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Abstract

Chen et al. (Chen S, Gallego G, Li M Z, and Lin B (2010) Optimal seat allocation for two-flight
problems with a flexible demand segment, EJOR, 201(3), 897–908) analyze the structure of optimal
booking control in the airline revenue management problem with two flights and customers that can
be served by allocating a seat on either flight. Their model requires at most one request in a booking
period. They derive an optimal switching curve-based policy by exploiting concavity, submodularity,
and subconcavity. We address a couple of open questions with the following contributions: First,
we set up a model covering a broader class of this problem. Particularly, our model applies to
static demand distributions, i.e, when customers arrive in batches but can be partially accepted
and assigned. We show that the monotonicity properties are valid under both dynamic and static
demand models providing self-contained proofs. Second, we provide a unifying characterization of
the structure of optimal booking control in the form of “booking paths”. This concept formalizes the
idea that an optimal allocation of a batch demand decomposes into a sequence of optimal single-
request allocations. Third, we examine the relationship between booking paths and switching curves
showing that both characterize equivalent policies. Computationally, this equivalence implies that
there is no advantage of implementing switching curves. Rather, one can resort to the simple criteria
which we propose in order to construct the optimal booking paths.

Key words: dynamic programming, airline revenue management, flexible and opaque products,
optimal booking policies

1. Introduction

Airlines commonly enhance revenues by offering heterogeneous customers various fare classes
for a seat in the same cabin. They typically sell the limited seat inventory over a booking horizon
and demand arrives randomly. In the standard airline revenue management problem, the airline
wishes to control ticket sales so as to maximize the expected revenue.

A traditional airline product combines a fare class with a seat on a flight between a particular
origin-destination pair at a particular departure time in order to address customers demanding that
leg. In contrast to these specific products, airlines and other service providers have recently been
observed combining fare classes with a predefined set of alternatives. Gallego and Phillips (2004)
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define a set of alternatives serving the same market as flexible products. For instance, consider
an airline that offers two specific products: a morning-flight and an afternoon-flight. Suppose
that passengers pay more for flying in the morning than in the afternoon. If some passengers
are indifferent to the departure time provided that they pay the same price as for the respective
constituting specific product, the airline could launch a flexible product comprising both flights in
order to capture these flexible passengers.

Moreover, other passengers might have a lower valuation if a product conceals the departure
time. In this case, the airline can sell the product at a discount to attract the more price-sensitive
customers but without cannibalizing too much demand for the high-fare specific products. These
opaque products are a popular tool for price differentiation in the airline and hotel industry, espe-
cially among internet-based distributors, e.g., Priceline and Hotwire (Gallego and Phillips, 2004).
Sometimes airline tickets have other hidden characteristics such as connecting flights, transfers, and
the operating airline’s brand name (Post, 2010; Gönsch and Steinhardt, 2013).

Our paper has a methodological focus on the structure of optimal booking control. From
this point of view, the paper of Chen et al. (2010) is related. Chen et al. analyze an airline
revenue management problem with two flights, specific, and flexible products, i.e., the airline needs
to control both acceptance and assignment of the flexible passengers. Their model assumes the
standard dynamic demand model (e.g., Lee and Hersh, 1993) in which at most one request arrives
in a booking period. They derive an optimal switching curve-based policy by exploiting concavity,
submodularity, and subconcavity. No such results are known for the well-known static demand
model (e.g., Curry, 1990; Wollmer, 1992; Brumelle and McGill, 1993; Robinson, 1995; Li and Oum,
2002; Aydın et al., 2013), i.e., when customers arrive in batches at a time but can be partially
accepted.

In our paper, we adopt a unifying perspective by setting up an extended omnibus model with
two flights, specific, flexible, and opaque products. Originally, the omnibus model introduced by
Lautenbacher and Stidham (1999) marries models for the single-leg revenue management problem
with dynamic and static demand. It permits the identification of the common structure underlying
optimal policies under the different demand models.

Our research intends to take this line of research one step further by making the following
contributions: First, our paper provides a completely self-contained analysis of important mono-
tonicity properties of the value function (concavity, submodularity, and subconcavity) in the ex-
tended omnibus model. Our results hold particularly for the static model for which we use a novel
reformulation of the value function which allows to reuse results known from the dynamic model.
We also skip proving redundant properties (concavity) by focusing on multimodularity. Second, we
provide a unifying characterization of the structure of optimal booking control exploiting the proven
monotonicity. To this, we introduce booking paths to formalize the idea that an optimal allocation
of a batch demand decomposes into a sequence of optimal single-request allocations and we provide
a numerical example for illustration. Third, we examine the relationship between booking paths
and switching curves showing that both characterizations are equivalent.

The remainder of this paper is organized as follows: In Section 2, we formulate the extended
omnibus model. Section 3 introduces equivalent reformulations of the value function on which we
base our analysis of the various monotonicity properties in Section 4. In Section 5, we derive a
unifying booking path-based description of an optimal booking policy and show that Chen et al.’s
switching curve-based description results in the same optimal acceptance and assignment regions.
Finally, a numerical example is presented before final conclusions are drawn in Section 6.
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Type of
product

Constituting
flight(s)

Revenues

r1j r2j

Specific 1 > 0 = 0
2 = 0 > 0

Flexible {1, 2} > 0 > 0

Table 1: Possible product definitions

2. Unifying problem formulation

In this section, we set up the extended omnibus model with two flights and multiple specific,
flexible, and opaque products. For the remainder of the paper, we include opaque products in our
definition of flexible products as in Gallego and Phillips (2004) as the only formal difference is the
choice of the fare values relative to their constituting specific products.

2.1. Notation and demand models
Throughout, Z+ denotes the set of nonnegative integers. Suppose that an airline operates two

flight legs i ∈ I = {1, 2} and offers a set of products J = {1, . . . , n}. A product is defined as a
combination of one or two constituting flights and a fare class. A constituting flight of a product is
a flight i ∈ I to which requests may be assigned and it is given by the definition of that product.
Specific products have one and flexible products have two constituting flights.

Our approach to distinguish between these types of products formally is the following: For
every j ∈ J , we define a revenue vector denoted by rj = (r1j , r

2
j )

⊤. The revenue r1j accrues to the
airline if a request for product j is accepted and assigned to flight 1, and r2j is accrued when we accept
and assign to flight 2. Revenues associated with assigning product j customers to a constituting
flight are assumed to be given as positive real values. We define the revenue of assigning a customer
to a non-constituting flight of the requested product to be zero. For the flexible products, we do
not assume that one or both fare values are presented to the customer before the purchase because
this decision is not relevant to our model. Table 1 summarizes the product definitions that are
possible in the model by properly adjusting rj .

We assume a finite time horizon T = {1, . . . , τ} with t = τ being the first and t = 1 being the
last period in which bookings can be made. We let d ∈ Z+ denote the size of a batch request or
simply the demand level. A positive demand level d ∈ {1, 2, . . . } occurs with probability pjdt for
product j ∈ J at time t ∈ T . In any period t ∈ T , d = 0 may happen if product j ∈ J is not
requested, i.e., pj0t > 0. The probabilities are assumed to be independent across time and products
with ∑

j∈J

∞∑
d=0

pjdt = 1 ∀t ∈ T .

We consider two classes of distributions. First, assuming that requests for different products
may overlap in any period and that at most one customer arrives at a time, a distribution satisfying

∑
j∈J

1∑
d=0

pjdt = 1 ∀t ∈ T (1)
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is called a dynamic demand distribution. In this case, it follows that pjdt = 0 for d ≥ 2, j ∈ J , t ∈ T .
We also refer to (1) as single-request model. Single-request models require to forecast time-specific
arrival probabilities for each product, but the total demand depends implicitly on the number of
booking periods τ .

Second, assuming that requests for different products are not allowed to arrive in the same
booking period and letting 11{·} denote the indicator function, a distribution that satisfies

∑
j∈J

11

{ ∞∑
d=0

pjdt > 0

}
= 1 ∀t ∈ T (2)

is called static demand distribution. We also refer to (2) as batch-request model. Note that τ = n
because batch-request models assume an exact pairing between products and periods. The unique
product j ∈ J with

∑∞
d=0 pjdt > 0 in period t ∈ T is referred to as j = j(t). Batch-request models

require to forecast the distribution of the total demand for each product.

2.2. The extended omnibus model
The system state x = (xi)i∈I at any time is described by the current booking level with xi

being the number of reservations currently accepted and assigned to resource i. Let c = (ci)i∈I
denote the initial capacities. The state space is defined by X = Z2

+. Using nonnegative integer
vectors ut = (uit)i∈I for t ∈ T , we decide on the number uit of observed requests to be accepted and
assigned to resource i in period t. Adopting the standard partial fulfillment assumption, we define
the set of feasible actions conditional on the demand level d ∈ Z+ as U(d) = {u ∈ Z2

+ : u1+u2 ≤ d}.
Let Vt(x) denote the maximum expected revenue from periods t, t − 1, . . . , 0 when there are x

reservations on hand. Then, the extended omnibus model is given by

Vt(x) =
∑
j∈J

∞∑
d=0

pjdt max
ut∈U(d)

{
r⊤j ut + Vt−1(x+ ut)

}
∀t ∈ T , x ∈ X (3)

V0(x) = r̄
∑
i∈I

min{0, ci − xi} ∀x ∈ X , (4)

where r̄ is the denied-boarding penalty. It is assumed greater than all fares, i.e., r̄ > maxj,i{rij} so
that the boundary conditions (4) ensure that overbooking any resource is never optimal.

2.3. The dynamic and the static two-leg revenue management model with flexible products
If a dynamic demand distribution (1) is given, the resulting specialization of the value func-

tion (3) which we refer to as dynamic model is given by

(RMFP-d) Vt(x) =
∑
j∈J

1∑
d=0

pjdt max
ut∈U(d)

{
r⊤j ut + Vt−1(x+ ut)

}
∀t ∈ T , x ∈ X .

Let 0 denote a zero vector and ei denote a unit vector with value one at the ith position. Since no
more than one request at a time is possible, the set of feasible actions in (RMFP-d) is

U(0) = {0} and U(1) = {0, e1, e2}.
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Note the two major differences between our dynamic model and the one of Chen et al. (2010).
First, (RMFP-d) does not require the fares of a flexible product to be equal to the fares of its consti-
tuting specific products. As a result, our model applies to instances with opaque products. Second,
we do not need the formal distinction between specific and flexible product types at all because
our model treats specific products technically as if they were flexible products. Our definition of
the fare vectors rj ensures that choosing to serve a request for product j ∈ J via ut = e1 if r1j = 0

or via ut = e2 if r2j = 0 is always inferior to rejecting it; otherwise, we would give away a seat
for zero revenue. This modeling approach pays off later when we analyze the various monotonicity
properties in Section 4.

For static demand distributions (2), the resulting specialization of (3) which we refer to as static
model is given by

(RMFP-s) Vt(x) =

∞∑
d=0

pjdt max
ut∈U(d)

{
r⊤j ut + Vt−1(x+ ut)

}
∀t ∈ T , j = j(t), x ∈ X .

Here, the set of feasible actions can be written as

U(d) = {ve1 + we2 : v + w ≤ d and v, w ∈ Z+} ∀d ≥ 0.

3. Event-based operators and reformulations

In this section, we introduce equivalent reformulations of the dynamic programs (RMFP-d)
and (RMFP-s) that will be used in Section 4. These reformulations are obtained by defining
control operators to handle single-request events and batch-request events.

We use the basic notation P (f) for these event-based operators. It means that the operator P
transforms the function f into a new function P (f). P (f)(x) means that the transformed func-
tion P (f) is applied to some point x. In the following, all (transformed) functions have domain Z2

+.

3.1. Reformulation using single-request operators
Let H0(V ) = V denote the identity operator. For the single-request event d = 1, we define the

operator

H1(V )(x) = max
{
r1 + V (x+ e1), r

2 + V (x+ e2), V (x)
}

∀x ∈ Z2
+. (5)

We define r = (r1, r2)⊤ and use the substitution V = Vt−1,H
d = Hd

j , and r = rj in (5) in order to
plug the resulting equality into (RMFP-d). This yields the equivalent dynamic program

Vt(x) =
∑
j∈J

1∑
d=0

pjdtH
d
j (Vt−1)(x) ∀t ∈ T , x ∈ X . (6)

The equivalence is obvious, since the operators H0
j (Vt−1)(x) and H1

j (Vt−1)(x) are by definition equal
to the respective term on the right hand side of (RMFP-d) for all j ∈ J , t ∈ T , and x ∈ X .
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3.2. Reformulation using batch-request operators
For batch-request events, we generalize (5) by defining for d ≥ 1 the operator

Hd(V )(x) = max
{
r1 +Hd−1(V )(x+ e1), r

2 +Hd−1(V )(x+ e2),H
d−1(V )(x)

}
∀x ∈ Z2

+. (7)

The operator (7) recursively splits up the original batch request into multiple batches of size one.
The partial fulfillment assumption allows us to state the next lemma.

Lemma 1. Let any x ∈ Z2
+ be given. The following statement holds:

Hd(V )(x) = max
u∈U(d)

{
r⊤u+ V (x+ u)

}
∀d ∈ Z+.

Proof. For demands d ∈ {0, 1}, the result is trivial. For demands d > 1, we prove the result by
induction over the demand levels. Assume that the result holds for d− 1. Then, we have

Hd(V )(x)= max
{
r1 +Hd−1(V )(x+ e1), r

2 +Hd−1(V )(x+ e2),H
d−1(V )(x)

}

= max



r1 + max
u∈U(d−1)

{
r⊤u+ V (x+ u+ e1)

}
,

r2 + max
u∈U(d−1)

{
r⊤u+ V (x+ u+ e2)

}
,

max
u∈U(d−1)

{
r⊤u+ V (x+ u)

}



= max



max
u∈U(d−1)

{
r⊤(u+ e1) + V (x+ u+ e1)

}
,

max
u∈U(d−1)

{
r⊤(u+ e2) + V (x+ u+ e2)

}
,

max
u∈U(d−1)

{
r⊤u+ V (x+ u)

}


= max

u∈U(d)

{
r⊤u+ V (x+ u)

}
.

The first equality is the definition (7), the second equality follows from the induction assumption,
and the third equality follows from simple rearrangement. To see the last equality, we define for
vectors v and for sets M of vectors that M+ v = {m+ v : m ∈ M}. Noting the equality

U(d) =
(
U(d− 1) + e1

)
∪
(
U(d− 1) + e2

)
∪ U(d− 1)

completes the proof. □

In order to apply Lemma 1, we define (7) with V = Vt−1, H
d = Hd

j , and r = rj . Plugging the
resulting definition into (RMFP-s) gives the equivalent dynamic program

Vt(x) =
∞∑
d=0

pjdtH
d
j (Vt−1)(x) ∀t ∈ T , j = j(t), x ∈ X . (8)
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3.3. Universal lower and upper bounds
In what follows, we construct lower and upper bounds for the single-request operator (5). For x ∈

Z2
+, define the single-mode operators

T1(f)(x) = max
{
r1 + f(x+ e1), f(x)

}
and T2(f)(x) = max

{
r2 + f(x+ e2), f(x)

}
.

Moreover, define the double-mode operator

H(f)(x) = max {T1(f)(x), T2(f)(x)} ∀x ∈ Z2
+. (9)

Lemma 2. Let f : Z2
+ 7→ R be a real-valued function. The following inequalities hold for x, y ∈ Z2

+:

min {T1(f)(x)− T1(f)(y), T2(f)(x)− T2(f)(y)}
≤ H(f)(x)−H(f)(y) ≤ max {T1(f)(x)− T1(f)(y), T2(f)(x)− T2(f)(y)} . (10)

Proof. Choose any x, y ∈ Z2
+. Consider the case H(f)(y) = T1(f)(y). We have

H(f)(x)−H(f)(y) ≥ T1(f)(x)− T1(f)(y).

because H(f)(x) ≥ T1(f)(x). The case H(f)(y) = T2(f)(y) leads to

H(f)(x)−H(f)(y) ≥ T2(f)(x)− T2(f)(y).

because H(f)(x) ≥ T2(f)(x). Both inequalities above imply the first “≤” in (10). Similarly, the
second “≤” in (10) follows from the analysis of the cases H(f)(x) = T1(f)(x) and H(f)(x) =
T2(f)(x). The proof is complete as our choice of x, y was arbitrary. □

In the next lemma, we establish bounds for the single-mode operators T1(f) and T2(f).

Lemma 3. Let f : Z2
+ 7→ R be a real-valued function. For all i ∈ {1, 2} and x, y ∈ Z2

+, we have

min{f(x)− f(y), f(x+ ei)− f(y + ei)}
≤ Ti(f)(x)− Ti(f)(y) ≤ max{f(x)− f(y), f(x+ ei)− f(y + ei)}. (11)

Proof. Similar to the proof of Lemma 2. □

Lemmata 2 and 3 will be helpful to analyze the time monotonicity in the following section.

4. Monotonicity properties

The objective of this section is to show that the value functions defined by the models (RMFP-d)
and (RMFP-s) are monotonic with respect to changes in inventory and time. First, the proper-
ties concavity, submodularity, subconcavity, and multimodularity are defined, and some equivalent
conditions are presented. Our definitions are in line with those presented in Zhuang and Li (2010).
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4.1. Definitions and equivalent conditions
Let ∆if(x) = f(x)− f(x+ ei) for i ∈ {1, 2} denote the forward difference operator.

Definition 1. Let f : Z2
+ 7→ R be a real-valued function. The function f is

(i) (discrete) concave in xi if ∆if(x) ≤ ∆if(x+ ei) for all x ∈ Z2
+ and i ∈ {1, 2},

(ii) submodular in xi and xh if ∆if(x) ≤ ∆if(x+ eh) for all x ∈ Z2
+ and i, h ∈ {1, 2}, i ̸= h,

(iii) subconcave in xi and xh if ∆i∆if(x) ≤ ∆i∆hf(x) for all x ∈ Z2
+ and i, h ∈ {1, 2}, i ̸= h.

The properties of Definition 1 are global. For example, if a function f(x) is concave in xi, this
statement holds for the entire domain Z2

+ of f(x). If we just say that f is concave, this means
that f(x) is component-wise concave. A submodular/subconcave function f means that f(x) is
submodular/subconcave in all distinct pairs of components of x.

Observe that the linear operator ∆i satisfies

∆i∆hf(x) = ∆h∆if(x) ∀i, h ∈ {1, 2}, i ̸= h.

Using the above equality and the definition of submodularity, the equivalent conditions for sub-
modular functions follow directly and are stated without proof.

Lemma 4. The following statements are equivalent:

1. The function f : Z2
+ 7→ R is submodular.

2. ∆i∆hf(x) ≤ 0 for all x ∈ Z2
+ and i, h ∈ {1, 2}, i < h.

3. f(x)− f(x+ ei) nondecreasing in xh for all x ∈ Z2
+ and i, h ∈ {1, 2}, i < h.

Lemma 4 states that a function which is submodular in xi and xh is automatically submodular
in xh and xi (vice versa). The following equivalent conditions hold for subconcave functions.

Lemma 5. The following statements are equivalent:

1. The function f : Z2
+ 7→ R is subconcave.

2. ∆1f(x+ e2)−∆2f(x+ e2) ≤ ∆1f(x)−∆2f(x) ≤ ∆1f(x+ e1)−∆2f(x+ e1) for all x ∈ Z2
+.

3. f(x+ ei)− f(x+ eh) nondecreasing in xh for all x ∈ Z2
+ and i, h ∈ {1, 2}, i ̸= h.

4. f(x+ ei)− f(x+ eh) nonincreasing in xi for all x ∈ Z2
+ and i, h ∈ {1, 2}, i ̸= h.

Proof. Given any i, h ∈ {1, 2}, i ̸= h, it follows that for any x ∈ Z2
+

∆i∆if(x) ≤ ∆i∆hf(x)

⇔ ∆if(x)−∆if(x+ ei) ≤ ∆hf(x)−∆hf(x+ ei)

⇔ ∆if(x)−∆hf(x) ≤ ∆if(x+ ei)−∆hf(x+ ei)

⇔ f(x+ eh)− f(x+ ei) ≤ f(x+ ei + eh)− f(x+ 2ei).

The last inequality is part 3. and multiplying by −1 yields part 4. We obtain part 2. by taking i =
1, h = 2 and h = 1, i = 2 in the third inequality above. This completes the proof. □

The linearity of the forward difference operator and the conditions for concavity, submodularity,
and subconcavity have the following consequence.
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Lemma 6. For real-valued functions fk : Z2
+ 7→ R, k = 1, . . . , κ and nonnegative weights αk, k =

1, . . . , κ the following statements hold:

1. If all fk are concave, so is
∑κ

k=1 αkfk.
2. If all fk are submodular, so is

∑κ
k=1 αkfk.

3. If all fk are subconcave, so is
∑κ

k=1 αkfk.

We are now able to define multimodular functions.

Definition 2. Let f : Z2
+ 7→ R be a real-valued function. The function f is called multimodular if

it is submodular and subconcave.

The reason why we consider multimodular functions is the fact that submodularity and subconcavity
together imply concavity (see Definition 1). For this reason, a proof of concavity is redundant.
Zhuang and Li (2012) provide a broader view on multimodular functions. Morton (2006) considers
directional modularity which is a similar concept.

4.2. Monotonicity properties of the dynamic model
To examine the multimodularity of the value function defined by (RMFP-d), we make use of the

equivalent dynamic programming formulation (6). Therefore, we start with the following analysis
of the single-request operator (5).

Lemma 7. Let any j ∈ J and t ∈ T be given, and let Vt−1 be defined by (RMFP-d). If Vt−1 is
multimodular, then H1

j (Vt−1) is multimodular.

Proof. By Definition 2, this lemma builds on the fact that H1
j (Vt−1) preserves the (i) submodularity

and (ii) subconcavity which are both induced by Vt−1. The proof of (i) and (ii) is a longer case-by-
case analysis and therefore presented in Appendix A. □

The above lemma states that the single-request operator (5) preserves multimodularity within
a given period. We next show that multimodulartiy is propagated over time.

Lemma 8. Let Vt, t ∈ T be defined by (RMFP-d). Vt is multimodular for all t ∈ T .

Proof. The proof is by induction over the time periods. For t = 0, the boundary conditions (4)
imply the submodularity

V0(x)− V0(x+ ei)− V0(x+ eh) + V0(x+ ei + eh) = 0

and the subconcavity

V0(x+ ei)− V0(x+ eh)− V0(x+ ei + eh) + V0(x+ 2eh) =

{
−r̄ if xh = ch − 1

0 otherwise

for all x ∈ X and i, h ∈ {1, 2}, i ̸= h. This shows that V0 is multimodular, see Definition 2.
Assume that the result holds for t− 1, i.e., Vt−1 is multimodular and herewith H0

j (Vt−1). Using
the value function (6), Lemma 6, and Lemma 7 yields that Vt is multimodular. Repeating this
argument for all t ∈ T completes the proof. □

The following lemma states that the value function is submodular with respect to changes in
time meaning that the marginal seat revenues decrease as time approaches the end of the booking
horizon. We use the standard shorthand notation [x]+ = max{x, 0}.
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Lemma 9. Let Vt, t ∈ T be defined by (RMFP-d). The following statement holds: ∆iVt(x) is
nondecreasing in t for all x ∈ X and i ∈ I.

Proof. The condition of this lemma can be equivalently stated as:

∆iVt(x)−∆iVt−1(x) ≥ 0 ∀i ∈ I, t ∈ T , x ∈ X . (12)

Let F1(V )(x) =
[
r1 − ∆1V (x)

]+ and F2(V )(x) =
[
r2 − ∆2V (x)

]+ for all x ∈ Z2
+. Moreover, we

define the identity operator G0(Vt−1) = ∆Vt−1 and the operator

G1(V )(x) = max
{
r1 −∆1V (x), r2 −∆2V (x), 0

}
= max {F1(V )(x), F2(V )(x)} ∀x ∈ Z2

+. (13)

It is straightforward to show that the right hand side of (RMFP-d) can be expressed as

Vt(x) = Vt−1(x) +
∑
j∈J

pj1tmax{r1j −∆1Vt−1(x), r
2
j −∆2Vt−1(x), 0} (14)

= Vt−1(x) +
∑
j∈J

pj1tG
1
j (Vt−1)(x) ∀t ∈ T , x ∈ X , (15)

where the second equality follows by setting G1 = G1
j , V = Vt−1, and r = rj . Using the definition

of ∆i and the equality (15), the left hand side of (12) can be rewritten as

∆iVt(x)−∆iVt−1(x) =
∑
j∈J

pj1t

[
G1

j (Vt−1)(x)−G1
j (Vt−1)(x+ ei)

]
∀i ∈ I, t ∈ T , x ∈ X .

It remains to show that the difference within brackets is nonnegative. Setting G1 = G1
j , V =

Vt−1, r = rj , and y = x+ ei, it follows that

G1(V )(x)−G1(V )(x+ ei)

≥ min
{
F1(V )(x)− F1(V )(y), F2(V )(x)− F2(V )(y)

}
= min

{
T1(V )(x)− T1(V )(y), T2(V )(x)− T2(V )(y)

}
− V (x) + V (y)

≥ min
{
V (x)− V (y), V (x+ e1)− V (y + e1), V (x+ e2)− V (y + e2)

}
− V (x) + V (y)

= min
{
0,∆1V (y)−∆1V (x),∆2V (y)−∆2V (x)

}
= min

{
0,∆1V (x+ ei)−∆1V (x),∆2V (x+ ei)−∆2V (x)

}
≥ 0 ∀i ∈ {1, 2}, x ∈ Z2

+,

where the first inequality follows from the first inequality of Lemma 2, the first equality results
from Fi(V )(x) = Ti(V )(x) − V (x), the second inequality is a consequence of the first inequality
of Lemma 3, the second equality holds by simple rearrangement. The last equality is obvious and
the last inequality can be derived whenever V is concave and submodular, see Definition 1. Since
Lemma 8 has shown that Vt is multimodular for all t ∈ T , the proof is complete. □

We stress that the time monotonicity relies only on the concavity and submodularity of the
value function. This result does not require the value function to be subconcave.
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4.3. Monotonicity properties of the static model
In the following, the multimodularity of the value function defined by (RMFP-s) is analyzed.

Lemma 10. Let any j ∈ J and t ∈ T be given, and let Vt−1 be defined by (RMFP-s). If Vt−1 is
multimodular, then Hd

j (Vt−1) is multimodular for all d ∈ Z+.

Proof. We show the result by induction over the demand levels. H0(Vt−1) = Vt−1 is multimodular
by assumption. Consider d ≥ 1 and assume that the result holds for d − 1. Using Hd(V ) =
H1(Hd−1(V )) and that H1 preserves multimodularity (see Lemma 7) completes the proof. □

Lemma 11. Let Vt, t ∈ T be defined by (RMFP-s). Vt is multimodular for all t ∈ T .

Proof. Applying Lemma 1, the proof is the same as that of Lemma 8 except that here we apply
Lemma 10 to the equivalent value function (8). □

Note that Lemma 11 applies to any arrival sequence that satisfies (2), since we did not specify
a particular ordering of products. Finally, we analyze the time monotonicity.

Lemma 12. Let Vt, t ∈ T be defined by (RMFP-s). The following statement holds: ∆iVt(x) is
nondecreasing in t for all x ∈ X and i ∈ I.

Proof. We need to verify that ∆iVt(x)−∆iVt−1(x) ≥ 0 for all i ∈ I, t ∈ T , and x ∈ X . Using the
notation defined in the proof of Lemma 9, we generalize (13) by defining the operator

Gd(V )(x) = max
{
r1 −∆1H

d−1(V )(x), r2 −∆2H
d−1(V )(x), 0

}
= max{F1(H

d−1(V )), F2(H
d−1(V ))} ∀x ∈ Z2

+, d ≥ 1.

It is easy to show that the right hand side (RHS) of the equivalent value function (8) can be
expressed as

Vt(x) = Vt−1(x) +
∞∑
d=1

pjdt

[[
Hd−1

j (Vt−1)(x)−H0
j (Vt−1)(x)

]
+max

{
r1j −∆1H

d−1
j (Vt−1)(x), r

2
j −∆2H

d−1
j (Vt−1)(x), 0

}]

= Vt−1(x) +

∞∑
d=1

pjdt

[[
Hd−1

j (Vt−1)(x)−H0
j (Vt−1)(x)

]
+Gd

j (Vt−1)(x)

]

= Vt−1(x) +

∞∑
d=1

pjdt

[
d−1∑
z=1

[
Hz

j (Vt−1)(x)−Hz−1
j (Vt−1)(x)

]
+Gd

j (Vt−1)(x)

]
∀t ∈ T , j = j(t), x ∈ X , (16)

where the second equality follows from setting Gd = Gd
j , V = Vt−1, and r = rj , and the third

equality follows from formulating the difference (inner brackets) as a telescoping series. Now, we

11



use equation (16) and the definition of ∆i in order to rewrite ∆iVt(x)−∆iVt−1(x) as

Vt(x)− Vt(x+ ei)−∆iVt−1(x)

=

∞∑
d=1

pkjdt

[
d−1∑
z=1

[
∆iH

z
j (Vt−1)(x)−∆iH

z−1
j (Vt−1)(x)

]
+

[
Gd

j (Vt−1)(x)−Gd
j (Vt−1)(x+ ei)

]]
∀i ∈ I, t ∈ T , j = j(t), x ∈ X . (17)

To analyze the nonnegativity of the RHS of (17), we first rewrite the difference ∆iH
d
j (Vt−1)(x)−

∆iH
d−1
j (Vt−1)(x) using the definition of ∆i as

Hd
j (Vt−1)(x)−Hd

j (Vt−1)(x+ ei)−
[
Hd−1

j (Vt−1)(x)−Hd−1
j (Vt−1)(x+ ei)

]
= Hd

j (Vt−1)(x)−Hd−1
j (Vt−1)(x)−

[
Hd

j (Vt−1)(x+ ei)−Hd−1
j (Vt−1)(x+ ei)

]
=max

{
r1j −∆1H

d−1
j (Vt−1)(x), r

2
j −∆2H

d−1
j (Vt−1)(x), 0

}
−max

{
r1j −∆1H

d−1
j (Vt−1)(x+ ei), r

2
j −∆2H

d−1
j (Vt−1)(x+ ei), 0

}
= Gd

j (Vt−1)(x)−Gd
j (Vt−1)(x+ ei) ∀i ∈ I, t ∈ T , j = j(t), x ∈ X , d ≥ 1, (18)

where the second equality is obvious, the third equality follows from the definition of Hd, and the
last inequality follows from the definition of Gd with Gd = Gd

j , V = Vt−1, and r = rj . Consequently,
if we verify the nonnegativity of the RHS of (18), this implies the nonnegativity of the RHS of (17)
and completes the proof. With the equality Gd

j (Vt−1)(x) = G1
j (H

d−1(Vt−1))(x), the RHS of (17)
reads as

G1
j (H

d−1(Vt−1))(x)−G1
j (H

d−1(Vt−1))(x+ ei) ≥ 0 ∀i ∈ I, t ∈ T , j = j(t), x ∈ Z2
+, d ≥ 1,

where the inequality can be derived similar to the proof of Lemma 9 using that Hd
j preserves

multimodularity (see Lemmata 10 and 11). □

5. Optimal booking policies

In this section, we derive optimal booking policies for both the dynamic and the static model
of Section 2. To achieve this, we first introduce the notion of a booking path P by defining the
sequence

P =
(
ei(1), . . . , ei(l), . . . , ei(L)

)
of unit vectors ei(l), where i(l) ∈ {1, 2} = I denotes the lth path index and L ∈ Z+ denotes the
length of that path. The different states visited by traversing P are defined as

x(l) = x+

l∑
l′=1

ei(l′) ∀l ∈ {0, . . . , L}

so that x0 = x is the starting point and x(L) the endpoint of P . Note that x(l) = x(l−1) + ei(l)
for 1 ≤ l < L.

In the remainder of this section, we show how to construct optimal booking paths, i.e., paths
that characterize optimal booking decisions.
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5.1. Optimal booking paths
We first describe the construction of booking paths for a given state x ∈ X , product j ∈ J , and

time t ∈ T . In the following, we often omit the indices j and t in order to lighten the notation.
Let ri(x) = rij−∆iVt−1(x) denote the marginal revenue increase obtained by allocating the xith seat
of flight i ∈ I. We base our decisions on two simple criteria: max{r1(x), r2(x)} > 0 for the accep-
tance and r1(x) ≥ r2(x) for the assignment. Ties are broken by rejecting and by assigning to flight 1,
respectively. Constructing a path amounts to choosing the path indices i(l) for l ≥ 1 by applying
the above criteria. We choose i(l) = argmaxi∈I r

i(x(l−1)) as long as max{r1(x(l−1)), r
2(x(l−1))} > 0

and we stop the construction otherwise, see Algorithm 1.
A path P = Pjt is valid for a period t ∈ T and product j ∈ J by construction but does not

depend on the demand that we actually observe in t. This allows us to derive booking decisions for
every possible demand level d ∈ Z+ for product j in t from the same path Pjt.

Algorithm 1: Path Construction
Input: t ∈ T , x ∈ X , j ∈ J , Vt−1

l := 1, x0 := x, and Pjt := ()
while max{r1(x(l−1)), r

2(x(l−1))} > 0 do
if r1(x(l−1)) ≥ r2(x(l−1)) then i(l) = 1 else i(l) = 2

Pjt := (Pjt, ei(l))

x(l) := x(l−1) + ei(l)
l := l + 1

L := l − 1

Output: Path P = Pjt of length L

For a path P and demand d ∈ Z+, we define booking decisions u
(l)
t ∈ U(d) as

u
(l)
t =

min{d,l}∑
l′=1

ei(l′) ∀l ∈ {0, 1, . . . , L}, (19)

in particular u(0)t = 0. Then, following path P means that u(l)1t requests are assigned to flight 1 and
u
(l)
2t requests to flight 2 so that at most d requests are allocated.

We are now ready to state the main theorem of this section. The notation R(u) = r⊤j u +
Vt−1(x+ u)− Vt−1(x) simplifies the exposition.

Theorem 1. Let any state x ∈ X at time t ∈ T and any demand d ∈ Z+ for product j ∈ J be
given, and let Pjt be a booking path according to Algorithm 1. Define ℓ = min{d, L}. The booking
decision u

(ℓ)
t is optimal in both the dynamic model (RMFP-d) and the static model (RMFP-s).

Proof. Proof by contradiction, i.e., let u∗t ̸= u
(ℓ)
t be an optimal booking decision with R(u∗t ) >

R(u
(ℓ)
t ). In particular, R(u∗t ) ≥ R(u) for all u ∈ U(d). Without loss of generality, we also assume

that u∗t is chosen with smallest possible norm ||u∗t ||1. Let xP = x+u
(ℓ)
t denote the state that results

from following Pjt up to the ℓth state and let x∗ = x + u∗t denote the state resulting from u∗t . In
the following, we analyze eight possible cases, for clarity depicted in Table 2:
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Case u
(ℓ)
1t vs. u∗1t

> = <

u
(ℓ)
2t vs. u∗2t

> (VIII) (II) (VI)
= (I) (III)
< (V) (IV) (VII)

Table 2: Cases in the proof of Theorem 1

Case (I). u
(ℓ)
1t > u∗1t and u

(ℓ)
2t = u∗2t. Suppose that x(l) = x∗ for some l ∈ {0, . . . , L− 1}. From the

construction of Pjt follows that r1(x∗) is positive and, hence,

R(u∗t + e1) = r⊤(u∗t + e1) + Vt−1(x+ u∗t + e1)− Vt−1(x) = R(u∗t ) + r1(x+ u∗t ) > R(u∗t ),

which contradicts the optimality of u∗t .
If x∗ ̸= x(l) for all l ∈ {0, . . . , L − 1}, consider the unique state x(l) with x1l = x∗1 having the

largest l. Then, ei(l+1) = e1 by the definition of l and Pjt, i.e., r1(x(l)) is positive and greater or
equal than r2(x(l)). We define K = x∗2 − x2l and use subconcavity to state that

0 < r1(x(l))− r2(x(l)) = r1j − r2j +∆2Vt−1(x(l))−∆1Vt−1(x(l))

≤ r1j − r2j +∆2Vt−1(x(l) + e2)−∆1Vt−1(x(l) + e2)

...

≤ r1j − r2j +∆2Vt−1(x(l) + (K − 1)e2)−∆1Vt−1(x(l) + (K − 1)e2)

= r1(x∗ − e2)− r2(x∗ − e2). (20)

Hence, R(u∗t + e1 − e2) = R(u∗t ) + r1(x∗ − e2) − r2(x∗ − e2) > R(u∗t ) is true and contradicts the
optimality of u∗t .

Case (II). u
(ℓ)
1t = u∗1t and u

(ℓ)
2t > u∗2t. The contradiction is obtained by interchanging the roles

of i = 1 and i = 2.

Case (III). u
(ℓ)
1t < u∗1t and u

(ℓ)
2t = u∗2t. If r1(xP ) > 0, then u

(ℓ)
1t + u

(ℓ)
2t = d follows from the definition

of u(ℓ)t . Since u∗1t + u∗2t > u
(ℓ)
1t + u

(ℓ)
2t , u∗t is infeasible (u∗t /∈ U(d)) and herewith not optimal.

Suppose that r1(xP ) ≤ 0 and set K = x∗1 − xP1 . Concavity of V implies that

0 ≥ r1j −∆1Vt−1(x
P ) ≥ r1j −∆1Vt−1(x

P + e1) ≥ · · · ≥ r1j −∆1Vt−1(x
P + (K − 1)e1) = r1(x∗ − e1).

The relation R(u∗t − e1) = R(u∗t ) − r1(x∗ − e1) ≥ R(u∗t ) means that u∗t − e1 is another optimal
solution which, however, contradicts the smallest norm assumption of u∗t .

Case (IV). u
(ℓ)
1t = u∗1t and u

(ℓ)
2t < u∗2t. The contradiction is obtained by interchanging the roles

of i = 1 and i = 2.

Case (V). u
(ℓ)
1t > u∗1t and u

(ℓ)
2t < u∗2t. Consider the unique state x(l) with x1l = x∗1 and largest l.

Then, ei(l+1) = e1 by the definition of l and Pjt. Hence, r1(x(l)) > r2(x(l)) and the result in (20)
with K = x∗2 − x2l yields the contradiction R(u∗t + e1 − e2) > R(u∗t ).
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Case (VI). u
(ℓ)
1t < u∗1t and u

(ℓ)
2t > u∗2t. Again, the contradiction is obtained by interchanging the

roles of i = 1 and i = 2.

Case (VII). u
(ℓ)
1t < u∗1t and u

(ℓ)
2t < u∗2t. As in Cases (III) and (IV), r1(xP ) > 0 or r2(xP ) > 0 implies

u
(ℓ)
1t + u

(ℓ)
2t = d, u∗1t + u∗2t > u

(ℓ)
1t + u

(ℓ)
2t , u∗t is infeasible (u∗t /∈ U(d)) and herewith not optimal.

Therefore, r1(xP ) ≤ 0 and r2(xP ) ≤ 0. Set K1 = x∗1 − xP1 and K2 = x∗2 − xP2 . Submodularity
of V implies that

0 ≥ r1j −∆1Vt−1(x
P ) ≥ r1j −∆1Vt−1(x

P + e2) ≥ · · · ≥ r1j −∆1Vt−1(x
P +K2e2)

and concavity of V implies that

0 ≥ r1j −∆1Vt−1(x
P +K2e2) ≥ r1j −∆1Vt−1(x

P + e1 +K2e2)

≥ · · · ≥ r1j −∆1Vt−1(x
P + (K1 − 1)e1 +K2e2) = r1(x∗ − e1).

The relation R(u∗t − e1) = R(u∗t ) − r1(x∗ − e1) ≥ R(u∗t ) means that u∗t − e1 is another optimal
solution which, however, contradicts the smallest norm assumption of u∗t .

Case (VIII). u
(ℓ)
1t > u∗1t and u

(ℓ)
2t > u∗2t. If x(l) = x∗ for some l ∈ {0, . . . , L−1}, then by construction

of Pjt we know that r1(x∗) or r2(x∗) is positive and, hence, either

R(u∗t + e1) = r⊤(u∗t + e1) + Vt−1(x+ u∗t + e1)− Vt−1(x) = R(u∗t ) + r1(x∗) > R(u∗t ),

or

R(u∗t + e2) = r⊤(u∗t + e2) + Vt−1(x+ u∗t + e2)− Vt−1(x) = R(u∗t ) + r2(x∗) > R(u∗t ),

which contradicts the optimality of u∗t .
Otherwise, consider the unique state x(l) with x1l ≤ x∗1 and x2l ≤ x∗2 having the largest l.

If ei(l+1) = e1, the definition of l and Pjt implies that r1(x(l)) is positive and greater or equal
than r2(x(l)). As in Case (I), the inequality (20) then yields R(u∗t + e1 − e2) > R(u∗t ), which
contradicts the optimality of u∗t . The alternative ei(l+1) = e2 leads to the symmetric contradiction
as covered by Case (II). This completes the proof. □

5.2. Relationship with Chen et al.’s switching curves
Chen et al. (2010) describe their optimal booking policy based on two types of information.

First, acceptance or rejection requires the evaluation of one type of switching curve which is a
function of a single state variable. Second, in case of acceptance, the assignment requires the
evaluation of another type of switching curve which is again a function of a single state variable.

Based on Theorem 1, we can describe those states x ∈ X in which it is optimal to accept at
least one unit of demand for product j ∈ J at time t ∈ T as the following acceptance region

X acc
jt =

{
x ∈ X : max{r1j −∆1Vt−1(x), r

2
j −∆2Vt−1(x)} > 0

}
.

In the static model (RMFP-s), the only non-empty acceptance region is the one for j = j(t).
Our definition of switching curves for acceptance and a given value function V is as follows:

S1(x2) = min
{
x̂1 ∈ X1 : max

{
r1 −∆1V (x̂1, x2), r

2 −∆2V (x̂1, x2)
}
≤ 0

}
∀x2 ∈ X2

S2(x1) = min
{
x̂2 ∈ X2 : max

{
r1 −∆1V (x̂2, x1), r

2 −∆2V (x̂2, x1)
}
≤ 0

}
∀x1 ∈ X1,

where X1 = X2 = Z+.
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Lemma 13. Let V be concave and submodular and x ∈ Z2
+. Then,

(i) x1 ≥ S1(x2) implies max{r1 −∆1V (x1, x2), r
2 −∆2V (x1, x2)} ≤ 0,

(ii) x2 ≥ S2(x1) implies max{r1 −∆1V (x1, x2), r
2 −∆2V (x1, x2)} ≤ 0,

(iii) x1 < S1(x2) if and only if x2 < S2(x1).

Proof. (i) By definition of S1, we have r1 −∆1V (S1(x2), x2) ≤ 0. Concavity of V implies r1 −
∆1V (x1, x2) ≤ 0 for all x1 ≥ S1(x2). By definition of S1, we also know that r2−∆2V (S1(x2), x2) ≤
0. Submodularity of V implies r2−∆2V (x1, x2) ≤ 0 for all x1 ≥ S1(x2). Both inequalities together
imply max{r1 −∆1V (x1, x2), r

2 −∆2V (x1, x2)} ≤ 0, i.e., the statement.
(ii) Follows from (i) with the roles of i = 1 and i = 2 interchanged.
(iii) Now, the condition x1 < S1(x2) is equivalent to the condition ∆1V (x1, x2) − r1 >
0 or ∆2V (x1, x2) − r2 > 0 which is again equivalent to x2 < S2(x1) by the definitions of S1

and S2. □

A direct consequence of Lemma 13 and the time monotonicity proven in Lemmata 9 and 12 is:

Theorem 2. Let the switching curves S1 = S1jt and S2 = S2jt be defined with V = Vt−1 and r = rj
for products j ∈ J and periods t ∈ T . Then, the acceptance regions in the models (RMFP-s) and
(RMFP-d) are

X acc
jt =

{
(x1, x2)

⊤ ∈ X : x1 < S1jt(x2)
}
=

{
(x1, x2)

⊤ ∈ X : x2 < S2jt(x1)
}

for all products j ∈ J and periods t ∈ T . Moreover, X acc
jt ⊆ X acc

jt−1 for all t ∈ T .

Another implication of Theorem 1 is that we can describe those states x ∈ X in which it is
better to assign one unit of demand for product j ∈ J at time t ∈ T to the respective flight.
Assignments to flight 1 are more attractive in states given by the assignment region

X ass
1jt =

{
x ∈ X : r1j −∆1Vt−1(x) ≥ r2j −∆2Vt−1(x)

}
∀j ∈ J , t ∈ T ,

while assignments to flight 2 are more attractive in the following states

X ass
2jt =

{
x ∈ X : r1j −∆1Vt−1(x) < r2j −∆2Vt−1(x)

}
∀j ∈ J , t ∈ T .

Note that here assignment is made independent of acceptance. In the booking policy, assignments
are made only if demand has been accepted.

We define associated switching curves for assignments provided that a value function V is given:

Q1(x2) = min
{
x̂1 ∈ X1 : r

1 −∆1V (x̂1, x2) < r2 −∆2V (x̂1, x2)
}

∀x2 ∈ X2

Q2(x1) = min
{
x̂2 ∈ X2 : r

1 −∆1V (x̂2, x1) ≥ r2 −∆2V (x̂2, x1)
}

∀x1 ∈ X1.

Lemma 14. Let V be concave and submodular and x ∈ Z2
+. Then,

(i) x1 ≥ Q1(x2) implies r1 −∆1V (x1, x2) < r2 −∆2V (x1, x2),
(ii) x2 ≥ Q2(x1) implies r1 −∆1V (x1, x2) ≥ r2 −∆2V (x1, x2),
(iii) x1 < Q1(x2) if and only if x2 ≥ Q2(x1).
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Proof. (i) By definition of Q1, we have ∆2V (Q1(x2), x2)−∆1V (Q1(x2), x2) < r2−r1. Subconcavity
of V implies ∆2V (x1, x2)−∆1V (x1, x2) is non-increasing in x1. Therefore,

∆2V (x1, x2)−∆1V (x1, x2) ≤ ∆2V (Q1(x2), x2)−∆1V (Q1(x2), x2) < r2 − r1 ∀x1 ≥ Q1(x2),

which shows (i).
(ii) By definition of Q2, we have ∆2V (x1, Q2(x1))−∆1V (x1, Q2(x1)) ≥ r2− r1. Subconcavity of V
implies ∆2V (x1, x2)−∆1V (x1, x2) is non-decreasing in x2. Therefore,

∆2V (x1, x2)−∆1V (x1, x2) ≥ ∆2V (x1, Q2(x1))−∆1V (x1, Q2(x1)) ≥ r2 − r1 ∀x2 ≥ Q2(x1),

which shows (ii).
(iii) The equivalence is a direct consequence of (i) and (ii). □

A direct consequence of Lemma 14 is the following theorem.

Theorem 3. Let the switching curves Q1 = Q1jt and Q2 = Q2jt be defined with V = Vt−1 and
r = rj for products j ∈ J and periods t ∈ T . Then, the assignment regions in the models (RMFP-s)
and (RMFP-d) are

X ass
1jt =

{
(x1, x2)

⊤ ∈ X : x1 < Q1jt(x2)
}
=

{
(x1, x2)

⊤ ∈ X : x2 ≥ Q2jt(x1)
}

X ass
2jt =

{
(x1, x2)

⊤ ∈ X : x1 ≥ Q1jt(x2)
}
=

{
(x1, x2)

⊤ ∈ X : x2 < Q2jt(x1)
}

for all products j ∈ J and periods t ∈ T .

Theorems 2 and 3 establish that both the simple criteria to construct booking paths and switch-
ing curves yield the same description of the optimal acceptance and assignment regions.

5.3. Numerical Example
The following numerical example demonstrates the path construction of Algorithm 1 and how

optimal booking decisions are derived from a booking path in the static model (RMFP-s). The
example assumes some period t ∈ T in which we observe demand for product j = j(t) that is flexible
having r1j = 20 and r2j = 40. The total seat capacity of both flights is assumed to be c1 = c2 = 10
and we set the overbooking penalty r̄ = ∞.

x2

Vt−1(x) x1
0 1 2 3 4 5 6 7 8 9 10

10 190.2 177.0 159.3 139.9 120.0 100.0 80.0 60.0 40.0 20.0 0.0
9 230.2 217.0 199.3 179.9 160.0 140.0 120.0 100.0 80.0 60.0 40.0
8 270.2 256.9 239.3 219.9 200.0 180.0 160.0 140.0 120.0 100.0 80.0
7 310.0 296.8 279.2 259.8 240.0 220.0 200.0 180.0 160.0 140.0 120.0
6 348.5 335.8 318.7 299.7 279.9 260.0 240.0 220.0 200.0 180.0 160.0
5 382.4 372.4 357.2 339.0 319.7 299.9 280.0 260.0 240.0 220.0 200.0
4 407.3 404.2 393.0 377.4 359.0 339.7 319.9 300.0 280.0 260.0 240.0
3 428.2 427.6 424.4 413.0 397.3 378.9 359.6 339.7 319.8 299.8 279.8
2 448.3 448.2 447.6 444.3 432.8 416.8 398.1 378.6 358.6 338.6 318.6
1 468.0 468.0 467.8 467.0 463.1 450.4 433.3 413.9 393.9 373.9 353.9
0 485.3 485.3 485.2 484.7 482.3 475.6 459.7 440.4 420.5 400.5 380.5

Table 3: Revenue-to-go Vt−1(x)
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x2

r1(x) x1
0 1 2 3 4 5 6 7 8 9 10

10 6.7 2.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 −∞
9 6.7 2.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 −∞
8 6.7 2.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 −∞
7 6.8 2.4 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 −∞
6 7.3 2.9 1.0 0.2 0.1 0.0 0.0 0.0 0.0 0.0 −∞
5 10.0 4.8 1.8 0.8 0.2 0.1 0.0 0.0 0.0 0.0 −∞
4 16.9 8.8 4.4 1.6 0.7 0.2 0.1 0.0 0.0 0.0 −∞
3 19.4 16.8 8.6 4.3 1.6 0.7 0.1 0.0 0.0 0.0 −∞
2 19.9 19.4 16.7 8.4 4.1 1.3 0.4 0.1 0.0 0.0 −∞
1 20.0 19.9 19.1 16.1 7.3 2.9 0.6 0.1 0.0 0.0 −∞
0 20.0 19.9 19.4 17.6 13.3 4.1 0.7 0.1 0.0 0.0 −∞

(a) Allocating flight 1 seats

x2

r2(x) x1
0 1 2 3 4 5 6 7 8 9 10

10 −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞ −∞
9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
7 0.2 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
6 1.5 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0
5 6.1 3.4 1.5 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0
4 15.1 8.2 4.2 1.6 0.7 0.2 0.1 0.0 0.0 0.0 0.0
3 19.1 16.6 8.6 4.4 1.6 0.8 0.3 0.2 0.2 0.2 0.2
2 19.9 19.4 16.8 8.7 4.6 2.1 1.5 1.2 1.1 1.1 1.1
1 20.3 20.2 19.8 17.4 9.7 6.4 4.9 4.7 4.7 4.7 4.7
0 22.7 22.6 22.6 22.3 20.8 14.8 13.6 13.5 13.5 13.5 13.5

(b) Allocating flight 2 seats

Table 4: Marginal revenue increases r1(x) and r2(x) in the example

Using the values Vt−1(x) as given in Table 3, we computed the marginal revenue increases of
serving one unit of demand r1(x) and r2(x), see Table 4. With this information, the indices i(l)
for l = 1 can be chosen for every state x ∈ X as described in Algorithm 1. Table 5 shows in which
state we choose to book a single request on flight 1 (1), on flight 2 (2), or to reject it (−1/−2).

Figure 1 visualizes the assignment regions X ass
1jt and X ass

2jt and the rejection region X rej
jt =

X \X acc
jt . Moreover, it indicates the optimal booking path which results from applying Algorithm 1

in state x = (0, 1)⊤. The path starts in x(0) = x and ends in x(L) = x(13) = (8, 6)⊤.
If we further assume that d = 6 requests for product j have been observed, it follows from (19)

that the optimal booking decision is u∗t = (3, 3)⊤ leading to the state x(ℓ) = (3, 4)⊤. Obviously,
the marginal values ri(l)(x(l)) = r

i(l)
j −∆i(l)Vt−1(x(l−1)) along this path are nonincreasing in l. In

general, the result

r
i(l)
j −∆i(l)Vt−1(x(l−1)) ≥ r

i(l+1)
j −∆i(l+1)Vt−1(x(l)) ∀l ∈ {1, 2, . . . , L− 1} (21)

holds for every optimal booking path. It is another consequence of multimodularity and follows by
distinguishing two cases:

Case i(l) = i(l + 1): It follows r
i(l)
j = r

i(l+1)
j and with the definition i = i(l) we have x(l) =

x(l−1) + ei. Then, (21) is equivalent to ∆iVt−1(x(l−1)) ≤ ∆iVt−1(x(l−1) + ei), which is concavity
of Vt−1.

Case i(l) ̸= i(l + 1): Assume i(l) = 1 and i(l) = 2. Then,

r
i(l)
j −∆i(l)Vt−1(x(l−1)) = r1j −∆1Vt−1(x(l−1))

≥ r2j −∆2Vt−1(x(l−1)) ≥ r2j −∆2Vt−1(x(l−1) + e1) = r
i(l+1)
j −∆i(l+1)Vt−1(x(l)),

where the first inequality results from the definition of i(l) and the second inequality is submodu-
larity of Vt−1. The reverse case with i(l) = 2 and i(l + 1) = 1 can be shown in the same manner.
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x2

i(l) x1
0 1 2 3 4 5 6 7 8 9 10

10 1 1 1 1 1 1 -1 -1 -1 -1 -2
9 1 1 1 1 1 1 -1 -1 -1 -1 -2
8 1 1 1 1 1 1 -1 -1 -1 -1 -2
7 1 1 1 1 1 1 1 -1 -1 -1 -2
6 1 1 1 1 1 1 1 1 -1 -1 -2
5 1 1 1 1 1 1 2 2 2 2 2
4 1 1 1 1 2 2 2 2 2 2 2
3 1 1 1 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2 2 2 2
0 2 2 2 2 2 2 2 2 2 2 2

Table 5: Choosing i(l) for l = 1 in the
example
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Figure 1: Optimal booking path with ℓ =
min{d, L} = min{6, 13} in the example

6. Conclusions

In this paper, we extended Lautenbacher and Stidham’s (1999) omnibus model to the case
with two flights and multiple specific and flexible/opaque products. Our model therefore allows for
dynamic as well as static demand distributions. For the latter, the structure of optimal booking
control was unknown. Moreover, our model is more general than the flexible-product model by Chen
et al. (2010) as we can cope with opaque products which generally have lower revenues relative to
their constituting specific products. Actually, our analysis becomes simpler compared to the one in
Chen et al. (2010) and earlier works, since we can uniformly manage specific, flexible, and opaque
products by just defining revenues properly. We conducted a comprehensive analysis providing a
unifying view on the structure of optimal booking policies under dynamic and static demand. Our
paper is the first completely self-contained analysis of important monotonicity properties of the
value function (concavity, submodularity, and subconcavity) in both cases. We introduced a new
reformulation of the static model which traces the structural analysis back to the dynamic case.

Moreover, we are able to characterize optimal booking policies for the extended omnibus model
by means of optimal booking paths exploiting the proven monotonicity properties. We have shown
that our path-based policy is an alternative to the switching curve-based policy of Chen et al. (2010).
Implementing either booking paths or switching curves ends up with an overall computational
complexity of O (nτC2) in the dynamic and O (nC3) in the static case (C is the largest available
seat capacity). Even though there is no computational reason to prefer one optimal policy over the
other, we showed that two simple criteria are at the heart of optimal booking control.
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Appendix

A. Submodularity and subconcavity of the single-request operator

In this section, we prove that the single-request operator H1 defined in (5) preserves multimod-
ularity, as required for the proof of Lemma 7. We follow our discussion of Section 3.3 and examine
the double-mode operator H defined in (9) in order to ease the exposition without loss of generality.
Our case-by-case analysis is similar to the procedure of Zhuang and Li (2010).

Lemma 15. If f is multimodular, then the operator H(f) is submodular.

Proof. By part 3. of Lemma 4, H(f) is submodular if

H(f)(x)−H(f)(x+ e2) ≤ H(f)(x+ e1)−H(f)(x+ e1 + e2). (22)

In what follows, we construct a case for each pair of values for H(f)(x) and H(f)(x + e1 + e2).
Each case is referred to as a pair of the identifiers shown in the first and third column of Table 6a.
Note that this procedure requires at most 32 cases to check (Zhuang and Li, 2010).

By assumption, f is multimodular and hence implies for all x ∈ Z2
+ that

f(x)− f(x+ e2) ≤ f(x+ e1)− f(x+ e1 + e2) (23)
f(x)− f(x+ e1) ≤ f(x+ e1)− f(x+ 2e1) (24)
f(x)− f(x+ e2) ≤ f(x+ e2)− f(x+ 2e2), (25)

where the first inequality is the submodularity of f (see also part 3. of Lemma 4). Both inequali-
ties (24) and (25) follow from the concavity of f . Starting with case (3.a), note that

f(x)−H(f)(x+ e2)

≤ f(x)− f(x+ e2) ≤ f(x+ e1)− f(x+ e1 + e2)

≤ r1 + f(x+ 2e1)− f(x+ 2e1 + e2)− r1

≤ H(f)(x+ e1)− f(x+ 2e1 + e2)− r1, (26)

where the first inequality is true because H(f)(x+e2) ≥ f(x+e2), the second and third inequalities
follow from (23), and the last inequality holds because H(f)(x+ e1) ≥ r1 + f(x+ 2e1). Using the
inequalities (23) and (25), we get case (3.b):

f(x)−H(f)(x+ e2)

≤ f(x)− f(x+ e2) ≤ f(x+ e1)− f(x+ e1 + e2)

≤ r2 + f(x+ e1 + e2)− r2 − f(x+ e1 + 2e2)

≤ H(f)(x+ e1)− r2 − f(x+ e1 + 2e2). (27)

The case (3.c) can be established similarly with inequality (23), i.e., we obtain

f(x)−H(f)(x+ e2) ≤ H(f)(x+ e1)− f(x+ e1 + e2). (28)

Lemma 2 of Zhuang and Li (2010) allows us to combine the results (26), (27), and (28) to

f(x)−H(f)(x+ e2) ≤ H(f)(x+ e1)−H(f)(x+ e1 + e2). (29)
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Likewise, the case (1.a) is constructed using (23), while the case (1.b) requires (25). Noting
that case (1.c) is trivial because r1 + f(x+ e1)− r1 − f(x+ e1 + e2) = f(x+ e1)− f(x+ e1 + e2),
we can conclude from the last three cases that

r1 + f(x+ e1)−H(f)(x+ e2) ≤ H(f)(x+ e1)−H(f)(x+ e1 + e2). (30)

The case (2.c) is trivial because r2+f(x+ e2)−f(x+ e2) = r2+f(x+ e1+ e2)−f(x+ e1+ e2).
The cases (2.a) and (2.b) are derived using (24) and (23), respectively. Hence,

r2 + f(x+ e2)−H(f)(x+ e2) ≤ H(f)(x+ e1)−H(f)(x+ e1 + e2). (31)

Finally, combining (29), (30), and (31) yields the result (22) and completes the proof. □

H(f)(x) H(f)(x+ e1 + e2)

ID Value ID Value

1 r1 + f(x+ e1) a r1 + f(x+ 2e1 + e2)
2 r2 + f(x+ e2) b r2 + f(x+ e1 + 2e2)
3 f(x) c f(x+ e1 + e2)

(a) Cases of Lemma 15

H(f)(x+ e1) H(f)(x+ 2e2)

ID Value ID Value

4 r1 + f(x+ 2e1) d r1 + f(x+ e1 + 2e2)
5 r2 + f(x+ e1 + e2) e r2 + f(x+ 3e2)
6 f(x+ e1) f f(x+ 2e2)

(b) Cases of Lemma 16

Table 6: Definition of identifiers (ID) for the cases of Lemmata 15 and 16

Lemma 16. If f is multimodular, then the operator H(f) is subconcave.

Proof. By part 3. of Lemma 5, H(f) is subconcave if

H(f)(x+ e1)−H(f)(x+ e2) ≤ H(f)(x+ e1 + e2)−H(f)(x+ 2e2). (32)

We construct the subsequent cases by considering H(f)(x+e1) and H(f)(x+2e2), where each case
is referred to as a pair of the identifiers depicted in columns one and three of Table 6b. Note that f
is multimodular by assumption which implies for all x ∈ Z2

+:

f(x+ e1)− f(x+ e2) ≤ f(x+ e1 + e2)− f(x+ 2e2) (33)
f(x+ e1)− f(x+ e2) ≥ f(x+ 2e1)− f(x+ e1 + e2) (34)

f(x)− f(x+ e2) ≤ f(x+ e2)− f(x+ 2e2), (35)

where the first and second inequalities follow from the subconcavity of f in combination with part
3. and 4. of Lemma 5, respectively. The inequality (35) is the definition of concavity in x2.

Starting with case (4.f), note that

r1 + f(x+ 2e1)−H(f)(x+ e2) ≤ r1 + f(x+ 2e1)− r1 − f(x+ e1 + e2)

≤ f(x+ e1 + e2)− f(x+ 2e2) ≤ H(f)(x+ e1 + e2)− f(x+ 2e2),
(36)

where the first and last inequalities are true because H(f)(x+e2) ≥ r1+f(x+e1+e2) and H(f)(x+
e1 + e2) ≥ f(x+ e1 + e2), respectively, and the second inequality holds by (33) and (34). Likewise,
we obtain case (4.d) using (33) and case (4.e) using (33) and (34). Hence, we can conclude that

r1 + f(x+ 2e1)−H(f)(x+ e2) ≤ H(f)(x+ e1 + e2)−H(f)(x+ 2e2). (37)
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The cases (5.d) and (5.f) are readily available, while case (5.e) is achieved by applying inequal-
ity (34). The cases (5.d)-(5.f) lead to

r2 + f(x+ e1 + e2)−H(f)(x+ e2) ≤ H(f)(x+ e1 + e2)−H(f)(x+ 2e2). (38)

The cases (6.e) and (6.f) are obtained with (33) and case (6.d) with (35), and together they imply

f(x+ e1)−H(f)(x+ e2) ≤ H(f)(x+ e1 + e2)−H(f)(x+ 2e2). (39)

Finally, we achieve the result (32) by combining (37), (38), and (39). This completes the proof. □

Remark 1. Even though a multimodular function is the precondition of both Lemmata 15 and 16,
the cases of Lemma 15 are in fact established by using only concavity and submodularity. Similarly,
the minimum requirements for the function f of Lemma 16 are in fact concavity and subconcavity.
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