
Two-Phase Branch-and-Cut for the Mixed Capacitated General Routing
Problem

Claudia Bodea, Stefan Irnicha, Demetrio Laganàb, Francesca Vocaturoc

aChair of Logistics Management, Gutenberg School of Management and Economics,
Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

bDepartment of Mechanical, Energy and Management Engineering, University of Calabria,
87036 Arcavacata di Rende (CS), Italy.

cDepartment of Economics, Statistics and Finance, University of Calabria,
87036 Arcavacata di Rende (CS), Italy.

Abstract

The Mixed Capacitated General Routing Problem (MCGRP) is defined over a mixed graph, for which
some vertices must be visited and some links must be traversed at least once. The problem consists of
determining a set of least-cost vehicle routes that satisfy this requirement and respect the vehicle capacity.
Few papers have been devoted to the MCGRP, in spite of interesting real-world applications, prevalent in
school bus routing, mail delivery, and waste collection. This paper presents a new mathematical model for
the MCGRP based on two-index variables. The approach proposed for the solution is a two-phase branch-
and-cut algorithm, which uses an aggregate formulation to develop an effective lower bounding procedure.
This procedure also provides strong valid inequalities for the two-index model. Extensive computational
experiments over benchmark instances are presented.
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1. Introduction

This paper presents a new exact algorithm for the Mixed Capacitated General Routing Problem (MCGRP)
based on branch-and-cut (B&C). The MCGRP generalizes the single-vehicle and multiple-vehicle General
Routing Problems (GRPs) and the Capacitated Arc Routing Problem (CARP).

GRPs constitute a class of vehicle-routing problems, in which a single vehicle or a fleet of vehicles must
serve both a subset of links and a subset of vertices of a given graph. GRPs have interesting practical
applications, prevalent in waste collection, postal delivery and school bus routing. For instance, in an urban
waste collection plan, the collection along a street may be modeled by means of links that must be traversed,
whereas the collection occurring in specific points (e.g., hospitals or multi-storey apartment blocks) may be
modeled by means of vertices that must be visited. Similarly, in the postal delivery services, depending on
their demand and dispersion, customers may be modeled as individual vertices or groups of customers as
street segments (edges or arcs). Finally, in school bus routing, several children living on the same street
may be picked up either by stopping close to each ones home, implying a service on the respective street
segments, or groups of them may walk from their home to a specific bus stop imposing just one stop.

The single-vehicle GRP was introduced by Orloff (1974) and shown to be NP -hard by Lenstra and
Rinnooy Kan (1976). Most works refer to the uncapacitated case. Specifically, Letchford (1996, 1999) and
Corberán and Sanchis (1998) proposed valid inequalities for the GRP polyhedron. For the same problem,
Corberán et al. (2001) described a cutting-plane algorithm based on several classes of facet-inducing inequal-
ities. Reinelt and Theis (2008) studied the 0/1-polytope associated with the uncapacitated GRP defined
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over a connected and undirected graph. The contribution of Corberán et al. (2003) for the GRP defined on
a mixed graph was a new integer programming formulation and a partial description of the related poly-
hedron. They reported remarkable computational results obtained by a cutting-plane algorithm. Corberán
et al. (2005) considerably improved this algorithm by defining a new family of facet-defining inequalities
and new separation procedures. Blais and Laporte (2003) proposed a transformation in order to solve the
uncapacitated GRP defined over directed, undirected and mixed graphs. The GRP is transformed into an
equivalent traveling salesman problem or rural postman problem and solved by means of available exact
algorithms. The approach does not work equally well in all cases; it works best on directed problems and on
mixed problems, in which the number of edges is relatively small. The uncapacitated GRP was also mod-
eled by resorting to windy graphs. Corberán et al. (2007, 2008) presented a strong windy general routing
polyhedron description and designed a powerful B&C algorithm able to solve a large number of benchmark
instances.

The basic multiple-vehicle routing problem is the Capacitated Vehicle Routing Problem (CVRP, see Toth
and Vigo, 2002, 2014), in which the demand occurs only at vertices. On the contrary, arc routing problems
(ARPs, see Dror, 2000; Corberán and Laporte, 2014) are GRPs in which no vertices have to be serviced.
While CVRP are defined on complete graphs, ARPs share with GRPs that they are defined on incomplete
(often sparse) graphs, which are either undirected, directed, mixed, or windy.

Important contributions for the mixed CARP have been given by Belenguer et al. (2006). They presented
a linear formulation, developed a lower bounding procedure based on valid inequalities, and described some
upper bounds obtained through three constructive heuristics and a memetic algorithm. Gouveia et al. (2010)
described a compact flow-based model for the mixed CARP and derived an aggregate lower bounding model.
Moreover, they introduced a set of valid inequalities for the linear programming relaxation of the integer
model and presented promising computational results.

Note that GRPs can be transformed into CARPs by adding loops, i.e., edges {i, i} or arcs (i, i) to the
underlying graph whenever in the GRP instance a vertex i has to be serviced. The edge or arc receives the
same demand as the vertex that it substitutes. In this sense, then the mixed CARP and the MCGRP can be
considered identical, at least if the mathematical formulation and solution approach is capable of handling
loops. To the best of our knowledge, this equivalence has not yet been utilized.

The problem studied and solved in the paper at hand is the MCGRP. It may cause confusion that
sometimes the MCGRP is referred to as Capacitated General Routing Problem on mixed graphs(CGRP or
CGRP-m) and Node, Edge and Arc Routing Problem (NEARP). There exist lower bounding procedures
and tailored exact algorithms for its solution (Bach et al., 2013; Bach, 2014; Bosco et al., 2013; Gaze, 2013;
Gaze et al., 2013). Other studies present non-exact approaches tackling the problem. Particularly, Pandit
and Muralidharan (1995) described a heuristic procedure which starts with a sub-graph obtained from the
original one by considering only the links that must be traversed and the vertices that must be visited.
Since the sub-graph is generally disconnected, the connection is reached by adding to it the shortest paths
linking two vertices of disjoint connected components. The sub-graph is then converted into an Eulerian
graph which admits a giant tour. A feasible solution is obtained by cutting the giant tour into smaller tours
satisfying the capacity constraints. Gutiérrez et al. (2002) introduced an alternative procedure, based on the
partition-first-route-next paradigm, improving previous results. Prins and Bouchenoua (2005) described a
memetic algorithm for the MCGRP. Bosco et al. (2014) introduced a matheuristic algorithm for the MCGRP
where the exact algorithm of Bosco et al. (2013) is incorporated in some steps of a neighborhood search.
Hasle et al. (2012) carried out a computational study on three large scale MCGRP datasets. Finally, an
extension of the MCGRP was tackled by Bräysy et al. (2011).

We propose an alternative exact approach to solve the MCGRP which combines beneficial ingredients
from existing procedures in an effective way. The novelty of the approach substantially comprises two
aspects. First, it is based on a new MCGRP formulation which uses two-index variables also to model
the link flow. Second, it takes advantage from all results of a lower bounding procedure. This procedure
produces, besides excellent lower bounds, valid inequalities that are used to initialize a B&C scheme.

The remainder of the paper is organized as follows. In Section 2, a formal definition and the new two-
index formulation of the MCGRP are given. In Section 3.1, we present the lower bounding formulation used
in the exact approach illustrated in Section 3 in order to determine lower bounds and general cuts. Section 4
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presents computational results. Final conclusions are drawn in Section 5.

2. Problem Description and Formulation

A formal definition of the MCGRP relies on a mixed graph G = (V,E,A) with vertices set V , edges set E
and arcs set A. Vertex 1 ∈ V represents the depot, at which a setK of homogeneous vehicles with capacity Q
is based. The remaining vertices form the set C = V \{1}. Every element b ∈ V ∪E∪A has a demand qb ≥ 0,
those elements with strictly positive demand are required, meaning that they must be serviced exactly once.
Required vertices are in VR = {v ∈ C : qv > 0}, required edges are in ER = {e ∈ E : qe > 0}, and required
arcs are in AR = {a ∈ A : qa > 0}. In order to ensure feasibility, we assume that the demand qr of each
required element r does not exceed Q.

For notational ease, we speak of links when we want to refer to both edges and arcs in E ∪ A. Any
link can be deadheaded, i.e., traversed without being serviced, any number of times. The traversal of a link
` ∈ E ∪ A results in a non-negative traversal cost c`. In the following, required elements are referred to as
r ∈ VR ∪ ER ∪AR when distinction is not essential.

The MCGRP is the problem of finding minimum-cost vehicle tours, each starting and ending at the
depot, that together serve all required elements exactly once, and respect the vehicle capacity.

In order to state the MCGRP models, we introduce further notation used throughout the paper: Let
S ⊆ V be a subset of vertices. We denote by δ+(S) the set of arcs leaving S, by δ−(S) the set of arcs entering
S, by δ+

R(S) the set of required arcs leaving S, by δ−R(S) the set of required arcs entering S, by δ(S) the set
of edges with exactly one endpoint in S, and by δR(S) the set of required edges with exactly one endpoint
in S. The associated link sets are δ∗(S) = δ(S) ∪ δ+(S) ∪ δ−(S) and δ∗R(S) = δR(S) ∪ δ+

R(S) ∪ δ−R(S). For
the sake of brevity, singleton sets S = {i} in the previous notation can be replaced by i so that, e.g., δ(i)
stands for δ({i}). Finally, we denote by VR(S) the set of required vertices belonging to S, by AR(S) the set
of required arcs with both endpoints in S, and by ER(S) the set of required edges with both endpoints in
S.

We propose a new mathematical model based on variables with two indices, one for the respective vehicles
k ∈ K and the other for referring to an element of V ∪E ∪A. Let xkr be a binary variable equal to 1 if and
only if the required element r ∈ VR ∪ ER ∪ AR is serviced by vehicle k. For a link ` ∈ E ∪ A and a vehicle
k ∈ K, let yk` be a non-negative variable representing the number of deadheadings through ` by vehicle k.
For a subset of required links L ⊆ AR∪ER, we define xk(L) =

∑
`∈L x

k
` , and for a subset of links L ⊆ A∪E,

we define yk(L) =
∑
`∈L y

k
` .

The two-index formulation for the MCGRP reads as follows:

λ∗ = min
∑
k∈K

∑
`∈E∪A

c`y
k
`

(
+

∑
`∈ER∪AR

c`

)
(1a)

∑
k∈K

xkr = 1, ∀ r ∈ VR ∪ ER ∪AR (1b)

∑
r∈VR∪ER∪AR

qrx
k
r ≤ Q, ∀ k ∈ K (1c)

xk(δ∗R(i)) + yk(δ∗(i)) ≡ even, ∀ i ∈ V, k ∈ K (1d)

xk(δ−R(S)) + yk(δ−(S))− xk(δ+
R(S))− yk(δ+(S))− xk(δR(S))− yk(δ(S)) ≤ 0, ∀ S ⊆ V, k ∈ K (1e)

xk(δ∗R(S)) + yk(δ∗(S)) ≥ 2xkr , ∀ r ∈ VR(S) ∪ ER(S) ∪AR(S), S ⊆ C, k ∈ K (1f)

xkr ∈ {0, 1}, ∀ r ∈ VR ∪ ER ∪AR, k ∈ K (1g)

yk` ∈ Z+, ∀ ` ∈ E ∪A, k ∈ K (1h)
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The objective (1a) minimizes the total traversal cost. Note that the service costs (in parenthesis) are constant
and therefore not relevant for the routing decisions. Constraints (1b) state that each required element must
be serviced. Constraints (1c) guarantee the vehicle capacity is never exceeded. Parity constraints (1d)
stipulate that each route induces a Eulerian subgraph. This graph must also be balanced, which is formulated
with the so-called balanced set conditions (1e). Constraints (1f) ensure that each route is connected. In
particular, they impose that for each subset of vertices (excluding the depot) containing a link or vertex
serviced by a vehicle, at least two links incident to the subset must be traversed; they also eliminate
subtours that do not include the depot. Finally, constraints (1g) and (1h) define the domains of the service
and deadheading variables.

2.1. Parity Constraints
The parity constraints (1d) are non-linear, and the only known way to completely replace them by linear

constraints is the introduction of additional integer variables di ∈ Z+, one for each vertex i ∈ V . Setting
the right-hand side in (1d) to = 2di established the task.

However, there exist linear inequalities that partially cover this requirement:

xk(δ∗R(S)\H) + yk(δ∗(S)) ≥ xk(H)− |H|+ 1, ∀ k ∈ K, S ⊆ C, H ⊆ δ∗R(S), |H| odd. (2)

These so-called blossom inequalities are an extension of constraints proposed by Belenguer and Benavent
(1998) for the CARP. Their validity can be shown as follows: If all required links in H are serviced by the
k-th vehicle, i.e, xk(H) = |H|, then, given that |H| is odd, the k-th vehicle must cross δ∗(S) at least once
more. Hence, xk(δ∗R(S)\H) + yk(δ∗(S)) must be at least 1. Otherwise, if xk(H) < |H|, the inequality is
trivial.

2.2. Breaking Symmetry
The formulation just described yields a large number of equivalent solutions. In fact, since all vehicles

have the same capacity, for a given solution any permutation of the vehicle indices induces another equivalent
solution. In order to avoid equivalent solutions, we introduce additional constraints. Let η be the number
of required elements, i.e., η = |VR ∪ ER ∪ AR|, and let K = {1, 2, . . . ,m}. Moreover, let rt be the t-
th required element (t = 1, . . . , η). Any rule can be used to order the required elements. Let s(k) be
the smallest index of the required elements serviced by vehicle k ∈ K. In order to impose the condition
s(1) ≤ s(2) ≤ s(3) ≤ . . . ≤ s(m), the following set of symmetry breaking constraints are valid:

x1
r1 = 1 (3a)

xkrt ≤
∑

j=1,...,t−1

xk−1
rj , ∀ t = 2, . . . , η, k = 2, . . . ,m (3b)

xkrt = 0, ∀ t = 1, . . . ,m− 1, k = t+ 1, . . . ,m. (3c)

Constraint (3a) states that the first vehicle must serve the first required element. Constraints (3b) stipulate
that if the t-th element rt (t ≥ 2) is serviced by the k-th vehicle (k ≥ 2), then at least one required element
associated with an index preceding t must be serviced by the vehicle k − 1. Finally, constraints (3c) state
that element rt (t ≤ m− 1) cannot be serviced by any of the vehicles k = t+ 1, . . . ,m.

These symmetry breaking constraints seem effective for the MCGRP. Other inequalities can be adapted
to the problem from the literature (e.g., see Adulyasak et al., 2014).

3. Solution Approach

We propose a B&C algorithm that works in two phases. In the first phase, an aggregate so-called one-
index formulation that comprises a relaxation of formulation (1) is solved. The linear relaxation of the
one-index formulation contains an exponential number of constraints, which have to be identified and added
dynamically in a cutting-plane fashion. It typically provides an excellent lower bound that can be further
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strengthened by adding valid inequalities. Compared to formulation (1), solving the one-index formulation
needs only a little fraction of computation time.

In the second phase, the two-index formulation (1) is initialized with the inequalities from the one-index
formulation. Since also some of the constraints of the formulation (1) are exponential families of inequalities,
the B&C algorithm (see Wolsey, 1998, for an introduction) then adds violated of these and other inequalities.
If the solution of the linear problem is not integer or, alternatively, there exists at least one vertex with
an odd degree, then the branching decision splits the problem into two complementary subproblems, and
the same procedure is applied to each of them recursively. If a subproblem is infeasible or proven to be
unprofitable for the search of optimal solutions, it is discarded. Our B&C algorithm also uses an external
heuristic procedure to obtain an initial upper bound.

We will start with a more detailed description of the first phase for lower bounding, outline the heuristic
that provides upper bounds and feasible solutions, and describe and summarize the major components of
the B&C algorithm.

3.1. Lower Bounding and One-Index Formulation
Since the computational effort for solving the MCGRP with model (1) exactly is huge (sometimes pro-

hibitive) it is fundamental to produce tight bounds very fast. In order to obtain good lower bounds, we
solve a one-index formulation very similar to the model presented in Belenguer et al. (2006). It solely uses
a vector y of aggregated deadheading variables

y` =
∑
k∈K

yk` ∈ Z+, (4)

one for each link ` ∈ E ∪A.
The major difference to the formulation of Belenguer et al. (2006) is that for the MCGRP the coefficients

need to be defined differently: Recall that in the definition of q(S), the demand on vertices is taken into
account. Specifically, let q(S) be the total demand of the required elements in ER(S)∪AR(S)∪δ∗R(S)∪VR(S).
Thus, for any subset S of vertices, let K(S) be the minimum number of vehicles to serve ER(S) ∪AR(S) ∪
δ∗R(S)∪VR(S). This number can be approximated by dq(S)/Qe and computed exactly solving a bin-packing
problem. Moreover, let b(S) = |δ−R(S)| − |δ+

R(S)| − |δR(S)| be the unbalance of S. For any link subset
L ⊆ E ∪A, we define y(L) =

∑
`∈L y`. The linear relaxation of one-index formulation reads as follows:

λ = min c>y

(
+

∑
`∈ER∪AR

c`

)
(5a)

y(δ∗(S)) ≥ 1, ∀ S ⊆ C, |δ∗R(S)| odd (5b)

y(δ∗(S)) ≥ 2K(S)− |δ∗R(S)|, ∀ S ⊆ C (5c)

y(δ(S)) + y(δ+(S))− y(δ−(S)) ≥ b(S), ∀ S ⊆ V (5d)

y` ≥ 0, ∀ ` ∈ E ∪A. (5e)

The objective (5a) provides a lower bound λ for λ∗. The odd-cut inequalities (5b) require that at least one
link is deadheaded whenever an odd number of required links in δ∗(S) occurs. The capacity inequalities (5c)
require at least 2K(S) traversals (services and deadheadings) along some links of δ∗(S). Balance inequal-
ities (5d) require at least |δ−R(S)| − |δ+

R(S)| − |δR(S)| deadheadings if the difference between incoming and
outgoing arcs cannot be compensated by edges in the cutset.

Note that we might solve (5a)-(5e) as an integer program by replacing y` ≥ 0 with y` ∈ Z+. However,
these integer “solutions” are solutions to a relaxation only. It can happen that there exists no feasible integer
solution to the disaggregated model (1) compatible with (4).

At each iteration of a cutting-plane algorithm, we solve a linear program which contains the non-
negativity constraints, a subset of (5b)-(5d) constraints, and disjoint-path inequalities (Belenguer et al.,
2006, see). Separation routines are identical to those described in next Section 3.3 and seek for a set of valid
inequalities violated by the current solution.
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3.2. Upper Bounding and Location-based Heuristic
An initial feasible solution for the MCGRP is built on the basis of a partition-first-route-next heuris-

tic. Herein, a feasible partition of the required elements is found by solving a Capacitated Concentrator
Location-based Problem (CCLP), in which m required elements are selected as concentrator location, and
the remaining required elements are grouped around the concentrators. Several location-based heuristics
have been proposed in the literature (e.g., Bramel and Simchi-Levi, 1995). Recent discretized formulations
for different versions of the CCLP have been provided by Gouveia and Saldanha-da Gama (2006) and Correia
et al. (2010).

The following constraints must be fulfilled: (i) a required element is assigned to itself if it is a concen-
trator; (ii) each required element is assigned to only one concentrator; (iii) each required element may be
assigned to another required element if and only if the latter is a concentrator; (iv) the overall demand of
the required elements assigned to a concentrator cannot exceed its capacity, that is the vehicle capacity; (v)
the number of required elements selected as concentrators is equal to the number of vehicles. The goal is
the minimization of the total assignment cost that intended to approximate the routing costs. The cost for
assigning a required element to a concentrator is equal to the shortest-path distance between the potential
concentrator and the required element. Since the cost matrix associated with G is generally not symmetric,
all the feasible shortest paths starting from a required element and ending to any potential concentrator,
and vice versa, must be evaluated in order to select the one having the minimum distance. The solution
of the CCLP gives a feasible partition of the required elements. An optimal routing associated with each
partition is defined by solving an uncapacitated GRP on a mixed graph. We use the same B&C algorithm
developed in this paper (second phase) to exactly solve the problem associated with each partition: We have
to adjust the definition of the required elements and set m = 1.

The weakness of the partition-first-route-next approach lies in the fact that the objective function of the
CCLP only approximates the routing costs. To mitigate this effect, an iterative scheme is designed: At each
iteration, a set of diversification constraints is added dynamically to the CCLP stipulating the selection of
a different concentrator set. More precisely, let C be the set of concentrators. Then, a feasible MCGRP
solution, whose cost is denoted by λ(C), remains associated with C. The gap of λ(C) with respect to λ is
computed as λ(C)−λ

λ . Such a gap, named GAP (C), is used to evaluate set C. If GAP (C) is more than a
fixed GAP , then a tabu constraint is added to the mathematical program used to solve the CCLP. The tabu
constraint is implemented by imposing that all the binary variables, set to 1 only for the required elements
belonging to C, flip their value from 1 to 0. If GAP (C) is less than or equal to GAP , then a diversification
constraint is added to the mathematical program. The diversification constraint ensures that at least one of
the binary variables previously defined flips its value from 1 to 0 or from 0 to 1. The iterative diversification
process ends whenever the model becomes infeasible due to the added tabu and diversification constraints,
or a given number of iterations is reached. We set GAP = 0.05 in our computational experiments. Finally,
a last attempt to obtain a feasible MCGRP solution of minimum cost is made by solving a set partitioning
model, in which the involved routes are all the different routes associated with the feasible MCGRP solutions
found during the iterative algorithm.

3.3. Relaxed Constraints, Valid Inequalities and Separation Routines
Separations routines are used in both the B&C algorithm for solving the MCGRP and the one-index

formulation (5).
Specifically, connectivity constraints (1f) can be separated by adapting the exact and heuristic procedures

used in Bosco et al. (2013). The separation of odd-cut inequalities (5b) is straightforward and is already
described in Padberg and Rao (1982). Arcs are handled as edges and the polynomial odd minimum cut
algorithm is applied. To separate capacity inequalities (5c) two methods are known from the literature. A
heuristic method was presented by Belenguer and Benavent (2003) and an exact method by Ahr (2004).
Both methods are used for the one-index formulation (5), while in the second phase capacity inequalities (5c)
are identified solely using the heuristic method. Belenguer and Benavent (2003) also presented disjoint-path
inequalities as additional valid inequalities. Separation routines for these inequalities are adapted from their
paper.
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The separation of balance inequalities is also known from the literature (e.g. Benavent et al., 2000),
but more intricate to implement for the MCGRP. We will give a short description of the procedure. The
balanced set conditions (1e) can be rewritten as

yk(δ(S)) + xk(δR(S)) + yk(δ+(S)) + xk(δ+
R(S)) − yk(δ−(S))− xk(δ−R(S)) ≥ 0, ∀S ⊆ V, k ∈ K

and in (5) as

y(δ(S)) + |δR(S)| + y(δ+(S)) + |δ+
R(S)| − y(δ−(S))− |δ−R(S)| ≥ 0, ∀S ⊆ V.

In order to separate violated inequalities, the algorithm of Nobert and Picard (1996) can be adapted. Such
a procedure is also described by Benavent et al. (2000) for an uncapacitated problem, in which all links are
required. We define, for a solution (x̂k` , ŷ

k
` ) to (1) concerning the k-th vehicle, or a solution (ŷ`) to (5)

wk` =

{
ŷk` + x̂k` , ` ∈ ER ∪AR
ŷk` , ` ∈ (E ∪A) \ (ER ∪AR)

and w` =

{
ŷ` + 1, ` ∈ ER ∪AR
ŷ`, ` ∈ (E ∪A) \ (ER ∪AR),

respectively. For any link subset L, we define w(L) =
∑
`∈L w

k
` (alternatively, w(L) =

∑
`∈L w`). Then, for

any vertex subset S, we can determine f(S) = w(δ(S)) + w(δ+(S))− w(δ−(S)). A set S for which f(S) is
minimum is the most unbalanced set, and f(S) < 0 identifies a violated balanced set condition. The point
is that the algorithm of Nobert and Picard (1996) finds such a set S by solving a maximum-flow problem
over another support graph with two extra vertices, even if some of the values wk` and w` are negative.

3.4. Initial Relaxation and Cut Pool Management
The initial relaxation of the MCGRP, at the root node of the B&C tree, is a linear program which

includes the following components: the objective function (1a), all constraints (1b)-(1c), the balanced set
conditions (1e) associated with the unbalanced vertices i, for which |δ(i)| < |δ−(i)|−|δ+(i)| holds. Moreover,
it includes the connectivity constraints (1f) associated with the R-sets, i.e., the connected components of
the graph induced by all required elements.

The initial relaxation also contains inequalities (2) associated with each vertex i for which |δ∗R(i)| is odd
fixing H = δ∗R(i), symmetry breaking constraints (3a)-(3c), and the valid inequalities generated by the lower
bounding procedure.

An iteration of the B&C algorithm involves the selection of a subproblem from the list of active subprob-
lems and the addition of violated constraints and valid inequalities to this subproblem. The set containing
violated constraints and valid inequalities is called cut pool. In our implementation, the cut pool is cleaned
every 50 iterations by eliminating non-binding inequalities, i.e., those with slack greater than ε or dual
variables less than ε, where ε = 10−6 is the tolerance. Note that the cuts generated in the first phase are
eliminated in the second phase whenever they become non-binding inequalities.

3.5. Branching on Vertex Degrees
Consider a solution which does not contain fractional variables, where (x̂k` , ŷ

k
` ) refers to the k-th vehicle.

In this case, the standard branching on fractional variables is not activated. If, however, the solution is not
feasible for the MCGRP, then there exists at least a vertex with odd degree. Let dki = x̂k(δ∗R(i)) + ŷk(δ∗(i))
be the degree of the odd vertex i with respect to the k-th route. Two branches xk(δ∗R(i)) + yk(δ∗(i)) ≤ 2p
and xk(δ∗R(i)) + yk(δ∗(i)) ≥ 2p+ 2 are created with p ∈ Z+ defined by 2p < dki < 2p+ 2.

The specific variable to branch on is determined as follows. For branching on vertex degrees, we first
compute for each vertex i ∈ V and for each vehicle k ∈ K the distance of dki to the next even integer, i.e.,
min{2p+ 2− dki , dki − 2p} for an integer p with 2p ≤ dki < 2p+ 2. We select the vertex i∗ for which

min{2p+ 2− dki∗ , dki∗ − 2p}
α+ β2p

is maximal, where we use α = 6 and β = 1 as suggested by Bode and Irnich (2012).
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3.6. Outline of the Solution Algorithm
An outline of our solution approach is provided in the following. The management of the cut pool is

omitted in order to simplify the scheme:

Step 1. Call the lower bounding procedure to compute λ and cuts used in (5).

Step 2. Call the CCLP heuristic to compute an upper bound λ̄ and an initial solution.

Step 3. If λ̄ = λ, STOP.

Step 4. Define a relaxed MCGRP formulation as described in Section 3.4 and insert the resulting subprob-
lem in a list Θ.

Step 5. If Θ is empty or λ̄ = λ, STOP. Otherwise extract a subproblem P from Θ.

Step 6. Solve the subproblem P . Let λP be the solution value. If λP ≥ λ̄, go back to Step 5.

Step 7. Separate violated constraints (1f). If the heuristic algorithm fails, apply the exact separation
algorithm.

Step 8. Separate violated inequalities (1e).

Step 9. Separate violated inequalities (5b).

Step 10. Separate violated inequalities (5c).

Step 11. If some violated inequalities have been identified in Steps 7, 8, 9 and 10, add these inequalities to
the cut pool and go back to Step 6.

Otherwise, if the current solution is feasible, set λ̄ = λP and go back to Step 5.

Step 12. If the current solution is not integer, generate two subproblems by branching on a fractional vari-
able. Otherwise, generate two subproblems by branching on vertex degrees as described in Section 3.5.

Insert the subproblems in Θ and go back to Step 5.

4. Computational Results

The instances used in the computational experiments stem from the paper by Bosco et al. (2013).
These instances were derived from the gdb instances introduced by Golden et al. (1983) for the undi-
rected CARP and from the mval instances provided by Belenguer et al. (2006) for the mixed CARP.
For each original instance, six new instances were generated using an additional parameter β in the set
{0.25, 0.30, 0.35, 0.40, 0.45, 0.50}, where β controls the number of required links whose demand is shifted
to adjacent vertices. The new instances were named mggdb and mgval and additional details about their
characteristics are discussed in Bosco et al. (2013). For the sake of brevity, we limited the investigation
to instances with β ∈ {0.25, 0.30, 0.35}. For the other mggdb and mgval datasets the performance should
remain rather similar (see Bosco et al., 2013). On the contrary, we consider all mggdb and mgval instances
including those for which the number of vehicles m exceeds 7.

In Tables 1–6, the columns named “CG” report the results obtained by a column generation (CG) method
(Gaze, 2013; Gaze et al., 2013); the columns named “B&C&P” report the results obtained by the branch-and-
cut-and-price (B&C&P) algorithm of Bach (2014); the columns named “B&C” report the results obtained
by the B&C algorithm of Bosco et al. (2013); the columns named “New.B&C” report the results obtained
by our B&C algorithm. Other column headings are defined as follows:
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FILE instance name
m number of vehicles
η number |VR ∪ ER ∪AR| of required elements
λ lower bound
λ̄H initial upper bound provided by the CCLP heuristic
λ̄ best solution value reached within a time limit

(an optimal value certified by the algorithm is marked with an asterisk)
GAP percentage gap
CON, CAP, ODD, BAL number of connectivity, capacity, odd-cut, balanced set inequalities

(inequalities generated in the second phase)
NOD number of nodes from the search tree
SEC1 computation time in seconds for the first phase
SEC2 computation time in seconds for the CCLP heuristic
SEC total computation time in seconds

(the time limit corresponding to 6 hours is marked with TL)

All experiments to obtain New.B&C results were carried out on a PC equipped with 2 Intel Xeon Quad
Core CPUs @3.0 GHz, with 6 GB RAM, i.e., the same PC used to obtain B&C results. In both cases,
ILOG CPLEX library, release 12.2, was used and all standard CPLEX cuts were activated. Computational
experiments to obtain CG results were carried out on a PC equipped with an Intel(R) Core(TM) i7 CPU
@2.93 GHz, with 8 GB RAM. Finally, computational experiments to obtain B&C&P results were carried
out on a HP EliteBook with an Intel Core 2 Duo CPU P8700 @2.53GHz and 4 GB RAM.

For B&C results, we just report times, objective function values and percentage gaps; the lower bounds
are not reported because generally poor (outcomes at the root node of the search tree). For CG and
B&C&P results, we just report lower bounds, objective function values and percentage gaps; the times
are not explicitly reported but all the results were obtained within a time limit of 1 hour (2 hours for
mgval instances) for CG results and 3 hours for B&C&P results. Note that, for the B&C&P algorithm, the
percentage gaps were calculated as 100 (λ̄−λ)

(λ̄+λ)/2
. With regard to the results of the B&C algorithm of Bosco

et al. (2013), the CG method, and the B&C&P algorithm, we use “–” to indicate that no value is available
in the literature. With regard to our algorithm, we use “–” in the column λ̄H when the upper bounding
procedure failed.

The tables show that the possibility of finding the optimal solution for our B&C algorithm generally
decreases with the increase of the number of vehicles m. Frequently the value provided by our lower
bounding procedure is excellent. 62 out of 69 instances of the mggdb benchmark set are solved to optimality
by our algorithm (21 for β = 0.25, 21 for β = 0.30, and 20 for β = 0.35). In particular, all mggdb instances
studied in Bosco et al. (2013), i.e., those with up to 7 vehicles, with β in {0.25, 0.30, 0.35}, are solved to
optimality by our algorithm. Moreover, we solve to optimality all mggdb instances with 8 vehicles. For
the group of instances with 10 vehicles, we can compare our results with the CG method and the B&C&P
algorithm. Sometimes the lower bound value or the upper bound value provided by CG method are better
than the values provided by our algorithm. Anyway, for mggdb instances with 10 vehicles, the maximum
percentage gap of our algorithm is approx. 14% against the value of approx. 24% provided by the CG
method. For the same instances, the best performance is obtained by the B&C&P algorithm. Nevertheless,
our algorithm solves to optimality more mggdb instances than the B&C&P algorithm.

The number of mgval instances solved to optimality by our algorithm is equal to 62 out of 102 (24 with
β = 0.25, 19 with β = 0.30, and 19 with β = 0.35). These results confirm that the mgval instances are
harder to solve due to the structure of their graphs. In this case, some instances reported in Bosco et al.
(2013), with β in {0.25, 0.30, 0.35}, are not solved to optimality by our algorithm. Anyway, upper bound
λ̄ reported in Bosco et al. (2013) is never better than upper bound provided by our algorithm. Moreover,
for our algorithm the maximum percentage gap is equal to 2.61% against the value of 12.08 % provided by
the algorithm of Bosco et al. (2013). The CG method ran just on six instances of mgval dataset considered
in this paper. For m ≤ 7, its maximum percentage gap is 25.24%. No comparison is possible for m > 7.
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Table 1: Computational results for mggdb dataset with β = 0.25

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mggdb19 3 10 53 53∗ 0.00 53 53∗ 0.00 53∗ 0.00 1.14 53 53 0 0 0 0 0 53∗ 0.00 0.61 0.74 1.35
mggdb4 4 18 273 292 6.51 289 289∗ 0.00 289∗ 0.00 22.68 286 332 807 96 29 363 48 289∗ 0.00 2.15 2.24 6.09
mggdb10 4 22 265 276 3.99 265 265∗ 0.00 265∗ 0.00 2.79 265 277 593 219 79 436 1 265∗ 0.00 0.39 1.08 2.68
mggdb15 4 20 54 56 3.57 55 55∗ 0.00 55∗ 0.00 0.47 55 57 10 19 1 195 2 55∗ 0.00 0.44 0.49 1.20
mggdb20 4 20 116 122 4.92 116 116∗ 0.00 116∗ 0.00 7.80 116 122 559 78 5 383 162 116∗ 0.00 0.37 1.74 11.71
mggdb1 5 21 274 285 3.86 280 280∗ 0.00 280∗ 0.00 2079.41 277 307 1386 332 62 608 709 280∗ 0.00 2.34 2.72 30.43
mggdb3 5 22 270 282 4.26 278 278∗ 0.00 278∗ 0.00 923.88 275 291 1589 187 70 575 215 278∗ 0.00 2.79 2.84 23.50
mggdb6 5 21 291 295 1.36 292 292∗ 0.00 292∗ 0.00 14.89 292 312 1083 129 28 379 1 292∗ 0.00 0.62 1.37 2.70
mggdb7 5 20 288 290 0.69 290 290∗ 0.00 290∗ 0.00 40.35 290 310 666 169 33 401 1 290∗ 0.00 1.85 1.48 3.92
mggdb11 5 41 347 366 5.19 349 356 1.99 356 3.09 TL 356 395 11737 666 324 2115 27 356∗ 0.00 1.31 10.87 230.57
mggdb14 5 20 107 107∗ 0.00 107 107∗ 0.00 107∗ 0.00 1.43 107 109 389 38 24 356 24 107∗ 0.00 0.40 1.19 3.06
mggdb16 5 25 97 169 42.60 98 98∗ 0.00 98∗ 0.00 4.99 98 103 709 143 28 545 28 98∗ 0.00 0.57 2.87 7.33
mggdb17 5 25 70 78 10.26 71 71∗ 0.00 71∗ 0.00 1.02 71 71 0 0 0 0 0 71∗ 0.00 0.48 1.35 1.83
mggdb18 5 32 139 157 11.46 140 144 2.82 144 3.47 TL 144 156 2871 217 109 951 1 144∗ 0.00 0.67 3.53 6.08
mggdb2 6 25 339 359 5.57 346 352 1.72 349 5.58 TL 349 380 2092 363 96 907 14 349∗ 0.00 1.68 2.55 15.90
mggdb5 6 24 384 404 4.95 394 394∗ 0.00 394 6.41 TL 393 439 2566 403 86 1167 245 394∗ 0.00 2.07 3.42 62.51
mggdb13 6 26 388 392 1.02 388 388∗ 0.00 388 3.38 TL 376 418 2075 254 61 996 64984 388∗ 0.00 0.51 6.27 5716.61
mggdb21 6 31 144 161 10.56 146 146∗ 0.00 146 0.68 TL 146 158 1213 177 72 915 57 146∗ 0.00 0.76 4.97 27.92
mggdb12 7 22 456 459 0.65 459 459∗ 0.00 459 3.74 TL 439 502 2355 313 114 1353 5982 459∗ 0.00 1.92 3.72 616.04
mggdb22 8 38 160 172 6.98 160 160∗ 0.00 – – – 160 168 3127 354 154 1764 461 160∗ 0.00 0.88 12.47 282.59
mggdb8 10 45 328 356 7.87 333 336 0.90 – – – 332 358 19792 7233 753 10120 4438 358 7.26 16.98 15.53 TL
mggdb9 10 47 305 331 7.85 308 309 0.32 – – – 300 349 35794 3756 950 9824 1244 349 14.04 14.63 20.92 TL
mggdb23 10 48 181 234 22.65 181 181∗ 0.00 – – – 181 196 4573 546 195 3026 7608 181∗ 0.00 1.79 28.84 19325.56
Number of optima 2 18 12 21

No instance of mgval dataset with β in {0.25, 0.30, 0.35} has been tackled by the B&C&P algorithm. This
algorithm solely ran on the instances of mgval dataset with β = 0.50. Nevertheless, for most instances of
this dataset, the B&C&P algorithm obtained no upper bound λ̄ within a time limit of 6 hours.

5. Conclusions

In this paper, we proposed a new formulation for the MCGRP and a two-phase B&C algorithm to exactly
solve it. The approach benefits from the typically very tight lower bounds computed fast in the first phase,
in which an aggregated one-index formulation is solved. The performance of the overall B&C proposed
in this paper has been evaluated by carrying out computational experiments on two benchmark sets: As
a result, for all mggdb instances of Bosco et al. (2013), with β in {0.25, 0.30, 0.35} and m ≤ 7, we know
optimal solutions now. Optimality was proved and lower bounds were improved for many other instances
of this and the second mgval benchmark set. We also studied for the first time a group of larger instances:
Although we never proved optimality in these cases, the remaining gaps provided by our algorithm remain
below a threshold of 20%. We suspect that our bounds unevenly contribute to these gaps and that lower
bounds are tighter than upper bounds.
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Table 2: Computational results for mgval dataset with β = 0.25

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mgval1A 2 54 157 210 25.24 – – – 177∗ 0.00 0.30 177 183 40585 335 255 873 3 177∗ 0.00 0.58 8.13 17.22
mgval2A 2 40 – – – – – – 259∗ 0.00 6.10 259 273 34016 655 66 502 1 259∗ 0.00 1.29 9.75 18.15
mgval3A 2 44 – – – – – – 89∗ 0.00 3.21 89 94 40428 323 98 539 1 89∗ 0.00 0.95 7.12 16.04
mgval1B 3 47 – – – – – – 217∗ 0.00 0.13 217 227 21861 1158 161 1450 55 217∗ 0.00 0.55 9.05 41.93
mgval2B 3 48 – – – – – – 336∗ 0.00 941.47 336 360 72095 1264 164 1277 1 336∗ 0.00 1.59 17.68 53.04
mgval3B 3 41 – – – – – – 125∗ 0.00 7217.32 125 125 0 0 0 0 0 125∗ 0.00 1.85 15.81 17.66
mgval4A 3 89 – – – – – – 514 1.55 TL 514 542 508752 4090 737 4930 2 514∗ 0.00 5.03 85.67 582.51
mgval5A 3 92 – – – – – – 485∗ 0.00 2418.17 485 520 371080 2581 442 3093 4 485∗ 0.00 1.75 77.88 482.27
mgval6A 3 67 – – – – – – 274∗ 0.00 11.81 274 278 66638 696 302 1875 2 274∗ 0.00 0.69 11.92 47.86
mgval7A 3 84 – – – – – – 297∗ 0.00 121.29 297 314 30003 605 279 1926 17 297∗ 0.00 0.89 26.28 407.94
mgval8A 3 88 – – – – – – 510 0.39 TL 510 538 627092 1608 425 3198 13 510∗ 0.00 0.81 18.30 384.06
mgval9A 3 122 – – – – – – 371 1.08 TL 371 391 681073 2069 1005 5921 1 371∗ 0.00 1.20 109.32 669.04
mgval10A 3 129 – – – – – – 492∗ 0.00 5.08 492 536 2132150 7443 1641 10441 6 492∗ 0.00 1.48 285.36 8200.45
mgval4B 4 96 – – – – – – 537 4.74 TL 537 583 809353 6003 798 6204 2 537∗ 0.00 2.43 190.11 1328.10
mgval5B 4 86 – – – – – – 493 4.26 TL 493 546 305773 2670 763 3507 2 493∗ 0.00 3.34 79.40 918.19
mgval6B 4 63 – – – – – – 263 1.93 TL 257 305 26858 9334 205 2331 10748 263∗ 0.00 0.73 40.20 11664.95
mgval7B 4 85 – – – – – – 355∗ 0.00 1859.86 355 367 159024 1384 474 3144 104 355∗ 0.00 1.90 28.13 2153.19
mgval8B 4 84 – – – – – – 423 4.26 TL 423 481 282147 3708 766 4052 36 423∗ 0.00 2.27 34.11 1910.60
mgval9B 4 112 – – – – – – 358 1.12 TL 358 390 344109 5369 826 8672 181 358∗ 0.00 2.36 121.53 20123.59
mgval10B 4 123 – – – – – – 528∗ 0.00 1.64 528 570 722454 2354 427 4445 569 528∗ 0.00 1.81 410.34 19187.63
mgval4C 5 100 – – – – – – 525 4.00 TL 525 620 706598 7107 1218 7485 4 525∗ 0.00 4.85 150.44 14925.20
mgval5C 5 93 – – – – – – 584 3.94 TL 584 676 313010 3562 790 4068 2 584∗ 0.00 3.83 76.29 722.30
mgval9C 5 119 – – – – – – 365 4.93 TL 361 365 733 0 0 180 1075 365 1.10 5.91 82.33 TL
mgval10C 5 125 – – – – – – 483 0.62 TL 483 534 1104758 12277 2445 18675 427 483∗ 0.00 3.06 191.20 20129.18
mgval3C 7 41 146 154 5.19 – – – 153 11.01 TL 153 161 11741 2965 429 2855 2 153∗ 0.00 3.78 12.42 106.12
mgval1C 8 51 – – – – – – – – – 278 323 29116 2986 490 5418 4561 323 13.93 7.69 147.60 TL
mgval2C 8 48 – – – – – – – – – 479 512 45494 3636 541 5785 401 512 6.45 7.55 53.31 TL
mgval4D 9 96 – – – – – – – – – 675 778 102380 10161 1959 12048 1 778 13.24 18.54 116.88 TL
mgval5D 9 85 – – – – – – – – – 635 741 339945 12991 3736 18459 1 741 14.30 9.26 169.44 TL
mgval7C 9 85 – – – – – – – – – 374 437 154757 5129 1311 10841 1 437 14.42 16.26 240.32 TL
mgval8C 9 78 – – – – – – – – – 538 625 150870 9628 1676 13664 1 625 13.92 10.08 154.68 TL
mgval6C 10 66 – – – – – – – – – 316 378 40618 6154 1187 9566 2 378 16.40 13.19 65.49 TL
mgval9D 10 121 – – – – – – – – – 418 498 132184 5428 1288 7232 1 498 16.06 39.75 201.83 TL
mgval10D 10 119 – – – – – – – – – 565.5 655 381573 10886 2459 16002 1 655 13.59 34.52 108.40 TL
Number of optima 0 – 12 24
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Table 3: Computational results for mggdb dataset with β = 0.30

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mggdb19 3 10 51 51∗ 0.00 51 51∗ 0.00 51∗ 0.00 0.36 51 51 0 0 0 0 0 51∗ 0.00 0.41 0.57 0.98
mggdb4 4 18 253 271 6.64 260 260∗ 0.00 260∗ 0.00 39.70 260 269 952 65 24 256 13 260∗ 0.00 0.89 0.74 2.72
mggdb10 4 22 241 248 2.82 242 242∗ 0.00 242∗ 0.00 12.06 242 264 1293 263 41 519 60 242∗ 0.00 1.37 1.29 8.94
mggdb15 4 19 43 44 2.27 44 44∗ 0.00 44∗ 0.00 0.48 44 44 0 0 0 0 0 44∗ 0.00 0.32 0.50 0.82
mggdb20 4 18 94 100 6.00 94 94∗ 0.00 94∗ 0.00 27.27 93 100 631 151 21 345 398 94∗ 0.00 0.66 1.51 24.34
mggdb1 5 21 262 276 5.07 273 273∗ 0.00 273∗ 0.00 4279.45 271 285 2099 850 67 689 2253 273∗ 0.00 2.72 2.51 77.91
mggdb3 5 19 269 287 6.27 270 270∗ 0.00 270∗ 0.00 4447.90 267 298 979 172 46 622 363 270∗ 0.00 1.67 1.05 17.17
mggdb6 5 22 265 283 6.36 276 276∗ 0.00 276∗ 0.00 443.39 276 286 2077 372 58 651 1101 276∗ 0.00 1.35 1.49 56.81
mggdb7 5 20 258 281 8.19 273 273∗ 0.00 273∗ 0.00 2870.34 272 280 1670 194 37 617 14223 273∗ 0.00 1.03 1.26 810.14
mggdb11 5 43 382 430 11.16 382 – – 387 1.55 TL 387 – 13686 1154 481 2776 85 387∗ 0.00 1.53 8.71 250.78
mggdb14 5 17 100 104 3.85 101 101∗ 0.00 101∗ 0.00 184.67 101 104 350 36 12 329 14 101∗ 0.00 0.58 1.06 2.48
mggdb16 5 24 105 169 37.87 105 105∗ 0.00 105∗ 0.00 2.77 105 113 1532 253 43 601 315 105∗ 0.00 0.64 2.05 30.55
mggdb17 5 22 65 75 13.33 65 65∗ 0.00 65∗ 0.00 0.64 65 67 73 39 1 286 2 65∗ 0.00 0.39 0.74 1.42
mggdb18 5 30 142 153 7.19 144 144∗ 0.00 144∗ 0.00 1.59 144 157 1390 134 63 904 6 144∗ 0.00 0.75 3.75 7.04
mggdb2 6 24 294 307 4.23 301 301∗ 0.00 301 5.74 TL 300 324 5460 4264 61 1161 90859 301∗ 0.00 1.28 2.65 11631.46
mggdb5 6 25 384 416 7.69 388 388∗ 0.00 388 2.82 TL 388 412 1824 380 109 1103 256 388∗ 0.00 0.85 3.42 37.69
mggdb13 6 24 479 529 9.45 483 483∗ 0.00 486 8.02 TL 463 554 3663 11941 40 1233 347098 483∗ 0.00 0.50 6.68 20676.03
mggdb21 6 28 121 121∗ 0.00 121 121∗ 0.00 121 0.83 TL 121 – 405 39 5 374 10 121∗ 0.00 0.58 4.43 24.93
mggdb12 7 21 462 472 2.12 467 467∗ 0.00 467 6.36 TL 452 490 3262 2928 127 1376 17080 467∗ 0.00 1.31 1.83 1586.05
mggdb22 8 37 151 156 3.21 153 153∗ 0.00 – – – 153 159 4771 325 171 2132 44281 153∗ 0.00 1.42 6.12 13595.79
mggdb8 10 46 329 352 6.53 328 331 0.91 – – – 324 364 28144 2935 731 8445 6272 364 10.99 20.31 10.35 TL
mggdb9 10 46 278 290 4.14 281 281∗ 0.00 – – – 273 317 22611 5213 814 9263 668 317 13.88 18.74 24.06 TL
mggdb23 10 47 167 188 11.17 167 167∗ 0.00 – – – 167 189 6843 51390 316 4134 100200 167∗ 0.00 1.77 10.74 20184.59
Number of optima 2 21 13 21
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Table 4: Computational results for mgval dataset with β = 0.30

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mgval1A 2 53 159 196 18.88 – – – 170∗ 0.00 4.38 170 170 0 0 0 0 0 170∗ 0.00 0.56 14.41 14.97
mgval2A 2 42 – – – – – – 233∗ 0.00 1.58 233 243 54705 736 103 747 6 233∗ 0.00 0.47 7.64 33.46
mgval3A 2 46 – – – – – – 105∗ 0.00 6.34 105 106 61430 858 184 1563 68 105∗ 0.00 0.92 8.00 73.88
mgval1B 3 47 – – – – – – 194∗ 0.00 24.46 194 204 20288 1078 147 1174 135 194∗ 0.00 1.54 11.40 146.63
mgval2B 3 49 – – – – – – 347∗ 0.00 3309.99 347 376 32314 706 71 756 150 347∗ 0.00 1.01 13.14 140.70
mgval3B 3 41 – – – – – – 115∗ 0.00 31.27 115 131 41711 1386 389 1637 1 115∗ 0.00 1.76 8.15 51.05
mgval4A 3 87 – – – – – – 477 1.75 TL 477 506 171935 3072 542 3294 347 477∗ 0.00 4.93 40.91 2098.60
mgval5A 3 86 – – – – – – 445∗ 0.00 96.32 445 477 301480 2499 514 3201 1 445∗ 0.00 1.73 60.37 509.47
mgval6A 3 66 – – – – – – 252 1.84 TL 252 258 79401 1212 458 2580 4 252∗ 0.00 2.42 9.88 139.83
mgval7A 3 77 – – – – – – 324∗ 0.00 1.72 324 339 66313 1035 787 5080 13 324∗ 0.00 0.89 69.36 3197.46
mgval8A 3 88 – – – – – – 431 0.81 TL 431 465 378638 1881 485 3054 26 431∗ 0.00 0.78 290.39 1108.07
mgval9A 3 118 – – – – – – 357 0.28 TL 357 375 318780 1088 300 3607 3 357∗ 0.00 1.29 82.37 4549.30
mgval10A 3 127 – – – – – – 484 0.62 TL 484 506 2430187 6405 1227 9470 2 484∗ 0.00 2.69 104.87 1986.67
mgval4B 4 98 – – – – – – 533 5.19 TL 531 533 935 19 0 111 3976 533 0.38 4.06 100.37 TL
mgval5B 4 83 – – – – – – 490 4.58 TL 484 490 1165 34 0 320 9764 490 1.22 4.21 80.31 TL
mgval6B 4 64 – – – – – – 262∗ 0.00 6331.62 262 278 89991 2521 384 3758 1302 262∗ 0.00 1.30 24.84 1425.85
mgval7B 4 82 – – – – – – 344 1.91 TL 344 354 125319 1456 464 3175 1 344∗ 0.00 2.53 65.55 632.25
mgval8B 4 83 – – – – – – 400 2.35 TL 400 470 115184 4560 529 4563 778 400∗ 0.00 2.17 37.73 9578.23
mgval9B 4 110 – – – – – – 348 1.15 TL 348 380 563806 12495 2372 13837 223 348∗ 0.00 2.65 102.65 12667.79
mgval10B 4 123 – – – – – – 441 1.36 TL 441 491 1065874 4932 1121 6860 255 441∗ 0.00 3.32 85.53 14180.09
mgval4C 5 98 – – – – – – 498 5.92 TL 492 498 398 9 0 106 2354 498 1.20 6.70 145.53 TL
mgval5C 5 87 – – – – – – 551 6.80 TL 549 551 1532 1 0 187 2345 551 0.36 3.60 85.53 TL
mgval9C 5 112 – – – – – – 335 1.49 TL 335 378 1080608 12121 2355 16082 50 335∗ 0.00 1.74 117.24 20185.91
mgval10C 5 125 – – – – – – 478 2.93 TL 475 527 961174 14481 2408 19960 2301 476 0.21 4.55 156.85 TL
mgval3C 7 41 146 165 11.52 – – – 153 12.08 TL 149 153 223 12 0 239 5192 153 2.61 3.06 20.52 TL
mgval1C 8 48 – – – – – – – – – 255 310 19446 2451 575 5362 5045 310 17.74 4.06 125.91 TL
mgval2C 8 45 – – – – – – – – – 489 534 45832 3956 438 7535 5041 534 8.43 6.83 30.08 TL
mgval4D 9 94 – – – – – – – – – 652 765 107573 9627 1548 11953 1 765 14.77 21.27 149.42 TL
mgval5D 9 86 – – – – – – – – – 612 736 292451 11964 4020 17484 1 736 16.85 10.49 208.73 TL
mgval7C 9 85 – – – – – – – – – 347 388 74456 1609 397 6267 1 388 10.57 11.65 49.64 TL
mgval8C 9 75 – – – – – – – – – 510 590 131217 10126 1946 12947 2 590 13.56 10.51 84.55 TL
mgval6C 10 64 – – – – – – – – – 307 364 37530 6875 977 10187 1834 364 15.66 16.08 30.81 TL
mgval9D 10 122 – – – – – – – – – 421.13 501 248834 9511 1860 15279 1 501 15.77 49.43 100.60 TL
mgval10D 10 121 – – – – – – – – – 530.8 640 281506 9961 2079 14881 1 640 17.06 63.53 170.16 TL
Number of optima 0 – 9 19
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Table 5: Computational results for mggdb dataset with β = 0.35

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mggdb19 3 9 51 51∗ 0.00 51 51∗ 0.00 51∗ 0.00 0.21 51 57 65 18 4 72 5 51∗ 0.00 0.26 0.33 0.79
mggdb4 4 17 240 256 6.25 242 242∗ 0.00 242∗ 0.00 27.59 237 250 1021 347 27 389 336 242∗ 0.00 1.93 0.87 14.07
mggdb10 4 24 267 306 12.75 267 268 0.37 268∗ 0.00 813.59 268 283 1902 311 95 662 10 268∗ 0.00 0.94 3.31 6.32
mggdb15 4 18 44 44∗ 0.00 44 44∗ 0.00 44∗ 0.00 0.72 44 44 0 0 0 0 0 44∗ 0.00 0.31 0.93 1.24
mggdb20 4 20 93 96 3.13 96 96∗ 0.00 96∗ 0.00 75.81 93 105 309 77 35 330 518 96∗ 0.00 0.35 2.49 23.65
mggdb1 5 21 236 252 6.35 251 252 0.40 252∗ 0.00 601.02 252 274 1517 264 44 681 875 252∗ 0.00 1.38 2.79 41.89
mggdb3 5 20 236 243 2.88 243 243∗ 0.00 243∗ 0.00 1700.95 243 251 2250 334 63 690 1669 243∗ 0.00 1.02 1.75 109.00
mggdb6 5 21 249 262 4.96 262 262∗ 0.00 262∗ 0.00 1552.37 250 262 1437 208 44 756 4525 262∗ 0.00 0.95 1.54 140.80
mggdb7 5 22 263 282 6.74 272 272∗ 0.00 272∗ 0.00 412.65 272 280 1271 174 61 553 103 272∗ 0.00 0.69 2.05 12.86
mggdb11 5 41 301 315 4.44 301 313 3.91 303∗ 0.00 3875.68 303 343 10929 818 385 2515 129 303∗ 0.00 1.90 7.69 255.60
mggdb14 5 18 83 84 1.19 84 84∗ 0.00 84∗ 0.00 369.34 83 89 491 66 20 354 1710 84∗ 0.00 0.48 2.22 45.15
mggdb16 5 22 73 75 2.67 75 75∗ 0.00 75∗ 0.00 2271.37 73 81 23884 6047 905 10478 4304 75∗ 0.00 0.43 16.57 9276.60
mggdb17 5 23 61 63 3.17 62 62∗ 0.00 62∗ 0.00 0.85 62 66 59 20 3 291 1 62∗ 0.00 0.49 0.89 2.60
mggdb18 5 30 132 157 15.92 135 135∗ 0.00 135∗ 0.00 0.41 135 138 1124 102 88 1023 47 135∗ 0.00 0.56 3.52 12.36
mggdb2 6 22 280 284 1.41 284 284∗ 0.00 284∗ 0.00 1435.16 284 348 1231 296 105 805 145 284∗ 0.00 1.55 2.74 19.05
mggdb5 6 23 299 323 7.43 309 309∗ 0.00 309 6.11 TL 308.5 323 2328 447 111 1206 7668 309∗ 0.00 2.95 2.97 1056.07
mggdb13 6 24 417 417∗ 0.00 417 417∗ 0.00 417 2.98 TL 410 – 1132 4722 4 433 7071 417∗ 0.00 1.08 1.56 674.09
mggdb21 6 28 116 125 7.20 120 120∗ 0.00 120 2.07 TL 120 136 1431 347 53 1013 55 120∗ 0.00 1.35 3.35 26.79
mggdb12 7 20 461 461∗ 0.00 461 461∗ 0.00 461∗ 0.00 15229.89 441 489 2807 778 141 1316 2342 461∗ 0.00 2.12 4.78 197.46
mggdb22 8 36 138 146 5.48 139 139∗ 0.00 – – – 139 145 2924 464 141 1790 459 139∗ 0.00 1.14 6.19 266.86
mggdb8 10 38 311 338 7.99 315 316 0.32 – – – 303 337 20701 1959 392 6803 7792 337 10.09 14.50 10.19 TL
mggdb9 10 45 260 275 5.45 265 266 0.38 – – – 260 292 24795 8738 780 9867 3985 292 10.96 18.43 20.17 TL
mggdb23 10 44 178 233 23.61 179 179∗ 0.00 – – – 176 194 5266 2089 224 3496 21541 194 9.28 1.77 13.89 TL
Number of optima 4 18 16 20
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Table 6: Computational results for mgval dataset with β = 0.35

CG B&C&P B&C New.B&C
FILE m η λ λ̄ GAP λ λ̄ GAP λ̄ GAP SEC λ λ̄H CON CAP ODD BAL NOD λ̄ GAP SEC1 SEC2 SEC

mgval1A 2 47 152 185 17.84 – – – 158∗ 0.00 0.18 158 162 34126 270 84 477 1 158∗ 0.00 0.54 4.88 7.50
mgval2A 2 40 – – – – – – 286∗ 0.00 1.99 286 299 32529 629 83 751 1 286∗ 0.00 0.50 3.31 9.48
mgval3A 2 43 – – – – – – 84∗ 0.00 2.94 84 90 43329 445 102 655 4 84∗ 0.00 1.85 4.13 14.66
mgval1B 3 48 – – – – – – 192∗ 0.00 39.57 190 208 26463 3302 251 1883 1276 192∗ 0.00 0.61 9.68 313.01
mgval2B 3 46 – – – – – – 326∗ 0.00 135.13 326 344 65861 4763 217 1594 3704 326∗ 0.00 1.52 5.68 577.02
mgval3B 3 41 – – – – – – 113∗ 0.00 128.98 113 115 37322 1311 118 1510 78 113∗ 0.00 1.82 4.60 32.98
mgval4A 3 84 – – – – – – 430 1.94 TL 430 458 451528 4898 902 5302 2 430∗ 0.00 5.04 41.54 449.35
mgval5A 3 82 – – – – – – 454 3.30 TL 454 477 491690 5732 801 4971 1672 454∗ 0.00 3.21 30.47 2396.47
mgval6A 3 64 – – – – – – 248∗ 0.00 50.23 248 256 56801 1165 274 2288 8 248∗ 0.00 0.73 7.15 126.41
mgval7A 3 78 – – – – – – 264∗ 0.00 1.19 264 278 13036 395 271 1539 6 264∗ 0.00 0.97 21.11 134.25
mgval8A 3 84 – – – – – – 415 0.24 TL 415 446 306694 1680 427 3232 3 415∗ 0.00 0.82 22.25 296.02
mgval9A 3 116 – – – – – – 324∗ 0.00 1071.31 324 341 454788 2815 760 5740 9 324∗ 0.00 1.30 95.38 2698.20
mgval10A 3 122 – – – – – – 475∗ 0.00 2230.29 475 502 1468685 4928 1153 8683 16 475∗ 0.00 3.47 100.54 7015.32
mgval4B 4 90 – – – – – – 531 5.85 TL 529 531 276 7 0 56 2128 531 0.38 4.52 50.54 TL
mgval5B 4 81 – – – – – – 467 4.57 TL 466 502 249130 6257 915 6036 3254 467 0.21 5.51 36.38 TL
mgval6B 4 62 – – – – – – 250∗ 0.00 1715.66 250 271 79128 3263 478 3909 571 250∗ 0.00 3.27 15.83 717.58
mgval7B 4 79 – – – – – – 325∗ 0.00 208.79 325 338 105168 1536 288 3095 195 325∗ 0.00 1.75 30.89 1756.39
mgval8B 4 78 – – – – – – 385 2.34 TL 385 454 204077 4259 846 4696 25 385∗ 0.00 0.90 29.02 999.01
mgval9B 4 106 – – – – – – 332 3.46 TL 331 358 495547 9622 2060 12081 367 331∗ 0.00 1.53 147.02 12717.94
mgval10B 4 118 – – – – – – 461 0.87 TL 461 492 918347 5674 1267 7526 24 461∗ 0.00 3.00 102.78 9490.73
mgval4C 5 93 – – – – – – 516 7.13 TL 516 587 591685 9295 1005 7785 1282 516∗ 0.00 7.48 70.79 13985.61
mgval5C 5 82 – – – – – – 586 7.77 TL 579 613 233054 4341 687 5933 2416 586 1.19 3.96 50.15 TL
mgval9C 5 115 – – – – – – 329 3.95 TL 328 329 295 5 0 75 1178 329 0.30 5.39 145.38 TL
mgval10C 5 122 – – – – – – 431 4.61 TL 428 431 694 8 0 165 1648 431 0.70 4.37 185.38 TL
mgval3C 7 40 143 149 4.03 – – – 150 6.84 TL 149 150 223 15 0 319 1814 150 0.67 3.35 18.45 TL
mgval1C 8 48 – – – – – – – – – 272 312 24820 2646 532 6369 10915 312 12.82 2.21 34.66 TL
mgval2C 8 45 – – – – – – – – – 482 520 46451 5405 474 7365 11806 520 7.31 7.14 23.39 TL
mgval4D 9 96 – – – – – – – – – 640.5 729 222925 25178 3875 22567 1 729 12.07 31.81 220.00 TL
mgval5D 9 80 – – – – – – – – – 568 658 223254 13130 3635 19493 1 658 13.68 9.28 61.38 TL
mgval7C 9 82 – – – – – – – – – 336 390 138293 4687 1061 9382 2 390 13.85 16.73 100.83 TL
mgval8C 9 75 – – – – – – – – – 487 602 123893 11772 2169 15512 939 602 19.10 13.95 53.41 TL
mgval6C 10 60 – – – – – – – – – 303 372 31749 8475 1119 9091 2237 372 18.55 17.01 31.32 TL
mgval9D 10 115 – – – – – – – – – 422 491 180649 8511 2230 15749 1 491 14.05 18.02 124.75 TL
mgval10D 10 114 – – – – – – – – – 519 594 455451 19154 3846 23545 1 594 12.63 43.53 230.53 TL
Number of optima 0 – 12 19
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