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tion 3.3.3 on Prepro
essingThe ideas of the 1-level hierar
hy 
an be generalized to hierar
hies with more levels. A2-level hierar
hy of seed points divides the giant tour on the �rst level into se
tions of size
nα. On the se
ond level, several of these se
tions are 
ombined to 2-level se
tions. With
0 < α < β < 1, there are n/nβ se
ond level se
tions, ea
h of whi
h 
omprises nβ/nαse
tions of level one. Figure 1 depi
ts the 2-level hierar
hy. Any segment ranging from

level 1 section of      nodesn
¯ level 1 seed point

level 2 section of       nodesn
® level 2 seed point

Fig. 1. 2-Level Hierar
hyposition i to position j de
omposes into a maximum of �ve smaller se
tions, i.e., (1) from ito the �rst level 1 seed point sfirst
1 , (2) from sfirst

1 to the �rst level 2 seed point sfirst
2 ,(3) from sfirst

2 to the last level 2 seed point slast
2 , (4) from slast

2 to the last level 1 seedpoint slast
1 , (5) from slast

1 to j. If i and j fall into the same (�rst or se
ond) level se
tion,some of the se
tions are redundant. In order to handle any arbitrarily 
hosen i and j, theresulting number of segments to 
onsider is
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sin
e the �rst term estimates the number of segments (inverted or not) between two
onse
utive level 1 seed points, the se
ond term for the number of segments between thelevel 2 and level 1 seed points in the same level 2 se
tion, third between any pair of thelevel 2 seed points, and �nally between any pair of level 1 seed points of the same level 2se
tion. The term max{1 + α, 1 − α, 2 − 2β, 1 + β − 2α} is minimal under pre
ondition
0 < α < β < 1 for α∗ = 1/7 and β∗ = 3/7 yielding an e�ort of O (n8/7).Proposition 1 Segment REFs and inverse segment REFs for a 2-level hierar
hy of seedpoints for a giant tour of length n 
an be 
omputed in O (Rn8/7) time and spa
e.Finally, we see that a giant tour, whi
h is arbitrarily split into k segments, de
omposesinto a maximum of 3k segments of the 1-level hierar
hy and 5k segments of the 2-levelhierar
hy. With k �xed, 3k and 5k is also �xed and with Proposition 1 we get the followingresult:Theorem 2 Any VRP neighborhood of size O (nk), in whi
h moves de
ompose the gianttour into a �xed number of segments, 
an be sear
hed in O (Rnk) time and O (Rn8/7)spa
e.Without proof, we remark that a 3-level hierar
hy 
an redu
e the e�ort for prepro
essingto O (n16/15) by 
onsidering up to 7k segments resulting from a k-edge ex
hange move.In general, an ℓ-level hierar
hy leads to the 
onsideration of up to (2ℓ+1)k segments and
O (n2ℓ+1/(2ℓ+1−1)) e�ort.Additional Results for Se
tion 4 on Modeling Issues4.4∗ VRPs with Compatibility ConstraintsTwo types of (in)
ompatibilities have been 
onsidered in the literature thus far. First, sitedependen
ies (SDVRP, e.g., Cordeau and Laporte (2001)) re�e
t that some vehi
les 
an-not serve some requests due to the fa
t that, e.g., spe
ial fa
ilities are needed to performthe servi
e or a parti
ular vehi
le type is inappropriate for rea
hing a 
ustomer lo
atedon a narrow street. To model these types of 
onstraints, we propose 
onsidering groups ofvehi
les and requests that behave identi
ally w.r.t. 
ompatibility. Let g(i) ∈ {1, . . . , G}be the group of a request node i ∈ R, let h(o), h(d) ∈ {1, . . . ,H} be the vehi
le groupof o ∈ O and d ∈ D respe
tively, and let (κgh) ∈ {0, 1}G×H be the 
ompatibility matrix(κgh = 1 means that g and h are 
ompatible). If G ≤ H, we 
an use G binary resour
es
{1, 2, . . . , G} representing whi
h groups of requests are 
olle
ted along the tour. Ex
eptfor the reset REFs on ar
s (d, o), all other REFs are of the form f g

ij(T ) = max{aj , T},i.e., they are 
ompletely determined by the lower bounds of the resour
e intervals. Route-start nodes have resour
e intervals [0, 1]G; entering a request node j sets the resour
e g(j)to one, i.e., aj = (0, . . . , 0, 1, 0, . . . , 0)⊤ (with the 1 at position g(j)). For ea
h resour
e
g ∈ {1, . . . , G}, the 
ompatibility is 
he
ked at the route-end nodes d ∈ D using a resour
einterval [0, κg,h(d)]. Alternatively for H < G, one should use H binary resour
es {1, . . . ,H}representing the possible vehi
le groups. REFs are of the same form as before. At a route-start node o ∈ O, the resour
e 
onsumption is set to ao = (0, . . . , 0, 1, 0, . . . , 0)⊤ (withthe 1 at position h(o)). Feasibility is 
he
ked at all request nodes i where the resour
einterval is set to [0, κg(i),h] for ea
h resour
e h ∈ {1, . . . ,H}.Se
ond, in
ompatibility among requests o

urs, e.g., in the 
ontext of hazardous materialtransportation or transportation of gro
eries (frozen and unfrozen goods, di�erent 
ooling2



requirements). Again, requests are grouped into 
lasses {1, . . . , G} with 
lass g(i) forrequest node i ∈ R. Let (κg,g′) ∈ {0, 1}G×G be the 
ompatibility matrix. Entering arequest node requires that the resour
e g(i) is at zero guaranteed by the resour
e interval
[0, 0] for this resour
e (upper bound 1 for other resour
es). At the same time, whenentering i, all in
ompatible resour
es, i.e., g′ ∈ {1, . . . , G} with κgg′ = 0 have to be set toone. Hen
e, REFs are of the form f g

ij(T ) = max{1 − κg,g(j), Tg} for g ∈ {1, . . . , G}.4.5∗ Interdependent Resour
esInterdependent resour
es arise naturally in some real-world appli
ations or they areimposed by modeling issues, espe
ially if one wants to model with REFs that satisfyall of the ne
essary 
onditions stated in Se
tion 3. Examples are load-dependent ortime-dependent travel 
osts or several types of non-trivial tari�s, where the 
ost ofa tour depends on the time and distan
e travelled, the (maximum) load transported,the time spent on traveling, waiting and servi
e et
. Irni
h (2006) 
onsiders severalof these examples and points out the following results: (1) Appli
ations with simul-taneous delivery and pi
kup (VRPSDP) require two dependent resour
es and REFswith interdependent resour
e 
onsumptions. These are REFs of the form fij(T, T ′) =
(max{a, T + t, T ′ + u},max{a′, T + t′, T ′ + u′}) for both, ar
s and segments. Their in-verses are of the form f inv

ij (S, S′) = (min{b, S−t, S′+t′},min{b′, S−u′, S′−u′}). (2) Costfun
tions with polynomial fun
tions for the load-dependent 
ost have REFs that 
an begeneralized to segments. (3) Together with the results given by Desaulniers and Vil-leneuve (2000), limited waiting times, limited working hours (with individual weights fortraveling, servi
e, and waiting) 
an be handled by non-de
reasing REFs. REFs have thesame form as those of the VRPSDP. In all these 
ases, the te
hniques of Se
tion 3 areappli
able, so that an a

eleration of LS moves is possible. Note further that the modelingof waiting 
osts 
an also be done with non-de
reasing REFs. Sin
e these 
ost fun
tionsare not separable by ar
s, sequential sear
h te
hniques are not dire
tly appli
able butresults for the 
onstant time feasibility test of Se
tion 3 remain valid.Contrary, important real-world 
onstraints and 
ost fun
tions exist that do not �t intothe 
ontext of a

elerated lo
al sear
h pro
edures as given in Se
tion 3. The paper (Irni
h,2006) points out that, e.g., soft-time windows, time-dependent travel times, and non-lineartari�s for load-dependent 
osts do not �t into the uni�ed framework. Finally, appli
ationswith multiple time windows 
an have segment REFs with a high number of 
ases todistinguish, so that multiple time window 
onstraints do not �t fully into the uni�edframework. O (1) feasibility testing is not a

omplishable. Nevertheless, the methods ofSe
tion 3 remain appli
able and result in e�
ient LS algorithms also for these types ofVRPs.4.6∗ Heterogeneous Fleet VRPsHeterogeneity of the vehi
le �eet has been 
onsidered by several authors (see, e.g., Tothand Vigo, 2002) and regards the following aspe
ts: di�erent (1) 
apa
ities Qk, (2) �xed
osts fk, (3) travel times tkij and maximum route durations T k, (4) variable 
osts ck
ij forgroups of vehi
les of type k ∈ {1, . . . ,K}, and (5) site dependen
ies, see above.The giant tour representation 
an dire
tly handle aspe
ts (1) and (2) by de�ning vehi
letype-spe
i�
 route-start and route-end nodes, i.e., O = O1∪· · ·∪OK and D = D1∪· · ·∪

DK . Fixed 
osts fk 
an be put on the 
onne
tions (ok, i) for all ok ∈ Ok, i ∈ R while the3



resour
e load is only bounded on nodes dk ∈ Dk by the resour
e interval [0, Qk].Adding vehi
le-spe
i�
 travel times and route durations (3) requires additional resour
esto ta
kle the problem e�
iently. We suggest to use K+2 resour
es, one resour
e r = k∗ tore
ord the a
tual vehi
le type, K resour
es r = timek to model the travel time a

ordingto ea
h possible vehi
le type k, and one resour
e r = time for the a
tual time alongthe giant tour. Depending on resour
e k∗, the resour
e time is updated a

ording to theinformation gathered in resour
e timek∗ . It is important to mention that resour
es timekare not bounded, i.e., the 
orresponding 
onstraints are never violated but the a
tualtime resour
e r = time is bounded.Finally, vehi
le-dependent 
osts (4) 
an be handled similarly to vehi
le-dependent traveltimes, so that O (1) feasibility 
he
ks and 
ost 
omputations are possible. Hen
e, thesame worst-
ase results, as derived in Se
tion 3.3, apply here. It is beyond the s
ope ofthis paper to give details on the REFs and their generalizations to segments. Note thatvehi
le-dependent 
osts forbid the dire
t use of sequential sear
h te
hniques be
ause 
ostsare not dire
tly retrievable from the ar
s. Nevertheless, the use of lower and upper boundsfor ar
 
osts 
an lead to variants of sequential sear
h pro
edures with weaker bounding
riteria. These 
riteria allow the a

eleration of LS algorithms w.r.t their average 
aserunning time.4.7∗ Periodi
 VRPsIn periodi
 VRPs (see, e.g., (Cordeau et al., 1997)), 
ustomers have to be servi
ed a
-
ording to feasible visiting patterns, e.g., in a week T = {mo, tu,we, th, fr, sa} two orthree visits a

ording to the patterns mo/we/fr, tu/th/sa, mo/we, tu/fr or we/sa. Pe-riodi
 problems 
an be modeled with one request node for ea
h 
ombination of 
ustomerand day. Assume that a route on day mo visits three 
ustomers i, j and k, 
ustomer i isservi
ed a

ording to visiting pattern mo/we/fr, 
ustomer j is servi
ed every day withpattern mo/tu/we/th/fr/sa, and 
ustomer k is servi
ed on mo and th only. In our repre-sentation the 
orresponding route on Monday is p = (omo, imo, itu, jmo, kmo, ktu, kwe, d
mo),i.e., the route 
overs demands of 
onse
utive days for a 
ustomer. A feasible route plan,therefore, 
orresponds with a Hamiltonian 
y
le in this parti
ularly de�ned routing graph.By means of spe
ialized non-de
reasing REFs it is also possible to ensure the feasibility ofroutes, i.e., that a route on day t ∈ T 
overs only sequen
es of 
onse
utive 
ustomers/day
ombinations starting with day t. A des
ription of the modeling approa
h is beyond thes
ope of this paper but a more detailed report on modeling periodi
 VRPs with the helpof resour
es is in preparation.4.8∗ Inter-Tour Resour
es and ConstraintsAnother strength of the uni�ed framework is that it is able to handle inter-tour resour
esand 
onstraints by 
onsidering the giant route as a single resour
e-feasible path. Alongthis path, global resour
es 
an be updated and limited. First of all, 
ost is a resour
ewhi
h is a

umulated along the entire giant route; it is never reset at route 
onne
tingar
s (d, o). Some examples of the usefulness of inter-tour resour
es and 
onstraints willbe sket
hed in the following paragraphs. Note that in 
olumn generation models, theinter-route 
onstraints are those �
ompli
ated� 
onstraints whi
h are put into the masterprogram together with the 
overing 
onstraints, 
f. (Desaulniers et al., 2005; Lübbe
keand Desrosiers, 2005). 4



4.8.1∗ Limiting the Number of Routes of Certain Chara
teristi
sA �rst example of inter-tour 
onstraints is the requirement that only a limited numberof tours with a 
ertain 
hara
teristi
 are allowed. An example is a restri
ted number of�short� or �long� routes. A �rst resour
e measures the (spatial or temporal) length ofa route. Whenever a 
ertain limit is ex
eeded, the route is regarded as �long�. A se
ondresour
e re
ords the number of long routes. This resour
e is only modi�ed on ar
s enteringa route-end node d ∈ D, more pre
isely, in
remented by unit if the �rst resour
e ex
eedsthe given limit. Su
h a resour
e update yields to non-de
reasing REFs. Generalizingthese REFs to segments of the giant tour is possible, but 
umbersome to write down.These REFs do not have proper inverses w.r.t. the se
ond resour
e for 
ounting longroutes. Anyway, su
h a proper inverse is not really required. The se
ond resour
e 
anbe propagated in a forward dire
tion along the entire giant route. The resulting resour
e
onsumption has to be 
he
ked at the very last node only, sin
e it is globally boundedby a �xed upper bound. Using similar modeling tri
ks, it is possible to enfor
e so-
alledbalan
ing 
onstraints, e.g., in order to limit the ratio between tours performed by full-timeand part-time employees.Moreover, inter-tour 
onstraints are essential in 
ombined multi-depot and heterogeneous�eet problems. A straightforward approa
h uses as many route-start and route-end nodesas possible depot/vehi
le type pairs exist. In situations where a limited �eet 
an beassigned to di�erent depots, the number of depot/vehi
le pairs ex
eeds the real size ofthe �eet (2 depots, 2 types of vehi
les with 3 and 4 
ars, respe
tively; the overall numberof depot/vehi
le pairs is 14 = 2 · (3 + 4) but only 7 
ars are available). Resour
es 
anlimit the overall number of vehi
les of ea
h type or limit the number of tours departingfrom a spe
i�
 depot.4.8.2∗ Handling of Sorting Capa
itiesIn postal appli
ations, an important subproblem is the routing of letter mail and par-
el 
olle
ting tours. These tours bring letter mail to produ
tion/sorting 
enters wheremail and par
els are sorted, 
ommissioned, and sent to inbound fa
ilities. Servi
e require-ments result in �xed 
uto� times at the sorting 
enters. These 
uto�s imply in turn thatletters/par
els are brought in 
onstantly over time, always early enough su
h that theremaining quantity 
an be pro
essed in the remaining time before 
uto�. The e�e
t isthat tours have to deliver quantities a

ording to 
ertain input requirements formulatedover time. More pre
isely, we have 
onstraints stating that, for ea
h point T in the plan-ning horizon, the overall quantity delivered by all tours arriving at T or later is boundedfrom above by an amount Q(T ). If the 
urve T 7→ Q(T ) is dis
retized over time, 
orre-sponding resour
es and REFs 
an 
apture the limited sorting 
apa
ities at the pro
essing
enters. Similar 
onstraints arise when vehi
le routing is 
onsidered as a transportationsub-pro
ess in supply-
hain design where fa
ilities in 
onse
utive stages of the 
hain haveto perform time-
onsuming pro
esses on homogeneous goods, see (Hemps
h and Irni
h,2007). 5



Additional Results for Se
tion 5 on Computational Results5.5∗ Pi
kup and Delivery ProblemsWhen solving pi
kup-and-delivery problems, a request-relo
ation neighborhood is an in-teresting option (see, e.g., Toth and Vigo, 1997). Sin
e a request 
onsists of two nodes,a pi
kup node i+ and a delivery node i−, the two nodes are removed from their 
ur-rent positions and inserted into new positions (the 
ase where only one of these nodes ismoved is already 
overed by the relo
ation move). Clearly, an instan
e with n requestsand maximum route length L implies a neighborhood of size O (n2L), whi
h is of theorder O (n3) when there is no upper bound for the route lengths. The magister degreethesis by Bells
heidt (2005) gives details of how di�erent 
ases have to be handled ina sequential sear
h pro
edure (pi
kup and delivery nodes 
an be in 
onse
utive or non-
onse
utive positions before/after the modi�
ation, i.e., sub
ase (h1)-(h4) in Figure 4).It is beyond the s
ope of this paper to des
ribe these implementations in detail.For a 
omparison of sear
h pro
edures for PDPTW, we have used the ben
hmark instan
esof Li and Lim (2001). These instan
es are 
onstru
ted similar to the Solomon instan
esfor VRPTW, i.e., there are groups of 
lustered, random and mixed instan
es with short aswell as long tours. The number n of request nodes varies from about 100 to 1 000 (n/2 isthe number of pi
kup-and-delivery requests). For the sake of brevity, we restri
t ourselvesto reporting results for the request-relo
ation neighborhood, see Figure 4(h1�h4).
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Fig. 2. Speedup of Sequential Sear
hvs. Lexi
ographi
 Sear
h for Li&LimPDPTW Instan
es, A

eleration Fa
-tor freq−reloc for the Request-Relo
ationNeighborhoodThe results for PDPTWs are displayed in Figure 2 and indi
ate that the speedup of therequest-relo
ation neighborhood is large. As seen for the a
b-neighborhood, the empiri
alevaluation of these O (n3) neighborhoods indi
ates that they bene�t even more stronglyfrom the sequential sear
h approa
h than the 
lassi
al quadrati
 neighborhoods do. Inspite of the previously presented results, there is no signi�
ant di�eren
e between in-stan
es with short and long routes. A possible explanation for this result 
ould be thatpi
kup-and-delivery routes di�er substantially from 
ost-minimal MTSP tours. Hen
e,there is already a large fra
tion of moves that seems to be improving but is, in fa
t,infeasible. This seems to apply equally to instan
es with short and long routes.5.6∗ Periodi
 Vehi
le Routing ProblemsBen
hmarks problems for the PVRP are available from (Cordeau et al., 1997). Sin
ewe were 
omputing all REFs in advan
e, we had to omit the largest instan
e p13 with
n = 417·7 = 2919 request nodes. The remaining 31 instan
es range from n = 20·4 = 80 to6



n = 153 ·6 = 918. Re
all that our implementation uses the giant-tour representation withnodes for 
ustomer/day pairs, where a single delivery at 
ustomer i at day t 
overing thedemands of days t, t + 1, . . . , t′ is en
oded as a string it, it+1, . . . , it′ . In order to �relo
atea 
ustomer� from one route to another, it must be possible to relo
ate the entire string.Hen
e, the maximum string length ℓ for Or-opt and string-ex
hange moves is in
reasedto the maximum length of the time horizon, i.e., to |T | = 10.The speedups for the PVRP instan
es are mainly 
orrelated to both parameters, thenumber of request nodes n and the average number n/r of nodes per route. Sin
e we didnot �nd a meaningful grouping of instan
es that re�e
ts both parameters, displaying theresults in a �gure is hardly possible. Thus, we report results for fN and the six neigh-borhoods introdu
ed in Se
tion 5.1.1 in textual form: The speedup fa
tor fswap for swapsvaries from 2.7 for p14 to 49.4 for p09 with an average of 10.7 over all 31 instan
es. For theother neighborhoods, the maximum values of fN were always obtained for the instan
ep09 with n = 800 and n/r = 100. The minima resulted from the instan
es p14 and p17with n = 80 and n = 160 request nodes and n/r = 10 and n/r = 13, 3̄ respe
tively. For2-opt we 
omputed f2−opt (min/avg/max) 3.0/11.5/28.3, for 2-opt∗ 2.9/8.3/31.1, for noderelo
ation 3.0/6.9/11.9, Or-opt 2.6/17.6/75.8, and Or-Opt with inversion 2.0/16.5/70.3.As before, the largest speedups were found for the string-ex
hange neighborhood with
13.6/87.0/473.9 and for the a
b neighborhood with 3.5/96.5/1 088.0Referen
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