
Approximate Linear Programming in Network Revenue Management with
Multiple Modes

David Sayaha

aChair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

Approximate linear programming has been applied to network revenue management problems under
the fundamental modeling assumption that products define combinations of one resource bundle
and a fare class. We consider products that can have multiple operational modes allowing companies
to select the way they want to serve the purchaser of a multi-mode product. We show that the
presence of multi-mode products implies a weaker relation between an affine approximate linear
program (ALP) and a compact reformulation, known as reduction. Consequently, the upper bound
on the maximum expected revenue obtained via the reduction is not necessarily as tight as the
upper bound produced via the ALP. We further demonstrate that the gap between these two
formulations is bounded in general and zero in a particular class of instances, when multi-mode
products are flexible products. For general instances, we exploit a set-packing structure within the
reduction in order to improve the upper bound, i.e., we introduce a cutting plane method that
strengthens the reduction by separating valid inequalities. Our computational tests indicate that it
is possible to halve the gap in not more than 4% of the time needed to solve the ALP via column
generation.

Key words: affine approximation, network revenue management, multiple operational modes,
transportation networks

1. Introduction and Literature Review

Revenue management problems arise in various industries like passenger and cargo transporta-
tion. These companies typically sell products in different fare classes to heterogeneous customer
segments with random demands subject to fixed inventory capacities. They face the problem to
decide dynamically when to sell which product so that the expected revenue over the entire planning
horizon is maximized. If a product consumes capacity of multiple resources, this problem is known
as network revenue management problem. The underlying optimization task can be formulated as
a dynamic program which is intractable due to the number of possible states growing exponentially
with the number of resources. A standard heuristic approach to network revenue management is to
solve simpler problems which approximate the value function of the dynamic program. Solutions
to these simpler problems are typically used in order to derive bid price controls, see Talluri and
van Ryzin (1998) and for other network controls Talluri and van Ryzin (2004).

Email address: sayah@uni-mainz.de (David Sayah)
Technical Report LM-2015-06 November 8, 2015

Deterministic linear programming is a classical approach to network revenue management
(Williamson, 1992). Though computationally appealing, the upper bound on the maximum ex-
pected revenue produced by the deterministic linear program (DLP) is relatively weak as it neglects
the dynamics of the revenue management problem. It is broadly agreed that the bound obtained
via a given approximation method is a measure of its accuracy and that it indicates the performance
of the policy derived from that approximation. Upper bounds are also useful in order to assess the
quality of any other heuristic approach to network revenue management. For these reasons, recent
research in this field has a focus on the development of methods that produce as tight upper bounds
as possible.

In this respect, most promising approaches are commonly labelled as approximate dynamic pro-
gramming. The linear programming approach to approximate dynamic programming transforms
the original high-dimensional dynamic program into a linear program of manageable size (e.g.,
Schweitzer and Seidmann, 1985; Powell, 2011; Bertsekas, 2012). This transformation is achieved
using functional approximations. The resulting linear program is usually referred to as approxi-
mate linear program (ALP). In network revenue management, Adelman (2007) initially proposed
a functional approximation that is linear and separable over the resources. This is called affine ap-
proximation and produces dynamic bid prices which are superior to the static bid prices obtained
via a DLP. Farias and van Roy (2007) and Meissner and Strauss (2012) refined Adelman’s idea
using functional forms that are separable over the resources and inventory levels. This is known as
separable piecewise-linear approximation and delivers dynamic and capacity-dependent bid prices.
Both affine and separable piecewise-linear approximations have been applied to choice-based net-
work revenue management (Zhang and Adelman, 2009; Meissner and Strauss, 2012).

The solvability of ALPs is an important issue. For instance, the size of a separable piecewise-
linear ALP is considerably larger than the size of an affine ALP, i.e., the improved bid prices
are computationally much more expensive than the dynamic bid prices. Lagrangean relaxation
(Topaloglu, 2009; Kunnumkal and Topaloglu, 2010) is a competing method to generate the improved
bid prices. Kunnumkal and Talluri (2014) have recently established that the upper bound obtained
by Lagrangean-based decomposition equals that of a separable piecewise-linear approximation in
network revenue management. Consequently, one can resort to subgradient optimization if tackling
large-scale ALPs is too hard in practice.

Recent findings, however, have drawn the attention back to approximate linear programming.
New compact reformulations of ALPs, known as reductions, have been developed for the net-
work revenue management settings with and without choice (Vossen and Zhang, 2013; Tong and
Topaloglu, 2014). A reduction is compact in the sense that both the number of constraints and
the number of variables grow only linearly with certain problem parameters. A second important
feature of reductions in these settings is that they achieve the same upper bound as the ALPs while
being typically compact enough for an off-the-shelf linear programming solver.

In contrast to existing papers, we relax the assumption that a product is defined by a fare class
and one particular resource bundle because it can be restrictive in some industries. We consider
industries in which products are designed in such a way that the company needs to select the way
of serving their customers. Products that allow for additional flexibility are not entirely new in
revenue management. The concept of flexible products has been introduced by Gallego and Phillips
(2004). The authors report applications across a wide range of industries, e.g., internet advertising,
tour operators, multiple property management, and air cargo. Similar concepts are discussed in,
e.g., Talluri (2001), Chen et al. (2003), Post (2010), Chen et al. (2010), and Petrick et al. (2010).

2

We use the term operational mode as a synonym for resource bundle and distinguish between
products with exactly one mode and products with two or more modes. Single-mode products are,
for instance, the ordinary itinerary-fare class combinations offered by airlines.

To give an example of a multi-mode product, note that the demand for freight transportation
and air cargo is typically not itinerary-specific. These customers rather specify an earliest pick-
up and a latest delivery date for the transport of their goods from an origin to a destination.
Forwarders may then have a choice between different feasible routes through their transportation
networks departing/arriving at different times. Consider a scheduled route between a given origin-
destination pair as an operational mode. If a customer orders pick-up and delivery within a certain
time window, then the collection of routes which guarantees on-time service for this customer can
be seen as a multi-mode product.

Therefore, the basic decision problem in network revenue management with multiple modes
is to dynamically accept/reject customer requests and if necessary to assign accepted requests to
operational modes.

Existing literature does not answer the question how these more general network revenue man-
agement terms affect approximate linear programming. Our paper fills this gap by making the
following particular contributions: We present an affine ALP and a reduction for the network rev-
enue management problem with multiple modes. Subsequently, the relationship between the two
models is analyzed in the light of the Dantzig-Wolfe decomposition principle for integer programs.
From this point of view, we explain why the upper bound obtained via the reduction is not neces-
sarily as tight as the one obtained via the ALP. We provide an example showing that multi-mode
products can cause an error in terms of accuracy, i.e., a gap between ALP and reduction. This gap
is further shown to be bounded in the sense that the upper bound can never be worse than the
upper bound associated with the DLP. For instances in which all multi-mode products are flexible
products, we give a guarantee that the gap is zero.

Moreover, we delve into the general scenario without additional restrictions regarding the design
of multi-mode products. Since column generation may converge too slow in such instances, a method
that can efficiently strengthen the compact formulation is an option. To this end, we devise a new
cutting plane method that exploits a set-packing structure which we identify within the reduction.
This result grants access to a variety of existing valid inequalities that can be used to shrink the gap
between ALP and reduction. We describe one particular implementation based on the separation
of odd-cycle cuts.

Finally, a computational study provides insights as to the quality and the computation times of
the different approximation methods, the gaps between ALP and reduction, and the effectiveness
of the odd-cycle cuts. Our experiments are based on a set of test instances that include the
data previously used in the literature. Our numerical results indicate that the reduction can be
strengthened quite effectively in a reasonable amount of time.

The remainder of this paper is organized as follows: Section 2 introduces the notation and
assumptions of our multi-mode network revenue management model. In Section 3, we describe the
DLP, the affine ALP, and the reduction. The relationship between ALP and reduction is examined
in Section 4. We discuss the impact of a restricted product design on this relationship in Section 5.
In Section 6, we develop the cutting-plane method. The numerical results are presented in Section 7.
Final conclusions are drawn in Section 8.

3

2. Problem Formulation

We consider a company that operates a given set of resources I = {1, . . . ,m} with initial
capacities c = {ci ∈ Z+ : i ∈ I}. Let M = {1, . . . , no} be the set of all operational modes that
are available to the company. Each mode o ∈ M specifies a subset of resources Io ⊆ I that can
be used to satisfy demand. A binary m× no incidence matrix (aio)i∈I,o∈M is used to represent the
resource requirements of the modes. Each entry aio takes value one if mode o consumes one unit
of resource i and zero otherwise.

The company sells a set of products J = {1, . . . , n} to n heterogeneous customer segments.
Each product j ∈ J is associated with a subset Mj ⊆ M and a fare fj .1 We refer to the set of
all product-mode combinations as J ×M = {(j, o) : j ∈ J , o ∈ Mj}. Using this notation, we
distinguish between two types of products. If |Mj | = 1 for any product j ∈ J , it is a single-mode
product, otherwise it is a multi-mode product with |Mj | > 1. We highlight that any subset of the
existing modes can define a multi-mode product.

The company controls the sales of products over a finite time horizon T = {1, . . . , τ}. The
standard single-request demand model without choice behavior is assumed, i.e., we are given inde-
pendent probabilities {pjt : j ∈ J , t ∈ T } and pjt denotes the probability of a request for product
j in period t. We assume that

∑
j∈J pjt = 1 for all t ∈ T without loss of generality. If the

“zero-demand” event occurs with positive probability in period t, i.e., if
∑

j∈J pjt < 1, we can
add a dummy product j = 0 in this period with zero capacity consumption, zero revenue, and
probability p0t = 1−

∑
j∈J pjt.

We assume that c is the initial state of the network in the first period t = 1. In any later
period t ≥ 2, the residual capacity of resource i ∈ I can be less than ci but not negative. Let the m-
vector xt = (xit) describe the current state of the network for t ∈ T . The product set Xt = Πi∈IXit
denotes the state space in t, where Xit is the domain of xit defined as

Xit =

{
{ci} if t = 1

{0, . . . , ci} if t ≥ 2
∀t ∈ T , i ∈ I.

It is further assumed that there must not be a time lag between the acceptance and the assign-
ment of a customer request but, of course, the notification of the customer about the company’s
final decision may be delayed. Let the binary variables ut = {ujot : (j, o) ∈ J ×M} indicate if we
accept a request for product j and assign it to mode o. If ujot = 1, we say more frequently that the
product-mode combination (j, o) is offered in period t, even though the chosen mode o is clearly
not presented to the customers before the purchase.

Let Vt(xt) denote the maximum expected revenue from period t onwards given that the network
is currently in state xt. Using the ith unit vector ei with value one at position i ∈ I and zero
elsewhere, we define the network revenue management problem with multiple modes (MNRM) as

1Assuming a given fixed cost co of using mode o, we can define product- and mode-specific net fares fjo = fj − co
for each j ∈ J and (j, o) ∈Mj . Then, our subsequent analysis still applies but we stick to the product-specific fares
for ease of exposition.

4

the dynamic program

Vt(xt) = max
∑
j∈J

pjt

{
fj
∑
o∈Mj

ujot + Vt+1(xt −
∑
o∈Mj

ujot
∑
i∈I

eiaio)

}
(1a)

s.t. aioujot ≤ xit ∀(j, o) ∈ J ×M, i ∈ I (1b)∑
o∈Mj

ujot ≤ 1 ∀j ∈ J (1c)

ut binary (1d)

for all t ∈ T , xt ∈ Xt with boundary conditions defined by Vτ+1(·) = 0. Constraints (1b) ensure
that we can choose a mode o to serve a product j customer only if we respect the current residual
capacity xit of all resources i ∈ I used by that mode. By (1c), a unique mode must be chosen if a
request is accepted. The domain of the action variables ujot is declared in (1d). The set of actions
that are feasible in a given state xt is denoted by Ut(xt) = {ut : (1b)–(1d)}, and the set of feasible
state-action pairs in t ∈ T by St = {(xt, ut) : xt ∈ Xt, ut ∈ Ut(xt)}.

Let O = maxj∈J |Mj | denote the cardinality of a maximum mode set. Instances with O = 1 are
referred to as NRM instances since model (1) then obviously reduces to the usual network revenue
management problem. Instances of (1) with O > 1 are referred to as MNRM instances. Note
that our model can be seen as an online version of the network revenue management model with
flexible products suggested by Gallego et al. (2004) but we, in contrast, do not require additional
assumptions regarding the product design.

We denote the maximum expected revenue V1(c) defined in (1) by V DP. Solving the dynamic
program for V DP is intractable due to exponentially growing numbers of states and actions. This
paper focuses on methods that approximate the value function {Vt(xt) : t ∈ T , xt ∈ Xt}.

3. Deterministic and Approximate Linear Programming Bounds

3.1. The DLP Bound
The deterministic linear programming approach is straightforward when products can have

multiple modes. Define continuous variables w = {wjo : (j, o) ∈ J × M} as the number wjo
of accepted requests for product j which we assign to mode o. Then, the deterministic linear
program (DLP) is given by

V DLP = max
∑
(j,o)

fjwjo (2a)

s.t.
∑
(j,o)

aiowjo ≤ ci ∀i ∈ I (2b)

∑
o∈Mj

wjo ≤
∑
t∈T

pjt ∀j ∈ J (2c)

w ≥ 0. (2d)

Constraints (2b) say that the initial capacity of all resources must not be exceeded. We cannot
accept more than the given expected number of requests for any product because of (2c). The
dual prices associated with constraints (2b) can be viewed as static value function approximation.

5

It means that the ith dual price is an estimate of the expected value of one unit of resource i’s
capacity at the beginning of the time horizon. The DLP model of Gallego et al. (2004) is a special
instance in our DLP model. We show V DLP ≥ V DP in Section 4.

3.2. The affine ALP Bound
Approximate linear programming departs from the equivalent linear programming formula-

tion (Puterman, 1994) of the dynamic program (1):

V DP = min
v
v1(c) (3a)

s.t. vt(xt) ≥
∑
j∈J

pjt

{
fj
∑
o∈Mj

ujot + vt+1(xt −
∑
o∈Mj

ujot
∑
i∈I

eiaio)

}
∀t ∈ T , (xt, ut) ∈ St. (3b)

Here, we have real-valued decision variables v = {vt(xt) : t ∈ T , xt ∈ Xt} and we stipulate
that vτ+1(·) = 0. The linear program (3) is clearly as intractable as the dynamic program (1).
Thus, we specify the functional approximation

vt(xt) ≈
∑
i∈I

xitϑit ∀t ∈ T , xt ∈ Xt (4)

with real-valued weights ϑ = {ϑit : i ∈ I, t ∈ T }. Plugging the form (4) into (3) and defin-
ing ϑi,τ+1 = 0, i ∈ I, we reach after some rearranging the affine approximate linear program (ALP)

V AF = min
ϑ

∑
i∈I

ciϑi1 (5a)

s.t.
∑
i∈I

{
(ϑit − ϑi,t+1)xit +

∑
(j,o)

pjtujotaioϑi,t+1

}
≥
∑
(j,o)

pjtfjujot

∀t ∈ T , (xt, ut) ∈ St, (5b)

where
∑

(j,o) is the sum over all product-mode combinations (j, o) ∈ J ×M. Likewise, we use
∑

(x,u)

to denote the sum over all (x, u) = (xt, ut) ∈ St, where the period t to which these state-action
pairs refer is always clear from the context.

Now, model (5) has mτ variables but the number of constraints still grows exponentially with m
and |J ×M|. We solve the dual problem of (5) given by

V AF = max
∑
t∈T

∑
(x,u)

(∑
(j,o)

pjtfjujot

)
Xt
xu (6a)

s.t.
∑
(x,u)

xitX
t
xu =

ci if t = 1∑
(x,u)

(
xi,t−1 −

∑
(j,o) pj,t−1aioujo,t−1

)
Xt−1
xu if t ≥ 2

∀i ∈ I, t ∈ T (6b)
X ≥ 0. (6c)

6

The continuous variables X = {Xt
xu : t ∈ T , (x, u) ∈ St} are associated with constraints (5b). The

number of columns now increases exponentially in m and |J ×M|. This is why column generation
is commonly used to compute V AF. This amounts to decomposing the model (6) into a restricted
master problem (RMP) and a pricing problem. Initially, the RMP contains only a small subset of
columns, e.g., those representing the “do-nothing” policy in (6). Given the dual solution ϑ to the
current RMP, new columns are priced out with the integer program

ζAFP
t = max

(xt,ut)∈St

∑
(j,o)

pjt

(
fj −

∑
i∈I

aioϑi,t+1

)
ujot −

∑
i∈I

(ϑit − ϑi,t+1)xit ∀t ∈ T . (7)

We repeatedly generate new columns, add them to the RMP, and reoptimize it until no column
with positive reduced profit ζAFP

t exists.
Note that we choose the functional form (4) instead of the more frequently used form vt(xt) ≈

θt +
∑

i∈I xitϑit to ease our exposition. This choice is without loss of generality because if we plug
the functional form with additional θt variables into the formulation (3) and if we further dualize
the resulting ALP, we arrive at a problem defined by model (6) and the additional constraints∑

(x,u)

Xt
xu = 1 ∀t ∈ T , (8)

which do not affect the value V AF. This is the result of our first lemma.

Lemma 1. If V AF-CONV denotes the optimal value of the problem defined by model (6) and the
convexity constraints (8), then the equality V AF-CONV = V AF holds.

Proof. See Appendix A. �
We refer to (8) as convexity constraints and it turns out that Lemma 1 is useful again in Section 4.

Moreover, Adelman (2007) pointed out that the convexity constraints suggest to interpret Xt
xu as an

estimate of the probability of being in state xt at time t and taking the action ut. The optimization
task defined by (6) is then to find a distribution of approximate state-action probabilities that
maximizes the total expected revenue in (6a).

Observe that any feasible solution to the ALP (5) implies a feasible solution to the equivalent
linear programming formulation (3) by the substitution (4). Thus, V AF ≥ V DP holds.

3.3. The Reduction-Based Bound
Consider the linear program

V AFR = max
∑
t∈T

∑
(j,o)

pjtfjqjot (9a)

s.t. yit =

ci if t = 1

yi,t−1 −
∑
(j,o)

pj,t−1aioqjo,t−1 if t ≥ 2 ∀t ∈ T , i ∈ I (9b)

aioqjot ≤ yit ∀t ∈ T , (j, o) ∈ J ×M, i ∈ I (9c)∑
o∈Mj

qjot ≤ 1 ∀t ∈ T , j ∈ J (9d)

0 ≤ qt ≤ 1, yt ≥ 0 ∀t ∈ T . (9e)
7

Similar to the NRM case (Tong and Topaloglu, 2014), the continuous variables qt = {qjot : (j, o) ∈
J ×M} and yt = {yit : i ∈ I} have a probabilistic interpretation: yit reads as the expected amount
of resource i’s capacity available in t and qjot reads as the expected number of accepted requests
for product j that we assign to mode o in t. Then, the objective function (9a) maximizes the total
expected revenue. The flow-balance constraints (9b) ensure for every t ∈ T and i ∈ I that the
expected amount of resource i’s capacity when entering period t equals the expected amount of
resource i’s capacity when entering the previous period t− 1 minus resource i’s expected capacity
consumption in t−1. Constraints (9c) and (9d) are the probabilistic counterparts to constraints (1b)
and (1c), respectively. The domains of the variables are defined in (9e).

The formulation (9) is fairly compact since the numbers of variables and constraints increase
linearly in m, τ , and |J ×M|. It is referred to as reduction and we analyze next how it relates to
the ALP (6). The fact that V AFR ≥ V DP is a consequence of this relation.

4. Ties Between ALP and Reduction

4.1. Nonintegrality of the Pricing Problem
For the settings with and without customer choice but without multiple modes, Tong and

Topaloglu (2014) and Vossen and Zhang (2013) establish the equivalence between an affine ALP
and its corresponding reduction by exploiting the integrality property of the pricing problem. We
begin with an example that demonstrates the nonintegrality of the pricing problem in our setting.
Using 11{·} to denote the indicator function, model (7) of the pricing problem can be rewritten as

ζAFP
t = max

∑
(j,o)

pjt

(
fj −

∑
i∈I

ϑi,t+1aio

)
ujot −

∑
i∈I

(ϑit − ϑi,t+1)xit (10a)

s.t. aioujot ≤ xit ∀(j, o) ∈ J ×M, i ∈ I (10b)∑
o∈Mj

ujot ≤ 1 ∀j ∈ J (10c)

11{t=1}c ≤ xt ≤ c, ut ≥ 0 (10d)

xt, ut integer. (10e)

Constraints (10b) and (10c) are identical to the dynamic program (1). (10a) defines the same
objective of the pricing problem as (7). The variable domains are stated in (10d) and (10e).

Let (AFP-L) refer to the linear relaxation of (10) and let ζAFP-L
t denote the associated optimal

objective function value. The following counterexample shows that the integrality gap can be
positive, i.e., ζAFP-L

t − ζAFP
t ≥ 0.

Example 1. Suppose that we are in any t ∈ T . We assume three resources i ∈ {1, 2, 3} with one
unit of capacity each, three products j ∈ {a, b, c} priced at $10 and with arrival probability 0.1
each, and three operational modes consuming the resources as given by the matrix (aio) below.
The product-specific mode sets are assumed to be defined by Ma = {1, 2},Mb = {2, 3}, and
Mc = {1, 3}. The dual prices are given by the values ϑ1t, . . . , ϑ3,t+1 below. An optimal solution to
the integer program (10) has the non-zero variables x2t = x3t = 1 and ua2t = ub2t = uc3t = 1, and
it is valued with a maximum reduced profit of ζAFP

t = 2.73. However, if we set all variables equal

8

to 1/2 , this solves the linear relaxation (AFP-L) with ζAFP-L
t = 2.76.

(aio) =

1 0 0
0 1 0
0 0 1

 and

ϑ1t ϑ1,t+1

ϑ2t ϑ2,t+1

ϑ3t ϑ3,t+1

 =

.5 .4
.3 .2
.4 .3

 .

4.2. Relationship Between ALP and Reduction
Unlike Vossen and Zhang (2013) and Tong and Topaloglu (2014), we apply arguments from

Dantzig-Wolfe decomposition for integer programs to analyze the relationship. This point of view
has two major uses: First, we can link the pair of linear programs (6) and (9) with a corresponding
pair of integer programs. This correspondence leads us to the conclusion that the tie between ALP
and reduction is weak in general but can be strong in certain instances. Second, this perspective
suggests the way we derive valid inequalities for problem (9) in Section 6.

The first integer program is given by

V IAF = max
∑
t∈T

∑
(x,u)

(∑
(j,o)

pjtfjujot

)
Xt
xu (11a)

s.t. (6b)∑
(x,u)

Xt
xu = 1 ∀t ∈ T (11b)

yit =
∑
(x,u)

xitX
t
xu ∀t ∈ T , i ∈ I (11c)

qjot =
∑
(x,u)

ujotX
t
xu ∀t ∈ T , (j, o) ∈ J ×M (11d)

X ≥ 0 (11e)
qt, yt integer ∀t ∈ T . (11f)

We refer to this formulation as affine approximate (mixed) integer program (AIP). There are as
many as τ(|J ×M|+m) integer variables qt = {qjot : (j, o) ∈ J ×M} and yt = {yit : i ∈ I}. The
continuous variables X are identical to the ALP (6).

Lemma 2. The ALP (6) is the linear relaxation of the AIP (11), i.e., V IAF ≤ V AF holds.

Proof. Obviously, constraints (11c) and (11d) are redundant in the linear relaxation of problem (11).
Noting that Lemma 1 applies completes the proof. �

The second integer program takes the form

V IAFR = max
∑
t∈T

∑
(j,o)

pjtfjqjot (12a)

s.t. yit =

ci if t = 1

yi,t−1 −
∑
(j,o)

pj,t−1aioqjo,t−1 if t ≥ 2 ∀t ∈ T , i ∈ I (12b)

(yt, qt) ∈ Pt ∀t ∈ T , (12c)

9

where we define the structure in (12c) as

Pt = {(yt, qt) : (9c)− (9e) and integer} ∀t ∈ T .

The formulation (12) is as compact as the reduction (9). Since the integrality constraints defined
in (12c) are the only difference between these two compact formulations, this proves the next lemma.

Lemma 3. The reduction (9) is the linear relaxation of the compact integer program (9), i.e.,
V IAFR ≤ V AFR holds.

Let us consider the equivalent Dantzig-Wolfe reformulation of the compact formulation (12).
For t ∈ T , let Et = {1, . . . , |Et|} denote the finite index set of extreme points (ypt , q

p
t) of the convex

hull conv(Pt). Using continuous variables λt = {λpt : t ∈ T , p ∈ Et} for all t ∈ T , the Dantzig-Wolfe
reformulation of (12) can be written as:

V IAFR = max
∑
t∈T

∑
p∈Et

[∑
(j,o)

pjtfjq
p
jot

]
λpt (13a)

s.t.
∑
p∈Et

ypitλpt =

{
ci if t = 1∑

p∈Et−1

[
ypi,t−1 −

∑
(j,o) pj,t−1aioq

p
jo,t−1

]
λp,t−1 if t ≥ 2

∀i ∈ I, t ∈ T (13b)∑
p∈Et

λpt = 1 ∀t ∈ T (13c)

yit =
∑
p∈Et

ypitλpt ∀t ∈ T , i ∈ I (13d)

qjot =
∑
p∈Et

qpjotλpt ∀t ∈ T , j ∈ J , o ∈Mj (13e)

λt ≥ 0 ∀t ∈ T (13f)
qt, yt integer ∀t ∈ T . (13g)

Lemma 4. The AIP (11) is equivalent to the integer reduction (12), i.e., V IAF = V IAFR.

Proof. Suppose that any optimal solution (X̂, ŷ, q̂) to formulation (11) is given. We first show
that (X̂, ŷ, q̂) is feasible in the formulation (12) and valued with the same objective function value.
Define a solution (y, q) = {(yt, qt) : t ∈ T } according to

yit = ŷit ∀i ∈ I, t ∈ T (14)
qjot = q̂jot ∀j ∈ J , o ∈Mj , t ∈ T . (15)

The objective function (12a) follows from substituting for X in (11a) using (11c). Constraints (12b)
follow from plugging (11d) into (6b). Constraints (11b), (11c), and (11d) imply that (ŷt, q̂t) is a
convex combination of feasible state-action pairs (xt, ut) ∈ St. By (11f), this convex combination
must be integral, and so (ŷ, q̂) ∈ St. Noting that Pt is identical to St, it follows that (ŷt, q̂t) ∈ Pt
for all t ∈ T . Hence, (y, q) is consistent with constraints (12c), which shows V IAF ≤ V IAFR.

We now interpose the equivalent Dantzig-Wolfe reformulation of the compact formulation (12)
to show the reverse direction, V IAFR ≤ V IAF. That means we take any feasible solution (λ̂, ŷ, q̂)

10

to the extensive formulation (13) as given and then we derive a solution (X, y, q) which is feasible
and equally valued in the extensive formulation (11). Define (y, q) just as in (14) and (15). Noting
the definition of the extreme points (ypt , q

p
t) and the equality Pt = St, it follows that (ypt , q

p
t) ∈ St

for all t ∈ T , p ∈ Et. Therefore, we define Xt
xu = λ̂pt for each (x, u) ∈ St, t ∈ T if there is a p ∈ Et

with (x, u) = (ypt , q
p
t), and we set Xt

xu = 0 otherwise.
Next, we check the feasibility of (X, y, q). X is nonnegative and (y, q) is integral by construction.

Plugging (13d) into (13b) yields the same constraints as plugging (11c) into (6b). To see that (y, q)
fulfills constraints (11c), note that

yit = ŷit =
∑
p∈Et

ypitλ̂pt =
∑
(x,u)

xitX
t
xu ∀t ∈ T , i ∈ I,

where the first equality is the definition of y, the second holds because (λ̂, ŷ) satisfies (13d), and
the last equality is true by the definition of X. Likewise, the consistency with constraints (11d) can
be verified. Thus, (X, y, q) is a feasible solution to the model (11). Moreover, if we substitute for λ
in (13a) using (13e), the resulting objective function equals the objective function that is obtained
by substituting for X in (11a) using (11d), which completes the proof. �

The above lemma implies that the AIP (11) provides next to the Dantzig-Wolfe reformula-
tion (13) a second option of writing down the compact model (12) in an extensive way. The AIP
contains a continuous variableXt

xu for every feasible state-action pair. In the formulation (13), how-
ever, a continuous variable λpt is present only if a feasible state-action pair represents an extreme
point of the convex hull of Pt.

Lemmata 2, 3, and 4 lead to the main conclusion of this subsection.

Corollary 1. For the ALP (6) and the reduction (9), the inequality V AF ≤ V AFR holds.

The equality V AF = V AFR in Corollary 1 holds if the formulation of the pricing problem has no
integrality gap (see also Lübbecke and Desrosiers, 2005). The strict inequality holds whenever the
integrality gap is positive because in this case feasible solutions to the reduction may be fractional
extreme points of the linear relaxed pricing problem. A column generation algorithm, in contrast,
will price out only integral state-action pairs since the integrality constraints are kept in the pricing
problem. As a result, the values V AFR and V IAF are farther apart than V AF and V IAF. We
emphasize that Vossen and Zhang (2013) understand the reduction (9) as an aggregation, hence as
a relaxation, of (6) which is a different argument to show the inequality of Corollary 1.

4.3. Final Assessment of Upper Bounds
Before we come to a final comparison of the upper bounds presented so far, we elaborate on

the case where the strict inequality of Corollary 1 holds. More specifically, we analyze the question
if the reduction-based upper bound can be arbitrarily worse than the ALP bound. Our answer is
that the reduction can never perform worse than the DLP.

Lemma 5. For the reduction (9) and the DLP (2), the inequality V AFR ≤ V DLP holds.

Proof. Suppose that we are given any feasible solution (q, y) to problem (9). Define a solution w =
{wjo : j ∈ J , o ∈Mj} to problem (2) according to

wjo =
∑
t∈T

pjtqjot ∀j ∈ J , o ∈Mj .

11

Plugging the definition of w into (9a) yields the objective function (2a). The demand constraints (2c)
follow directly from the definition of w and the fact that 0 ≤ q ≤ 1. To see that w satisfies the
capacity constraints (2b), we aggregate constraints (9b) over t and rearrange terms to obtain

ci =
τ−1∑
t=1

∑
(j,o)

pjtaioqjot + yiτ ∀i ∈ I. (16)

By multiplying both sides of constraints (9c) by pjt, aggregating over o and j, we can conclude that

yit =
(∑
j∈J

pjt

)
yit ≥

∑
j∈J

pjt
∑
o∈Mj

aioqjot ∀t ∈ T , i ∈ I,

where the equality holds since
∑

j pjt = 1 for all t. Using this result together with (16) gives

ci ≥
τ−1∑
t=1

∑
(j,o)

pjtaioqjot +
∑
(j,o)

pjτaioqjoτ

=
∑
(j,o)

aio
∑
t∈T

pjtqjot

=
∑
(j,o)

aiowjo ∀i ∈ I,

where the second equality follows from the definition of w. This completes the proof. �
The above lemma of course implies that solving the DLP yields an upper bound on V DP, and

it allows us to state the final order.

Corollary 2. The following relationship holds: V DP ≤ V AF ≤ V AFR ≤ V DLP.

5. The Impact of Product Design

In this section, we analyze the particular class of instances in which multi-mode products are
flexible products. We first introduce two assumptions to define these instances more precisely
before we derive, under these additional assumptions, an equivalent reformulation of the pricing
problem (10). By means of this reformulation, we can establish the integrality property of the
pricing problem, thereby achieving the equivalence between the ALP (6) and its corresponding
reduction (9).

To facilitate the discussion, we introduce a few more notation. Let J si = {j ∈ J : |Mj | = 1}
denote the set of all nsi = |J si| single-mode products and let Jmu = {j ∈ J : |Mj | > 1} denote
the set of all nmu = |Jmu| multi-mode products. Throughout this section, if we refer to a single-
mode product or to a multi-mode product, we use either the index h ∈ J si or the index l ∈ Jmu,
respectively. Whenever the particular type of a product is not relevant, the index j ∈ J is used.

5.1. Flexible Products with Discounted Fares
According to Gallego and Phillips (2004), a flexible product is a set of two or more alternative

single-mode products serving the same market. Hence, a flexible product is a multi-mode product
with a restricted definition of the associated mode set. Consider the formal definition below.

12

J si

Jmu

J

M

Ii1 i2 i3

o1 o2 o3 o4 o5

h1 h2 h3 h4 h5

l1 l2 l3 l4

Figure 1: Illustration of a nested mode set structure for nsi = no = 5, m = 3, and nmu = 4
double-mode products

Definition 1. A multi-mode product l ∈ Jmu is a flexible product if it consists of one or more
constituting single-mode products h ∈ J si. For any given h ∈ J si and l ∈ Jmu, product h is said
to constitute product l if they share a common mode, i.e., ifMl ∩Mh 6= ∅.

For the remainder of this section, we assume that all multi-mode products are flexible products.
Noting the condition of Definition 1, this assumption is equivalent to the condition that for every
product-mode combination (l, o) at least one single-mode product requires the same resources as
mode o, or more formally,

∀l ∈ Jmu, o ∈Ml : ∃h ∈ J si withMh ⊂Ml.

We refer to this condition as nested mode set structure. For illustration, the graph of Figure 1
depicts a numerical example of a nested mode set structure. This graph consists of one node for
each resource i ∈ I, one node for each mode o ∈ M, and one node for each product j ∈ J .
The following arcs connect these nodes: One arc from each resource i ∈ I to a mode o ∈ M
if aio = 1, one arc from each mode o ∈M to product h ∈ J si if o ∈Mh. Finally, an arc goes from
product h ∈ J si to product l ∈ Jmu if h constitutes l. Note that no arcs between the individual
modes and the multi-mode products are needed to represent their resource requirements.

In addition to the nested mode set structure, we assume that any multi-mode product gets a
discount off the minimum fare associated with the set of its constituting products. This is not a
necessary but a typical pricing strategy used when selling flexible products (Gallego and Phillips,
2004). Thus, given discount factors 0 ≤ δl ≤ 1 are assumed for l ∈ Jmu and we define the discounted
fares

fl = δl min
h∈J si

{fh : h constitutes j} ∀l ∈ Jmu (17)

5.2. Integrality Property of the Pricing Problem
To increase readability, we drop the mode index o from every uhot variable which refers to a

single-mode product h ∈ J si. For t ∈ T , we further use the notation usi
t = {uht : h ∈ J si}

and umu
t = {ulot : l ∈ Jmu, o ∈ Ml}, which allows us to state ut = (usi

t , u
mu
t). The unique mode of

product h ∈ J si is denoted by oh.

13

Now, consider the following integer program:

ζAFP2
t = max

 ∑
h∈J si

pht

(
fh −

∑
i∈I

ϑi,t+1aioh

)
uht −

∑
i∈I

(ϑit − ϑi,t+1)xit

+
∑
l∈Jmu

∑
o∈Ml

plt

(
fl −

∑
i∈I

ϑi,t+1aio

)
ulot

 (18a)

s.t. aiohuht ≤ xit ∀h ∈ J
si, i ∈ I (18b)∑

o∈Ml

ulot ≤ 1 ∀l ∈ Jmu (18c)

ulot ≤ uht ∀l ∈ Jmu, o ∈Ml, h ∈ J si : oh = o (18d)

11{t=1}c ≤ xt ≤ c, 0 ≤ usi
t ≤ 1, umu

t ≥ 0 (18e)

xt, u
si
t , u

mu
t integer. (18f)

Using the equation ut = (usi
t , u

mu
t), note that the objective function (18a) and the domains in (18e)

are identical to formulation (10). Also, constraints (18b) and (18c) are identical to the constraints
in (10b) and (10c) which refer to single-mode products, j ∈ J \Jmu. The linking constraints (18d)
ensure that a product-mode combination (l, o) is offered only if all products h ∈ J si which consti-
tute l and for which oh = o are offered simultaneously via uht = 1.

It is important to note that umu
t is entirely decoupled from xt in formulation (18). But before

we make use of this key fact, the formulations (18) and (10) are compared in the following lemma.

Lemma 6. If the mode set structure is nested and all multi-mode product fares are discounted, then
the formulation (18) of the pricing problem is equivalent to (10), i.e., ζAFP2

t = ζAFP
t for all t ∈ T .

Proof. It is not hard to see that any feasible solution to the model (18) is feasible in model (10).
The converse does not hold in general because constraints (18d) forbid solutions of the form

ulot = 1 for some (l, o) with l ∈ Jmu, o ∈Ml

and uht = 0 for at least one h ∈ J si with oh = o.
(19)

We show that such solutions are not optimal in formulation (10). Suppose that an optimal
solution (ut, xt) = (usi

t , u
mu
t , xt) to (10) is given and that it takes the form (19), i.e., it violates (18d).

Let (l, o, h) refer to any violated constraint (18d). The optimality of umu
t implies fl ≥

∑
i∈I ϑi,t+1aio.

The definition of a discounted fare (17) implies that fl ≤ fh. Hence, setting uht = 1 cannot decrease
but it can increase the objective value because fh ≥

∑
i∈I ϑi,t+1aio. This contradicts the optimality

of usi
t and completes the proof. �
Let the linear relaxation of model (18) be denoted by (AFP2-L) and its optimal value by ζAFP2-L

t .
Note that the argument by means of which we analyze solutions of the form (19) in the proof of
Lemma 6 assumes that the uht and ulot variables are binary. Clearly, this is not necessarily true
for the linear relaxations of (10) and (18). If these variables are allowed to be fractional, we
can use a slightly more general argument, thereby obtaining the equivalence between the linear
relaxations (AFP-L) and (AFP2-L) under the same conditions of Lemma 6.

Hence, the result ζAFP-L
t = ζAFP2-L

t for all t ∈ T together with Lemma 6 allows us to state that
the formulation (10) has no integrality gap if and only if (18) has no integrality gap. The next
lemma states that the latter condition is true.

14

Theorem 1. If the mode set structure is nested and all multi-mode product fares are discounted,
there exists an optimal integral solution to the linear program (AFP2-L).

Proof. Suppose that we are given any optimal solution (u∗t , x
∗
t) = (usi∗

t , umu∗
t , x∗t) to (AFP2-L) in

any t ∈ T . First, it is not hard to see that (usi∗
t , x∗t) is an optimal solution to the problem which

results from dropping umu∗
t from the model (AFP2-L). For this restricted model, the existence of

an optimal integral solution is known (Tong and Topaloglu, 2014).
Therefore, we take a copy (usi

t , u
mu
t , xt) = (usi∗

t , umu∗
t , x∗t) and set umu

t = 0 to obtain the solu-
tion (usi

t , 0, xt) that is locally optimal in (AFP2-L) and integral, by definition. Then, define

ulot =

1 if u∗ht = 1 ∀h ∈ J si : oh = o,

o = ωl, and fl ≥
∑

i∈I ϑi,t+1aiωl

0 otherwise
∀l ∈ Jmu, o ∈Ml, (20)

where ωl = arg mino∈Ml
{
∑

i∈I ϑi,t+1aio} for l ∈ Jmu denotes a least cost mode (ties are broken
arbitrarily). By (20), the updated solution (usi

t , u
mu
t , xt) is feasible in (AFP2-L) and integral, but

we still need to analyze whether this solution is optimal.
Consider any product h ∈ J si not offered in the given optimal solution via u∗ht = 0. Note that

this can have the following reasons: There is not enough capacity by (18b) or the product is not
profitable because fh <

∑
i∈I ϑi,t+1aioh . For any product-mode combination (l, o), l ∈ Jmu, o ∈Ml

which is constituted by h and for which o = oh, the first case implies that (l, o) is infeasible. The
second case implies that the combination (l, o) is feasible but not profitable since product l’s fare (17)
is discounted. In either case, the decision to reject (l, o) via ulot = 0 defined by (20) is optimal.

It remains to examine whether (20) makes an optimal assignment if a product has one or more
profitable modes. Thus, we consider now any l ∈ Jmu which fulfills fj ≥

∑
i∈I ϑi,t+1aio for at least

one o ∈Ml. Note that if the product-mode combination (l, o) is profitable, then every constituting
product h ∈ J si with oh = o is also profitable by (17). From the optimality of (usi∗

t , umu∗
t), it follows

for every profitable product-mode combination (l, o) that the constraints in (18d) referring to (l, o)
can be replaced by u∗lot ≤ 1. Using this result and constraints (18c), product j’s maximum total
contribution to the objective function (18a) is given by∑

o∈Ml

[
fl −

∑
i∈I

ϑi,t+1aio

]
u∗lot = max

o∈Ml

{
fl −

∑
i∈I

ϑi,t+1aio

}

= fl − min
o∈Ml

{∑
i∈I

ϑi,t+1aio

}
= fl −

∑
i∈I

ϑi,t+1aiωl
=
∑
o∈Ml

[
fj −

∑
i∈I

ϑi,t+1aio

]
ulot,

where the third equality above is true by the definition of ωl and the last equality follows from (20).
Thus, (ut, xt) = (usi

t , u
mu
t , xt) is integral and optimal in (AFP2-L), which completes the proof. �

Our proof of Theorem 1 has an algorithmic implication. The pricing problem does not need to be
solved from scratch for the entire set of products J . It can be solved in two phases: First, all multi-
mode products are dropped from the model, i.e., a restricted pricing problem without umu

t is solved.
The restricted pricing problem in every t ∈ T has

∑
l∈Jmu |Ml| variables less and m

∑
l∈Jmu |Ml|+

nmu constraints less than the full pricing problem. In addition, one can exploit network flow
structure of the restricted pricing problem (Tong and Topaloglu, 2014) and solve this problem more
efficiently. Once we know all optimal decisions uht, the second phase begins in which we determine
the

∑
l∈Jmu |Ml| optimal decisions ulot according to the update rule (20).

15

6. Strengthening the Reduction

The fact that the upper bound produced by the reduction can deviate from the ALP bound
gives rise to the question whether the gap V AF − V AFR can be shrunk efficiently. The cutting
plane method devised in this section serves that purpose. Note the major difference between our
method and the cut generation procedure of Tong and Topaloglu (2014). These authors intend to
solve a compact formulation by dynamically generating constraints which are necessary to describe
the given problem. In contrast, our proposed method is triggered once an optimal solution to the
reduction (9) is available. We then separate valid inequalities to strengthen the formulation, i.e.,
we receive upper bounds tighter than V AFR in return for the additional effort.

6.1. Polyhedral Structure of the Pricing Problem
Our approach to identify valid inequalities for the reduction (9) is to identify inequalities that

are valid for the compact integer model AIP (12). Using Lemma 3, any such valid inequality
preserves all feasible solutions to the integer program (12) but it may separate fractional solutions
to its linear relaxation (9). Noting constraints (12c), the analysis of the polyhedral structure of the
pricing problem (10) is clearly one source of valid inequalities.

First, we show that (10) can be viewed as a pure binary program. Note that the objective func-
tion coefficients associated with the xit variables are nonpositive because of the time monotonicity
of ϑit in an optimal solution to the ALP (5). In Appendix C, we prove this and other structural
properties. As a result, any xit variable takes either zero, one, or ci in an optimal solution to the
pricing problem (see also Adelman, 2007). The case xit = ci occurs only in period t = 1 due to
the restricted domain of the xit variables in this period. We can handle this by setting xi1 = 1
for i ∈ I and adding the constant term

∑
i∈I(ϑit−ϑi,t+1)(ci− 1) to the objective function (10a) in

period t = 1. For the sake of the argument, we simply replace the original domains (10d)–(10e) by

xt, ut binary ∀t ∈ T . (21)

Moreover, using the notation x̄t = {x̄it : i ∈ I} to represent the complement of the decision
variables xt, i.e., x̄it = 1− xit ∈ {0, 1} for i ∈ I, t ∈ T , the constraints (10b) can be rewritten as

ujot + x̄it ≤ 1 ∀(j, o) ∈ J ×M, i ∈ I : aio = 1. (22)

We can now describe the set of feasible solutions to the pricing problem (10) by writing

Pt = {(ut, x̄t) :
∑
o∈Mj

ujot ≤ 1 ∀j ∈ J , (22), and binary} ∀t ∈ T .

The set of feasible solutions to a set-packing problem is defined as follows.

Definition 2. The bounded polyhedron S = {µ : Ãµ ≤ 1 and binary} with a set of columns Q, a
set of rows F , a binary |F|× |Q| coefficient matrix Ã, and a |Q|-vector µ = (µq) of binary variables
is called a set-packing structure.

The idea of the following proof is to cast the pricing problem (10) as a set-packing problem.

Theorem 2. The pricing problem (10) has a set-packing structure, i.e., ζAFP
t = max{ω>t µ : µ ∈ S}

for all t ∈ T , where ωt = (ωqt) is a |Q|-vector of weights.
16

Proof. The proof begins with the construction of the set of columns Q. Let each column q ∈ Q
refer to either a product-mode combination, denoted by q = (j, o) ∈ J ×M, or a resource, denoted
by q = (i, 0) ∈ I × {0}. Thus, |Q| = |J ×M|+m and we define the weights according to

ωqt =

{
pjt

(
fj −

∑
i∈I ϑi,t+1aio

)
if q = (j, o) ∈ J ×M

ϑi,t+1 − ϑit if q = (i, 0) ∈ I × {0}
∀q ∈ Q, t ∈ T

It follows the construction of the set of rows F . We define a row Fp ∈ F as a subset of
columns Fp ⊆ Q, p = 1, . . . , |F|. Specifically, for each (j, o, i) ∈ J ×M× I with aio = 1 define a
row Fp = {q ∈ Q : q = (j, o) or q = (i, 0)}, and for each j ∈ J define a row Fp = {q ∈ Q : q =
(j, o) ∀o ∈Mj}. Then, |F| = |J ×M×I|+ n and the incidence matrix Ã = (ãpq) can be derived
as follows: For all q ∈ Q and p = 1, . . . , |F| set ãpq = 1 if q ∈ Fp (0, otherwise). Observe that any
solution (ut, xt) in Pt has a corresponding solution µ in S for any t ∈ T . Finally, the definition
of ωt yields the claim ζAFP

t = max{ω>t µ : µ ∈ S} for t ∈ T . This completes the proof. �

6.2. A New Cutting Plane Method
Theorem 2 grants access to the set of inequalities which are valid for the set-packing problem,

e.g., the well-known clique cuts and odd-cycle cuts. In the following, we devise a cutting-plane
method based on the separation of odd-cycle cuts. These cuts are not necessarily facet-defining
inequalities for the set-packing problem (Padberg, 1973) but their exact separation can be done
efficiently (Grötschel et al., 1988).

Given any t ∈ T , constraints (9c) and (9d) of the reduction (9) can be represented as an
undirected graph (V,E), known as conflict graph. The node set V of the conflict graph has a
node for each yit variable and a node for each qjot variable. We define the node set using the
notation of the previous subsection, V = Q = V J ∪ V I , where V J denotes the subset of nodes
associated with product-mode combinations (j, o) ∈ J ×M and V I is the subset of nodes associated
with resources (i, 0) ∈ I × {0}. An edge connects two nodes if the corresponding variables occur
simultaneously in (9c) or in (9d).

Let the subgraph C = (V (C), Ē) ⊆ (V,E) denote a cycle with an odd number of edges.
Using ȳit = 1− yit for i ∈ I, t ∈ T , the odd-cycle inequalities are given by∑

(j,o)∈V J (C)

qjot +
∑

(i,0)∈V I(C)

ȳit ≤
|V (C)| − 1

2
∀ odd cycles C ⊆ (V,E), t ∈ T . (23)

We now state the separation problem taking a feasible solution (y, q) to the reduction (9) as
given. For each edge {r, s} ∈ E, define the edge cost ztrs = 1/2(1− γrt − γst), where

γrt =

{
qjot if r = (j, o) ∈ V J

ȳit if r = (i, 0) ∈ V I
∀r ∈ V, t ∈ T .

Note that only the node weights γrt vary in time, while the node set V and the edge set E of
the conflict graph are constant with respect to time. It follows from (23) that finding a violated
odd-cycle inequality amounts to decide whether there exists an odd cycle C ⊆ (V,E) with

ζSEP
t (C) =

∑
{r,s}∈Ē

ztrs < 1/2. (24)

17

(a) Constraint system

qa1t + ȳ1t ≤ 1
qa2t + ȳ2t ≤ 1

qb2t + ȳ2t ≤ 1
qb3t + ȳ3t ≤ 1

qc1t + ȳ1t ≤ 1
qc3t + ȳ3t ≤ 1

qa1t + qa2t ≤ 1
qb2t + qb3t ≤ 1

qc1t + qc3t ≤ 1

(b) Conflict graph

1/2

1/2

1/2
1/2

1/2

1/2

1/2
1/2

1/2

qa1t

y1t

qc1tqc3t

y3t

qb3t

qb2t

y2t

qa2t

ȳ1t

ȳ2t

ȳ3t

Figure 2: Constraint system and corresponding conflict graph of Example 1

We denote the problem associated with verifying (24) by (SEP)t for t ∈ T . Lemma (9.1.11)
in Grötschel et al. (1988), for instance, states that there exists a polynomial time algorithm to
solve (SEP)t. If the value ζSEP

t is interpreted as the length of an odd cycle, we can verify the
existence of an odd cycle shorter than 1/2 by solving at most O (|V |) shortest-path problems.

The complete cutting plane method is sketched in Algorithm 1 in Appendix B. Let Rk denote
the index set of rows that correspond to violated odd-cycle cuts found in iteration 1, . . . , k. In each
iteration k, we solve the separation problem (SEP)t for all t ∈ T . If an odd-cycle cut is violated
in t, we add the row index (C, t) to Rk. AFR(Rk) refers to the model obtained from adding all
rows in Rk to the reduction (9).

We finally revisit Example 1 to demonstrate that (23) indeed happens to be violated.

Example 1 (cont’d). Using ȳit = 1−yit, the set of feasible solutions to the linear program (AFP-L)
of Example 1 can be written as the constraint system depicted in Figure 2a. Figure 2b shows the
corresponding conflict graph. Adding up all these constraints, we get

2

∑
(j,o)

qjot +
∑
i∈I

ȳit

 ≤ 9.

The coefficient 2 on the left-hand side of the above inequality can be interpreted as the number of
edges to which each of the nine nodes is incident. Dividing both sides of this inequality by 2 and
rounding off the resulting right hand side value yields the new cut∑

(j,o)

qjot +
∑
i∈I

ȳit ≤
9− 1

2
.

This cut forbids the optimal solution to the linear program (AFP-L) of Example 1 with all variables
taking 1/2 since 9/2 = 4.5 > (9− 1)/2 = 4.

18

7. Computational Tests

The main goal of this section is to assess the findings of Sections 5 and 6 from a computational
point of view. We describe our instances in more detail and also a few details on our implementations
before reporting the numerical results of our computational experiments.

7.1. Test Instances
We created two groups of test instances, “RMF” and ”RMM”. These instances include data

from the well-known instances of Topaloglu (2009) designed to evaluate algorithms for the ordinary
network revenue management problem (NRM). They have a time horizon of length τ ∈ {200, 600}.

RMF Instances. Each instance is characterized by a tuple (τ,N, α, κ, nmu). It includes the
complete resource and product data of the original NRM instance, i.e., the capacities, the
itineraries, and the fares. These itineraries are defined over a hub-and-spoke flight network
with a single hub and N spokes. Each itinerary is combined with two fare classes where the
revenue of the high-fare class is κ ∈ {4, 8} times the revenue of the low-fare class. We added
a varying number nmu ∈ {10, 15, 20, 30} of double-mode products to these itinerary-fare class
combinations. Two different types of mode sets were defined:

1. Mode sets containing two single-leg (hub→non-hub) itineraries.
2. Mode sets containing two double-leg (non-hub→non-hub) itineraries.

Note that the double-mode products are flexible products because they are constituted by
single-mode products, the original itinerary-fare class combinations. For each double-mode
product we defined a single discounted fare which is 25% smaller than the lowest fare associ-
ated with any of its constituting products, and we generated random arrival rates.

RMM Instances. Each instance is characterized by a tuple (τ,O, α, κ, nmu). There are no single-
mode products (nsi = 0). The number nmu of multi-mode products varies between 40 and
144 each of which has two fare classes. The fares and probabilities were taken from the
original NRM instance. We use the maximum cardinality of a mode set O ∈ {4, 5, 6, 8} to
indicate the complexity of the instances. A mode is a route through the network which is
defined by NO + N I + ND nodes and m ∈ {12, 14, 16, 18} resources linking the nodes. A
node represents either an origin (O), an intermediate stop (I), or a destination (D). These
parameters also vary, i.e., NO, N I ∈ {2, 3} and ND ∈ {4, 5}. A resource connects origins and
intermediate stops or intermediate stops and destinations but not origins and destinations.
Figure 3 depicts an instance with NO = N I = 2, ND = 4, and m = 12. There are 12 single-
resource modes and 24 double-resource modes in total. For example, consider a product that
departs from node A and ends at one of the two intermediate stops C or D. This product
has two modes which are given by the mode set {1, 3}. Consider another product with three
modes going from node B via C to either E, F, or G. This product is defined by the mode
set {(1, 5), (1, 7), (1, 8)}.

Appendix D provides a summary of the characteristics of all test instances. We measure the
tightness of the leg capacities using the load factor

α =

∑
i∈I
∑

t∈T
∑

j∈J 11{∃o∈Mj :aio=1}pjt∑
i∈I ci

.

19

A B

C D

E F G H

1 2 3 4

5 7 10 12

11
6 9

8

Figure 3: Example network with NO = 2 origins, N I = 2 intermediate stops, ND = 4 destinations;
nodes are numbered from A to H, arcs from 1 to 12

7.2. Computational Setup
All tests were performed on a standard PC with an Intel(R) Core(TM) i7-2600 running at 3.4

GHz with 16 GB of main memory. Algorithms were coded in C++ and compiled in release mode
with MS-Visual Studio 2010. CPLEX 12.5 serves as general-purpose mixed-integer programming
solver and we allowed CPLEX to allocate two threads.

We compute the ALP bound V AF by solving the model (6) with the convexity constraints (8)
column generation because these additional constraints stabilize the algorithm. We adapt the basic
configuration as described by Adelman (2007) which includes:

• Batchwise addition of generated columns.

• Addition of variables to the initial (primal) RMP in order to impose

– the dual constraints ϑit ≥ ϑi,t+1, i ∈ I, t ∈ T and

– the dual constraints θt ≥ θt+1, t ∈ T .

We prove that at least one optimal solution satisfies these additional dual constraints in Appendix C.
As a side note, it is well-known that column generation algorithms can benefit from the stabilizing
effect of such “dual-optimal inequalities” (Ben Amor et al., 2006; Gschwind and Irnich, 2014).

Columns with positive reduced profit smaller than a minimum threshold value of 0.001 were
discarded. In all our computations, column generation was terminated if the sum of the reduced
profits in the current iteration was greater than the optimal value of the current RMP multiplied
by the parameter Ωcg which we set to 1 · 10−6.

We implemented the cutting plane method described in Section 6.2 using a Fibonacci heap
implementation of Dijkstra’s algorithm to compute the shortest paths in the separation routine.
If the violation of an odd-cycle cut was greater than or equal to a predefined minimum violation
of 0.01, this cut made it into the strengthened model, otherwise the cut was discarded. During our
experiments, batchwise addition of cuts turned out to be a better strategy than adding only the
most violated cut. The initial reduction (9) was solved without dynamic constraint generation.

7.3. Numerical Results
This section summarizes the results of our computational experiments. In Appendix E, we

report our numerical results in more detail.

20

Table 1 presents our results with respect to the RMF instances. All values are averages obtained
by aggregating over instances with the same (τ,N, nmu). Columns two to four show the average
upper bounds on the maximum expected revenue V DP produced by solving the ALP (6), the
reduction (9), and the DLP (2), respectively. In columns five and six, we see the average number
of seconds that were required to compute V AF and V AFR, respectively. The the last column shows
the average relative improvement of V AFR over V DLP.

Upper bounds CPU seconds ∆ (%)

(τ,N, nmu) V AF V AFR V DLP AF AFR V DLP − V AFR

(200, 4, 10) 22,442.3 22,442.3 22,568.7 33.1 0.5 0.6
(200, 5, 15) 22,576.9 22,577.0 22,693.7 64.5 0.8 0.6
(200, 6, 20) 23,607.7 23,607.9 23,810.9 128.4 1.2 0.9
(200, 8, 30) 20,659.4 20,659.5 20,859.8 426.0 2.8 1.0

(600, 4, 10) 37,941.8 37,941.9 38,122.6 146.3 1.7 0.5
(600, 5, 15) 39,343.9 39,344.0 39,532.8 639.2 3.4 0.5
(600, 6, 20) 31,659.1 31,659.2 31,918.9 2,358.1 6.3 0.9
(600, 8, 30) TL 28,361.7 28,680.2 TL 18.5 1.0

Table 1: Average upper bounds and average computation times for the RMF instances; the time
limit TL was set to 7200 seconds

By construction of the RMF instances, the numbers in the second and third column are nearly
identical. This is not surprising since all multi-mode products are flexible products and therefore
the reduction (9) is guaranteed to be equivalent to the ALP (6). The deviation of V AFR from V AF

in some instances indicates that the column generation algorithm terminated prematurely due to
our stopping criterion based on the value Ωcg. The average ALP bound outperforms the average
DLP bound in all cases as expected. The entry “TL” means that it was not possible to solve the
ALP within a time limit which we set to 7200 seconds.

The results regarding the RMM instances are depicted in Tables 2 and 3. These instances are
designed to be harder to solve than the RMF instances in the sense that all products have multiple
modes but are no flexible products. Thus, the average relative gaps between V AF and V AFR shown
in the last column Table 2 are strictly positive. The reduction-based bounds are quite close to

Upper bounds CPU seconds ∆ (%)

(τ,O, nmu) V AF V AFR V DLP AF AFR V DLP − V AF V AF − V AFR

(200, 4, 40) 25,664.8 25,794.6 25,825.4 102.0 1.8 0.7 0.5
(200, 5, 60) 25,528.5 25,684.9 25,730.7 139.2 5.0 0.8 0.7
(200, 6, 84) 27,420.5 27,604.9 27,640.8 321.0 16.6 0.9 0.7
(200, 8, 144) 22,842.6 22,973.7 23,024.5 629.2 80.8 0.9 0.6

(600, 4, 40) 38,249.0 38,363.6 38,438.8 791.5 11.0 0.5 0.3
(600, 5, 60) 38,525.1 38,678.6 38,745.4 933.4 45.1 0.6 0.4
(600, 6, 84) 33,036.4 33,206.9 33,264.0 2,308.2 131.8 0.7 0.6

Table 2: Average upper bounds and computation times for the RMM instances

21

AFR with Odd-Cycle Cuts AFR vs. OC (%)

(τ,O, nmu) V OC CPU seconds #Iter. Ratio of gaps Ratio of times

(200, 4, 40) 25,732.7 4.3 3.7 0.47 0.04
(200, 5, 60) 25,653.1 15.1 4.8 0.19 0.11
(200, 6, 84) 27,548.3 88.6 5.3 0.29 0.28
(200, 8, 144) 23,756.2 404.9 8.2 0.44 0.64

(600, 4, 40) 38,313.8 24.7 4.8 0.42 0.03
(600, 5, 60) 38,640.4 80.5 5.2 0.24 0.09
(600, 6, 84) 33,152.7 384.9 6.2 0.32 0.17

Table 3: Improved average upper bounds using odd-cycle cuts and average computation times for
the RMM instances

the ALP bounds, i.e., the value V AFR deviates from V AF typically by less than 1%. Nevertheless,
these gaps indicate a potential benefit from strengthening the reduction (9). Note that the upper
bound V AFR is always tighter than V DLP as indicated by the corresponding average relative gaps
given in the seventh column of Table 2.

Table 3 gives insights into the effectiveness of the odd-cycle cuts. We use V OC to refer to
the upper bound that is available after termination of the cutting plane method, i.e., the optimal
objective function value of the model AFR(Rk) in the last iteration k of Algorithm 1. The average
of the improved upper bounds is shown in the second column of Table 3. The average number of
seconds elapsed during the solution of the initial model (9) and the ensuing cutting plane iterations
are given in the third column. The fourth column shows the average number of cutting plane
iterations. Moreover, the ratios stated in the last two columns of Table 3 are defined as follows:

ratio of gaps =
V AFR − V OC

V AFR − V AF

and

ratio of times =
#seconds to compute V OC

#seconds to compute V AF .

The gap V AFR−V AF is the absolute gap between the reduction-based bound and the ALP bound.
The gap V AFR − V OC is the absolute gap after improving the reduction-based bound using Al-
gorithm 1. Thus, “ratio of gaps” reads as the fraction of V AFR − V AF that can be eliminated by
separating the odd-cycle cuts. Moreover, “ratio of times” means the percentage lead by which the
time to compute V OC is ahead of the time to compute V AF using column generation. That is, a
ratio of CPU seconds equal to one or greater means that there is no advantage in using Algorithm 1
because we can have a stronger bound than V OC with the same or less computational effort.

Because the average ratio of times is less than one in all instances, our cutting plane method
can always improve the reduction-based bounds while being computationally competitive. The first
row of Table 3 indicates that the gap between V AF and V AFR can be nearly halved in not more
than 4% of the average time required to solve the ALP directly. The average ratio of gaps and
the average ratio of times over all RMM instances are 34% and 19%, respectively. However, it can
be seen that the separation of odd-cycle cuts becomes more time-consuming as the parameter O
increases because O affects the number and size of the shortest-path problems to be solved.

22

8. Conclusion

We proposed an affine approximate linear program and a reduction for the network revenue
management problem with multiple modes. We showed that the particular design of a multi-mode
product has a crucial influence on the accuracy of the reduction. For the special case with flexible
products, we showed that the compact model produces an upper bound on the maximum expected
revenue which is as tight as that of the extensive model. For general multi-mode products, we
developed a new cutting plane method motivated by a set-packing structure that we identified
within the reduction. We also demonstrated that valid inequalities can be efficiently separated in
order to improve the reduction-based bound.

Two streams of future research suggest themselves as a result of this paper. First, one could ask if
our results regarding the flexible products extend to other product designs in a similar way. Second,
it might be promising to further exploit the set-packing structure. The solution of the approximate
linear program via column generation could benefit from tailored pricing solvers, and the reduction
can be further strengthened, e.g., by the heuristic separation of stronger valid inequalities such as
clique cuts. We finally remark that our analysis extends to separable piecewise-linear approximation
in theory but the resulting reduction is still hard to solve.

References

Adelman, D. (2007). Dynamic bid prices in revenue management. Operations Research, 55(4), 647–661.
Adelman, D. and Mersereau, A. J. (2008). Relaxations of weakly coupled stochastic dynamic programs. Operations

Research, 56(3), 712–727.
Ben Amor, H., Desrosiers, J., and Valério de Carvalho, J. M. (2006). Dual-Optimal Inequalities for Stabilized Column

Generation. Operations Research, 54(3), 454–463.
Bertsekas, D. P. (2012). Dynamic programming and optimal control. Athena Scientific, Belmont, 4 edition.
Chen, S., Gallego, G., Li, M. Z., and Lin, B. (2010). Optimal seat allocation for two-flight problems with a flexible

demand segment. European Journal of Operational Research, 201(3), 897–908.
Chen, V., Günther, D., and Johnson, E. (2003). Routing Considerations in Airline Yield Management. In T. A.

Ciriani, G. Fasano, S. Gliozzi, and R. Tadei, editors, Operations Research in Space and Air, pages 333–350.
Springer, Boston.

Farias, V. F. and van Roy, B. (2007). An Approximate Dynamic Programming Approach to Network Revenue
Management. Technical report, Massachusetts Institute of Technology, Cambridge and MA.

Gallego, G. and Phillips, R. (2004). Revenue Management of Flexible Products. Manufacturing and Service Opera-
tions Management, 6(4), 321–337.

Gallego, G., Iyengar, G., Phillips, R., and Dubey, A. (2004). Managing Flexible Products on a Network. Technical
report, Columbia University, New York.

Grötschel, M., Lovász, L., and Schrijver, A. (1988). Geometric algorithms and combinatorial optimization, volume 2
of Algorithms and combinatorics. Springer, Berlin.

Gschwind, T. and Irnich, S. (2014). Dual Inequalities for Stabilized Column Generation Revisited. Technical
Report LM-2014-03, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes
Gutenberg University Mainz, Mainz and Germany. Forthcoming in: INFORMS Journal on Computing.

Kunnumkal, S. and Talluri, K. (2014). On the tractability of the piecewise-linear approximation for general discrete-
choice network revenue management. Technical report, Universitat Pompeu Fabra.

Kunnumkal, S. and Topaloglu, H. (2010). Computing time-dependent bid prices in network revenue management
problems. Transportation Science, 44(1), 38–62.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected Topics in Column Generation. Operations Research, 53(6),
1007–1023.

Meissner, J. and Strauss, A. (2012). Network revenue management with inventory-sensitive bid prices and customer
choice. European Journal of Operational Research, 216(2), 459–468.

Padberg, M. W. (1973). On the facial structure of set packing polyhedra. Mathematical programming, 5(1), 199–215.
Petrick, A., Gönsch, J., Steinhardt, C., and Klein, R. (2010). Dynamic control mechanisms for revenue management

with flexible products. Computers & Operations Research, 37(11), 2027–2039.
23

Post, D. (2010). Variable opaque products in the airline industry: A tool to fill the gaps and increase revenues.
Journal of Revenue and Pricing Management, 9(4), 292–299.

Powell, W. B. (2011). Approximate dynamic programming. J. Wiley & Sons, Hoboken, 2nd edition.
Puterman, M. L. (1994). Markov decision processes. Wiley, New York.
Schweitzer, P. J. and Seidmann, A. (1985). Generalized polynomial approximations in Markovian decision processes.

Journal of Mathematical Analysis and Applications, 110(2), 568–582.
Talluri, K. and van Ryzin, G. (1998). An analysis of bid-price controls for network revenue management. Management

Science, 44(11), 1577–1593.
Talluri, K. T. (2001). Airline revenue management with passenger routing control: A new model with solution

approaches. International Journal of Services Technology and Management, 2(1), 102–115.
Talluri, K. T. and van Ryzin, G. (2004). The theory and practice of revenue management. Kluwer Academic

Publishers, Boston.
Tong, C. and Topaloglu, H. (2014). On the Approximate Linear Programming Approach for Network Revenue

Management Problems. INFORMS Journal on Computing, 26(1), 121–134.
Topaloglu, H. (2009). Using Lagrangian relaxation to compute capacity-dependent bid prices in network revenue

management. Operations Research, 57(3), 637–649.
Vossen, T. W. M. and Zhang, D. (2013). Reductions of Approximate Linear Programs for Network Revenue Man-

agement. Technical report, University of Colorado at Boulder, Boulder.
Williamson, E. L. (1992). Airline network seat inventory control. Ph.D. thesis, Massachusetts Institute of Technology,

Cambridge.
Zhang, D. and Adelman, D. (2009). An Approximate Dynamic Programming Approach to Network Revenue Man-

agement with Customer Choice. Transportation Science, 43(3), 381–394.

24

Appendix

A. Proof of Lemma 1

The proof of Lemma 1 is based on the fact that the value V AF-θ defined by the linear program

V AF-θ = θ1 + min
ϑ

∑
i∈I

ciϑi1

s.t. θt − θt+1 +
∑
i∈I

[
(ϑit − ϑi,t+1)xit +

∑
(j,o)

pjtujotaioϑi,t+1

]
≥
∑
(j,o)

pjtfjujot

∀t ∈ T , (xt, ut) ∈ St.

is insensitive with respect to the choice of the real values θ = {θt : t ∈ T }. We use the nota-
tion (AF-θ) to refer to the above linear program for a given θ, and we use ϑ(θ) = {ϑit(θ) : i ∈ I, t ∈
T } to denote a solution to problem (AF-θ). The notation ϑ(θ) emphasizes the dependency of this
solution on the given choice of θ.

The claim is analogous to Proposition 3 of Adelman and Mersereau (2008) but the proof below
is different.

Lemma 7. V AF-θ = V AF-θ′ for any choice of θ, θ′ ∈ Rτ .

Proof. Choose any two θ, θ′ ∈ Rτ . Assume that ϑ(θ) is optimal in problem (AF-θ). Next, we define
a solution ϑ(θ′) to problem (AF-θ′) such that ϑit(θ′) = (θt−θ′t)/m+ϑit(θ) for all i ∈ I, t ∈ T . This
definition directly implies that ϑ(θ′) is feasible in problem (AF-θ′) and that its objective function
value equals V AF-θ. Hence, V AF-θ ≥ V AF-θ′ . The reverse inequality is follows by interchanging θ
and θ′ in the above argument. The proof is complete because of our arbitrary choice of θ, θ′. �

Lemma 1. If V AF-CONV denotes the optimal value of the problem defined by model (6) and con-
straints (8), then the equality V AF-CONV = V AF holds.

Proof. By Lemma 7 we can rewrite problem (5) as

V AF = min
θ,ϑ

θ1 +
∑
i∈I

ciϑi1

s.t. θt − θt+1 +
∑
i∈I

[
(ϑit − ϑi,t+1)xit +

∑
(j,o)

pjtujotaioϑi,t+1

]
≥
∑
(j,o)

pjtfjujot

∀t ∈ T , (xt, ut) ∈ St.

Noting that the dual of this linear program is given by (6) and (8) completes the proof. �

25

B. Cutting Plane Algorithm

This section provides a description of the cutting plane method of Section 6.2.

Algorithm 1: Cutting plane method

Set k := 1,Rk := ∅
repeat

Solve AFR(Rk)
for t ∈ T do

Solve (SEP)t for ζSEP
t (C)

if ∃odd cycle C with 1/2− ζSEP
t (C) > 0 then

Select odd cycle C
Update Rk+1 := Rk ∪ {(C, t)}

Set k := k + 1

until Rk = Rk−1

C. Proof of Structural Properties

In this section, we analzye optimal solutions to the general affine ALP

V AF = min
θ,ϑ

θ1 +
∑
i∈I

ciϑi1 (27a)

s.t. θt − θt+1 +
∑
i∈I

[
(ϑit − ϑi,t+1)xit +

∑
(j,o)

pjtujotaioϑi,t+1

]
≥
∑
(j,o)

pjtfjujot

∀t ∈ T , (xt, ut) ∈ St, (27b)

where we use the convention that ϑi,τ+1 = 0, i ∈ I and θτ+1 = 0. More specifically, we show that
at least one optimal solution to problem (27) exists in which θ and ϑ are both nonnegative and
monotonic over time.

Let X denote any feasible solution to the dual of (27) that is given by problem (6) and the
convexity constraints (8). We adapt the proof technique used by Adelman (2007) verify the prop-
erties. Therefore, we start with the definition of the earliest period in which resource i’s capacity
is expected to be sold:

ti = min{t ∈ T : ∃(j, o) ∈ J ×M, (xt, ut) ∈ St with Xt
xu > 0, ujot = 1, aio = 1} ∀i ∈ I.

It is possible to show that Lemma 1 of Adelman (2007) applies to the MNRM case. This result
states that, for all i ∈ I, there exists a Xt

xu > 0 with xit < ci for all t > ti, and that Xt
xu > 0 in

any period t ≤ ti only if xit = ci. For ease of exposition, we assume that ti = 1 for all i ∈ I but
the analysis below applies if the first time resource i is expected to be used is later than the first
period.

Theorem 3. There exists an optimal solution (θ∗, ϑ∗) to problem (5) that satisfies:
26

(i) ϑ∗it ≥ ϑ∗i,t+1 for all i ∈ I, t ∈ T ,
(ii) ϑ∗it ≥ 0 for all i ∈ I, t ∈ T ,
(iii) θ∗t ≥ θ∗t+1 for all t ∈ T ,
(iv) θ∗t ≥ 0 for all t ∈ T .

Proof. To verify part (i), suppose that we are given an optimal primal-dual pair ((θ∗, ϑ∗), X∗).
Choose any resource l ∈ I. Since there exists an (xt, ut) that satisfies X∗txu > 0 and xlt < cl for all
t > 1, constraints (27b) and the complementary slackness imply the equality

0 = θt+1 − θt +
∑
(j,o)

pjt

[
fj −

∑
i∈I

aioϑ
∗
i,t+1

]
ujot +

∑
i∈I

(ϑ∗i,t+1 − ϑ∗it)xit ∀t > 1. (28)

Let x′t = xt and set x′lt = xlt + 1. Since x′lt < xlt ≤ cl, we have Ut(xt) ⊂ Ut(x′t) and thus any
action ut ∈ Ut(xt) is also feasible in state x′t. By the feasibility of (θ∗, ϑ∗), the inequalities in (27b)
which refer to state x′t can be written as

0 ≥ θt+1 − θt +
∑
(j,o)

pjt

[
fj −

∑
i∈I

aioϑ
∗
i,t+1

]
ujot +

∑
i∈I

(ϑ∗i,t+1 − ϑ∗it)x′it

= θt+1 − θt +
∑
(j,o)

pjt

[
fj −

∑
i∈I

aioϑ
∗
i,t+1

]
ujot +

∑
i∈I

(ϑ∗i,t+1 − ϑ∗it)xit + (ϑ∗l,t+1 − ϑ∗lt) (29)

for all t > 1. Subtracting (28) from (29) yields property (i) for resource l and all t > 1. Regarding
period t = 1, it is without loss of optimality to assume that ϑ∗l1 ≮ ϑ∗l2 by a similar argument as in
Step 3 of Adelman’s (2007) proof of his Theorem 2. Since our choice of l was arbitrary, part (i) of
this lemma holds.

Part (ii) is a direct consequence of property (i) and the boundary conditions ϑi,τ+1 = 0, i ∈ I.
Part (iii) follows because (xt, ut) = (0, 0) is a feasible state-action pair in any t ∈ T and thus 0 ≥
θ∗t+1− θ∗t , t ∈ T is implied by constraints (5b). Finally, part (iv) follows directly from part (iii) and
θτ+1 = 0 for all t ∈ T . This completes the proof. �

D. Characteristics of Test Instances

The following table summarizes the parameters which characterize the size and complexity of
our test instances.

#Periods #Nonhub
locations (N)

#Resources #Modes #Products Card. of max.
mode set (O)(τ) (m) (|M|) (n)

{200, 600} 4 8 20 50 2
{200, 600} 5 10 30 75 2
{200, 600} 6 12 42 104 2
{200, 600} 8 16 72 174 2

Table 4: Characteristics of RMF instances

27

#Periods #Sources #Interm.
stops (NH)

#Sinks #Resources #Modes #Products Card. of max.
mode set (O)(τ) (NO) (ND) (m) (|M|) (n)

{200, 600} 2 2 4 12 28 40 4
{200, 600} 2 2 5 14 34 60 5
{200, 600} 3 2 5 16 46 84 6
200 2 3 4 18 42 144 8

Table 5: Characteristics of RMM instances

E. Detailed Computational Results

The six tables of this section document the detailed numerical results of our computational
experiments with the 48 RMF instances and the 42 RMM instances. All tables shown here have
the same format as the corresponding tables described Section 7.3. That means the column headers
of the Tables 6-7, 8-9, and 10-11 are the same as those of Table 1, 2, and 3, respectively.

Upper bounds CPU seconds ∆ (%)

(τ,N, α, κ, nmu) V AF V AFR V DLP AF AFR V DLP − V AFR

(200, 4, 1.1, 4, 10) 18,105.2 18,105.2 18,147.0 25.0 0.5 0.2
(200, 4, 1.1, 8, 10) 28,846.3 28,846.4 28,888.1 26.2 0.5 0.1
(200, 4, 1.3, 4, 10) 17,658.1 17,658.1 17,774.6 39.9 0.6 0.7
(200, 4, 1.3, 8, 10) 28,398.1 28,398.1 28,515.8 39.9 0.5 0.4
(200, 4, 1.8, 4, 10) 15,455.1 15,455.5 15,672.8 35.0 0.4 1.4
(200, 4, 1.8, 8, 10) 26,190.7 26,190.7 26,413.9 32.4 0.4 0.8

(200, 5, 1.1, 4, 15) 18,050.6 18,050.6 18,084.3 56.6 0.8 0.2
(200, 5, 1.1, 8, 15) 28,526.5 28,526.5 28,560.1 55.6 0.8 0.1
(200, 5, 1.3, 4, 15) 17,672.3 17,672.3 17,738.8 74.2 0.7 0.4
(200, 5, 1.3, 8, 15) 28,148.1 28,148.1 28,214.6 66.1 0.7 0.2
(200, 5, 1.8, 4, 15) 16,311.4 16,311.9 16,556.4 69.5 0.8 1.5
(200, 5, 1.8, 8, 15) 26,752.5 26,752.6 27,008.2 65.0 0.8 0.9

(200, 6, 1.1, 4, 20) 19,073.3 19,073.3 19,106.6 107.8 1.3 0.2
(200, 6, 1.1, 8, 20) 30,210.4 30,210.5 30,243.8 106.7 1.1 0.1
(200, 6, 1.3, 4, 20) 18,552.3 18,552.5 18,758.7 158.1 1.2 1.1
(200, 6, 1.3, 8, 20) 29,684.0 29,684.1 29,895.7 126.3 1.0 0.7
(200, 6, 1.8, 4, 20) 16,510.3 16,510.6 16,866.8 142.4 1.3 2.1
(200, 6, 1.8, 8, 20) 27,616.1 27,616.2 27,993.9 129.2 1.2 1.3

(200, 8, 1.1, 4, 30) 16,700.2 16,700.2 16,740.2 385.6 2.6 0.2
(200, 8, 1.1, 8, 30) 26,311.3 26,311.3 26,351.3 309.8 2.5 0.2
(200, 8, 1.3, 4, 30) 16,293.7 16,293.7 16,458.4 390.9 2.8 1.0
(200, 8, 1.3, 8, 30) 25,897.2 25,897.2 26,064.5 397.5 2.7 0.6
(200, 8, 1.8, 4, 30) 14,586.0 14,586.5 14,969.3 653.4 3.5 2.6
(200, 8, 1.8, 8, 30) 24,167.9 24,168.1 24,575.2 418.8 2.6 1.7

Table 6: Upper bounds and computation times for the RMF instances with τ = 200 periods

28

Upper bounds CPU seconds ∆ (%)

(τ,N, α, κ, nmu) V AF V AFR V DLP AF AFR V DLP − V AFR

(600, 4, 1.1, 4, 10) 31,180.1 31,180.2 31,234.9 173.2 1.7 0.2
(600, 4, 1.1, 8, 10) 50,037.8 50,037.9 50,092.6 151.7 1.7 0.1
(600, 4, 1.3, 4, 10) 28,945.3 28,945.5 29,174.4 160.2 1.9 0.8
(600, 4, 1.3, 8, 10) 47,786.6 47,786.7 48,032.1 131.6 1.7 0.5
(600, 4, 1.8, 4, 10) 25,430.4 25,430.5 25,671.8 143.7 1.6 0.9
(600, 4, 1.8, 8, 10) 44,270.5 44,270.6 44,529.5 117.3 1.6 0.6

(600, 5, 1.1, 4, 15) 31,839.9 31,840.0 31,905.8 1,406.4 2.9 0.2
(600, 5, 1.1, 8, 15) 50,806.8 50,806.9 50,872.7 1,056.3 2.8 0.1
(600, 5, 1.3, 4, 15) 30,581.0 30,581.1 30,740.3 355.6 3.6 0.5
(600, 5, 1.3, 8, 15) 49,509.8 49,509.9 49,688.4 341.6 3.7 0.4
(600, 5, 1.8, 4, 15) 27,212.9 27,213.1 27,533.2 379.1 4.1 1.2
(600, 5, 1.8, 8, 15) 46,112.9 46,113.1 46,456.1 296.4 3.1 0.7

(600, 6, 1.1, 4, 20) 26,029.7 26,029.8 26,104.6 5,247.5 4.7 0.3
(600, 6, 1.1, 8, 20) 41,473.6 41,473.7 41,549.8 5,506.6 6.6 0.2
(600, 6, 1.3, 4, 20) 24,365.2 24,365.3 24,664.8 1,002.7 7.3 1.2
(600, 6, 1.3, 8, 20) 39,779.7 39,779.8 40,101.4 680.5 5.0 0.8
(600, 6, 1.8, 4, 20) 21,452.0 21,452.1 21,830.7 962.2 7.4 1.7
(600, 6, 1.8, 8, 20) 36,854.5 36,854.6 37,261.9 749.4 6.6 1.1

(600, 8, 1.1, 4, 30) - 23,344.6 23,446.7 - 17.7 0.4
(600, 8, 1.1, 8, 30) - 37,039.5 37,150.1 - 11.7 0.3
(600, 8, 1.3, 4, 30) - 21,876.2 22,238.5 - 22.2 1.6
(600, 8, 1.3, 8, 30) - 35,551.6 35,935.0 - 17.4 1.1
(600, 8, 1.8, 4, 30) - 19,350.3 19,807.2 - 23.2 2.3
(600, 8, 1.8, 8, 30) - 33,008.0 33,503.7 - 18.8 1.5

Table 7: Upper bounds and computation times for the RMF instances with τ = 600 periods

29

Upper bounds CPU seconds ∆ (%)

(τ,O, α, κ, nmu) V AF V AFR V DLP AF AFR V DLP − V AF V AFR − V AF

(200, 4, 1.7, 4, 40) 20,679.1 20,780.4 20,801.6 126.9 1.9 0.6 0.5
(200, 4, 1.7, 8, 40) 33,718.8 33,815.4 33,841.6 108.9 1.9 0.4 0.3
(200, 4, 1.9, 4, 40) 19,400.3 19,525.6 19,554.0 99.3 1.8 0.8 0.6
(200, 4, 1.9, 8, 40) 32,433.9 32,560.5 32,593.9 89.7 1.8 0.5 0.4
(200, 4, 2.3, 4, 40) 17,365.7 17,525.5 17,560.7 93.4 1.7 1.1 0.9
(200, 4, 2.3, 8, 40) 30,391.1 30,560.4 30,600.7 93.8 1.9 0.7 0.6

(200, 5, 1.8, 4, 60) 20,667.8 20,789.1 20,820.9 132.0 6.5 0.7 0.6
(200, 5, 1.8, 8, 60) 33,874.7 33,982.0 34,032.7 137.6 6.5 0.5 0.3
(200, 5, 2.0, 4, 60) 19,150.1 19,308.1 19,343.0 135.2 5.2 1.0 0.8
(200, 5, 2.0, 8, 60) 32,342.6 32,498.8 32,554.7 130.0 4.5 0.7 0.5
(200, 5, 2.4, 4, 60) 16,980.2 17,171.0 17,210.6 153.2 3.9 1.3 1.1
(200, 5, 2.4, 8, 60) 30,155.6 30,360.2 30,422.4 147.1 3.4 0.9 0.7

(200, 6, 1.8, 4, 84) 22,204.1 22,266.0 22,274.7 302.2 18.3 0.3 0.3
(200, 6, 1.8, 8, 84) 35,433.8 35,498.5 35,507.0 321.5 17.7 0.2 0.2
(200, 6, 2.0, 4, 84) 21,206.8 21,412.0 21,450.2 321.8 18.5 1.1 1.0
(200, 6, 2.0, 8, 84) 34,421.3 34,637.1 34,682.3 341.8 17.5 0.8 0.6
(200, 6, 2.3, 4, 84) 19,031.6 19,295.8 19,349.4 323.0 14.3 1.6 1.4
(200, 6, 2.3, 8, 84) 32,225.4 32,519.8 32,581.4 315.7 13.0 1.1 0.9

(200, 8, 1.7, 4, 144) 19,098.2 19,193.6 19,230.6 593.8 88.9 0.7 0.5
(200, 8, 1.7, 8, 144) 30,853.5 30,966.8 31,006.4 593.8 83.9 0.5 0.4
(200, 8, 1.8, 4, 144) 18,173.3 18,300.7 18,351.8 628.7 83.9 1.0 0.7
(200, 8, 1.8, 8, 144) 29,918.1 30,070.4 30,127.5 618.3 78.5 0.7 0.5
(200, 8, 2.1, 4, 144) 16,170.1 16,336.8 16,406.4 711.2 68.7 1.4 1.0
(200, 8, 2.1, 8, 144) 27,837.3 28,056.1 28,143.1 660.1 66.1 1.1 0.8

Table 8: Upper bounds and computation times for the RMM instances with τ = 200 periods

30

Upper bounds CPU seconds ∆ (%)

(τ,O, α, κ, nmu) V AF V AFR V DLP AF AFR V DLP − V AF V AFR − V AF

(600, 4, 1.8, 4, 40) 30,152.3 30,220.7 30,302.2 1,078.5 12.8 0.5 0.2
(600, 4, 1.8, 8, 40) 49,808.4 49,893.6 49,979.9 668.9 11.8 0.3 0.2
(600, 4, 2.1, 4, 40) 28,867.6 28,973.3 29,046.5 858.4 10.0 0.6 0.4
(600, 4, 2.1, 8, 40) 48,531.7 48,647.9 48,724.2 727.8 10.4 0.4 0.2
(600, 4, 2.6, 4, 40) 26,239.2 26,385.8 26,451.1 683.0 10.9 0.8 0.6
(600, 4, 2.6, 8, 40) 45,894.8 46,060.4 46,128.9 732.3 10.4 0.5 0.4

(600, 5, 2.0, 4, 60) 31,102.2 31,219.7 31,266.9 886.1 65.3 0.5 0.4
(600, 5, 2.0, 8, 60) 51,028.4 51,143.0 51,206.5 873.4 49.1 0.3 0.2
(600, 5, 2.3, 4, 60) 28,905.7 29,057.7 29,115.1 881.6 43.2 0.7 0.5
(600, 5, 2.3, 8, 60) 48,822.4 48,978.9 49,054.7 891.8 41.4 0.5 0.3
(600, 5, 2.8, 4, 60) 25,695.2 25,875.5 25,944.7 1070.0 33.8 1.0 0.7
(600, 5, 2.8, 8, 60) 45,596.9 45,796.7 45,884.3 997.5 37.6 0.6 0.4

(600, 6, 1.9, 4, 84) 26,787.4 26,826.2 26,837.7 2,341.8 155.1 0.2 0.1
(600, 6, 1.9, 8, 84) 42,762.3 42,803.8 42,815.6 2,377.7 141.2 0.1 0.1
(600, 6, 2.2, 4, 84) 25,536.2 25,733.9 25,799.7 2,548.1 119.1 1.0 0.8
(600, 6, 2.2, 8, 84) 41,492.0 41,703.4 41,777.4 2,137.6 139.1 0.7 0.5
(600, 6, 2.6, 4, 84) 22,852.2 23,103.6 23,187.8 2,288.6 121.2 1.4 1.1
(600, 6, 2.6, 8, 84) 38,788.4 39,070.4 39,165.5 2,155.2 115.2 1.0 0.7

Table 9: Upper bounds and computation times for the RMM instances with τ = 600 periods

AFR with Odd-Cycle Cuts AFR vs. OC

(τ,O, α, κ, nmu) V OC CPU seconds #Iter. Ratio of gaps Ratio of CPU sec.

(200, 4, 1.7, 4, 40) 20,733.2 4.1 3 0.47 0.03
(200, 4, 1.7, 8, 40) 33,773.2 3.7 3 0.44 0.03
(200, 4, 1.9, 4, 40) 19,463.0 5.8 6 0.50 0.06
(200, 4, 1.9, 8, 40) 32,502.5 4.0 3 0.46 0.04
(200, 4, 2.3, 4, 40) 17,442.3 4.0 4 0.52 0.04
(200, 4, 2.3, 8, 40) 30,481.8 3.9 3 0.46 0.04

(200, 5, 1.8, 4, 60) 20,763.5 16.9 5 0.21 0.13
(200, 5, 1.8, 8, 60) 33,975.9 16.7 5 0.06 0.12
(200, 5, 2.0, 4, 60) 19,265.6 14.9 5 0.27 0.11
(200, 5, 2.0, 8, 60) 32,478.0 15.1 5 0.13 0.12
(200, 5, 2.4, 4, 60) 17,111.5 12.3 4 0.31 0.08
(200, 5, 2.4, 8, 60) 30,323.9 14.9 5 0.18 0.10

(200, 6, 1.8, 4, 84) 22,252.0 85.2 5 0.23 0.28
(200, 6, 1.8, 8, 84) 35,484.5 86.6 5 0.22 0.27
(200, 6, 2.0, 4, 84) 21,345.6 99.0 6 0.32 0.31
(200, 6, 2.0, 8, 84) 34,575.3 85.9 5 0.29 0.25
(200, 6, 2.3, 4, 84) 19,203.3 94.9 6 0.35 0.29
(200, 6, 2.3, 8, 84) 32,428.9 80.2 5 0.31 0.25

(200, 8, 1.7, 4, 144) 19,151.0 391.4 8 0.45 0.66
(200, 8, 1.7, 8, 144) 30,914.7 451.7 9 0.46 0.76
(200, 8, 1.8, 4, 144) 18,246.7 442.5 9 0.42 0.70
(200, 8, 1.8, 8, 144) 29,998.0 351.6 7 0.48 0.57
(200, 8, 2.1, 4, 144) 16,266.7 396.6 8 0.42 0.56
(200, 8, 2.1, 8, 144) 27,959.8 395.7 8 0.44 0.60

Table 10: Improved upper and computation times for the RMM instances with τ = 200 periods
31

AFR with Odd-Cycle Cuts AFR vs. OC

(τ,O, α, κ, nmu) V OC CPU seconds #Iter. Ratio of gaps Ratio of CPU sec.

(600, 4, 1.8, 4, 40) 30,193.6 22.7 5 0.40 0.02
(600, 4, 1.8, 8, 40) 49,865.7 19.6 3 0.33 0.03
(600, 4, 2.1, 4, 40) 28,929.9 27.6 6 0.41 0.03
(600, 4, 2.1, 8, 40) 48,601.2 23.1 4 0.40 0.03
(600, 4, 2.6, 4, 40) 26,313.9 29.7 7 0.49 0.04
(600, 4, 2.6, 8, 40) 45,978.2 25.3 4 0.50 0.03

(600, 5, 2.0, 4, 60) 31,188.0 78.8 5 0.27 0.09
(600, 5, 2.0, 8, 60) 51,127.0 83.9 5 0.14 0.10
(600, 5, 2.3, 4, 60) 29,011.9 77.9 5 0.30 0.09
(600, 5, 2.3, 8, 60) 48,947.8 77.2 5 0.20 0.09
(600, 5, 2.8, 4, 60) 25,819.5 86.1 6 0.31 0.08
(600, 5, 2.8, 8, 60) 45,748.3 79.3 5 0.24 0.08

(600, 6, 1.9, 4, 84) 26,813.4 367.6 6 0.33 0.16
(600, 6, 1.9, 8, 84) 42,790.1 362.0 6 0.33 0.15
(600, 6, 2.2, 4, 84) 25,670.5 404.2 6 0.32 0.16
(600, 6, 2.2, 8, 84) 41,639.3 412.8 6 0.30 0.19
(600, 6, 2.6, 4, 84) 23,021.7 413.0 7 0.33 0.18
(600, 6, 2.6, 8, 84) 38,981.3 349.5 6 0.32 0.16

Table 11: Improved upper bounds and computation times for the RMM instances with τ = 600
periods

32

