), i.e., for any three different vertices i, j, k ∈ V the inequality cik ≤ cij + cjk holds.

The idea is now that if the TI holds, no path completion can benefit from visiting an additional customer.
More precisely, let

Rh = {i ∈ Vh : Lremh > 0, Lvisiti = 0} (7)

be the vertices in Vh that must be visited by any completion of path p corresponding with L (due to
conditions (5b)). Similarly, we define R′h = {i ∈ Vh : L′

remh > 0, L′
visiti = 0} as the vertices that must be

7

0 1 x 2 3 0′

L′i
cost

L′i
remh

L′i
visitv

0
(-1,. . .)

(0,0,0,. . .)

4
(2,. . .)

(1,0,0,. . .)

8
(1,. . .)

(1,1,0,. . .)

11
(0,. . .)

(1,1,1,. . .)

15
(0,. . .)

(1,1,1,. . .)

4 4 3 4

0 1 3 2 x 0′

Lcosti

Lremh
i

Lvisitvi

0
(-1,. . .)

(0,0,0,. . .)

4
(2,. . .)

(1,0,0,. . .)

7
(1,. . .)

(1,0,1,. . .)

10
(0,. . .)

(1,1,1,. . .)

13
(0,. . .)

(1,1,1,. . .)

4 3 3 3

Figure 1: Propagation of the attributes for two routes r = (0, 1, 3, 2, 0′) and r′ = (0, 1, 2, 3, 0′) serving the
same cluster V1 = {1, 2, 3}

visited by any completion of path p′ corresponding with L′. If Rh ⊆ R′h, then every feasible extension of p′
must visit additional customers compared to a corresponding feasible extension of p. Therefore, the strong
dominance rules is:

Rule 2. (Strong Dominance Rule) Let L and L′ be two labels of different partial paths that end at the same
vertex i. Label L = (Lcost, Lload, Lrem , Lvisit) dominates label L′ = (L′

cost
, L′

load
, L′

rem
, L′

visit
) if all of the

following conditions are fulfilled:

(6a) and (6b) (8a){
(Lremh ≤ L′remh and Lvisitv ≥ L′visitv ,∀v ∈ Vh)

or Lremh = −1

}
∀h ∈ H (8b)

Proof. The proof relies on the above mentioned auxiliary criterion. The partial path associated with L (L′)
is denoted by p (p′). Let q′ be an arbitrary feasible extension of p′ into a feasible route r′ = (p′, q′). We
have to show that there exists a feasible extension q of p so that the route r = (p, q) is feasible and fulfills
c̃r ≤ c̃r′ .

Let q be the path that results from the removal of all vertices {v ∈ V : Lvisitv = 1, L′
visitv = 0}∪{v ∈ V :

Lremh(v) = −1, L′
remh(v) > 0, L′

visitv = 0} from q′. The REFs (4) and feasibility conditions (5) guarantee
that (p, q) is feasible. Indeed, every cluster that is only partly served with p is at the end served completely
with (p, q).

Moreover, the TI ensures that the routing cost of q is not greater than the routing cost of q′. Finally, all
clusters completely served with q′ are also completely served with q. Consequently, both extensions q and
q′ collect exactly the same dual prices πh(j) in (4a). Therefore, the reduced cost of r = (p, q) is not greater
than the reduced cost of r′ = (p′, q′), i.e., c̃r ≤ c̃r′ .

Weak dominance (6) allows domination only for labels with Rh = R′h for all h ∈ H. In contrast, strong
dominance (8) allows domination also if Rh ⊆ R′h holds.

Example 2. (cont’d from Example 1) The stronger dominance Rule 2 is not imposing additional dominance
relations in the situation of Example 1. Indeed, while L2 and L′2 fulfill conditions (8b) and (6b), they fail
on the reduced cost condition (6a).

However, the situation can change with another cost matrix. Assume that instead of (cij) the cost matrix
were (ċij) defined by:

ċij 0′ 1 2 3
0 − 3 2 3
1 3 − 2 1
2 2 2 − 1
3 3 1 1 −

8

The result of this re-definition is that now both labels L2 and L′2 have identical reduced costs Lcost2 = L′2
cost

=
5 so that L2 dominates L′2 by Rule 2. We discuss in Section 3.1.4 how a systematic manipulation of the cost
matrix can be exploited as an acceleration technique.

3.1.2. Bidirectional Labeling
Righini and Salani (2006) coined bounded bidirectional labeling for SPPRCs. Numerous subsequent works

have shown that bidirectional labeling algorithms are usually superior to their monodirectional counterparts.
Accordingly, bidirectional labeling has become a quasi-standard for solving SPPRCs. In addition, the two
more recent works (Tilk et al., 2017; Gschwind et al., 2017) have shown that bidirectional labeling can
significantly benefit from a dynamically chosen half-way point which exploits the inherent asymmetry on
many SPPRC instances. We briefly explain the ideas of bidirectional labeling in the following.

Bidirectional labeling requires the definition of a monotone resource, i.e., an attribute Lres to be used for
bounding the propagation of labels in both directions. More precisely, for labels Lfw propagated in forward
direction, the respective attribute Lresfw is increasing, and for labels Lbw propagated in backward direction,
the attribute Lresbw is decreasing along the path. Moreover, for any feasible 0-0′-path (p, q) with p = (0, . . . , i)
and associated forward label Lfw and q = (i, . . . , 0′) with associated backward label Lbw, the attributes
must fulfill Lresfw ≤ Lresbw . The bounding component of the bidirectional labeling algorithm uses a so-called
half-way point HWP und only propagates forward labels with Lresfw ≤ HWP and backward labels with
Lresbw > HWP . Examples of such monotone forward and backward resources are earliest and latest service
times for VRPs with time windows, or the accumulated demand and the residual capacity for capacitated
VRPs.

In order to not generate multiple copies of the same route (a non-trivial route r has multiple representa-
tions r = (p, q) = (p′, q′) where p is a subpath of p′ and q′ a subpath of q, or vice versa), the merge criterion
also relies on the half-way point: For the merge of two labels Lfw and Lbw, either Lfw must represent a full
0-0′-path with Lresfw ≤ HWP (so that Lbw represents the trivial path (0′)) or Lresfw > HWP is required.

Furthermore, if there exists a strictly monotone resource, the sequence of label propagation can be
fully controlled with the help of buckets (for details we refer to Tilk et al., 2017). However, none of our
attributes propagated via (4) is strictly monotone. Hence, we consider the divided demand calculated
by ddivj = dh(j)/nh(j) and introduce a new attribute Ldiv. For a route r that respects the soft-cluster
constraints, the conditions

∑
h∈H(r) dh ≤ Q is equivalent to

∑
i∈V (r) d

div
i ≤ Q. Thus, the corresponding

REF to propagate the divided demand from a label Li ending at vertex i along arc (i, j) is Ldivj = Ldivi +ddivj .
Note that this attribute is strictly increasing and can therefore be used as the monotone resource.

The SoftCluVRP has a subproblem that is completely symmetric, i.e., any path is feasible if its reversed
path is feasible, and vice versa. The consequence for the bidirectional labeling is therefore that only forward
partial paths need to be generated and considered. The half-way point is set to HWP = Q/2 and we
propagate forward labels Li only if Ldivi ≤ HWP . Any feasible backward partial path pbw = (i, j, . . . , 0′)
exists as a feasible forward partial path pfw = (0, . . . , j, i). For convenience, we define a reversal operator
rev with rev(pfw) = pbw and rev(pbw) = pfw, i.e., it reverses the partial path and exchanges 0 and 0′. In the
final merge step, forward labels are then merged with other forward labels. Such an implicit bidirectional
labeling has already been successfully implemented and applied by Bode and Irnich (2012) and Goeke et al.
(2017).

Merge Procedure. We now present the merge condition that tests whether two labels L and L′ representing
the forward paths p and p′ from 0 to a customer vertex i ∈ V \ {0} can be combined and produce a feasible
0-0′-path r = (p, rev(p′)). It very much simplifies the merge condition to consider the predecessor label of
one of the two label. Thus, let L− be the predecessor label of L, i.e., L results from the extension of L−
along an arc (j, i). The route r is feasible if

Lload− + L′
load −

∑
h∈H:L

remh
− ≥0,L′remh≥0

dh ≤ Q (9a)

9

(which is equivalent to Ldiv− + L′
div ≤ Q) Lremh
− ≤ 0, if L′remh = −1

Lremh
− = −1, if L′remh = 0

Lremh
− + L′

remh = |Vh|, otherwise

 ∀h ∈ H (9b)

Lvisitv− + L′
visitv ≤ 1, ∀v ∈ V (9c)

where (9a) checks the capacity constraint, (9b) that no cluster is served incompletely, and (9c) that no
customer is visited more than once. (When storing unreachable instead of visited customers, see Section 3.1.1,
one direction must however rely on the actually visited customers.) The cost of the resulting 0-0′-path
r = (p, rev(p′)) is given by

c̃r = Lcost + L′
cost

+
∑

h∈H:Lremh≥0,L′remh≥0

πh. (10)

Note that the rightmost sum in (9a) and (10) considers the clusters that are incompletely served in both
forward and backward direction. For these clusters, the demands dh must be subtracted in (9a) and dual
prices πh must be added in (10) to prevent the incorrect double incorporation.

Dominance. The following proposition shows that a bidirectional labeling algorithm is correct in two cases:
(i) the weak dominance rule is applied or (ii) the strong dominance rule is applied in combination with a
cost matrix that fulfills the strict triangle inequality (STI), i.e., for any three different vertices i, j, k ∈ V
the strict inequality cik < cij + cjk holds.

Proposition 1. A bidirectional labeling algorithm that
(i) either uses the weak dominance (Rule 1)
(ii) or the strong dominance (Rule 2) on a cost matrix that respects the STI

and the described merge procedure with conditions (9) finds an optimal solution to the pricing subproblem of
the SoftCluVRP.

Proof. Let r be an optimal path, i.e., an elementary, feasible 0-0′-path with minimum reduced cost. We
have to show that the bidirectional labeling algorithm either finds this path or one with the same reduced
cost.

The forward labeling algorithm is certainly correct with either dominance, weak or strong, see Sec-
tion 3.1.1. This has two consequences: First, all Pareto-optimal labels that arrive at the destination depot 0′

with divided demand ≤ HWP are found in the forward part of the bidirectional labeling. Hence, we can
restrict the remainder of the proof to cases where all optimal routes r result from a merge. With these
assumptions, r can be represented as r = (p, rev(q)), where p and q both end at a merge vertex i.

Second, it can be assumed that r = (p, rev(q)) is generated by the complete forward labeling algorithm
(otherwise there would exist another route fulfilling this). Therefore, the path p and its label L are considered
in the merge of the bidirectional labeling algorithm. If the label L′ of q would also be available in the merge,
nothing remains to show.

Hence, we can now assume that L′ is not generated, or it was generated and dominated. Then, there
must exist a label L′∗ that dominates L′. If L′∗ = L′ (identical attributes), the path q∗ associated with L′∗
would produce the route (p, rev(q∗)) with identical reduced cost as r because of (10). A route equivalent to
r is constructed.

Therefore, we can assume L′∗ 6= L′. The proof now considers the two preconditions separately:
Case (i): We assume that the weak dominance (Rule 1) is applied. The weak dominance implies either
L′∗cost < L′

cost or that some clusters completely served with q are not touched by q∗ (or both). Then,
the pair L and L′∗ also qualifies for the merge. The resulting 0-0′-path (p, rev(q∗)) has a reduced cost not
greater than r because L′∗cost ≤ L′cost and the (reverse) completion by p of both labels L′ and L′∗ produce
the same sum of dual prices πh in (4a). Hence, another route equivalent to r is constructed.

10

Case (ii): We assume that the strong dominance (Rule 2) is applied and that the cost matrix (cij) respects
the STI. The two labels cannot differ only in cost, i.e., L′∗cost < L′

cost, because then the pair L and L′∗ also
qualifies for the merge and produces a route with smaller reduced cost than r, a contradiction!

Now, the only possibility left is that the two labels must also differ in the visit and remaining attributes.
Recall that q∗ and q are the partial paths associated with L′∗ and L′, respectively. As a backward path, p is
a feasible (reverse) completion of q. As in the proof of Rule 2, there also exists a feasible completion p∗ of q∗
that results from path p by eliminating some vertices. (In our case, the different visit attributes ensure that
at least one vertex is actually eliminated.) The STI now ensures that the (reduced) cost of this alternative
completion p∗ is strictly smaller than the (reduced) cost Lcost of p. As a consequence, the feasible route
(p∗, q∗) has a strictly smaller reduced cost compared to r = (p, q), again a contradiction!

The use of the strong dominance (Rule 2) on a cost matrix that does not respect the STI but the TI
may lead to incorrect results of the bidirectional labeling algorithm. This is shown in following example.

Example 3. We consider a SoftCluVRP instance with only one cluster V1 = {1, 2} with demand d1 = 6
and vehicle capacity Q = 10. The divided demand of customers 1 and 2 is ddiv1 = ddiv2 = 3 and the half-way
point is HWP = 5. The following cost matrix

cij 0′ 1 2
0 − 1 2
1 1 − 1
2 2 1 −

respects the TI but not the STI due to c02 = c01 + c12. Furthermore, we assume the dual prices to be π1 = 2
and µ = 4.

The bidirectional labeling algorithm creates labels for the partial paths (0), (0, 1), p = (0, 1, 2), and
p′ = (0, 2). However, no complete route is created with forward labeling due to the half-way point condition.
Hence, routes can only result from a merge.

The only dominance between labels occurs for p and p′ and the associated labels L =
(Lcost, Lload, Lremh , Lvisitv) = (−2, 6, 0, (1, 1)) and L′ = (L′

cost
, L′

load
, L′

remh , L′
visitv) = (−2, 6, 1, (0, 1)),

where L dominates L′ using Rule 2. Thus, after applying a dominance algorithm, L′ is discarded. The
consequence is that no extension of L′ is created either, in particular no label for the partial path (0, 2, 1).
Finally, the merge procedure does not find any feasible combination of labels.

However, the route r = (0, 1, 2, 0′) = (p, rev(p′)) has cost 4 and reduced cost c̃r = 4 − π1 − µ = −2 < 0.
This shows that the bidirectional labeling with strong dominance may fail to produce optimal or even feasible
solutions if the STI does not hold.

3.1.3. Manipulation of the Cost Matrix
Some of the SoftCluVRP instances that we use in the later computational analysis do not respect the

STI or even the TI. In order to apply bidirectional labeling algorithms, we transform these instances into
equivalent new instances only differing in the cost matrix (cij) but not in optimal solutions. As every
customer k ∈ V \ {0} must be visited exactly once, it is possible to add any value x = x(k) ∈ R to all
edges δ(k). The cost of all feasible solutions then increases by 2 · x(k). This procedure is summarized as
Procedure Manipulate that also records the modification in the customer-indexed array mod[k].

If a SoftCluVRP instance does not respect the STI, we preprocess the instance with Algorithm 1. The
first loop (Steps 1 to 5) resets the accumulated cost modification mod[j] for each customer j ∈ V \ {0} to
zero, computes the largest violation of the TI when j is the middle vertex, and adds half of the maximum
violation vio to the jth column and the jth row of the cost matrix. As we use integer arithmetics for the
routing costs dvio/2e + 1 guarantees that the new matrix also comprises only integer values. After Step 5
the resulting cost matrix (cij) already respects the STI.

It can however happen that, for some customers j ∈ V \{0}, the STI is fulfilled with a rather large slack.
The strong dominance (see Rule 2) however benefits from a tightly fulfilled STI. Indeed, the chance to have

11

Procedure Manipulate
Input: A customer k ∈ V \ {0}, a value x ∈ R
Output: Modified cost matrix (cij) and accumulated cost modification mod[k]

1 for j ∈ V, j 6= k do
2 cjk := cjk + x
3 ckj := ckj + x

4 mod[k] := mod[k] + 2x

a smaller reduced cost while having more customers visited increases with smaller routing costs. Therefore,
the optional loop in Steps 7 to 13 iteratively decreases entries of the cost matrix as long as possible. We
analyze the impact of this reduction (reduce = true) on the overall performance in the computational
results section.

Algorithm 1: Preprocessing(reduce)
Input: Flag reduce
Output: Modified cost matrix (cij) and accumulated cost modification mod[k]

1 for j ∈ V \ {0} do
2 mod[j] := 0
3 vio := maxi,k∈V,i6=j 6=k,i 6=k(cik − cij − cjk)
4 if vio ≥ 0 then
5 Manipulate(j, dvio/2e+ 1)

6 update = reduce
7 while update do
8 update := FALSE
9 for j ∈ V \ {0} do

10 slack := mini∈V,i 6=j{cij ; mink∈V,i 6=k 6=j(cij + cjk − cik)}
11 if slack > 2 then
12 Manipulate(j,−dslack/2e+ 1)
13 update := TRUE

The final cost matrix (cij) computed by Algorithm 1 still respects the STI, the values mod[j] give the
overall modification for each customer j, and the cost of all feasible solutions increases by the constant
C :=

∑
j∈V \{0} mod[j].

Example 4. (cont’d from Examples 1 and 2) Recall that Example 1 gave an example where the strong
dominance rule (Rule 2) was not applicable at vertex 2, because label L had higher reduced cost than the
otherwise better label L′. Example 2 replaced the cost matrix (cij) of Example 1 by another cost matrix (ċij)
so that the two labels’ cost became identical and the strong dominance rule became applicable.

The point is that matrix (ċij) results from matrix (cij) by subtracting −1 for each customer j ∈ V \ {0}.
As a result, all edges {0, j} ∈ δ(0) have ċ0j = c0j − 1, while the edges {i, j} ∈ E \ δ(0) connecting two
customers i and j have ċ0j = c0j − 2.

3.1.4. Heuristic Pricing and Acceleration Techniques
We now discuss three techniques that can be used to speed up the labeling algorithm: (1) the systematic

violation of the triangle inequality, (2) decremental state space relaxation and ng-path relaxation, and (3) the
use of reduced networks.

12

Systematic Violation of the Triangle Inequality. The previous Section 3.1.3 has shown that a systematic
manipulation (reduction) of the cost matrix can be used to create equivalent SoftCluVRP instances that
may have a higher chance to exploit the strong dominance rule (Rule 2). This chance can be increased
even more, if we do not consider the STI to be fulfilled after reducing the cost matrix. We determine
the minimal entry cmin = mini,j∈V,i6=j cij in the cost matrix (cij) derived by Section 3.1.3 and calculate
offset = dcmin/2e − 1. Then, Manipulate(j,−offset) is performed for each customer j ∈ V \ {0}. The
resulting cost matrix (c̃ij) possibly violates the (S)TI, but can be used together with strong dominance
(Rule 2) as heuristic pricing.

Decremental State Space Relaxation and ng-Path Relaxation. General elementary SPPRCs are NP-hard in
the strong sense (Dror, 1994). The idea of a decremental state space relaxation (DSSR, Righini and Salani,
2008) is therefore to solve less difficult relaxations (less difficult in practice or in theory such as pseudo-
polynomial relaxations). The relaxations must therefore be parametrizable so that a strongest relaxation
guarantees elementary paths. One starts however with a weaker but relatively well-solvable SPPRC relax-
ation. If the solution of this relaxation contains a cycle, a stronger relaxation must be chosen and solved
instead. The iterative process ends if an optimal solution to the relaxation is elementary (or just one with
negative reduced costs).

We adopt the ng-path relaxation of Baldacci et al. (2011) to the SoftCluVRP. Let the subset Ni ⊆ V \{0}
be the vertex-specific ng-neighborhood of each vertex i ∈ V . The ng-path relaxation for (Ni)i∈V results
from altering the REF (4d) of the visit attributes in the following way:

Lvisitvj =

0 if v /∈ Nj
Lvisitvi + 1, if v = j and v = Nj

Lvisitvi , if v 6= j and v = Nj

∀v ∈ V \ {0} (11)

As a result, a feasible route may visit a customer more than once. However, the REF (4c) and conditions (5b)
ensure that there are either exactly nh visits to a cluster Vh, h ∈ H, or no visit at all.

There are several issues however related to the dominance rules introduced before. Already in monodi-
rectional labeling (Section 3.1.1), the use of the strong dominance rule with a proper ng-relaxation can
lead to undesirable results: A dominated label L′ (Rule 2) can have feasible extensions that are however
infeasible for the dominating label L.

Example 5. We consider an example with two clusters V1 = {1, 2, 3} and V2 = {4, 5}. Let L2 be the label
for partial path p = (0, 1, 3, 4, 2) and L′2 for the partial path p′ = (0, 4, 1, 2). Since p has visited a superset of
the customers compared to p′, domination with Rule 2 is possible.

Now consider the extension q′ = (2, 3, 4, 0′) of p′. It produces a non-elementary path r′ = (p′, q′) =
(0, 4, 1, 2, 3, 4, 0′). If N1 = N2 = N4 = N5 = V \ {0} and N3 = {1, 2, 3, 5}, then r′ is a feasible ng-route in
the sense of REFs (11) and conditions (5).

However, the associated extension q = (2, 4, 0′) of p, that result from the removal of the already visited cus-
tomer 3 from q′, produces the route r = (0, 1, 3, 4, 2, 4, 0′) that is infeasible w.r.t. the above ng-neighborhoods.
In summary, L′2 is dominated but one of its extensions cannot be used to extend the dominating label L2. If
the route r′ were optimal for the ng-path relaxation, the labeling algorithm with this strong dominance would
not find r′.

Such a behavior was first observed for VRPs with pickup-and-delivery (P&D) structure by Cherkesly
et al. (2015). In essence, non-elementary paths can be incorrectly dominated and lower bounds computed
with these relaxations are not unique. The bounds depend on the sequence of label extensions and dominance
test. However, these bounds are valid as exploited in the selective pricing paradigm of Desaulniers et al.
(2017).

As we want to use the ng-path relaxations in DSSR and bidirectional labeling, we will not use the strong
dominance Rule 2. Note that intentionally the work of Gschwind et al. (2017) does not present an ng-path
relaxation for a P&D-tailored bidirectional labeling algorithm with strong dominance, because the validity
of this combination is to date unclear. In line with these remarks, we now present another dominance rule,

13

tailored for ng-path relaxations, for which correct domination can be shown for both monodirectional and
bidirectional labeling.

Rule 3. (ng-Dominance Rule) Let L and L′ be two labels of different partial paths that end at the same
vertex i. Label L = (Lcost, Lload, Lrem , Lvisit) dominates label L′ = (L′

cost
, L′

load
, L′

rem
, L′

visit
) if all of the

following conditions are fulfilled:

(6a) and (6b) (12a){
(Lremh = L′

remh and Lvisitvi = L′i
visitv ,∀v ∈ Vh)

or (Lremh ≤ 0 and L′
remh ≥ 0)

}
∀h ∈ H (12b)

Proof. Similar to Proof of Rule 2 and Proof of Proposition 1.

Note that the ng-specific Rule 3 applies a stronger criterion than Rule 1 but a weaker criterion than Rule 2.

Heuristic/Partial Pricing using Reduced Networks. Using reduced networks is a standard technique to speed-
up the labeling algorithm (see, e.g., Dumas et al., 1991). The elementary SPPRC (ESPPRC) is solved on
an incomplete subgraph G̃ = (V ′, Ã) with Ã ⊂ A. For the SoftCluVRP we characterize the subgraph by the
non-negative integer parameter σ and define Ã by
(i) all arcs connecting the origin or destination depot with customer nodes: (i, j) ∈ A with i = 0 or j = 0′,
(ii) all intra-cluster arcs: (i, j) ∈ A with h(i) = h(j),
(iii) and σ inter-cluster arcs for every node i ∈ V \ {0}, connecting i to its σ nearest neighbors j /∈ Vh(i):

(i, j) ∈ A with h(i) 6= h(j) and minimal routing costs cij .
A hierarchy of pricing heuristics can be used to iteratively solve the ESPPRC on subgraphs build by

increasing parameter σ, until a route with negative reduced cost is found. Note that the complete graph G′
must be used in the last iteration in order to find the exact solution (and possibly proof that no route with
negative reduced cost exists).

3.1.5. Comparison with Pickup-and-Delivery Problems

SoftCluVRP vs. VRPs with P&D structure

Similarities:
cluster Vh ∼ request {i+, i−}

remaining customers ∼ open requests

strong dominance based on subsets of remaining
customers

∼ strong dominance based on subsets of open requests

strong dominance and ng-path: incorrectly dominated
non-elementary paths ∼

strong dominance and ng-path: incorrectly
dominated non-elementary paths
(Cherkesly et al., 2015)

Differences:
no precedences 6= i+ precedes i−

dual prices for covering clusters are managed via REFs 6= dual prices for covering requests are incorporated
into reduced cost matrix (c̃ij)

strong dominance requires triangle inequality (TI) on
original cost matrix (cij)

6= strong dominance requires delivery triangle inequality
(DTI) on reduced cost matrix (c̃ij)
(Ropke and Cordeau, 2009)

bidirectional labeling requires strict triangle inequality
(STI)

6= bidirectional labeling requires two matrices (fw/bw
with DTI/pickup TI) (Gschwind et al., 2017)

Table 1: Similarities and differences between SoftCluVRP and VRPs with P&D structure, in particular
regarding labeling algorithms for the SPPRC subproblem.

We would like to point out that the SoftCluVRP shares some similarities with VRPs that have a pickup-
and-delivery (P&D) structure. In the latter problems, the task is to fulfill a set of transportation requests,

14

where each request i consists of the collection of some item(s) from a given pickup point i+, the possibly
shared transportation with other items, and the delivery of the item(s) to a given delivery point i−. The basic
observation is that clusters Vh of customers in the SoftCluVRP correspond to requests i = {i+, i−} in P&D
VRPs. More similarities but also the most important differences in these VRP variants and their SPPRC
labeling subproblems (arising from their exact solution via column-generation approaches) are summarized
in Table 1.

3.2. Branch-and-Cut
Our branch-and-cut algorithm for the SoftCluVRP subproblem is based on the formulation (3) and uses

the callable library of CPLEX 12.8.1.0. for so-called lazy cuts and user cuts. We have kept all default
settings of CPLEX except for enforcing CPLEX to run in single-thread mode. The initial linear program
(LP) comprises the objective (3a), the depot degree constraints (3b), the coupling constraints (3c), and the
capacity constraint (3e).

In the following we assume that all direct routes r = (0, i, 0′) for singleton clusters Vh = {i} are already
in the RMP. Therefore, these routes do not have to be priced out. The consequence is that we do not have
to distinguish between binary and integer routing variables (see (3f) and (3g)), but all routing variables are
binary.

For the detection of violated subtour-elimination constraints (SECs) we added callbacks to CPLEX. Let
(x̄e, z̄h) be a solution to the LP. We define the support graph to (x̄e, z̄h) as the graph Ḡ = (V, Ē) where the
edge set is defined as Ē = {e ∈ E : x̄e > 0}. The separation algorithm distinguishes between integer and
fractional solutions.

For an integer solution (x̄e, z̄h), we determine the connected components of Ḡ. Our implementation uses
an efficient implementation of a union-find algorithm (Tarjan, 1979). If a connected component induced
by S ⊂ V fulfills 0 /∈ S and |S| > 1, violated SECs are found. Indeed, for all i ∈ S, the SEC to the pair
(i, S) is violated (LHS is zero, RHS is two). We add only one SEC per subset S choosing i arbitrarily.

For fractional solutions (x̄e, z̄h), we first also compute the connected components of Ḡ. For a connected
component induced by S ⊂ V that fulfills 0 /∈ S and |S| > 1, we determine ī = arg maxī∈S z̄h(̄i). If the SEC
for the pair (̄i, S) is violated by more than a given threshold ε := 0.01, we add the violated SEC. If none of the
connected components with 0 /∈ S gives a violated SEC, we analyze the connected component that contains
the depot 0. Let S0 ⊂ V be the subset that induces this component. We next compute the maximum flow
between the depot 0 and every vertex i ∈ S0, i 6= 0 in the induced graph G[S0]. These max-flow problems
are solved with the algorithm of Boykov and Kolmogorov (2004) (available in the BOOST C++ library,
https://www.boost.org/doc/libs/1_67_0/libs/graph/doc/boykov_kolmogorov_max_flow.html). Let
the maximum-flow value be f̄0i. The degree of violation of the SEC for the (i, S0) is 2z̄h(i) − f̄0i. If several
violations greater than ε exist, we chose ı̄ as one vertex that maximizes the violation and add the violated
SEC for the pair (̄ı, S0) to the LP.

Note that we do not add separation procedures for other classes of valid inequalities such as, e.g., cover
inequalities/cuts (Wolsey, 1998, p. 147f) induced by the knapsack-like constraints (3e) because these cuts
are already implemented in CPLEX.

3.3. Primal Heuristic
We now present a metaheuristic for heuristic/partial pricing that systematically manipulates a given

feasible route r using edge-exchange procedures for the TSP and additional operators that can drop the
vertices of a cluster Vh with h ∈ H(r) or add the vertices of a cluster Vh with h ∈ H \ H(r) to the route
r. The different operators are combined in variable neighborhood decent (VND) procedures (a variation of
variable neighborhood search, see Mladenović and Hansen, 1997). We use the following basic operators:

DoBest2Opt(r): Search for a best-improving 2-OPT TSP move in r and perform this move if
it is improving.

DoBest3Opt(r): The same, but with 3-OPT TSP moves.
VND.TSP(r): Perform a VND with the operators DoBest2Opt and DoBest3Opt on r.

DropCluster(r, h): Remove all vertices i ∈ Vh from r.
15

https://www.boost.org/doc/libs/1_67_0/libs/graph/doc/boykov_kolmogorov_max_flow.html

AddCluster(r, h): Check whether the addition of the cluster Vh to r is feasible. If so, loop over all
i ∈ Vh and insert i into r at a position with smallest insertion cost. Otherwise
leave r unchanged.

DoBestDropCluster(r): Loop over all h ∈ H(r), make a copy r′ of r, apply DropCluster(r′, h) and
VND.TSP(r′), and compute the reduced cost of the resulting route r′′. Finally,
set r to the route r′′ with minimum reduced cost if c̃r′′ < c̃r, i.e., if r′′ is
improving. Otherwise leave r unchanged.

DoBestAddCluster(r): The same, but with a loop over all h ∈ H \H(r) and with AddCluster moves.
VND(r): Perform a VND with the operators DoBestDropCluster and DoBestAddCluster

on r.
Our implementation of the best-improvement 2-OPT and 3-OPT local search procedures uses a so-called

radius or sequential search mechanism to reduce the computational effort of local search for the quadratic
and cubic neighborhoods, see (Bentley, 1992), (Hoos and Stützle, 2004, p. 373) and (Irnich et al., 2006).

The staring point of the primal heuristic is the primal solution ȳr, r ∈ Ω̄ of the RMP (2). Note that
all routes with ȳr > 0 have reduced cost c̃r = 0, so that they are promising starting solutions. We loop
over all these routes and apply the primal heuristic PrimalHeuristic(r), detailed in Algorithm 2, to each
of them. In the primal heuristic, the loop (Steps 3 to 12) first tries to improve the current route r′ by
applying the VND with all operators, i.e., 2-OPT, 3-OPT, removal of a cluster, and addition of a cluster (in
this order of increasing search effort). Then, it randomly removes up to three clusters from the resulting
route r′ (Steps 10 to 12). The loop is repeated up to 140 times, but a premature termination happens if the
best found route r∗ has negative reduced cost. All negative reduced-cost routes that are found are added to
the RMP.

Algorithm 2: PrimalHeuristic(r) for the SoftCluVRP pricing subproblem
Input: A feasible route r
Output: A negative reduced-cost route r∗ or FAILED if none is found

1 r∗ := r
2 r′ := r
3 for Iter = 1, 2 . . . ,MaxIter do
4 VND.TSP(r′)
5 VND(r′)
6 if c̃r′ < c̃r∗ then
7 r∗ := r′

8 if c̃r∗ < 0 then
9 return r∗

10 for up to 3 times, as long as H(r′) 6= ∅ do
11 Randomly chose h ∈ H(r′)
12 DropCluster(r′, h)

13 return FAILED

4. Branch-and-Price

Two important aspects of the branch-and-price algorithms for the SoftCluVRP are clarified now. In
Section 4.1, we describe possible strategies for combining the heuristic pricing algorithms with a final exact
labeling-based pricing algorithm. In Section 4.2, we discuss branching rules and their impact on pricing
algorithms.

16

4.1. Pricing Strategies
The different acceleration and heuristic pricing methods offer a plethora of pricing strategies. The

question is how to combine the different pricing algorithms into a hierarchy of pricers. If a pricer on a lower
level of the hierarchy fails to produce (sufficiently good) negative reduced-cost routes, the pricer on the next
level is called. In extensive pretest we tried numerous combinations. We summarize the most important
findings of the pretest:

1. The use of the Preprocessing is beneficial (Algorithm 1 called with reduce = TRUE).
2. The primal heuristic pricer should be applied before the labeling pricers (Algorithm 2 of Section 3.3).
3. Bidirectional labeling (Section 3.1.2) very often outperforms monodirectional labeling (Section 3.1.1).
4. DSSR with ng-path relaxation is most of the time faster than directly solving the elementary SPPRC

(Section 3.1.4).
5. Heuristic pricers that use the strong dominance rule should also systematically violate the TI to further

accelerate computations (also Section 3.1.4).
Therefore, we create a hierarchy of nine pricers, where the first one is the primal heuristic pricer, the next
seven are heuristic labeling algorithms, and the last one is an exact labeling-based pricer. All labeling pricers
use bidirectional labeling and DSSR. They differ in the size of the reduced networks (we use networks with
2, 5, 10 nearest neighbors, and the full network). For each network size, a first heuristic pricer applies
the strong dominance Rule 2 to speed up computations even though this rule does not guarantee optimal
solutions together with bidirectional labeling. With the same reasoning, the distance matrix is systematically
violated. The second pricer per network size is one that is an exact pricer for this network, i.e., it does apply
the ng-specific dominance Rule 3 and does not further manipulate the distance after preprocessing.

Default Strategy Alternative Strategies

Size of w/o w/o w/o w/o only
Reduced Dominance Violate violation reduction DSSR + ng- primal mono-

Level Network Rule STI of STI (reduce = false) path relax. heuristic directional

0 full —use primal heuristic— ×
1 2 strong: Rule 2 yes STI × mono
2 2 ng: Rule 3 no × × mono, TI
3 5 strong: Rule 2 yes STI × mono
4 5 ng: Rule 3 no × × mono, TI
5 10 strong: Rule 2 yes STI × mono
6 10 ng: Rule 3 no × × mono, TI
7 full strong: Rule 2 yes STI × mono
8 full ng: Rule 3 no × × mono, TI

Table 2: Default pricing strategy and five alternative pricing strategies.

This default pricing strategy is depicted in the four leftmost columns of Table 2. In addition, we define
five alternative pricing strategies that one-by-one vary one of the fundamental components of the default
strategy. These alternative strategies are summarized in the five rightmost columns of Table 2.

In detail: (1) strategy ‘w/o violation of STI’ does not systematically manipulate the cost matrix so
that the cost matrix fulfills the STI in every pricer, (2) strategy ‘w/o reduction’ calls the Preprocessing
Algorithm 2 with reduce = FALSE so that the preprocessed cost matrix fulfills the STI with a larger slack,
(3) strategy ‘w/o DSSR + ng-path relax.’ directly solves elementary subproblems instead of using DSSR,
(4) strategy ‘w/o primal heuristic’ drops the pricer at level 0, and (5) strategy ‘only monodirectional’
replaces the bidirectional labeling by monodirectional labeling where the respective exact pricers reduce the
cost matrix further so that only the TI and not the STI needs to hold.

In Section 5.2, we will compare the six strategies (default and five alternative) on SoftCluVRP benchmark
instances. Moreover, by eliminating some pricers including level 8, i.e., the exact labeling on the full network,
the pricing hierarchy can be complemented with the branch-and-cut pricer from Section 3.2. Results with
the respective pricing strategies are presented in Sections 5.3 and 5.4.

17

4.2. Branching
Note that in our model and the later analyzed benchmark instances the number of routes/vehicles is

always given and fixed. Therefore, no branching on the number of vehicles is applicable here.
To finally ensure integrality of solutions, we apply the Ryan-Foster branching rule (Ryan and Foster,

1981) on the partitioning constraints (2b). These constraints ensure service for every cluster. Given an RMP
solution (ȳr), we determine for each pair (h, h′) ∈ H ×H,h < h′ the number fh,h′ =

∑
r∈Ω:ahr=ah′r=1 ȳr. If

the RMP solution is fractional, then there exists a value fh,h′ strictly between 0 and 1 for some h and h′.
We choose a pair with fh,h′ closest to 0.5 and create the following two branches defined by the constraints∑

r∈Ω:ahr=ah′r=1

yr = 0 and
∑

r∈Ω:ahr=ah′r=1

yr = 1.

In the first branch, the separate branch, routes that serve both clusters Vh and Vh′ are not allowed. The
second branch, the together branch, requires that the two clusters Vh and Vh′ are served by the same vehicle.
Both types of branching decisions can be enforced without explicitly adding the above constraints to the
RMP: Eliminate all routes r ∈ Ω that violate the branching condition from the current RMP. Moreover,
ensure that forbidden routes are not priced out. This can be done as follows:

Separate Branch. Separate branching decisions have an impact on the structure of the subproblem and
likewise on the subproblem algorithms. Assume that two clusters Vh and Vh′ must be served separately. In
the case of labeling (Section 3.1), we modify the propagation rule. Once that a first customer of Vh is visited,
we do not extend to vertices of cluster Vh′ . This new behavior can be achieved using binary attributes for all
clusters. For the dominance, we do as if the attributes had values Lvisitvj = 1 for all v ∈ Vh′ and Lremh′

j = 0,
in order to mimic that cluster Vh′ were already served completely. For merge conditions, however, these
attributes remain at their correct values Lvisitvj = 0 for all v ∈ Vh′ and Lremh′

j = −1. The same is done with
exchanged roles of h and h′.

In the case of branch-and-cut (Section 3.2), we add the constraint zh + zh′ ≤ 1. Nothing else has to be
done.

In the case of the primal heuristic (Section 3.3), the operator AddCluster(r, h) must be modified. Recall
that it adds cluster Vh to a given route r. If a separate constraint for h and h′ is active, the operator adds Vh
to route r but removes all vertices of cluster Vh′ .

Together Branch. A together branching decision for clusters Vh and Vh′ is trivial to impose for all types of
subproblem algorithms. Instead of the original SoftCluVRP instance one just has to consider a new one in
which the two clusters Vh and Vh′ are replaced by one bigger cluster Vh ∪ Vh′ with demand dh + dh′ .

5. Computational Results

Our algorithm is coded in C++ and compiled with MS Visual Studio 2015 in release mode. The callable
library of CPLEX 12.8.1.0 is used to reoptimize the RMPs and to solve the subproblems with the branch-
and-cut algorithm. We run all computations on a standard PC equipped with MS Windows 7 and an
Intel(R) Core(TM) i7-5930K CPU clocked at 3.5GHz and with 64GB RAM of main memory.

5.1. SoftCluVRP Benchmark Instances
We test our algorithm on three benchmark sets. The first and second benchmark sets were derived

from the CVRP benchmarks called A, B, P, G, and C by Bektaş et al. (2011). They defined θ as the
desired average number of customers per customer cluster and, accordingly, N = d(n + 1)/θe customer
clusters are built (for details, we refer to Fischetti et al., 1997; Bektaş et al., 2011). Choosing θ ∈ {2, 3},
the GVRP-2 and GVRP-3 benchmarks comprise 79 instances each, resulting in 158 small- and medium-sized
instances with 16 to 262 vertices and 6 to 131 clusters. These benchmarks are available online at http:
//www.personal.soton.ac.uk/tb12v07/gvrp.html. The third set Golden-Bat was proposed by Battarra
et al. (2014) for the CluVRP and comprises 220 large-scale instances with 201 to 484 vertices and 14 to

18

http://www.personal.soton.ac.uk/tb12v07/gvrp.html
http://www.personal.soton.ac.uk/tb12v07/gvrp.html

97 clusters. They are based on the well-known CVRP instances by Golden et al. (1998). For each of the
20 original instances Golden1 to Golden20, different clusterings are generated by choosing θ = {5, . . . , 15},
resulting in eleven groups with 20 instances each.

For all experiments reported in the following, we run our branch-and-price algorithms with a time limit
of 1 hour (3600 seconds) per instance. All computation times are displayed in seconds.

5.2. Comparison of Labeling Strategies
In a first series of experiments, we analyze the performance of the six pricing strategies that we discussed

in Section 4.1. To keep the computational effort limited, we restrict ourselves to solving the linear relaxation
of the master program, i.e., the root node of the branch-and-bound tree. Moreover, we do not use all 158
benchmark instances but only those 32 instances that we were able to solve with some labeling-based pricing
strategy during pretests.

Table 3 briefly summarizes the results obtained for the 32 instances. Detailed instance-by-instance results
can be found in the respective Table 8 of the Online Supplement. In both tables, T refers to the computation
time for solving the linear relaxation of (2), Avg. T is the arithmetic mean, and Geo. T the geometric mean
of the computation times over the 32 instances. In Table 3, #Solved is the number of instances for which
the linear relaxation could be solved within the time limit (of 1 hour).

Time for solving the linear relaxation

w/o w/o w/o w/o only
violation reduction DSSR + ng- primal mono-

default of STI (reduce = false) path relax. heuristic directional

Avg. T 903.9 1226.9 1569.7 2595.5 1518.9 1661.2
Geo. T 60.0 79.7 95.9 321.3 94.8 73.3

#Solved 30 27 22 10 23 21

Table 3: Comparison of labeling-based pricing strategies using 32 selected SoftCluVRP instances.

The results for labeling-based pricing are very clear. From all acceleration techniques, the use of DSSR
with the ng-path relaxation has the most positive impact: If replaced by directly solving subproblems as
elementary SPPRC (strategy w/o DSSR + ng-path relax.), less than one third of the 32 linear relaxations
can be solved. The impact of cost matrix reduction, primal heuristic, and bidirectional labeling is compa-
rable, as only approximately 2/3 of the linear relaxations are solved when these techniques are not applied
(see strategies w/o reduction, w/o primal heuristic, and only monodirectional, respectively). To not use the
systematic manipulation of the cost matrix (strategy w/o violation of STI) leads to the smallest but still
significant average speedups. The best strategy is clearly the default strategy in which all acceleration tech-
niques switched on: 30 of the 32 linear relaxations are solved within the time limit, and average (arithmetic
and geometric) computation times are considerably smaller compared to all other strategies.

5.3. Comparison of Pricing Strategies including Branch-and-Cut
In the second series of experiments, we want to find a best strategy for the use of the branch-and-cut-

based subproblem algorithm introduced in Section 3.2. On the one hand, the primal heuristic can be called
and in case of success it is not necessary to invoke the branch-and-cut algorithm. This is partial pricing
with the primal heuristic. On the other hand, also the labeling-based pricing algorithms can be used for
partial pricing. In this case, we use the default strategy from Section 4.1 but only the heuristic levels 1
and 3 (truncated default strategy). Moreover, the primal heuristic (level 0) may or may not be used. This
leads to four possible strategies:

Pure: Pure branch-and-cut.
+Prim: Primal heuristic first.

+Label: Truncated default labeling strategy w/o primal heuristic first.
+Prim+Label: Truncated default labeling strategy with primal heuristic first.

19

For the comparison, we use the identical subset of 32 instances as in the previous section. The results
are summarized in Table 4 and the corresponding instance-by-instance results are given in Table 8 of the
Online Supplement.

Time for solving the linear relaxation

Pure: +Prim: +Label: +Prim+Label:
primal heuristic: no yes no yes

truncated labeling: no no yes yes

Avg. T 7.9 2.6 152.7 9.9
Geo. T 2.5 0.9 5.7 1.9

#Solved 32 32 31 32

Table 4: Comparison of branch-and-cut-based pricing strategies using 32 selected SoftCluVRP instances.

The outcome of the experiments is that all four branch-and-cut-based pricing strategies outperform the
labeling-based strategies by at least one order of magnitude of computation time. The worst strategy is
+Label confirming the primal heuristic is essential and labeling-based pricing inferior. Compared to the other
branch-and-cut strategies, this strategy fails in solving one linear relaxation (recall that the best labeling
strategy failed in two cases). The strategies Pure and +Prim+Label are incomparable w.r.t. arithmetic and
geometric means of computation time. The best strategy (undominated) is +Prim where primal heuristic
and branch-and-cut are combined. The speedup factor compared to the default labeling is >340 (ratio of
arithmetic means) and >66 (ratio of geometric means).

For the remainder of the paper, we use +Prim as the default branch-and-cut strategy.

5.4. Comparison of Labeling-based and Branch-and-Cut-based Pricing
Even if the previous sections clearly indicate the superiority of branch-and-cut over labeling for solving

the subproblem, we want to test the two respective default strategies against each other on the full benchmark
set and within the fully-fledged branch-and-price algorithm. Table 5 gives aggregated results for all 158 GVRP
instances, grouped by the subclasses A, B, P, and GC of GVRP-2 and GVRP-3. For the solution of the root, the
table shows the number of successfully solved linear relaxation of (2) (#Solved) and average computation
times T (Avg. and Geo.). Similarly, for the branch-and-price, #Int and #Opt is the number of instances
where an integer solution was found and proven optimal, respectively.

Branch-and-price with the default labeling strategy cannot solve any group of instances completely,
neither the linear relaxation nor the full branch-and-bound tree. It seems however that instances from the
group GVRP-2 are slightly easier for this approach than from the group GVRP-3. In comparison, branch-
and-price with the default branch-and-cut strategy performs much better than the default labeling strategy:
34 vs. 150 solved linear relaxations and 23 vs. 142 exactly solved instances, respectively. The observed
aggregated computation times underline the impressive predominance of branch-and-cut for the SoftCluVRP
subproblems. We would like to add that the labeling-based approach is almost always inferior in an per
instance comparison (however, six instances all with computation times below 2 seconds are solved faster
with labeling).

Detailed instance-by-instance results of the branch-and-price with the default branch-and-cut strategy
are given in Tables 9 to 12 in the Online Supplement.

5.5. Results for the Golden-Bat Instances
Since the Golden-Bat instances are much larger regarding the number of customers and the number

of clusters, they are not at all accessible for branch-and-price algorithms that use the labeling techniques
of Section 3.1. In this section, we therefore restrict the presentation of results to those obtained with the
branch-and-price that uses the default branch-and-cut strategy.

Tables 6a and 6b summarize the results, where the first table groups the instances by the number n+ 1
of vertices and the second by the average cluster size θ. On the one hand, the difficulty of instances increases

20

Default Labeling Strategy Default Branch-and-Cut Strategy

linear relaxation integer linear relaxation integer

Time T # Time T # Time T # Time T

Set (#inst.) Solved Avg. Geo. Int Opt Avg. Geo. Solved Avg. Geo. Int Opt Avg. Geo.

GVRP-2
A (27) 7 3000 2573 5 4 3353 3219 27 33 9 27 26 713 114
B (23) 7 2825 2229 3 2 3368 3198 23 24 10 23 17 1105 144
P (24) 11 2107 162 11 9 2393 250 24 155 4 23 23 474 17
GC (5) 0 3600 3600 0 0 3600 3600 1 2912 1929 1 1 2994 2489

GVRP-3
A (27) 0 3600 3600 0 0 3600 3600 27 17 5 27 27 83 17
B (23) 1 3522 3494 0 0 3600 3600 23 7 4 23 23 160 18
P (24) 8 2411 316 8 8 2431 367 24 32 2 24 24 107 4
GC (5) 0 3600 3600 0 0 3600 3600 1 2899 1747 1 1 3221 3101

Total (158) 34 2966 1362 27 23 3163 1637 150 225 7 149 142 605 36

Table 5: Results for the 158 GVRP instances.

with the number of vertices, which seems natural. The three largest instances solved have 420 customers.
On the other hand, instances with a larger average cluster size θ become better solvable. Also this behaviour
is as expected because with larger clusters the number of partitioning constraints (2b) in the master program
decreases and also the model (3) of the subproblem has less cluster variables zh making it less difficult to
solve. The smallest average cluster size of the above solved 420-customer instances has θ = 13. Detailed
instance-by-instance results are reported in Tables 13 to 16 in the Online Supplement.

5.6. Comparison of CluVRP and SoftCluVRP Solutions
For those instances, for which optimal SoftCluVRP and CluVRP solutions are known, we compute the

gap to CluVRP (in percent) as 100 · (ZCluV RP − ZSoftCluV RP)/ZSoftCluV RP where the minimal routing
costs are ZSoftCluV RP and ZCluV RP , respectively. Table 7 shows aggregated results for the GVRP-3 and
Golden-Bat instances. Note that detailed results for the benchmark GVRP-2 have not been published so
that for them ZCluV RP is not known. (We took the detailed results for the benchmark GVRP-3 from (Defryn
and Sörensen, 2017).)

The results for the GVRP-3 instances in Table 7a show for how many instances optimal solutions of both
SoftCluVRP and CluVRP are known (#both opt). Over these 76 instances, the average gap varies over
the subsets A, B, P, and GC. Gaps are larger in subset P compared to A, and these larger compared to B. We
attribute this difference to the different ways in which the subsets were constructed.

The results for the Golden-Bat instances are shown in Table 7b: Average gaps strongly depend on the
average number θ of customers per cluster. The larger θ ≥ 5, the smaller the average gaps. This behaviour is
intuitive, since a SoftCluVRP route tends to change clusters less frequently when clusters are larger. Thus,
serving the same clusters but respecting hard-cluster constraints requires only fewer modifications on the
SoftCluVRP route. If θ grows even further so that routes serve single clusters, the gap vanishes.

The described dependency of the gaps on θ is definitely not the same for smaller values θ ≤ 5: It is
impossible that gaps constantly increase when θ decreases, because the extreme case of θ = 1 means that
clusters are singleton sets, for which optimal SoftCluVRP and CluVRP coincide again. Hence, gaps are zero
for θ = 1. This is in line with what the comparison of the GVRP-3 and Golden-Bat benchmarks shows: The
former benchmark has θ = 3 and smaller average gaps compared to the larger gaps for θ ≥ 5 for the latter
benchmark.

21

Table 6: Results for the 220 large-scale Golden-Bat instances.

linear relaxation integer

Time T # Time T

n+ 1 Solved Avg. Geo. Int Opt Avg. Geo.

201 (11) 10 832 487 10 10 832 487
241 (22) 17 1553 963 11 9 2307 1426
253 (11) 9 938 394 9 9 1119 475
256 (11) 10 943 494 8 8 1446 747
281 (11) 5 2702 2392 5 5 2702 2392
301 (11) 6 2338 1918 6 6 2338 1918
321 (22) 7 2875 2485 5 5 3196 2950
324 (11) 6 2179 1483 6 6 2453 2140
361 (22) 5 3171 2936 5 5 3171 2936
397 (11) 2 3256 3142 1 1 3561 3559
400 (11) 3 3112 2945 1 1 3515 3502
401 (11) 0 3600 3600 0 0 3600 3600
421 (11) 3 3033 2790 3 3 3033 2790
441 (11) 0 3600 3600 0 0 3600 3600
481 (22) 0 3600 3600 0 0 3600 3600
484 (11) 0 3600 3600 0 0 3600 3600

Total (220) 83 2626 1927 70 68 2817 2172

(a) Grouped by number of vertices n+ 1.

linear relaxation integer

Time T # Time T

θ Solved Avg. Geo. Int Opt Avg. Geo.

5 (20) 1 3521 3497 1 1 3521 3497
6 (20) 1 3523 3501 0 0 3600 3600
7 (20) 4 3136 2891 2 2 3394 3261
8 (20) 5 3036 2568 4 4 3042 2572
9 (20) 6 2866 2308 5 5 2988 2582
10 (20) 9 2603 1939 7 7 2816 2169
11 (20) 9 2496 1726 7 7 2744 1937
12 (20) 9 2326 1562 8 8 2617 1898
13 (20) 13 1889 1139 13 12 2140 1340
14 (20) 14 1705 1085 12 11 2097 1382
15 (20) 12 1790 1003 11 11 2031 1258

Total (220) 83 2626 1927 70 68 2817 2172

(b) Grouped by average cluster size θ.

6. Conclusions

In this article, we have designed and analyzed different branch-and-price algorithms for the exact so-
lution of the SoftCluVRP. The research has mainly focussed on the solution of the column-generation
subproblem, a variant of the SPPRC. It has turned out that, for this variant of the vehicle-routing problem,
dynamic programming-based labeling algorithms are strongly outperformed by a branch-and-cut algorithm
that works directly on the SoftCluVRP subproblem formulation. The latter integer programming-based
solution approach contributes with computation times that are by one order of magnitude shorter than
those of sophisticated dynamic-programming labeling algorithms. The largest SoftCluVRP instances that
we solved to optimality have more than 400 customers or more than 50 clusters.

We attribute the success of branch-and-cut for the solution of SoftCluVRP subproblems to the following
facts: The subproblem is very close to a TSP, more precisely, it is a TSP with profits that also shares
characteristics with the prize-collecting TSP (Feillet et al., 2005; Balas, 1989). For these types of TSPs,
branch-and-cut is the leading state-of-the-art solution approach (Gutin and Punnen, 2002). Previous at-
tempts of using IP-based methods for SPPRCs, like (Jepsen et al., 2008), concentrated on the solution
of CVRP subproblems via branch-and-cut. Results were competitive with monodirectional labeling algo-
rithms without DSSR of that time. However, powerful techniques such as bidirectional labeling and the
ng-path relaxation to be used separately or within DSSR were not yet available when Jepsen et al. (2008)
conducted their experiments. When including these newer techniques, labeling algorithms outperform the
branch-and-cut algorithm on CVRP subproblems.

In comparison, the SoftCluVRP subproblem is even closer to a TSP than the CVRP subproblem. The
point is that in the CVRP subproblem visits are decided on a customer level, while in the SoftCluVRP
subproblem on a cluster level, and nothing is to decide regarding visits in a pure TSP. This may explain
why branch-and-cut is superior to fully-fledged labeling algorithms in SoftCluVRP subproblems but not in
CVRP subproblems.

Future research may focus on further enhancing the branch-and-cut with new classes of valid inequalities
as well as effective and fast separation heuristics. We think that soft-cluster constraints could also play an
important role in districting and capacitated arc-routing applications (Butsch et al., 2014; Belenguer et al.,

22

Table 7: Comparison of optimal SoftCluVRP and CluVRP solutions.

#both Avg. gap
θ Set (#inst.) opt to CluVRP

3
A (27) 27 2.66
B (23) 23 1.16
P (24) 24 4.73
GC (5) 2 3.73

Total (79) 76 2.89

(a) GVRP-3 instances.

#both Avg. gap
θ (#inst.) opt to CluVRP

5 (20) 1 9.45
6 (20) 3 7.21
7 (20) 4 7.46
8 (20) 6 6.79
9 (20) 7 7.46
10 (20) 8 6.90
11 (20) 9 6.16
12 (20) 11 5.94
13 (20) 12 5.62
14 (20) 13 5.51
15 (20) 13 5.46

Total (220) 87 6.21

(b) Golden-Bat instances.

2014).

References

Balas, E. (1989). The prize collecting traveling salesman problem. Networks, 19(6), 621–636.
Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem.

Operations Research, 59(5), 1269–1283.
Barthélemy, T., Rossi, A., Sevaux, M., and Sörensen, K. (2010). Metaheuristic approach for the clustered VRP. In EU/ME

2010 – 10th anniversary of the metaheuristic community, Lorient, France.
Battarra, M., Erdoǧan, G., and Vigo, D. (2014). Exact algorithms for the clustered vehicle routing problem. Operations

Research, 62(1), 58–71.
Bektaş, T., Erdoǧan, G., and Ropke, S. (2011). Formulations and branch-and-cut algorithms for the generalized vehicle routing

problem. Transportation Science, 45(3), 299–316.
Belenguer, J. M., Benavent, E., and Irnich, S. (2014). The capacitated arc routing problem: Exact algorithms. In Arc Routing,

chapter 9, pages 183–221. Society for Industrial & Applied Mathematics (SIAM).
Bentley, J. J. (1992). Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4), 387–411.
Bode, C. and Irnich, S. (2012). Cut-first branch-and-price-second for the capacitated arc-routing problem. Operations Research,

60(5), 1167–1182.
Boykov, Y. and Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization

in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 1124–1137.
Butsch, A., Kalcsics, J., and Laporte, G. (2014). Districting for arc routing. INFORMS Journal on Computing, 26(4), 809–824.
Cherkesly, M., Desaulniers, G., and Laporte, G. (2015). Branch-price-and-cut algorithms for the pickup and delivery problem

with time windows and last-in-first-out loading. Transportation Science, 49(4), 752–766.
Defryn, C. and Sörensen, K. (2017). A fast two-level variable neighborhood search for the clustered vehicle routing problem.

Computers & Operations Research, 83, 78–94.
Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., and Villeneuve, D. (1998). A unified framework for

deterministic time constrained vehicle routing and crew scheduling problems. In T. Crainic and G. Laporte, editors, Fleet
Management and Logistics, chapter 3, pages 57–93. Kluwer Academic Publisher, Boston, Dordrecht, London.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Generation. Springer, New York, NY.
Desaulniers, G., Pecin, D., and Contardo, C. (2017). Selective pricing in branch-price-and-cut algorithms for vehicle routing.

EURO Journal on Transportation and Logistics. http://dx.doi.org/10.1007/s13676-017-0112-9.
Drexl, M. and Irnich, S. (2012). Solving elementary shortest-path problems as mixed-integer programs. OR Spectrum, 36(2),

281–296.
Dror, M. (1994). Note on the complexity of the shortest path models for column generation in VRPTW. Operations Reasearch,

42(5), 977–978.
Dumas, Y., Desrosiers, J., and Soumis, F. (1991). The pick-up and delivery problem with time windows. European Journal of

Operational Research, 54, 7–22.

23

http://dx.doi.org/10.1007/s13676-017-0112-9

Expósito Izquierdo, C., Rossi, A., and Sevaux, M. (2013). Modeling and Solving the Clustered Capacitated Vehicle Routing
Problem. In A. Fink and M.-J. Geiger, editors, Proceedings of the 14th EU/ME workshop, EU/ME 2013, pages 110–115,
Hamburg, Germany.

Expósito-Izquierdo, C., Rossi, A., and Sevaux, M. (2016). A two-level solution approach to solve the clustered capacitated
vehicle routing problem. Computers & Industrial Engineering, 91, 274–289.

Feillet, D., Dejax, P., Gendreau, M., and Guéguen, C. (2004). An exact algorithm for the elementary shortest path problem
with resource constraints: Application to some vehicle routing problems. Networks, 44(3), 216–229.

Feillet, D., Dejax, P., and Gendreau, M. (2005). Traveling salesman problems with profits. Transportation Science, 39(2),
188–205.

Fischetti, M., González, J. J. S., and Toth, P. (1997). A branch-and-cut algorithm for the symmetric generalized traveling
salesman problem. Operations Research, 45(3), 378–394.

Goeke, D., Gschwind, T., and Schneider, M. (2017). Upper and lower bounds for the vehicle-routing problem with private fleet
and common carrier. Working Paper DPO-2017-08, Deutsche Post Chair – Optimization of Distribution Networks, RWTH
Aachen University, Aachen, Germany.

Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I.-M. (1998). The impact of metaheuristics on solving the vehicle routing
problem: Algorithms, problem sets, and computational results. In T. G. Crainic and G. Laporte, editors, Fleet Management
and Logistics, pages 33–56. Springer US, Boston, MA.

Gschwind, T., Irnich, S., Rothenbächer, A.-K., and Tilk, C. (2017). Bidirectional labeling in column-generation algorithms for
pickup-and-delivery problems. European Journal of Operational Research, 266, 521–530.

Gutin, G. and Punnen, A., editors (2002). The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial
Optimization. Kluwer, Dordrecht.

Hintsch, T. and Irnich, S. (2018). Large multiple neighborhood search for the clustered vehicle-routing problem. European
Journal of Operational Research, 270(1), 118–131.

Hoos, H. H. and Stützle, T. (2004). Stochastic Local Search: Foundations & Applications. Morgan Kaufmann.
Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, and

M. Solomon, editors, Column Generation, chapter 2, pages 33–65. Springer.
Irnich, S. and Villeneuve, D. (2006). The shortest path problem with resource constraints and k-cycle elimination for k ≥ 3.

INFORMS Journal on Computing, 18(3), 391–406.
Irnich, S., Funke, B., and Grünert, T. (2006). Sequential search and its application to vehicle-routing problems. Computers &

Operations Research, 33(8), 2405–2429.
Irnich, S., Toth, P., and Vigo, D. (2014). The family of vehicle routing problems. In D. Vigo and P. Toth, editors, Vehicle

Routing, chapter 1, pages 1–33. Society for Industrial and Applied Mathematics, Philadelphia, PA.
Jepsen, M. K., Petersen, B., and Spoorendonk, S. (2008). A branch-and-cut algorithm for the elementary shortest path

problem with a capacity constraint. Technical report 08-01, Department of Computer Science, University of Copenhagen,
Kopenhagen, Denmark.

Lübbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.
Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100.
Pop, P. C., Fuksz, L., Marc, A. H., and Sabo, C. (2018). A novel two-level optimization approach for clustered vehicle routing

problem. Computers & Industrial Engineering, 115(Supplement C), 304–318.
Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest

path problem with resource constraints. Discrete Optimization, 3(3), 255–273.
Righini, G. and Salani, M. (2008). New dynamic programming algorithms for the resource constrained elementary shortest

path problem. Networks, 51(3), 155–170.
Ropke, S. and Cordeau, J.-F. (2009). Branch and cut and price for the pickup and delivery problem with time windows.

Transportation Science, 43(3), 267–286.
Ryan, D. and Foster, B. (1981). An integer programming approach to scheduling. In A. Wren, editor, Computer Scheduling of

Public Transport: Urban Passenger Vehicle and Crew Scheduling, chapter 17, pages 269–280. Elsevier, North-Holland.
Sevaux, M. and Sörensen, K. (2008). Hamiltonian paths in large clustered routing problems. In Proceedings of the EU/MEeting

2008 workshop on Metaheuristics for Logistics and Vehicle Routing, EU/ME’08, pages 4:1–4:7, Troyes, France.
Tarjan, R. E. (1979). A class of algorithms which require nonlinear time to maintain disjoint sets. Journal of Computer and

System Sciences, 18(2), 110–127.
Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidi-

rectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational
Research, 261(2), 530–539.

Vidal, T., Battarra, M., Subramanian, A., and Erdoǧan, G. (2015). Hybrid metaheuristics for the clustered vehicle routing
problem. Computers & Operations Research, 58, 87–99.

Vigo, D. and Toth, P., editors (2014). Vehicle Routing. MOS-SIAM Series on Optimization. Society for Industrial and Applied
Mathematics, Philadelphia, PA.

Wolsey, L. A. (1998). Integer Programming. Wiley-Interscience, New York, NY.

24

This appendix is supposed to become online supplementary material.

Appendix

I. Detailed Results

I.1. Linear-Relaxation Results for the 32 Filtered GVRP Instances
Table 8 shows detailed instance-by-instance results for the 32 filtered GVRP instances per

labeling- and branch-and-cut-strategy as described in Section 5.2.

25

Instance
L
abeling-Strategies

B
ranch-&

-C
ut-Strategies

w
/o

w
/o

w
/o

w
/o

only
violation

reduction
D
SSR

+
n
g-

prim
al

m
ono-

+Prim
θ

Set
n

k
N

m
default

of
ST

I
(reduce

=
false)

path
relax.

heuristic
directional

Pure
+Prim

+Label
+Label

2
A

32
5

17
3

193.3
311.2

163.4
3600.0

116.8
127.0

3.6
1.1

2.1
1.5

A
32

6
17

3
1268.5

3164.2
3394.2

3600.0
2220.2

2368.4
3.8

2.9
9.6

4.5
A

33
5

17
3

984.5
2302.1

1728.0
3600.0

2672.3
3600.0

4.3
1.2

14.9
5.3

A
36

6
19

3
3596.3

3600.0
1709.4

3600.0
3600.0

3600.0
8.2

4.0
93.1

32.1
A

37
5

19
3

942.4
3600.0

1195.6
3600.0

1382.5
3600.0

6.7
1.4

10.5
4.4

A
44

6
23

4
1159.4

3370.9
3600.0

3600.0
3440.2

3567.0
7.8

4.1
8.3

4.4
A

54
9

28
5

1053.0
1100.1

3600.0
3600.0

3600.0
3600.0

28.2
3.8

232.3
45.1

B
30

5
16

3
132.3

145.5
92.3

3600.0
210.1

129.3
3.0

1.1
6.0

5.0
B

34
5

18
3

1599.7
1671.4

3600.0
3600.0

3600.0
3600.0

7.3
2.8

5.1
2.1

B
37

6
19

3
531.1

576.7
1587.0

3600.0
557.6

3600.0
7.8

1.6
5.3

1.4
B

43
7

22
4

2639.6
2827.9

3464.0
3600.0

3600.0
3600.0

12.7
3.3

15.1
5.5

B
44

5
23

3
957.7

1022.2
3600.0

3600.0
3600.0

3600.0
14.9

4.8
33.6

5.2
B

49
7

25
4

756.7
815.8

3600.0
3600.0

3600.0
176.1

12.3
1.3

38.3
3.8

B
50

7
26

4
463.8

504.9
3600.0

3600.0
1652.5

3600.0
29.8

9.7
161.3

51.5

P
15

8
8

5
<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

0.1
0.1

0.1
0.1

P
18

2
10

2
0.2

0.8
1.3

3.9
0.7

0.5
0.2

0.1
0.1

<
0.1

P
19

2
10

2
4.8

10.5
14.9

679.3
6.7

4.7
0.2

<
0.1

0.1
0.1

P
20

2
11

2
9.4

11.2
27.6

982.7
7.4

1.6
0.2

0.1
0.1

0.1
P

21
2

11
2

15.6
26.0

42.9
3600.0

42.4
17.3

0.1
0.1

0.5
0.1

P
21

8
11

5
0.1

<
0.1

<
0.1

<
0.1

0.1
<
0.1

0.1
0.1

0.2
0.2

P
22

8
12

5
0.1

<
0.1

<
0.1

0.1
<
0.1

<
0.1

0.6
0.3

0.3
0.2

P
49

10
25

5
3600.0

3600.0
3600.0

3600.0
3600.0

3257.1
19.2

11.2
64.7

58.2
P

50
10

26
6

369.4
1225.1

488.6
3600.0

1117.6
328.3

10.1
2.9

26.0
15.4

P
54

10
28

5
3117.1

3600.0
3600.0

3600.0
3600.0

3452.9
26.2

4.7
136.9

11.1
P

54
15

28
8

47.9
58.9

42.8
2188.7

59.1
16.0

20.2
12.9

19.9
7.8

P
59

15
30

8
105.5

192.7
240.1

3600.0
239.4

74.6
14.0

6.3
16.1

10.3

3
B

30
5

11
2

1708.0
1841.8

3601.1
3600.0

2336.2
3600.0

2.0
0.5

370.2
8.9

B
38

5
13

2
3600.0

3600.0
3600.0

3600.0
3600.0

3600.0
2.5

0.2
3600.0

23.9

P
15

8
6

4
<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

<
0.1

P
21

8
8

4
<
0.1

0.1
0.1

0.1
<
0.1

<
0.1

0.1
0.2

0.2
0.2

P
22

8
8

3
0.1

0.2
0.1

0.2
0.3

0.1
0.5

0.1
0.6

0.2
P

54
15

19
6

68.1
80.8

38.9
3600.0

141.6
37.1

4.7
1.6

13.6
7.2

A
v
g
.
T

903.9
1226.9

1569.7
2595.5

1518.9
1661.2

7.9
2.6

152.7
9.9

G
eo
.
T

60.0
79.7

95.9
321.3

94.8
73.3

2.5
0.9

5.7
1.9

T
able

8:
D
etailed

results
for

32
filtered

GVRP
instances:

T
im

e
T

(in
seconds)

per
labeling-

and
branch-and-cut-strategy

for
solving

the
linear

relaxation.

26

I.2. Detailed Results for the GVRP Instances
Detailed instance-by-instance results of the branch-and-price with the default branch-and-cut

strategy are given in Tables 9 to 12. We describe the instance (number of customers n, number
of vehicles k in the original CVRP instance, number of customer clusters N , number of vehicles
m, and average cluster size θ) and additionally provide the following information:

BKS: Best known solution, bold if proven optimal;
Gap to CluVRP : Gap in percent between optimal CluVRP and SoftCluVRP solutions, see

Section 5.6;
First found by : Article that first computed the BKS

(Bat14=Battarra et al. (2014), DS17=Defryn and Sörensen (2017), Vidal15=Vidal
et al. (2015), B&P=this work);

LB root: Lower bound provided by the linear relaxation;
LB tree: Lower bound provided by branch-and-price;

UB: Upper bound provided by branch-and-price;
#B&B nodes: Number of branch-and-bound nodes explored;

Time T : Computation time (in seconds).
Furthermore, for the column First found by and our branch-and-price-algorithm we give the

following information:
B&P: this work with the default branch-and-cut pricing (+Prim);
B&P*: found during computational studies with another variant (6= +Prim);
B&P♦: as B&P*, but with an extended time limit (7200 seconds);
B&P†: as B&P, but with an extended time limit (up to 36,000 seconds).

Regarding BKS and optimal solutions, recall that the SoftCluVRP is a relaxation of the
CluVRP. Any lower bound for the SoftCluVRP is also a lower bound for the respective CluVRP.
The same holds for upper bounds of the CluVRP that are upper bounds for the respective
SoftCluVRP. Therefore, the heuristics of Defryn and Sörensen (2017) and Vidal et al. (2015)
as well as the exact approach for the CluVRP by Battarra et al. (2014) provide upper bounds
that may be BKS or may even prove optimality of our solutions when the branch-and-price is
stopped at the time limit. Note that here, in all cases the optimal solution is known, the proof of
optimality is given by our branch-and-price algorithm, also if this solution was found by Defryn
and Sörensen (2017), Vidal et al. (2015), or Battarra et al. (2014) before.

27

Instance Branch-and-Price results

Gap to First LB LB #B&B
n k N m BKS CluVRP found by root tree UB nodes Time T

A 31 5 16 2 595 - B&P 595 595 595 1 7
A 32 5 17 3 528 - B&P 517 528 528 17 12
A 32 6 17 3 561 - B&P 560 561 561 4 5
A 33 5 17 3 568 - B&P 562 568 568 14 13
A 35 5 18 2 596 - B&P 589 596 596 12 65
A 36 5 19 3 573 - B&P 571 573 573 5 6
A 36 6 19 3 660 - B&P 660 660 660 1 4
A 37 5 19 3 547 - B&P 547 547 547 1 1
A 38 5 20 3 659 - B&P 639 659 659 37 78
A 38 6 20 3 676 - B&P 658 676 676 41 78
A 43 6 22 3 723 - B&P 722 723 723 3 23
A 44 6 23 4 679 - B&P 679 679 679 1 4
A 44 7 23 4 774 - B&P 761 774 774 60 242
A 45 7 23 4 708 - B&P 685 708 708 143 209
A 47 7 24 4 784 - B&P 760 784 784 356 1431
A 52 7 27 4 732 - B&P 707 732 732 68 285
A 53 7 27 4 806 - B&P 797 806 806 26 265
A 54 9 28 5 778 - B&P 765 778 778 25 84
A 59 9 30 5 877 - B&P 860 877 877 133 2010
A 60 9 31 5 749 - B&P 744 749 749 14 142
A 61 8 31 4 849 - B&P 838 849 849 34 839
A 62 9 32 5 1043 - B&P 1030 1043 1043 123 3159
A 62 10 32 5 895 - B&P 882 895 895 55 512
A 63 9 32 5 895 - B&P 886 895 895 41 1132
A 64 9 33 5 825 - B&P 800 825 825 313 2544
A 68 9 35 5 857 - B&P 838 857 857 337 2506
A 79 10 40 5 1115 - B&P 1110 1113 1115 30 3600

B 30 5 16 3 451 - B&P 449 451 451 7 7
B 33 5 17 3 495 - B&P 484 495 495 17 26
B 34 5 18 3 654 - B&P 613 654 654 23 27
B 37 6 19 3 479 - B&P 479 479 479 2 3
B 38 5 20 3 378 - B&P 372 378 378 3 5
B 40 6 21 3 514 - B&P 509 514 514 3 13
B 42 6 22 3 522 - B&P 498 522 522 320 897
B 43 7 22 4 562 - B&P 531 562 562 183 363
B 44 5 23 3 542 - B&P 542 542 542 2 7
B 44 6 23 4 506 - B&P 491 506 506 73 141
B 49 7 25 4 495 - B&P 495 495 495 1 1
B 49 8 25 5 954 - B&P♦ 904 938 958 981 3600
B 50 7 26 4 672 - B&P 661 672 672 37 123
B 51 7 26 4 485 - B&P 471 485 485 57 224
B 55 7 28 4 520 - B&P 457 476 520 972 3600
B 56 7 29 4 777 - B&P* 716 744 781 317 3600
B 56 9 29 5 983 - B&P 980 983 983 33 251
B 62 10 32 5 865 - B&P 850 865 865 50 1402
B 63 9 32 5 550 - B&P 550 550 550 1 21
B 65 9 33 5 850 - B&P♦ 827 836 869 186 3600
B 66 10 34 5 725 - B&P♦ 682 699 736 587 3600
B 67 9 34 5 745 - B&P 744 745 745 8 293
B 77 10 39 5 842 - B&P♦ 815 832 849 130 3600

Table 9: Detailed results for the GVRP-2 instances, subsets A and B.

28

Instance Branch-and-Price results

Gap to First LB LB #B&B
n k N m BKS CluVRP found by root tree UB nodes Time T

P 15 8 8 5 299 - B&P 299 299 299 1 <1
P 18 2 10 2 195 - B&P 195 195 195 1 <1
P 19 2 10 2 208 - B&P 208 208 208 2 <1
P 20 2 11 2 208 - B&P 208 208 208 1 <1
P 21 2 11 2 209 - B&P 209 209 209 1 <1
P 21 8 11 5 397 - B&P 397 397 397 1 <1
P 22 8 12 5 369 - B&P 366 369 369 8 2
P 39 5 20 3 401 - B&P 400 401 401 7 10
P 44 5 23 3 443 - B&P 443 443 443 1 5
P 49 7 25 4 464 - B&P 458 464 464 46 119
P 49 8 25 4 501 - B&P 490 501 501 24 230
P 49 10 25 5 512 - B&P 509 512 512 20 56
P 50 10 26 6 548 - B&P 545 548 548 13 21
P 54 7 28 4 477 - B&P 477 477 477 1 8
P 54 8 28 4 484 - B&P 480 484 484 8 40
P 54 10 28 5 514 - B&P 514 514 514 1 5
P 54 15 28 8 684 - B&P 681 684 684 18 70
P 59 10 30 5 575 - B&P 564 575 575 84 725
P 59 15 30 8 700 - B&P 692 700 700 118 216
P 64 10 33 5 616 - B&P 611 616 616 28 291
P 69 10 35 5 643 - B&P 635 643 643 71 934
P 75 4 38 2 557 - B&P 555 557 557 34 2745
P 75 5 38 3 571 - B&P 567 571 571 49 2311
P 100 4 51 2 646 - B&P♦ 645 645 - 1 3600

G 261 25 131 12 3693 - Vidal15 - - - 0 3600
C 100 10 51 5 628 2.18 B&P 626 628 628 4 569
C 120 7 61 4 807 - Bat14 - - - 0 3600
C 150 12 76 6 816 - Bat14 - - - 0 3600
C 199 16 100 8 955 - Bat14 - - - 0 3600

Table 10: Detailed results for the GVRP-2 instances, subsets P and GC.

29

Instance Branch-and-Price results

Gap to First LB LB #B&B
n k N m BKS CluVRP found by root tree UB nodes Time T

A 31 5 11 2 515 1.34 DS17 515 515 515 1 <1
A 32 5 11 2 461 2.33 DS17 461 461 461 1 <1
A 32 6 11 2 554 1.42 DS17 551 554 554 3 2
A 33 5 12 2 538 1.65 DS17 529 538 538 11 6
A 35 5 12 2 543 7.65 DS17 535 543 543 8 6
A 36 5 13 2 545 4.22 B&P 545 545 545 16 11
A 36 6 13 2 605 1.63 DS17 603 605 605 3 6
A 37 5 13 2 507 0.00 Bat14 500 507 507 4 5
A 38 5 13 2 588 3.61 DS17 568 588 588 15 13
A 38 6 13 2 603 1.63 DS17 595 603 603 7 6
A 43 6 15 2 691 3.22 DS17 686 691 691 3 27
A 44 6 15 3 652 8.43 DS17 652 652 652 1 2
A 44 7 15 3 661 0.45 DS17 651 661 661 9 29
A 45 7 16 3 642 3.31 DS17 641 642 642 5 12
A 47 7 16 3 680 0.44 DS17 674 680 680 28 57
A 52 7 18 3 627 3.69 DS17 625 627 627 3 14
A 53 7 18 3 699 3.45 DS17 679 699 699 51 143
A 54 9 19 3 645 1.23 DS17 645 645 645 1 9
A 59 9 20 3 762 3.18 DS17 761 762 762 3 29
A 60 9 21 4 671 1.61 DS17 671 671 671 3 23
A 61 8 21 3 771 0.9 DS17 761 771 771 36 404
A 62 10 21 4 779 2.75 DS17 779 779 779 1 13
A 62 9 21 3 837 3.24 DS17 837 837 837 1 43
A 63 9 22 3 767 0.78 DS17 754 767 767 54 585
A 64 9 22 3 693 4.41 DS17 693 693 693 1 14
A 68 9 23 3 794 2.46 DS17 779 794 794 31 603
A 79 10 27 4 944 2.88 DS17 944 944 944 1 178

B 30 5 11 2 375 0.00 Bat14 366 375 375 13 4
B 33 5 12 2 415 0.24 DS17 397 415 415 19 5
B 34 5 12 2 557 0.89 DS17 526 557 557 44 18
B 37 6 13 2 427 0.93 DS17 427 427 427 1 3
B 38 5 13 2 317 1.25 DS17 317 317 317 1 <1
B 40 6 14 2 469 1.47 DS17 461 469 469 8 12
B 42 6 15 2 405 2.41 DS17 400 405 405 3 8
B 43 7 15 3 443 0.89 DS17 435 443 443 3 7
B 44 5 15 2 489 3.36 DS17 489 489 489 1 3
B 44 6 15 2 386 1.28 DS17 386 386 386 1 4
B 49 7 17 3 464 0.64 DS17 454 464 464 7 16
B 49 8 17 3 661 0.75 DS17 661 661 661 1 5
B 50 7 17 3 578 1.2 DS17 567 578 578 9 17
B 51 7 18 3 427 0.00 Bat14 421 427 427 3 11
B 55 7 19 3 420 3 DS17 416 420 420 4 16
B 56 7 19 3 622 1.89 DS17 582 622 622 138 437
B 56 9 19 3 746 0.93 DS17 709 746 746 505 1606
B 62 10 21 3 685 0.00 Bat14 685 685 685 1 21
B 63 9 22 4 524 0.38 DS17 522 524 524 5 32
B 65 9 22 3 683 0.58 DS17 666 683 683 30 252
B 66 10 23 4 619 1.12 DS17 610 619 619 11 72
B 67 9 23 3 582 1.02 DS17 582 582 582 1 25
B 77 10 26 4 704 2.36 DS17 679 704 704 91 1109

Table 11: Detailed results for the GVRP-3 instances, subsets A and B.

30

Instance Branch-and-Price results

Gap to First LB LB #B&B
n k N m BKS CluVRP found by root tree UB nodes Time T

P 15 8 6 4 251 0.79 DS17 251 251 251 1 <1
P 18 2 7 1 170 8.6 DS17 170 170 170 1 <1
P 19 2 7 1 177 11.5 DS17 177 177 177 1 <1
P 20 2 7 1 179 5.79 DS17 179 179 179 1 <1
P 21 2 8 1 183 9.41 DS17 183 183 183 1 <1
P 21 8 8 4 365 0.00 Bat14 365 365 365 1 <1
P 22 8 8 3 270 3.23 DS17 264 270 270 4 <1
P 39 5 14 2 381 3.79 DS17 380 381 381 8 8
P 44 5 15 2 422 4.09 DS17 422 422 422 1 2
P 49 7 17 3 430 3.8 DS17 430 430 430 1 4
P 49 8 17 3 441 4.13 DS17 441 441 441 1 3
P 49 10 17 4 471 4.07 DS17 470 471 471 3 5
P 50 10 17 4 493 8.19 DS17 493 493 493 1 2
P 54 7 19 3 454 1.73 B&P 453 454 454 4 21
P 54 8 19 3 454 3.61 B&P 454 454 454 2 9
P 54 10 19 4 481 3.8 DS17 481 481 481 2 4
P 54 15 19 6 572 3.87 DS17 570 572 572 9 9
P 59 10 20 4 534 3.26 B&P 530 534 534 21 61
P 59 15 20 5 591 3.27 DS17 585 591 591 14 39
P 64 10 22 4 575 7.11 B&P 575 575 575 1 8
P 69 10 24 4 602 6.38 DS17 602 602 602 1 30
P 75 4 26 2 556 4.3 B&P 554 556 556 20 382
P 75 5 26 2 556 4.3 DS17 556 556 556 1 71
P 100 4 34 2 649 4.42 DS17 648 649 649 6 1899

G 261 25 88 9 3196 - DS17 - - - 0 3600
C 100 10 34 4 598 1.48 DS17 592 598 598 49 1707
C 120 7 41 3 681 - DS17 - - - 0 3600
C 150 12 51 4 756 5.97 B&P† - - - 0 3600
C 199 16 67 6 874 - DS17 - - - 0 3600

Table 12: Detailed results for the GVRP-3 instances, subsets P and GC.

31

I.3. Detailed Results for the Golden-Bat Instances
Detailed results for the Golden-Bat instances are given in Tables 13 to 16, analogous to

Section I.2 (without the number of vehicles k in the original CVRP instance).

32

Instance Branch-and-Price results

Gap to First LB LB #B&B Time
n N m BKS CluVRP found by root tree UB nodes T

Golden1 240 17 4 4640 3.95 B&P 4640 4640 4640 1 304
Golden1 240 18 4 4645 - B&P 4610 4614 4645 10 3600
Golden1 240 19 4 4650 - B&P 4621 4623 4650 6 3600
Golden1 240 21 4 4650 - B&P† 4621 4621 - 4 3600
Golden1 240 22 4 4677 - B&P† 4625 4625 - 3 3600
Golden1 240 25 4 4734 - DS17 4609 4609 - 1 3600
Golden1 240 27 4 4708 - B&P† 4620 4620 - 2 3600
Golden1 240 31 4 4766 - DS17 4632 4632 - 1 3600
Golden1 240 35 4 4720 - DS17 - - - 0 3600
Golden1 240 41 4 4710 - DS17 - - - 0 3600
Golden1 240 49 4 4670 - DS17 - - - 0 3600

Golden2 320 22 4 7434 - B&P† - - - 0 3600
Golden2 320 23 4 7369 4.21 B&P 7369 7369 7369 1 2836
Golden2 320 25 4 7369 - B&P† - - - 0 3600
Golden2 320 27 4 7480 - DS17 - - - 0 3600
Golden2 320 30 4 7485 - DS17 - - - 0 3600
Golden2 320 33 4 7471 - DS17 - - - 0 3600
Golden2 320 36 4 7447 - DS17 - - - 0 3600
Golden2 320 41 4 7450 - DS17 - - - 0 3600
Golden2 320 46 4 7497 - DS17 - - - 0 3600
Golden2 320 54 4 7487 - DS17 - - - 0 3600
Golden2 320 65 4 7477 - DS17 - - - 0 3600

Golden3 400 27 4 10389 - DS17 - - - 0 3600
Golden3 400 29 4 10232 - DS17 - - - 0 3600
Golden3 400 31 4 10273 - DS17 - - - 0 3600
Golden3 400 34 4 10292 - DS17 - - - 0 3600
Golden3 400 37 4 10255 - DS17 - - - 0 3600
Golden3 400 41 4 10275 - DS17 - - - 0 3600
Golden3 400 45 4 10252 - DS17 - - - 0 3600
Golden3 400 51 4 10292 - DS17 - - - 0 3600
Golden3 400 58 4 10350 - DS17 - - - 0 3600
Golden3 400 67 4 10289 - DS17 - - - 0 3600
Golden3 400 81 4 10311 - DS17 - - - 0 3600

Golden4 480 33 4 13119 - DS17 - - - 0 3600
Golden4 480 35 4 13205 - DS17 - - - 0 3600
Golden4 480 37 4 13092 - DS17 - - - 0 3600
Golden4 480 41 4 13011 - DS17 - - - 0 3600
Golden4 480 44 4 13115 - DS17 - - - 0 3600
Golden4 480 49 4 13133 - DS17 - - - 0 3600
Golden4 480 54 4 13124 - DS17 - - - 0 3600
Golden4 480 61 4 13190 - DS17 - - - 0 3600
Golden4 480 69 4 13294 - DS17 - - - 0 3600
Golden4 480 81 4 13235 - DS17 - - - 0 3600
Golden4 480 97 4 13350 - DS17 - - - 0 3600

Golden5 200 14 4 6970 8.55 B&P 6970 6970 6970 1 212
Golden5 200 15 3 6742 9.19 B&P 6742 6742 6742 1 280
Golden5 200 16 3 6742 10 B&P 6742 6742 6742 1 142
Golden5 200 17 3 6862 7.69 B&P 6862 6862 6862 1 380
Golden5 200 19 4 6874 9.27 B&P 6874 6874 6874 1 180
Golden5 200 21 4 6816 10.27 B&P 6816 6816 6816 1 666
Golden5 200 23 4 6750 11.68 B&P 6750 6750 6750 1 260
Golden5 200 26 4 6704 11.32 B&P 6704 6704 6704 1 647
Golden5 200 29 4 6704 9.53 B&P 6704 6704 6704 1 779
Golden5 200 34 4 6684 10.03 B&P* - - - 0 3600
Golden5 200 41 4 6557 9.45 B&P 6557 6557 6557 1 2010

Table 13: Detailed results for the Golden-Bat instances 1-5.

33

Instance Branch-and-Price results

Gap to First LB LB #B&B Time
n N m BKS CluVRP found by root tree UB nodes T

Golden6 280 19 3 8115 5.9 B&P 8115 8115 8115 1 1110
Golden6 280 21 3 8119 5.9 B&P 8119 8119 8119 1 901
Golden6 280 22 3 8107 6.23 B&P 8107 8107 8107 1 1053
Golden6 280 24 4 8316 6.07 B&P 8316 8316 8316 1 2491
Golden6 280 26 4 8249 7.42 B&P 8249 8249 8249 1 2568
Golden6 280 29 4 8395 - DS17 - - - 0 3600
Golden6 280 32 4 8290 - DS17 - - - 0 3600
Golden6 280 36 4 8383 - DS17 - - - 0 3600
Golden6 280 41 4 8405 - DS17 - - - 0 3600
Golden6 280 47 4 8349 - DS17 - - - 0 3600
Golden6 280 57 4 8461 - DS17 - - - 0 3600

Golden7 360 25 3 9318 5.92 B&P† - - - 0 3600
Golden7 360 26 3 9295 6 B&P† - - - 0 3600
Golden7 360 28 3 9581 - DS17 - - - 0 3600
Golden7 360 31 4 9418 6.02 B&P† - - - 0 3600
Golden7 360 33 4 9685 - DS17 - - - 0 3600
Golden7 360 37 4 9395 7.26 B&P† - - - 0 3600
Golden7 360 41 4 9664 - DS17 - - - 0 3600
Golden7 360 46 4 9642 - DS17 - - - 0 3600
Golden7 360 52 4 9694 - DS17 - - - 0 3600
Golden7 360 61 4 9713 - DS17 - - - 0 3600
Golden7 360 73 4 9602 - DS17 - - - 0 3600

Golden8 440 30 4 10651 - DS17 - - - 0 3600
Golden8 440 32 4 10640 - DS17 - - - 0 3600
Golden8 440 34 4 10682 - DS17 - - - 0 3600
Golden8 440 37 4 10660 - DS17 - - - 0 3600
Golden8 440 41 4 10692 - DS17 - - - 0 3600
Golden8 440 45 4 10667 - DS17 - - - 0 3600
Golden8 440 49 4 10732 - DS17 - - - 0 3600
Golden8 440 56 4 10726 - DS17 - - - 0 3600
Golden8 440 63 4 10747 - DS17 - - - 0 3600
Golden8 440 74 4 10755 - DS17 - - - 0 3600
Golden8 440 89 4 10714 - DS17 - - - 0 3600

Golden9 255 18 4 281 6.33 B&P 280 281 281 19 1287
Golden9 255 19 4 279 6.69 B&P 279 279 279 2 209
Golden9 255 20 4 276 6.76 B&P 276 276 276 1 112
Golden9 255 22 4 276 4.83 B&P 276 276 276 1 217
Golden9 255 24 4 276 4.83 B&P 276 276 276 1 175
Golden9 255 26 4 273 5.21 B&P 273 273 273 3 465
Golden9 255 29 4 273 6.51 B&P 273 273 273 1 985
Golden9 255 32 4 273 8.08 B&P 273 273 273 1 1650
Golden9 255 37 4 273 7.14 B&P* 273 273 - 7 3600
Golden9 255 43 4 281 - DS17 270 270 - 3 3600
Golden9 255 52 4 279 - DS17 - - - 0 3600

Golden10 323 22 4 346 5.72 B&P 346 346 346 2 923
Golden10 323 24 4 346 4.16 B&P 346 346 346 3 1014
Golden10 323 25 4 346 3.62 B&P 346 346 346 6 1114
Golden10 323 27 4 346 4.16 B&P 346 346 346 4 1360
Golden10 323 30 4 347 5.45 B&P 347 347 347 2 1848
Golden10 323 33 4 344 7.77 B&P 344 344 344 1 2725
Golden10 323 36 4 344 10.65 B&P† - - - 0 3600
Golden10 323 41 4 363 - DS17 - - - 0 3600
Golden10 323 47 4 360 - DS17 - - - 0 3600
Golden10 323 54 4 357 - DS17 - - - 0 3600
Golden10 323 65 4 354 - DS17 - - - 0 3600

Table 14: Detailed results for the Golden-Bat instances 6-10.

34

Instance Branch-and-Price results

Gap to First LB LB #B&B Time
n N m BKS CluVRP found by root tree UB nodes T

Golden11 399 27 5 434 5.03 B&P† 434 434 - 5 3600
Golden11 399 29 5 434 4.62 B&P* 434 434 - 3 3600
Golden11 399 31 5 433 4.84 B&P 433 433 433 1 2661
Golden11 399 34 5 427 6.15 B&P† - - - 0 3600
Golden11 399 37 5 444 - DS17 - - - 0 3600
Golden11 399 40 5 444 - DS17 - - - 0 3600
Golden11 399 45 5 442 - DS17 - - - 0 3600
Golden11 399 50 5 442 - DS17 - - - 0 3600
Golden11 399 58 5 445 - DS17 - - - 0 3600
Golden11 399 67 5 446 - DS17 - - - 0 3600
Golden11 399 80 5 446 - DS17 - - - 0 3600

Golden12 483 33 5 529 - DS17 - - - 0 3600
Golden12 483 35 5 531 - DS17 - - - 0 3600
Golden12 483 38 5 531 - DS17 - - - 0 3600
Golden12 483 41 5 532 - DS17 - - - 0 3600
Golden12 483 44 5 530 - DS17 - - - 0 3600
Golden12 483 49 5 533 - Bat14 - - - 0 3600
Golden12 483 54 5 535 - Bat14 - - - 0 3600
Golden12 483 61 5 535 - Vidal15 - - - 0 3600
Golden12 483 70 5 533 - Vidal15 - - - 0 3600
Golden12 483 81 5 535 - Vidal15 - - - 0 3600
Golden12 483 97 5 544 - Vidal15 - - - 0 3600

Golden13 252 17 4 530 3.99 B&P 530 530 530 1 116
Golden13 252 19 4 521 5.1 B&P 521 521 521 1 189
Golden13 252 20 4 521 4.93 B&P 521 521 521 1 192
Golden13 252 22 4 523 4.56 B&P 523 523 523 1 203
Golden13 252 23 4 523 4.56 B&P 523 523 523 1 215
Golden13 252 26 4 523 3.51 B&P 523 523 523 1 118
Golden13 252 29 4 522 3.33 B&P 522 522 522 5 1483
Golden13 252 32 4 521 4.05 B&P 521 521 521 1 286
Golden13 252 37 4 521 4.4 B&P 521 521 521 3 2305
Golden13 252 43 4 521 5.79 B&P† - - - 0 3600
Golden13 252 51 4 532 - DS17 - - - 0 3600

Golden14 320 22 4 665 3.9 B&P 665 665 665 3 1814
Golden14 320 23 4 662 3.78 B&P 662 662 662 2 752
Golden14 320 25 4 660 2.65 B&P 660 660 660 1 637
Golden14 320 27 4 660 2.37 B&P 660 660 660 11 3067
Golden14 320 30 4 660 2.65 B&P† 660 660 - 5 3600
Golden14 320 33 4 672 - DS17 660 660 - 3 3600
Golden14 320 36 4 668 - DS17 - - - 0 3600
Golden14 320 41 4 658 4.64 B&P† - - - 0 3600
Golden14 320 46 4 676 - DS17 - - - 0 3600
Golden14 320 54 4 674 - DS17 - - - 0 3600
Golden14 320 65 4 679 - DS17 - - - 0 3600

Golden15 396 27 4 825 - DS17 - - - 0 3600
Golden15 396 29 4 825 - DS17 815 815 - 1 3600
Golden15 396 31 4 813 2.87 B&P 813 813 813 2 3176
Golden15 396 34 4 826 - DS17 - - - 0 3600
Golden15 396 37 4 826 - DS17 - - - 0 3600
Golden15 396 40 4 830 - DS17 - - - 0 3600
Golden15 396 45 5 834 - DS17 - - - 0 3600
Golden15 396 50 5 839 - DS17 - - - 0 3600
Golden15 396 57 5 838 - DS17 - - - 0 3600
Golden15 396 67 5 840 - DS17 - - - 0 3600
Golden15 396 80 5 843 - DS17 - - - 0 3600

Table 15: Detailed results for the Golden-Bat instances 11-15.

35

Instance Branch-and-Price results

Gap to First LB LB #B&B Time
n N m BKS CluVRP found by root tree UB nodes T

Golden16 480 33 5 1013 - DS17 - - - 0 3600
Golden16 480 35 5 1011 - DS17 - - - 0 3600
Golden16 480 37 5 1007 - DS17 - - - 0 3600
Golden16 480 41 5 1013 - DS17 - - - 0 3600
Golden16 480 44 5 1018 - DS17 - - - 0 3600
Golden16 480 49 5 1014 - DS17 - - - 0 3600
Golden16 480 54 5 1012 - DS17 - - - 0 3600
Golden16 480 61 5 1012 - DS17 - - - 0 3600
Golden16 480 69 5 1012 - Bat14 - - - 0 3600
Golden16 480 81 5 1017 - DS17 - - - 0 3600
Golden16 480 97 5 1018 - Bat14 - - - 0 3600

Golden17 240 17 3 386 7.66 B&P 386 386 386 1 132
Golden17 240 18 3 385 8.11 B&P 385 385 385 1 290
Golden17 240 19 3 385 8.77 B&P 385 385 385 1 220
Golden17 240 21 3 385 9.41 B&P 385 385 385 2 457
Golden17 240 22 3 385 9.2 B&P 385 385 385 1 372
Golden17 240 25 3 382 8.61 B&P 382 382 382 1 487
Golden17 240 27 3 382 7.73 B&P 382 382 382 3 1039
Golden17 240 31 4 390 7.36 B&P 390 390 390 1 661
Golden17 240 35 4 396 - B&P† 389 389 - 2 3600
Golden17 240 41 4 388 5.83 B&P† - - - 0 3600
Golden17 240 49 4 396 - DS17 - - - 0 3600

Golden18 300 21 4 558 5.74 B&P 558 558 558 1 694
Golden18 300 22 4 558 6.06 B&P 558 558 558 1 781
Golden18 300 24 4 558 5.74 B&P 558 558 558 1 831
Golden18 300 26 4 562 4.75 B&P 562 562 562 1 974
Golden18 300 28 4 558 3.29 B&P* - - - 0 3600
Golden18 300 31 4 554 4.15 B&P 554 554 554 1 2450
Golden18 300 34 4 554 4.81 B&P 554 554 554 1 1992
Golden18 300 38 4 555 5.29 B&P† - - - 0 3600
Golden18 300 43 4 573 - DS17 - - - 0 3600
Golden18 300 51 4 575 - DS17 - - - 0 3600
Golden18 300 61 4 574 - DS17 - - - 0 3600

Golden19 360 25 10 886 4.22 B&P 886 886 886 1 538
Golden19 360 26 10 888 3.9 B&P 888 888 888 1 1208
Golden19 360 28 4 741 8.29 B&P 741 741 741 1 1479
Golden19 360 31 4 735 9.37 B&P* - - - 0 3600
Golden19 360 33 4 727 8.78 B&P 727 727 727 1 2719
Golden19 360 37 5 732 8.39 B&P 732 732 732 1 2612
Golden19 360 41 5 730 7.48 B&P† - - - 0 3600
Golden19 360 46 5 752 - DS17 - - - 0 3600
Golden19 360 52 5 730 8.75 B&P† - - - 0 3600
Golden19 360 61 5 763 - DS17 - - - 0 3600
Golden19 360 73 5 763 - DS17 - - - 0 3600

Golden20 420 29 11 1170 4.1 B&P 1170 1170 1170 1 1099
Golden20 420 31 12 1183 3.98 B&P 1183 1183 1183 1 1080
Golden20 420 33 12 1175 2.73 B&P 1175 1175 1175 1 2381
Golden20 420 36 5 1033 - DS17 - - - 0 3600
Golden20 420 39 5 1025 - DS17 - - - 0 3600
Golden20 420 43 5 1017 - DS17 - - - 0 3600
Golden20 420 47 5 1023 - DS17 - - - 0 3600
Golden20 420 53 5 1022 - DS17 - - - 0 3600
Golden20 420 61 5 1021 - DS17 - - - 0 3600
Golden20 420 71 5 1025 - DS17 - - - 0 3600
Golden20 420 85 5 1018 - DS17 - - - 0 3600

Table 16: Detailed results for the Golden-Bat instances 16-20.

36

	Introduction
	Three-Index, Extensive, and Subproblem Formulation
	Three-Index Formulation
	Extensive Route-Based Formulation
	Subproblem Formulation

	Solution of the Subproblem
	Labeling Algorithms
	Monodirectional Labeling
	Bidirectional Labeling
	Manipulation of the Cost Matrix
	Heuristic Pricing and Acceleration Techniques
	Comparison with Pickup-and-Delivery Problems

	Branch-and-Cut
	Primal Heuristic

	Branch-and-Price
	Pricing Strategies
	Branching

	Computational Results
	SoftCluVRP Benchmark Instances
	Comparison of Labeling Strategies
	Comparison of Pricing Strategies including Branch-and-Cut
	Comparison of Labeling-based and Branch-and-Cut-based Pricing
	Results for the Golden-Bat Instances
	Comparison of CluVRP and SoftCluVRP Solutions

	Conclusions
	Detailed Results
	Linear-Relaxation Results for the 32 Filtered GVRP Instances
	Detailed Results for the GVRP Instances
	Detailed Results for the Golden-Bat Instances

