
Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with
Flexible Schedule Structures

Ann-Kathrin Rothenbächer∗,a

aChair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University, Mainz
D-55099, Germany.

Abstract
This paper addresses the periodic vehicle routing problem with time windows (PVRPTW). Therein, cus-
tomers require one or several visits during a planning horizon of several periods. The possible visiting
patterns (schedules) per customer are limited. In the classical PVRPTW, it is common to assume that
each customer requires a specific visit frequency and offers all corresponding schedules with regular inter-
vals between the visits. In this paper, we permit all kinds of schedule structures and the choice of the
service frequency. We present an exact branch-and-price-and-cut algorithm for the classical PVRPTW and
its variant with flexible schedules. The pricing problems are elementary shortest path problems with re-
source constraints. They can be based on one of two new types of networks and solved with a labeling
algorithm, which uses several known acceleration techniques such as the ng-path relaxation and dynamic
half-way points within bidirectional labeling. For instances whose schedule sets fulfill a certain symmetry
condition, we present specialized improvements of the algorithm such as constraint aggregation and symme-
try breaking. Computational tests on benchmark instances for the PVRPTW show the effectiveness of our
algorithm. Furthermore, we analyze the impact of different schedule structures on run times and objective
function values.
Key words: Vehicle Routing, Multi Period, Branch-and-Price-and-Cut, Service Choice, Flexible Schedules

1. Introduction

The periodic vehicle routing problem (PVRP) extends the well-known vehicle routing problem to a
planning horizon of multiple periods, which repeats continuously over time. For the sake of simplicity,
we refer to a day instead of a period in the following. Customers need to be served one or several times
during a planning horizon, following one of their offered visiting patterns. By respecting time windows of
the customers during each day, the PVRP becomes the periodic vehicle routing problem with time windows
(PVRPTW). The problem occurs in many real-world applications, for example, in product delivery, in waste
collection and in some health-care services.

The PVRP can be described as follows. Starting from a given depot, a set of capacitated vehicles can
perform round trips with a limited duration on every day. These round trips, called routes, serve a subset
of the customers and may differ from day to day. Every customer has a daily demand and offers a set of
convenient visiting patterns that are called schedules. A schedule contains a subset of the considered days
whose combination is allowed for visiting the customer. Through the visiting days specified by a schedule,
the delivery amount for every visit is also determined. For example, regarding a planning horizon of six
days from Monday to Saturday, a customer may offer to be visited either on Monday and Thursday, or on
Tuesday and Friday, or on Wednesday and Saturday. In every case, the demand for three days has to be
delivered at each visit. The goal is to minimize the overall routing costs.

∗Corresponding author.
Email address: anrothen@uni-mainz.de (Ann-Kathrin Rothenbächer)

Technical Report LM-2017-05 August 10, 2017

In general, the PVRP combines an assignment and a vehicle routing decision. Exactly one schedule has
to be selected for every customer. If this decision was fixed, a vehicle routing problem would need to be
solved for every day to determine the set of customers served on the same route and the order in which they
are served.

In the PVRP literature, it is common to assume a special periodic structure of the schedules. A schedule is
called regular if the intervals between two visits are always equal (also with a cyclic repetition of the planning
horizon). Two schedules are overlapping if both allow a visit on the same day. Typically, the schedules of
a customer are assumed to be regular and non-overlapping. Furthermore, the number of required visits to
a certain customer during the planning horizon, called the visit frequency, is usually specified. In addition,
former publications usually presumed that every customer can be visited on every day. We call a set of
schedules standard if all schedules are regular, pairwise non-overlapping, require the same visit frequency
and if every day is contained in at least one schedule. The customers’ schedule sets in existing PVRPTW
benchmark instances are always standard. In this paper, we will relax these assumptions and consider
additionally irregular and overlapping schedules as well as different visit frequencies per customer.

A small example of a PVRP with a planning horizon of four days (0, 1, 2, 3) and its optimal solution for
one available vehicle are depicted in Figure 1. For every customer (A,B,C,D,E), the offered schedules are
indicated close to each node and the chosen schedule is underlined. Some customers offer standard schedule
sets (i.e., customers A and E). In contrast, the schedule set of customer B fulfills none of the properties for
standard schedule sets. The schedule {0, 2, 3} is irregular because it induces visit intervals of 1 and 2 days.
All schedules of B are overlapping because each allows a visit on day 0. The visit frequency varies between
2 and 3 visits during the planning horizon. Moreover, none of his schedules allows a visit on day 1. The
optimal solution for the visits at customer D shows that it may be beneficial to not choose the schedule with
the lowest visit frequency.

0

A

E

B

C

D
Route on day 0

Route on day 1

Route on day 2

Route on day 3
{0,2},{1,3}

{0,1,2,3}

{0,2},{0,3},{0,2,3}

{1,3}

{0},{1,3}

Figure 1: Example of a PVRP

The main contribution of the paper at hand is the presentation of the first exact algorithm for the classical
PVRPTW and for variants with all possible schedule structures. We propose a branch-and-price-and-cut
algorithm based on a new extended set-partitioning formulation. The pricing problem is an elementary
shortest path problem with resource constraints (ESPPRC). It is solved with a bidirectional labeling al-
gorithm, which can operate on two new types of auxiliary networks. Furthermore, we define a symmetry
concept depending on certain properties of the customers’ schedule sets. For instances that have this sym-
metry property, we present some techniques to reduce the number of pricing problems and the size of the
branch-and-bound tree.

The remainder of this paper is structured as follows. Section 2 gives an overview of the related literature.
In Section 3, we formally introduce the problem and present the master problem. Section 4 describes our
exact branch-and-price-and-cut algorithm. It includes the definition of two new types of pricing networks,
which are especially designed for non-standard schedule sets, and the labeling algorithm for the solution

2

of the arising ESPPRC. Moreover, it presents our branching strategy and the incorporation of subset-
row inequalities (Jepsen et al., 2008). Section 5 explains ideas for tackling certain instances that fulfill a
symmetry property. In Section 6, we present the results of our computational study. Finally, we finish with
a conclusion and a short outlook in Section 7.

2. Literature review

Research on the PVRP started with Beltrami and Bodin (1974) who tackled a problem of waste collection
over several days through heuristics, treating the assignment and the routing successively. Russell and Igo
(1979) and Christofides and Beasley (1984) formalized the problem, coined the name PVRP, and presented
further heuristics. Since then a lot of applications and sophisticated heuristics have been described in the
literature on the classical PVRP without time windows (Hemmelmayr et al., 2009; Cacchiani et al., 2014),
and with time windows (Cordeau et al., 2004; Pirkwieser and Raidl, 2009a; Vidal et al., 2013). Surveys on
the PVRP can be found in (Francis et al., 2008), (Campbell and Wilson, 2014), and (Irnich et al., 2014).
Pirkwieser and Raidl (2009b) were the first to compute lower bounds for the PVRPTW by solving the linear
relaxation of a set-covering formulation with column generation. The ESPPRC subproblems were solved
with a labeling algorithm. The only exact approach for the pure PVRP so far was presented in (Baldacci
et al., 2011a). They used three relaxations based on a set-partitioning formulation to obtain lower bounds,
generated all remaining routes with reduced costs smaller than the optimality gap, and finally solved the
problem with an IP solver.

The literature on non-standard schedule structures is very sparse. Gaudioso and Paletta (1992) proposed
a three-phase heuristic for a PVRP, in which schedules were allowed to be irregular and overlapping, but
every customer still had a fixed visit frequency. More recently, Francis et al. (2006) studied selectable visit
frequencies and irregular schedules in the so-called PVRP with Service Choice. With their exact approach
based on Lagrangean relaxation and branch-and-bound, they showed possible savings through an increased
visit frequency. However, they limited their study to non-overlapping schedules and used an estimation of
customer demand per visit. The same authors published a Tabu Search heuristic, which is able to tackle
the full range of possible schedules (Francis et al., 2007). Moreover, they analyzed the impact of different
dimensions of operational flexibility on different aspects of service consistency.

A summarizing comparison of the paper at hand and the most related papers, concerning the solution
approach and the considered problem aspects, can be found in Table 1.

Table 1: Comparison of our paper with the related literature

Our
paper

(Pirkwieser
and

Raidl,
2009b)

(Baldacci
et al.,
2011a)

Gaudioso
and

Paletta
(1992)

Francis
et al.
(2006)

(Francis
et al.,
2007)

Computes lower bounds X X X X

Computes upper bounds X X X X X

Considers time windows X X
Allows irregular schedules X X X X

Allows overlapping schedules X X X

Allows different visit frequencies X X X

Some other problems are closely related to the PVRP. The Multi-Period VRP (MPVRP) deals with a
planning horizon of several days during which every customer offers a time span of several consecutive days
in which he has to be served once. Bostel et al. (2008) solved an MPVRP with multiple depots, taking into
account labor rules with a metaheuristic and an exact column-generation approach. A dynamic variant of

3

the MPVRP, in which customer demands are revealed over time, was tackled with a three-phase heuristic
by Wen et al. (2010) and with an exact approach by Baldacci et al. (2011a) (who called it Tactical Planning
VRP). A branch-and-price algorithm for the MPVRP with time windows was presented by Athanasopoulos
and Minis (2013). They also described some techniques to reduce the number of pricing-problem solutions
using the similarities of the pricing problems of the different days. Recently, Archetti et al. (2015) introduced
a branch-and-cut algorithm for a MPVRP variant that considers inventory costs.

The inventory routing problem (IRP) also deals with a planning horizon of several days, but in this case
the customers need to be served such that no stock-out occurs. Delivery quantities, visiting days, and visit
frequencies are not predetermined but part of the decision problem. Recent surveys can be found in (Bertazzi
et al., 2008) and (Coelho et al., 2014).

Closely related to the IRP is the flexible PVRP, which was recently introduced and solved by Archetti
et al. (2017) with a load-based MIP formulation and some valid inequalities. Again, given a planning horizon
of several days and a total demand for every customer for this time span, the visiting days and the delivery
quantities can be chosen freely. Only the amount to deliver per customer and day is limited whereas the
visiting day combinations are not limited to schedules offered by the customers.

3. Problem Formulation

The PVRPTW can be stated as follows. Let P = {0, . . . , |P | − 1} be a planning horizon of several days,
which repeats continuously meaning that the last period (|P | − 1) is again followed by the first period 0. A
set of customers N and a single depot d represent all relevant locations O = N ∪ {d}. On each day, a set
of m homogeneous vehicles with capacity Q and a maximal route duration D is available to perform routes
starting from and ending at the depot d and visiting a subset of the customers N in between. A route is
defined by the ordered set of visited customers and the amounts delivered to each customer. Let R be the
set of all feasible routes and Rp ⊂ R be the subset feasible for day p. The costs cr for a route r depend
exclusively on the traveled distance. The objective is to minimize the sum of all route costs.

Every customer n ∈ N has a specific demand per day qn, a time window [an, bn] and a set of offered
schedules Sn ⊆ P(P), with P indicating the power set. Both the customers’ demands and time windows
could be different for every day without affecting the applicability of our solution approach. However, the
classical PVRPTW assumes identical demands and time windows per customer over the planning horizon
such that we omit a day index for the ease of notation. The delivery of the demand of customer n for one
day p is called the task np. The task np does not need to be fulfilled on day p. Instead, we assume that at
every visit to a customer, his tasks for all days up to the next visit have to be fulfilled (taking into account
the cyclic repetition of the planning horizon). Hence, in a planning horizon of four days (0, 1, 2, 3), visits to
a customer A on the days 1 and 2 require the fulfillment of the day-1 task (A1) at the first visit and the
fulfillment of the tasks of the days 2, 3 and 0 (A2, A3, A0) at the second visit. Assuming a daily demand of
one unit for this customer, one unit has to be delivered at the first visit and three units have to be delivered
at the second visit.

As mentioned in the introduction, the offered schedule sets of a customer Sn are allowed to contain any
number and structure of schedules. For a given schedule, we call every induced pair of visiting day and
number of fulfilled tasks a schedule part. For example, in a planning horizon from Monday to Saturday, the
schedule {Tuesday, Friday} induces the schedule parts (Tuesday, 3) and (Friday, 3), because it represents the
delivery of the demand for three days on Tuesday and Friday, respectively. The schedule part of a customer
n that represents the delivery of the demand of l days at a visit on day p is denoted by np:l. The number of
covered demand days l of a schedule part np:l is also called the length of the schedule part and is an element
of the set L = {1, ..., |P |}. Let the set Spl

n ⊆ Sn identify the subset of schedules offered by customer n that
include the schedule-part np:l.

Note that for regular schedules and a fixed visit frequency per customer, the amount to deliver per visit
(and thus the length of each schedule part) is fixed and independent of the chosen schedule. Obviously, this is
not the case for irregular schedules as different numbers of tasks can be fulfilled by one visit. Furthermore,
by allowing overlapping schedules, the demand to deliver is not even determined when a visiting day is
chosen.

4

Route-based formulation. Let the binary variable λp
r indicate whether the route r ∈ Rp is performed on

day p ∈ P . Moreover, let the variable zs
n indicate whether the schedule s ∈ Sn is chosen for customer n ∈ N .

Then, a route-based set-partitioning model for the PVRPTW can be formulated as follows:

min
∑
p∈P

∑
r∈Rp

crλ
p
r (1a)

s.t.
∑

s∈Sn

zs
n = 1 (πn) ∀ n ∈ N (1b)

∑
r∈Rp

apl
rnλ

p
r =

∑
s∈Sn

bpl
s z

s
n (ρpl

n) ∀ n ∈ N, p ∈ P, l ∈ L : Spl
n 6= ∅ (1c)

∑
r∈Rp

λp
r ≤ m (µp) ∀ p ∈ P (1d)

zs
n ∈ {0, 1} ∀ n ∈ N, s ∈ Sn (1e)
λp

r ∈ {0, 1} ∀ p ∈ P, r ∈ Rp (1f)

with the parameter apl
rn stating how often the route r includes the schedule part np:l and the parameter bpl

s

stating whether schedule s induces the schedule part (p:l).
The objective function (1a) minimizes the total routing costs. The first constraints (1b) ensure that for

each customer exactly one of its offered schedules is chosen. Constraints (1c) link the route and schedule
variables. A schedule variable may only be selected if all its induced schedule parts are included in a realized
route. Note that the equality signs in the former constraints can be replaced by a ≥-sign to reduce the dual
space whenever the triangle inequality for the costs holds. The constraints (1d) limit the number of available
vehicles on every day. Finally, (1e) and (1f) restrict the variables to binary values.

Note that summing up constraints (1c) over all possible schedule part lengths l ∈ L leads to the equalities∑
r∈Rp

arnλ
p
r =

∑
s∈Sn

bp
sz

s
n ∀ n ∈ N, p ∈ P (2)

where the parameter arn states how often the route r visits the customer n and the parameter bp
s states

whether the schedule s requires a visit on day p. This aggregated variant is common in the literature (see
Pirkwieser and Raidl, 2009b; Baldacci et al., 2011a). However, it is not suitable for the case of overlapping
and irregular schedules, since visiting a customer on a certain day does not specify how much demand
is delivered but would be accepted for all schedules including this day. For example, consider |P | = 4
and a customer who offers the two overlapping schedules {0} and {0,2}, and a route performed on day 0
which delivers the customer’s demand for two days. The constraints (2) would accept to set the schedule
variable referring to the schedule {0} to 1, but this would lead to unfulfilled demand on the last two days.
Nevertheless, for the case of standard schedule sets, both constraints (1c) and (2) are identical, because for
every customer and visiting day there exists exactly one schedule part.

Note further that the other intuitive idea to use covering-of-tasks constraints instead of (1c), i.e.∑
p∈P

∑
r∈Rp

arnp′λp
r ≥ 1 ∀ n ∈ N, p′ ∈ P

where the parameter arnp′ states how often the route r fulfills the task np′ , is also not valid in general
because it would enable unallowed combinations of schedule parts. For example, consider |P | = 3 and a
customer who offers the schedules {0,1}, {1,2}, and {0,2}. Then the combination of three routes fulfilling
each one of the allowed schedule parts 0:1, 1:1 and 2:1 would lead to the schedule {0,1,2}, which is not
offered by the customer.

4. Branch-and-Price-and-Cut Algorithm

The route-based formulation (1) is called the master problem and is solved with a branch-and-price-
and-cut algorithm. The column-generation procedure manages the solution of the LP relaxation of this

5

master problem. Valid inequalities can be separated and added to the formulation to tighten the LP bound.
Branching decisions force the variables to have integer values. In the following, we describe in Section 4.1
the solution of the pricing problem to generate columns, in Section 4.2 the incorporation of the subset-
row inequalities introduced by Jepsen et al. (2008), and in Section 4.3 the used branching strategy for the
PVRPTW.

4.1. Column Generation
Because the number of feasible routes is huge, promising routes should be added dynamically. Thus, we

use column generation for the route variables (see Lübbecke and Desrosiers, 2005). The restricted master
problem (RMP) is defined as model (1) modified by including only a subset of all possible routes R′ ⊆ R
and by relaxing the integrality conditions for all variables. Let the dual variables ρpl

n and µp be associated
with constraints (1c) and (1d), respectively. Then, the reduced costs c̃r of a route r ∈ Rp performed on day
p are given by

c̃r = cr −
∑
n∈N

∑
l∈L

apl
rn · ρpl

n − µp.

In general, pricing problems have to find columns with negative reduced costs or need to detect that no
more such columns exist. Here, an ESPPRC pricing problem needs to be solved for every day (see Irnich
and Desaulniers, 2005). In the following, we introduce two different ways to model the underlying pricing
networks that respect the challenges resulting from irregular and overlapping schedules, and the correct
treatment of the demand. Afterward, we present the dynamic-programming labeling algorithm to solve the
ESPPRC.

4.1.1. Pricing networks
For standard schedule sets, a route is uniquely determined by the ordered set of visited customers. The

reason is that for every customer the number of fulfilled tasks by each visit is identical and thus the demand
to deliver is known. For this case, a pricing network consisting of one vertex for every customer and the
depot would suffice. However, for irregular schedules, a route has to specify how many tasks are fulfilled by
each visit. Therefore, the vertices in the pricing network need to distinguish for every customer which of his
tasks are fulfilled when the vertex is visited. Moreover, for non-standard schedule sets, the pricing networks
differ per day. We propose two structurally different layouts for the pricing networks, namely the schedule
part network and the task network.

Let to1o2 and co1o2 express the time and cost for traveling from location o1 ∈ O to location o2 ∈ O,
respectively (with to1o2 including the service time at location o1).

Schedule part network. We define the schedule part network for a day p as the graph Gp
SP = (V p

SP , A
p
SP) with

vertices V p
SP and arcs Ap

SP . The set of vertices V p
SP consists of one vertex for every allowed schedule part of

a customer with a visit on day p and two vertices d+ and d− modeling two copies of the depot. A schedule
part np:l is allowed, if at least one schedule s ∈ Sn exists, that induces the schedule part (p : l). Let o(j) ∈ O
be the location and l(j) be the length of the schedule part represented by a vertex j ∈ V p

SP \ {d+, d−},
respectively. The set of arcs Ap

SP contains all arcs (i, j) ∈ (V p
SP \ {d−})× (V p

SP \ {d+}) between two vertices
of different locations, i.e. with o(i) 6= o(j). Obviously, some arcs can be eliminated due to the customers’
time windows.

An example of the schedule part networks of an instance with |P | = 4 and two customers A and B is
depicted in Figure 2. For the sake of conciseness, we assume that the time windows require customer A
to be visited before customer B. The figure shows that the networks of the different days are completely
separated. It becomes clear that the number of vertices and the number of arcs strongly depends on the
number and structure of offered schedules. For a customer with a standard schedule set as customer A,
exactly one vertex in the network of each day is necessary. On the other hand, a customer who offers
all possible schedules needs |P | vertices per daily network. Because all vertices of one customer need an
outgoing arc to all vertices of all (time-feasible) successive customers, the number of arcs per day can reach
O(|N |2|P |2).

6

d+

d+

d+

d+

A0:2

A1:2

A2:2

A3:2

B0:2

B0:3

B2:1

B2:2

B3:1

d−

d−

d−

d−

Arcs of day 0

Arcs of day 1

Arcs of day 2

Arcs of day 3

Figure 2: Example of schedule part networks with SA = {{0, 2}, {1, 3}} and SB = {{0, 2}, {0, 3}, {0, 2, 3}}

The cost and time for traveling along arc (i, j) are identical to the costs and time for traveling from
location o(i) to location o(j). The dual price for the fleet constraint (1d) is subtracted from the costs of all
arcs leaving the start depot whereas the dual prices for constraints (1c) are considered on the arcs leaving
the associated schedule parts. The load collected at a vertex is the product of the customer’s demand per
day and the length of the associated schedule part. Thus, the arc weights for the reduced costs c̃p

ij , the
load dij , and the time tij in the graph Gp

SP are:

c̃p
ij =

{
co(i)o(j) − µp, if o(i) = d+

co(i)o(j) − ρ
pl(i)
o(i) , otherwise

dij = qo(j) · l(j)
tij = to(i)o(j).

Task network. Another variant to model the pricing networks is based on the tasks that need to be fulfilled.
We define the task network for day p as the graph Gp

T = (V p
T , A

p
T) with the vertex set V p

T , which is a
subset of the day-independent vertex set VT , and the arc set Ap

T . The set of vertices VT contains two depot
vertices and one vertex for every customer n ∈ N and day p ∈ P , which refers to the fulfillment of the
associated task np. The day-dependent vertex set V p

T contains the two depot vertices d+ and d− and all
vertices referring to tasks that can be fulfilled during a route on day p, i.e., it contains a vertex for the task
np′ whenever the customer offers a schedule that allows a visit on day p that includes the demand fulfillment
of the day p′. Let again the location of a vertex i ∈ VT be given by o(i) and let the associated day be
determined by p(i). Moreover, let ∆(p, p′) indicate the number of days between the days p and p′ including
these two, i.e. we set

∆(p, p′) := (p′ − p)mod|P |+ 1.

An arc (i, j) between vertices of different locations exists in Ap
T , whenever a schedule part of the customer

o(i) starts on day p and fulfills all demands up to period p(i), and a schedule part of the customer o(j) starts
on day p. More formally, an arc (i, j) with o(i) 6= o(j) exists in Ap

T , if there exists a schedule part o(i)p:l

with (p+ l − 1) mod |P | = p(i) and p(j) = p. An arc (i, j) between vertices of the same customer exists in
Ap

T , whenever day p(i) is followed by day p(j) and both days are covered by a schedule part of customer
o(i) starting on day p. Formally, an arc (i, j) with o(i) = o(j) exists in Ap

T , if p(i) + 1 mod |P | = p(j) and
there exists a schedule part o(i)p:l with ∆(p, p(i)) ≤ l and ∆(p, p(j)) ≤ l.

The four task networks for the example from above are illustrated in Figure 3. In contrast to the
schedule part network, the task networks of the different days share the vertex set. However, every arc
exists exclusively in the network of a certain day. Here, even for a customer with standard schedule set,
the number of vertices in a daily network depends on the customer’s visit frequency and can range from 1
to |P |. The main advantage of the task network is that a customer can only be entered through one single
vertex in every network. Thus, when all customers offer all possible schedules, the number of arcs is in

7

O(|N |2|P |) and thus smaller than in the schedule part network. Altogether, there is no clear preference
between the two pricing network types as the network sizes depend very much on the offered schedule sets.
Their performance for instances with varying schedule sets is evaluated in Section 6.2.

d+

d+

d+

d+

A0

A1

A2

A3

B0

B1

B2

B3

d−

d−

d−

d−

Arcs of day 0

Arcs of day 1

Arcs of day 2

Arcs of day 3

Figure 3: Example for task networks with SA = {{0, 2}, {1, 3}} and SB = {{0, 2}, {0, 3}, {0, 2, 3}}

The cost and time for traveling between two vertices belonging to different locations equal again the
corresponding values for traveling between these locations. Accordingly, no cost and time consumption
occurs on arcs between two vertices of the same location. All dual prices are again subtracted from the
arcs leaving a location. Since every vertex represents the fulfillment of a single task, the demand per day
is assigned to every vertex. Note that in this pricing network, the covered schedule part is determined only
when a customer location is left because for overlapping schedules several schedule parts are possible when
entering a customer location. Thus, the arc weights for the reduced costs c̃p

ij , the load dij , and the time tij
in the graph Gp

T are:

c̃p
ij =

co(i)o(j) − µp, if o(i) = d+

co(i)o(j) − ρ
p ∆(p,p(i))
o(i) , if o(i) 6= d+ and o(i) 6= o(j)

0, otherwise
dij = qo(j)

tij =
{
to(i)o(j), if o(i) 6= o(j)
0, otherwise.

4.1.2. Labeling algorithm
The dynamic-programming labeling algorithm for our PVRPTW pricing problems of the different days

can operate on both pricing network types presented above to find feasible routes with negative reduced
costs. Thus, let the graph Gp = (V p, Ap) for day p be either the schedule part network Gp

SP = (V p
SP , A

p
SP)

or the task network Gp
T = (V p

T , A
p
T). The feasibility of a route is given if both the capacity and the route

duration limit of the vehicle are respected, if all customers are visited within their time window, and if
the visiting day and the delivery amount fit to at least one offered schedule. While the schedule feasibility
is ensured by the structure of the pricing networks, the other restrictions are guaranteed by the following
labeling algorithm. To obtain a bidirectional labeling algorithm, which is the most successful version for
ESPPRCs (Righini and Salani, 2006), we explain the forward labeling, the backward labeling, and finally
the concatenation procedure subsequently.

A partial forward path r from the start depot d+ to a vertex i ∈ V is represented by a label Ei =
(Ecost

i , Eload
i , Etime

i , Edur
i , Ehelp

i , (Ecustn
i)n∈N), where the label components are:

Ecost
i : reduced cost of path r;

Eload
i : delivered demand on the path r;

Etime
i : earliest service start time at vertex i on the path r;

8

Edur
i : minimum route duration of the path r;

Ehelp
i : negative of the latest possible departure time at the depot for the path r;

Ecustn
i : number of times that customer n ∈ N is visited along path r.

The resources Edur
i and Ehelp

i are taken from (Tilk and Irnich, 2017) and are necessary for handling
the route duration. In the initial label at vertex d+, all components are set to 0 except Etime

i = ad and
Ehelp

i = −bd. The forward extension of a label Ei along an arc (i, j) ∈ Ap is performed using the following
resource extension functions (REFs):

Ecost
j = Ecost

i + c̃p
ij

Eload
j = Eload

i + dij

Etime
j = max{ao(j), E

time
i + tij}

Edur
j = max{Edur

i + tij , E
help
i + ao(j)}

Ehelp
j = max{Edur

i + tij − bo(j), E
help
i }

Ecustn
j =

{
Ecustn

i + 1, o(j) ∈ N, o(j) = n, and o(i) 6= o(j)
Ecustn

i , otherwise.

A forward label Ej is feasible if and only if Eload
j ≤ Q, Etime

j ≤ bo(j), Edur
j ≤ D, and Ecustn

j ≤ 1 for all
customers n ∈ N . Because of the non-decreasing REFs, a forward label Ej dominates another forward label
E′j belonging to the same vertex j, if Ej ≤ E′j component-wise. Note that, when using the task network,
it suffices to check for dominance between labels referring to the entrance vertex of each customer because
the relations between the labels do not change while they are propagated at the same location.

A partial backward path r from a vertex i ∈ V to the end depot d− is represented by a label Ēi =
(Ēcost

i , Ēload
i , Ētime

i , Ēdur
i , Ēhelp

i , (Ēcustn
i)n∈N), where the three time-related resources have a slightly differ-

ent meaning than in the forward labeling:
Ētime

i : latest service start time at vertex i;
Ēdur

i : difference between the maximal route duration D and the minimum route duration of the
path r;

Ēhelp
i : difference between maximal route duration D and the earliest possible arrival time at the

depot with route duration Ēdur
i ;

The initial backward label at the end depot d− is Ēd− = (0, 0, bd, D,D − ad, 0). The backward extension of
a label Ēj along an arc (i, j) ∈ Ap is performed using the following REFs:

Ēcost
i = Ēcost

j + c̃p
ij

Ēload
i = Ēload

j + dij

Ētime
i = min{bo(i), Ē

time
j − tij}

Ēdur
i = min{Ēdur

j − tij , Ēhelp
j − tij + bo(j)}

Ēhelp
i = min{Ēdur

j − ao(j), Ē
help
j }

Ēcustn
i =

{
Ēcustn

j + 1, o(i) ∈ N, o(i) = n, and o(i) 6= o(j)
Ēcustn

j , otherwise.

A backward label Ēi is feasible if and only if Ēload
i ≤ Q, Ētime

i ≥ ao(i), Ēdur
i ≤ D, and Ēcustn

i ≤ 1
for all customers n ∈ N . A backward label Ēi dominates another backward label Ē′i belonging to the
same vertex i, if the time-related resources of the former label are greater equal and all other resources
are less equal than the corresponding resources of the second label, i.e., if Ēcost

i ≤ Ē′cost
i , Ēload

i ≤ Ē′load
i ,

Ēcustn
i ≤ Ē′custn

i ∀n ∈ N , Ētime
i ≥ Ē′time

i , Ēdur
i ≥ Ē′dur

i and Ēhelp
i ≥ Ē′help

i .
The concatenation of a forward partial path represented by the forward label Ej and a backward partial

9

path represented by the backward label Ēj at the vertex j is feasible, if and only if

Eload
j + Ēload

j − qo(j) ≤ Q
Etime

j ≤ Ētime
j

Edur
j ≤ Ēdur

j

Ehelp
j ≤ Ēhelp

j

Ecustn
j + Ēcustn

j ≤ 1 ∀ n ∈ N \ {o(j)}.

4.1.3. Further accelerations
To accelerate the solution of the pricing problem, we include several known techniques. First, we in-

corporate the ng-path relaxation to achieve more dominance while we need to accept some non-elementary
routes (see Baldacci et al., 2011b). Thereby, the size of the ng-neighborhoods is dynamically increased after
the solution of each branch-and-bound-node, as we always search for cycles in the chosen routes and add
the double visited vertex to the ng-neighborhoods of the vertices in between (Roberti and Mingozzi, 2014).
Second, we accelerate the bidirectional labeling by a dynamic choice of the half-way point as described
in (Tilk et al., 2017). In this approach, the half-way point is not predetermined to the middle of a resource
domain but is dynamically adjusted due to a heuristic criterion that aims to balance the forward and back-
ward workload. Third, we use restricted networks as a heuristic pricing as long as this generates columns
with negative reduced costs. Fourth, we use the special pricing problem order suggested by Pirkwieser and
Raidl (2009b) to always complete the pricing problem of one day (with a certain network size) until it finds
no more columns before changing to the next day. This corresponds to a special version of partial pricing
(Gamache et al., 1999).

4.2. Subset-row cuts
Valid inequalities are added to a linear program to cut off fractional solutions and thus strengthen the

LP relaxation. For the PVRPTW, we add the non-robust subset-row (SR) inequalities introduced by Jepsen
et al. (2008). These cuts are usually defined on a subset of customers and limit the number of routes serving
a given number of these customers. However, a precondition is that every customer has to be served at
most once, which is obviously not the case for the PVRPTW. We therefore need to adjust the SR cuts to
our context and look at subsets of tasks or schedule parts, because both a single task and a single schedule
part can be served at most once in the PVRP. The SR cut defined on a subset S of either tasks or schedule
parts with 0 < k ≤ |S| can be stated as∑

p∈P

∑
r∈Rp

⌊∑
i∈S a

p
ri

k

⌋
λp

r ≤
⌊
|S|
k

⌋
, (3)

where the parameter ap
ri indicates how often route r performed on day p contains the task/the schedule

part i.
Because of pretests, we consider SR cuts defined for subset of tasks in the following. As common in the

literature, we restrict ourselves to SR cuts with subsets of cardinality 3 and k equal to 2, because they can
be separated through enumeration. However, the number of task subsets is O(|P |3) times larger than the
number of customer subsets. Therefore, we only separate subsets of tasks belonging to the same day, even
though there can be violated SR cuts with subsets consisting of tasks of different days.

The necessary adaptations to respect these non-robust SR cuts in the labeling algorithm can be found
in (Jepsen et al., 2008). The only PVRP-specific point is that all task subsets need to be taken into account
in all pricing networks and not just those with tasks belonging to the appropriate day.

4.3. Branching strategy
To achieve integrality of the decision variables, a branching strategy needs to be implemented. Here, a

hierarchical four-level based strategy is used, which tries to fix decisions in decreasing order of influence on
the solution space.

10

On the first level, we branch on the total number of routes whenever it is fractional. On the second level,
we branch on the number of routes performed on one day. When an integer number of vehicles is used on
all days, we branch on a visiting day of a certain customer on the third level. This is realized by forbidding
the appropriate schedule columns. After no more fractional values on visiting days of individual customers
can be detected, exactly one schedule is chosen for every customer. Thus, for every day remains the solution
of a VRPTW with known customers and demands. Therefore, it suffices to finally branch on the decision
to visit two customers successively on a certain day. This is realized by removing the appropriate arcs from
the pricing networks. After these four branching levels there is either an integer solution or the problem is
infeasible. A best-first search is executed to determine the next branch-and-bound node to process.

5. Symmetry

In this section, we assume that both demands and time windows of the customers do not vary from day
to day, which is a common assumption in the PVRP literature. When the schedule sets of all customers are
standard, the problem is symmetric in the way that the routes in every feasible solution may be shifted by
any number of days without changing the objective function value or destroying the feasibility. In general,
even non-standard instances may possess a kind of symmetry. For example, in a planning horizon of six
days, the schedule set S = {{0, 1}, {3, 4}} could be shifted by three days and would remain unchanged.
Therefore, we give a general definition of symmetry in the PVRP context and show resulting application
potential for standard and some types of non-standard instances.

We define the shift function fk : P(P)→ P(P) with k ∈ P for a schedule s ∈ S ⊆ P(P) as:

fk(s) = {(p+ k)mod|P | : p ∈ s}.

A set of schedules S is called k-shift-symmetric, if and only if the mapping of all schedules s ∈ S via fk(s)
yields the original schedule set S again, i.e., if S = {fk(s) : s ∈ S}. Accordingly, a problem instance is
called k-shift-symmetric, if k is the minimal value for that all the schedule sets Sn of all customers n ∈ N
are shift-symmetric. If a problem instance is 1-shift-symmetric, we call it completely symmetric.

For the remainder of this section, we consider a k-shift-symmetric instance. For a given schedule s ∈ Sn,
we define the set of equivalent schedules as Ms = {s̄ ∈ Sn : ∃m ∈ {1, . . . , |P |/k} : fmk(s) = s̄}. The number
of elements in this set ms = |Ms| also represents the minimal number of k-shifts such that the schedule s is
mapped to itself, i.e., ms = argmin{m ∈ {1, . . . , |P |/k} : fmk(s) = s}.

Two days p, p̄ ∈ P are equivalent in a k-shift-symmetric instance, written p ∼ p̄, if there exists a multiplier
m ∈ {0, . . . , |P |/k}, such that |p̄− p| = mk. This means, that every route performed on day p could also
be performed on day p̄ while still fitting to offered schedule parts. The equivalence class [p] of a day p ∈ P
is the set of all days p̄ ∈ P that are equivalent to p, i.e., [p] = {p̄ ∈ P : p ∼ p̄} = {(p + mk)mod|P | : m ∈
{0, . . . , |P |/k}}. Let U ⊆ P be a set of class representatives.

When several days are equivalent, the solution of a pricing problem for every single day creates unneces-
sary effort. Furthermore, symmetry causes multiple solutions with the same structure and objective function
value at different nodes in the branch-and-bound tree. To avoid these drawbacks, this section introduces
some techniques to deal with symmetric instances. In Section 5.1, we explain a valid aggregation of con-
straints to reduce the number of considered days and in Section 5.2, we describe two further techniques to
exploit the symmetry.

5.1. Aggregation
Even in symmetric instances, the pricing problems of two equivalent days may generate different columns

and the same route may have different reduced costs when assigned to these days. The reason is primal
degeneracy leading to several optimal dual solutions. However, the equivalence of days can be used so that
only one pricing problem per equivalence class needs to be considered. The idea is to aggregate all day-
specific constraints in the linear relaxation of the PVRP model (1) over all days in the same equivalence
class. The same aggregation approach was successfully applied by Rothenbächer et al. (2017) for the truck-
and-trailer routing problem with a two-day planning horizon. In the following, we first present the general

11

aggregation for a k-shift-symmetric instance and then a further simplification for completely symmetric
instances with only regular schedules.

5.1.1. General Aggregation
Aggregating (summing up) all day-equivalent constraints in the linear relaxation of the PVRP model (1)

leads to the following aggregated model:

min
∑
p∈U

∑
r∈Rp

crλ
p
r (4a)

s.t.
∑

s∈Sn

zs
n = 1 ∀ n ∈ N (4b)

∑
r∈Rp

apl
rnλ

p
r =

∑
s∈Sn

∑
p̄∈[p]

bp̄l
s z

s
n ∀ n ∈ N, p ∈ U, l ∈ L : Spl

n 6= ∅ (4c)

∑
r∈Rp

λp
r ≤

∑
p̄∈[p]

m = |[p]|m ∀ p ∈ U (4d)

0 ≤ zs
n ≤ 1 ∀ n ∈ N, s ∈ Sn (4e)

0 ≤ λp
r ≤ |[p]| ∀ p ∈ U, r ∈ Rp (4f)

Thereby, it suffices to include the route variables for the class representatives, because two identical routes
r ∈ Rp and r̄ ∈ Rp̄ performed on equivalent days p ∼ p̄ have the same coefficients, i.e., apl

rn = ap̄l
r̄n for all

n ∈ N, l ∈ L and cr = cr̄. The advantages of the aggregated model are a smaller problem size regarding the
number of constraints and a reduced number of pricing problems that have to be solved.

The SR cuts can also be used in an aggregated version. Recall that we restrict ourselves to SR cuts
based on subsets of tasks referring to the same day. The addition of a single SR cut for a subset Sp of
tasks belonging to one certain day p would destroy the symmetry of the problem. Thus, the corresponding
SR cuts with subsets Sp̄ of tasks referring to the same customers, but to the other days p̄ ∈ [p] \ p in the
equivalence class, have to be generated too. Then, the associated cuts of the same equivalence class have to
be aggregated as above to ∑

p∈U

∑
r∈Rp

∑
p̄∈[p]

⌊∑
i∈Sp̄ a

p
ri

k

⌋
λp

r ≤ |[p]|
⌊
|Sp|
k

⌋
.

The original model and the aggregated model are equivalent for k-shift-symmetric instances, because
from a solution for one of them, a solution for the other with the same objective function value can be
generated. The direction from the original model to the aggregated model is clear, because aggregation of
constraints is always a relaxation. The other direction can be shown by stating a feasible transformation.
For any solution λ̄p

r with p ∈ U, r ∈ Rp and z̄s
n with n ∈ N, s ∈ Sn of (4), a feasible solution of the linear

relaxation of (1) with the same objective function value is given by setting

λ̂p̄
r = 1
|[p]| λ̄

p
r ∀p ∈ U, r ∈ Rp, p̄ ∈ [p] and ẑs

n = 1
ms

∑
s̄∈Ms

z̄s
n ∀n ∈ N, s ∈ Sn.

The proof of the feasibility and the unchanged objective function value can be performed by recalculation.
As soon as the symmetry of the problem is broken, for example due to day-specific branching decisions,

the constraints have to be disaggregated. Thus, formulation (1) has to be used again. To obtain the same
objective function value, route variables referring to the days that were ignored, have to be added. More
precisely, the route r of a variable λp

r with positive value in the solution of the aggregated model, has to be
shifted to all other days in the equivalence class of the day p. The resulting route variables λp̄

r with p̄ ∈ [p]\p
have to be added to the formulation.

12

Example. Consider an instance with a planning horizon of four days and two customers A and B with
schedule sets SA = {s1

A = {0, 1}, s2
A = {1, 2}, s3

A = {2, 3}, s4
A = {3, 0}} and SB = {s1

B = {0, 2}}. Although
the schedules of customer A are irregular, SA is 1-shift-symmetric, while SB is only 2-shift-symmetric even
though customer B offers a regular schedule. Consequently the whole instance is only 2-shift-symmetric.
Thus, the two days 0 and 1 constitute a set of representatives and it suffices to consider these two days in
the algorithm until the symmetry is broken. An optimal solution of the aggregated model (4) is given by
the following variable assignments:

λ̄0
r1

= 1 with r1 = (d+, Al=1, Bl=2, d−), z̄1
A = 1, z̄2

A = z̄3
A = z̄4

A = 0,
λ̄0

r2
= 1 with r2 = (d+, Bl=2, d−), z̄1

B = 1.
λ̄1

r3
= 1 with r3 = (d+, Al=3, d−),

Note that setting z̄1
A = 1 is not the only possibility concerning the schedule variables of customer A in the

aggregated model. All schedule variables with schedules in the same set Ms are treated equally, such that,
because of Ms1

A
= {s1

A, s
3
A}, every variable assignment fulfilling z̄1

A + z̄3
A = 1, z̄2

A = z̄4
A = 0 would be feasible

for the given routes. An equivalent solution for the original, disaggregated model (1) is given by considering
all four days and redistributing the variable values as described above:

λ̂0
r1

= λ̂2
r1

= 0.5, ẑ1
A = ẑ3

A = 0.5, ẑ2
A = ẑ4

A = 0,
λ̂0

r2
= λ̂2

r2
= 0.5, ẑ1

B = 1.
λ̂1

r3
= λ̂3

r3
= 0.5,

5.1.2. Aggregation for completely symmetric instances with only regular schedules
In the special case of completely symmetric instances with only regular schedules, the linking con-

straints (4c) can be further aggregated. Because of the complete symmetry, there is only one equivalence
class, i.e., U = {0}. By multiplying both sides of constraints (4c) with the schedule part length and
aggregating over the lengths, the following constraints result:∑

r∈R0

∑
l∈L

l a0l
rnλ

0
r =

∑
s∈Sn

∑
l∈L

l
∑
p̄∈[0]

bp̄l
s︸ ︷︷ ︸

regularity of schedules
= |P |

zs
n

(1b)= |P | ∀ n ∈ N (5)

because, for a fixed schedule, the unique schedule part length times the number of schedule parts in this
schedule gives the total number of days. In consequence, route variables and schedule variables become
independent. Since the schedule variables have no influence on the objective function, they can be ignored in
the aggregated model for completely symmetric instances with only regular schedules. Thus, constraints (4b)
and (4e) can be discarded in this case. All in all, the resulting aggregated model for completely symmetric
instances with only regular schedules is given by:

min
∑

r∈R0

crλ
0
r

s.t. (5), (4d) and (4f)
(6)

Again, the feasibility of this expanded aggregation can be proven by showing the necessary transformation
to obtain a solution of the original model (1). For any solution λ̄0

r with r ∈ R0 of (6) of a completely
symmetric instance with only regular schedules, a feasible solution of the linear relaxation of (1) with the
same objective function value is given by setting

λ̂p̄
r = 1
|P |

λ̄0
r ∀r ∈ R0, p̄ ∈ [0] and ẑs

n = 1
|P |

∑
r∈R0

a0ls
rn λ̄

0
r ∀n ∈ N, s ∈ Sn,

where ls is the unique schedule part length of all schedule parts of a regular schedule. Again, the proof can
be done by recalculation. When the symmetry is broken, all schedule variables have to be included in the
model and certain route variables have to be added as described in Section 5.1.1.

13

Example. Consider an instance with a planning horizon of four days and one customer A with the schedule
set SA = {s1

A = {0, 1, 2, 3}, s2
A = {0, 2}, s3

A = {1, 3}}. Despite different visit frequencies of the offered
schedules, all schedules are regular and the instance is completely symmetric. An optimal solution of the
aggregated model for completely symmetric instances with only regular schedules (6) is given by the following
variable assignments:

λ̄0
r1

= 2 with r1 = (d+, Al=1, d−),
λ̄0

r2
= 1 with r2 = (d+, Al=2, d−).

Thereby, route r1 fulfills one task of customer A and is performed two times and route r2 fulfills the
remaining two tasks. An equivalent solution for the original model (1) is given by considering all four days,
redistributing the route variable values equally to all days, and including the schedule columns as described
above:

λ̂0
r1

= λ̂1
r1

= λ̂2
r1

= λ̂3
r1

= 0.5, ẑ1
A = 0.5, ẑ2

A = ẑ3
A = 0.25.

λ̂0
r2

= λ̂1
r2

= λ̂2
r2

= λ̂3
r2

= 0.25,

5.2. Further techniques handling symmetry
For k-shift-symmetric instances, the model in its original formulation (1) offers more degrees of freedom

than necessary. As mentioned, every solution can be shifted by any number of days to which the instance is
symmetric. Thus, an optimal solution remains reachable if for one single customer the decision to visit him
on one certain day is fixed. Therefore, we choose a customer with the highest number of possible schedules
and among them one with the highest demand, and fix him to be visited on a certain day that is allowed by
at least one of his offered schedules. This breaks the symmetry of the problem and can significantly reduce
the size of the branch-and-bound tree.

Furthermore, as long as no day-specific branching is applied (i.e., including the first branching level),
all generated routes that do not contain the fixed customer are valid for all days in the same equivalence
class. Hence, we shift every route generated in the pricing problem of a specific day to all other days in
the same equivalence class and compute the reduced costs of the corresponding column. If its reduced costs
are also negative, we directly add it to the RMP. This can reduce the number of necessary pricing problem
iterations.

6. Computational Study

The branch-and-price-and-cut algorithm was implemented in C++ and uses CPLEX 12.6.0. All com-
putations were performed in single thread mode on a PC with an Intel Core i7-4790K CPU clocked at
3.60 GHz, with 8 GB RAM, running Windows 7 Enterprise. Apart from the single-thread mode, default
settings were used for the CPLEX solver. Preliminary tests revealed that the best results can be obtained
with a size of the ng-neighborhoods of 12 which may be increased dynamically up to 18, and reduced pricing
networks with 5, 10, 20, and 40 neighbors per vertex. The overall number of SR cuts was limited to 100,
whereby at most four SR cuts per day were allowed to be added per pricing iteration.

We start with a description of the used instances in Section 6.1. In Section 6.2, the success of the proposed
PVRP-specific settings is evaluated and the two introduced pricing network types are compared. Section 6.3
shows the effects of different schedule structures and presents the results for PVRPTW benchmark instances.

6.1. Instances
The basis for the computational results are the 20 PVRPTW benchmark instances published by Cordeau

et al. (2001), called PR in the following. Herein, the number of customers ranges from 48 to 288 customers
and planning horizons of four and six days are considered. The time windows in the first 10 instances are
narrow and larger in the remaining 10 instances. All customers offer standard schedule sets, such that the

14

instances are completely symmetric. For the instances with four days, there exist three groups of customers
requiring the different possible visit frequencies 1, 2, and 4. For the instances with six days, there exist
four groups of customers requiring the different possible visit frequencies 1, 2, 3, and 6. Up to now, these
instances were not tackled with exact approaches. Concluding from the successes on VRPTW instances with
100 customers and more, most of the instances in PR are too large to be solved to optimality in reasonable
times (see Desaulniers et al., 2014).

Thus, we created 20 smaller instances by selecting a subset of 36 customers for the instances with a
planning horizon of four days and a subset of 24 customers for the instances with a planning horizon of six
days. Thereby, we took the same number of customers of each of the aforementioned groups with different
visit frequencies to keep the ratios between these groups unchanged. Moreover, we limited the number of
vehicles in these smaller instances to three. We refer to these smaller instances as PRs.

To test the effects of different schedule structures, we created two more variants of the instance set PRs

by modifying the offered schedule sets. In the instance set PR+
s , we added for each customer all regular

schedules with a higher visit frequency than originally required. The intention is the assumption that
customers need a certain minimal visit frequency but are willing to be visited more often. Indeed, even a
bonus for more frequent visits seems realistic and was presumed for example by Francis et al. (2006). In
the instance set PR++

s , we extended PRs by adding for each customer all irregular schedules with the same
number of visits as originally required. Thereby, we assume that customers do not require exactly the same
intervals between each two visits, but need only a certain number of visits during the planning horizon.
Obviously, both modified instance sets are harder because of the increased number of allowed schedules.
On the other hand, the solution values can only be decreased since all solutions that are feasible for the
original instances in PRs stay feasible for the appropriate modified instances. Furthermore, to the best of
our knowledge, these two sets could not be tackled by exact approaches from the literature because of the
overlapping (and in the second case irregular) schedules.

The most important properties of the regarded instance sets are summarized in Table 2.

Table 2: Properties of the regarded instance sets

Instance set #Days #Customers Avg. |Sn| Irregular
schedules

Overlapping
schedules

Varying visit
frequency

PR 4 48–288 2.75
6 72–288 3.00

PRs
4 36 2.75
6 24 3.00

PR+
s

4 36 4.50 x x
6 24 5.50 x x

PR++
s

4 36 3.75 x x
6 24 10.50 x x

6.2. PVRP specific settings evaluation
In this paper, several options to tackle the symmetry and to model the pricing networks were discussed

that are specific to PVRPs. The effectiveness of these settings is measured through extensive tests that are
presented in the following. A run time limit of one hour was used for all tests in this section.

Table 3 shows the results of all combinations of the following settings: (i) aggregation of constraints (5.1),
(ii) symmetry breaking through fixation of one customer (5.2), (iii) addition of columns shifted to other
days (5.2), and (iv) the pricing problem order that continues with one day until no more columns for this
day are found (4.1.3). Each entry shows the average run time and the number of solved instances from 80
test runs, consisting of the 40 instances of the sets PRs and PR+

s , tested with both the task network and the
schedule part network. Note that we did not include the instance set PR++

s in this test, because we wanted
15

to apply a consistent form of aggregation for the comparison (and the aggregation (6) is not applicable for
PR++

s because of the irregular schedules).

Table 3: Comparison of run times for different solving strategies

Symmetry breaking
true true false false

Aggregation

true 976.4 (68) 1027.7 (65) 1370.1 (60) 1417.6 (59) true

Add shifted
columns

true 982.7 (67) 1045.7 (66) 1371.4 (60) 1446.4 (58) false
false 1035.7 (67) 1116.6 (66) 1652.5 (55) 1668.1 (55) true
false 1051.1 (67) 1058.9 (66) 1704.5 (51) 1605.1 (53) false

true false true false
Special pricing problem order

The values show the average run times over forty test instances solved with both the task network and the schedule
part network with the PVRP specific settings indicated at the borders. Instances that were not solved to

optimality in the time limit of 1 hour were counted with the time limit. The number in brackets gives the number
of instances solved to optimality.

The best results regarding both the run times and the number of solved instances were obtained with the
setting using all the options listed above. Switching off all these options leads to an increase of the average
run time by more than 60%. Obviously, the symmetry breaking has the biggest influence, but also the
use of the aggregated model produces an improvement independent from the other settings. The addition
of shifted columns is especially beneficial when the special pricing problem order is used. All in all, we
concluded to use all the options (i) to (iv) in all following tests.

The next test evaluates the performance of the two different pricing networks introduced in this paper.
All small instance sets were run with the schedule part network and the task network. The results of this
comparison can be found in Table 4. Hereby, the average run times were calculated only over the instances
solved with both network types.

Table 4: Task network versus schedule part network on different instance sets

SP network Task network

Instance set TW #Opt Avg. time[s] #Opt Avg. time[s]

PRs

small 10 / 10 25.6 10/ 10 26.0
large 9 / 10 1059.5* 9/ 10 732.4

PR+
s

small 10 / 10 377.7 10/ 10 292.6
large 4 / 10 2057.2 6/ 10 1505.1

PR++
s

small 6 / 10 821.3 6/ 10 382.7
large 4 / 10 302.7 4/ 10 121.9

*Ignoring one outlier instance: 776.9s
(this instance needed nearly 8 times as many B&B nodes with the SP network as with the task network)

Overall, the algorithm performed better using the task network in the pricing problem. When one
extreme outlier of the tests with the schedule part network is ignored (which is due to an unfavorable
branching process), the run times were similar for the small instance set with the standard schedule sets.
However, with an increasing number of offered schedules (in instance sets PR+

s and PR++
s), the difference

between the applications of the two pricing networks becomes larger. In the instance set with the highest
16

average number of offered schedules per customer, PR++
s , the algorithm with the task network is more than

twice as fast as the algorithm with the schedule part network. Therefore, we decided to use the task network
for all further computations.

6.3. Results
This section presents the computational results for the small instance sets and the original instances.

Table 5 shows the aggregated results for the small instances. The columns state the name of the instance
set, the number of instances solved to optimality during one hour, the average run time (unsolved instances
are counted with the time limit), and the average optimality gap over all instances. For the instance sets
PR+

s and PR++
s , the table gives additionally the information about the improvement compared to the basis

instance set PRs. We present the number of instances with improved objective value and for these instances
the average percental improvement. In cases where instances were not solved to optimality, we compared
the lower bound of an instance in PRs with the best found upper bound of the corresponding instance in
PR+

s and PR++
s , respectively.

Table 5: Comparison of the results for different schedule structures

instance set #Opt Time[s] Gap[%] #Improved solutions Avg. improvement[%]

PRs 19 / 20 522.6 0.03

PR+
s 16 / 20 1317.8 0.52 4 1.2

PR++
s 10 / 20 1939.2 2.23 18 1.4

As expected, increasing flexibility of the customers’ schedule sets leads to higher run times and less
instances solved to optimality. On the other hand, several instances produced better solution values when
more flexible schedule sets were allowed. Even in the instance set PR+

s , where only schedules with higher visit
frequencies were added, four improved solutions could be detected. In the instance set PR++

s , where the visit
frequency stayed unchanged, nearly all instances could find better solutions. This is especially surprising
because our algorithm does not focus on the search for good upper bounds and half of the instances were
not solved to optimality. This could also be a reason for the rather small percental improvements. Detailed
results for the individual instances can be found in Table 7 in the Appendix.

In Table 6, we present new lower bounds and two optimal solutions for the benchmark set PR. Beside the
instance characteristics, name, number of customers, number of days, number of vehicles, and the size of the
time windows, we list the root lower bounds computed by Pirkwieser and Raidl (2009b) (if available), the
lower bounds computed with our algorithm after two hours of runtime, the best known upper bounds that
were published by Vidal et al. (2013), and the optimality gap between these upper and our lower bounds.

Considering the large numbers of customers in these instances, the results are quite good. For seven
instances, the first reasonable lower bounds could be computed. The optimality of two known solutions
could be proven for the first time. The small gaps together with the two optimality proofs indicate that
both the heuristic of Vidal et al. (2013) and our lower bounds are satisfactory. However, it becomes apparent
that larger time windows complicate the solution a lot because the number of instances whose root node
could be solved decreased to less than the half by enlarging the time windows.

7. Conclusions

In this paper, the classical PVRPTW and its extension to fully flexible schedule sets was studied. There-
for, we presented a slightly modified master problem and a new exact branch-and-price-and-cut algorithm.
For the pricing problem, two new underlying networks were described on which a bidirectional labeling
operates to find new columns. Moreover, we presented efficient methods to deal with symmetric instances
using constraint aggregation and a symmetry breaking variable fixing.

17

Table 6: Results for PVRPTW benchmark instances PR

Instance #Cust. #Days #Veh. TW LB[PR09] Our LB UB[V13] Gap[%]

pr01 48 4 3 small 2882.01 2909.02 2909.02 0
pr02 96 4 6 small 4993.48 5010.85 5026.57 0.3
pr03 144 4 9 small 6841.44 6853.10 7023.90 2.5
pr04 192 4 12 small 7536.01 7755.77 2.9
pr05 240 4 15 small 7991.78 8311.17 4.0
pr06 288 4 18 small 10473.24
pr07 72 6 5 small 6641.39 6724.24 6783.23 0.9
pr08 144 6 10 small 9153.79 9159.92 9574.80 4.5
pr09 216 6 15 small 12439.90 13201.06 6.1
pr10 288 6 20 small 15893.90 16920.96 6.5
pr11 48 4 3 large 2258.85 2277.44 2277.44 0
pr12 96 4 6 large 4034.77 4121.50 2.1
pr13 144 4 9 large 5335.27 5489.33 2.9
pr14 192 4 12 large 6347.77
pr15 240 4 15 large 6777.54
pr16 288 4 18 large 8582.72
pr17 72 6 4 large 5323.57 5481.61 3.0
pr18 144 6 8 large 7599.01
pr19 216 6 12 large 10532.51
pr20 288 6 16 large 13406.89

PR09 = Pirkwieser and Raidl (2009b), V13 = Vidal et al. (2013)

An extensive computational study was performed with PVRPTW benchmark instances and smaller
instances with varying schedule structures. The effectiveness of the proposed PVRP-specific methods could
be confirmed and benefits of the task-based network for increasing schedule sets per customer could be
shown. While raising flexibility through more offered schedules per customer increases the difficulty and
thus the solution times, we could show improvements in terms of costs in many instances. For the large
benchmark instances, several lower bounds that are close to known upper bounds could be found and the
optimality of two solutions could be proven.

However, the results do not show the full potential of the presented algorithm. The algorithm is able to
deal with more general schedule structures than the ones tested here for the sake of comparability. With our
algorithm, more realistic problems with customers that have more specific requirements than just regular
visits and a certain visit frequency can be tackled for the first time. Since these problems had to be solved
heuristically so far, the usage of an exact algorithm may lead to notable savings.

Future research could address the branching and, for symmetric instances, the transition from the aggre-
gated model to the original model. During preliminary tests, we observed that slightly different tie breakers
in the branching decisions can have a huge influence on the run times. Therefore, a detailed study of
branching decisions and the usage of strong branching could lead to significant improvements. Concerning
the transition from the aggregated to the original model, the current approach usually produces a very
fractional solution of the original model, even when the solution of the aggregated model was integer. A
good heuristic could help to reduce the branching effort of finding an integer solution after the transition.

18

References

Archetti, C., Jabali, O., and Speranza, M. G. (2015). Multi-period vehicle routing problem with due dates. Computers &
Operations Research, 61, 122–134.

Archetti, C., Fernández, E., and Huerta-Muñoz, D. L. (2017). The flexible periodic vehicle routing problem. Computers &
Operations Research, 85, 58–70.

Athanasopoulos, T. and Minis, I. (2013). Efficient techniques for the multi-period vehicle routing problem with time windows
within a branch and price framework. Annals of Operations Research, 206(1), 1–22.

Baldacci, R., Bartolini, E., Mingozzi, A., and Valletta, A. (2011a). An exact algorithm for the period routing problem.
Operations Research, 59(1), 228–241.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011b). New route relaxation and pricing strategies for the vehicle routing problem.
Operations Research, 59(5), 1269–1283.

Beltrami, E. J. and Bodin, L. D. (1974). Networks and vehicle routing for municipal waste collection. Networks, 4(1), 65–94.
Bertazzi, L., Savelsbergh, M., and Speranza, M. G. (2008). Inventory routing. In B. Golden, S. Raghavan, and E. Wasil,

editors, The Vehicle Routing Problem: Latest Advances and New Challenges, pages 49–72. Springer US, Boston, MA.
Bostel, N., Dejax, P., Guez, P., and Tricoire, F. (2008). Multiperiod planning and routing on a rolling horizon for field force

optimization logistics. In B. Golden, S. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Latest Advances
and New Challenges, pages 503–525. Springer US, Boston, MA.

Cacchiani, V., Hemmelmayr, V., and Tricoire, F. (2014). A set-covering based heuristic algorithm for the periodic vehicle
routing problem. Discrete Applied Mathematics, 163, 53–64. Matheuristics 2010.

Campbell, A. M. and Wilson, J. H. (2014). Forty years of periodic vehicle routing. Networks, 63(1), 2–15.
Christofides, N. and Beasley, J. E. (1984). The period routing problem. Networks, 14(2), 237–256.
Coelho, L. C., Cordeau, J.-F., and Laporte, G. (2014). Thirty years of inventory routing. Transportation Science, 48(1), 1–19.
Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for vehicle routing problems with time

windows. The Journal of the Operational Research Society, 52(8), 928–936.
Cordeau, J. F., Laporte, G., and Mercier, A. (2004). Improved tabu search algorithm for the handling of route duration

constraints in vehicle routing problems with time windows. The Journal of the Operational Research Society, 55(5), 542–
546.

Desaulniers, G., Madsen, O. B., and Ropke, S. (2014). The vehicle routing problem with time windows. In D. Vigo and P. Toth,
editors, Vehicle Routing, chapter 5, pages 119–159. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Francis, P., Smilowitz, K., and Tzur, M. (2006). The period vehicle routing problem with service choice. Transportation
Science, 40(4), 439–454.

Francis, P., Smilowitz, K., and Tzur, M. (2007). Flexibility and complexity in periodic distribution problems. Naval Research
Logistics (NRL), 54(2), 136–150.

Francis, P. M., Smilowitz, K. R., and Tzur, M. (2008). The period vehicle routing problem and its extensions. In B. Golden,
S. Raghavan, and E. Wasil, editors, The Vehicle Routing Problem: Latest Advances and New Challenges, pages 73–102.
Springer US, Boston, MA.

Gamache, M., Soumis, F., Marquis, G., and Desrosiers, J. (1999). A column generation approach for large scale aircrew
rostering problems. Operations Research, 47, 247–262.

Gaudioso, M. and Paletta, G. (1992). A heuristic for the periodic vehicle routing problem. Transportation Science, 26(2),
86–92.

Hemmelmayr, V. C., Doerner, K. F., and Hartl, R. F. (2009). A variable neighborhood search heuristic for periodic routing
problems. European Journal of Operational Research, 195(3), 791–802.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In G. Desaulniers, J. Desrosiers, and
M. Solomon, editors, Column Generation, pages 33–65. Springer, New York.

Irnich, S., Schneider, M., and Vigo, D. (2014). Four variants of the vehicle routing problem. In P. Toth and D. Vigo, editors,
Vehicle Routing, chapter 9, pages 241–271. Society for Industrial and Applied Mathematics, Philadelphia, PA.

Jepsen, M., Petersen, B., Spoorendonk, S., and Pisinger, D. (2008). Subset-row inequalities applied to the vehicle-routing
problem with time windows. Operations Research, 56(2), 497–511.

Lübbecke, M. and Desrosiers, J. (2005). Selected topics in column generation. Operations Research, 53(6), 1007–1023.
Pirkwieser, S. and Raidl, G. R. (2009a). Boosting a variable neighborhood search for the periodic vehicle routing problem with

time windows by ILP techniques. In S. Voss and M. Caserta, editors, Proceedings of the 8th Metaheuristic International
Conference.

Pirkwieser, S. and Raidl, G. R. (2009b). A column generation approach for the periodic vehicle routing problem with time
windows. In M. S. et al, editor, Proceedings of the International Network Optimization Conferencee.

Righini, G. and Salani, M. (2006). Symmetry helps: Bounded bi-directional dynamic programming for the elementary shortest
path problem with resource constraints. Discrete Optimization, 3(3), 255–273.

Roberti, R. and Mingozzi, A. (2014). Dynamic ng-path relaxation for the delivery man problem. Transportation Science,
48(3), 413–424.

Rothenbächer, A.-K., Drexl, M., and Irnich, S. (2017). Branch-and-price-and-cut for the truck-and-trailer routing problem
with time windows. Transportation Science, page forthcoming.

Russell, R. and Igo, W. (1979). An assignment routing problem. Networks, 9(1), 1–17.
Tilk, C. and Irnich, S. (2017). Dynamic programming for the minimum tour duration problem. Transportation Science, 51(2),

549–565.
Tilk, C., Rothenbächer, A.-K., Gschwind, T., and Irnich, S. (2017). Asymmetry matters: Dynamic half-way points in bidi-

19

rectional labeling for solving shortest path problems with resource constraints faster. European Journal of Operational
Research, 261(2), 530–539.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid genetic algorithm with adaptive diversity management
for a large class of vehicle routing problems with time-windows. Computers & Operations Research, 40(1), 475–489.

Wen, M., Cordeau, J.-F., Laporte, G., and Larsen, J. (2010). The dynamic multi-period vehicle routing problem. Computers
& Operations Research, 37(9), 1615–1623.

Appendix

Table 7 lists the lower and upper bounds as well as the solution times for the small instances PRs, PR+
s ,

and PR++
s for a run time limit of one hour. Upper bounds for instances in PR+

s and PR++
s that were smaller

than the appropriate solution in PRs are indicated in bold.

Table 7: Detailed results for different schedule structures

PRs PR+
s PR++

s

Instance LB UB Time[s] LB UB Time[s] LB UB Time[s]

pr01s 2510.27 2510.27 3.9 2510.27 2510.27 29.0 2506.60 2509.06 TL
pr02s 3324.68 3324.68 43.8 3324.68 3324.68 573.5 3306.73 3306.73 241.3
pr03s 2802.02 2802.02 6.3 2802.02 2802.02 35.5 2797.23 2797.23 313.6
pr04s 3012.19 3012.19 25.0 3012.19 3012.19 270,0 2996.28 2996.28 793.3
pr05s 2387.90 2387.90 35.6 2387.90 2387.90 559.7 2353.54 2353.54 9.6
pr06s 2891.15 2891.15 3.9 2891.15 2891.15 23.8 2881.00 2881.00 936.6
pr07s 4268.41 4268.41 0.6 4251.06 4251.06 1.8 4239.22 4239.22 1.8
pr08s 3065.62 3065.62 32.3 3056.07 3056.07 275.6 3001.15 3007.07 TL
pr09s 3227.32 3227.32 85.7 3227.32 3227.32 956.4 3132.44 3134.56 TL
pr10s 3775.87 3775.87 22.9 3775.87 3775.87 200.6 3665.55 3672.33 TL
pr11s 2042.37 2042.37 38.9 2042.37 2042.37 642.9 2034.53 2034.53 269.5
pr12s 2716.89 2733.35 TL 2705.63 2766.34 TL 2703.27 3492.08 TL
pr13s 2419.54 2419.54 100.0 2419.54 2419.54 1730.6 2400.41 2400.41 54.5
pr14s 2404.58 2404.58 110.2 2404.58 2404.58 2450.8 2394.43 2396.22 TL
pr15s 1812.11 1812.11 18.5 1812.11 1812.11 565.3 1803.34 1808.62 TL
pr16s 2474.41 2474.41 3534.0 2466.35 2483.04 TL 2454.40 2458.48 TL
pr17s 3774.49 3774.49 37.2 3766.64 3766.64 698.9 3724.02 3724.02 79.5
pr18s 2707.06 2707.06 562.7 2646.14 2713.36 TL 2634.74 3011.30 TL
pr19s 2955.68 2955.68 840.7 2842.27 2842.27 2942.2 2782.91 2784.24 TL
pr20s 3198.93 3198.93 1349.8 3081.18 3233.57 TL 3069.71 3069.71 84.0

20

	Introduction
	Literature review
	Problem Formulation
	Branch-and-Price-and-Cut Algorithm
	Column Generation
	Pricing networks
	Labeling algorithm
	Further accelerations

	Subset-row cuts
	Branching strategy

	Symmetry
	Aggregation
	General Aggregation
	Aggregation for completely symmetric instances with only regular schedules

	Further techniques handling symmetry

	Computational Study
	Instances
	PVRP specific settings evaluation
	Results

	Conclusions

