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Abstract

This work addresses line planning for inter-city bus networks, which requires a high level of integra-
tion with other planning steps. One key reason is given by passengers choosing a specific timetabled
service rather than just a line, as is typically the case in urban transportation. Schedule-based
modeling approaches are required to incorporate this aspect, i.e., demand is assigned to a specific
timetabled service. Furthermore, in liberalized markets, there is usually fierce competition within
and across modes. This encourages considering dynamic demand, i.e., not relying on static demand
values, but adjusting them based on the trip characteristics.

We provide a schedule-based mixed-integer model formulation allowing a bus operator to opti-
mize multiple timetabled services in a travel corridor with simultaneous decisions on both departure
time and which stations to serve. The demand behaves dynamically with respect to departure time,
trip duration, trip frequency, and cannibalization. To solve this new problem formulation, we intro-
duce a large multiple neighborhood search (LMNS) as an overall metaheuristic approach, together
with multiple variations including matheuristics. Applying the LMNS algorithm, we solve instances
based on real-world data from the German market. Computation times are attractive and the high
quality of the solutions is confirmed by analyzing examples with known optimal solutions. More-
over, we show that the explicit consideration of the dependencies between the different timetabled
services often produces insightful new results that differ from approaches which only focus on a
single service.

Key words: integration, schedule-based modeling, inter-city bus transportation, dynamic
demand, large multiple neighborhood search LMNS

1. Introduction

The planning problem of designing a public transport system is highly complex and has not
yet been solved by a fully integrated approach. Traditionally, the problem has been tackled by a
sequential planning process (e.g. Desaulniers and Hickman, 2007; Ibarra-Rojas et al., 2015). In the
first step, the physical network is designed based on an expected demand profile. This is followed
by the selection of a line plan and frequencies. After that, a timetable is determined, which then
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serves as a base for the operational planning steps vehicle scheduling, crew scheduling, and crew
rostering.

In line planning for inter-city bus transportation, a high level of integration with other planning
steps is required. One key reason is given by passengers choosing a specific timetabled service
rather than just a line, as is typically the case in urban transportation. As a consequence, demand
modeling is linked with timetabling aspects. The modeling approach of assigning demand to spe-
cific timetabled services is referred to as schedule-based modeling. On top of this, in liberalized
markets, there is usually fierce competition within and across modes. This encourages considering
dynamic demand, i.e., not relying on static demand values, but adjusting the demand based on
the trip characteristics. This approach considers aspects such as sensitivity to travel times and
cannibalization explicitly.

While the schedule-based nature of demand has been considered on a predictive level in several
studies (e.g., in Cascetta and Coppola, 2016), prescriptive approaches are rare. In (Steiner and
Irnich, 2018), the authors present a schedule-based model allowing a bus operator to optimize a
single timetabled service in a travel corridor. The model simultaneously decides on departure time
and which stations to serve. Dynamic demand is considered in two ways: First, different times of the
day show different levels of demand to reflect typical travel patterns. Second, the number of possible
passengers depends on the duration of a trip, i.e., if there are more intermediate stations between
two cities, the demand for the trip will be lower. In this paper, we present an extension of this
model that can select multiple timetabled services simultaneously and considers interdependencies
between them.

Cities along a travel corridor can vary significantly in size, and therefore have different service
frequency requirements. As a consequence, we do not require every selected timetabled service to
stop at the exact same stations. Yet, this creates a need for also considering dynamic demand effects
that result from the different structures of the individual timetabled services. When developing
demand models in practice, we found that the two most important aspects for a pair of stations si
and sj are trip frequency and cannibalization, hence these are considered in the model we present.

We refer to the total number of timetabled services stopping at both stations si and sj during
the planning period in scope (e.g., one day) as trip frequency for the stations si and sj . The trip
frequency impacts the demand for a specific trip from si to sj in two ways. On the one hand, higher
trip frequencies increase overall attractiveness of the operator’s offer and thus increase the demand:
Customers who prefer to travel with this operator and check the offered trips of this operator first,
are more likely to find a suitable service. On the other hand, there is also a negative effect of higher
trip frequencies because passengers who travel with this operator anyway and are more flexible with
respect to the departure time can now distribute between more services. It is not clear a priori
which of these effects dominates the other. In fact, this depends on the specific trip frequencies,
stations, level of competition, customer groups, and further application-specific aspects. In any
case, we consider it favorable for a decision support model to capture these trip frequency effects
on the demand.

If two trips between the stations si and sj are offered by the same operator with departure
times close to each other, a cannibalization effect can be observed for the demand. Specifically,
passengers who would have taken either trip, can clearly only take one trip in case both are offered.
Again, it is not trivial to determine when departure times of such trips can be considered “close”,
nor how big these cannibalization effects will be. Yet, providing a network planning model covering
this aspect allows for linking with more sophisticated and potentially non-linear demand models.
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Altogether, we present a schedule-based mixed-integer linear model that allows us to determine
optimal stations and departure times for multiple timetabled services simultaneously. The model
includes a many-to-many demand structure which behaves dynamically with respect to departure
time, trip duration, trip frequency, and cannibalization. Note that the methods to generate high-
quality demand forecasts are not in scope of this paper, they are discussed briefly from a practical
perspective in Section 6 of (Steiner and Irnich, 2018) and more fundamentally in (Ortúzar and
Willumsen, 2011).

The problem formulation and the input data are based on an example from a German inter-city
bus carrier. Requirements and constraints of actual operations have been considered in defining the
modeling scope. However, due to the recent consolidation in the German inter-city bus market (e.g.
Fockenbrock and Heide, 2017), the collaboration was brought to an end before the model could be
applied in the regular planning process.

While the existing model for single timetabled services from (Steiner and Irnich, 2018) allows
for exact solutions in acceptable computation times, we doubt that the same can be achieved in
this extended context. This is due to the significant increase in model size caused by additionally
considering the dynamic demand effects with respect to trip frequency and cannibalization. Hence,
we present approaches based on metaheuristics and matheuristics for this purpose. We introduce a
large multiple neighborhood search (LMNS) as an overall metaheuristic approach. This is motivated
by the successful application of metaheuristics from the LNS family to similar problems, which we
discuss further in Section 2.2. Also, the structure of solutions allows for an intuitive definition of
operators adjusting existing timetabled services or stations within services. Further, having already
developed an optimization model and solution algorithm for single timetabled services, we analyze
whether efficient matheuristics based on this model can be designed. The structure of solutions fits
well with the general decomposition approach of matheuristics, which is discussed in (Ball, 2011):
Each solution is composed of single timetabled services, which induces an intuitive decomposition,
where each partial problem can be optimized by applying the existing model.

Applying the LMNS algorithm, we obtain solutions for instances based on real-world data from
the German market in attractive computation times. Example instances where we can determine
optimal solutions confirm the high quality of the heuristic solutions we obtain. Indeed, the optimal
solution is found for 101 out of 102 instances with known optimal solution. Moreover, we show
that the explicit consideration of the dependencies between the different timetabled services often
produces insightful new results that differ from approaches which only focus on a single service.

The remainder of this paper is structured as follows: We review the existing literature with
respect to integrated and schedule-based network planning as well as the algorithmic approach in
Section 2. The new model is presented in Section 3 and the solution approach, which is based on a
large multiple neighborhood search (LMNS), in Section 4. Subsequently, we discuss computational
performance and selected model outputs in Section 5. We conclude by summarizing our findings
and discussing possible next steps for research in schedule-based public transport planning and the
integration of planning steps in Section 6.

2. Literature review

This section is divided into three parts covering literature on integrated and schedule-based line
planning in Section 2.1, publications relevant from an algorithmic perspective in Section 2.2, and a
discussion of the positioning and contribution of this paper in Section 2.3.
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2.1. Integrated and schedule-based line planning
A comprehensive survey on the line planning step in public transportation was presented

by Schöbel (2011). The focus area of our paper is the integration of planning steps, in partic-
ular schedule-based approaches and considerations of dynamic demand. These aspects and relevant
references are discussed in detail in (Steiner and Irnich, 2018), hence we only present the most
recent contributions in this paper.

A line of research focusing on the integration of line planning, timetabling and vehicle scheduling
is presented in (Schöbel, 2017) and in earlier papers by the same authors. A recent example of
integration with the preceding planning step network design is presented by Canca et al. (2017).
The presented model decides simultaneously on which nodes and edges to include in the network,
on line structure and headways, on public transport mode share and passenger routes, and on train
capacities. The determination of the public transport mode share is in fact also an approach to
include dynamic demand. In (Abdelghany et al., 2017), the authors present a model to optimize
the flight schedule of an airline considering dynamic demand effects due to competition with other
airlines. In a bi-level model setup, the scheduling decisions are made on the upper level, while the
lower level determines the resulting passenger decisions.

2.2. Large neighborhood search and variations
The concept of large neighborhood search (LNS) was introduced by Shaw (1998) and an exten-

sive overview including variations is provided in (Pisinger and Ropke, 2010). The general approach
of LNS is based on starting with a feasible solution and then alternatingly applying a destroy and
a repair operator to obtain new solutions. A new solution is accepted if an acceptance criterion is
fulfilled. In the event that there are multiple destroy and repair operators, the approach is referred
to as a large multiple neighborhood search (LMNS). This variation was first introduced by Pisinger
and Ropke (2007). The different operators are selected with a predetermined probability through-
out the whole algorithm in an LMNS. Meanwhile, adaptive large neighborhood search (ALNS)
algorithms continuously adjust these weightings based on the performance of the operators.

LNS, LMNS, and ALNS have been successfully applied to a wide range of problems. In the
public transport context, Canca et al. (2017) present an ALNS looking at network design and line
planning as mentioned above. Further, Hassannayebi and Zegordi (2017) and Barrena et al. (2013)
developed ALNS algorithms focusing on the timetabling step while integrating aspects of dynamic
demand. The earliest and most frequent applications of LNS algorithms focus on the vehicle routing
problem (VRP) and related problems. The ALNS approach was first introduced with an application
for the pickup and delivery problem with time windows (PDPTW) by Ropke and Pisinger (2006).
In (Masson et al., 2013), an ALNS for the pickup and delivery problem with transfers (PDPT) is
presented, while Hintsch and Irnich (2018) solve the clustered vehicle routing problem (CluVRP)
with an LMNS.

2.3. Positioning and contribution of this work
The contribution of this work is twofold: First, we provide a new schedule-based mixed-integer

linear model formulation, which is compatible with dynamic demand considerations. As discussed
in the literature review of (Steiner and Irnich, 2018), to our knowledge there are no other papers
addressing this combination of scopes. Further, in contrast to that previous paper, the model here
enables us to optimize multiple timetabled services simultaneously. Second, we present a problem-
specific LMNS solution algorithm capable of solving real-world instances in attractive computation
times and with high quality solutions.
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3. Integrated and schedule-based optimization model

Before presenting the notation and the mixed-integer linear formulation of the model, we make
two general comments on the scope of the model. First, similar to (Steiner and Irnich, 2018), a
very detailed representation of demand is given as a model input. Specifically, the demand depends
on the pair of stations, the departure time, the trip duration, the trip frequency, and the degree
of cannibalization of a trip. As a consequence, the model can be applied after having determined
the demand parameters with a separate demand model. These demand models can be based on
complex approaches, e.g., machine learning. Therefore, we see it as a favorable setup to separate
the demand modeling step from the optimization based on mathematical programming.

Second, there is no differentiation between travel prices for a specific pair of stations and a
specific timetabled service. In practice, most operators apply a more sophisticated revenue man-
agement with prices varying based on how many tickets have been sold already and how many days
are left until the trip. However, we focus on the strategic planning of bus operations, whereas the
pricing considerations are only relevant at a later stage in practice. This is again an analogous
approach to (Steiner and Irnich, 2018).

In the following, the model formulation is presented in Section 3.1 and potential model extensions
are discussed in Section 3.2.

3.1. Model formulation
To build on the model formulation and solution algorithm developed in (Steiner and Irnich,

2018), we keep the notation and modeling approach consistent with this paper. For convenience,
all basic terms are defined in Table 1. We have a corridor of potential stations si indexed by i,
i ∈ I = {1, . . . , n}. In this corridor, a set of timetabled services is scheduled by the model. Potential
departure times at s1 are denoted by cm, where the index m runs in the discrete index set M . We
refer to the potential timetabled service starting at station s1 at the time cm as the m-th timetabled
service or the service m. We assume that every selected timetabled service starts at station s1 and
ends at station sn, e.g., to allow for efficient vehicle schedules in the next planning step. However,
this assumption could be relaxed by slightly adjusting the model we present in this chapter.

Possible start times at stations and duration intervals are modeled using discrete time intervals
Tk = [ak−1, ak) and Dl = [bl−1, bl), where the indexes k and l run in the discrete index sets K and L
respectively. The number of times a trip between a pair of stations si and sj is offered is referred
to as trip frequency and denoted by f ∈ N. Finally, we assign a degree of cannibalization g to each
trip between si and sj , where g runs in the discrete index set G. If there are further timetabled
services offering the same trip at a similar time, the degree of cannibalization is higher, which has
a negative impact on demand for this trip.

To improve legibility, we consistently use indices m ∈M for timetabled services, i ∈ I and j ∈ I
for stations always with i < j, k ∈ K for departure time intervals, l ∈ L for duration intervals,
f ∈ N for trip frequencies, and g ∈ G for degrees of cannibalization. Further, we omit the index
sets when summing over the m, i, j, k, l, f , and g and we assume that all index sets M, I,K,L,N,
and G are pairwise disjoint.

The model formulation requires the following input data:

dijklfg demand for a trip between si and sj , which starts in Tk = [ak−1, ak) with duration
in Dl = [bl−1, bl), is operated f times, and has a degree of cannibalization g;
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Term Description

Corridor is a sequence (s1, s2, . . . , sn) of stations, from which a subsequence must be selected
as stops of the timetabled services.

Timetabled Service is a run from s1 to sn of a bus on a specified subsequence of stations si with a
specified schedule; the schedule is implicitly given by the departure time cm at
station s1.

Trip is a pair of two (selected) stations si and sj (with i < j) that are connected either
directly or via intermediate stops by a timetabled service; a trip is what customer
demand refers to.

Trip frequency is the count of trips between two stations si and sj in the time period in scope
(e.g., one day). Only trips of the operator in scope of the model are considered.

Cannibalization refers to the negative effect on the demand in case multiple trips between two
stations with similar starting times are offered by the operator in scope.

Direct Connection is a pair of two consecutive stations si and sj without intermediate stop; this is
where passengers and bus travel along; direct connections are modeled as basis
for operational costs.

Table 1: Definitions of basic terms

tmij travel time of the m-th timetabled service for a direct connection from si to sj
including the stop time at sj ;

wmi stop time of the m-th timetabled service at station si for handling of luggage,
boarding, schedule buffer, etc.;

rmij travel prices (revenues from the operator’s perspective) of the trip from si to sj
for the m-th timetabled service;

vmij variable cost for them-th timetabled service to operate a direct connection from si
to sj ;

fml fixed cost to operate the m-th timetabled service from s1 to sn with duration
in Dl, this captures the share and period of the day when the bus is dedicated to
the service in scope;

Cm vehicle capacity (number of seats of a bus) for the m-th timetabled service;

F Maximum number of timetabled services to be operated during the time period
in scope (e.g., one day).

All these inputs are non-negative numbers. Although the actual amount of passengers per trip is
integer, we do not impose integrality for the dijklfg, since we are dealing with the strategic/tactical
planning stage. Moreover, letMmik andMmijl be sufficiently large numbers (big M constants), and
let u ∈ R be a small time amount (e.g., one minute) that we use to transform < into ≤ conditions.

The model formulation comprises four types of decision variables describing the characteristics
of timetabled services that are selected by the model. The remaining types of variable are auxiliary
indicator variables and are presented below.

ym ∈ {0; 1} binary variable indicating the m-th timetabled service starting at station s1 at
time cm is operated;

xmi ∈ {0; 1} binary variable to indicate the station si is included in the m-th timetabled
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service;

pmij ∈ R≥0 continuous variable for the number of passengers for a trip from si to sj in the
m-th timetabled service;

`mi ∈ R≥0 continuous variable for the duration of m-th timetabled service to reach si while
considering all chosen intermediary stations. This is a dependent variable, its
value can be determined once the variables ym and xmi are fixed.

The remaining seven types of binary variables display the logical links between the stations,
time intervals, trip frequencies, and degrees of cannibalization. They take the value 1 if and only
if the selection of timetabled services, the choice of stations, the departure time, the duration, the
trip frequency, and the degree of cannibalization are consistent with the indices m ∈ M , i, j ∈ I,
k ∈ K, l ∈ L, f ∈ N, and g ∈ G. All these variables are denoted by z and corresponding index sets.
Since M, I,K,L,N, and G are pairwise disjoint, the following definitions are unambiguous:

zmijklfg The m-th timetabled service contains a trip from si to sj , which starts in Tk at
station si with duration in Dl. The trip from si to sj is operated f times and
there is a degree of cannibalization g;

zmij The m-th timetabled service contains a direct connection (no intermediary stops)
from si to sj ;

zml The m-th timetabled service is operated with total duration in Dl to reach the
destination sn;

zmik The m-th timetabled service contains a trip which starts at si in Tk;

zmijl The duration for the trip from si to sj of the m-th timetabled service is in Dl;

zijf There are exactly f different timetabled services offering trips from si to sj ;

zmijg The trip from si to sj contained in the m-th timetabled service has degree of
cannibalization g.

To clarify the problem setting and notation introduced above, we provide a small example before
presenting the mixed-integer linear model formulation.

Example. Consider a corridor (s1, s2, s3) with three stations and the m-th timetabled service to start at
time cm = 10(m− 1), if it is selected. To explain the decision variables in more detail, we base our example
on sample solutions and discuss the impact on the variables. For the sake of convenience, we use commas
between the indices in this example. We assume that the 1st service starting at c1 = 0 as well as stations s1
and s3 are selected, i.e., y1 = x1,1 = 1−x1,2 = x1,3 = 1. Further, we assume the 2nd and 5th service and all
their stations are selected, i.e., y2 = y5 = x2,1 = x2,2 = x2,3 = x5,1 = x5,2 = x5,3 = 1. For the variables zmij

representing direct connections, this implies z1,1,3 = z2,1,2 = z2,2,3 = z5,1,2 = z5,2,3 = 1.
The following assumptions on input data and cannibalization dynamics are made for this example: We

assume travel times tmij = 3(j − i) + 1 for all m and i < j as well as stop times wmi = 1 for all m, i (note
the tmij have been defined to include the stop time at sj). Start times are discretized by Tk = [k − 1, k)
and durations by Dl = [l − 1, l). For a trip between stations si and sj starting at time t, the degree of
cannibalization g is determined as follows: Among the timetabled services including a trip from si to sj , we
select the one with starting time t∗ at si, such that |t∗− t| is minimal, i.e., the trip with the closest possible
starting time. The degree of cannibalization is given by g = 20 − |t∗ − t| in case |t∗ − t| < 20 and g = 0
otherwise. In the event that there is no other trip from si to sj , the degree of cannibalization is 0 as well.
Hence, the maximum possible degree of cannibalization is 20 in case two trips start at the exact same time.
Demand would in general decrease with an increasing degree of cannibalization.
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With the services and stations selected as described above, a total of seven trips are included in the
three selected timetabled services. Table 2 provides details for each trip and displays, which of the zmijklfg

would take the value 1 in a solution of our model based on the assumptions made.

timetabled start end zmijklfg = 1 for

service m station i station j time time k l f g

1 1 3 0 6 1 7 3 10
2 1 2 10 13 11 4 2 0
2 1 3 10 17 11 8 3 10
2 2 3 14 17 15 4 2 0
5 1 2 40 43 41 4 2 0
5 1 3 40 47 41 8 3 0
5 2 3 44 47 45 4 2 0

Table 2: Trip characteristics for small example

The resulting demand for the trip between s1 and s3 offered by the 1st timetabled service is d1,3,1,7,3,10.
Assuming the 5th service had not been selected, the demand would change to d1,3,1,7,2,10, as we still observe
the cannibalization effect between the first and second timetabled service, however only two trips between
the stations si and sj are still offered. If we further assume that also the 2nd service had not been selected,
the demand would be d1,3,1,7,1,0. The trip frequency would reduce to 1 and there would clearly be no
cannibalization effect with other services, as there is only one service remaining.

After selecting timetabled services and their stations as well as computing durations, the number of
customers to assign to the trips must be determined. The pmij variables are constrained by the respective
demand parameters dijklfg and by the vehicle capacity. As an example, for the 2nd timetabled service, the
choice is constrained by p2,1,2 ≤ d1,2,11,4,2,0, p2,1,3 ≤ d1,3,11,8,3,10, as well as p2,2,3 ≤ d2,3,15,4,2,0. Further,
the restricted capacity yields p2,1,2 + p2,1,3 ≤ C2 and p2,1,3 + p2,2,3 ≤ C2, which induces a multi-commodity
network-flow optimization problem. �

Mixed-integer linear formulation. We now step systematically through the model formulation (1)–
(11b). The overall structure is similar to the model from (Steiner and Irnich, 2018). The main
differences are the additional indices m, f , and g as well as the constraints on trip frequencies and
cannibalization.

The objective (1) is to maximize profit, thus, to maximize revenues minus fixed and variable
costs of all selected timetabled services. Fixed costs depend on the departure times and the overall
durations of the selected timetabled services, and variable costs depend on the selected stations
within the timetabled services:

max
∑
m

(∑
i<j

rmijpmij −
∑
l

fmlzml −
∑
i<j

vmijzmij

)
(1)
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subject to ∑
klfg

zmijklfg ≤ xmi, ∀i < j, ∀m (2a)

∑
klfg

zmijklfg ≤ xmj , ∀i < j, ∀m (2b)

∑
lfg

zmijklfg ≤ zmik, ∀i < j, ∀k,m (2c)

∑
kfg

zmijklfg ≤ zmijl, ∀i < j, ∀l,m (2d)

∑
klg

zmijklfg ≤ zijf , ∀i < j, ∀f,m (2e)

∑
klf

zmijklfg ≤ zmijg, ∀i < j, ∀g,m (2f)

Passengers may only enter or exit a bus at those stations si and sj , which have been included (2a)–
(2b), in the departure interval Tk at si that actually contains the departure time of the trip (2c),
and the duration needs to be in the correct duration interval Dl (2d). Further, the zmijklfg can
only take the value 1 if the corresponding zijf and zmijg are set to 1 as well (2e)–(2f).

pmij ≤
∑
klfg

dijklfgzmijklfg, ∀i < j, ∀m (3a)

∑
i′≤i,j′>i

pmi′j′ ≤ Cm, ∀i < n,m (3b)

The number of passengers per trip is constrained by the demand (3a) and must not exceed the
capacity of the bus on each connection (3b).∑

j>1

zm1j =
∑
i<n

zmin = ym, ∀m (4a)

∑
j<i

zmji =
∑
j>i

zmij , ∀1 < i < n, ∀m (4b)

∑
j>i

zmij = xmi, ∀1 < i < n, ∀m (4c)

zml + 1 ≥ ym + zm1nl, ∀l,m (4d)

The flow conditions (4a)–(4c) ensure that the zmij only take the value 1 if the m-th timetabled
service and both stations are included, and there are no intermediate stations between them. The
incorporation of fixed costs fml results from zml = 1, which is ensured by (4d) if them-th timetabled
service has a total duration in Dl.∑

m

ym ≤ F (5)

`mi =
∑

i1<j1≤i
tmi1j1zmi1j1 , ∀i,m (6)

xm1 = xmn = ym, ∀m (7)
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At most F timetabled services can be selected (5) and the duration to reach station si results from
the selected connections to reach si (6). As discussed above, we request the first and the last station
to be included in each selected timetabled service (7).

∑
k

zmik = xmi, ∀i < n,m (8a)∑
k

zmik ≤ ym, ∀i < n,m (8b)

cm + `mi ≤ ak + (1− zmik)Mmik − u, ∀i < n, k,m (8c)
cm + `mi ≥ ak−1zmik, ∀i < n, k,m (8d)

Variable zmik can only take the value 1 if the m-th timetabled service is selected and services
station si (8a)–(8b). Consistency with the travel and departure times results from (8c) and (8d),
which ensure zmik can only take the value 1 if the starting time at si (which can be written as
cm + `mi) is smaller than ak and greater than or equal to ak−1.∑

l

zmijl ≥ xmi + xmj − 1, ∀i < j,m (9a)∑
l

zmijl ≤ xmi, ∀i < j,m (9b)∑
l

zmijl ≤ xmj , ∀i < j,m (9c)

`mj − `mi − wmj ≤ bl + (1− zmijl)Mmijl − u, ∀i < j, ∀l,m (9d)
`mj − `mi ≥ (bl−1 + wmj)zmijl, ∀i < j, ∀l,m (9e)

Likewise, the variable zmijl can only take the value 1 if and only if both stations si and sj are
included (9a)–(9c). Further, (9d) and (9e) enforce the duration interval to be chosen consistently
with the actual travel time from si to sj (which can be written as `mj − `mi − wmj).∑

f

zijf ≤ 1, ∀i < j (10a)

∑
ml

zmijl =
∑
f

fzijf , ∀i < j (10b)

∑
l

zmijl =
∑
g

zmijg, ∀i < j,m (10c)

For a pair of stations si and sj , at most one variable zijf can take the value 1 (10a) and this is
only possible if the trip frequency takes indeed the value f (10b). Additionally, for each selected
timetabled service and pair of stations si and sj , one degree of cannibalization needs to be selected,
this is enforced by (10c).

To avoid another binary variable indicating a timetabled service includes stations si and sj
(not necessarily as a direct connection), the left hand sides of (10b) and (10c) use the sum over
the variables zmijl. Indeed, exactly one of them takes the value 1 by (9a)–(9c) in case the m-th
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timetabled service includes both stations si and sj .

zmik + xmj + zm′ik + xm′j ≤ 3 + zmijg2 , ∀i < j, ∀k,m,m′,m 6= m′ (11a)

zmik + xmj + zm′i(k−1) + zm′i(k+1) + xm′j ≤ 3 +
∑

g∈{g1,g2}

zmijg, ∀i < j, ∀k,m,m′,m 6= m′ (11b)

For each selected timetabled service m and pair of selected stations si and sj , the degree of
cannibalization is controlled by (11a) and (11b). For this paper, we have chosen G = {g0, g1, g2},
with g2 indicating a high degree of cannibalization, g1 a medium degree of cannibalization, and g0
that there is no cannibalization at all. The high degree of cannibalization g2 is enforced if there are
two distinct timetabled services m and m′, which both contain a trip from station si to sj starting
in the same interval Tk. In this case, all four terms of the left hand side of (11a) take the value 1
and thus force zmijg2 to the value 1 as well. Similarly, in case these two trips from si to sj do not
start in the same time interval Tk, but in chronologically neighboring intervals (e.g., Tk−1 and Tk),
a minimum degree of cannibalization g1 is assumed. If so, the left hand side of (11b) takes the
value 4 (since zm′i(k−1) and zm′i(k+1) cannot take the value 1 simultaneously), which forces at least
the degree of cannibalization g1.

Note that there is no unique or mandatory logic to model cannibalization and the above formula-
tion is just one possibility to capture it. If a heuristic solution algorithm is applied, even non-linear
approaches can be considered in the event that these are best suited to capture the results of the
demand modeling step. Assuming the possible degrees of cannibalization g ∈ G can be ordered, the
formulation (11a)–(11b) can be generalized to a set of constraints, where each constraint enforces
at least a certain degree of cannibalization gγ . Here, the left hand side includes the variables that
indicate a cannibalization impact of degree gγ on the trip of service m from station si to sj starting
in Tk. Further, the right hand side comprises an integer parameter (in our case its value is 3 in all
cases) such that one of the variables zmijg for g ≥ gγ needs to take the value 1 if the left hand side
takes its maximum value.

3.2. Model extensions
As formulated above, the model (1)–(11b) can select stations for two distinct timetabled ser-

vices m and m′ independently. This strategy makes sense from a customer and from an operator
perspective: Passengers have access to a wider range of trips and these are designed and scheduled
to fit well with the demand structure. Given the popularity of online journey planners, passengers
do not need rules such as “line l always stops at station s” any more. Yet, operators can maximize
their profit without including additional constraints, which could deteriorate the solution quality.

However, it could be desired from a regulatory or convenience perspective to operate timetabled
services on lines with identical or at least very similar sequences of stations. In the following, we
discuss how the presented model can be adjusted to incorporate these requirements. In the event
that every selected timetabled service should contain exactly the same stations, one additional type
of variables xi can be introduced, which indicates that the station si is included in all selected
timetabled services. Additional constraints

xmi ≤ xi, ∀m, i and xi + ym ≤ 1 + xmi, ∀m, i

enforce this logic. Starting with the above requirement of identical stations and assuming each
selected timetabled service can contain one additional selected station (which is not selected by all
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services, i.e., the corresponding xi takes the value 0), a similar approach can be taken with the
same variable xi. Now, the constraints∑

i

xmi ≤
∑
i

xi + 1, ∀m and xi + ym ≤ 1 + xmi, ∀m, i

can be added to realize the requirement. We analyze the impact of including such additional
requirements in Section 5.5.

Finally, the two extensions for back-and-forth services and aspects around driver scheduling,
which are discussed in (Steiner and Irnich, 2018), can analogously be applied to the model (1)–
(11b).

4. LMNS-based solution algorithm

The objective of this work is to solve real-world instances based on the model (1)–(11b). Given
the complexity of the model and the size of real-world instances, a heuristic approach seems most
promising. We decided for a large multiple neighborhood search (LMNS) for three key reasons.
First, approaches based on LNS have been applied successfully to a range of similar real-world
problems as discussed in Section 2.2. Second, we see an intuitive way to define neighborhood struc-
tures when given a solution of the model (1)–(11b): Larger steps within the solution space to avoid
being trapped in local optima can be performed by adding, deleting or shifting entire timetabled
services from the current solution. Local exploration is possible by adjusting the timetabled ser-
vices that are already present in the current solution. Third, the structure of solutions suggests the
application of multiple operators. A combination of adding, deleting, and shifting entire timetabled
services as well as selected stations seems more promising than deciding for just one operator.

We have opted against an adaptive layer for the operator selection: Since the problem we study
has not been studied before in this form, we believe it is beneficial to better understand the benefit
of each operator without the additional influence and variety of parameters of the adaptive layer.
Further, given the different computational complexity of the operators we use, the adaptation logic
would need to include the time spent by each operator, which creates challenges for the replicability
of results. Finally, pre-tests including an adaptive layer did not show a consistent picture of certain
operators being powerful only early in the algorithm and not in later iterations or vice-versa.

The set of operators we apply is introduced in Section 4.1 and different operator application
strategies are discussed in Section 4.2. The overall LMNS algorithm is presented in Section 4.3.

4.1. LMNS operators
Typically, LNS operators can be classified into destroy and repair operators. Here, a destroy

operator deletes or removes certain parts of a solution, which gives a partial solution. This partial
solution is then transformed again into a feasible solution by the repair operator. In the context
of vehicle routing problems (VRP) and related problems, the destroy operator often removes entire
vehicle tours or specific customers from within a tour. The repair operator then inserts the removed
customers based on either random, heuristic or optimization-based approaches.

In our case, the situation differs from the VRP context: Indeed, any given set of values for the ym
and xmi yields a solution of the model (1)–(11b) after solving the multi-commodity network-flow
problem to determine the optimal passenger flows. Therefore, we do not have the differentiation
between destroy and repair operators.
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The operators we apply in the LMNS solution algorithm can be clustered along three main
dimensions: First, the operator moves are of different types: operators either add, delete or shift
parts of the solution, i.e., entire timetabled services or stations within a selected timetabled service.

Second, certain operators mainly serve the purpose to intensify the search to find local optima,
whereas the remaining operators diversify the current solution. The intensification operators retain
the selected timetabled services and only add, delete or shift selected stations. Meanwhile, the
diversification operators modify the given solution by adding, deleting or shifting entire timetabled
services.

Third, the degree of randomness varies from operators based on random modification of the
current solution to best operators that perform modifications based on the best possible impact
of the operator application on the objective function. Still, a degree of randomization similar
to (Ropke and Pisinger, 2006, p. 459) is included in the best operators to increase the diversifi-
cation of the overall LMNS algorithm. For the best operators, we differentiate between heuristic
best and optimized best operators. The aim of the heuristic operators is to combine the advantages
of forward-looking and fast modifications. In particular, these operators avoid to apply any opti-
mization model. Hence, the effect on the objective function is pre-estimated based on information
that can be calculated easily without calling the multi-commodity network-flow model for deter-
mining the precise objective value. Meanwhile, the optimized operators determine the best possible
modifications of the current solution.

Finally, we include one more operator that is based on the optimization model (1)-(C2) for single
timetabled services presented in (Steiner and Irnich, 2018). As this operator comprises a complex
optimization algorithm, heuristics based on this operator can be categorized as matheuristics. Al-
together, we have a list of 19 operators displayed in Table 3. Based on these operators, we present
different setups and operator application strategies in Section 4.2 and analyze the performance of
the resulting heuristics in Section 5.

purpose type degree of randomness

random heuristic optimized matheuristic
best best operator

Intensification add 1.1. 1.2. 1.3.
(adjust stations) delete 2.1. 2.2. 2.3.

shift 3.1. 3.2. 3.3. 7.

Diversification add 4.1. 4.2. 4.3.†
(adjust services) delete 5.1. 5.2. 5.3.

shift 6.1. 6.2. 6.3.

Table 3: Overview of LMNS operators; †not included in LMNS due to long computation times

Each operator op has an extent of modification, which we denote by S ∈ N. This is the number
of stations or timetabled services, which are added, deleted or shifted by the operator. The selection
of S is performed at random before the application of an operator in a way that ensures it is indeed
possible to add, delete or shift S stations or timetabled services. We analyze the impact of varying S
in Section 5. For S > 1, the S modifications are realized sequentially. We use the term iteration
for a single step and denote the specific iteration we describe by iterop.

We now describe each of the 19 operators in more detail.
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Intensification operators.

1. Add station operators add S ∈ N stations within a preselected timetabled service m.

1.1. Add random stations adds S stations at random in service m.
1.2. Heuristic add best stations adds S stations in service m based on an estimation of their

contribution to the objective function. For every station si∗ to be added directly between
stations si and sj , the contribution is estimated by

con1m,i∗ =
∑
i′<i∗

i′∈Im

rmi′i∗di′i∗klfg +
∑
i∗<j′

j′∈Im

rmi∗j′di∗j′klfg + fml1 − fml2 + vmij − vmii∗ − vmi∗j .

Here, Im is the set of selected stations in the service m and the respective indices for
k, l, f , and g for the demand parameter d are determined assuming the service includes
station si∗ . Further, Dl1 denotes the duration interval of the total travel time of the
service before, and Dl2 after adding station si∗ . The demand parameter d is used instead
of the variable p, which appears in the objective function. This is done to avoid having
to solve the multi-commodity network-flow problem within the heuristic operator.
The calculated contributions con1m,i∗ are ranked in descending order and the station
at position bαρ · (n − nm)c is added. Here, α ∈ [0, 1) denotes a uniformly distributed
random variable, ρ ∈ N with ρ ≥ 1 controls the degree of randomization (as introduced
in (Ropke and Pisinger, 2006, p. 459)), and nm is the number of stations selected in
the m-th timetabled service of the current solution. For S > 1, a new value for α is
randomly selected and the contributions are updated after each iteration iterop.

1.3. Optimized add best stations adds S stations in servicem based on their exact contribution
to the objective function. Calculations are performed updating the demand parameters
and by solving the multi-commodity network-flow model for every station from servicem
that could be added. An analogous approach to the heuristic add best stations operator
is followed for ranking and randomized adding of a station.

2. Delete station operators delete S ∈ N stations within a preselected timetabled service m.

2.1. Delete random stations deletes S stations at random from service m.
2.2. Heuristic delete best stations deletes S stations from service m based on an estimation of

their contribution to the objective function. For every station si∗ to be deleted directly
between stations si and sj , the contribution is estimated by

con2m,i∗ = −
∑
i′<i∗

rmi′i∗pmi′i∗ −
∑
i∗<j′

rmi∗j′pmi∗j′ + fml1 − fml2 − vmij + vmii∗ + vmi∗j .

The values of the p-variables are based on the accepted solution of the LMNS algorithm.
This time, Dl1 denotes the duration interval of the total travel time of the service before,
and Dl2 after deleting station si∗ . Note that this is still a heuristic approach, because
the multi-commodity network-flow problems would need to be solved for an exact contri-
bution. Indeed, the demand values for service m change due to the modified departure
and travel times. Further, for the services m′ 6= m the demand is affected as well due to
the effect of the deleted station on trip frequencies and cannibalization.
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The calculated contributions con2m,i∗ are ranked in descending order and the station at
position bαρ · nmc is deleted, where nm is the number of selected stations in the m-
th service in the current solution. Recall that we request the stations s1 and sn to be
included in every timetabled service. Therefore, we do not consider the option of deleting
these stations and use in fact nm−2. This requirement is reflected in an analogous way in
the other operators and is not explicitly pointed out in the following. Only the cost part
of the solution is updated after each iteration iterop, because an update of the revenue
contribution would require solving the multi-commodity network-flow model.

2.3. Optimized delete best stations deletes S stations from service m based on the exact
objective value after deleting the stations. As before, calculations are performed by
solving the multi-commodity network-flow model and the ranking of contributions as well
as the randomized selection of the station to be deleted are analogous to the heuristic
delete best stations operator.

3. Shift station operators shift S ∈ N stations within a preselected timetabled service m (i.e., a
selected station is deleted and a non-selected station is added instead). To increase the level
of diversification, we make the following restrictions if a shift from si to sj has already been
performed in an earlier iteration: Station sj needs to stay selected and station si can not be
selected again.

3.1. Shift random stations shifts S stations at random.

3.2. Heuristic shift best stations shifts S stations in service m based on an estimation of their
contribution to the objective function. For every combination of a selected station si∗
directly between stations si and sj and a non-selected station sj∗ directly between sta-
tions s′i and s′j within service m, the contribution of deleting si∗ and adding sj∗ is
estimated by

con3m,i∗,j∗ = con2m,i∗ + con1m\{i∗},j∗ .

First, the impact of deleting si∗ is estimated analogously to the heuristic delete best
station operator. Subsequently, station sj∗ is added to the service denoted by m \ {i∗},
i.e., to the m-th timetabled service without station si∗ . Here, the impact is estimated as
before for the heuristic add best station operator.
The calculated contributions con3m,i∗,j∗ of the combinations (i∗, j∗) are ranked in descend-
ing order and, with the notation from above, the shift for the combination at position
bαρ · nshiftc is performed. The number of possible combinations of stations is denoted
by nshift, which is given by (nm− iterop+1) · (n−nm− iterop+1) in iteration iterop. All
contribution aspects are updated after each iteration iterop, except for the lost revenue
of not servicing a shifted station any more.

3.3. Optimized shift best stations shifts S stations in service m based on their exact con-
tribution to the objective function. For every allowed combination of a station that is
included and a station that is not included, the impact of the potential shift on the
objective value is calculated with the multi-commodity network-flow model. Ranking
and randomized selection of the shift to perform are analogous to the heuristic shift best
stations operator.
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Diversification operators.

4. Add service operators add S ∈ N timetabled services.

4.1. Add random services adds S timetabled services at random. Within the added timetabled
services, the stations to be included in addition to s1 and sn are also selected randomly.

4.2. Heuristic add best services adds S timetabled services based on an estimation of their
potential contribution to the objective function. For every timetabled service m that is
not included in the current solution, the contribution is estimated as follows assuming
every station is included in the added service:

con4m =
∑
i<j

rmijdijklfg − fml1 −
∑

(i,j)∈I∗m

vmij .

The first term is the revenue potential and the respective indices for k, l, f , and g for the
demand parameter d are determined assuming all stations are included. The second and
third term represent costs, where Dl1 denotes the duration interval of the total travel
time of the service including all stations, and I∗m is the set of indices for direct connections
between neighboring stations si and si+1. In this approach, the capacity constraint is
neglected to avoid having to solve the multi-commodity network-flow problem.
The calculated contributions con4m are ranked in descending order and the service at
position bαρ·(|M |−nF )c is added, where nF is the number of timetabled services included
in the current solution. The revenue potential is updated after each iteration iterop.
Typically, timetabled services in good solutions do not include all stations, therefore we
only include the stations si∗ with an above average revenue potential

rev4m,i∗ =
∑
i<i∗

rmii∗dii∗klfg +
∑
i∗<j

rmi∗jdi∗jklfg.

4.3. Optimized add best services adds S timetabled services based on their exact contribution
to the objective function. To avoid having to solve multiple multi-commodity network-
flow problems for every possible added timetabled service and every possible constellation
of included stations, we apply the model (1)–(11b) with the following adaptations: We
fix the variables of the timetabled services that are included in the current solution
and require S additional timetabled services to be selected by introducing an additional
constraint

∑
m ym = nF +S. However, pretests have confirmed the intuitive assumption

that this operator does not solve to optimality even for smaller instances due to the size
of the model (1)–(11b) for real-world setups. It is therefore not included in the LMNS
in the remainder of this paper.

5. Delete service operators delete S ∈ N timetabled services.

5.1. Delete random services deletes S timetabled services at random.
5.2. Heuristic delete best services deletes S timetabled services based on an estimation of the

change in objective value in case these services are deleted. For a selected timetabled
service m, the contribution is estimated by

con5m = −
∑
i<j

rmijpmij + fml2 +
∑

(i,j)∈I∗m

vmij .

16



The values of the p-variables are based on the accepted solution of the LMNS algorithm.
In the cost terms, Dl2 denotes the duration interval of the total travel time of the m-th
service, and I∗m is the set of indices for direct connections in the m-th service. Note that
this is still only an approximation of the actual objective value because the effects of
deleting the m-th service on the trip frequencies between two stations si and sj as well
as on the cannibalization are not considered explicitly. These aspects would change the
demand parameters d in the services m′ 6= m.
Subsequently, the calculated contributions con5m are ranked in descending order and the
service at position bαρ · nF c is deleted. The contributions are not updated after an
iteration iterop to avoid having to solve the multi-commodity network-flow model.

5.3. Optimized delete best services deletes S timetabled services based on the exact objec-
tive value in case these services are deleted. This includes all effects on trip frequencies
and cannibalization and is calculated by solving the corresponding multi-commodity
network-flow problems for the remaining timetabled services. Analogously to the heuris-
tic delete best services operator, the services are ranked by decreasing contribution and
a randomized selection of the service to be deleted is performed.

6. Shift service operators shift S ∈ N timetabled services. The selected stations of the shifted
services do not change. To increase the level of diversification, a service that has already been
shifted in an earlier iteration is not shifted again.

6.1. Shift random services shifts S timetabled services at random.

6.2. Heuristic shift best services shifts S timetabled services based on an estimation of the
impact on the objective function. For every combination of a selected timetabled ser-
vice m and a non-selected potential service m′, the contribution of performing this shift
is estimated by

con6m,m′ = con5m +
∑

(i,j)∈I′m

rm′ijdijklfg − fm′l1 −
∑

(i,j)∈I∗m

vm′ij .

This represents the concatenation of deleting service m and adding in service m′ with
the same selected stations si that were selected in the m-th service. As before, the set I∗m
denotes pairs of indices for direct connections in the m-th service. Further, I ′m contains
indices for all pairs of stations si and sj , where both stations are selected in the m-th
service.
The contributions con6m,m′ of the combinations (m,m′) are ranked in descending order
and we choose the combination at position bαρ · nshiftc. Here, nshift is the number of
possible combinations, which is given by (nF − iterop+1) · (|M | −nF ). All contribution
aspects are updated after each iteration iterop, except for the lost revenue of not offering
a timetabled service any more.

6.3. Optimized shift best services shifts S timetabled services based on their exact contribution
to the objective function. For every combination of a selected timetabled service and a
non-selected potential departure time we calculate the impact of shifting the timetabled
service to the new departure time by solving the resulting multi-commodity network-
flow problem. Note that the multi-commodity network-flow problem indeed needs to be
solved even for the unchanged timetabled services, as the shifting of a service affects
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cannibalization and thus the demand values d. Ranking and randomized selection of the
shift to perform are analogous to the heuristic shift best services operator.

Operator based on the existing optimization model for single timetabled services. Finally, we intro-
duce an operator that is based on the exact optimization model (1)-(C2) from (Steiner and Irnich,
2018). Significantly shorter calculation times compared to the integrated model (1)–(11b) due to
the smaller model and the efficient branch-and-cut solution algorithm motivate matheuristics based
on this operator.

7. Replace existing service by an optimized service replaces an existing timetabled service by a
new service based on the model (1)-(C2) from (Steiner and Irnich, 2018). This operator com-
bines deleting an existing service, adding a new service, and selecting the included stations
of the new service based on an optimization model. Thus, it can be interpreted as a combi-
nation of a diversification and an intensification operator. Different variations of operator 7
are possible regarding which service gets replaced and which starting times of the new service
are allowed:

7∗,∗ The selection of the service to be replaced is made within the operator
based on a specified logic. Also, the service to be added is determined by
the optimization algorithm inside the operator;

7−,∗ No service is replaced, i.e., the operator only adds the best possible service;

7m1,∗ The service m1 to be replaced is determined outside of the operator. After
deleting this service, the operator adds the best possible service, which could
also be service m1 again;

7m1,m2 The servicem1 to be replaced and the servicem2 to be added are determined
outside of the operator.

Note that the model (1)-(C2) does not include the dynamic demand effects with respect to trip
frequencies and cannibalization explicitly. However, the parameters dijkl for the timetabled
service to be added can be pre-calculated to reflect the trip frequencies and cannibalization
of the current solution.

4.2. LMNS operator application strategies
There are ample possibilities to combine the presented operators into LMNS solution algorithms.

In this section, we present three main dimensions for clustering these possibilities and three varia-
tions of matheuristics based purely on the operator 7. First, the most fundamental decision for each
operator op is the respective selection probability πop in an iteration of the LMNS. In particular,
the probabilities determine whether op is included at all in the algorithm, i.e., πop > 0.

Second, we differentiate between two approaches for the interplay between intensification and
diversification operators. Either these can be selected equally in each iteration based on their
probabilities, or a sequential approach can be taken. In the latter case, each iteration starts with
the application of a diversification operator and subsequently applies an intensification operator
to the solution obtained after the diversification step. The effect of the intensification operator is
only considered if it leads to an improvement in the objective value compared to the solution after
the diversification. In the non-sequential case, the probabilities of all operators add up to 100%,
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whereas in the sequential case the probabilities of both diversification and intensification operators
add up to 100%. The sequential approach is taken if a binary parameter sequential_approach is
set to true.

Third, a final re-optimization can be conducted based on operator 7m,m for every timetabled
service m that is included in the best solution. The adjusted solution is accepted if it is a new
best solution. This introduces a tradeoff between the additional computation time and the solution
quality. This strategy is applied if a binary parameter final_reopt is set to true.

Finally, we introduce three variations a, b, and c of a matheuristic based on operator 7. In
these algorithms, the total number of timetabled services to be selected is fixed a priori. Starting
from the degenerate setup with no service and no stations selected, a timetabled service is added
with operator 7−,∗ until the specified number of services is selected. From this point onwards, each
iteration replaces one of the selected services by another service, which is determined by a variation
of operator 7∗,∗. When selecting the service to be replaced within the operator, the services are
ranked based on how recently they have been added to the solution. The most recent service is at
the bottom of the list and the service to be replaced is selected in a randomized way based on a
random variable α and the exponent ρ as before.

For option a, no additional variations are introduced and the specified procedure is followed
in each iteration. Option b is similar with the only difference that within the operator 7∗,∗ it is
not allowed to add again the service that has just been removed. This is realized by fixing the
respective variable ym to the value 0. Option c is again based on option a and uses the sequential
approach, i.e., an additional intensification operator is applied at the end of each iteration.

4.3. Overall LMNS algorithm
The pseudo-code of the overall LMNS algorithm is presented in Algorithm 1. In the follow-

ing, we denote a solution of the model (1)–(11b) by x. I.e., x comprises an array of values for
the variables (ym, xmi, pmij , `mi, zmijklfg, zmij , zml, zmik, zmijl, zijf , zmijg). In fact, it is sufficient to
know the values for the ym, xmi, and pmij , since the values of all other dependent variables can be
uniquely determined once these values are given. The objective value of a solution based on (1) is
denoted by obj(x). An intensification operator opint which modifies S stations in the preselected
timetabled service m and uses the exponent ρ in the randomization is denoted by opS,m,ρint . Like-
wise, a diversification operator opdiv which modifies S services and uses the exponent ρ is denoted
by opS,ρdiv.

In Step 1, an initial solution x is generated. This step is easy in our case, since every setup
of selected timetabled services and included stations induces a feasible solution after solving the
multi-commodity network-flow model to determine passenger flows. Except for the special cases
of the matheuristics described above, we generate initial solutions by applying the operator add
random services F times starting with the degenerate setup with no timetabled service and no
stations selected.

The main loop of the LMNS comprises Steps 2– 27 and is repeated ItLMNS times. In Steps 3
and 4, the best solution is updated if required. The calculation of the objective value obj(x) requires
solving the multi-commodity network-flow model to determine passenger volumes.

Subsequently, Steps 5 and 6 update the accepted solution if an acceptance criterion AccCr is
fulfilled. In our LMNS, we apply the record-to-record acceptance criterion, which accepts solutions x
with obj(x) > (1 − ε) · obj(xbest), where ε decreases linearly with every iteration from a starting
value ε0 to 0. We decided for this criterion as it allows for simpler parameter calibration than a
more complex approach (e.g., simulated annealing) and provides similar solution quality as analyzed
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in (Santini et al., 2018). Steps 7 and 8 set x to the last accepted solution in case the acceptance
criterion is not fulfilled.

Depending on the binary parameter sequential_approach, Step 9 decides which operator selec-
tion strategy is chosen. For the sequential approach, the diversification operator opdiv to be applied
to the current solution x is selected in Step 10. The selection is performed randomly based on
the operator probabilities πop. Subsequently, the number S of services to be adjusted is selected in
Step 11. A random selection with an equal distribution for all feasible values of S is performed. The
function S determines the upper bound for S and ensures S ≤ Smax for a global parameter Smax. In
addition, the solution after the application of opdiv still needs to contain a minimum of one service
and a maximum of F services. In the extreme case of S(x, opdiv, Smax) = 0 (e.g., if x contains only
one selected service and opdiv is a delete service operator), the operator is not applied at all. For
S ≥ 1, the operator is applied in Step 12. The solution after the diversification step is saved in the
variable xdiv.

The intensification loop includes Steps 13– 16 and looks only at the timetabled services m
that have been added or shifted by the diversification operator. The intensification operator to be
applied is selected in Step 14 and the number S of stations to be modified in Step 15. The selection
logic of S is similar to Step 11, this time the upper bound S(x,m, opint, Smax) ensures it is indeed
possible to add, delete or shift S stations in service m. After applying the respective operator
in Step 16, the objective value of x is compared to the objective value of xdiv in Step 17. If the
intensification has decreased the objective value, the solution xdiv becomes the current solution in
Step 18.

In the non-sequential case, an operator opr is selected randomly in Step 20 based on the prob-
abilities πop. We need to differentiate based on the purpose of the operator, which is determined
in Step 21: If it is a diversification operator, we can directly select the value S in Step 22 with
an identical logic to Step 11 and apply the operator in Step 23. Yet, if it is an intensification
operator, we first determine the service to be adjusted in Step 25 and then select S in Step 26 with
an identical logic to Step 15. Based on these selections, the operator is applied in Step 27.

Step 28 checks whether a final reoptimization is desired. If so, the loop comprising Steps 29–32
is traversed for every selected timetabled servicem. Within the loop, the operator 7m,m is applied in
Step 30. Finally, if an improvement in the objective value is confirmed in Step 31, the solution xreopt
becomes the current and the best solution in Step 32.

5. Computational results

In this section, we present computational results based on the model (1)–(11b) and the solution
algorithms introduced in Section 4. The computational setup, comprising the set of sample instances
as well as the parameter settings, is presented in Section 5.1. In the following, we analyze setups for
the LMNS algorithm that lead to a favorable tradeoff between good results and fast computation
times in Section 5.2. We compare the results of the metaheuristics with specific setups where
optimal solutions are known in Section 5.3. Subsequently, we discuss the benefits of the innovative
model aspects in Section 5.4 and provide an example of a model extension in Section 5.5.

5.1. Computational setup
Our computational results are based on an extension of the 30 instances introduced in (Steiner

and Irnich, 2018). The instances are summarized in Table 4 and an instance with the respective
properties is included in our experiments if and only if it is marked by a +. As before, the
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Algorithm 1: LMNS algorithm
Input: Probabilities {πop}

Setup parameters sequential_approach and final_reopt
Acceptance criterion AccCr
Parameters ItLMNS, ρ, Smax, ε0

1 x := xaccepted := xbest := InitialSolution()
2 for iter := 1, . . . , ItLMNS do
3 if obj(x) > obj(xbest) then
4 xbest := x

5 if AccCr(x, xbest, ε0, iter) then
6 xaccepted := x

7 else
8 x := xaccepted

9 if sequential_approach = true then
10 Randomly choose diversification operator opdiv according to weights {πop}
11 Randomly choose a value for S with 1 ≤ S ≤ S(x, opdiv, Smax)

12 xdiv := x := opS,ρdiv(x)
13 for each added or shifted service m do
14 Randomly choose intensification operator opint according to weights {πop}
15 Randomly choose a value for S with 1 ≤ S ≤ S(x,m, opint, Smax)

16 x := opS,m,ρint (x)

17 if obj(xdiv) > obj(x) then
18 x := xdiv

19 else
20 Randomly choose operator opr according to weights {πop}
21 if opr is a diversification operator then
22 Randomly choose a value for S with 1 ≤ S ≤ S(x, opr, Smax)

23 x := opS,ρr (x)

24 else
25 Randomly choose service m out of selected services
26 Randomly choose a feasible value for S with 1 ≤ S ≤ S(x,m, opr, Smax)

27 x := opS,m,ρr (x)

28 if final_reopt = true then
29 for each selected service m do
30 xreopt := 7m,m(x)
31 if obj(xreopt) > obj(x) then
32 xbest := x := xreopt
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characteristics of the instances differ in three dimensions: First, the number of cities where the
bus can stop with the options of 12, 15, and 18 cities. Second, the corridor in which the cities are
located with four different corridors examined. Since corridor 4 is the smallest corridor, there are
no instances with 15 and 18 cities in it. Third, the demand scenarios with a baseline scenario Base ,
a conservative scenario Cons , and an optimistic scenario Opti.

12 cities 15 cities 18 cities
Scenario Base Cons Opti Base Cons Opti Base Cons Opti

Corridor 1 + + + + + + + + +
Corridor 2 + + + + + + + + +
Corridor 3 + + + + + + + + +
Corridor 4 + + + − − − − − −

Table 4: Instances for computational results

The underlying demand inputs are again based on the customized model developed in coop-
eration with our industry partner for the computational study in (Steiner and Irnich, 2018). The
remaining parameters are chosen as follows in line with our previous approach: We split the day in
ten departure time intervals Tk (nine intervals with two hour duration each and one interval from
12 a.m./midnight to 6 a.m.) and the potential start time of the m-th timetabled service is chosen
to coincide with the beginning of the interval Tk, i.e., cm = am−1. Further, we have 14 duration
intervals Dl (one interval for travel times up to 60 minutes, six intervals in 30 minute steps up
to four hours, six intervals in 60 minute steps up to ten hours and one interval for longer trips).
Travel distances, travel times, ticket prices, and variable costs have been chosen identically to the
study in (Steiner and Irnich, 2018). We exclude fixed costs because commercial agreements with
transportation suppliers are usually based on a price per kilometer. The maximum number of
timetabled services is F = 3, since demand model calibration was only possible in this range based
on the real-world data of our industry partner. Finally, capacities are chosen as Cm = 52 and the
auxiliary parameter as u = 1 minute.

All computational tests are performed on a standard PC with an Intel(R) Core(TM) i7-2600
running at 3.4 GHz with 16 GB of main memory using a single thread. Algorithms are coded in
C++ using CPLEX 12.7 and compiled in release mode with MS Visual Studio 2015.

5.2. Technical aspects
In this section, we determine an operator selection strategy and parameter settings for the LMNS

algorithm that allow for a good solution quality in acceptable computation time. As discussed in
Section 4.2, the different operator selection strategies can be clustered by the probabilities of the
operators, by the application of a sequential approach for diversification and intensification, as well
as by the inclusion of a final re-optimization.

To simplify the ample possibilities for different operator probabilities, we start with clusters
based on the three degrees of randomness of the operators. Specifically, for the diversification
and intensification operators, we either include all (indicated by +) or none (indicated by −) of
the operators of each degree of randomness, which yields seven strategies. These are presented in
the top seven rows for each number of cities in Table 5, e.g., (+ − −) indicates the strategy of
only including the random operators. Identical probabilities are assigned to every operator that is
included. Recall the operator 4.3 Optimized add best services is not included in the LMNS, hence
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we replace it by the operator 4.2 in the strategy that only includes the optimized best operators
to ensure there is a possibility to add a service. Due to promising results during the pre-tests, we
analyze one more strategy denoted by (+div − +int), which includes only the random operators
for the diversification and only the optimized best operators for the intensification.

Furthermore, the three matheuristics introduced in Section 4.2, which are based on the opti-
mization model from (Steiner and Irnich, 2018), are included. For the matheuristics, the number
of timetabled services to be selected needs to be fixed before running the algorithm. Therefore,
we run them with F = 1, 2, 3 and use the value F with the best results per instance for the gap
statistics. Option c requires intensification operators to be included as defined in Section 4.2. We
choose to include only the optimized best intensification operators as they showed the best results
during the pre-tests.

The LMNS is run with the following initial parameter settings based on the pre-tests: There are
ItLMNS = 5, 000 iterations and in each operator application only one station or timetabled service
is adjusted, i.e., Smax = 1. Further, solutions with up to ε0 = 5% decrease in objective value are
accepted at the beginning of the algorithm and we use the exponent ρ = 10 for the randomization.
For each instance, we run the LMNS ten times, each time with a different initial random seed. The
matheuristics based on operator 7 show much less variation for different random seeds, we therefore
decided to run these algorithms only three times.

We tried to solve the smaller instances with the model (1)–(11b), however we did not obtain
any solutions even after several hours of computation time. For the instance with 12 cities, demand
scenario Base , corridor 1, and F = 2, the gap after one hour (two hours) was 112.2% (110.9%) and
the best solution was 9.0% (9.0%) worse than the best solution found with the LMNS algorithms.
Therefore, the following experiments are based only on the LMNS algorithms.

Table 5 presents the results with respect to the gaps and computation times. We separate the
results by the number of cities to understand the impact of increasing instance size. Gap Avg.
represents the average gap to the best solution per instance, that we obtained in this experiment.
I.e., the average is taken over the 12 instances with 12 cities (9 instances in case of 15 and 18 cities)
as well as the ten different LMNS runs (three in case of the matheuristics). Meanwhile, Gap Best
is calculated based on the minimum gap per instance and subsequently taking the average over the
12 (or 9) instances. The average computation time in seconds is presented in Time Avg, for the
matheuristics this is based on the sum of the setups with F = 1, 2, 3.

We observe that the non-sequential setups perform consistently better than the sequential se-
tups. Therefore, we omitted the sequential tests for the 18 city instances. The poor results of
the sequential setup could be an indicator that the diversification operators should not be applied
in every iteration. Hence, we test non-sequential setups with lower weights for the intensification
operators in the following experiments.

Regarding the final reoptimization, there are consistent improvements, however they are smaller
in the non-sequential setup. As a consequence, we recommend only using this setup in case suf-
ficient time is available and minor improvements of the objective value are critical. Beyond that,
approaches could be explored which apply the reoptimization of the best solution multiple times,
e.g., after every 1, 000 iterations.

The strategies based on the matheuristics perform consistently inferior to the other approaches,
further examinations show the algorithms frequently get stuck in local fixed points. Based on this
observation, we did not test the matheuristics for the 18 city instances.

The general results regarding the operator selection are similar for the different instance sizes.
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Oper. selection Gap Avg. (%) Gap Best (%) Time Avg. (s)

Included clusters non-sequential sequential non-sequential sequential non-sequential sequential

number Ran- Heu- Opti- no final final no final final no final final no final final no final final no final final
of cities dom ristic mized reopt reopt reopt reopt reopt reopt reopt reopt reopt reopt reopt reopt

+ − − 2.2 2.2 9.2 6.2 1.0 0.9 3.8 2.1 2.0 4.8 3.1 6.0
− + − 4.7 4.7 9.9 7.1 2.1 2.1 3.9 2.1 2.2 4.8 3.1 5.9
− − + 4.2 4.2 7.5 5.2 0.2 0.2 2.8 2.2 13.3 15.9 23.3 26.2
+ + − 2.7 2.6 8.7 6.0 1.0 0.9 3.3 2.3 2.2 4.8 3.2 6.0
+ − + 2.2 2.0 7.1 5.1 0.9 0.8 2.7 1.9 8.1 10.9 13.1 15.9

12 − + + 3.5 3.5 7.9 5.8 1.0 0.9 2.6 2.0 8.0 10.6 12.3 15.0
+ + + 1.9 1.9 6.9 4.7 0.9 0.8 1.9 1.2 6.2 9.0 9.8 12.6

+div − +int 1.8 1.8 6.9 4.6 1.0 0.9 3.2 1.9 9.3 12.0 12.0 15.0
Math. option a 8.9 − − − 8.9 − − − 663.7 − − −
Math. option b 7.9 − − − 7.2 − − − 596.0 − − −
Math. option c − − 6.9 − − − 5.6 − − − 656.9 −

+ − − 5.0 4.7 13.0 10.8 1.7 1.5 5.7 4.7 3.3 30.7 4.7 38.4
− + − 8.7 8.1 13.7 11.1 5.1 4.1 7.5 6.2 3.9 32.8 4.7 35.8
− − + 3.8 3.7 10.0 8.4 0.7 0.7 4.1 3.4 30.6 57.7 45.3 77.2
+ + − 6.0 5.5 11.7 9.6 3.4 3.1 5.0 3.4 3.7 31.7 4.7 36.2
+ − + 3.3 3.3 9.6 7.8 1.2 1.2 3.5 2.9 16.4 42.1 26.3 58.9

15 − + + 4.5 4.4 8.6 7.6 1.2 1.2 3.5 3.2 17.8 43.7 23.6 55.4
+ + + 3.8 3.7 9.5 8.2 0.8 0.8 3.2 2.6 12.5 38.6 17.4 49.3

+div − +int 3.2 3.2 9.9 8.6 0.6 0.6 4.5 3.7 22.9 51.0 23.3 57.9
Math. option a 12.5 − − − 11.6 − − − 5,681.7 − − −
Math. option b 11.6 − − − 9.9 − − − 5,204.8 − − −
Math. option c − − 10.1 − − − 8.4 − − − 5,612.1 −

+ − − 6.9 − 18.2 − 2.8 − 9.9 − 4.5 − 6.0 −
− + − 9.2 − 16.6 − 4.9 − 8.6 − 5.4 − 6.6 −
− − + 4.4 − 11.7 − 0.0 − 6.1 − 53.0 − 68.9 −

18 + + − 6.4 − 14.6 − 2.3 − 5.8 − 5.1 − 6.6 −
+ − + 3.9 − 12.9 − 1.9 − 5.4 − 28.8 − 39.7 −
− + + 5.7 − 10.3 − 1.3 − 4.0 − 28.4 − 36.6 −
+ + + 4.2 − 10.8 − 1.1 − 4.4 − 21.6 − 27.7 −

+div − +int 2.6 − 12.2 − 0.5 − 3.7 − 43.1 − 40.5 −

Table 5: Computation results for different operator selection strategies for the LMNS algorithm
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The setup (− − +) performs best with respect to Gap Best and (+div − +int) with respect to Gap
Avg. While the heuristic operators perform nearly as fast as the random operators, the gaps are high
compared to the other strategies. The underlying reason could be the lack of foresight regarding
the trip frequency and cannibalization effects on the passenger numbers after the multi-commodity
network-flow model is solved.

In summary, the most promising setup, which serves as baseline setup for further parameter
studies, is based on the non-sequential setup, no final reoptimization, and selecting only the heuristic
best operators. To reflect the strong average results of the setup (+div −+int), we also test variations
of this setup with lower weights on the intensification operators. The strategy with only 5% of
the total probabilities for the diversification operators is denoted by (+5

div − +95
int) and identical

probabilities are chosen among the diversification and intensification operators, respectively. Table 6
presents the results when varying the parameters ItLMNS, ρ, Smax, ε0, and when including adjusted
versions of the setup (+div − +int). All studies are conducted based on a “ceteris paribus” approach,
i.e., only one parameter is adjusted at a time while the others take their initial values used for the
study above.

Parameter setup Gap Avg. (%) Gap Best (%) Time Avg. (s)

cities 12 15 18 12 15 18 12 15 18

Baseline −/− /+ 4.2 3.8 4.4 0.2 0.7 0.0 13.3 30.6 52.8

ItLMNS = 1, 000 5.3 5.0 5.4 0.3 1.7 1.5 2.9 6.6 11.1
ItLMNS = 50, 000 3.9 3.3 3.7 0.2 0.7 0.0 129.8 300.0 523.1

ρ = 5 3.6 3.1 3.7 0.8 0.9 0.4 13.2 30.1 53.7
ρ = 20 4.0 4.1 4.3 0.9 1.1 0.2 13.0 29.5 51.2

Smax = 3 3.7 2.7 3.3 0.9 1.1 0.3 19.2 48.9 89.5
Smax = 5 3.7 2.7 3.3 0.9 1.1 0.3 19.2 48.9 89.4

ε0 = 1% 6.4 7.9 7.6 1.6 2.8 2.4 13.0 30.6 51.3
ε0 = 15% 2.2 3.7 5.2 1.5 1.3 0.7 12.3 28.0 49.3

(+5
div − +95

int) 3.1 5.0 5.9 0.0 0.2 1.0 14.9 33.0 59.6
(+25

div − +75
int) 2.3 3.4 2.6 0.0 1.0 0.4 12.7 29.2 56.2

Table 6: Computation results for parameter studies for the LMNS algorithm

We observe that the only setup that consistently decreases the gaps is ItLMNS = 50, 000. A
general trend that can be observed is that increasing randomness (smaller ρ, bigger Smax, higher ε0,
and including random operators) improves the results for Gap Avg. (%), while Gap Best (%)
deteriorates. We choose (+25

div − +75
int) with ItLMNS = 50, 000 for the following experiments as it

consistently improves Gap Avg. (%) while only partly deteriorating the Gap Best (%). Finally,
Table 7 shows the results when removing a single operator from the setup (+25

div − +75
int). It can

be observed that all options for removing an operator do not yield consistently better results than
the setup with all six operators applied. Hence, every operator is useful for the LMNS algorithm
and is included in the next sections.

5.3. Solution quality of the LMNS algorithm
A priori, there is no knowledge about the potential delta between the best known solutions and

the optimal solutions. Therefore, to understand the quality of the solutions found with the LMNS
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Parameter setups Gap Avg. (%) Gap Best (%) Time Avg. (s)

cities 12 15 18 12 15 18 12 15 18

(+25
div − +75

int) 2.3 3.3 2.6 0.0 1.0 0.4 12.7 29.2 56.2

Removed op. 1.3 19.1 19.2 19.8 8.4 11.0 13.1 10.1 18.8 30.0
Removed op. 2.3 10.6 19.9 23.2 3.9 14.0 14.5 12.2 36.7 80.7
Removed op. 3.3 3.1 4.0 4.5 0.0 1.4 1.1 7.0 13.1 20.7

Removed op. 4.1 8.8 30.9 36.8 0.2 8.2 14.7 10.4 18.9 32.8
Removed op. 5.1 7.3 2.0 1.8 3.1 0.1 0.2 17.1 34.6 61.5
Removed op. 6.1 5.7 9.2 6.7 0.1 1.4 0.7 13.0 31.2 55.6

Table 7: Computation results when removing single operators from LMNS algorithm

algorithm, it is not sufficient to look at the gaps to the best known solutions. However, we are
able to determine a solution of proven optimality in the special case, where the demand used in the
model does not behave dynamically with respect to trip frequencies and cannibalization. In this
case, the optimal solution can be determined based on the existing optimization model for single
timetabled services because the problem decomposes into sub-problems, one for each potential
timetabled service m. To determine the optimal solution with F selected timetabled services, we
can simply pick the F best services as the objective values of the services are independent of each
other. In the following experiments, the demand parameters are based on constant trip frequencies
and no cannibalization is considered. Table 8 shows the average and best gaps per number of cities
when running the LMNS with the settings determined above.

Number of services Gap Avg. (%) Gap Best (%)

cities 12 15 18 12 15 18

F = 1 0.02 0.07 0.00 0.00 0.00 0.00
F = 2 0.01 0.00 0.05 0.00 0.00 0.00
F = 3 0.00 0.00 0.10 0.00 0.00 0.00

Table 8: Solution quality of LMNS results with respect to known optimal
solutions:

No dynamic demand with respect to trip frequency and cannibalization

When including the trip frequency and cannibalization effects, we can solve another set of
instances to optimality: For 12 cities and a maximum number of services F = 2, the model can
be solved with an enumeration in several hours of computation time. Table 9 shows the average
and best gaps per instance when the best results of the LMNS algorithm are compared against the
optimal solutions. Indeed, the optimal solution could be found in 11 out of 12 cases.

In summary, the LMNS algorithm found the optimal solution for 101 out of the 102 instances
with known optimal solution. Based on these promising results, it is reasonable to assume that the
optimal solutions obtained with the LMNS algorithm are of very good quality also in cases with an
unknown optimal solution.
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Scenario Base Cons Opti

Corridor 1 2 3 4 1 2 3 4 1 2 3 4

Gap Avg. (%) 2.91 1.43 8.18 0.64 0.41 0.42 1.91 0.42 0.00 0.00 1.80 0.00
Gap Best (%) 0.00 0.00 0.00 0.00 0.00 0.00 1.68 0.00 0.00 0.00 0.00 0.00

Table 9: Solution quality of LMNS results with respect to known optimal
solutions:
12 city instances with F = 2

5.4. Modeling scope
The benefits of the schedule-based approach and the dynamic demand with respect to travel

duration and departure time are discussed in Section 5.2.3 of (Steiner and Irnich, 2018). Hence, we
focus on the additional aspects trip frequency and cannibalization in the following experiments. As
a first step, we show that solutions differ indeed significantly when the impact of trip frequency and
cannibalization on the demand are considered. To ensure the results we present are not skewed due
to non-optimal solutions found by the LMNS, we base them on the instances with 12 cities, where
the optimal solution can be determined based on an enumeration algorithm. For the instance with
12 cities, demand scenario Base , corridor 1, and F = 2, Table 10 shows the optimal solutions once
considering the impact of trip frequency and cannibalization on the demand, and once ignoring it.

Station (included +/not included −)

Selected
Dynamic demand setup service 1 2 3 4 5 6 7 8 9 10 11 12

Impact of trip frequency and m = 2 + + − + + − + − + + + +
cannibalization considered m = 4 + + + − − − + + − + − +

Impact of trip frequency and m = 2 + + + + − + + − + + + +
cannibalization not considered m = 3 + + + + − − + − + + + +

Table 10: Impact on the optimal solutions of including trip frequency and cannibalization dynamics

We observe that the two optimal solutions differ significantly: Already the selected timetabled
services are different. On the one hand, the setup ignoring the cannibalization chooses “neighbor-
ing” services with very similar selected stations (only for station 6 there is a difference). On the
other hand, the solution when considering dynamic demand effects with respect to trip frequency
and cannibalization leaves more time between the two departures. Furthermore, it shows more
differences between the two services to realize a higher coverage of stations with more attractive
travel times and less cannibalization.

As a second step, we analyze sensitivity with respect to the degree of cannibalization in more
detail. For the instance with 12 cities, demand scenario Opti , corridor 1, and F = 2, we look
at different intensities of cannibalization, parametrized by σ ∈ {0, 1, . . . , 10}. For the degree of
cannibalization g1, the respective demand parameter for the case of no cannibalization (g0) is
multiplied by 1− σ

40 , for g2 with 1− σ
20 , respectively. This means, for σ = 0 there is no cannibalization

effect at all, while in the other extreme case of σ = 10 only 75% of the original demand remain for
a degree of cannibalization g1, and 50% for g2. To isolate the effect of the varying cannibalization
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Figure 1: Sensitivity of best known solutions towards the intensity of cannibalization

level, the solution needs to select exclusively the services m = 3 and m = 4 and no dynamic demand
with respect to the trip frequency is assumed. Table 11 shows the optimal solutions for the extreme
cases σ = 0 and σ = 10. Complementary, Figure 1 shows further key characteristics of the solutions
for varying values of σ.

Station (included +/not included −)

Scaling Selected
parameter service 1 2 3 4 5 6 7 8 9 10 11 12

σ = 0 m = 3 + + + − + + + + + + + +
m = 4 + + + − + − + + + + + +

σ = 10 m = 3 + + − + − − + − + + + +
m = 4 + + + − + + + + + + + +

Table 11: Sample best solutions for different intensities of cannibalization

The observations are in line with the expected results: The selected stations of the two services
are very similar for σ = 0 and differ substantially for σ = 10. Further, the share of offered trips with
a degree of cannibalization g1 or g2 as well as the achievable objective value decline with increasing
values of σ.

Overall, we can conclude that considering the interdependencies of selected timetabled services
has a significant impact on optimal solutions. It is therefore advisable for bus operators to consider
these aspects in their demand modeling and applying models capable of incorporating these aspects.

5.5. Model extensions
In the final set of experiments, we analyze the effect of requesting services to be equal or similar

as motivated in Section 3.2. For the instance with 15 cities, demand scenario Cons , corridor 1,
and F = 3, we run the LMNS algorithm three times: once requiring all selected services to include
identical selected stations (identical services), once again with the initial requirement of identical
services but allowing for one additional station per service (additional station per service), and once
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with no additional requirements on the structure of the different services (no requirements). For
the setup with identical services, the LMNS operators need to be slightly adjusted to ensure the
services are still identical after an operator application. Specifically, the adjusted operators 1.3, 2.3,
and 3.3 simultaneously add, delete or shift the best station (randomized as before) in all services.
Further, operator 4.1 only selects the timetabled service to be added, the stations are then selected
exactly as for the other selected services. The operators 5.1 and 6.1 need no adjustment, since they
already preserve the property of identical services.

When an additional station per service is allowed, we proceed analogously to the case with
identical services and include a final iteration applying operator 1.3 optimized add best stations for
S = 1 to each selected service. The solution is accepted in case of an improved objective value.

Table 12 presents the three different best solutions found with the LMNS settings determined
above. It can be observed that allowing an additional station per service can already improve the
objective significantly. Yet, the solution with no requirements on the structure of the different lines
is by far the most attractive one. Based on this type of analysis, the costs of additional requirements
on the structure of the timetabled services can be determined.

Station (included +/not included −)

Structure Selected objective
requirements service 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 value

identical m = 2 + − − + + − + + − − − + + + +
services m = 4 + − − + + − + + − − − + + + + 1,763

m = 5 + − − + + − + + − − − + + + +

additional m = 2 + − − + + − + + + − − + + + +
station per m = 4 + − − + + − + + − − − + + + + 1,860
service m = 5 + − − + + − + + − − − + + + +

no m = 2 + + + + − − + − − − − + + − +
requirements m = 3 + − + − + − + + − + − − + + + 2,633

m = 4 + + + − − − + − + − − − − − +

Table 12: Sample best known solutions for different requirements on the structure of services

6. Conclusion and outlook

We have presented a scheduled-based mixed-integer linear model formulation comprising mul-
tiple aspects of dynamic demand. This model can be applied by an operator of inter-city buses for
the concurrent planning of multiple timetabled services. Simultaneous decisions are made on the
characteristics of the network design, by selecting stations, and also on scheduling aspects, by se-
lecting departure times. Since computation times that rely on standard approaches are too long to
solve real-world instances, we have introduced different variations of a large multiple neighborhood
search (LMNS) metaheuristic algorithm. In an extensive computational study we obtained solu-
tions in attractive computation times and observed that the gaps to optimal solutions are small for
the cases with known optimal solutions. Furthermore, we studied the modeling scope and discussed
how considering the interdependencies between different timetabled services significantly impacts
the optimal solutions.
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Future research could focus on extending the scope from a single travel corridor to considering
the entire network, including passenger transfers. This would require any future model to include
even more interdependencies between services, since the demand for timetabled services in one
corridor can depend on the offering of services in another corridor. The application of optimization
models would therefore be connected even more closely to the development of demand models
capable of predicting demand effects with high accuracy.

Another important research direction is the inclusion of further operational aspects when plan-
ning the timetabled services. Driver costs are an important aspect, since they represent a significant
share of the operating costs and are typically associated with complex regulations, including in re-
lation to working and driving times. Specifically, the variable costs could not be determined a
priori for a connection between two stations. They would depend on both, the total structure of
the timetabled service itself due to necessary breaks, and also on the other selected timetabled
services. The latter aspect stems from the fact that only some selected pairs of services can be
driven consecutively by the same driver.

We believe that metaheuristics will be the most suitable approach to tackle these complex
problems and that the approaches and studies presented in this paper provide a solid foundation
for the future work in this field.
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