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Additional Results for Section 3.3.3 on Preprocessing

The ideas of the 1-level hierarchy can be generalized to hierarchies with more levels. A
2-level hierarchy of seed points divides the giant tour on the first level into sections of size
n®. On the second level, several of these sections are combined to 2-level sections. With
0 < a < B <1, there are n/nﬁ second level sections, each of which comprises nﬁ/na
sections of level one. Figure 1 depicts the 2-level hierarchy. Any segment ranging from
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Fig. 1. 2-Level Hierarchy

position ¢ to position j decomposes into a maximum of five smaller sections, i.e., (1) from ¢
to the first level 1 seed point s{imt, (2) from S{imt to the first level 2 seed point sgimt,
(3) from sgimt to the last level 2 seed point s5*!, (4) from sk! to the last level 1 seed
point 4%t (5) from st to j. If i and j fall into the same (first or second) level section,
some of the sections are redundant. In order to handle any arbitrarily chosen i and j, the

resulting number of segments to consider is
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since the first term estimates the number of segments (inverted or not) between two
consecutive level 1 seed points, the second term for the number of segments between the
level 2 and level 1 seed points in the same level 2 section, third between any pair of the
level 2 seed points, and finally between any pair of level 1 seed points of the same level 2
section. The term max{1 + «,1 — «,2 — 23,1 + [ — 2a} is minimal under precondition
0<a<f<1fora*=1/7and 3* = 3/7 yielding an effort of O (n®7).

Proposition 1 Segment REFs and inverse segment REFs for a 2-level hierarchy of seed
points for a giant tour of length n can be computed in O (Rn8/7) time and space.

Finally, we see that a giant tour, which is arbitrarily split into k segments, decomposes
into a maximum of 3k segments of the 1-level hierarchy and 5k segments of the 2-level
hierarchy. With k fixed, 3k and 5k is also fixed and with Proposition 1 we get the following
result:

Theorem 2 Any VRP neighborhood of size O (n¥), in which moves decompose the giant
tour into a fized number of segments, can be searched in O (Rn*) time and O (Rn®/7)
space.

Without proof, we remark that a 3-level hierarchy can reduce the effort for preprocessing
to @ (n'%/15) by considering up to 7k segments resulting from a k-edge exchange move.
In general, an ¢-level hierarchy leads to the consideration of up to (2¢+ 1)k segments and
O (2 /@) effort.

Additional Results for Section 4 on Modeling Issues
4.4 VRPs with Compatibility Constraints

Two types of (in)compatibilities have been considered in the literature thus far. First, site
dependencies (SDVRP, e.g., Cordeau and Laporte (2001)) reflect that some vehicles can-
not serve some requests due to the fact that, e.g., special facilities are needed to perform
the service or a particular vehicle type is inappropriate for reaching a customer located
on a narrow street. To model these types of constraints, we propose considering groups of
vehicles and requests that behave identically w.r.t. compatibility. Let ¢g(i) € {1,...,G}
be the group of a request node i € R, let h(o),h(d) € {1,..., H} be the vehicle group
of 0 € O and d € D respectively, and let (r44) € {0,1}%* be the compatibility matrix
(kgnh = 1 means that g and h are compatible). If G < H, we can use G binary resources
{1,2,...,G} representing which groups of requests are collected along the tour. Except
for the reset REFs on arcs (d, o), all other REFs are of the form Zrqj(T) = max{a;, T},
i.e., they are completely determined by the lower bounds of the resource intervals. Route-
start nodes have resource intervals [0, l]G; entering a request node j sets the resource g(7)
to one, i.e., a; = (0,...,0,1,0,...,0)T (with the 1 at position g(j)). For each resource
g € {1,...,G}, the compatibility is checked at the route-end nodes d € D using a resource
interval [0, K j,(q)]- Alternatively for H < G, one should use H binary resources {1,..., H}
representing the possible vehicle groups. REFs are of the same form as before. At a route-

start node o € O, the resource consumption is set to a, = (0,...,0,1,0,... ,0)T (with
the 1 at position h(0)). Feasibility is checked at all request nodes i where the resource
interval is set to [0, k() ] for each resource h € {1,..., H}.

Second, incompatibility among requests occurs, e.g., in the context of hazardous material
transportation or transportation of groceries (frozen and unfrozen goods, different cooling



requirements). Again, requests are grouped into classes {1,...,G} with class g(i) for
request node i € R. Let (kg,) € {0,1}9%% be the compatibility matrix. Entering a
request node requires that the resource ¢(i) is at zero guaranteed by the resource interval
[0,0] for this resource (upper bound 1 for other resources). At the same time, when
entering 4, all incompatible resources, i.e., ¢’ € {1,...,G} with K,y = 0 have to be set to
one. Hence, REFs are of the form fj(T) = max{l — kg 4.y, Ty} for g € {1,...,G}.

4.5 Interdependent Resources

Interdependent resources arise naturally in some real-world applications or they are
imposed by modeling issues, especially if one wants to model with REFs that satisfy
all of the necessary conditions stated in Section 3. Examples are load-dependent or
time-dependent travel costs or several types of non-trivial tariffs, where the cost of
a tour depends on the time and distance travelled, the (maximum) load transported,
the time spent on traveling, waiting and service etc. Irnich (2006) considers several
of these examples and points out the following results: (1) Applications with simul-
taneous delivery and pickup (VRPSDP) require two dependent resources and REFs
with interdependent resource consumptions. These are REFs of the form f;;(T,T") =
(max{a,T + t,T7" + u},max{a’, T + t',T7" + u'}) for both, arcs and segments. Their in-

verses are of the form ;}L“(S, S’) = (min{b, S —t, 8" +t'}, min{b’, S—u', 5" —u'}). (2) Cost
functions with polynomial functions for the load-dependent cost have REFs that can be
generalized to segments. (3) Together with the results given by Desaulniers and Vil-
leneuve (2000), limited waiting times, limited working hours (with individual weights for
traveling, service, and waiting) can be handled by non-decreasing REFs. REFs have the
same form as those of the VRPSDP. In all these cases, the techniques of Section 3 are
applicable, so that an acceleration of LS moves is possible. Note further that the modeling
of waiting costs can also be done with non-decreasing REFs. Since these cost functions
are not separable by arcs, sequential search techniques are not directly applicable but

results for the constant time feasibility test of Section 3 remain valid.

Contrary, important real-world constraints and cost functions exist that do not fit into
the context of accelerated local search procedures as given in Section 3. The paper (Irnich,
2006) points out that, e.g., soft-time windows, time-dependent travel times, and non-linear
tariffs for load-dependent costs do not fit into the unified framework. Finally, applications
with multiple time windows can have segment REFs with a high number of cases to
distinguish, so that multiple time window constraints do not fit fully into the unified
framework. O (1) feasibility testing is not accomplishable. Nevertheless, the methods of
Section 3 remain applicable and result in efficient LS algorithms also for these types of
VRPs.

4.6% Heterogeneous Fleet VRPs

Heterogeneity of the vehicle fleet has been considered by several authors (see, e.g., Toth
and Vigo, 2002) and regards the following aspects: different (1) capacities Q¥, (2) fixed
costs f¥ (3) travel times ti-“j and maximum route durations T*, (4) variable costs ci-fj for
groups of vehicles of type k € {1,..., K}, and (5) site dependencies, see above.

The giant tour representation can directly handle aspects (1) and (2) by defining vehicle
type-specific route-start and route-end nodes, i.e., O = O'U---UO¥ and D = D'U---U
DX Fixed costs f* can be put on the connections (0, 4) for all 0¥ € O* i € R while the



resource load is only bounded on nodes d* € D* by the resource interval [0, Q¥].

Adding vehicle-specific travel times and route durations (3) requires additional resources
to tackle the problem efficiently. We suggest to use K 42 resources, one resource r = k* to
record the actual vehicle type, K resources r = timeF to model the travel time according
to each possible vehicle type k, and one resource r = time for the actual time along
the giant tour. Depending on resource k*, the resource time is updated according to the
information gathered in resource time*". It is important to mention that resources timeF
are not bounded, i.e., the corresponding constraints are never violated but the actual
time resource r = time is bounded.

Finally, vehicle-dependent costs (4) can be handled similarly to vehicle-dependent travel
times, so that O (1) feasibility checks and cost computations are possible. Hence, the
same worst-case results, as derived in Section 3.3, apply here. It is beyond the scope of
this paper to give details on the REFs and their generalizations to segments. Note that
vehicle-dependent costs forbid the direct use of sequential search techniques because costs
are not directly retrievable from the arcs. Nevertheless, the use of lower and upper bounds
for arc costs can lead to variants of sequential search procedures with weaker bounding
criteria. These criteria allow the acceleration of LS algorithms w.r.t their average case
running time.

4.7 Periodic VRPs

In periodic VRPs (see, e.g., (Cordeau et al., 1997)), customers have to be serviced ac-
cording to feasible wvisiting patterns, e.g., in a week 7 = {mo, tu,we,th, fr,sa} two or
three visits according to the patterns mo/we/ fr, tu/th/sa, mo/we, tu/ fr or we/sa. Pe-
riodic problems can be modeled with one request node for each combination of customer
and day. Assume that a route on day mo visits three customers ¢, j and k, customer 1 is
serviced according to visiting pattern mo/we/ fr, customer j is serviced every day with
pattern mo/tu/we/th/ fr/sa, and customer k is serviced on mo and th only. In our repre-
sentation the corresponding route on Monday is p = (0, imo, ttu, Jmos Kmos Ktus kwe, d™°),
i.e., the route covers demands of consecutive days for a customer. A feasible route plan,
therefore, corresponds with a Hamiltonian cycle in this particularly defined routing graph.
By means of specialized non-decreasing REFs it is also possible to ensure the feasibility of
routes, i.e., that a route on day ¢t € 7 covers only sequences of consecutive customers/day
combinations starting with day ¢. A description of the modeling approach is beyond the
scope of this paper but a more detailed report on modeling periodic VRPs with the help
of resources is in preparation.

4.8 Inter-Tour Resources and Constraints

Another strength of the unified framework is that it is able to handle inter-tour resources
and constraints by considering the giant route as a single resource-feasible path. Along
this path, global resources can be updated and limited. First of all, cost is a resource
which is accumulated along the entire giant route; it is never reset at route connecting
arcs (d,o0). Some examples of the usefulness of inter-tour resources and constraints will
be sketched in the following paragraphs. Note that in column generation models, the
inter-route constraints are those “complicated” constraints which are put into the master
program together with the covering constraints, cf. (Desaulniers et al., 2005; Liibbecke
and Desrosiers, 2005).



4.8.1° Limiting the Number of Routes of Certain Characteristics

A first example of inter-tour constraints is the requirement that only a limited number
of tours with a certain characteristic are allowed. An example is a restricted number of
“short” or “long” routes. A first resource measures the (spatial or temporal) length of
a route. Whenever a certain limit is exceeded, the route is regarded as “long”. A second
resource records the number of long routes. This resource is only modified on arcs entering
a route-end node d € D, more precisely, incremented by unit if the first resource exceeds
the given limit. Such a resource update yields to non-decreasing REFs. Generalizing
these REFs to segments of the giant tour is possible, but cumbersome to write down.
These REFs do not have proper inverses w.r.t. the second resource for counting long
routes. Anyway, such a proper inverse is not really required. The second resource can
be propagated in a forward direction along the entire giant route. The resulting resource
consumption has to be checked at the very last node only, since it is globally bounded
by a fixed upper bound. Using similar modeling tricks, it is possible to enforce so-called
balancing constraints, e.g., in order to limit the ratio between tours performed by full-time
and part-time employees.

Moreover, inter-tour constraints are essential in combined multi-depot and heterogeneous
fleet problems. A straightforward approach uses as many route-start and route-end nodes
as possible depot/vehicle type pairs exist. In situations where a limited fleet can be
assigned to different depots, the number of depot/vehicle pairs exceeds the real size of
the fleet (2 depots, 2 types of vehicles with 3 and 4 cars, respectively; the overall number
of depot/vehicle pairs is 14 = 2 - (3 + 4) but only 7 cars are available). Resources can
limit the overall number of vehicles of each type or limit the number of tours departing
from a specific depot.

4.8.2° Handling of Sorting Capacities

In postal applications, an important subproblem is the routing of letter mail and par-
cel collecting tours. These tours bring letter mail to production/sorting centers where
mail and parcels are sorted, commissioned, and sent to inbound facilities. Service require-
ments result in fixed cutoff times at the sorting centers. These cutoffs imply in turn that
letters/parcels are brought in constantly over time, always early enough such that the
remaining quantity can be processed in the remaining time before cutoff. The effect is
that tours have to deliver quantities according to certain input requirements formulated
over time. More precisely, we have constraints stating that, for each point 7" in the plan-
ning horizon, the overall quantity delivered by all tours arriving at 7" or later is bounded
from above by an amount Q(7'). If the curve T' — Q(T') is discretized over time, corre-
sponding resources and REFs can capture the limited sorting capacities at the processing
centers. Similar constraints arise when vehicle routing is considered as a transportation
sub-process in supply-chain design where facilities in consecutive stages of the chain have
to perform time-consuming processes on homogeneous goods, see (Hempsch and Irnich,
2007).



Additional Results for Section 5 on Computational Results
5.5 Pickup and Delivery Problems

When solving pickup-and-delivery problems, a request-relocation neighborhood is an in-
teresting option (see, e.g., Toth and Vigo, 1997). Since a request consists of two nodes,
a pickup node ¢t and a delivery node i, the two nodes are removed from their cur-
rent positions and inserted into new positions (the case where only one of these nodes is
moved is already covered by the relocation move). Clearly, an instance with n requests
and maximum route length L implies a neighborhood of size O (n2L), which is of the
order O (n?) when there is no upper bound for the route lengths. The magister degree
thesis by Bellscheidt (2005) gives details of how different cases have to be handled in
a sequential search procedure (pickup and delivery nodes can be in consecutive or non-
consecutive positions before/after the modification, i.e., subcase (hl)-(h4) in Figure 4).
It is beyond the scope of this paper to describe these implementations in detail.

For a comparison of search procedures for PDPTW, we have used the benchmark instances
of Li and Lim (2001). These instances are constructed similar to the Solomon instances
for VRPTW, i.e., there are groups of clustered, random and mixed instances with short as
well as long tours. The number n of request nodes varies from about 100 to 1000 (n/2 is
the number of pickup-and-delivery requests). For the sake of brevity, we restrict ourselves
to reporting results for the request-relocation neighborhood, see Figure 4(h1-h4).
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The results for PDPTWs are displayed in Figure 2 and indicate that the speedup of the
request-relocation neighborhood is large. As seen for the acb-neighborhood, the empirical
evaluation of these O (n3) neighborhoods indicates that they benefit even more strongly
from the sequential search approach than the classical quadratic neighborhoods do. In
spite of the previously presented results, there is no significant difference between in-
stances with short and long routes. A possible explanation for this result could be that
pickup-and-delivery routes differ substantially from cost-minimal MTSP tours. Hence,
there is already a large fraction of moves that seems to be improving but is, in fact,
infeasible. This seems to apply equally to instances with short and long routes.

5.6 Periodic Vehicle Routing Problems

Benchmarks problems for the PVRP are available from (Cordeau et al., 1997). Since
we were computing all REFs in advance, we had to omit the largest instance pl13 with
n = 417-7 = 2919 request nodes. The remaining 31 instances range from n = 20-4 = 80 to



n = 153-6 = 918. Recall that our implementation uses the giant-tour representation with
nodes for customer/day pairs, where a single delivery at customer 4 at day ¢ covering the
demands of days t,t+1,...,t" is encoded as a string i, %411, ...,4v. In order to “relocate
a customer” from one route to another, it must be possible to relocate the entire string.
Hence, the maximum string length ¢ for Or-opt and string-exchange moves is increased
to the maximum length of the time horizon, i.e., to |7] = 10.

The speedups for the PVRP instances are mainly correlated to both parameters, the
number of request nodes n and the average number n/r of nodes per route. Since we did
not find a meaningful grouping of instances that reflects both parameters, displaying the
results in a figure is hardly possible. Thus, we report results for fys and the six neigh-
borhoods introduced in Section 5.1.1 in textual form: The speedup factor fgqp for swaps
varies from 2.7 for p14 to 49.4 for p09 with an average of 10.7 over all 31 instances. For the
other neighborhoods, the maximum values of fys were always obtained for the instance
p09 with n = 800 and n/r = 100. The minima resulted from the instances pl4 and pl7
with n = 80 and n = 160 request nodes and n/r = 10 and n/r = 13,3 respectively. For
2-opt we computed fo_op (min/avg/max) 3.0/11.5/28.3, for 2-opt* 2.9/8.3/31.1, for node
relocation 3.0/6.9/11.9, Or-opt 2.6/17.6/75.8, and Or-Opt with inversion 2.0/16.5/70.3.
As before, the largest speedups were found for the string-exchange neighborhood with
13.6/87.0/473.9 and for the acb neighborhood with 3.5/96.5/1 088.0
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