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Abstract

We present two new methods to stabilize column-generation algorithms for the Temporal Knapsack Problem
(TKP). Caprara et al. [Caprara A, Furini F, and Malaguti E (2013) Uncommon Dantzig-Wolfe Reformula-
tion for the Temporal Knapsack Problem. INFORMS J. on Comp. 25(3):560–571] were the first to suggest
the use of branch-and-price algorithms for Dantzig-Wolfe reformulations of the TKP. Herein, the respective
pricing problems are smaller-sized TKP that can be solved with a general-purpose MIP solver or by dy-
namic programming. Our stabilization methods are tailored to the TKP as they use (deep) dual-optimal
inequalities, that is, inequalities known to be fulfilled by all (at least some) optimal dual solutions to the
linear relaxation.
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1. Introduction

The temporal knapsack problem (TKP) is a generalization of the binary knapsack problem. It is defined
by a set of items I and a discrete time horizon T . Each item has an associated profit pi, a weight wi, and the
item is active at times Ti ⊆ T . Often TKP instances are defined by specifying a time window for each item,
however, this assumption is not needed in the following. Conversely, let It be the set of the items active at
time t ∈ T , i.e., It = {i ∈ I : t ∈ Ti}. Moreover, a capacity C is given. The TKP asks for a profit-maximizing
subset of items such that at any time the weight of the selected active items does not exceed the capacity.
A straightforward integer programming formulation for the TKP uses binary variables xi, one for each item
i ∈ I, to indicate that i is selected. It reads:

max
∑
i∈I

pixi (1a)

s.t.
∑
i∈It

wixi ≤ C ∀ t ∈ T (1b)

xi ∈ {0, 1} ∀ i ∈ I (1c)

As in (Caprara et al., 2013) we assume that all coefficients are non-negative integers and that the time
horizon T is already reduced so that only non-dominated constraints remain in (1b).

The TKP has appeared in the literature under different names: The name temporal knapsack problem
was coined by Bartlett et al. (2005), who report applications in resource allocation problems which arise
when bidding for a sparse resource such as for CPU time, communication bandwidth, computer memory, or
disk space. They present solution algorithms combining techniques from constraint programming, artificial
intelligence, and operations research. Caprara et al. motivate the TKP as a subproblem in a railway
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application (Caprara et al., 2011), where a train that travels along the stations T = {1, 2, . . . ,m} can
carry several railcars simultaneously if their total weight does not exceed C. One has to select among
transportation requests, where the ith request consists of railcars of weight wi to be transported from
stations oi to station di, i.e, along Ti = {oi, oi + 1, . . . , di − 1, di} ⊆ T , providing a revenue of pi if accepted.
For additional references about applications in resource allocation, bandwidth allocation, and unsplittable
flow on a line, we refer to (Caprara et al., 2013, p. 560).

The basic idea of Caprara et al. (2013) was to partition the time horizon T into smaller so-called
blocks and herewith to partition the constraints (1b) for the Dantzig-Wolfe reformulation of model (1).
Typically, these blocks are time intervals of identical length. For example, if T = {0, 1, 2, . . . , |T | − 1},
then the partitioning suggested is T =

⊎
q∈Q Tq with disjoint blocks of a chosen block size S given by

Tq = {qS, qS+1, . . . , (q+1)S−1}, where the indices q are taken from Q = {0, 1, . . . , d|T |/Se−1}. Obviously,
the last block is smaller than S whenever |T | is no multiple of S. In order to simplify the notation, we define
the items active in the block Tq as Iq =

⋃
t∈Tq

It. Moreover, for each q ∈ Q, let

Pq = conv

{
v ∈ {0, 1}Iq :

∑
i∈It

wivi ≤ C, t ∈ Tq

}

be the convex hull of the solutions of the smaller TKP for the qth block. This polyhedron is bounded so
that every point in Pq can be represented as a convex combination of the extreme points Eq of Pq. Now,
the Dantzig-Wolfe reformulation of Caprara et al. (2013) results from the grouping of the constraints (1b)
according to the block partitioning:

max
∑
i∈I

pixi (2a)

s.t. xi −
∑
v∈Eq

viλ
q
v = 0 ∀ q ∈ Q, i ∈ Iq (2b)

∑
v∈Eq

λqv = 1 ∀ q ∈ Q (2c)

xi ∈ {0, 1} ∀ i ∈ I (2d)
λqv ≥ 0 ∀ q ∈ Q, v ∈ Eq (2e)

We refer to this formulation as the integer master program (IMP). The original variables xi remain in IMP.
Their function is to model the objective (2a) and to ensure that selected solutions v = (vi)i∈Iq from different
blocks are compatible, which is ensured by the coupling constraints (2b). The convexity constraints (2c)
guarantee that exactly one solution is selected for each block. The variable domains are stated in (2d) and
(2e).

The contribution of the paper at hand is to derive two new types of column-generation stabilization
methods and to empirically validate their efficacy using some large-scale benchmark sets for the TKP. Both
methods proposed here are based on (deep) dual-optimal inequalities, i.e., sets of inequalities known to hold
for at least one dual optimal solution of the linear relaxation of the column-generation master program.
This stabilization technique was originally proposed and tested by Ben Amor et al. (2006) for cutting stock
and bin packing problems.

The remainder of the paper is structured as follows: The next section focuses on solving the reformulation
of the TKP via branch-and-price and discusses the techniques to stabilized the underlying column-generation
process. Section 3 presents and discusses the computational results before final conclusions are drawn in
Section 4.

2. Stabilized Column Generation

We start with a brief summary on how column generation works for the TKP as suggested by Caprara
et al. (2013) before we explain the new stabilization methods. We assume that the reader is familiar with
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integer column-generation techniques as, e.g., discussed in (Lübbecke and Desrosiers, 2005) and (Desaulniers
et al., 2005).

2.1. Column Generation for TKP as suggested by Caprara et al. (2013)
The number of extreme points of the polyhedra Pq, q ∈ Q is generally huge so that the Dantzig-Wolfe

formulation (2) cannot be solved directly. Instead, one starts with a proper subset of the variables and solves
the linear relaxation known as the restricted master program (RMP). The task of the pricing problems, there
is one for each block, is to generate one or several variables λqv with (smallest) negative reduced cost, or to
prove that no such variable exists. Let π = (πqi)q∈Q,i∈Iq be the dual variables to the coupling constraints (2b)
and µ = (µq)q∈Q be the dual variables to the convexity constraints (2c). In the following, we will distinguish
between these dual variables and their values, which are denoted by π̄ and µ̄, respectively.

Given the dual values (π̄, µ̄), the reduced cost of a variable λqv is rdc(λqv) = −
∑

i∈Iq π̄qivi + µ̄q. The
pricing problem for the qth block is therefore of the form

max
∑
i∈Iq

π̄qivi, s.t. v = (vi)i∈Iq ∈ Pq.

This is indeed a smaller-sized TKP, in which only the subset Iq of items is considered and the original
profits are replaced by block-specific profits π̄qi. In principle, this problem can either be solved with a
general-purpose MIP solver, with a tailored combinatorial algorithm such as dynamic programming (DP),
or recursively with branch-and-price. Caprara et al. (2013) studied the first two options and found that for
larger block sizes S the MIP solver (CPLEX) performed best. However, dynamic programming becomes a
faster alternative for smaller block sizes S. In the extreme case of S = 1, the pricing problem is a binary
knapsack problem, for which DP-based methods are certainly the state of the art (Kellerer et al., 2004).
In any case, the generated variables are added to the RMP, which is then re-optimized, and the process
is repeated until no more variables with negative reduced cost exist. The solution of the RMP constitutes
an optimal solution to the linear relaxation of (2). If it is fractional, branching on the original xi variables
finally yields integer solutions.

The general tradeoff in the branch-and-price approach exploited by Caprara et al. is the following: the
larger the block size, the smaller the integrality gap and the branch-and-bound search tree, but the larger
and therewith harder and more time consuming the individual pricing problems. However, a larger block
size means a smaller number of pricing problems, less column-generation iterations are needed, and overall
less columns are priced out. In their experiments, Caprara et al. had chosen block sizes that are powers of
two and found out that 32, 64, and 128 are reasonable block sizes for the tested benchmark set, see Section 3.

2.2. Stabilization by Dual-Optimal Inequalities
Column-generation approaches in practice may suffer from instability problems. The values of the dual

variables may oscillate heavily before they finally converge to some optimal values. In many applications the
master program solution consists of only a few dense columns so that a primal basis must include several
other variables that are then at value zero meaning that the primal model can be highly degenerated.
This often leads to rather small and non-improving LP pivots, known as the tailing-off effect (Gilmore
and Gomory, 1961; Vanderbeck, 2005): Over many iterations, the generated columns produce nearly no
improvement in the LP objective. In order to explicitly stabilize the dual values, algorithmic techniques
like the box step method (Marsten et al., 1975), bundle methods (Hiriart-Urruty and Lemaréchal, 1993),
and tailored stabilization approaches have been proposed (du Merle et al., 1999; Rousseau et al., 2007; Lee
and Park, 2011). Furthermore, some recently proposed techniques can help overcome or even benefit from
primal degeneracy when solving huge LPs (Gauthier et al., 2014; Desrosiers et al., 2014).

Another stabilization technique was originally suggested for the cutting stock and bin packing problem
by Valério de Carvalho (2005) and Ben Amor et al. (2006). Valid inequalities known to hold for optimal dual
solutions can be added as additional variables to the corresponding primal column-generation formulation.
The restriction of the dual space leads to less possible intermediate values for the dual multipliers so that
in many cases an optimal dual solution is computed faster. The recent paper (Gschwind and Irnich, 2014)
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extends the results of Ben Amor et al. (2006) with respect to theory, applications, algorithms, and compu-
tational results. Its main focus is, however, on column-generation models with unit (or equal) costs for all
columns. The paper at hand can therefore be seen as a companion paper proving that also formulations
with non-unit costs or profits benefit from this kind of stabilization.

Following Ben Amor et al. (2006), any inequality which is fulfilled by every optimal dual solution is
called dual-optimal inequality (DOI). Moreover, a set of inequalities is called deep dual-optimal inequalities
(DDOIs) if at least one optimal dual solution satisfies all inequalities. Hence, DOIs are always DDOIs.
Conversely, two sets of DDOIs together may not form DDOIs, since they may cut off the entire dual space.
In (Gschwind and Irnich, 2014), we were able to fully characterize in which situations the original dual
and primal formulations are equivalent to their extended versions, i.e., those to which dual inequalities or
additional columns are added: Equivalence is given if and only if the dual inequalities are DDOIs. For
details we refer to Proposition 1 in (Gschwind and Irnich, 2014).

We now turn our attention to the TKP case. As already mentioned by Caprara et al. (2013, p. 564), the
‘solution times of the LP relaxation are greatly reduced by replacing the “=” by “≤” in constraints’ (2b).
The formulations are equivalent because ‘the set of TKP solutions forms an independence system’, i.e., given
any feasible subset of items, every subset of it is also feasible. From a dual point of view, the solution space
is restricted to non-negative values for π.

We can add that also the equalities (2c) can be replaced by “≤” inequalities. Hence, every optimal dual
solution fulfills

πqi ≥ 0 ∀ q ∈ Q, i ∈ Iq and µq ≥ 0 ∀ q ∈ Q, (3)

i.e., they are DOIs.

Deep Dual-Optimal Inequalities for Profits. Another property results when interpreting the dual variables π.
The value π̄qi is the marginal profit that results from adding the item i to the solution of the qth block. It
is natural to suspect that the summation of these dual values over all blocks is identical to the real profit pi
of item i. Indeed, the equalities ∑

q∈Q:i∈Iq

πqi = pi ∀ i ∈ I (4)

form a system of DDOIs, i.e., there exists at least one optimal solution to the dual formulation of (2) that
satisfies all these equalities. Due to the RHS equal to the profit we call them DDOIs for profits in the
following. Note that we keep the term DDOIs even for the equalities because any equality can be re-written
by two inequalities.

The DDOI property can be seen as follows: The linear relaxation of the IMP (2) replaces integrality
by 0 ≤ xi ≤ 1. However, these bounds are already enforced by the coupling constraints (2b). Hence,
the RMP can be reformulated with unrestricted continuous variables xi ∈ R, i ∈ I. These variables have a
corresponding dual constraint of the form (4). The implementation of the DDOIs into the column-generation
model is therefore trivial because on must simply alter the xi variables into unconstrained variables. Since
any optimal solution (xi) to the linear relaxation of this extended formulation is also optimal to the linear
relaxation of (2), the DDOI property follows from the equivalence stated in Proposition 1 in (Gschwind and
Irnich, 2014).

The impact of the DDOIs on the dual space is significant in cases, where only relatively few items belong
to more than one block. Clearly, each of the |I| DDOIs reduces the dual space by one dimension, while
the dimension of the π space is

∑
q∈Q |Iq|. If only relatively few items belong to more than one block, the

second number is approximately |I|.
Caprara et al. (2013) noted that it would be possible to reformulate the IMP (2) without any xi variables

for i ∈ I. In this case, the column-generation variables λqv must replace the objective (2a), e.g., using the
term

∑
v∈Eq piviλ

q
v for any chosen q ∈ Q (or any convex combination of these terms for all q ∈ Q). Moreover,

the coupling constraints (2b) would have to be substituted by constraints that enforce compatible solutions
between pairs of blocks. Caprara et al. (2013, p. 563) mentioned that the formulation with the xi variables,
the so-called explicit master, worked better (see also Poggi de Aragao and Uchoa, 2003). Our explanation
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is that keeping xi ≥ 0 (as done by the authors) is beneficial as it partially stabilizes the dual variables using
inequalities

∑
q∈Q:i∈Iq πqi ≥ pi for all i ∈ I instead of equalities (4).

Deep Dual-Optimal Inequalities for Item Pairs. A second type of DDOIs results from comparing the dual
values of two items h, k ∈ Iq for the coupling constraints (2b) of the qth block. Recall that π̄qh and π̄qk are
the marginal profits of including the items h and k in the qth block. One would suspect that π̄qh ≥ π̄qk
holds for optimal dual solutions (π̄, µ̄) if h is ‘harder’ to include than item k. Thereby, hardness should refer
to both the weights, i.e., wh ≥ wk, and the points in time when the items are active relative to the block
Tq, i.e, Th ∩ Tq ⊇ Tk ∩ Tq.

For q ∈ Q, we define pairs of items for a replacement as

Rq = {(h, k) ∈ Iq × Iq : wh ≥ wk, Th ∩ Tq ⊇ Tk ∩ Tq, and wh + wk > C} .

The last condition is hard to motivate, but it will turn out to be essential for the proof that the inequalities

πqh ≥ πqk ∀ q ∈ Q, (h, k) ∈ Rq (5)

are DDOIs. The formal proof can be found in Section Appendix A of the Appendix. In the following, the
DDOIs (5) are denoted as DDOIs for item pairs.

The resulting primal column-generation formulation will include additional variables yqhk for each q ∈
Q, (h, k) ∈ Rq. Its linear relaxation is:

max
∑
i∈I

pixi (6a)

s.t. xi −
∑
v∈Eq

viλ
q
v +

∑
q∈Q

 ∑
k:(i,k)∈Rq

yqik −
∑

h:(h,i)∈Rq

yqhi

 = 0 ∀ q ∈ Q, i ∈ Iq (6b)

∑
v∈Eq

λqv = 1 ∀ q ∈ Q (6c)

0 ≤ xi ≤ 1 ∀ i ∈ I (6d)
λqv ≥ 0 ∀ q ∈ Q, v ∈ Eq (6e)
yqhk ≥ 0 ∀ q ∈ Q, (h, k) ∈ Rq (6f)

Compared to the IMP (2), the difference is in the coupling constraints (6b), in which the new non-negative
variables yqhk occur (nonnegativity is ensured by (6f)). These variables have a rather intuitive interpretation:
Imagine a solution with only one y variable in a block positive, say yqhk = 1, and the block solution v given
by λqv = 1. It means that in the solution of the qth block, the item h is replaced by item k. Surely,
constraint (6b) for i = h requires vh = 1 and xh = 0. In addition, the constraint (6b) for i = k then imposes
vk = 0 and xk = 1. Hence, the block solution vh = 1, vk = 0 is flipped to xh = 0, xk = 1. This interpretation
of the DDOI variables is very similar to the what happens in the cutting stock and bin packing problem,
where a positive stabilization variable in the extended column-generation formulation is also a replacement
of one item by another item in a chosen bin, see (Ben Amor et al., 2006).

Even if both (4) and (5) are DDOIs as individual set of inequalities, their union does not provide DDOIs.
If the bounds (6d) would be relaxed (which happens when unconstrained primal variables xi are introduced
due to (4)), simultaneous replacements of the form yhk = yh′k = 1 with h 6= h′ would become possible.
Conversely, simultaneous replacements yhk = yhk′ = 1 with k 6= k′ would allow that two items are created
out of the single item h. Both is not valid. Therefore, DDOIs (4) and (5) cannot be used together.

3. Computational Results

In this section, we summarize the computational experiments that we have conducted to compare the
performance of the different column-generation algorithms to the TKP. We compare the otherwise identical
branch-and-price algorithms that use different formulations as linear relaxations:
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• Base: The linear relaxation of formulation (2), in which the DOIs (3) are implemented as “≤” inequal-
ities in (2b) and (2c).

• DDOIs Profits: The linear relaxation Base supplemented by the DDOIs for profits (3).

• DDOIs Pairs: The linear relaxation (6) using DDOIs for item pairs, in which the DOIs (3) are imple-
mented as in Base in (6b) and (6c).

Moreover, we compare with the branch-and-price algorithm of Caprara et al. (2013) whenever the information
is available from their paper:

• Caprara et al.: The algorithm uses the same linear relaxation as Base except that the convexity
constraints (2c) are kept as equalities. (That is at least we read from the article.)

All algorithms were implemented in C++ using CPLEX 12.5 with default settings to solve the MIP subprob-
lems. The experiments were performed on a standard PC with an Intel(R) Core(TM) i7-2600 at 3.4 GHz
with 16.0 GB main memory using a single thread only.

We base our experiments on the benchmark set introduced by Caprara et al. that consists of two sub-
classes I and U each comprising 10 groups with 10 instances per group. For details on the generation of
the instances and on their characteristics we refer to (Caprara et al., 2013). Note that by construction no
DDOIs for item pairs exist for the U instances because the capacity C is chosen large so that no item pair
h, k ∈ I fulfills wh + wk > C. Results for the U instances are, therefore, only presented for the algorithms
Base and DDOIs Profits. Moreover, following the findings of Caprara et al. (2013), we restrict our analysis
to block sizes between 32 and 128, which provide the best results for the considered instances. The time
limit was set to one hour.

Linear Relaxation Results. Table 1 summarizes our results for the linear relaxations. The columns report
the following information:

lp The number of instances for which the LP bound was found within the time limit

abs [s] The average solution time in seconds

rel The geometric mean of the instance-wise solution times relative to algorithm Base

iter The geometric mean of the instance-wise number of column-generation iterations relative to algorithm
Base (only those instances that are solved by all considered algorithms are included)

Note first that the U instances are significantly harder to solve than the I instances. Indeed, neither
algorithm was able to reach the LP bound for most instances within the time limit of one hour. For a
better comparability of the different algorithms developed in our paper we added linear relaxation results
of the U instances with an extended time limit of four hours.

A comparison between the two base implementations Caprara et al. and Base is difficult. Table 1 shows
that Caprara et al. produces within 1 hour significantly more LP results. Possible explanations are that
our code is less efficient or that they used a slightly faster computer, a different numerical tolerance, or
included some acceleration techniques that are not present in our implementation.

Table 1 reveals that for all tested block sizes S both DDOIs for profits and DDOIs for item pairs stabilize
the column-generation process and reduce the number of iterations needed to reach the LP bound. In the
case of DDOIs for profits this also leads to a significant reduction of the computation times, especially for
the difficult U instances. Moreover, algorithm DDOIs Profits provides LP bounds for many more instances
than algorithm Base. In contrast, the stabilization effect of the DDOIs for item pairs does not help to reduce
the computation times. Indeed, for block sizes of 64 and 128 algorithm DDOIs Pairs is on average slightly
slower than algorithm Base. A more detailed analysis of the computation times is depicted in Figure 1
showing the linear relaxation solution times of the different algorithms relative to algorithm Base.
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S = 32 S = 64 S = 128

time time time

lp abs [s] rel iter lp abs [s] rel iter lp abs [s] rel iter

I instances
Caprara et al. 100 56.3 ? ? 100 102.4 ? ? 99 267.7 ? ?
Base 100 90.3 1.00 1.00 100 110.6 1.00 1.00 100 209.0 1.00 1.00
DDOIs Profits 100 75.1 0.79 0.74 100 91.6 0.78 0.76 100 134.6 0.59 0.70
DDOIs Pairs 100 86.1 0.95 0.82 100 146.4 1.17 0.96 100 310.0 1.29 0.98

U instances (time limit 1 hour)
Caprara et al. 43 >2340.8 ? ? 47 >2177.5 ? ? 45 >2186.5 ? ?
Base 29 2700.1 1.00 1.00 38 2474.0 1.00 1.00 38 2450.0 1.00 1.00
DDOIs Profits 60 1916.3 0.34 0.33 52 2053.0 0.38 0.68 48 2129.2 0.35 0.26

U instances (time limit 4 hours)
Base 30 10273.8 1.00 1.00 38 9170.0 1.00 1.00 54 8148.5 1.00 1.00
DDOIs Profits 84 4488.4 0.19 0.28 71 6152.5 0.28 0.77 61 6794.9 0.31 0.35

Table 1: Linear relaxation results
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Figure 1: Computation times for linear relaxation relative to algorithm Base
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S = 64 S = 96 S = 128

time time time

opt abs [s] rel gap opt abs [s] rel gap opt abs [s] rel gap

I instances
Base 91 880.2 1.00 0.00 91 802.6 1.00 0.00 97 590.7 1 0.00
DDOIs Profits 96 537.4 0.60 0.00 97 484.2 0.63 0.00 97 390.0 0.60 0.00
DDOIs Pairs 86 1113.8 1.31 0.00 85 1025.7 1.24 0.00 92 813.1 1.33 0.00

U instances
Base 27 2736.2 1.00 0.24 34 2613.7 1.00 0.15 34 2518.9 1 0.25
DDOIs Profits 40 2291.1 0.38 0.06 45 2154.9 0.36 0.11 45 2235.3 0.38 0.22

Table 2: Integer results

I instances U instances

opt ↑ opt ↑ ub gap opt ↑ opt ↑ ub gap

Caprara et al. 96 0 0 0.00 42 1 4 0.14
G & I 100 4 4 0.00 51 10 54 0.03

Table 3: Summary comparison between Caprara et al. (2013) and our approach

Integer Results. Our integer solution results are summarized in Table 2. The additional columns report the
number of instances that were solved to proven optimality within the time limit of one hour (opt) and the
average remaining percentage gap with respect to the best known solution (gap). Note that in preliminary
tests, we observed that the block size S = 32 is not competitive with block sizes of 64 and 128 and therefore
chose not to include it in our integer solution analysis. Instead, we consider the additional block size S = 96
between 64 and 128.

From Table 2 it can be seen that the findings for the linear relaxation are transferable to integer solution
results: Algorithm DDOIs Profits is clearly superior to algorithm Base with respect to computation times,
number of solved instances, and remaining gap. The stabilization with DDOIs for items pairs, on the other
hand, is not beneficial for the performance of the overall algorithm.

In Table 3, we summarize the comparison of our results with the results of Caprara et al. (2013). A
more detailed, instance-wise comparison can be found in Tables B.4 and B.5 in Section Appendix B of the
Appendix. Thereby, Caprara et al. refers to the strongest algorithm of Caprara et al. (2013) for a given
instance. G & I has the analog meaning. We report the overall number of solved instances (opt), the number
of instances that are solved to optimality only by the respective algorithm (↑ opt), the number of instances
for which a stronger upper bound is provided by the algorithm (↑ ub), and the remaining average percentage
integrality gap (gap).

Table 3 reveals that we are able to solve all I instances including the four instances that were previously
unsolved. Regarding the U instances, Caprara et al. proved optimality for 42 instances, while we solve 51
instances. Thereby, we solve ten previously unsolved instances failing only on one of the instances that
Caprara et al. solved. We found stronger upper bounds for 54 instances, while their upper bounds are
stronger only for four instances. Moreover, our remaining gap of 0.03% is significantly smaller than the
0.14% of Caprara et al..

4. Conclusions

In this paper we presented two types of column-generation stabilization methods for the temporal knap-
sack problem (TKP). Both methods are based on deep dual-optimal inequalities (DDOIs), namely, DDOIs
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for profits and DDOIs for item pairs. The integration of these dual inequalities as additional primal columns
in the column-generation formulation reduces the oscillation of the dual values and herewith the number of
column-generation iterations. While DDOIs for item pairs are not effective for the overall branch-and-price,
the DDOIs for profits are: On average, measured by the geometric mean of runtime ratios, the new formula-
tion with DDOIs for profits reduces the computation time of the branch-and-price by approximately 40% for
the easier I instances of Caprara et al. and by approximately 60% for the harder U instances. In summary,
using DDOIs for profits is very simple to implement, but effective, since the stabilized branch-and-price
solves additional TKP instances to optimality, improves many upper bounds, and reduces the remaining
gap for almost all open instances.
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Appendix

A. Proof

In this section, we give a formal proof that the inequalities (5) are deep dual-optimal inequalities (DDOIs).
Before providing the actual proof, we introduce some additional notation, which is useful for argumentation
(cf. Ben Amor et al., 2006; Gschwind and Irnich, 2014).
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A pair of primal and dual LPs is

zP = min c>λ zD = max b>π

(P ) s.t. Aλ = b (D) s.t. A>π ≤ c
λ ≥ 0

with a coefficient matrix A = (aij) ∈ RI×J , cost coefficients c = (ci) ∈ RJ , and RHS b = (bi) ∈ RI with
row indices i ∈ I and column indices j ∈ J .

In the following, we assume that the primal formulation P is the extensive formulation to which a column-
generation algorithm is applied. The idea of Ben Amor et al. (2006) was to add additional constraints
E>π ≤ e to the dual D. Such additional constraints in the dual D correspond with additional variables in
the primal P , denoted by y in the following. The extended primal and dual models are:

zP̃ = min c>λ+ e>y zD̃ = max b>π

(P̃ ) s.t. Aλ+ Ey = b (D̃) s.t. A>π ≤ c
λ ≥ 0, y ≥ 0 E>π ≤ e.

The set of additional dual inequalities (DIs) E>π ≤ e cuts part of the dual solution space. Thus, D̃ is a
restriction of D, whereas the corresponding primal model P̃ is a relaxation of P . We denote by D∗ the set
of optimal solutions to the model D, i.e., the dual-optimal space.

The following equivalence is stated and proven in (Gschwind and Irnich, 2014, Proposition 1). Equivalent
are:
(i) E>π ≤ e are DDOIs.
(ii) There exists a π∗ ∈ D∗ which is feasible also for D̃.
(iii) zD = zD̃.
(iv) zP = zP̃ .
(v) For every feasible primal solution (λ̃, y) to P̃ there exists a primal feasible solution λ to P with

c>λ ≤ c>λ̃+ e>y.
(vi) There exists a primal optimal solution (λ̃∗, y∗) to P̃ with Ey∗ = 0. Also, λ̃∗ is an optimal solution

to P .
(vii) Every optimal dual solution π∗ to D̃ is optimal for D.

Proof that (5) are DDOIs. We will utilize the implication (v) ⇒ (i). Thus, let P be the linear relaxation
of (2), and let P̃ be the extended primal model (6). Note that in the formulations (2) and (6) the primal
variables are xi for i ∈ I and λqv for q ∈ Q, v ∈ Eq. In the following, just one type of primal variables λ
subsumes the x and λ variables in P and P̃ . Moreover, in order to make the model (6) fit with formulation P̃ ,
equality constraints can be established by introducing slack and surplus variables into (6d). Also these
additional slack and surplus variables are subsumed in the λ variables of P̃ . Furthermore, the maximization
objectives in (2) and (6) can be transformed into a minimization objectives by setting ci = −pi for the
variables xi.

The additional dual inequalities E>π ≤ e are the dual inequalities (5), here restated as

πqk − πqh ≤ 0 ∀ q ∈ Q, (h, k) ∈ Rq.

We see e = 0 in our case. Moreover, every additional primal column, i.e., the coefficients of the variable yqhk
for q ∈ Q, (h, k) ∈ Rq, has cost zero and exactly two non-zero entries: the entry +1 in the row indexed with
q and h, and the entry −1 in the row indexed with q and k. From now on, we will call the pair (h, k) a valid
replacement for the qth block (for a more general definition of valid replacements we refer to (Gschwind and
Irnich, 2014)).
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Assume now that a feasible primal solution ((x̃, λ̃), y) to the extended model (6) is given. We have
to show that there exists a primal feasible solution (x, λ) to the linear relaxation of formulation (2) with
c>x ≤ c>x̃, i.e., property (v). The latter condition is equivalent to p>x ≥ p>x̃ and we will show equality.

If y = 0 there is nothing to do because (x̃, λ̃) is feasible for (2) with identical profit and hence also
optimal for (2). Otherwise, there is at least one positive component of y, say yqhk > 0 corresponding to
a valid replacement (h, k) for the qth block. A replacement cycle (i1, i2, . . . , ip, i1) for the qth block (with
the additional definition ip+1 := i1) is a cyclic sequence of different items such that (is, is+1) is a valid
replacement and yqisis+1

> 0 for all s = 1, 2, . . . , p. A basic solution to (6) cannot contain any replacement
cycles, since the corresponding columns are linear dependent. Consequently, all valid replacements (h, k)
form a directed acyclic graph (DAG).

We first show that it is possible to construct, with the help of ((x̃, λ̃), y), another feasible solution
((x̃′, λ̃′), y′) to the extended model (6) with identical profit and 1>y′ < 1>y. The latter inequality means that
we can reduce the infeasibility w.r.t. formulation (2). Now, choose a longest path P = (h = i1, i2, . . . , ip = i)
in the DAG. Let ε := min{yqi1i2 , y

q
i2i3

, . . . , yqip−1ip
} > 0. The maximality of P implies (Ey)h ≥ ε > 0. The

coupling constraint (6b) for h and q now imposes that some variables λ̃qv with vh = 1 are positive. Indeed,∑
v∈:vh=1 λ̃

q
v ≥ ε > 0 holds. By definition of the valid replacements, i.e., the definition of set Rq, any

v ∈ Pq with vh = 1 must fulfill vi2 = vi3 = . . . = vip = 0. This results from wi1 ≥ wi2 ≥ · · · ≥ wip and
wip−1

+ wip > C. In particular, for each such v it follows v − uh + ui ∈ Pq, where uh is the hth and ui the
ith unit vector. Since yqi1i2 + yqi2i3 + · · · + yqip−1ip

= uh − ui, we can construct the new solution (x̃′, λ̃′) as
follows:

Initialize ((x̃′, λ̃′), y′) as ((x̃, λ̃), y) and ε′ := ε. Iterate over the positive variables λ̃′qv > 0 with vh = 1.
Let λ̃′qv be the variable under consideration, and let δ := min{ε′, λ̃′qv }. Redefine

λ̃′qv := λ̃′qv − δ,
λ̃′qv−uh+ui

:= λ̃′qv−uh+ui
+ δ,

ε′ := ε′ − δ.

Terminate, when ε′ = 0. (Termination with ε′ = 0 is ensured because of
∑

v∈:vh=1 λ̃
q
v ≥ ε.) Finally,

redefine

y′qi1i2 := y′qi1i2 − ε,
y′qi2i3 := y′qi2i3 − ε,

...
y′qip−1ip

:= y′qip−1ip
− ε.

Note that this new solution has identical cost and 1>y′ < 1>y holds.
By construction ((x̃′, λ̃′), y′) is feasible for the extended model (6). This type of update must be repeated

(choosing a longest path in the DAG of a block) as long as y′ > 0. The iterative updates finally result in
y′ = 0 because the replacement procedure eliminates at least one arc from the DAG for every chosen longest
path P . This concludes the proof.

B. Extended Computational Results

Tables B.4 and B.5 present an instance-wise comparison of our results with the results reported in
Caprara et al. (2013). Caprara et al. refers to the strongest algorithm of Caprara et al. (2013) for a given
instance. G & I has the analog meaning. We report the name of the instance (inst), the best known solution
(lb), the upper bounds (ub), and if the instance is solved to proven optimality (opt).
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Caprara et al. G & I Caprara et al. G & I

inst lb ub opt ub opt inst lb ub opt ub opt

I1 62524 62524.00 * 62524.00 * I51 71998 71998.00 * 71998.00 *
I2 65046 65046.00 * 65046.00 * I52 81898 81898.00 * 81898.00 *
I3 67558 67558.00 * 67558.00 * I53 97056 97056.00 * 97056.00 *
I4 70316 70316.00 * 70316.00 * I54 107491 107491.00 * 107491.00 *
I5 76634 76634.00 * 76634.00 * I55 120505 120505.00 * 120505.00 *
I6 77204 77204.00 * 77204.00 * I56 129053 129053.00 * 129053.00 *
I7 81690 81690.00 * 81690.00 * I57 142486 142486.00 * 142486.00 *
I8 84581 84581.00 * 84581.00 * I58 151489 151489.00 * 151489.00 *
I9 87297 87297.00 * 87297.00 * I59 165076 165097.00 165076.00 *
I10 88889 88889.00 * 88889.00 * I60 182813 182813.00 * 182813.00 *
I11 88574 88574.00 * 88574.00 * I61 22044 22044.00 * 22044.00 *
I12 96366 96366.00 * 96366.00 * I62 26115 26115.00 * 26115.00 *
I13 97987 97987.00 * 97987.00 * I63 29110 29110.00 * 29110.00 *
I14 103747 103747.00 * 103747.00 * I64 32692 32692.00 * 32692.00 *
I15 103498 103498.00 * 103498.00 * I65 37016 37016.00 * 37016.00 *
I16 108686 108686.00 * 108686.00 * I66 39593 39593.00 * 39593.00 *
I17 112017 112017.00 * 112017.00 * I67 44735 44735.00 * 44735.00 *
I18 116631 116631.00 * 116631.00 * I68 48182 48182.00 * 48182.00 *
I19 125346 125346.00 * 125346.00 * I69 50559 50559.00 * 50559.00 *
I20 128454 128454.00 * 128454.00 * I70 54842 54842.00 * 54842.00 *
I21 87259 87259.00 * 87259.00 * I71 40982 40982.00 * 40982.00 *
I22 89548 89548.00 * 89548.00 * I72 47914 47914.00 * 47914.00 *
I23 96418 96418.00 * 96418.00 * I73 52447 52447.00 * 52447.00 *
I24 98019 98019.00 * 98019.00 * I74 59790 59790.00 * 59790.00 *
I25 104227 104227.00 * 104227.00 * I75 66179 66179.00 * 66179.00 *
I26 107704 107704.00 * 107704.00 * I76 75070 75070.00 * 75070.00 *
I27 109805 109805.00 * 109805.00 * I77 81982 81982.00 * 81982.00 *
I28 116248 116248.00 * 116248.00 * I78 85314 85314.00 * 85314.00 *
I29 119729 119729.00 * 119729.00 * I79 95037 95037.00 * 95037.00 *
I30 123463 123463.00 * 123463.00 * I80 100031 100031.00 * 100031.00 *
I31 102424 102424.00 * 102424.00 * I81 71426 71426.00 * 71426.00 *
I32 103159 103159.00 * 103159.00 * I82 82942 82942.00 * 82942.00 *
I33 111884 111884.00 * 111884.00 * I83 96115 96115.00 * 96115.00 *
I34 117903 117903.00 * 117903.00 * I84 110102 110102.00 * 110102.00 *
I35 120668 120668.00 * 120668.00 * I85 119233 119233.00 * 119233.00 *
I36 123739 123739.00 * 123739.00 * I86 128178 128178.00 * 128178.00 *
I37 130308 130308.00 * 130308.00 * I87 142056 142056.00 * 142056.00 *
I38 133092 133092.00 * 133092.00 * I88 154745 154770.00 154745.00 *
I39 138613 138613.00 * 138613.00 * I89 167916 167916.00 * 167916.00 *
I40 144612 144612.00 * 144612.00 * I90 176884 176916.00 176884.00 *
I41 30866 30866.00 * 30866.00 * I91 42685 42685.00 * 42685.00 *
I42 35771 35771.00 * 35771.00 * I92 46526 46526.00 * 46526.00 *
I43 40934 40934.00 * 40934.00 * I93 54437 54437.00 * 54437.00 *
I44 46180 46180.00 * 46180.00 * I94 60719 60719.00 * 60719.00 *
I45 50324 50324.00 * 50324.00 * I95 68432 68432.00 * 68432.00 *
I46 55495 55495.00 * 55495.00 * I96 72337 72346.00 72337.00 *
I47 59255 59255.00 * 59255.00 * I97 80122 80122.00 * 80122.00 *
I48 65465 65465.00 * 65465.00 * I98 88460 88460.00 * 88460.00 *
I49 69530 69530.00 * 69530.00 * I99 92380 92380.00 * 92380.00 *
I50 75756 75756.00 * 75756.00 * I100 100915 100915.00 * 100915.00 *

Table 4: Extended results for I instances
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Caprara et al. G & I Caprara et al. G & I

inst lb ub opt ub opt inst lb ub opt ub opt

U1 49797 49797.00 * 49797.00 * U51 34771 34774.00 34771.00 *
U2 49490 49490.00 * 49490.00 * U52 33827 33838.75 33831.00
U3 49020 49020.00 * 49020.00 * U53 33197 33216.00 33197.00 *
U4 48972 48972.00 * 48972.00 * U54 32942 32955.33 32942.00 *
U5 50149 50149.00 * 50149.00 * U55 33318 33325.88 33319.00
U6 49466 49466.00 * 49466.00 * U56 33424 33465.54 33429.50
U7 50666 50666.00 * 50666.00 * U57 33438 33440.50 33438.00 *
U8 49859 49859.00 * 49859.00 * U58 32059 32113.75 32066.50
U9 50358 50358.00 * 50358.00 * U59 33881 33887.50 33887.00
U10 49961 49961.00 * 49961.00 * U60 32973 33010.36 32973.50
U11 46266 46266.00 * 46266.00 * U61 31464 31496.89 31475.30
U12 45628 45628.00 * 45628.00 * U62 30330 30335.20 30337.80
U13 45531 45531.00 * 45531.00 * U63 30704 30723.65 30720.80
U14 45218 45218.00 * 45218.00 * U64 31315 31353.36 31336.10
U15 45978 45978.00 * 45978.00 * U65 31177 31186.00 31182.70
U16 45795 45795.00 * 45795.00 * U66 31059 31067.50 31069.50
U17 46471 46471.00 * 46471.00 * U67 31761 31834.68 31765.00
U18 45877 45877.00 * 45877.00 * U68 30445 30459.71 30446.00
U19 46356 46356.00 * 46356.00 * U69 32038 32066.45 32046.00
U20 46217 46217.00 * 46217.00 * U70 31650 31705.00 31654.00
U21 41946 41946.00 * 41946.00 * U71 30320 30487.62 30350.20
U22 41346 41346.00 * 41346.00 * U72 30338 30495.40 30369.20
U23 40694 40694.00 * 40694.00 * U73 29963 30051.37 29986.10
U24 40955 40955.00 * 40955.00 * U74 29544 29626.54 29554.60
U25 41235 41235.00 * 41235.00 * U75 29835 29973.79 29845.60
U26 41168 41168.00 * 41168.00 * U76 30156 30319.61 30181.10
U27 42054 42054.00 * 42054.00 * U77 29790 29928.42 29822.00
U28 41475 41475.00 * 41475.00 * U78 29380 29479.91 29390.20
U29 42277 42277.00 * 42277.00 * U79 29666 29790.09 29670.50
U30 41684 41684.00 * 41684.00 * U80 29784 29935.58 29814.70
U31 38685 38685.00 * 38685.00 * U81 29451 29586.24 29488.90
U32 38106 38106.00 * 38106.00 * U82 28207 28307.75 28233.70
U33 38067 38067.00 * 38067.00 * U83 27855 27979.38 27873.50
U34 37159 37159.00 * 37159.00 * U84 29472 29560.59 29472.00 *
U35 37826 37826.00 * 37826.00 * U85 28335 28453.58 28369.20
U36 37488 37491.33 37488.00 * U86 28564 28699.96 28614.70
U37 38237 38236.75 38237.00 * U87 28584 28718.29 28611.10
U38 37372 37372.00 * 37372.00 * U88 28445 28562.54 28475.60
U39 38374 38384.00 38374.00 * U89 29042 29144.33 29058.90
U40 37965 37965.00 * 37965.00 * U90 27916 28061.62 27957.20
U41 35538 35538.00 * 35538.00 * U91 27727 27872.82 27762.80
U42 34934 34944.50 34941.40 U92 26630 26771.13 26666.90
U43 35071 35071.00 * 35071.00 * U93 27817 27916.20 27834.70
U44 35596 35596.00 * 35596.00 * U94 27316 27387.50 27347.40
U45 35112 35113.00 35114.50 U95 27126 27251.84 27186.50
U46 34529 34533.54 34530.50 U96 27485 27623.50 27511.20
U47 35866 35868.50 35866.00 * U97 27006 27111.65 27041.70
U48 34564 34564.00 * 34564.00 U98 26904 27000.10 26936.80
U49 35883 35883.00 * 35883.00 * U99 28759 28877.14 28782.40
U50 35311 35322.20 35311.00 * U100 27297 27385.89 27344.30

Table 5: Extended results for U instances
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