
A New Branch-and-Price Algorithm for the Traveling
Tournament Problem

Stefan Irnich∗,a

aChair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The traveling tournament problem (ttp) consists of finding a distance-minimal
double round-robin tournament where the number of consecutive breaks is
bounded. For solving the problem exactly, we propose a new branch-and-price
approach. The starting point is a new compact formulation for the ttp. The
corresponding extensive formulation resulting from a Dantzig-Wolfe decompo-
sition is identical to one given by Easton et al. (2003), who suggest to solve the
tour-generation subproblem by constraint programming. In contrast to their
approach, our method explicitly utilizes the network structure of the compact
formulation: First, the column-generation subproblem is a shortest-path prob-
lem with additional resource and task-elementarity constraints. We show that
this problem can be reformulated as an ordinary shortest-path problem over an
expanded network and, thus, be solved much faster. An exact variable elimina-
tion procedure then allows the reduction of the expanded networks while still
guaranteeing optimality. Second, the compact formulation gives rise to supple-
mental branching rules, which are needed, since existing rules do not ensure
integrality in all cases. Third, non-repeater constraints are added dynamically
to the master problem only when violated. The result is a fast exact algorithm,
which improves many lower bounds of knowingly hard ttp instances from the
literature. For some instances, solutions are proven optimal for the first time.

Key words: Timetabling, sports league scheduling, traveling tournament
problem, column generation, branch-and-price

1. Introduction

The traveling tournament problem is the problem of finding a double round-
robin schedule that minimizes the overall distance traveled by all teams such
that, for each team, the number of consecutive home stands and consecutive
away games is bounded. The ttp was introduced by Easton et al. (2001) as

∗Corresponding author.
Email address: irnich@uni-mainz.de (Stefan Irnich)

Preprint submitted to Elsevier October 19, 2009

an artificial sports league scheduling problem. Since then, it has attracted
numerous researchers, probably because of its fast growing difficulty.

Formally, an even number n ∈ 2N of teams is given. Let T := {1, 2, . . . , n}
denote the set of teams. In a single round-robin tournament, each team t plays
against each of its opponent teams T−t := T \ {t} once. Assuming that the
tournament takes place on a minimum number of matchdays (in the following
called “time slots”), there are n/2 games in each of the n̄ := n − 1 time slots.
In a double round-robin tournament, each team plays against each other team
twice, once at home and once away. Consequently, there are 2n̄ time slots with
again n/2 games in each slot. In the following, the time slots S = {1, 2, . . . , 2n̄}
are indexed by s.

For each team, the sequence of consecutive games played (home or at an
opponent’s venue) implies a tour: We identify teams and their venues and use
indices i, j ∈ T to refer to venues. A tour p = (i1, i2, . . . , i2n̄) = (is)s∈S of
team t ∈ T contains each opponent venue i ∈ T−t exactly once (away games)
and the home venue i = t exactly n̄ times (home games). A break occurs if a
home game is followed by another home game or if an away game is followed by
another away game, i.e., is = is+1 = t or is, is+1 ∈ T−t for a time slot s < 2n̄. In
the ttp, the number of consecutive home stands and consecutive away games is
bounded by L and U , i.e., the number of consecutive breaks is bounded by L−1
and U − 1. Since all instances from the literature have L = 1, we solely focus
on the upper bound U . Moreover, there are (optional) no-repeater constraints
(NRCs) stating that the game t against t′ must not be followed by the return
game t′ against t for any pair of teams t, t′ ∈ T .

The objective of the ttp is distance minimization over all teams. Dis-
tances D = (dij)i,j∈T between the venues are assumed symmetric and non-
negative. Because each team t initially starts at home (i0 = t) and finally
returns home (i2n̄+1 = t), the distance traveled along a tour p = (i1, i2, . . . , i2n̄)
is
∑2n̄

s=0 dis,is+1 . Summing up, an instance of ttp is defined by distances
D = (dij), an integer U , and optional NRCs. The task is to compute a dis-
tance minimal set of break-feasible tours that compose a double round-robin
tournament (without repeater games).

The recent survey by Rasmussen and Trick (2008) devotes a full section
to the ttp and gives a comprehensive overview of state-of-the-art approaches.
While there is a large variety of metaheuristics available (see survey), the liter-
ature on exact algorithms is scarce: Based on the so-called independent lower
bound (ILB) relaxation, Easton et al. (2001) are able to solve ttp instances
with n = 4 and n = 6 teams. The same authors present in (Easton et al., 2003)
a column-generation approach for ttp without NRCs, where the subproblems,
one for each team, consist of generating least-cost (=reduced cost) tours. Sub-
problems are solved by constraint programming (CP), and integrality of the
overall solution is enforced by branch-and-bound. A method to improve lower
bounds is presented by Urrutia et al. (2007), but (to the best of our knowl-
edge) no exact approach has been implemented based on this idea. The special
case of mirrored ttp with uniform distances is treated in (Urrutia and Ribeiro,

2

2004), where instances with up to n = 12 teams are solved to optimality. Che-
ung (2008) is able to solve small (n ≤ 8) mirrored ttp benchmark problems
from http://mat.tepper.cmu.edu/TOURN (with non-constant distances) using
a 2-phase approach: First, all different one-factorizations are computed and
then, for each of them, a timetable-constrained distance minimization problem
is solved afterwards. Cheung (2009) proposes a Benders decomposition ap-
proach, which improves the lower bound for larger instances of the same type,
i.e., for n between 10 and 24. It seems rather unlikely that these methods are
successfully applicable to general or larger ttp instances. This motivated our
research on fast exact approaches for the ttp.

This paper is structured as follows: Section 2 presents the new compact for-
mulation for the ttp. The proposed Dantzig-Wolfe decomposition of this model
and the resulting master and pricing problems are derived in Section 3. Sec-
tion 4 devises the corresponding solution methods for the integer programming
master. Computational results are discussed in Section 5 and final conclusions
are drawn in Section 6.

2. Compact Formulation

In integer column generation, a well-structured compact (=original) formu-
lation is extremely important for devising branching rules and adding valid
inequalities to the extensive (=column-generation) formulation (cf. Lübbecke
and Desrosiers, 2005; Spoorendonk, 2008). The basic idea of the new compact
formulation for the ttp is to represent the movement of each team, from venue
to venue, by a path in a time-discrete network. Figure 1 depicts the network
for a ttp with n = 4 teams. For each time slot s ∈ S, a given team t ∈ T visits
one of the venues i ∈ T , i.e., its own home venue or any opponent’s venue. The
nodes of the network of team t are therefore

V t = {vis : i ∈ T, s ∈ S} ∪ {vt0, vt,2n̄+1}.

The two extra nodes vt0 and vt,2n̄+1 are source and sink. They model the fact
that team t always starts at home and returns home at the end. The possible
movements in space and time are given by arcs (vis, vj,s+1) with the meaning
that team t is traveling from venue i at time s to venue j, where the next game
takes places at time s+1. To lighten the notation, arcs (vis, vj,s+1) are encoded
by triplets (i, j, s), where the set of all feasible triplets for team t is

At = {(t, j, 0) : j ∈ T} ∪ {(i, t, 2n̄) : i ∈ T}
∪{(i, j, s) : i, j ∈ T, (i 6= j or i = j = t), s ∈ S \ {2n̄}}

The subset Bt = {(i, j, s) ∈ At : (i = j = t, s 6= 0, 2n̄) or i, j ∈ T−t} ⊂ At

represents home stands and consecutive away games and, thus, defines the set
of break arcs. Note that a home game in s = 1 or s = 2n̄ does not impose
a break. We use At to refer to arcs of the network N t = (V t, At) and also to

3

Figure 1: Network N 4 of team t = 4 for a ttp with n = 4 teams

index the corresponding decision variables xt
ijs ∈ {0, 1} of the following compact

formulation:

zttp = min
∑
t∈T

∑
(i,j,s)∈At

dijx
t
ijs (1)

s.t.
∑

i:(i,j,s−1)∈At

xt
ij,s−1 −

∑
i:(j,i,s)∈At

xt
jis = 0 for all t, j ∈ T, s ∈ S (2)

∑
s∈S

∑
j:(i,j,s)∈At

xt
ijs = 1 for all t ∈ T, i ∈ T−t (3)

U−1∑
u=0

∑
(i,j,s+u)∈Bt

xt
ij,s+u ≤ U − 1 for all t ∈ T, s ∈ S : s ≤ 2n̄− U (4)

∑
i∈T−t

∑
j:(i,j,s)∈At

xt
ijs +

∑
t′∈T−t

∑
j:(t,j,s)∈At′

xt′

tjs = 1 for all t ∈ T, s ∈ S(5)

xt
ijs ∈ {0, 1} for all t ∈ T, (i, j, s) ∈ At (6)

The objective (1) is the minimization of the overall distance traveled by all
teams. Flow conservation for each team is implied by (2), constraints (3) state
that all teams must visit all opponent venues exactly once, and constraints (4)
limit the number of consecutive breaks. The coupling constraints (5) are the
crucial part of the model: They guarantee that each team t plays a game in each
time slot s, either playing away against an opponent t′ (first sum) or playing
home as the opponent of another team t′ (second sum).

One advantage of this formulation is that NRCs are simple to add: xt
tt′s +

4

xt′

tt′s ≤ 1 must hold for all t ∈ T, t′ ∈ T−t, s ∈ S, s < 2n̄. It means that teams t
and t′ are not allowed to play against each other in consecutive time slots, first
in slot s home at t, directly followed by the return game in slot s+1 home at t′.
By swapping the role of t and t′ and anticipating that the four corresponding
arcs are pairwise incompatible, NRCs can be lifted to

xt
tt′s + xt′

tt′s + xt′

t′ts + xt
t′ts ≤ 1 for all t, t′ ∈ T, t < t′; s ∈ S, s 6= 2n̄. (7)

These are nn̄(2n̄ − 1)/2 = O (n3) lifted NRCs. Thus, (1)-(7) is the compact
formulation for the ttp with NRCs.

3. Extensive Formulation

The extensive formulation consists of two parts: First, we briefly state the
master program, which is identical to one used in (Easton et al., 2003). The
new aspect is the incorporation of the NRCs, which are directly derived from
the compact formulation presented above. Second, we discuss the structure of
the subproblems.

3.1. Master Problem
The application of the Dantzig-Wolfe decomposition principle to the model

(1)–(7) is straightforward: Note that the only constraints involving more than
one team are the coupling constraints (5) and the NRCs (7). Therefore, con-
straints (2)–(4) and (6) define the domains of the subproblems. They decompose
into n domains and corresponding subproblems, one for each team t ∈ T : Let
P t = {(xt

ijs, (i, j, s) ∈ At : satisfying (2)–(4) and (6)}. The set P t is the set of
feasible paths from source vt0 to sink vt,2n̄+1 in the network N t. Such a path
must be break-feasible and visit each opponent venue exactly once. The cost of
a tour p = (x̄t

ijs) ∈ P t is cp =
∑

(i,j,s)∈At dij x̄
t
ijs.

Easton et al. (2003) were the first to present a column-generation formulation
based on the tour variables λt

p, p ∈ P t for the ttp, but without deriving it from
an original compact formulation. We define P t

t′s to be the subset of tours in P t,
where team t plays away in slot s against team t′, i.e., p ∈ P t

t′s visits venue of
t′ in slot s (p touches the node vt′s). The extensive formulation is as follows:

min
∑
t∈T

∑
p∈P t

cpλ
t
p (8)

s.t.
∑

t′∈T−t

∑
p∈P t

t′s

λt
p +

∑
t′∈T−t

∑
p∈P t′

ts

λt′

p = 1 for all t ∈ T, s ∈ S (9)

∑
p∈P t

λt
p = 1 for all t ∈ T (10)

λt
p ∈ {0, 1} for all t ∈ T, p ∈ P t (11)

The overall distance traveled by all teams is minimized by (8). The reformula-
tion of the coupling constraints (5) in the tour variables is given by (9). Finally,

5

the convexity constraints (10) state that one tour has to be selected for each
team. The binary requirements on the original arc variables xt

ijs imply integral-
ity of the path variables λt

p (cf. Desaulniers et al., 1998, p. 75). It is easy to
see that equalities in (9) can be replaced by ≥, which gives a better stabilized
master.

Defining P t
ijs as the subset of paths of P t that contain the arc (i, j, s) ∈ At,

the reformulation of the NRCs is∑
p∈(P t

tt′s∪P t
t′ts)

λt
p +

∑
p∈(P t′

tt′s∪P t′
t′ts)

λt′

p ≤ 1 for all t, t′ ∈ T, t < t′; s ∈ S, s 6= 2n̄.

(12)
In the following, we refer to the LP-relaxation of (8)–(11) or (8)–(12) as the
master program (MP). The LP over a subset of the path variables λt

p is called
the restricted master program (RMP).

3.2. Subproblems
There is one subproblem (=pricing problem) for each team t ∈ T . The task

of the t-th subproblem is to determine a tour for team t and the corresponding
master program variable λt

p with minimum reduced cost. We consider a tour
p = (i0, i1, . . . , i2n̄, i2n̄+1) and recall that i0 = i2n̄+1 = t holds. For (i, j, s) ∈ At

we write (i, j, s) ∈ p if and only if i = is and j = is+1. The dual variables
associated with the constraints of the master problem are π = (πts) for the
coupling constraints (9), µ = (µt) for the convexity constraints (10), and, if
present, β = (βtt′s) for the NRCs (12). With these definitions, the reduced cost
of the tour variable λt

p is c̃tp =
∑

(i,j,s)∈p c̃
t
ijs−µt, where the coefficients c̃tijs are

defined by

c̃tijs(π, β) = dij −
{
πts + πis, if i ∈ T−t

0, otherwise −

 βijs, if i < j, s 6= 2n̄
βjis, if i > j, s 6= 2n̄
0, otherwise

. (13)

This representation shows that the pricing problem is in fact a shortest-path
problem over the networkN t (we leave out the index t for the decision variables):

ζt
PP (π, β) = min

∑
(i,j,s)∈At

c̃tijs(π, β)xijs

s.t.
∑

i:(i,j,s−1)∈At

xij,s−1 −
∑

i:(j,i,s)∈At

xjis = 0 for all j ∈ T, s ∈ S(14)

∑
s∈S

∑
j:(i,j,s)∈At

xijs = 1 for all i ∈ T−t (15)

U−1∑
u=0

∑
(i,j,s+u)∈Bt

xij,s+u ≤ U − 1 for all s ∈ S : s ≤ 2n̄− U (16)

xijs ∈ {0, 1} for all (i, j, s) ∈ At (17)

6

The flow conservation constraints (14) together with the requirements to visit
each opponent venue (15) imply that the solution is a path from vt0 to vt,2n̄+1.
Moreover, this path must be break-feasible, which is implied by the constraints (16).

4. Solution of the Integer Master Problem

We now derive fast solutions methods for the ttp based on the decompo-
sition into master and pricing problems. The crucial part for efficiency is the
representation of the pricing problems as ordinary shortest-path problems.

4.1. Solution of the Subproblems
Not every path from vt0 to vt,2n̄+1 in the network N t represents a feasi-

ble tour. The covering of each opponent venue and break-feasibility must be
guaranteed by additional constraints. We show that these constraints can be
handled by defining resources so that the subproblem is a shortest-path problem
with resource constraints (SPPRC) (cf. Irnich and Desaulniers, 2005). Break-
feasibility can be guaranteed with one constrained resource b ∈ {0, 1, . . . , U −1}
that is increased whenever a break occurs, and is reset to zero otherwise. Note
that both operations, incrementation and reset, are non-decreasing resource ex-
tension functions (REFs) (cf. Desaulniers et al., 1998; Irnich, 2008).

Covering each opponent i ∈ T−t exactly once is a path-structural constraint
(Irnich and Desaulniers, 2005, p. 38f). Since the tour represents a tight schedule
with exactly n̄ home games and the same number of away games, these covering
constraints are already fulfilled if at most one node from each node set V t

i :=
{vis : s ∈ S} is visited (for each i ∈ T−t) and at most n̄ nodes from V t

t :=
{vts : s ∈ S}. A maximum number of visits can easily be handled by visiting
counters, one for each team i ∈ T . For counting breaks and the n̄+ 1 different
visits, we define 1 + n = 1 + (n̄ + 1) resources with feasible domain D :=
{0, 1, . . . , U − 1} × ({0, 1}n̄ × {0, 1, . . . , n̄}) ⊂ Z1+n

+ . At the source node vt0,
all resources are their lower bounds (0, (0)). The resource update along an
arc (i, j, s) ∈ At is given by the following REF:

f t
ijs (b, (nk)k∈T , c̃) :=

{ (
b+ 1, (nk + δjk(1− δs,2n̄))k∈T , c̃+ c̃tijs

)
, if (i, j, s) ∈ Bt(

0, (nk + δjk(1− δs,2n̄))k∈T , c̃+ c̃tijs

)
, otherwise (18)

Herein, δpq is the Kronecker symbol, i.e., δpq = 1 for p = q and 0 otherwise. In
the first component, the number of breaks is increased or reset depending on
whether the arc is a break arc. For the second component, note that the node
j = vt,2n̄+1 does not represent a home game and that, when entering this node,
nt must not be incremented. This explains the factor (1 − δs,2n̄) in the above
REF. The third component is simply the addition of the arc reduced costs as
defined by (13).

Summing up, a partial path in N t, ending at node vis with label (b, (nk), c̃)
can be extended to node vj,s+1 if and only if f t

ijs(b, (nk), c̃) ∈ D×R holds. This
establishes a resource-based definition of feasible tours.

7

4.1.1. Limited Dominance and Network Expansion
The standard approach for solving SPPRCs is dynamic programming using

a labeling algorithm, i.e., systematically building new paths, starting from the
trivial path (vt0) at the source node vt0, by extending them one-by-one into
feasible directions. Typically, labels (reached states together with minimum
costs to reach them) are stored at each node vis ∈ V t. A dominance algorithm
identifies a subset of these labels that are provably non-useful for the generation
of a least-cost path, and if so, discards them. For a comprehensive survey on
SPPRC labeling algorithms and alternative solution methods (see Irnich and
Desaulniers, 2005).

For the ttp subproblem, assume that two labels `1 = (b1, (n1k), c̃1) and `2 =
(b2, (n2k), c̃2) with associated partial paths ending at the same node vis ∈ V t

are given. The standard resource-based dominance between labels requires a
component-wise comparison. If `1 ≤ `2, then `1 dominates `2, implying that
`2 can be discarded. However, this dominance relation is weak for ttp sub-
problems because only labels with identical visiting counters are possible can-
didates, as can be seen as follows: Labels that refer to the same node vis have
s =

∑
t∈T n1t =

∑
t∈T n2t. If n1i < n2i in one component i, then there must

exist another component j with n1j > n2j , i.e., the two labels are incomparable.
As a consequence, dominance applies only to labels with identical visiting

counters. Comparable labels can only differ in their break counter and reduced
cost. Thus, by dominance no more than U − 1 labels associated to the U differ-
ent states (b, (nk)), b ∈ {0, 1, . . . , U − 1} can be discarded. Since U is typically
a small integer, mostly U = 3 for the benchmark problems, we propose ig-
noring this limited dominance. This avoids a complex management (addition,
comparison, and deletion) of labels as needed in standard labeling approaches.
Instead the pricing problem can be solved over an expanded acyclic network
N t

ex = (V t
ex, A

t
ex), but as an ordinary shortest-path problem (SPP). The node

set V t
ex of the expanded network consists of the reachable states (b, (nk)) ∈ D,

each associated to an original node vis ∈ V t. To lighten the notation and to
distinguish between states associated to different nodes vis, states are denoted
by (i, s, b,N) in the following. Herein, the set N ⊆ T−t represents the visited
opponent venues, i.e., N = {i ∈ T−t : ni = 1}. Note that a state must necessar-
ily fulfill s =

∑
k∈T nk. Thus, knowing the integer s and the set N is equivalent

to knowing all visiting counters because ni = 1 if and only if i ∈ N for i 6= t
and nt = s− |N |.

In the expanded network, arcs exist between nodes (i, s, b,N) and (j, s +
1, b′, N ′) if (i, j, s) ∈ At and f t

ijs(b, (nk)) = (b′, (n′k)) ∈ D, where N and N ′

correspond to the visiting counters (nk) and (n′k), respectively. Starting from
node (t, 0, 0,∅) ∈ V t

ex, arcs emanate to the nodes associated to time slot 1,
i.e., to the nodes (i, 1, 0, {i}) for i ∈ T−t and to node (t, 1, 0,∅). Figure 2
depicts parts of the network N 4

ex = (V 4
ex, A

4
ex) and the path associated with the

tour (3, t, t, 2, 1, t) of team t = 4 for a ttp with n = 4 teams.

4.1.2. Bidirectional Labeling
Righini and Salani (2006) have shown that bidirectional labeling can accel-

8

Figure 2: Expanded network N 4
ex with tour (3, t, t, 2, 1, t) for team t = 4; A state (i, s, b, N)

is associated to node vis, has b breaks and opponent venues N ⊆ T−t already visited

erate the solution of SPPRCs. Their observation was that often fewer labels
are created if paths are built as concatenations of forward and backward paths
that are merged “in the middle”. In general, there exist more feasible s-t-paths
of length ≤ L (from a source s to a sink t) than feasible forward and back-
ward paths of length ≤ L/2 (starting at s or ending at t). The crucial point
for the efficacy of bidirectional labeling is the ability to bound the extension of
forward and backward paths, while still guaranteeing that each feasible path is
the concatenation of a generated forward and backward path. In case of the
ttp subproblem, the bounding is trivial because the networks are layered: The
middle is the connection of nodes of slot s = n̄ with those in slot s′ = n̄ + 1.
Hence, forward paths are associated to the nodes vis with s ∈ {0, 1, . . . , n̄} and
backward paths to the nodes vis′ with s′ ∈ {n̄+ 1, n̄+ 2, . . . , 2n̄+ 1}.

For the implementation, we exploit the fact that forward and backward
extension of labels is symmetric in the following sense: All labels are of the form
(b, (nk)k∈T , c̃) and the REF (18) can be used for a forward extension along the
arc (i, j, s) ∈ At or a backward extension along an arc (j, i, 2n̄−s) ∈ At. The only
difference is the cost component, where in the backward case c̃tji,2n̄−s has to be
added. Thus, only the digraph induced by the nodes of the slots s ∈ {0, 1, . . . , n̄}
and the connecting arcs between slots n̄ and n̄+ 1 have to be stored. Let V t

s,ex

for s ∈ {0, 1, . . . , 2n̄+ 1} denote the nodes of slot s, let V t
≤n̄,ex :=

⋃n̄
s=0 V

t
s,ex be

9

the nodes “in the first half”, and let At
s,ex be the arcs connecting slot s− 1 with

s.
The merging step, i.e., the concatenation of a feasible forward label (b, (nk)k∈T , c̃)

(associated to node vi,n̄) with a feasible backward label (b′, (n′k)k∈T , c̃
′) (asso-

ciated to node vj,n̄+1) must proceed in two steps. First, feasibility has to be
checked: The concatenation is a feasible path if and only if nk + n′k = 1 for all
k ∈ T−t and the resulting path is break-feasible. Break-feasibility is fulfilled if
(i, j, s) /∈ Bt or b + b′ + 1 ≤ U − 1. Second, the cost of the concatenation is
c̃+ c̃tijn̄ + c̃′.

Note that all break-feasible concatenations of forward and backward labels
between nodes V t

n̄,ex and V t
n̄+1,ex are not given by the arcs At

n̄+1,ex. For instance,
taking U = 3 and n = t = 6, the labels (b, {1, 2, 3}, c̃) associated with node v35

(away at team 3 in slot 5) can be connected with labels (b′, {4, 5, 6}, c̃′) associated
with node v66 (home in slot 6) independent of the values b, b′ ∈ {0, 1, 2}. These
are nine feasible connections, three for each associated state. In contrary, for
each of the three states (b, {1, 2, 3}), b ∈ {0, 1, 2} (associated to node v35) there
is one unique arc to the state (0, {1, 2, 3}) associated to node v66.

For the implementation of bidirectional labeling, we store the first half of
the network N t

ex, i.e., the graph induced by V t
≤n̄,ex. We store the nodes and

arcs as well as two cost labels at each node, one for forward labeling and the
other one for backward labeling (associated with the second half). The break-
feasible concatenations between nodes of V t

≤n̄,ex are stored (as pairs) At
ex,mid ⊂

V t
≤n̄,ex×V t

≤n̄,ex. The reduced costs c̃tijs, which change from iteration to iteration,
can be stored within and retrieved from the original network. Thus, no cost
needs to be stored and updated in the extended network N t

ex. This further
reduces the computational effort for pricing.

n Number of Nodes in Slot s/Arcs to Slot s |At
ex,mid|

4 |V t
s,ex| (1, 4, 13, 28, 40, 32, 12, 1)

|At
s,ex| (4, 13, 34, 63, 70, 32, 12) 96

6 |V t
s,ex| (1, 6, 31, 96, 180, 255, 255, 226, 182, 93, 18, 1)

|At
s,ex| (6, 31, 136, 310, 575, 710, 640, 546, 322, 72, 18) 1480

8 |V t
s,ex| (1, 8, 57, 232, 504, 973, 1204, 1295, 1435, 1442, 1282, 933, 549, 171, 24, 1)

|At
s,ex| (8, 57, 358, 889, 2275, 3766, 4165, 4571, 4879, 4662, 3655, 2326, 814, 128, 24) 9072

10 |V t
s,ex| (1, 10, 91, 460, 1092, 2715, 4104, 5229, 6564, 7458, 7434, 7020, 7048, 6554, 5169,

2901, 1137, 273, 30, 1)
|At

s,ex| (10, 91, 748, 1944, 6411, 13722, 18105, 22812, 28368, 30396, 28920, 28407, 27844, 61488
23570, 14498, 6266, 1658, 200, 30)

12 |V t
s,ex| (1, 12, 133, 804, 2024, 6193, 11187, 16555, 23342, 31086, 33968, 34903, 36388,

36443, 35046, 32429, 30131, 24126, 14424, 6504, 2049, 399, 36, 1)
|At

s,ex| (12, 133, 1354, 3619, 14663, 38962, 60181, 84381, 125851, 155705, 161260, 167475, 164604
172095, 168850, 156794, 149898, 128196, 82920, 40680, 13950, 2950, 288, 36)

Table 1: Sizes of the monodirectional networks N t
ex for L = 1 and U = 3

Comparison of Network Sizes. The advantage of bidirectional labeling can be
illustrated by comparing the sizes of the networks. Our goal is to precisely
specify the memory consumption and effort of labeling in both the mono- and

10

the bidirectional case. Table 1 shows the number of nodes and arcs of the
monodirectional expanded network N t

ex, itemized by slots s. The number of
arcs between slot n̄ and n̄ + 1 is printed in bold type. Moreover, for the bidi-
rectional approach, the number |At

ex,mid| of break-feasible connections is listed
for different values of n.

It is obvious that in the monodirectional expanded network N t
ex the second

half is always larger than the first. For n = 4 teams, there are 1+4+13+28 = 46
nodes in the first half, but 1 + 12 + 32 + 40 = 85 in the second. There are
|At

4,ex| = 63 arcs between slot 3 with 4 (the monodirectional case) compared to
|At

ex,mid| = 96 break-feasible connections in the middle (bidirectional case).
For a comparison of the mono- and the bidirectional case, data taken from

Table 1 are further condensed, and presented in Table 2. The first columns
summarize the network size in the monodirectional case, by taking the sum of
the corresponding values in Table 1. The bidirectional case is shown in the
second division of Table 2. The number of nodes is twice that of those in the
first half. Clearly, there is always a smaller number of nodes in the bidirectional
network, and the reduction is between approx. 15% and 30%. The number of
arcs and connections in the bidirectional case is twice that of the arcs from
the first half plus the connections |At

ex,mid|. For n = 4 team, e.g., this is
2 · (4 + 13 + 34) + 96 = 198. However, the number of connections |At

ex,mid|
is for n < 12 larger than the number of arcs |An̄+1,ex|. As a result, there is
no clear picture when comparing the number of arcs and connections in the
mono- and the bidirectional case, indicated also by the positive and negative
relative changes between −13.2% and +6.8%. The number of operations in
monodirectional labeling is proportional to |At

ex|, while for bidirectional labeling
proportional to 2|A(V t

≤n̄,ex)|+ |At
ex,mid|. Thus, except for n = 6, the number of

labeling operations is smaller in the bidirectional case.
The last four columns of Table 2 display how large the first half of the net-

work is. This is particularly interesting because it relates to the amount of
computer memory necessary to store the expanded networks. Here, the bidi-
rectional approach saves between approx. 25% and 53% of main memory for n
between 4 and 12. Since the expanded networks are rather large, the resulting
reduction for the use of memory is another important detail for the viability of
the approach.

Monodirectional Bidirectional 2|A(V t
≤n̄,ex)| Bidir. “First Half” |A(V t

≤n̄,ex)|
n |V t

ex| |At
ex| 2|V t

≤n̄,ex| +|At
ex,mid| |V t

≤n̄,ex| +|At
ex,mid|

4 131 228 92 -29,8% 198 -13,2% 46 -64,9% 147 -35,5%
6 1,344 3,366 1,138 -15,3% 3,596 +6,8% 569 -57,7% 2,538 -24,6%
8 10,111 32,577 8,548 -15,5% 32,108 -1,4% 4,274 -57,7% 20,590 -36,8%
10 65,291 254,000 55,448 -15,1% 245,910 -3,2% 27,724 -57,5% 153,749 -39,5%
12 378,184 1,730,253 320,416 -15,3% 1,621,450 -6,3% 160,208 -57,6% 810,725 -53,1%

Table 2: Comparison of network sizes for the mono- and the bidirectional case; L = 1 and
U = 3

11

Comparison with Complete Enumeration. A comparison of the proposed shortest-
path pricing procedure with the constraint programming (CP) approach used
by Easton et al. (2003) is hard. We are not able to precisely assess the impact
of their (or any other) domain-reduction algorithms performed by a CP solver.
Thus, we compare with the worst case, i.e., complete enumeration of all tours,
which only occurs if the CP domain reduction completely fails.

For a comparison with the worst case, we now determine the number |P t| of
all possible tours of a team. Let p = (i1, i2, . . . , i2n̄) be a tour. The associated
home-away pattern (HAP) h = (h1, h2, . . . , h2n̄) is defined by hi ∈ {H,A},
ht = A for it ∈ T−t and ht = H for it = t. Clearly, there are n̄! tours that share
the same home-away pattern. Hence, |P t| = n̄! · |Ht|, where Ht denotes the set
of all feasible HAPs.

What remains to do is to determine the cardinality of Ht, using the following
recursively defined numbers: Let

]
m
`

]
be the number of `-tuples with entries in

{L,L+ 1, . . . , U} that sum up to m, i.e.,]m
`

]
=

∣∣∣∣∣
{

(n1, . . . , n`) ∈ N : L ≤ nt ≤ U,m =
∑̀
t=1

nt

}∣∣∣∣∣ .
Then,]m

1

]
=
{

1, if m ∈ {L, . . . , U}
0, otherwise and

]m
`

]
=

U∑
j=L

]
m− j
`− 1

]
, for ` ≥ 2.

For small values of ` and m, the values
]

m
`

]
with L = 1 and U = 3 are given in

Table 3. For example, there are
]

4
2

]
= 3 ways to decompose m = 4 into ` = 2

summands between 1 and 3, namely 4 = 1 + 3 = 2 + 2 = 3 + 1. Obviously,
]m

`

]
m = 1 2 3 4 5 6 7

` = 1 1 1 1
2 . 1 2 3 2 1 .
3 . . 1 3 6 7 6
4 . . . 1 4 10 16
5 1 5 15
6 1 6
7 1

Table 3: Values
]m

`

]
6= 0; Number of ways to split m into ` values between L = 1 and U = 3

each HAP decomposes into subsequences of home games and away games, where
each subsequence has n ∈ {L, . . . , U} identical elements. All home subsequences
together are of length n̄, as holds for away subsequences. Consequently, there
are

|Ht| = 2 ·
n̄∑

`=1

(] n̄
`

]
·
] n̄
`

]
+
] n̄
`

]
·
]

n̄

`− 1

])
(19)

different HAPs for a team, where the factor 2 arises from the fact that HAPs
either start with a home or an away subsequence. Moreover, the number of

12

home subsequences must be identical to the number of away subsequences (term]
n̄
`

]]
n̄
`

]
) or differ by 1 (term

]
n̄
`

]]
n̄

`−1

]
). By combining |P t| = n̄! · |Ht| and (19),

we get

|P t| = n̄! · 2 ·
n̄∑

`=1

(] n̄
`

]
·
] n̄
`

]
+
] n̄
`

]
·
]

n̄

`− 1

])
. (20)

Nb. HAPs Nb. Tours Nb. Cols Arcs Comb.
n |Ht| |P t| = n̄! · |Ht| n · |P t| = n! · |Ht| |At

ex| Leverage
4 20 120 480 228 ≈ 0.52
6 194 23,280 139,680 3,366 ≈ 6.9
8 1,972 9,938,880 79,511,040 32,577 ≈ 305
10 20,498 7,438,314,240 74,383,142,400 254,000 ≈ 29,285
12 216,352 8,636,079,513,600 103,632,954,163,200 1,730,253 ≈ 4,991,224

Table 4: Number of HAPs, tours, and columns in the master program for L = 1 and U = 3;
Combinatorial leverage comparing shortest-path pricing and tour enumeration

The ratio of the number of tours to the number of arcs in the expanded
network exactly describes what is gained by replacing a simple enumerative
approach by the shortest-path based pricing. This ratio is known as the combi-
natorial leverage (see Glover and Punnen, 1994). Table 4 shows the numerical
results. With factors greater than 300 for n ≥ 8, the shortest-path pricing is
superior to simple enumerative approaches.

4.1.3. Reduced Cost Based Arc Elimination
Another advantage of the subproblem’s network structure is that exact arc

eliminations procedures become applicable. First, an upper bound ub to the
ttp instance under consideration is needed. Metaheuristics, as surveyed in
(Rasmussen and Trick, 2008), can provide such a bound. Following the ideas
presented in (Irnich et al., 2009), for a given dual feasible solution and an asso-
ciated lower bound lb, an arc is redundant and can be eliminated if the reduced
cost of any path using this particular arc exceeds the optimality gap ub − lb.
This idea can be utilized in the ttp case either for the original networks N t or
the expanded networks N t

ex of all teams t ∈ T . Since the original network is an
aggregation of the expanded network, the finer level of detail in the expanded
network allows the elimination of more arcs.

Moreover, the implementation of the method presented in (Irnich et al.,
2009) is straightforward. After solving the root node in branch-and-price, a
feasible dual solution is known. Bidirectional labeling without bounding in the
middle creates two minimum reduced cost labels at each state associated to
N t

ex. One label is for paths starting at the source node (forward label) and the
other label is for paths ending at the sink node (backward label). For two states
(i, s, b,N) and (j, s + 1, b′, N ′), the first having forward reduced cost c̃fw and
the second backward reduced cost c̃bw, the term c̃fw + c̃tijs + c̃bw is the reduced
cost of the associated path. In fact, due to Bellman’s optimality principle, this
reduced cost is the minimum reduced cost of all paths using this particular arc
connecting the two states.

13

Therefore, forward and backward labeling needs to be performed only once
in order to compute c̃fw + c̃tijs + c̃bw for all arcs between states. Whenever
the term exceeds the optimality gap, the arc can be eliminated. Section 5.2
quantifies what can be gained from this exact arc elimination procedure.

4.2. Branching
The branching in branch-and-price algorithms includes several aspects. We

start by discussing several possible branching decisions. Crucial for the size of
the branch-and-bound tree and, therefore, for the overall efficacy, is the selection
of a branching variable. We describe new ideas for strong branching in the
second subsection. Finally, we exploit the inherent symmetry in ttp instances
from the literature and derive a priori branching rules to cut away symmetric
branches.

4.2.1. Branching Decisions
For branch-and-price algorithms, Vanderbeck (2000) and Lübbecke and Desrosiers

(2005) have pointed out that, if a compact formulation is known, branching can
always be performed on the integer variables of the compact formulation. In our
case, branching on the binary variables xt

ijs can be done straightforwardly: The
branch with xt

ijs = 0 requires the removal of the corresponding arc (i, j, s) ∈ At

from the network N t of team t. Additionally, tour variables λt
p, p ∈ P t are

fixed to zero (or removed from the master program) if (i, j, s) ∈ p holds. The
alternative branch xt

ijs = 1 can be implemented as xt
k`s = 0 of all other arcs

(k`s) ∈ At
s \ {(i, j, s)}, i.e., arcs in N t that correspond to slot s not identical

to (i, j, s). Moreover, incompatible tours p′ ∈ P t′ of other teams t′ ∈ T−t have
to be fixed to zero, too. A tour p′ = (i′0, i

′
1, . . . , i

′
s, . . . , i

′
2n̄+1) is incompatible

with xt
ijs = 1 if t′ = i (or t′ = j) and i′s 6= i (or i′s+1 6= j). This branching on

arcs guarantees integrality, but has the disadvantage that branches are typically
highly unbalanced: The removal of a single arc is rather weak, while the fixing
is stronger.

Therefore, alternative branching rules, i.e., branching on aggregated deci-
sions, are worth analyzing. Easton et al. (2003) suggest branching on the
home-away assignment (HAA) of teams-slot pairs. For a given team t and
time slot s, one branch is

∑
i∈T−t,j∈T :(i,j,s)∈At xt

ijs = 0 and the other branch is∑
j∈T :(tjs)∈At xt

tjs = 0, meaning that t is playing either home or away in slot s.
Obviously, this branching rule can be implemented as the removal of several
xt

ijs variables, i.e., with the techniques described above. Solely branching on
HAAs does not guarantee integer solutions. For ttp instances with n ≥ 8, we
have found several examples where all HAAs were binary, but tour variables
were still fractional (see also Briskorn and Drexl, 2009). As a consequence,
HAAs have to be supplemented by other rules in order to guarantee integrality
in all cases.

Therefore, we analyze other rules in order to find rules that are balanced,
strong (improving the lower bound substantially), and complete (always pro-
ducing integer solutions):

14

Branching on Nodes/Games: Branching on node vis (for i ∈ T, s ∈ S) of
N t = (V t, At) assures visiting this node or leaving it out. For an op-
ponent i ∈ T−t, the decision refers to the game “t home against t′”,
which is either fixed or excluded. By removing ingoing and outgoing
arcs from this node vis or from all other nodes in slot s, both branches∑

k x
t
ki,s−1 =

∑
j x

t
ijs = 0 or = 1 are simple to implement. Branching

on nodes is complete because the fixing of one node for each slot fully
determines the tour.

Branching on Rounds of Games: The game “team t plays home against
team t′” can take place in the first round (slots s ≤ n̄) or in the sec-
ond (s > n̄). The removal of nodes vt′s from the first or second half of the
network N t establishes this rule. As branching on HAAs, this rule is not
complete.

Branching on Number of Home Games in First Round: The number of
home games in the first round, i.e.,

∑
s≤n̄

∑
j∈T x

t
tjs, must be integer.

Branching on this information is simple if the network N t is expanded
(see Section 4.1.1). Then, the states (i, n̄, b,N) of slot n̄ represents tours
with exactly n̄ − |N | home games. The removal of those states and tour
variables with too few or too many home games implements this branching
rule.

4.2.2. Strong Branching
A careful selection of branching rules and variables is highly important in

order to keep the number of branch-and-bound nodes and the overall compu-
tation time small. Recently, Achterberg et al. (2005) analyzed the impact of
several branching rules on the performance of MIP-solvers for standard IP and
MIP benchmark problems. We refer to this paper (Achterberg et al., 2005) for
the associated terminology and notation.

One strategy for minimizing the number of branch-and-bound nodes is known
as “strong branching”. In full strong branching, all available candidate variables
for branching are evaluated. The evaluation is performed as follows: Let lb
denote the lower bound provided by the LP-relaxation of a given branch-and-
bound node, and let lb+` and lb−` be the (estimates of) lower bounds when
branching is performed on the `th candidate branching variable (for ease of
simplicity, we assume rules creating two branches). The quality of branching is
assessed using a score function of the form

σ(∆+
` ,∆

−
`) = (1− ν) min{∆+

` ,∆
−
` }+ νmax{∆+

` ,∆
−
` }, (21)

where ∆+
` = lb+` − lb and ∆−` = lb−` − lb is the change of lower bounds resulting

from branching, and ν ∈ [0, 1] a parameter. Thus, full strong branching chooses
the `th variable from the full candidate set with σ(∆+

` ,∆
−
`) = maxi σ(∆+

i ,∆
−
i).

It is known that full strong branching typically leads to a small number of
branch-and-bound nodes, but, on the downside, is rather time consuming. In
order to circumvent this, strong branching uses a proper subset of candidate

15

variables. In our implementation for the ttp, a most infeasible (=most frac-
tional) selection rule is used to determine the candidates, i.e., variables x` enter
the candidate list with decreasing values min{x`−bx`c, dx`e−x`}. The novelty
of our strong branching strategy is the sizing of the candidate set according to
the relative remaining optimality gap: The idea is, similar to several more com-
plex rules tested in (Achterberg et al., 2005), that one has to be selective close
to the root node of the branch-and-bound tree. Thus, a larger candidate set is
taken into account there. In contrast, branch-and-bound nodes with lb` close
to the upper bound ub typically have a small subtree so that only a less careful
selection of a branching variable is needed. Our sizing rule uses two parameters,
Nmin and Nmax, for the minimum and maximum number of candidates. We
determine the number of candidate variables to evaluate as

N(lb`) =

⌊
1
2

+
(

ub− lb`
ub− lbroot

)1.5

Nmax +

(
1−

(
ub− lb`
ub− lbroot

)1.5
)
Nmin

⌋
.

(22)
Obviously, for the root node, N(lb`) = Nmax holds, while for nodes close to
bounding N(lb`) = Nmin holds. Because of the exponent 1.5, the number of
candidates is biased towards the minimum number Nmin. For instance, in the
middle of the branch-and-bound tree, where (ub − lb`)/(ub − lbroot) = 0.5, ap-
proximately 0.65Nmin + 0.35Nmax candidates are evaluated.

For the determination of the lower bounds lb+` and lb−` , we completely
solve the two son nodes, i.e., column generation is performed until no nega-
tive reduced-cost columns exist. We also test uncomplete evaluation strategies
for the son nodes such as a limit number of column generation iterations or
artificial termination when reduced costs are small. Our finding is that almost
always the full evaluation pays off because of the higher accuracy of the bounds.
Computational results on strong branching are presented in Section 5.1.

4.3. Symmetry Reduction
For the ttp, we exploit the fact that instances from the literature have

symmetric distances dij = dji for all i, j ∈ T . Thus, every solution x with
tours pt = (it1, . . . , i

t
2n̄), t ∈ T has a corresponding reverse solution xrev with

tours pt
rev = (it2n̄, . . . , i

t
1), t ∈ T . Branching rules such as branching on arcs or

nodes can obviously eliminate this symmetry. However, approximately half of
the branch-and-bound nodes are redundant.

The best thing is, therefore, the elimination of exactly one solution from ev-
ery pair of reverse solutions right from the beginning in the root node. This can
be achieved easily if bidirectional labeling is used for pricing on the expanded
network. First note that it suffices to exclude one from every two reverse so-
lutions for a particular team, w.l.o.g. team t = 1. The pricing problem for
team t = 1 is then modified in the following way: States at slot n̄ are numbered
with indices Γ := {1, 2, . . . , |V 1

n̄,ex|}. Recall that these states represent both for-
ward states at slot n̄ and backward states at slot n̄ + 1. Thus, the set A1

ex,mid

can be represented as a subset of Γ×Γ. Using only connections (γ1, γ2) ∈ Γ×Γ

16

having γ1 ≤ γ2, i.e., excluding connections with γ1 > γ2, exactly cuts off one
tour out of every pair of tours for team 1.

5. Computational Results

All problem-specific algorithms were coded in C++, compiled in release
mode with MS-Visual C++ .NET 2003 version 7.1; all runs were performed on
a standard PC (Intel x86 family 6 model 15 Stepping 11) with 2.66 GHz, 4GB
main memory, on MS-Win XP using a single thread.

Michael Trick’s website http://mat.tepper.cmu.edu/TOURN, see also (Eas-
ton et al., 2003), is the basic source where ttp benchmark problems are avail-
able. The test set consists of the following groups of instances: First, the
National League (NL) instances ranging from n = 4 to 16 teams. The NL in-
stances have a symmetric distance matrix. Second, the circular instances rang-
ing from n = 4 to 20 teams, where the distance is defined by a shortest path
on a circle with edge length 1. Thus, for teams i, j ∈ T, i ≥ j the distance is
dij = dji = min{i−j, n+j− i}. It is empirically proven that these instances are
very hard to solve due to the inherent symmetry. We do not consider the larger
ttp instances, e.g., those for the National Football League (NFL) because they
are too large to be handled with the available exact methods (n ≥ 16 teams).
Constant distance instances can be solved with specialized solution approaches
(see Rasmussen and Trick, 2008) and are not considered, neither.

Since the number of NRCs is cubic in n, it is computationally too costly
to add all NRCs to the initial RMP. Instead, only violated NRCs are added
dynamically as LP cuts whenever the violation in (12) exceeds 0.2. Moreover,
in all experiments we start the branch-and-price algorithm with an initial upper
bound ub that is set to the best known solution +1. By doing so, the node
selection strategy (best first or depth first) does not have a significant impact on
the computation time. Since proving optimality or improving lower bounds are
the key issues for exact methods, it is reasonable to provide good feasible solution
which are easily found using state-of-the-art metaheuristics (see Rasmussen and
Trick, 2008).

5.1. Results on Branching
Which branching rules are best suited when optimal solutions need to be

computed? Section 4.2.1 has discussed several branching rules, and our findings
can be summarized as follows: Whenever applicable, branching on HAAs is
superior to all other branching rules. Since HAA branching is not complete, it
must be supplemented with another branching rule: we branch on nodes/games
only if all HAAs are already non-fractional.

In order to quantify the superiority of this rule, we compare the computa-
tion times and number of branch-and-bound nodes. Table 5 shows the results
for the benchmark problem NL6 allowing repeaters (similar results were ob-
tained for other instances; details are left out for the sake of brevity). The first
two columns describe the branching rule with a primary and secondary rule,

17

First Branching Rule Secondary Rule Num B&B Time
Nodes (s)

HAAs Games/Nodes 9,207 135
Games/Nodes (none) 17,437 267

Rounds of Games Games/Nodes 17,891 348
Home Games in 1st Round Games/Nodes 15,417 981

Table 5: Effectiveness of branching rules for NL6 with repeaters allowed

where the latter is only used for incomplete primary rules and when all primary
branching variables are integer. Branching on HAAs creates the lowest number
of branch-and-bound nodes. The computation times are not strongly correlated
to the number of nodes solved. Some rules, e.g., branching on the number of
home games in the first round tend to make the RMP harder to solve: Approxi-
mately ten times more pricing iterations are needed and 14 times more columns
are generated. It remains unclear to us which property of that branching rule
is responsible for such a (bad) behavior.

We next show the impact of strong branching on the overall running time
according to the strategy presented in Section 4.2.2. Recall that the three
defining parameters are ν ∈ [0, 1] for the score function (21), and Nmin and Nmax

for the minimum and maximum number of candidate variables, see Formula (22).
All of our experiments indicate that it is best to increase the lower bound in
both son nodes simultaneously, i.e., ν must be set to a small value. This is in
accordance with the findings of Achterberg et al. (2005), thus, we use ν = 1/10.

We next study parameter combinations (Nmin, Nmax) and apply branch-and-
price to the instance NL6 with NRCs. The symmetry reduction and reduced-
cost fixing techniques that are presented in the next subsection are turned on in
order not to waste too much time. We tested all combinations 2 ≤ Nmin ≤ 20,
2 ≤ Nmax ≤ 50 with Nmin ≤ Nmax, where Nmin is a multiple of 2 and Nmax

increased in steps of length 4.
All computation times (wall clock time) are between 487 and 1,474 seconds

(avg. 734 seconds). Compared to the approach without strong branching, taking
1,494 seconds, all setups using strong branching are faster. The best parameter
combination resulting in 487 seconds is obtained for (N∗min, N

∗
max) = (6, 20).

The computational results indicate that Nmin should neither be smaller than 4
nor greater than 10, i.e., should not deviate too much from N∗min = 6. More-
over, Nmax should not be set to values notably smaller than N∗max = 20, while
exceeding 20 is typically not harmful. Therefore, we compare the computation
times relative to the deviation of a parameter combination (Nmin, Nmax) from
(N∗min, N

∗
max) = (6, 20) by ∆(Nmin, Nmax) := |N∗min−Nmin|+(N∗max−Nmax)+ =

|6−Nmin|+ (20−Nmax)+. The Figure 3 depicts this dependence of the overall
computation time from the value ∆(Nmin, Nmax) for all parameter combinations
tested.

Similar comparisons for NL8 indicate that for n = 8 teams the parameter
combination (Nmin, Nmax) = (20, 120) works reasonably well. Summing up, even
if the parameters are not tuned, strong branching almost always contributes with
a speedup of at least factor 2.

18

Figure 3: Computation times for NL6 with NRCs for different parameter combinations
(Nmin, Nmax) relative to the deviation ∆(Nmin, Nmax) from (N∗

min, N∗
max) = (6, 20)

5.2. Results on Reduced-Cost Fixing and Symmetric Distances
For a careful analysis of the proposed acceleration techniques, the small set of

available benchmark instances is insufficient. Therefore, we decided to generate
additional instances similar to the NL instances of Easton et al. (2001). Note
that the instances NLn with n between 4 and 14 were generated by taking the
first n teams of the instance NL16. 20 new instances with n = 6 teams were
generated by randomly selecting a subset of six teams. (One of those instances
is the instance NL6.) By enforcing and relaxing NRCs, 40 different instances
result.

Four different setups are compared, where reduced cost variable elimination
(Rdc Fix) and symmetry reduction (Sym Red) are either turned on or off, re-
spectively. For all computations, strong branching was enabled with parameters
(N∗min, N

∗
max) = (6, 20).

Table 6 shows in each row the aggregation of the results for 20 instances:
Computation times were limited to one hour (3,600 seconds). For some of the
instances with NRCs, branch-and-price is not able to prove optimality, which
is indicated in column Failed in 1h. The columns Rdc Fix and Sym Red indi-
cate which of the four setups is analyzed. The reference setup is the one with
both Rdc Fix and Sym Red turned off. For the computation time, the col-
umn Time shows the average, minimum, and maximum computation time over
the 20 instances. The comparison with the reference setup considering average
computation times is shown in column % Time: As expected, all acceleration

19

NRC Rdc Sym Time (s) % Time Failed B&B nodes % Arcs Elim.
Fix Red avg/min/max avg in 1h avg/min/max avg/min/max

| no no 274/32/543 100% 0 1,553/166/2,983
no yes no 240/25/470 88% 0 1,506/166/2,725 31%/5%/66%

=rep. allowed no yes 177/28/375 65% 0 1,025/154/2,128
| yes yes 162/22/366 59% 0 1,029/146/2,168 33%/7%/66%
| no no 1,768/260/3,600 100% 3 6,672/1,211/14,358

yes yes no 1,723/233/3,600 97% 4 6,646/1,170/14,328 0%/0%/22%
=rep. forbidden no yes 1,365/173/3,600 77% 4 5,249/830/14,373

| yes yes 1,328/151/3,600 57% 4 5,224/793/14,152 22%/26%/3%

Table 6: Symmetry reduction and reduced cost arc elimination for 40 instances with 6 Teams

techniques lower the computation times. Unexpectedly, but due to different
branching decisions taken, the reference setup has only three unsolved while
all other setups have four unsolved instances. Sym Red is more effective than
Rdc Fix because it reduces the computation time to 65% (no NRCs) and 77%
(with NRC) compared to only a small reduction to 88% and 97%, respectively.
Interestingly, Sym Red favors Rdc Fix : The reason for this is that Sym Red
slightly increases the lower bound at the root node. Hence, the integrality gap
becomes smaller and Rdc Fix is able to eliminate more arcs. The same effect
explains why the number of remaining arcs is smaller when Rdc Fix is supple-
mented with Sym Red. Both acceleration methods, Sym Red and Rdc Fix lead
to smaller branch-and-bound trees. They seem to foster integrality of RMP
solutions.

Finally we analyze the dependence of the percentage of eliminated arcs from
the integrality gap. Figure 4 depicts this dependency. Optimality gaps range

Figure 4: Dependency of the percentage of eliminated arcs from the integrality gap; Instances
with n = 6 team without (�) and with (4) NRCs

20

from approximately 2% to 14% where instances with NRCs tend to have larger
gaps. Inversely proportional is the percentage of eliminated arcs with a maxi-
mum of 66%.

5.3. Results for National League and Circular Instances
First we compare our branch-and-priced implementation with the one of Eas-

ton et al. (2003), where the subproblems are solved with the help of a CP solver.
In their approach, only instances without NRCs (allowing repeater games) are
considered. Table 7 summarizes the results: A fair comparison of computing
time is hardly possible, since Easton et al. (2003) use a parallel implementa-
tion on a cluster of 20 workstations (certainly producing some overhead so that
parallel algorithms do not scale perfectly). However, computing times are sig-
nificantly shorter and, by dynamically adding violated NRCs, we are now able
to take this type of constraints into account.

Instance n NRC U (Easton et al., 2003) Now
Time (s) Opt? Time (s) B&B nodes lbroot zttp opt. gap

NL4 4 no 3 30 X 0.035 5 8,160 8,276 1.4%
NL4 4 yes 3 0.035 5 8,160 8,276 1.4%
NL6 6 no 3 900∗ X 61 512 22,582.6 23,552 4.3%
NL6 6 yes 3 509 2,742 22,582.6 23,916 5.9%
NL8 8 no 3 362,630∗ X 10,079 5,097 38,670 39,479 2.1%
NL8 8 yes 3 43,321 14,890 38,670 39,721 2.7%

∗ On a cluster of 20 workstations

Table 7: Comparison with results presented in (Easton et al., 2003)

The results of Table 7 also make clear that the computational effort quickly
increases with the optimality gap that has to be closed via branch-and-bound.
The optimality gap, i.e., (ub − lbroot)/lbroot, increases when NRCs have to be
respected. This results from the fact that we typically get the same lower bound
lbroot at the root node of the branch-and-bound tree, but the optimum zttp
differs for n ≥ 6.

We briefly analyze the computation times of the pricing algorithm that also
makes benefits and limitations of our approach clear: Table 8 shows the average
time needed to solve a single pricing subproblem for the different NLn instances.
The average is taken over all pricing problems solved in the branch-and-bound
tree (for time-consuming instances with an overall time limit of one hour). For
different numbers n of teams, the growth of the computation times fits in very
well with the growth of the networks as discussed in Section 4.1.2. Only from
n = 6 to n = 8, the time factor is around 2,7 and we suspect that the very small
times for n = 6 and some computational overhead is responsible for this. In
general, the results indicate that the computation times are reasonably small,
even for n = 12. This suggests that also larger instances might be tractable.
However, the reason why we cannot present results for n ≥ 14 is that the
expanded networks quickly grow so that they do not fit into the main memory
of the computer. Note that the reduced-cost fixing requires the storing of one
network per team.

21

Instance NL4 NL6 NL8 NL10 NL12
NRC

Avg. comp. time for pricing (s) no ?∗ 0,00043 0.0011 0.0098 0.066
Growth by factor ? 2.6 8.9 6.7

Avg. comp. time for pricing (s) yes ?∗ 0,00050 0.0014 0.0107 0.068
Growth by factor ? 2.8 7.6 6.4

∗ time too small to be detected reliably

Table 8: Average Computation Times for Pricing

Table 9 shows the new results obtained with branch-and-price for several
(previously) unsolved instances. NL8 and all variants of Circ6 are solved to
proven optimality for the first time. While NL8 took approximately 12 hours,
all variants of Circ6 were solved in less than 3 hours, those without NRCs in
less than 25 minutes.

Instance n NRC U Before Now
lb ub lb ub Opt? Time (s) B&B nodes

NL8 8 yes 3 39,479 39,721 39,721 39,721 X 43,321 14,890
NL10 10 yes 3 57,500 59,436 58,000 807,551 32,927
NL12 12 yes 3 107,548 110,729 107,600 80,505 7,135
Circ6 6 no ∞ ? 54 54 54 X 1,358 11,668
Circ6 6 yes ∞ ? 56 56 56 X 7,869 41,368
Circ6 6 yes 3 ? 64 64 64 X 10,789 37,109
Circ8 8 no ∞ ? 100 92 100 398,146 74,990
Circ8 8 yes ∞ ? 102 95 102 914,226 552,604
Circ8 8 yes 3 128 132 130 132 300,087 260,194

Table 9: Results for the National League (NL) and circular instances

Moreover, with the branch-and-price approach we were able to improve sev-
eral of the best known lower bounds. Even though the increase of the newly
computed lower bounds was significant for some instances, even multiplying the
computational effort by factor 10 will probably help to close the remaining opti-
mality gap. For those instances, additional refinements of the branch-and-price
approach (e.g., using additional cutting planes) or some completely different
solution approaches might be successful in the future.

6. Conclusions

In this paper we proposed a new branch-and-price-based solution approach
for the practically hard-to-solve ttp sports league scheduling problem. The nov-
elty of the algorithm is in the exploitation of the network structure introduced
by a new original formulation, from which an extensive (=column-generation)
formulation was derived. Pricing can be accelerated by more than one order of
magnitude compared to the CP-based approach of Easton et al. (2003). The
speedup first and foremost results from the reformulation of the pricing problem
as an ordinary shortest-path problem over an expanded network. Additional ex-
act network reduction and branching techniques accelerated branch-and-price
even further.

22

According to Rasmussen and Trick (2008), “the most obvious challenge
within the area and a great milestone to reach would be to prove optimality
of the ttp instance NL8”. NL8 is solved now, thus, the presented branch-and-
price algorithm can be seen as successful. However, at the time of finishing this
paper, Uthus et al. (2009) proposed a completely different approach to solve
the ttp based on DFS∗ (depth first search with a particular upper bounding
scheme). This algorithm seems to be notably faster than our approach, at least
for instances with n < 10 teams.

Nevertheless, the new branch-and-price algorithm is useful: First, the orig-
inal and extensive formulations can be used to develop alternative IP-based
approaches. For example, we experimented with the addition of cutting planes
(clique cuts and odd hole cuts) based on the notion of incompatible nodes and
arcs of the ttp networks. Although lower bounds were increased, these experi-
ments were not successful at the end because the additional cuts led to denser
constraint matrices of the RMPs and slowed down the LP re-optimization. Sec-
ond, some of the techniques proposed in this paper can and were used in the
DFS∗ algorithm: Uthus et al. (2009) have implemented our symmetry reduction
technique in order to reduce the DFS∗ running time. In addition, we are con-
vinced that variable elimination techniques will further speed up DFS∗. This
is indispensable for solving instances with n ≥ 10, since DFS∗ may easily take
100 hours or more.

Finally, all known exact approaches are far away from being applicable to
real-world sports scheduling instances. It is still an open question as to which
solution paradigm, IP-based or CP-based or any combination, is best suited to
tackle problems with a larger number of teams and with many types of soft and
hard constraints that need to be taken into consideration.

Acknowledgment

Ulrich Schrempp implemented most parts of the network-specific routines
of the branch-and-price algorithm for his Diplom/Master thesis in computer
science at RWTH Aachen University. I would like to thank him for many fruitful
discussions and for his support.

References

Achterberg, T., Koch, T., and Martin, A. (2005). Branching rules revisited.
Operations Research Letters, 33(1), 42–54.

Briskorn, D. and Drexl, A. (2009). A branching scheme for finding cost-minimal
round robin tournaments. European Journal of Operational Research, 197(1),
68–76.

Cheung, K. (2009). A Benders approach for computing lower bounds for the
mirrored traveling tournament problem. Discrete Optimization, 6(2), 189–
196.

23

Cheung, K. (2008). Solving mirrored traveling tournament problem benchmark
instances with eight teams. Discrete Optimization, 5(1), 138–143.

Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M., Soumis, F., and Vil-
leneuve, D. (1998). A unified framework for deterministic time constrained
vehicle routing and crew scheduling problems. In T. Crainic and G. Laporte,
editors, Fleet Management and Logistics, chapter 3, pages 57–93. Kluwer Aca-
demic Publisher, Boston, Dordrecht, London.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Gen-
eration. Springer, New York, NY.

Easton, K., Nemhauser, G., and Trick, M. (2001). The traveling tournament
problem description and benchmarks. In T. Walsh, editor, Principles and
Practice of Constraint Programming - CP 2001, volume 2239 of Lecture Notes
in Computer Science, pages 580–585. Springer Verlag Berlin/Heidelberg.

Easton, K., Nemhauser, G., and Trick, M. (2003). Solving the travelling tour-
nament problem: A combined interger programming and constraint program-
ming approach. In E. Burke and P. De Causmaecker, editors, Practice and
Theory of Automated Timetabling IV, volume 2740 of Lecture Notes in Com-
puter Science, pages 100–109. Springer Verlag Berlin/Heidelberg.

Glover, F. and Punnen, A. (1994). The traveling salesman problem: Linear
time heuristics with exponential combinatorial leverage. Technical report, US
West Chair in Systems Science, University of Colorado, Boulder, School of
Business, Campus Box 419, Boulder, CO, 80309.

Irnich, S. (2008). Resource extension functions: Properties, inversion, and gen-
eralization to segments. OR Spectrum, 30(1), 113–148.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource
constraints. In Desaulniers et al. (2005), chapter 2, pages 33–65.

Irnich, S., Desaulniers, G., Desrosiers, J., and Hadjar, A. (2007). Path-reduced
costs for eliminating arcs in routing and scheduling. INFORMS Journal on
Computing, doi: 10.1287/ijoc.1090.0341.

Lübbecke, M. and Desrosiers, J. (2005). Selected topics in column generation.
Operations Research, 53(6), 1007–1023.

Rasmussen, R. and Trick, M. (2008). Round robin scheduling – a survey. Euro-
pean Journal of Operational Research, 188(3), 617–636.

Righini, G. and Salani, M. (2006). Bounded bidirectional dynamic programming
for the elementary shortest path problem with resource constraints. Discrete
Optimization, 3(3), 255–273.

Spoorendonk, S. (2008). Cut and column generation. Ph.D. thesis, DIKU,
University of Copenhagen, Denmark.

24

Urrutia, S. and Ribeiro, C. C. (2004). Minimizing travels by maximizing breaks
in round robin tournament schedules. Electronic Notes in Discrete Mathe-
matics, 18, 227–233. Latin-American Conference on Combinatorics, Graphs
and Applications.

Urrutia, S., Ribeiro, C., and Melo, R. (2007). A new lower bound to the traveling
tournament problem. In Proceedings of the 2007 IEEE Symposium on Com-
putational Intelligence in Scheduling (CI-Sched 2007), pages 15–18, Honolulu,
HI.

Uthus, D. C., Riddle, P. J., and Guesgen, H. W. (2009). DFS* and the traveling
tournament problem. In W.-J. van Hoeve and J.N. Hooker, editors, CPAIOR
2009, LNCS 5547, pages 279–293. Springer Verlag Berlin/Heidelberg.

Vanderbeck, F. (2000). On Dantzig-Wolfe decomposition in integer program-
ming and ways to perform branching in a branch-and-price algorithm. Oper-
ations Research, 48(1), 111–128.

25

