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Abstract

This paper addresses the discrete p-dispersion problem (PDP) which is about selecting p facilities from a
given set of candidates in such a way that the minimum distance between selected facilities is maximized.
We propose a new compact formulation for this problem. In addition, we discuss two simple enhancements
of the new formulation: Simple bounds on the optimal distance can be exploited to reduce the size and
to increase the tightness of the model at a relatively low cost of additional computation time. Moreover,
the new formulation can be further strengthened by adding valid inequalities. We present a computational
study carried out over a set of large-scale test instances in order to compare the new formulation against a
standard mixed-integer programming model of the PDP, a line search, and a binary search. Our numerical
results indicate that the new formulation in combination with the simple bounds is solved to optimality by
an out-of-the-box mixed-integer programming solver in 34 out of 40 instances, while this is neither possible
with the standard model nor with the search procedures. For instances in which the line and binary search
fail to find a provably optimal solution, we achieve this by adding cuts to our enhanced formulation.

Key words: facility location, dispersion problems, max-min objective, integer programming

1. Introduction

In the p-dispersion problem (PDP), we are given a set of candidate locations I = {1, 2, . . . , n} and an n×n
matrix (dij)i,j∈I with distances dij between facility i and j. The optimization task is to select 1 < p < n
facilities from I such that the minimum distance between any pair of selected facilities is maximized.

In practice, this location problem occurs whenever a close proximity of facilities is less desirable. A
standard application is concerned with the location of nuclear power plants. Therein, one is interested in
minimizing the risk of losing multiple plants in the event that only one plant is subjected to an enemy attack.
To achieve this, a selection of plants is desired so that interplant distances are as large as possible. Similar
applications can be found in the military sector. In more peaceful contexts, one seeks for facilities of the
same franchise system or for public facilities which have overlapping areas of service, e.g., schools, hospitals,
waste collection plants, or electoral districts. We refer the reader to Kuby (1987) and to the comprehensive
survey of Erkut and Neuman (1989) for an overview on the variety of applications of the PDP. Another
area of application is recognized if distances are not interpreted physically but as a measure of the diversity
between members of a group, e.g., products of the same portfolio (Saboonchi et al., 2014).

The contribution of this paper is a new compact formulation of the PDP. To highlight the main objective
pursued with this model, note that we intend to provide a competitive exact approach for the PDP in which
a major part of the overall optimization task is undertaken by an out-of-the-box software package. To make
the new model competitive, it is delivered along with two simple enhancements that do not add too much
coding effort on top: We exploit simple bounds on the optimal distance to reduce the size and to increase
the tightness of the model. The bounds are obtained by very simple heuristics that are already known in
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the literature. We show that clique inequalities are valid for the new model and can be used to further
strengthen it. For the separation of the clique cuts, we also suggest a greedy heuristic in order to keep the
coding effort and the computational burden as low as possible.

We carry out computational experiments over large-scale test instances in order to compare the new
formulation against a standard mixed-integer programming model. The enhanced formulation is solved to
optimality by a mixed-integer programming solver in 34 out of 40 test instances, while this is not possible
with the standard model. We also compare our enhanced model against two standard search procedures
for the PDP, i.e., a line search and a binary search. This comparison is interesting because these search
procedures are easy-to-implement and exact making use of the relationship between the PDP and the
maximum independent set problem. For instances in which either line or binary search, or both, fail to find
a provably optimal solution, we achieve this by adding the clique cuts to our formulation.

The remainder of the paper is structured as follows: In Section 2, we present PDP formulations from
the literature and introduce our new formulation. Section 3 describes the setup of the computational study
and its results. The paper closes with final conclusions drawn in Section 4.

2. Formulations

Without loss of generality, we assume that the distance matrix (dij) is symmetric and that any non-
diagonal value is strictly positive. All formulations are based on a graph representation of the problem. Let
(I, E) be the complete graph in which locations I are the vertices and E = {(i, j) ∈ I × I : i < j} are the
edges. Given any distance d, we further define subsets of edges as

E(d) = {(i, j) ∈ E : dij < d} ⊆ E.

The PDP is a bottleneck optimization problem with a max-min objective function (Hsu and Nemhauser,
1979). We now briefly review two existing non-linear formulations exploiting this fact before we present a
standard mixed integer linear programming (MILP) model and our new formulation.

2.1. Non-Linear Formulations
The first formulation is the mixed integer non-linear program of Pisinger (2006): Define a vector of

location variables x = (xi)i∈I and let xi = 1 indicate that candidate location i ∈ I is open (0, otherwise).
Using a continuous variable d ≥ 0 for the minimum distance between open locations, the PDP can be written
as

z = max d (1a)

s.t.
∑
i∈I

xi = p (1b)

dxixj ≤ dij (i, j) ∈ E (1c)
xi ∈ {0, 1} i ∈ I (1d)
d ≥ 0. (1e)

The objective (1a) maximizes the minimum distance d, and exactly p candidate locations are opened because
of (1b). The non-linear constraints (1c) impose that any two locations i and j are only opened simultaneously
(xixj = 1) if their distance dij is at least d. The variable domains are given by (1d) and (1e).

For a given value of d, the set of feasible solutions to PDP with minimum distance at least d is given by

X (d) =

{
x ∈ {0, 1}n :

∑
i∈I

xi = p and xi + xj ≤ 1 ∀(i, j) ∈ E(d)

}
.
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A vector x ∈ X (d) is the incidence vector of an independent set (IDS) of size p in the graph (I, E(d)). It is
equivalent to state that {i ∈ I : xi = 1} is a clique (of size p) in the complement graph (I, E \ E(d)). This
notation allows us to state the PDP in the form

z = max d (2a)
s.t. X (d) 6= ∅ (2b)

d ≥ 0. (2c)

The minimum distance d is maximized in (2a), while constraint (2b) states that a feasible choice of d has
to ensure that an IDS of size p exists in (I, E(d)). We refer to the problem of deciding whether X (d) is
non-empty for any d as the IDS problem. Erkut (1990) proposed another non-linear formulation similar
to (2). Though neither of the above non-linear formulations was supposed to be solved directly. The authors
motivate the two subsequent categories of exact solution approaches to the PDP which can be found in the
literature.

MILP-Based Approaches. These approaches are driven by compact linearized versions of model (1). We
describe a standard MILP formulation of the PDP in Section 2.2. Some authors suggest to solve the compact
model straightaway using any off-the-shelf MILP solver (Kuby, 1987; Daskin, 1995). Erkut (1990) tailored
a branch-and-bound algorithm for the PDP.

Search Procedures. Model (2) motivates a simple search algorithm, e.g., line or binary search, to find a
largest minimum distance in combination with an efficient method to perform the feasibility tests in each
iteration of the search. For a continuous version of the PDP defined on a tree, Chandrasekaran and Daughety
(1981) propose a search procedure which requires consecutive solutions of anti-cover problems. The anti-
cover problem (Chaudhry et al., 1986) and the d-separation problem (Erkut, 1990; Erkut et al., 1996) are
synonyms for the maximum IDS problem. Pisinger (2006) suggests a binary search and considers cliques of
size p for the feasibility test.

We position the contribution of this paper in the first category because a new compact formulation for
the PDP is presented (see Section 2.3). Along with the new formulation, we provide in Section 2.3.2 a
greedy but usually effective procedure to strengthen its linear relaxation by separating valid inequalities. In
our computational tests, we benchmark the new formulation against the standard MILP formulation and
against the search procedures known from the literature.

2.2. Kuby Formulation
Using an appropriately large number M , a linearization of (1) suggested by Kuby (1987) can be written

as

z = max d (3a)

s.t.
∑
i∈I

xi = p (3b)

d ≤M(2− xi − xj) + dij (i, j) ∈ E (3c)
xi ∈ {0, 1} i ∈ I (3d)
d ≥ 0. (3e)

(3a), (3b), (3d), and (3e) are identical to formulation (1), while constraints (3c) replace (1c). The latter
constraints guarantee d ≤ dij whenever both locations i and j are chosen via xi = xj = 1. This model is
fairly compact, since it has n+ 1 variables and |E|+ 1 = n(n− 1)/2 + 1 constraints.

It should be remarked that we formulate the linking constraints (3c) following the suggestion of Erkut
(1990) and the most recent literature, e.g., Saboonchi et al. (2014). Kuby (1987) and also Daskin (1995)
state these constraints in a slightly different way. However, we attribute Kuby’s name to the model, since
his work is the first documenting the “big M ” constraints in the PDP context to our knowledge.

Finally, Ağca et al. (2000) developed a third mixed-integer formulation in order solve it via a Lagrangian
relaxation-based heuristic. Their model is less compact than Kuby’s, thus not considered in this paper.
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2.3. New Compact Formulation
We now present our new compact formulation which exploits the fact that an optimal distance is identical

to at least one of the entries of the distance matrix. Let D0 < D1 < . . . < Dkmax be the different non-zero
values in (dij). The associated index sets are K = {1, 2, . . . , kmax} and K0 = {0} ∪ K. By definition,
∅ = E(D0) ( E(D1) ( E(D2) ( · · · ( E(Dkmax) ( E holds.

The new compact formulation uses two types of binary variables: As before, the binary location variable
xi indicates whether location i ∈ I is opened. For k ∈ K, the binary variable zk indicates whether the
location decisions satisfy a minimum distance of at least Dk. The pure binary program reads as follows:

z = maxD0 +
∑
k∈K

(Dk −Dk−1)zk (4a)

s.t.
∑
i∈I

xi = p (4b)

zk ≤ zk−1 k ∈ K, k > 1 (4c)

xi + xj + zk ≤ 2 k ∈ K, (i, j) ∈ E(Dk) \ E(Dk−1) (4d)
xi ∈ {0, 1} i ∈ I (4e)
zk ∈ {0, 1} k ∈ K (4f)

Constraints (4b) ensure that exactly p locations are chosen. The consistency between the zk variables is
modeled via (4c) in the sense that the zk variables are non-increasing in k. Consequently, any feasible
solution fulfills that there exists a unique k ∈ K0 with z1 = · · · = zk = 1 and zk+1 = · · · = zkmax

= 0 (in
the extreme case of k = 0, z1 = · · · = zkmax

= 0). Whenever the minimum distance is at least Dk, i.e.,
z1 = z2 = · · · = zk = 1, the constraints (4d) ensure that no pair (i, j) of locations with distance dij < Dk is
chosen simultaneously. The domains of the variables are given by (4e) and (4f).

Any feasible solution to formulation (3) implies a feasible solution to formulation (4). Suppose that x is
feasible in (3) and define the set P = {i ∈ I : xi = 1} of open locations. Then, x satisfies (4b) because P
has the right cardinality p. Moreover, let D` for an ` ∈ K0 be the minimum distance between two locations
in P , i.e., D` = mini6=j∈P dij . Then, any pair i 6= j ∈ P fulfills (i, j) /∈ E(Dk) for all k = 0, 1, . . . , `. It
means that one can set zk = 1 for all k = 1, . . . , ` without violating any constraints in (4d) for these values
of k. For all other values k ∈ K, k > `, setting zk = 0 is also consistent with (4c). Due to (4a) the resulting
objective value is D0 +

∑`
k=1(D

k −Dk−1)zk = D`, which shows that x is valued with the same minimum
distance in (4). The reverse statement follows analogously. Hence, formulations (3) and (4) are equivalent
as MILP formulations.

The new formulation (4) is compact, since it has exactly n + kmax variables and kmax + |E(Dkmax)|
constraints. Both values do not exceed n2.

2.3.1. Exploitation of Lower and Upper Bounds
Model (4) can be reduced and tightened if bounds for the optimal distance z are available. If one

knows lb ≤ z ≤ ub with lb = Dkmin and ub = Dkmax , then the definition of K can be altered into K =
{kmin, kmin + 1, . . . , kmax}. Moreover, one must redefine D0 := Dkmin and E(Dkmin−1) := E(D0). Now,
formulation (4) has only n+(kmax−kmin+1) variables and only (kmax−kmin+1)+ |E(Dkmax)\E(Dkmin)|
constraints. It is guaranteed that the linear relaxation of formulation (4) delivers a bound between lb and
ub.

Upper bounds can be computed with a procedure first suggested by Pisinger (2006). For each location
i ∈ I, one first determines the p − 1 largest distances dij to any j ∈ I, j 6= i. Let dp−1i be the smallest of
these distances. If these values are computed for all i ∈ I, one hast to find the pth largest value among
these. This is a valid upper bound.

We suggest a simple lower bounding procedure that uses a greedy algorithm to compute maximum
cardinality independent sets (Chaudhry et al., 1986). It works as follows: For each k ∈ K we consider the
undirected graph (I, E(Dk)). Any independent set S ⊆ I in this graph consists of locations with minimum
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distance at least Dk. If an independent set with cardinality |S| ≥ p is found, then Dk is a valid lower bound.
In order to keep the computational effort small, we search for large independent sets S with decreasing values
of k using the greedy approach in each outer iteration. In each inner iteration of the greedy algorithm, a
minimum degree vertex is chosen, this vertex and all its adjacent vertices are removed from the graph, and
the process is repeated. All chosen vertices form an independent set S. Such a greedy algorithm can be
implemented using O (n2) time.

2.3.2. Valid Inequalities
Formulation (4) can be strengthened by adding additional valid inequalities. The idea is to consider

more than two locations at the same time that are incompatible with a certain minimum distance Dk. The
valid inequalities have the following form:∑

i∈S
xi + (|S| − 1)zk ≤ |S| k ∈ K, ∅ 6= S ⊂ I : (i, j) ∈ E(Dk) for all i < j ∈ S (5)

Note first that for 1 ≤ |S| ≤ 2 the inequalities are given by the bounds (4e) and constraints (4d), respectively.
For larger |S| ≥ 3, the validity can be derived considering the two cases zk = 0 and zk = 1. In the first case,∑

i∈S xi ≤ |S| is always true. In the second case, the minimum distance of the solution is Dk or larger so
that

∑
i∈S xi ≤ 1 is valid as imposed by (5).

Violated inequalities (5) can be separated by solving a series of maximum weight clique problems, one
for each k ∈ K. First, for a fixed k, weights for all locations i ∈ I are defined by wi = xi + zk − 1. Then,
any clique S ⊆ I in the graph (I, E(Dk)) is a valid set according to the definition in (5). If the weight of
the clique, i.e.,

∑
i∈S wi is greater than zk, a violated inequality (5) is found.

Again, in order to keep the computational effort small, we apply a greedy algorithm for the separation.
Starting from the graph (I, E(Dk)), we iteratively determine a vertex maximizing the product of vertex
degree and weight. This vertex and vertices not adjacent to it are removed from the graph. The procedure
is repeated on the resulting graph. All chosen vertices together form the clique. This greedy algorithm can
be implemented so that its effort is O (n2).

3. Computational Results

The compact formulation proposed in this paper provides a fast and easy-to-implement way to find
optimal solutions to the PDP. We show how computation times scale and use the 40 pmed instances from
the OR-Library (ORLIB) (Beasley, 1990). These symmetric instances have been originally designed to
test p-median algorithms. Their distance matrices are quadratic and therefore appropriate for the PDP.
Since the ORLIB instances are much larger as those used in recent studies, e.g., Della Croce et al. (2009),
Porumbel et al. (2011), and Saboonchi et al. (2014), we think that they are well suited for a comparison.

The characteristics of the ORLIB instances are summarized in the first two blocks of Table 1. In the
first block, p is the number of locations to open, |K0| the number of distinct distances, and n the overall
number of locations. The largest instances have n = 900 locations and up to p = 200 locations need to be
opened. In the second block, we show the lower and upper bounds resulting for the bounding procedures
of Section 2.3.1. Lower and upper bounds are given by lb and ub and the corresponding k-values are given
by kmin and kmax. For convenience, the remaining number of relevant distinct distances is displayed in the
column #k.

3.1. Computational Setup
All computations were performed on a standard PC with an Intel(R) Core(TM) i7-2600 running at

3.4 GHz processor with 16 GB of main memory. The bounding, separation, line and binary search procedures
were coded in C++ and compiled in release mode with MS-Visual Studio 2010. We used CPLEX 12.5 as
general-purpose mixed integer linear programming (MILP) solver and allow CPLEX to allocate two threads.

The following different exact methods were used to study the relative performance of the compact
formulation of Section 2.3. We tested the six subsequent settings over all test instances:
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Kuby Kuby formulation (3) solved by CPLEX.

NF The new formulation (4) solved by CPLEX.

NF∗ The reduced formulation (4) solved by CPLEX.

NFC∗ The reduced formulation (4) solved by CPLEX and separation of cuts (5).

LS∗ The non-linear formulation (2) solved via line search.

BS∗ The non-linear formulation (2) solved via binary search.

The parameter M in model (3) is set equal to the largest distance Dkmax . In setting NF, we solve the full
model as defined in (4) with zk variables for all k = 1, . . . , kmax. As already mentioned, the clique cuts (5)
in setting NFC∗ are separated by the heuristic described in Section 2.3.2. We kept all default parameters
of CPLEX, except for NFC∗ for which we set the backtracking tolerance to zero (this lets CPLEX focus
on improving the upper bound). All starred settings (NF∗, NFC∗, LS∗ and BS∗ ) make use of the bounds
described in Section 2.3.1 replacing 0 and kmax by kmin and some smaller kmax. In particular, the line and
binary search procedures are accelerated by restricting the search interval to the distance values between
Dkmin and Dkmax . Our line search starts from Dkmin and increases distance values since the lower bounds
provided by the iterated greedy procedure are often close to the optimal distance (cf. Table 1). In the
following, #k = kmax − kmin + 1 denotes the resulting number of distinct distance values possible for the
minimum distance z.

We notice that Erkut (1990) already suggests a line and a binary search over the minimum distance d.
In the worst case, the line search needs at most O (#k) and the binary search at most O (log(#k)) checks.
Of course, the IDS problem in every iteration can be solved with any general-purpose MILP solver. In
addition, one can exploit the structure of the feasibility problem by using, e.g., “integer-friendly” models
(see Erkut et al., 1996). Pisinger (2006) proposes a special-purpose algorithm based on a dense subgraph
representation of the feasibility problem.

Our attempt is to further speed up both search procedures while keeping the effort incurred by their
implementation as low as possible. Thus, we realized the feasibility tests using the exact method introduced
by Östergård (2002) for which the author distributes a free C library. Note that Östergård’s implementation
allows to specify lower and upper bounds to terminate the search prematurely.

3.2. Results
We start with an analysis of the upper bounds resulting from the linear relaxations produced by Kuby,

NF, NF∗, and NFC∗. The third block of Table 1 shows these bounds. Note that the LP bounds stated in
the second last column (NFC∗) were obtained by the heuristic separation of the clique cuts (5) as described
in Section 2.3.2.

It is obvious that the new formulation (4) produces significantly tighter upper bounds than Kuby’s
model (3), in particular when the preprocessing has already restricted the search space to distances Dk with
kmin ≤ k ≤ kmax. It can also be seen that the preprocessing upper bound (ub) is preserved when solving
the linear relaxation of the reduced model, see the LP bounds in column NF∗ of Table 1. The last column
of this table reports the optimal distance values z or, where these are not known, the best known lower
and upper bounds. Taking these values as benchmark, the linear relaxation of the Kuby formulation (3)
produces upper bounds that are on average approximately 75% above, while the LP bounds associated with
the new formulation (4) and the reduced version are 54% and 29% above, respectively. From the last two
columns of Table 1, we compute an average integrality gap of 11% if the clique cuts (5) are heuristically
separated and added, and we see that the PDP is solved at the root node in 19 out of 40 cases.

It remains to discuss the results with respect to Kuby, NF, NF∗, NFC∗, LS∗, and BS∗. The corresponding
numbers are reported in the six blocks of Table 2. Each block consists of two columns: The first column
shows either the optimal distance or the lower bound associated with the best integer solution and the best
upper bound. The numbers in the second column are the computation times in seconds required to prove
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Instance Proprocessing bounds LP upper bounds Opt.

Name p |K0| n lb ub kmin kmax #k Kuby NF NF∗ NFC∗ z

pmed1 5 284 100 223 268 221 266 46 599 299 268 228 228
pmed2 10 282 100 181 240 178 237 60 601 316 240 181 181
pmed3 10 316 100 164 236 162 234 73 731 388 236 193.1 167
pmed4 20 289 100 124 225 117 218 102 571.5 335 225 126.5 125
pmed5 33 261 100 75 151 74 150 77 451.7 312 151 75 75
pmed6 5 188 200 159 178 158 175 18 397 198 178 159 159
pmed7 10 170 200 115 145 114 144 31 367.6 184 145 118 118
pmed8 20 204 200 92 136 91 135 45 414.6 220 136 109.3 92
pmed9 40 189 200 60 108 59 107 49 362.5 215 108 65 62
pmed10 67 162 200 33 74 32 73 42 240.1 169 74 33 33
pmed11 5 129 300 112 116 111 115 5 269 134 116 112 112
pmed12 10 154 300 92 109 91 108 18 335 167 109 99.3 92
pmed13 30 139 300 61 91 60 90 31 283.3 150 91 82.3 64
pmed14 60 160 300 42 77 41 76 36 299.7 179 77 56.1 43
pmed15 100 130 300 26 62 25 61 37 194 136 62 33.2 27
pmed16 5 103 400 91 94 90 93 4 215 107 94 91 91
pmed17 10 103 400 71 83 70 82 13 211 105 83 71 71
pmed18 40 118 400 45 72 44 71 28 264.3 141 72 70.2 48
pmed19 80 100 400 29 60 28 59 32 170.9 101 60 43 31
pmed20 133 111 400 20 52 19 51 33 160.6 113 52 21 21
pmed21 5 88 500 74 78 73 77 5 183 91 78 74 74
pmed22 10 111 500 65 78 64 77 14 227 113 78 75.4 66
pmed23 50 94 500 36 60 35 59 25 177.2 94 60 56.5 39
pmed24 100 95 500 24 49 23 48 26 167.7 100 49 30.2 25
pmed25 167 99 500 17 43 16 42 27 144 102 43 17 17
pmed26 5 82 600 67 74 66 73 8 175 87 74 68 68
pmed27 10 90 600 58 66 57 65 9 183 91 66 59 59
pmed28 60 106 600 31 48 30 47 18 204.9 110 48 41.5 31
pmed29 120 87 600 21 42 20 41 22 147.5 88 42 30.6 22†
pmed30 200 95 600 14 39 13 38 26 134.9 96 39 16 15
pmed31 5 65 700 56 60 55 59 5 131 65 60 57 57
pmed32 10 117 700 51 58 50 57 8 249 124 58 52 52
pmed33 70 71 700 26 43 25 42 18 138.7 74 43 42 [27,28†]
pmed34 140 94 700 18 37 17 36 20 162.8 98 37 27.4 19†
pmed35 5 69 800 58 59 57 58 2 149 74 59 58 58
pmed36 10 87 800 50 57 49 56 8 175 87 57 51 51
pmed37 80 77 800 26 41 25 40 16 146 78 41 37.3 [26,27†]
pmed38 5 80 900 57 58 56 57 2 169 84 58 57 57
pmed39 10 95 900 40 47 39 46 8 231 115 47 46 41
pmed40 90 68 900 21 37 20 36 17 129.1 69 37 37 [22,29]

Table 1: Characteristics of instances, lower and upper bounds, LP bounds, and optimal distances; the values
marked with † were obtained with NFC∗ in extended computation time

the optimal distance. An entry “TL” indicates that it was not possible to prove optimality within the time
limit of 1800 seconds, and the entry “ME” stands for a CPLEX abort prior to the time limit due to the
occurrence of an out-of-memory error. The last three lines of Table 2 are the number of solved instances,
the average computation time over all instances, and the average computation time over instances solved to
optimality.

Surprisingly, the line search outperforms the binary search on average over the solved instances, see the
last line of Table 2. This is due to the fact that the greedy lower bound, from which we start the line
search, is often quite close to the optimum. In these cases, the line search may need less iterations to hit
the optimum distance than the binary search. Note that this statement does not necessarily hold in general
because the solvability of the IDS problems depends on the value d. Thus, even if the line search requires
less iterations, we may be better off with the binary search if the feasibility checks are easier to perform.

It is obvious that, when the new formulation (4) is preprocessed using the simple bounds, it is possible
to solve 34 instances, i.e., 10 instances more than with the standard model (3) and 4 instances more than
both line and binary search. Moreover, the greedy separation appears quite effective in the sense that the
average computation time of NF∗ could be further shortened by 14,7% over all instances and by 26.8% over
the solved instances.
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Kuby NF NF∗ NFC∗ LS∗ BS∗

Name lb/ub time lb/ub time lb/ub time lb/ub time lb/ub time lb/ub time

pmed1 228 0.7 228 1.3 228 0.1 228 0.1 228 < 0.1 228 < 0.1
pmed2 181 2.4 181 4.3 181 0.2 181 0.2 181 < 0.1 181 < 0.1
pmed3 167 7.1 167 9.8 167 0.6 167 0.8 167 < 0.1 167 < 0.1
pmed4 125 301.3 125 12.5 125 0.4 125 0.4 125 < 0.1 125 < 0.1
pmed5 75 443.6 75 56.5 75 0.2 75 0.3 75 < 0.1 75 < 0.1
pmed6 159 2.2 159 3.0 159 < 0.1 159 < 0.1 159 < 0.1 159 < 0.1
pmed7 118 10.5 118 18.7 118 0.5 118 0.7 118 < 0.1 118 < 0.1
pmed8 92 105.6 92 39.8 92 3.1 92 4.4 92 < 0.1 92 < 0.1
pmed9 62/107 TL 62/79 389.3 62 3.9 62 8.0 62 0.7 62 < 0.1
pmed10 33/69 TL 33 195.8 33 0.8 33 0.9 33 < 0.1 33 7.0
pmed11 112 22.0 112 7.2 112 < 0.1 112 < 0.1 112 < 0.1 112 < 0.1
pmed12 92 35.0 92 280.2 92 0.2 92 0.5 92 < 0.1 92 < 0.1
pmed13 64/93 TL 64 279.8 64 36.8 64 32.2 64 < 0.1 64 < 0.1
pmed14 43/96 TL 43 1059.2 43 30.9 43 59.4 43 94.6 43 96.5
pmed15 27/78 TL 27 305.5 27 12.1 27 37.8 27 920.3 27 1462.3
pmed16 91 37.1 91 40.0 91 0.1 91 0.1 91 < 0.1 91 < 0.1
pmed17 71 101.8 71 49.6 71 0.4 71 0.8 71 < 0.1 71 < 0.1
pmed18 48/84 TL 48/84 TL 48 1486.2 48 740.6 48 18.2 48 17.1
pmed19 31/79 ME 31/67 TL 31 623.2 31 249.0 29/60 TL 29/36 TL
pmed20 20/77 TL 74 TL 21 25.3 21 95.1 20/52 TL 20/36 TL
pmed21 74 30.1 74 111.8 74 0.2 74 0.2 74 < 0.1 74 < 0.1
pmed22 66 200.0 66 342.7 66 1.0 66 4.0 66 < 0.1 66 < 0.1
pmed23 39 15.3 39/44.8 TL 39 1427.2 39 1054.8 39 51.0 39 15.3
pmed24 24/103 TL 24/103 TL 25 1617.9 25 379.0 24/49 TL 24/36 TL
pmed25 17/85.5 TL 17/94.8 TL 17 15.0 17 18.3 17/43 TL 17/43 TL
pmed26 68 30.2 68 187.9 68 0.5 68 0.8 68 < 0.1 68 < 0.1
pmed27 59 247.4 59 272.2 59 2.6 59 3.5 59 < 0.1 59 < 0.1
pmed28 31 129.0 31/110 TL 31/48 TL 31 1311.4 31 145.3 31 130.2
pmed29 21/91 TL 21/91 TL 22/23 TL 22/23 TL 21/42 TL 21/31 TL
pmed30 14/97.9 TL 14/96 TL 15 211.4 15/18.5 ME 14/39 TL 14/39 TL
pmed31 57 76.3 57 197.9 57 0.8 57 1.1 57 < 0.1 57 < 0.1
pmed32 52 434.1 52 517.1 52 3.5 52 4.8 52 < 0.1 52 < 0.1
pmed33 26/34 TL 26/34 TL 26/43 TL 27/41.9 TL 26/43 TL 26/34 TL
pmed34 18/101.4 TL 18/98 TL 18/21 TL 18/20 TL 18/37 TL 18/27 TL
pmed35 58 < 0.1 58 868.6 58 0.8 58 0.9 58 < 0.1 58 < 0.1
pmed36 51 < 0.1 51 808.5 51 4.6 51 5.6 51 < 0.1 51 < 0.1
pmed37 26/83.9 TL 26/83.9 TL 26/41 TL 26/36.9 TL 26/41 TL 26/33 TL
pmed38 57 155.7 57 155.7 57 0.9 57 1.0 57 < 0.1 57 < 0.1
pmed39 41 < 0.1 41/108.8 TL 41 6.7 41 20.7 41 < 0.1 41 < 0.1
pmed40 21/29 TL 21/69 TL 22/37 TL 21/37 TL 21/37 TL 21/29 TL

#opt. 24 25 34 34 30 30
avg.(tot.) 777.4 785.5 408.1 348.0 481.0 493.5
avg.(opt.) 99.5 233.0 162.3 118.7 41.0 57.6

Table 2: Numerical results for the pmed instances of the ORLIB; the time limit TL was set to 1800 seconds;
ME indicates the occurrence of an out-of-memory error
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4. Conclusions

We proposed a new compact pure binary formulation for the p-dispersion problem along with two options
to enhance the formulation at a low computational cost. First, we suggested a preprocessing phase in which
the number of constraints and variables can be considerably reduced by exploiting simple bounds on the
optimal distance. Second, we showed that clique inequalities are valid for the new model and that their
heuristic separation is sufficient to achieve a significant speed-up in many tested instances.

For future research, fast improvement heuristics in the preprocessing phase might further improve our
formulation, since in some instances the best upper bounds are already tight. Moreover, it would be
interesting to see if our modeling approach also applies to the various related dispersion problems. Among
these variants are, for example, the PDP with an additional given set fixed open facilities or with demand
locations, from which the new facilities have to be located as far as possible, and the well-known p-dispersion-
sum problem of maximizing the total minimum distance between open facilities and demand locations.
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