Two-Phase Branch-and-Cut for the Mixed Capacitated General Routing Problem

Claudia Bode ${ }^{\text {a }}$, Stefan Irnich $^{\text {a }}$, Demetrio Laganà ${ }^{\text {b }}$, Francesca Vocaturo ${ }^{\text {c }}$
${ }^{a}$ Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.
${ }^{b}$ Department of Mechanical, Energy and Management Engineering, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
${ }^{c}$ Department of Economics, Statistics and Finance, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.

Abstract

The Mixed Capacitated General Routing Problem (MCGRP) is defined over a mixed graph, for which some vertices must be visited and some links must be traversed at least once. The problem consists of determining a set of least-cost vehicle routes that satisfy this requirement and respect the vehicle capacity. Few papers have been devoted to the MCGRP, in spite of interesting real-world applications, prevalent in school bus routing, mail delivery, and waste collection. This paper presents a new mathematical model for the MCGRP based on two-index variables. The approach proposed for the solution is a two-phase branch-and-cut algorithm, which uses an aggregate formulation to develop an effective lower bounding procedure. This procedure also provides strong valid inequalities for the two-index model. Extensive computational experiments over benchmark instances are presented.

Key words: general routing problem, mixed graph, integer programming, branch-and-cut algorithm

1. Introduction

This paper presents a new exact algorithm for the Mixed Capacitated General Routing Problem (MCGRP) based on branch-and-cut (B\&C). The MCGRP generalizes the single-vehicle and multiple-vehicle General Routing Problems (GRPs) and the Capacitated Arc Routing Problem (CARP).

GRPs constitute a class of vehicle-routing problems, in which a single vehicle or a fleet of vehicles must serve both a subset of links and a subset of vertices of a given graph. GRPs have interesting practical applications, prevalent in waste collection, postal delivery and school bus routing. For instance, in an urban waste collection plan, the collection along a street may be modeled by means of links that must be traversed, whereas the collection occurring in specific points (e.g., hospitals or multi-storey apartment blocks) may be modeled by means of vertices that must be visited. Similarly, in the postal delivery services, depending on their demand and dispersion, customers may be modeled as individual vertices or groups of customers as street segments (edges or arcs). Finally, in school bus routing, several children living on the same street may be picked up either by stopping close to each ones home, implying a service on the respective street segments, or groups of them may walk from their home to a specific bus stop imposing just one stop.

The single-vehicle GRP was introduced by Orloff (1974) and shown to be $\mathcal{N} \mathcal{P}$-hard by Lenstra and Rinnooy Kan (1976). Most works refer to the uncapacitated case. Specifically, Letchford $(1996,1999)$ and Corberán and Sanchis (1998) proposed valid inequalities for the GRP polyhedron. For the same problem, Corberán et al. (2001) described a cutting-plane algorithm based on several classes of facet-inducing inequalities. Reinelt and Theis (2008) studied the 0/1-polytope associated with the uncapacitated GRP defined

[^0]March 26, 2014
over a connected and undirected graph. The contribution of Corberán et al. (2003) for the GRP defined on a mixed graph was a new integer programming formulation and a partial description of the related polyhedron. They reported remarkable computational results obtained by a cutting-plane algorithm. Corberán et al. (2005) considerably improved this algorithm by defining a new family of facet-defining inequalities and new separation procedures. Blais and Laporte (2003) proposed a transformation in order to solve the uncapacitated GRP defined over directed, undirected and mixed graphs. The GRP is transformed into an equivalent traveling salesman problem or rural postman problem and solved by means of available exact algorithms. The approach does not work equally well in all cases; it works best on directed problems and on mixed problems, in which the number of edges is relatively small. The uncapacitated GRP was also modeled by resorting to windy graphs. Corberán et al. (2007, 2008) presented a strong windy general routing polyhedron description and designed a powerful $\mathrm{B} \& \mathrm{C}$ algorithm able to solve a large number of benchmark instances.

The basic multiple-vehicle routing problem is the Capacitated Vehicle Routing Problem (CVRP, see Toth and Vigo, 2002, 2014), in which the demand occurs only at vertices. On the contrary, arc routing problems (ARPs, see Dror, 2000; Corberán and Laporte, 2014) are GRPs in which no vertices have to be serviced. While CVRP are defined on complete graphs, ARPs share with GRPs that they are defined on incomplete (often sparse) graphs, which are either undirected, directed, mixed, or windy.

Important contributions for the mixed CARP have been given by Belenguer et al. (2006). They presented a linear formulation, developed a lower bounding procedure based on valid inequalities, and described some upper bounds obtained through three constructive heuristics and a memetic algorithm. Gouveia et al. (2010) described a compact flow-based model for the mixed CARP and derived an aggregate lower bounding model. Moreover, they introduced a set of valid inequalities for the linear programming relaxation of the integer model and presented promising computational results.

Note that GRPs can be transformed into CARPs by adding loops, i.e., edges $\{i, i\}$ or arcs (i, i) to the underlying graph whenever in the GRP instance a vertex i has to be serviced. The edge or arc receives the same demand as the vertex that it substitutes. In this sense, then the mixed CARP and the MCGRP can be considered identical, at least if the mathematical formulation and solution approach is capable of handling loops. To the best of our knowledge, this equivalence has not yet been utilized.

The problem studied and solved in the paper at hand is the MCGRP. It may cause confusion that sometimes the MCGRP is referred to as Capacitated General Routing Problem on mixed graphs(CGRP or CGRP-m) and Node, Edge and Arc Routing Problem (NEARP). There exist lower bounding procedures and tailored exact algorithms for its solution (Bach et al., 2013; Bach, 2014; Bosco et al., 2013; Gaze, 2013; Gaze et al., 2013). Other studies present non-exact approaches tackling the problem. Particularly, Pandit and Muralidharan (1995) described a heuristic procedure which starts with a sub-graph obtained from the original one by considering only the links that must be traversed and the vertices that must be visited. Since the sub-graph is generally disconnected, the connection is reached by adding to it the shortest paths linking two vertices of disjoint connected components. The sub-graph is then converted into an Eulerian graph which admits a giant tour. A feasible solution is obtained by cutting the giant tour into smaller tours satisfying the capacity constraints. Gutiérrez et al. (2002) introduced an alternative procedure, based on the partition-first-route-next paradigm, improving previous results. Prins and Bouchenoua (2005) described a memetic algorithm for the MCGRP. Bosco et al. (2014) introduced a matheuristic algorithm for the MCGRP where the exact algorithm of Bosco et al. (2013) is incorporated in some steps of a neighborhood search. Hasle et al. (2012) carried out a computational study on three large scale MCGRP datasets. Finally, an extension of the MCGRP was tackled by Bräysy et al. (2011).

We propose an alternative exact approach to solve the MCGRP which combines beneficial ingredients from existing procedures in an effective way. The novelty of the approach substantially comprises two aspects. First, it is based on a new MCGRP formulation which uses two-index variables also to model the link flow. Second, it takes advantage from all results of a lower bounding procedure. This procedure produces, besides excellent lower bounds, valid inequalities that are used to initialize a B\&C scheme.

The remainder of the paper is organized as follows. In Section 2, a formal definition and the new twoindex formulation of the MCGRP are given. In Section 3.1, we present the lower bounding formulation used in the exact approach illustrated in Section 3 in order to determine lower bounds and general cuts. Section 4
presents computational results. Final conclusions are drawn in Section 5.

2. Problem Description and Formulation

A formal definition of the MCGRP relies on a mixed graph $G=(V, E, A)$ with vertices set V, edges set E and arcs set A. Vertex $1 \in V$ represents the depot, at which a set K of homogeneous vehicles with capacity Q is based. The remaining vertices form the set $C=V \backslash\{1\}$. Every element $b \in V \cup E \cup A$ has a demand $q_{b} \geq 0$, those elements with strictly positive demand are required, meaning that they must be serviced exactly once. Required vertices are in $V_{R}=\left\{v \in C: q_{v}>0\right\}$, required edges are in $E_{R}=\left\{e \in E: q_{e}>0\right\}$, and required arcs are in $A_{R}=\left\{a \in A: q_{a}>0\right\}$. In order to ensure feasibility, we assume that the demand q_{r} of each required element r does not exceed Q.

For notational ease, we speak of links when we want to refer to both edges and arcs in $E \cup A$. Any link can be deadheaded, i.e., traversed without being serviced, any number of times. The traversal of a link $\ell \in E \cup A$ results in a non-negative traversal cost c_{ℓ}. In the following, required elements are referred to as $r \in V_{R} \cup E_{R} \cup A_{R}$ when distinction is not essential.

The MCGRP is the problem of finding minimum-cost vehicle tours, each starting and ending at the depot, that together serve all required elements exactly once, and respect the vehicle capacity.

In order to state the MCGRP models, we introduce further notation used throughout the paper: Let $S \subseteq V$ be a subset of vertices. We denote by $\delta^{+}(S)$ the set of arcs leaving S, by $\delta^{-}(S)$ the set of arcs entering S, by $\delta_{R}^{+}(S)$ the set of required arcs leaving S, by $\delta_{R}^{-}(S)$ the set of required arcs entering S, by $\delta(S)$ the set of edges with exactly one endpoint in S, and by $\delta_{R}(S)$ the set of required edges with exactly one endpoint in S. The associated link sets are $\delta^{*}(S)=\delta(S) \cup \delta^{+}(S) \cup \delta^{-}(S)$ and $\delta_{R}^{*}(S)=\delta_{R}(S) \cup \delta_{R}^{+}(S) \cup \delta_{R}^{-}(S)$. For the sake of brevity, singleton sets $S=\{i\}$ in the previous notation can be replaced by i so that, e.g., $\delta(i)$ stands for $\delta(\{i\})$. Finally, we denote by $V_{R}(S)$ the set of required vertices belonging to S, by $A_{R}(S)$ the set of required arcs with both endpoints in S, and by $E_{R}(S)$ the set of required edges with both endpoints in S.

We propose a new mathematical model based on variables with two indices, one for the respective vehicles $k \in K$ and the other for referring to an element of $V \cup E \cup A$. Let x_{r}^{k} be a binary variable equal to 1 if and only if the required element $r \in V_{R} \cup E_{R} \cup A_{R}$ is serviced by vehicle k. For a link $\ell \in E \cup A$ and a vehicle $k \in K$, let y_{ℓ}^{k} be a non-negative variable representing the number of deadheadings through ℓ by vehicle k. For a subset of required links $L \subseteq A_{R} \cup E_{R}$, we define $x^{k}(L)=\sum_{\ell \in L} x_{\ell}^{k}$, and for a subset of links $L \subseteq A \cup E$, we define $y^{k}(L)=\sum_{\ell \in L} y_{\ell}^{k}$.

The two-index formulation for the MCGRP reads as follows:

$$
\begin{equation*}
\lambda^{*}=\min \sum_{k \in K} \sum_{\ell \in E \cup A} c_{\ell} y_{\ell}^{k} \quad\left(+\sum_{\ell \in E_{R} \cup A_{R}} c_{\ell}\right) \tag{1a}
\end{equation*}
$$

$\sum_{k \in K} x_{r}^{k}=1$,
$\forall r \in V_{R} \cup E_{R} \cup A_{R}$
$\sum_{r \in V_{R} \cup E_{R} \cup A_{R}} q_{r} x_{r}^{k} \leq Q$,
$x^{k}\left(\delta_{R}^{*}(i)\right)+y^{k}\left(\delta^{*}(i)\right) \equiv$ even,
$\forall i \in V, k \in K$
$x^{k}\left(\delta_{R}^{-}(S)\right)+y^{k}\left(\delta^{-}(S)\right)-x^{k}\left(\delta_{R}^{+}(S)\right)-y^{k}\left(\delta^{+}(S)\right)-x^{k}\left(\delta_{R}(S)\right)-y^{k}(\delta(S)) \leq 0, \quad \forall S \subseteq V, k \in K($
$x^{k}\left(\delta_{R}^{*}(S)\right)+y^{k}\left(\delta^{*}(S)\right) \geq 2 x_{r}^{k}$,
$\forall r \in V_{R}(S) \cup E_{R}(S) \cup A_{R}(S), S \subseteq C, k \in K$
$\forall r \in V_{R} \cup E_{R} \cup A_{R}, k \in K(1 \mathrm{~g})$
$\forall \ell \in E \cup A, k \in K$
$x_{r}^{k} \in\{0,1\}$,
$y_{\ell}^{k} \in \mathbb{Z}_{+}$,

The objective (1a) minimizes the total traversal cost. Note that the service costs (in parenthesis) are constant and therefore not relevant for the routing decisions. Constraints (1b) state that each required element must be serviced. Constraints (1c) guarantee the vehicle capacity is never exceeded. Parity constraints (1d) stipulate that each route induces a Eulerian subgraph. This graph must also be balanced, which is formulated with the so-called balanced set conditions (1e). Constraints (1f) ensure that each route is connected. In particular, they impose that for each subset of vertices (excluding the depot) containing a link or vertex serviced by a vehicle, at least two links incident to the subset must be traversed; they also eliminate subtours that do not include the depot. Finally, constraints (1g) and (1h) define the domains of the service and deadheading variables.

2.1. Parity Constraints

The parity constraints (1d) are non-linear, and the only known way to completely replace them by linear constraints is the introduction of additional integer variables $d_{i} \in \mathbb{Z}_{+}$, one for each vertex $i \in V$. Setting the right-hand side in (1d) to $=2 d_{i}$ established the task.

However, there exist linear inequalities that partially cover this requirement:
$x^{k}\left(\delta_{R}^{*}(S) \backslash H\right)+y^{k}\left(\delta^{*}(S)\right) \geq x^{k}(H)-|H|+1, \quad \forall k \in K, S \subseteq C, H \subseteq \delta_{R}^{*}(S),|H|$ odd. (2)
These so-called blossom inequalities are an extension of constraints proposed by Belenguer and Benavent (1998) for the CARP. Their validity can be shown as follows: If all required links in H are serviced by the k-th vehicle, i.e, $x^{k}(H)=|H|$, then, given that $|H|$ is odd, the k-th vehicle must cross $\delta^{*}(S)$ at least once more. Hence, $x^{k}\left(\delta_{R}^{*}(S) \backslash H\right)+y^{k}\left(\delta^{*}(S)\right)$ must be at least 1. Otherwise, if $x^{k}(H)<|H|$, the inequality is trivial.

2.2. Breaking Symmetry

The formulation just described yields a large number of equivalent solutions. In fact, since all vehicles have the same capacity, for a given solution any permutation of the vehicle indices induces another equivalent solution. In order to avoid equivalent solutions, we introduce additional constraints. Let η be the number of required elements, i.e., $\eta=\left|V_{R} \cup E_{R} \cup A_{R}\right|$, and let $K=\{1,2, \ldots, m\}$. Moreover, let r_{t} be the t th required element $(t=1, \ldots, \eta)$. Any rule can be used to order the required elements. Let $s(k)$ be the smallest index of the required elements serviced by vehicle $k \in K$. In order to impose the condition $s(1) \leq s(2) \leq s(3) \leq \ldots \leq s(m)$, the following set of symmetry breaking constraints are valid:
$x_{r_{1}}^{1}=1$
$x_{r_{t}}^{k} \leq \sum_{j=1, \ldots, t-1} x_{r_{j}}^{k-1}$,

$$
\begin{array}{r}
\forall t=2, \ldots, \eta, k=2, \ldots, m \tag{3b}\\
\forall t=1, \ldots, m-1, k=t+1, \ldots, m
\end{array}
$$

Constraint (3a) states that the first vehicle must serve the first required element. Constraints (3b) stipulate that if the t-th element $r_{t}(t \geq 2)$ is serviced by the k-th vehicle $(k \geq 2)$, then at least one required element associated with an index preceding t must be serviced by the vehicle $k-1$. Finally, constraints (3c) state that element $r_{t}(t \leq m-1)$ cannot be serviced by any of the vehicles $k=t+1, \ldots, m$.

These symmetry breaking constraints seem effective for the MCGRP. Other inequalities can be adapted to the problem from the literature (e.g., see Adulyasak et al., 2014).

3. Solution Approach

We propose a B\&C algorithm that works in two phases. In the first phase, an aggregate so-called oneindex formulation that comprises a relaxation of formulation (1) is solved. The linear relaxation of the one-index formulation contains an exponential number of constraints, which have to be identified and added dynamically in a cutting-plane fashion. It typically provides an excellent lower bound that can be further
strengthened by adding valid inequalities. Compared to formulation (1), solving the one-index formulation needs only a little fraction of computation time.

In the second phase, the two-index formulation (1) is initialized with the inequalities from the one-index formulation. Since also some of the constraints of the formulation (1) are exponential families of inequalities, the B\&C algorithm (see Wolsey, 1998, for an introduction) then adds violated of these and other inequalities. If the solution of the linear problem is not integer or, alternatively, there exists at least one vertex with an odd degree, then the branching decision splits the problem into two complementary subproblems, and the same procedure is applied to each of them recursively. If a subproblem is infeasible or proven to be unprofitable for the search of optimal solutions, it is discarded. Our B\&C algorithm also uses an external heuristic procedure to obtain an initial upper bound.

We will start with a more detailed description of the first phase for lower bounding, outline the heuristic that provides upper bounds and feasible solutions, and describe and summarize the major components of the $\mathrm{B} \& \mathrm{C}$ algorithm.

3.1. Lower Bounding and One-Index Formulation

Since the computational effort for solving the MCGRP with model (1) exactly is huge (sometimes prohibitive) it is fundamental to produce tight bounds very fast. In order to obtain good lower bounds, we solve a one-index formulation very similar to the model presented in Belenguer et al. (2006). It solely uses a vector y of aggregated deadheading variables

$$
\begin{equation*}
y_{\ell}=\sum_{k \in K} y_{\ell}^{k} \in \mathbb{Z}_{+} \tag{4}
\end{equation*}
$$

one for each link $\ell \in E \cup A$.
The major difference to the formulation of Belenguer et al. (2006) is that for the MCGRP the coefficients need to be defined differently: Recall that in the definition of $q(S)$, the demand on vertices is taken into account. Specifically, let $q(S)$ be the total demand of the required elements in $E_{R}(S) \cup A_{R}(S) \cup \delta_{R}^{*}(S) \cup V_{R}(S)$. Thus, for any subset S of vertices, let $K(S)$ be the minimum number of vehicles to serve $E_{R}(S) \cup A_{R}(S) \cup$ $\delta_{R}^{*}(S) \cup V_{R}(S)$. This number can be approximated by $\lceil q(S) / Q\rceil$ and computed exactly solving a bin-packing problem. Moreover, let $b(S)=\left|\delta_{R}^{-}(S)\right|-\left|\delta_{R}^{+}(S)\right|-\left|\delta_{R}(S)\right|$ be the unbalance of S. For any link subset $L \subseteq E \cup A$, we define $y(L)=\sum_{\ell \in L} y_{\ell}$. The linear relaxation of one-index formulation reads as follows:

$$
\begin{equation*}
\underline{\lambda}=\min c^{\top} y \quad\left(+\sum_{\ell \in E_{R} \cup A_{R}} c_{\ell}\right) \tag{5a}
\end{equation*}
$$

$y\left(\delta^{*}(S)\right) \geq 1$,

$$
\forall S \subseteq C,\left|\delta_{R}^{*}(S)\right| \text { odd }(5 \mathrm{~b})
$$

$y\left(\delta^{*}(S)\right) \geq 2 K(S)-\left|\delta_{R}^{*}(S)\right|$, $\forall S \subseteq C(5 \mathrm{c})$
$y(\delta(S))+y\left(\delta^{+}(S)\right)-y\left(\delta^{-}(S)\right) \geq b(S)$,

$$
\forall S \subseteq V
$$

$\forall \ell \in E \cup A .(5 \mathrm{e})$
$y_{\ell} \geq 0$,
The objective (5a) provides a lower bound $\underline{\lambda}$ for λ^{*}. The odd-cut inequalities (5b) require that at least one link is deadheaded whenever an odd number of required links in $\delta^{*}(S)$ occurs. The capacity inequalities (5c) require at least $2 K(S)$ traversals (services and deadheadings) along some links of $\delta^{*}(S)$. Balance inequalities (5d) require at least $\left|\delta_{R}^{-}(S)\right|-\left|\delta_{R}^{+}(S)\right|-\left|\delta_{R}(S)\right|$ deadheadings if the difference between incoming and outgoing arcs cannot be compensated by edges in the cutset.

Note that we might solve (5a)-(5e) as an integer program by replacing $y_{\ell} \geq 0$ with $y_{\ell} \in \mathbb{Z}_{+}$. However, these integer "solutions" are solutions to a relaxation only. It can happen that there exists no feasible integer solution to the disaggregated model (1) compatible with (4).

At each iteration of a cutting-plane algorithm, we solve a linear program which contains the nonnegativity constraints, a subset of (5 b$)-(5 \mathrm{~d})$ constraints, and disjoint-path inequalities (Belenguer et al., 2006, see). Separation routines are identical to those described in next Section 3.3 and seek for a set of valid inequalities violated by the current solution.

3.2. Upper Bounding and Location-based Heuristic

An initial feasible solution for the MCGRP is built on the basis of a partition-first-route-next heuristic. Herein, a feasible partition of the required elements is found by solving a Capacitated Concentrator Location-based Problem (CCLP), in which m required elements are selected as concentrator location, and the remaining required elements are grouped around the concentrators. Several location-based heuristics have been proposed in the literature (e.g., Bramel and Simchi-Levi, 1995). Recent discretized formulations for different versions of the CCLP have been provided by Gouveia and Saldanha-da Gama (2006) and Correia et al. (2010).

The following constraints must be fulfilled: (i) a required element is assigned to itself if it is a concentrator; (ii) each required element is assigned to only one concentrator; (iii) each required element may be assigned to another required element if and only if the latter is a concentrator; (iv) the overall demand of the required elements assigned to a concentrator cannot exceed its capacity, that is the vehicle capacity; (v) the number of required elements selected as concentrators is equal to the number of vehicles. The goal is the minimization of the total assignment cost that intended to approximate the routing costs. The cost for assigning a required element to a concentrator is equal to the shortest-path distance between the potential concentrator and the required element. Since the cost matrix associated with G is generally not symmetric, all the feasible shortest paths starting from a required element and ending to any potential concentrator, and vice versa, must be evaluated in order to select the one having the minimum distance. The solution of the CCLP gives a feasible partition of the required elements. An optimal routing associated with each partition is defined by solving an uncapacitated GRP on a mixed graph. We use the same B\&C algorithm developed in this paper (second phase) to exactly solve the problem associated with each partition: We have to adjust the definition of the required elements and set $m=1$.

The weakness of the partition-first-route-next approach lies in the fact that the objective function of the CCLP only approximates the routing costs. To mitigate this effect, an iterative scheme is designed: At each iteration, a set of diversification constraints is added dynamically to the CCLP stipulating the selection of a different concentrator set. More precisely, let \mathcal{C} be the set of concentrators. Then, a feasible MCGRP solution, whose cost is denoted by $\lambda(\mathcal{C})$, remains associated with \mathcal{C}. The gap of $\lambda(\mathcal{C})$ with respect to $\underline{\lambda}$ is computed as $\frac{\lambda(\mathcal{C})-\underline{\lambda}}{\underline{\lambda}}$. Such a gap, named $G A P(\mathcal{C})$, is used to evaluate set \mathcal{C}. If $G A P(\mathcal{C})$ is more than a fixed $\overline{G A P}$, then a tabu constraint is added to the mathematical program used to solve the CCLP. The tabu constraint is implemented by imposing that all the binary variables, set to 1 only for the required elements belonging to \mathcal{C}, flip their value from 1 to 0 . If $G A P(\mathcal{C})$ is less than or equal to $\overline{G A P}$, then a diversification constraint is added to the mathematical program. The diversification constraint ensures that at least one of the binary variables previously defined flips its value from 1 to 0 or from 0 to 1 . The iterative diversification process ends whenever the model becomes infeasible due to the added tabu and diversification constraints, or a given number of iterations is reached. We set $\overline{G A P}=0.05$ in our computational experiments. Finally, a last attempt to obtain a feasible MCGRP solution of minimum cost is made by solving a set partitioning model, in which the involved routes are all the different routes associated with the feasible MCGRP solutions found during the iterative algorithm.

3.3. Relaxed Constraints, Valid Inequalities and Separation Routines

Separations routines are used in both the B\&C algorithm for solving the MCGRP and the one-index formulation (5).

Specifically, connectivity constraints (1f) can be separated by adapting the exact and heuristic procedures used in Bosco et al. (2013). The separation of odd-cut inequalities (5b) is straightforward and is already described in Padberg and Rao (1982). Arcs are handled as edges and the polynomial odd minimum cut algorithm is applied. To separate capacity inequalities (5c) two methods are known from the literature. A heuristic method was presented by Belenguer and Benavent (2003) and an exact method by Ahr (2004). Both methods are used for the one-index formulation (5), while in the second phase capacity inequalities (5c) are identified solely using the heuristic method. Belenguer and Benavent (2003) also presented disjoint-path inequalities as additional valid inequalities. Separation routines for these inequalities are adapted from their paper.

The separation of balance inequalities is also known from the literature (e.g. Benavent et al., 2000), but more intricate to implement for the MCGRP. We will give a short description of the procedure. The balanced set conditions (1e) can be rewritten as

$$
y^{k}(\delta(S))+x^{k}\left(\delta_{R}(S)\right) \quad+y^{k}\left(\delta^{+}(S)\right)+x^{k}\left(\delta_{R}^{+}(S)\right) \quad-y^{k}\left(\delta^{-}(S)\right)-x^{k}\left(\delta_{R}^{-}(S)\right) \geq 0, \quad \forall S \subseteq V, k \in K
$$

and in (5) as

$$
y(\delta(S))+\left|\delta_{R}(S)\right| \quad+y\left(\delta^{+}(S)\right)+\left|\delta_{R}^{+}(S)\right| \quad-y\left(\delta^{-}(S)\right)-\left|\delta_{R}^{-}(S)\right| \geq 0, \quad \forall S \subseteq V
$$

In order to separate violated inequalities, the algorithm of Nobert and Picard (1996) can be adapted. Such a procedure is also described by Benavent et al. (2000) for an uncapacitated problem, in which all links are required. We define, for a solution $\left(\hat{x}_{\ell}^{k}, \hat{y}_{\ell}^{k}\right)$ to (1) concerning the k-th vehicle, or a solution $\left(\hat{y}_{\ell}\right)$ to (5)

$$
w_{\ell}^{k}=\left\{\begin{array}{ll}
\hat{y}_{\ell}^{k}+\hat{x}_{\ell}^{k}, & \ell \in E_{R} \cup A_{R} \\
\hat{y}_{\ell}^{k}, & \ell \in(E \cup A) \backslash\left(E_{R} \cup A_{R}\right)
\end{array} \quad \text { and } \quad w_{\ell}= \begin{cases}\hat{y}_{\ell}+1, & \ell \in E_{R} \cup A_{R} \\
\hat{y}_{\ell}, & \ell \in(E \cup A) \backslash\left(E_{R} \cup A_{R}\right),\end{cases}\right.
$$

respectively. For any link subset L, we define $w(L)=\sum_{\ell \in L} w_{\ell}^{k}$ (alternatively, $w(L)=\sum_{\ell \in L} w_{\ell}$). Then, for any vertex subset S, we can determine $f(S)=w(\delta(S))+w\left(\delta^{+}(S)\right)-w\left(\delta^{-}(S)\right)$. A set S for which $f(S)$ is minimum is the most unbalanced set, and $f(S)<0$ identifies a violated balanced set condition. The point is that the algorithm of Nobert and Picard (1996) finds such a set S by solving a maximum-flow problem over another support graph with two extra vertices, even if some of the values w_{ℓ}^{k} and w_{ℓ} are negative.

3.4. Initial Relaxation and Cut Pool Management

The initial relaxation of the MCGRP, at the root node of the B\&C tree, is a linear program which includes the following components: the objective function (1a), all constraints (1b)-(1c), the balanced set conditions (1e) associated with the unbalanced vertices i, for which $|\delta(i)|<\left|\delta^{-}(i)\right|-\left|\delta^{+}(i)\right|$ holds. Moreover, it includes the connectivity constraints (1f) associated with the R-sets, i.e., the connected components of the graph induced by all required elements.

The initial relaxation also contains inequalities (2) associated with each vertex i for which $\left|\delta_{R}^{*}(i)\right|$ is odd fixing $H=\delta_{R}^{*}(i)$, symmetry breaking constraints (3a)-(3c), and the valid inequalities generated by the lower bounding procedure.

An iteration of the $\mathrm{B} \& \mathrm{C}$ algorithm involves the selection of a subproblem from the list of active subproblems and the addition of violated constraints and valid inequalities to this subproblem. The set containing violated constraints and valid inequalities is called cut pool. In our implementation, the cut pool is cleaned every 50 iterations by eliminating non-binding inequalities, i.e., those with slack greater than ϵ or dual variables less than ϵ, where $\epsilon=10^{-6}$ is the tolerance. Note that the cuts generated in the first phase are eliminated in the second phase whenever they become non-binding inequalities.

3.5. Branching on Vertex Degrees

Consider a solution which does not contain fractional variables, where ($\hat{x}_{\ell}^{k}, \hat{y}_{\ell}^{k}$) refers to the k-th vehicle. In this case, the standard branching on fractional variables is not activated. If, however, the solution is not feasible for the MCGRP, then there exists at least a vertex with odd degree. Let $d_{i}^{k}=\hat{x}^{k}\left(\delta_{R}^{*}(i)\right)+\hat{y}^{k}\left(\delta^{*}(i)\right)$ be the degree of the odd vertex i with respect to the k-th route. Two branches $x^{k}\left(\delta_{R}^{*}(i)\right)+y^{k}\left(\delta^{*}(i)\right) \leq 2 p$ and $x^{k}\left(\delta_{R}^{*}(i)\right)+y^{k}\left(\delta^{*}(i)\right) \geq 2 p+2$ are created with $p \in \mathbb{Z}_{+}$defined by $2 p<d_{i}^{k}<2 p+2$.

The specific variable to branch on is determined as follows. For branching on vertex degrees, we first compute for each vertex $i \in V$ and for each vehicle $k \in K$ the distance of d_{i}^{k} to the next even integer, i.e., $\min \left\{2 p+2-d_{i}^{k}, d_{i}^{k}-2 p\right\}$ for an integer p with $2 p \leq d_{i}^{k}<2 p+2$. We select the vertex i^{*} for which

$$
\frac{\min \left\{2 p+2-d_{i^{*}}^{k}, d_{i^{*}}^{k}-2 p\right\}}{\alpha+\beta 2 p}
$$

is maximal, where we use $\alpha=6$ and $\beta=1$ as suggested by Bode and Irnich (2012).

3.6. Outline of the Solution Algorithm

An outline of our solution approach is provided in the following. The management of the cut pool is omitted in order to simplify the scheme:

Step 1. Call the lower bounding procedure to compute $\underline{\lambda}$ and cuts used in (5).
Step 2. Call the CCLP heuristic to compute an upper bound $\bar{\lambda}$ and an initial solution.
Step 3. If $\bar{\lambda}=\underline{\lambda}$, STOP.
Step 4. Define a relaxed MCGRP formulation as described in Section 3.4 and insert the resulting subproblem in a list Θ.

Step 5. If Θ is empty or $\bar{\lambda}=\underline{\lambda}$, STOP. Otherwise extract a subproblem P from Θ.
Step 6. Solve the subproblem P. Let λ_{P} be the solution value. If $\lambda_{P} \geq \bar{\lambda}$, go back to Step 5 .
Step 7. Separate violated constraints (1f). If the heuristic algorithm fails, apply the exact separation algorithm.

Step 8. Separate violated inequalities (1e).
Step 9. Separate violated inequalities (5b).
Step 10. Separate violated inequalities (5c).
Step 11. If some violated inequalities have been identified in Steps 7, 8, 9 and 10, add these inequalities to the cut pool and go back to Step 6.
Otherwise, if the current solution is feasible, set $\bar{\lambda}=\lambda_{P}$ and go back to Step 5 .
Step 12. If the current solution is not integer, generate two subproblems by branching on a fractional variable. Otherwise, generate two subproblems by branching on vertex degrees as described in Section 3.5.
Insert the subproblems in Θ and go back to Step 5.

4. Computational Results

The instances used in the computational experiments stem from the paper by Bosco et al. (2013). These instances were derived from the gdb instances introduced by Golden et al. (1983) for the undirected CARP and from the mval instances provided by Belenguer et al. (2006) for the mixed CARP. For each original instance, six new instances were generated using an additional parameter β in the set $\{0.25,0.30,0.35,0.40,0.45,0.50\}$, where β controls the number of required links whose demand is shifted to adjacent vertices. The new instances were named mggdb and mgval and additional details about their characteristics are discussed in Bosco et al. (2013). For the sake of brevity, we limited the investigation to instances with $\beta \in\{0.25,0.30,0.35\}$. For the other mggdb and mgval datasets the performance should remain rather similar (see Bosco et al., 2013). On the contrary, we consider all mggdb and mgval instances including those for which the number of vehicles m exceeds 7 .

In Tables 1-6, the columns named "CG" report the results obtained by a column generation (CG) method (Gaze, 2013; Gaze et al., 2013); the columns named "B\&C\&P" report the results obtained by the branch-and-cut-and-price ($\mathrm{B} \& \mathrm{C} \& \mathrm{P}$) algorithm of Bach (2014); the columns named "B\&C" report the results obtained by the B\&C algorithm of Bosco et al. (2013); the columns named "New.B\&C" report the results obtained by our B\&C algorithm. Other column headings are defined as follows:

FILE	instance name
m	number of vehicles
η	number $\left\|V_{R} \cup E_{R} \cup A_{R}\right\|$ of required elements
$\frac{\lambda}{\bar{\lambda}} H$	lower bound
$\bar{\lambda}$	initial upper bound provided by the CCLP heuristic
best solution value reached within a time limit	
(an optimal value certified by the algorithm is marked with an asterisk)	
GAP	percentage gap
CON, CAP, ODD, BAL	number of connectivity, capacity, odd-cut, balanced set inequalities
(inequalities generated in the second phase)	
NOD	number of nodes from the search tree
SEC 1	computation time in seconds for the first phase computation time in seconds for the CCLP heuristic
SEC 2	total computation time in seconds
SEC	(the time limit corresponding to 6 hours is marked with TL)

All experiments to obtain New.B\&C results were carried out on a PC equipped with 2 Intel Xeon Quad Core CPUs @3.0 GHz, with 6 GB RAM, i.e., the same PC used to obtain B\&C results. In both cases, ILOG CPLEX library, release 12.2, was used and all standard CPLEX cuts were activated. Computational experiments to obtain CG results were carried out on a PC equipped with an $\operatorname{Intel}(\mathrm{R}) \mathrm{Core}(\mathrm{TM})$ i7 CPU @2.93 GHz, with 8 GB RAM. Finally, computational experiments to obtain B\&C\&P results were carried out on a HP EliteBook with an Intel Core 2 Duo CPU P8700 @ 2.53 GHz and 4 GB RAM.

For $\mathrm{B} \& \mathrm{C}$ results, we just report times, objective function values and percentage gaps; the lower bounds are not reported because generally poor (outcomes at the root node of the search tree). For CG and $\mathrm{B} \& \mathrm{C} \& \mathrm{P}$ results, we just report lower bounds, objective function values and percentage gaps; the times are not explicitly reported but all the results were obtained within a time limit of 1 hour (2 hours for mgval instances) for CG results and 3 hours for $\mathrm{B} \& \mathrm{C} \& \mathrm{P}$ results. Note that, for the B\&C\&P algorithm, the percentage gaps were calculated as $100 \frac{(\bar{\lambda}-\underline{\lambda})}{(\lambda+\underline{\lambda}) / 2}$. With regard to the results of the B\&C algorithm of Bosco et al. (2013), the CG method, and the B\&C\&P algorithm, we use "-" to indicate that no value is available in the literature. With regard to our algorithm, we use "-" in the column $\bar{\lambda}^{H}$ when the upper bounding procedure failed.

The tables show that the possibility of finding the optimal solution for our $\mathrm{B} \& \mathrm{C}$ algorithm generally decreases with the increase of the number of vehicles m. Frequently the value provided by our lower bounding procedure is excellent. 62 out of 69 instances of the mggdb benchmark set are solved to optimality by our algorithm (21 for $\beta=0.25,21$ for $\beta=0.30$, and 20 for $\beta=0.35$). In particular, all mggdb instances studied in Bosco et al. (2013), i.e., those with up to 7 vehicles, with β in $\{0.25,0.30,0.35\}$, are solved to optimality by our algorithm. Moreover, we solve to optimality all mggdb instances with 8 vehicles. For the group of instances with 10 vehicles, we can compare our results with the CG method and the B\&C\&P algorithm. Sometimes the lower bound value or the upper bound value provided by CG method are better than the values provided by our algorithm. Anyway, for mggdb instances with 10 vehicles, the maximum percentage gap of our algorithm is approx. 14% against the value of approx. 24% provided by the CG method. For the same instances, the best performance is obtained by the B\&C\&P algorithm. Nevertheless, our algorithm solves to optimality more mggdb instances than the B\&C\&P algorithm.

The number of mgval instances solved to optimality by our algorithm is equal to 62 out of 102 (24 with $\beta=0.25,19$ with $\beta=0.30$, and 19 with $\beta=0.35$). These results confirm that the mgval instances are harder to solve due to the structure of their graphs. In this case, some instances reported in Bosco et al. (2013), with β in $\{0.25,0.30,0.35\}$, are not solved to optimality by our algorithm. Anyway, upper bound $\bar{\lambda}$ reported in Bosco et al. (2013) is never better than upper bound provided by our algorithm. Moreover, for our algorithm the maximum percentage gap is equal to 2.61% against the value of 12.08% provided by the algorithm of Bosco et al. (2013). The CG method ran just on six instances of mgval dataset considered in this paper. For $m \leq 7$, its maximum percentage gap is 25.24%. No comparison is possible for $m>7$.

Table 1: Computational results for mggdb dataset with $\beta=0.25$

No instance of mgval dataset with β in $\{0.25,0.30,0.35\}$ has been tackled by the $\mathrm{B} \& \mathrm{C} \& \mathrm{P}$ algorithm. This algorithm solely ran on the instances of mgval dataset with $\beta=0.50$. Nevertheless, for most instances of this dataset, the B\&C\&P algorithm obtained no upper bound $\bar{\lambda}$ within a time limit of 6 hours.

5. Conclusions

In this paper, we proposed a new formulation for the MCGRP and a two-phase B\&C algorithm to exactly solve it. The approach benefits from the typically very tight lower bounds computed fast in the first phase, in which an aggregated one-index formulation is solved. The performance of the overall B\&C proposed in this paper has been evaluated by carrying out computational experiments on two benchmark sets: As a result, for all mggdb instances of Bosco et al. (2013), with β in $\{0.25,0.30,0.35\}$ and $m \leq 7$, we know optimal solutions now. Optimality was proved and lower bounds were improved for many other instances of this and the second mgval benchmark set. We also studied for the first time a group of larger instances: Although we never proved optimality in these cases, the remaining gaps provided by our algorithm remain below a threshold of 20%. We suspect that our bounds unevenly contribute to these gaps and that lower bounds are tighter than upper bounds.

References

Y. Adulyasak, J.-F. Cordeau, and Jans R. Formulations and branch-and-cut algorithms for multivehicle production and inventory routing problems. INFORMS Journal on Computing, 26:103-120, 2014.
D. Ahr. Contributions to Multiple Postmen Problems. PhD thesis, Ruprecht-Karls-Universität Heidelberg, Germany, 2004.
L. Bach. Routing and Scheduling Problems - Optimization using Exact and Heuristic Methods. Ph.D. dissertation, School of Business and Social Sciences, Aarhus University, Denmark, 2014.
L. Bach, G. Hasle, and S. Wøhlk. A lower bound for the node, edge, and arc routing problem. Computers and Operations Research, 40:943-952, 2013.
J.M. Belenguer and E. Benavent. The capacitated arc routing problem: Valid inequalities and facets. Computational Optimization and Applications, 10:165-187, 1998.
J.M. Belenguer and E. Benavent. A cutting plane algorithm for the capacitated arc routing problem. Computers and Operations Research, 30:705-728, 2003.

Table 2: Computational results for mgval dataset with $\beta=0.25$

	CG	\& $\mathbf{C \& P}$	B\&C			New.B\&C										
FILE $m \quad \eta$	$\underline{\lambda} \bar{\lambda} \mathrm{GAP}$	$\underline{\lambda} \bar{\lambda}$ GAP	$\bar{\lambda}$	GAP	SEC	$\underline{\lambda} \bar{\lambda}^{H}$	CON	CAP	ODD	BAL	NOD	$\bar{\lambda}$	GAP	SEC^{1}	SEC ${ }^{2}$	SEC
$\begin{array}{lll}\text { mgval1A } & 2 & 54\end{array}$	15721025.24	--	177*	0.00	0.30	177183	40585	335	255	873		177*	0.00	0.58	8.13	17.22
mgval2A 2040	- - -		$259 *$	0.00	6.10	259273	34016	655	66	502		259*	0.00	1.29	9.75	18.15
mgval3A 2044	- - -		89*	0.00	3.21	8994	40428	323	98	539	1		0.00	0.95	7.12	16.04
mgval1B 3047	- -		217^{*}	0.00	0.13	217227	21861	1158	161	1450		$217 *$	0.00	0.55	9.05	41.93
$\begin{array}{lll}\text { mgval2B } & 3 & 48\end{array}$	- - -		$336 *$	0.00	941.47	336360	72095	1264	164	1277		$336 *$	0.00	1.59	17.68	53.04
mgval3B 3041	- -		125*	0.00	7217.32	125125	0	0		0		125*	0.00	1.85	15.81	17.66
mgval4A 3089	- -		514	1.55	TL	514542	508752	4090	737	4930		514*	0.00	5.03	85.67	582.51
mgval5A 309	- -		485*	0.00	2418.17	485520	371080	2581	442	3093		485*	0.00	1.75	77.88	482.27
$\begin{array}{llll}\text { mgval6A } & 3 & 67\end{array}$	- - -		$274 *$	0.00	11.81	274278	66638	696	302	1875		$274 *$	0.00	0.69	11.92	47.86
mgval7A 3084	- - -		$297 *$	0.00	121.29	297314	30003	605	279	1926		297*	0.00	0.89	26.28	407.94
mgval8A 388	- -	-	510	0.39	TL	510538	627092	1608	425	3198		510*	0.00	0.81	18.30	384.06
$\begin{array}{llll}\text { mgval9A } & 3 & 122\end{array}$	- -		371	1.08	TL	371391	681073	2069	1005	5921		371*	0.00	1.20	109.32	669.04
mgval10A 3129	- -		492*	0.00	5.08	492536	2132150	7443	1641	10441		492*	0.00	1.48	285.36	8200.45
mgval4B 4096	- - -	- -	537	4.74	TL	537583	809353	6003	798	6204		537*	0.00	2.43	190.11	1328.10
mgval5B 4886	- - -		493	4.26	TL	493546	305773	2670	763	3507		493*	0.00	3.34	79.40	918.19
mgval6B 463	- - -	- -	263	1.93	TL	257305	26858	9334	205	2331	10748	263*	0.00	0.73	40.20	11664.95
mgval7B 485	- -		355^{*}	0.00	1859.86	355367	159024	1384	474	3144		355^{*}	0.00	1.90	28.13	2153.19
mgval8B 4884	- - -	- -	423	4.26	TL	423481	282147	3708	766	4052		423*	0.00	2.27	34.11	1910.60
mgval9B 4112	- - -	- -	358	1.12	TL	358390	344109	5369	826	8672		358*	0.00		121.53	20123.59
mgval10B 4123	- - -		$528 *$	0.00	1.64	528570	722454	2354	427	4445		528*	0.00	1.81	410.34	19187.63
mgval4C 5100	- - -	- -	525	4.00	TL	525620	706598	7107	1218	7485		$525 *$	0.00	4.85	150.44	14925.20
mgval5C 5093	- -		584	3.94	TL	584676	313010	3562	790	4068		584*	0.00	3.83	76.29	722.30
mgval9C 50119	- - -	- -	365	4.93	TL	361365	733	0	0	180	1075	365	1.10	5.91	82.33	TL
mgval10C 5125	- - -		483	0.62	TL	483534	1104758	12277	2445	18675		483*	0.00	3.06	191.20	20129.18
$\begin{array}{llll}\text { mgval3C } & 7 & 41\end{array}$	$146154 \quad 5.19$	- - -	153	11.01	TL	153161	11741	2965	429	2855		153*	0.00	3.78	12.42	106.12
mgval1C 81	- - -	- -	-	-		278323	29116	2986	490	5418	4561	323	13.93	7.69	147.60	TL
mgval2C 848	- -		-	-	-	479512	45494	3636	541	5785	401	512	6.45	7.55	53.31	TL
mgval4D 996	- - -	- -	-	-	-	675778	102380	10161	1959	12048		778	13.24	18.54	116.88	TL
mgval5D 985	- -		-	-		635741	339945	12991	3736	18459		741	14.30		169.44	TL
mgval7C 985	- - -	- -	-	-	-	374437	154757	5129	1311	10841		437	14.42	16.26	240.32	TL
mgval8C 9878	- -		-	-	-	538625	150870	9628	1676	13664		625	13.92	10.08	154.68	TL
mgval6C $10 \quad 66$	- - -	- -	-	-	-	316378	40618	6154	1187	9566	2	378	16.40	13.19	65.49	TL
mgval9D 10121	- - -	- -	-	-	-	418498	132184	5428	1288	7232		498	16.06	39.75	201.83	TL
mgval10D 10119	- - -	- - -	-	-	-	565.5655	381573	10886	2459	16002	1	655	13.59	34.52	108.40	TL
Number of optima	0	-	12									24				

Table 3: Computational results for mggdb dataset with $\beta=0.30$

		CG			B\&C\&P			B\&C			New.B\&C											
FILE m	η		$\underline{\lambda} \quad \bar{\lambda}$	GAP		$\lambda \quad \bar{\lambda}$	GAP	$\bar{\lambda}$	GAP	SEC		$\lambda \bar{\lambda}^{H}$	CON	CAP	ODD	BAL	NOD	$\bar{\lambda}$	GAP	SEC ${ }^{1}$	SEC^{2}	SEC
mggdb19 3	10	51	51 51*	0.00	51	1 51*	0.00	51^{*}	0.00	0.36	51	151	0	0	0	0	0	51^{*}	0.00	0.41	0.57	0.98
mggdb4 4	18	253	271	6.64		0 260*	0.00	260*	0.00	39.70	260	269	952	65	24	256		260^{*}	0.00	0.89	0.74	2.72
mggdb10 4	22	241	41248	2.82	242	$242 *$	0.00	242^{*}	0.00	12.06	242	264	1293	263	41	519		242^{*}	0.00	1.37	1.29	8.94
mggdb15 4	19		4344	2.27		44^{*}	0.00	44^{*}	0.00	0.48		44	0	0	0	0	0	44^{*}	0.00	0.32	0.50	0.82
mggdb20 4	18		94100	6.00		4 94*	0.00	94*	0.00	27.27		100	631	151	21	345	398	94*	0.00	0.66	1.51	24.34
mggdb1 5	21	262	62276	5.07		3 273*	0.00	273*	0.00	4279.45	271	1285	2099	850	67	689	2253	273^{*}	0.00	2.72	2.51	77.91
mggdb3 5	19	269	69287	6.27		0 270*	0.00	270^{*}	0.00	4447.90	267	7298	979	172	46	622	363	270^{*}	0.00	1.67	1.05	17.17
mggdb6 5	22	265	65283	6.36		6276^{*}	0.00	276 *	0.00	443.39	276	6286	2077	372	58	651	1101	276 *	0.00	1.35	1.49	56.81
mggdb 7	20	258	281	8.19	273	3 273*	0.00	273*	0.00	2870.34	272	280	1670	194	37	617	14223	$273 *$	0.00	1.03	1.26	810.14
mggdb11 5	43	382	82 430	11.16	382	$2-$	-	387	1.55	TL	387		13686	1154	481	2776		$387 *$	0.00	1.53	8.71	250.78
mggdb14 5	17	100	100104	3.85	101	1 101*	0.00	101*	0.00	184.67	101	104	350	36	12	329		101*	0.00	0.58	1.06	2.48
mggdb16 5	24	105	165169	37.87		5 105*	0.00	105*	0.00	2.77	105	5113	1532	253	43	601	315	105*	0.00	0.64	2.05	30.55
mggdb17 5	22	65	6575	13.33		5 65*	0.00	65*	0.00	0.64		57	73	39	1	286	2	65^{*}	0.00	0.39	0.74	1.42
mggdb18 5	30	142	12153	7.19		4144^{*}	0.00	$144 *$	0.00	1.59	144	4157	1390	134	63	904	6	$144 *$	0.00	0.75	3.75	7.04
mggdb2 6	24	29	34307	4.23	301	1 301*	0.00	301	5.74	TL	300	324	5460	4264	61	1161	90859	$301 *$	0.00	1.28	2.65	11631.46
mggdb5 6	25	38	416	7.69	388	8 388*	0.00	388	2.82	TL	388	8412	1824	380	109	1103	256	$388 *$	0.00	0.85	3.42	37.69
mggdb13 6	24	479	529	9.45		3 483*	0.00	486	8.02	TL	463	554	3663	11941	40	1233	347098	483*	0.00	0.50	6.68	20676.03
mggdb21 6	28		21 121*	0.00		1 121*	0.00	121	0.83	TL	121	1	405	39	5	374		$121 *$	0.00	0.58	4.43	24.93
mggdb12 7	21	462	62472	2.12		7 467*	0.00	467	6.36	TL	452	490	3262	2928	127	1376	17080	467 *	0.00	1.31	1.83	1586.05
mggdb22 8	37	151	156	3.21		$3153 *$	0.00	-	-	-	153	159	4771	325	171	2132	44281	153 *	0.00	1.42	6.12	13595.79
mggdb8 10	46	329	3935	6.53		8331	0.91	-	-	-	324	4364	28144	2935	731	8445	6272	364	10.99	20.31	10.35	TL
mggdb9 10	46	278	8290	4.14		1 281*	0.00	-	-	-	273	3317	22611	5213	814	9263	668	317	13.88	18.74	24.06	TL
mggdb23 10	47	167	67188	11.17		7167^{*}	0.00	-	-	-	167	7189	6843	51390	316	4134	100200	167^{*}	0.00	1.77	10.74	20184.59
Number of	optima		2			21		13										21				

J.M. Belenguer, E. Benavent, P. Lacomme, and C. Prins. Lower and upper bounds for the mixed capacitated arc routing problem. Computers and Operations Research, 33:3363-3383, 2006.
E. Benavent, A. Corberán, and J.M. Sanchis. Linear programming based methods for solving arc routing problems. In M. Dror, editor, Arc routing: Theory, solutions and applications, pages 231-275. Kluwer Academic Publishers, 2000.
M. Blais and G. Laporte. Exact solution of the generalized routing problem through graph transformations. Journal of the Operational Research Society, 54:906-910, 2003.
C. Bode and S. Irnich. Cut-first branch-and-price-second for the capacitated arc-routing problem. Operations Research, 60: 1167-1182, 2012.
A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo. Modeling and solving the mixed capacitated general routing problem. Optimization Letters, 7:1451-1469, 2013.
A. Bosco, D. Laganà, R. Musmanno, and F. Vocaturo. A matheuristic algorithm for the mixed capacitated general routing problem. Submitted paper, 2014.
J. Bramel and D. Simchi-Levi. A location based heuristic for general routing problems. Operations Research, 43:649-660, 1995.
O. Bräysy, E. Martínez, Y. Nagata, and D. Soler. The mixed capacitated general routing problem with turn penalties. Expert Systems with Applications, 38:12954-12966, 2011.
A. Corberán and G. Laporte, editors. Arc Routing: Problems, Methods and Applications. MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2014.
A. Corberán and J.M. Sanchis. The general routing problem polyhedron: Facets from the rpp and gtsp polyhedra. European Journal of Operational Research, 108:538-550, 1998.
A. Corberán, A.N. Letchford, and J.M. Sanchis. A cutting plane algorithm for the general routing problem. Mathematical Programming, Ser. A, 90:291-316, 2001.
A. Corberán, A. Romero, and J.M. Sanchis. The mixed general routing polyhedron. Mathematical Programming, Ser. A, 96: 103-137, 2003.
A. Corberán, G. Mejía, and J.M. Sanchis. New results on the mixed general routing problem. Operations Research, 53:363-376, 2005.
A. Corberán, I. Plana, and J.M. Sanchis. A branch \& cut algorithm for the windy general routing problem and special cases. Networks, 49:245-257, 2007.
A. Corberán, I. Plana, and J.M. Sanchis. The windy general routing polyhedron: A global view of many known arc routing polyhedra. SIAM Journal on Discrete Mathematics, 22:606-628, 2008.
I. Correia, L. Gouveia, and F. Saldanha-da Gama. Discretized formulations for capacitated location problems with modular distribution costs. European Journal of Operational Research, 204:237-244, 2010.
M. Dror, editor. Arc Routing: Theory, Solutions and Applications. Kluwer, Boston, 2000.
K.A. Gaze. Exact optimization methods for the mixed capacitated general routing problem. Master's thesis, Norwegian University of Science and Technology, 2013.
K.A. Gaze, G. Hasle, and C. Mannino. Column generation for the mixed capacitated general routing. 2013. Presented at

Table 4: Computational results for mgval dataset with $\beta=0.30$

	CG	B\&C\&P	B\&C			New.B\&C										
FILE $m \quad \eta$	$\underline{\lambda} \bar{\lambda} \mathrm{GAP}$	$\underline{\lambda} \bar{\lambda} \mathrm{GAP}$	$\bar{\lambda}$	GAP	SEC	$\underline{\lambda} \bar{\lambda}^{H}$	CON	CAP	ODD	BAL	NOD	$\bar{\lambda}$	GAP	SEC^{1}	SEC^{2}	SEC
mgval1A 2053	15919618.88	- -	170*	0.00	4.38	170170	0	0	0	0		170^{*}	0.00	0.56	14.41	14.97
mgval2A 242	- - -	- -	233*	0.00	1.58	233243	54705	736	103	747		233^{*}	0.00	0.47	7.64	33.46
mgval3A 246	-	- -	105*	0.00	6.34	105106	61430	858	184	1563		105*	0.00	0.92	8.00	73.88
mgval1B $\quad 3 \quad 47$	- - -	$--$	194*	0.00	24.46	194204	20288	1078	147	1174		$194 *$	0.00	1.54	11.40	146.63
mgval2B 3049	$-\quad-\quad-$	-	347*	0.00	3309.99	347376	32314	706	71	756		$347 *$	0.00	1.01	13.14	140.70
mgval3B 3041	- - -	-	115*	0.00	31.27	115131	41711	1386	389	1637		$115 *$	0.00	1.76	8.15	51.05
mgval4A	$-\quad-\quad-$	-	477	1.75	TL	477506	171935	3072	542	3294		477^{*}	0.00	4.93	40.91	2098.60
$\begin{array}{lll}\text { mgval5A } & 3 & 86\end{array}$	$-\quad-\quad-$	-	445*	0.00	96.32	445477	301480	2499	514	3201		$445 *$	0.00	1.73	60.37	509.47
$\begin{array}{lll}\text { mgval6A } & 3 & 66\end{array}$	- - -	-- -	252	1.84	TL	252258	79401	1212	458	2580		252^{*}	0.00	2.42	9.88	139.83
mgval7A 3077	- - -	-- -	$324 *$	0.00	1.72	324339	66313	1035	787	5080		$324 *$	0.00	0.89	69.36	3197.46
$\begin{array}{llll}\text { mgval8A } & 3 & 88\end{array}$	$-\quad-\quad-$	- - -	431	0.81	TL	431465	378638	1881	485	3054		431^{*}	0.00	0.78	290.39	1108.07
mgval9A 318	- - -	- - -	357	0.28	TL	357375	318780	1088	300	3607		357^{*}	0.00	1.29	82.37	4549.30
mgval10A 3127	- - -	- - -	484	0.62	TL	484506	2430187	6405	1227	9470		484*	0.00	2.69	104.87	1986.67
mgval4B 4	$-\quad-\quad-$	- - -	533	5.19	TL	531533	935	19	0	111	3976	533	0.38	4.06	100.37	TL
mgval5B 483	- - -	- - -	490	4.58	TL	484490	1165	34	0	320	9764	490	1.22	4.21	80.31	TL
mgval6B 464	- - -	- - -	262*	0.00	6331.62	262278	89991	2521	384	3758	1302	262 *	0.00	1.30	24.84	1425.85
mgval7B 488	- - -	$--$	344	1.91	TL	344354	125319	1456	464	3175		$344 *$	0.00	2.53	65.55	632.25
mgval8B 483	- - -	- - -	400	2.35	TL	400470	115184	4560	529	4563		400*	0.00	2.17	37.73	9578.23
mgval9B 40110	- - -	- - -	348	1.15	TL	348380	563806	12495	2372	13837		$348 *$	0.00	2.65	102.65	12667.79
mgval10B 4123	- - -	-	441	1.36	TL	441491	1065874	4932	1121	6860		441*	0.00	3.32	85.53	14180.09
mgval4C 598	- - -	- - -	498	5.92	TL	492498	398	9	0	106	2354	498	1.20	6.70	145.53	TL
mgval5C 5087	- - -	- - -	551	6.80	TL	549551	1532	1	0	187	2345	551	0.36	3.60	85.53	TL
mgval9C 5112	- - -	$--\quad-$	335	1.49	TL	335378	1080608	12121	2355	16082		335^{*}	0.00	1.74	117.24	20185.91
mgval10C 5125	- - -	$--\quad-$	478	2.93	TL	475527	961174	14481	2408	19960	2301	476	0.21	4.55	156.85	TL
mgval3C 741	$146165 \quad 11.52$	--	153	12.08	TL	149153	223	12	0	239	5192	153	2.61	3.06	20.52	TL
mgval1C 88	$-\quad-\quad-$	$--\quad-$	-	-	- -	255310	19446	2451	575	5362	5045	310	17.74	4.06	125.91	TL
mgval2C 8045	-	-	-	-	-	489534	45832	3956	438	7535	5041	534	8.43	6.83	30.08	TL
mgval4D 9894	-	-	-	-	-	652765	107573	9627	1548	11953		765	14.77	21.27	149.42	TL
mgval5D 968	- - -	- - $\quad-$	-	-	-	612736	292451	11964	4020	17484		736	16.85	10.49	208.73	TL
mgval7C 95	-	- - -	-	-	-	347388	74456	1609	397	6267		388	10.57	11.65	49.64	TL
mgval8C 9075	-	-	-	-	-	510590	131217	10126	1946	12947	2	590	13.56	10.51	84.55	TL
mgval6C $10 \quad 64$	-	-	-	-	-	307364	37530	6875	977	10187	1834	364	15.66	16.08	30.81	TL
mgval9D 1010	- - -	$-\quad-$	-	-	- -	421.13501	248834	9511	1860	15279		501	15.77	49.43	100.60	TL
mgval10D 10121	-	- - -	-	-	- -	530.8640	281506	9961	2079	14881	1	640	17.06	63.53	170.16	TL
Number of optima	0	-	9									19				

Table 5: Computational results for mggdb dataset with $\beta=0.35$

WARP1 (1st Workshop on Arc Routing Problems), Copenhagen, 2013.
B.L. Golden, J.S. Dearmon, and E.K. Baker. Computational experiments with algorithms for a class of routing problems. Computers and Operations Research, 10:47-59, 1983.
L. Gouveia and F. Saldanha-da Gama. On the capacitated concentrator location problem: a reformulation by discretization. Computers and Operations Research, 33:1242-1258, 2006.
L. Gouveia, M.C. Mourão, and L.S. Pinto. Lower bounds for the mixed capacitated arc routing problem. Computers and Operations Research, 37:692-699, 2010.
J.C.A Gutiérrez, D. Soler, and A. Hervás. The capacitated general routing problem on mixed graphs. Revista Investigacion Operacional, 23:15-26, 2002.
G. Hasle, O. Kloster, M. Smedsrud, and K. Gaze. Experiments on the node, edge, and arc routing problem. SINTEF ICT, Report No. A23265 (2012-05-21), 2012.
J.K. Lenstra and A.H.G. Rinnooy Kan. On general routing problems. Networks, 6:273-280, 1976.
A.N. Letchford. New inequalities for the general routing problem. European Journal of Operational Research, 96:317-322, 1996.
A.N. Letchford. The general routing polyhedron: A unifying framework. European Journal of Operational Research, 112: 122-133, 1999.
Y. Nobert and J.-C. Picard. An optimal algorithm for the mixed chinese postman problem. Networks, 27:95-108, 1996.
C.S. Orloff. A fundamental problem in vehicle routing. Networks, 4:35-64, 1974.
M.W. Padberg and M.R. Rao. Odd minimum cut-sets and b-matchings. Mathematics of Operations Research, 7:67-80, 1982.
R. Pandit and B. Muralidharan. A capacitated general routing problem on mixed networks. Computers and Operations Research, 22:465-478, 1995.
C. Prins and S. Bouchenoua. A memetic algorithm solving the VRP, the CARP and general routing problems with nodes, edges and arcs. In W.E. Hart, N. Krasnogor, and J.E. Smith, editors, Recent advances in memetic algorithms (Studies in fuzziness and soft computing, Vol. 166), pages 65-85. Springer, 2005.
G. Reinelt and D.O. Theis. On the general routing polytope. Discrete Applied Mathematics, 156:368-384, 2008.
P. Toth and D. Vigo, editors. The Vehicle Routing Problem. SIAM, Philadelphia, 2002.
P. Toth and D. Vigo, editors. Vehicle Routing: Problems, Methods, and Applications. MOS-SIAM Series on Optimization. SIAM, Philadelphia, 2014.
L.A. Wolsey. Integer Programming. Wiley, Chichester, New York, 1998.

Table 6: Computational results for mgval dataset with $\beta=0.35$

	CG	B\&C\&P	B\&C			New.B\&C										
FILE $m \quad \eta$	$\underline{\lambda} \bar{\lambda} \mathrm{GAP}$	$\underline{\lambda} \bar{\lambda} \mathrm{GAP}$		GAP	SEC	$\underline{\lambda} \bar{\lambda}^{H}$	CON	CAP	ODD	BAL	NOD	$\bar{\lambda}$	GAP	SEC^{1}	SEC^{2}	SEC
$\begin{array}{lll}\text { mgval1A } & 2 & 47\end{array}$	15218517.84	- -	158*	0.00	0.18	158162	34126	270	84	477	1	158*	0.00	0.54	4.88	7.50
mgval2A 240	-	- -	286*	0.00	1.99	286299	32529	629	83	751		286*	0.00	0.50	3.31	9.48
mgval3A 243	-	- -	84*	0.00	2.94	8490	43329	445	102	655	4	84*	0.00	1.85	4.13	14.66
mgval1B 3048	- - -	- - -	192*	0.00	39.57	190208	26463	3302	251	1883	1276	192*	0.00	0.61	9.68	313.01
mgval2B 3046	- - -	- - -	326*	0.00	135.13	326344	65861	4763	217	1594	3704	326*	0.00	1.52	5.68	577.02
mgval3B 3041	- - -	-	113*	0.00	128.98	113115	37322	1311	118	1510		113*	0.00	1.82	4.60	32.98
mgval4A	$-\quad-\quad-$	-	430	1.94	TL	430458	451528	4898	902	5302		430*	0.00	5.04	41.54	449.35
mgval5A 308	$-\quad-\quad-$	-	454	3.30	TL	454477	491690	5732	801	4971	1672	454*	0.00	3.21	30.47	2396.47
mgval6A 364	- - -	- - -	248*	0.00	50.23	248256	56801	1165	274	2288		248*	0.00	0.73	7.15	126.41
mgval7A 3078	- - -	- - -	$264 *$	0.00	1.19	264278	13036	395	271	1539	6	264*	0.00	0.97	21.11	134.25
mgval8A 3084	- - -	- - -	415	0.24	TL	415446	306694	1680	427	3232		415*	0.00	0.82	22.25	296.02
mgval9A 3116	- - -	$--\quad-$	$324 *$	0.00	1071.31	324341	454788	2815	760	5740		$324 *$	0.00	1.30	95.38	2698.20
mgval10A 3122	- - -	- - -	475*	0.00	2230.29	475502	1468685	4928	1153	8683		475*	0.00	3.47	100.54	7015.32
mgval4B 4	$-\quad-\quad-$	- - -	531	5.85	TL	529531	276	7	0	56	2128	531	0.38	4.52	50.54	TL
mgval5B 481	- - -	- - -	467	4.57	TL	466502	249130	6257	915	6036	3254	467	0.21	5.51	36.38	TL
mgval6B 462	- - -	- - -	$250 *$	0.00	1715.66	250271	79128	3263	478	3909	571	250^{*}	0.00	3.27	15.83	717.58
mgval7B $4 \quad 79$	- - -	- - -	$325 *$	0.00	208.79	325338	105168	1536	288	3095	195	325^{*}	0.00	1.75	30.89	1756.39
mgval8B 4878	- - -	- - -	385	2.34	TL	385454	204077	4259	846	4696		385*	0.00	0.90	29.02	999.01
mgval9B 4106	- - -	- - -	332	3.46	TL	331358	495547	9622	2060	12081	367	331*	0.00	1.53	147.02	2717.94
mgval10B 4118	- - -	- - -	461	0.87	TL	461492	918347	5674	1267	7526		461*	0.00	3.00	102.78	9490.73
mgval4C 593	- - -	- - -	516	7.13	TL	516587	591685	9295	1005	7785	1282	516*	0.00	7.48	70.79	13985.61
mgval5C 58	- - -	- - -	586	7.77	TL	579613	233054	4341	687	5933	2416	586	1.19	3.96	50.15	TL
mgval9C 5115	- - -	- - -	329	3.95	TL	328329	295	5	0	75	1178	329	0.30	5.39	145.38	TL
mgval10C 5122	- - -	- - -	431	4.61	TL	428431	694	8	0	165	1648	431	0.70	4.37	185.38	TL
mgval3C 70	1431494.03	- -	150	6.84	TL	149150	223	15	0	319	1814	150	0.67	3.35	18.45	TL
mgval1C 848	- - -	$-{ }_{-}$	-	-	-	272312	24820	2646	532	6369	10915	312	12.82	2.21	34.66	TL
mgval2C 8045	-	$-{ }_{-} \quad-$	-	-	-	482520	46451	5405	474	7365	11806	520	7.31	7.14	23.39	TL
mgval4D 989	- - -	- -	-	-	-	640.5729	222925	25178	3875	22567	1	729	12.07	31.81	220.00	TL
mgval5D 980	-	$--\quad-$	-	-	-	568658	223254	13130	3635	19493		658	13.68	9.28	61.38	TL
mgval7C 98	- - -	- - -	-	-	-	336390	138293	4687	1061	9382		390	13.85	16.73	100.83	TL
mgval8C 975	-	$--\quad-$	-	-	-	487602	123893	11772	2169	15512	939	602	19.10	13.95	53.41	TL
mgval6C $10 \quad 60$	- - -	$--\quad-$	-	-	-	303372	31749	8475	1119	9091	2237	372	18.55	17.01	31.32	TL
mgval9D 10115	- - -	- -	-	-	-	422491	180649	8511	2230	15749		491	14.05	18.02	124.75	TL
mgval10D $10 \quad 114$	-	- - $\quad-$	-	-	-	519594	455451	19154	3846	23545	1	594	12.63	43.53	230.53	TL
Number of optima	0	-	12									19				

[^0]: Email addresses: claudia.bode@uni-mainz.de (Claudia Bode), irnich@uni-mainz.de (Stefan Irnich), demetrio.lagana@unical.it (Demetrio Laganà), vocaturo@unical.it (Francesca Vocaturo)
 Technical Report LM-2014-02

