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Abstract

The vehicle-routing problem with private fleet and common carrier (VRPPC) extends the capacitated VRP

by considering the option of outsourcing customers to subcontractors at a customer-dependent cost instead

of serving them with the private fleet. The VRPPC has important applications in small package shipping

and manufacturing, but despite its relevance, no exact solution approach has been introduced so far. We

propose a branch-and-price-cut algorithm that is able to solve small to medium-sized instances and provides

tight lower bounds for larger instances from the literature. In addition, we develop a large neighborhood

search that is competitive with the state-of-the-art on instances assuming a homogeneous vehicle fleet. On

the instances assuming a heterogeneous fleet, we are able to improve the previous best known solutions for

the large majority of available instances.

Keywords: vehicle routing, subcontracting, metaheuristic, large neighborhood search, column generation,

branch-and-price-and-cut



1 Introduction

The vehicle-routing problem with private fleet and common carrier (VRPPC) is a variant of the VRP in which

customers can be subcontracted at a customer-dependent cost if the privately-owned capacity is insufficient

to serve all customers, or if doing so is beneficial from a cost point of view. Consequently, the subcontracted

customers do not need to be served on vehicle routes of the privately-owned fleet, but a cost is paid for

outsourcing customers to the so-called common carrier.

The VRPPC has direct applications in manufacturing (Tang and Wang 2006) and less-than-truckload ship-

ping (Chu 2005, Stenger et al. 2013a). It is also closely related to problems arising in collaborative trans-

portation, in which carriers can pass on requests to other carriers and accept or decline requests offered by

their partners (Liu et al. 2010), and to the integrated operational transportation planning problem that con-

siders different subcontracting options (Krajewska and Kopfer 2009). The VRPPC also has applications in

the planning of same-day parcel deliveries. By choosing adequate customer-dependent outsourcing costs,

important customers—e.g., subscribers of Amazon Prime or customers that have already been postponed on

previous days—can be favored over regular new requests.

Despite its practical relevance, relatively few papers have focused on solution methods for the VRPPC. The

following heuristic paradigms have been proposed in the literature: simple construction and improvement

heuristics (Chu 2005, Bolduc et al. 2007), randomized construction–improvement–perturbation (RIP, Bolduc

et al. 2008), tabu search (TS, Côté and Potvin 2009, Potvin and Naud 2011), variable neighborhood search

(VNS, Stenger et al. 2013a,b), multi-start local search (MS-LS, Vidal et al. 2016), iterated local search (MS-

ILS, Vidal et al. 2016), and a memetic algorithm (MA, Vidal et al. 2016). All of the listed methods have been

investigated on instances assuming a homogeneous vehicle fleet, and the MA of Vidal et al. (2016) shows

the best performance with regards to solution quality. On instances with a heterogeneous fleet composition,

only RIP and the two TS algorithms have been tested.

It is notable that early approaches (Chu 2005, Bolduc et al. 2007) only take the decision which customers to

subcontract into account when constructing the initial solution. Later approaches consider the subcontracting

decision when generating the neighborhood of a solution (Bolduc et al. 2008, Côté and Potvin 2009, Potvin

and Naud 2011, Stenger et al. 2013b,a). The most recent approach (Vidal et al. 2016) uses an implicit

customer selection, i.e., for every move a resource-constrained shortest path problem is solved to evaluate

which customers should be subcontracted.

The contribution of this paper is twofold and concerns the heuristic and exact domain:

• We develop a large neighborhood search (LNS) to solve the VRPPC heuristically. Our LNS features a

new decomposition procedure, and we demonstrate the effectiveness of this component by comparing

it to an LNS without this component on the VRPPC benchmark instances from the literature. We are

able to provide several new best-known solutions on the larger instances from the literature, and we

demonstrate that our heuristic is among the best solution methods published for the VRPPC.

• To the best of our knowledge, we are the first to propose an exact solution method for the VRPPC.

Our method uses a path-based formulation that is solved by means of a branch-price-and-cut algorithm

(BPC). The BPC is able to provide optimal solutions for some small to medium-sized instances. For

larger instances, it provides tight lower bounds that can be used to assess the quality of the heuristic

solutions.
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Our paper is organized as follows: Section 2 formally describes the problem. Our two solution methods,

BPC and LNS, are explained in Sections 3 and 4. Section 5 details the parameter setting, the test instances

and presents the numerical results. Section 6 concludes the paper.

2 The vehicle-routing problem with private fleet and common carrier

To define the VRPPC as a graph-theoretical problem, let G = (V, E) be a complete undirected graph with

vertices V = {v0} ∪ N and edges E = V × V . Vertex v0 denotes the depot, the other vertices represent

customers i ∈ N . Each customer i ∈ N is assigned a demand qi and a cost hi for subcontracting the

customer. Each edge {i, j} ∈ E is assigned a travel cost cij . At the depot, a set of vehicles K, which

represent the private fleet, is based. The vehicles k ∈ K can differ with regard to capacity Ck and fixed

cost Fk. The fixed cost Fk is only incurred if a route is assigned to vehicle k. Typically, not all vehicles

are different, and we can group the vehicles according to their attributes such that vehicles with identical

attributes are in the same group l ∈ L. We denote the number of vehicles in group l as zl. The VRPPC now

calls for: i) satisfying the demand of every customer with exactly one visit, either using the common carrier

or a vehicle of the private fleet, and ii) planning at most one route for each vehicle of the private fleet so that

every route starts and ends at the depot, and the vehicle capacity is respected. The goal is to minimize the

total cost consisting of the sum of fixed cost, the cost of routing the vehicles of the private fleet, and the cost

of subcontracting customers.

3 Branch-price-and-cut algorithm for the VRPPC

In this section, we give details on our exact approach to the VRPPC that is used to obtain optimal solutions

for small to medium-sized instances. For larger instances, we provide lower bounds, which can be used to

assess the quality of the heuristic solutions. The approach is based on a path-based formulation that is solved

by means of a BPC algorithm.

3.1 Path-based formulation

Master program Let Ωl be the set of all feasible routes for vehicle group l ∈ L. We denote by cr the

routing cost of route r ∈ Ωl. Binary decision variables λr indicate if the route r ∈ Ωl is selected (λr = 1) or

not (λr = 0) while binary decision variables yi indicate if customer i ∈ N is served by the common carrier

(yi = 1) or by the private fleet (yi = 0). Finally, let ari be the number of times route r visits customer i. The

VRPPC can then be defined as:

min
∑
l∈L

∑
r∈Ωl

(Fl + cr)λr +
∑
i∈N

hiyi (1a)

s.t.
∑
l∈L

∑
r∈Ωl

ariλr + yi = 1 ∀i ∈ N (1b)

∑
r∈Ωl

λr ≤ zl ∀l ∈ L (1c)

λr ∈ {0, 1} ∀l ∈ L, r ∈ Ωl (1d)

yi ∈ {0, 1} ∀i ∈ N (1e)
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The objective function (1a) minimizes the total cost comprising vehicle fixed costs, routing costs, and sub-

contracting costs. Partitioning constraints (1b) ensure that each customer is served exactly once either by the

private fleet or by the common carrier. Note that constraints (1b) can be replaced by their covering counter-

part if routing costs satisfy the triangle inequality. Convexity constraints (1c) limit the number of vehicles of

each type. The variable domains are specified in (1d) and (1d).

Because of the huge number of feasible routes, model (1) cannot be solved directly and one has to re-

sort to column-generation (or Lagrangean-relaxation) based methods: The linear relaxation of model (1) is

initialized with a proper subset of routes and missing routes (=columns) with negative reduced costs are dy-

namically identified by calling the pricing subproblems and added to the master program (1). Integrality is

finally ensured by integrating the column-generation process into a branch-and-bound algorithm (Lübbecke

and Desrosiers 2005).

Pricing subproblem The task of the pricing subproblems is to find feasible routes with negative reduced

costs or to prove that no such routes exist. Similar to many other VRP variants, the pricing subproblems

of the VRPPC are elementary shortest-path problems with resource constraints (ESPPRCs) on graphs with

negative-cost cycles (Irnich and Desaulniers 2005). In the VRPPC, there are |L| different pricing problems,

one for each vehicle type l ∈ L. Given a vehicle type l ∈ L, a feasible VRPPC route starts and ends at the

depot v0, visits some customers i ∈ N in between, and respects the vehicle capacity Cl.

Let πi and µl be the dual prices of constraints (1b) and (1c), respectively. The reduced cost of a route r ∈ Ωl

is given by

c̃r = cr −
∑
i∈N

πi − µl =
∑

(i,j)∈E(r)

c̃lij , (2)

where E(r) denotes the sequence of edges traversed by route r and c̃lij = cij − 1/2π̃i− 1/2π̃j with π̃v0 = µl

and π̃i = πi for all customers i ∈ N . The pricing subproblem for vehicle type l ∈ L can then be formalized

as

min
r∈Ωl

{c̃r}. (3)

It is well-known that the ESPPRCs (3) are strongly NP -hard. To obtain better-solvable pricing subprob-

lems, the elementarity condition of routes can be relaxed so that routes containing cycles can be priced out.

This comes at the cost of weaker lower bounds of formulation (1). A good trade-off between the hardness

of the pricing subproblems and the strength of the lower bounds is often achieved by the so-called ng-routes

(Baldacci et al. 2011) that forbid certain types of cycles. Here, each customer i ∈ N is assigned a neighbor-

hood Ni ⊂ N with i ∈ Ni. Typically, the cardinalities |Ni| and the neighborhoods Ni themselves are fixed a

priori for all customers i ∈ N . An ng-route now allows multiple visits to a customer i provided that another

customer j with i /∈ Nj is visited in between, i.e., an ng-route forgets previous visits to those customers that

are not in the neighborhoods of the subsequently visited customers. In the following, we redefine the set Ωl

as the set of all ng-feasible routes. Clearly, the cycles that are allowed and, thus, the quality of the lower

bounds provided by the ng-route relaxation of (1) critically depends on the choices of Ni. Elementarity of

all routes of a solution is finally ensured by branching.
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3.2 Cutting planes

Path-based models like the extended set-partitioning formulation (1) generally provide much stronger bounds

compared to edge-based formulations. Still, even with large |Ni| or pure elementary sets Ωl, the lower

bounds provided by (1) are not sufficiently tight for the effective solution of even small to medium-sized

instances of the VRPPC. To further strengthen the formulation, we add the following additional families of

valid inequalities.

Robust cuts The first type of cuts describe inequalities on the aggregated flow on edges {i, j} ∈ E . Such

inequalities can be incorporated into the master problem using expressions x(δ(S)) ≤ rhs or x(δ(S)) ≥
rhs, where δ(S) = {{i, j} ∈ E : i ∈ S, j ∈ N \ S} denotes the cut-set of S ⊂ N and x(δ(S)) =∑

l∈L
∑

r∈Ωl

∑
{i,j}∈δ(S) bijrλr denotes the cut-set flow. Parameter bijr gives the number of times edge

{i, j} is traversed by route r. The dual prices of these inequalities directly transfer to the reduced cost

c̃lij , l ∈ L of the included edges meaning that they do not change the structure and the complexity of the

pricing subproblems, i.e., they are robust cuts. In our BPC approach, we use rounded capacity cuts, which

are separated with the CVRPSEP package (Lysgaard 2003).

Non-robust cuts To further strengthen the linear relaxation, we also incorporate non-robust cuts into

model (1). The addition of non-robust cuts has to be done carefully because each cut makes the pricing

subproblem harder. Subset-row inequalities (SR) originally introduced by Jepsen et al. (2008) are a family

of non-robust cuts that have been successfully used in many exact approaches to VRP variants. Each SR is

defined on a subset of customers. As proposed by Jepsen et al. (2008), we restrict ourselves to SR defined on

three customers because they can be separated by straightforward enumeration. Let U ⊂ N be a set of three

customers. The corresponding inequality is defined as
∑

l∈L
∑

r∈Ωl

⌊gr
2

⌋
λr ≤ 1, where gr is the number of

times route r visits customers in U . Denote by σ ≤ 0 its associated dual price. For every second visit to a

customer in U , σ has to be subtracted from the reduced cost of a route. This complicates the solution of the

pricing subproblem (see Section 3.3).

Recently, Pecin et al. (2017) proposed the use of limited memory SR (lmSR) which are a generalization of SR

and whose impact on the solution of the pricing subproblem is typically reduced compared to standard SR.

With each lmSR are associated a set of (three) customersU and a memory setM of nodes withU ⊆M ⊆ N .

The basic idea of lmSR is similar to the ng-routes. Roughly speaking, each time a route r visits a node j /∈M
not in the memory of the cut, the coefficient gr ‘forgets’ a previous visit to one of the customers i ∈ U if the

‘remembered’ number of visits up to node j is odd. In the following section, we clarify why this simplifies

the solution of the pricing subproblem if |M | < |N |, and we give details on the computation of the coefficient

gr. For a detailed description of lmSR, the computation of the coefficient gr, and the determination of the

smallest-possible memory sets M we refer to Pecin et al. (2017).

Dynamic neighborhood extension As mentioned in Section 3.1, the quality of the lower bounds depends

on the choices of the neighborhoodsNi of the ng-route relaxation. However, it is not clear a priori what good

choices for Ni are. Roberti and Mingozzi (2014) proposed the dynamic extension of these neighborhoods,

which can be interpreted as adding valid inequalities to formulation (1) forbidding routes with certain cycles.

Let r be a route of the current LP solution that contains a cycle C = (i, . . . , i) with i ∈ N . Then, we add

customer i to the neighborhoods Nj of all nodes j ∈ C, forbidding this cycle in all routes that are priced

out. In addition, all routes that are not feasible with respect to the new neighborhoods are removed from the

master program (1).
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3.3 Labeling algorithm

The predominant technique to solve ESPPRCs are dynamic-programming labeling algorithms (Irnich and

Desaulniers 2005). In labeling algorithms, partial paths are gradually extended in a network looking for a

minimum-cost path from a given source node to a given sink node. The partial paths are represented by labels

storing the accumulated cost and resource consumption along the partial path. To avoid a complete enumer-

ation of all feasible paths, dominance relations between different labels as well as other fathoming rules are

typically exploited to eliminate unpromising labels. For a more comprehensive discussion on ESPPRCs and

labeling algorithms, we refer to Irnich and Desaulniers (2005).

Forward labeling In the VRPPC, source and sink node of the pricing network are both given by the

depot v0. A partial path P = (v0, . . . , i) from the depot v0 to a vertex i ∈ V is represented by a label

L(P ) = (c̃(P ), v(P ) = i, q(P ),Π(P ), S(P )) storing its reduced cost c̃(P ), its last vertex v(P ), the load

q(P ) of the vehicle, the set Π(P ) of visited customer nodes (in the ng-sense), and a binary vector S(P )

representing the states of the lmSR. Let Θ be the set of all lmSR with strictly negative dual price in the

current pricing iteration. We denote by Ss(P ), Us, σs, and Ms the state, customer set, dual price, and

memory associated with a lmSR s ∈ Θ. The initial label at the depot v0 is given by (0, v0, 0, ∅,0). The

extension of a label L(P ) to a node j ∈ V along edge {v(P ), j} ∈ E is feasible if q(P ) + qj ≤ Cl and

j /∈ Π(P ). If the extension is feasible, a new label L(P ′) = (c̃(P ′), j, q(P ′),Π(P ′), S(P ′)) is created

according to the following resource extension functions (REFs):

c̃(P ′) = c̃(P ) + c̃lv(P )j −
∑

s∈Θ:j∈Us∧Ss(P )=1

σs (4)

v(P ′) = j (5)

q(P ′) = q(P ) + qj (6)

Π(P ′) = (Π(P ) ∪ {j}) ∩Nj (7)

Ss(P
′) =


0 if j /∈Ms ∨ (j ∈ Us ∧ Ss(P ) = 1)

1 j ∈ Us ∧ Ss(P ) = 0

Ss(P ) otherwise

∀s ∈ Θ (8)

To eliminate unpromising labels that cannot lead to an improved complete path compared to another label,

the following dominance rule is used. A label L(P1) dominates another label L(P2) with the same last

vertex i if

c̃(P1)−
∑

s∈Θ:Ss(P1)>Ss(P2)

σs ≤ c̃(P2), (9)

q(P1) ≤ q(P2), (10)

Π(P1) ⊆ Π(P2). (11)

REFs (4) and (8) together with the dominance relation (9) give the intuition of how the lmSR are handled in

the labeling algorithm and why their impact on the solution of the pricing subproblems is reduced compared

to the standard SR. The overall handling of the lmSR is analog to the SR. For every second visit to a cus-

tomer i ∈ Us (there can be several visits to the same customer in an ng-route), the dual price σs has to be

incorporated in the reduced cost. Thus, a binary representation of the state is sufficient for each cut s ∈ Θ,
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and the state Ss(P ) changes whenever a node i ∈ Us is visited. Additionally, the state of cut s is reset in

the lmSR case whenever a customer is visited that is not in the memory set Ms. In the dominance rule, two

labels L(P1) and L(P2) with different states Ss(P1) and Ss(P2) for cut s can still be compared by penalizing

the dominating label L(P1) if it is inferior with respect to the state of s (Jepsen et al. 2008). When using

lmSR instead of SR, many more labels are directly comparable without penalization because the states for

all lmSR s ∈ Θ for which v(P ) /∈Ms are reset.

In the remainder of this section, we describe several techniques that are used to speed-up the pricing process,

namely bidirectional labeling, completion bounds, edge elimination, and heuristic pricing.

Bidirectional labeling In labeling algorithms, the number of generated labels typically increases strongly

with the length of the generated partial paths. Bounded bidirectional labeling, originally introduced by

Righini and Salani (2006) and successfully used in many state-of-the-art approaches to VRP variants, can

help mitigate this effect and is therefore typically superior to its monodirectional counterpart. In bidirectional

labeling, forward and backward partial paths are extended only up to a so-called halfway point (HWP)

defined on one of the resources (that needs to be monotone). After the labeling process, suitable forward and

backward partial paths have to be merged to complete feasible paths. Recently, Pecin et al. (2017) and Tilk

et al. (2017) proposed the use of a HWP that is dynamically detected during the bidirectional labeling process

based on the expected remaining forward and backward work. The idea is to reduce the overall workload by

better balancing the necessary forward and backward labeling because they might be unequally complex due

to asymmetry in the instance data or in the labeling itself. The VRPPC pricing subproblem instances of this

section that use the reduced cost c̃lij , l ∈ L from (2), however, are completely symmetric so that forward and

backward labeling are essentially identical. As a consequence, it is sufficient to perform only the forward

labeling up to the HWP. The resulting labels can then be interpreted as both forward and backward partial

paths.

The bidirectional labeling algorithm for the VRPPC pricing subproblems works as follows. The HWP is

defined on the load resource q(P ) of the labels. Forward labeling is then executed, extending a label L(P )

only if q(P ) ≤ Cl/2 holds. When the labeling process terminates, suitable labels L(P ) and L(P ′) are

merged. To avoid creating the same path from different combinations of labels, the ‘first’ label L(P ) is a

candidate for merging only if q(P ) > Cl/2 or v(P ) = v0. The two labels L(P ) and L(P ′) can be merged

to a complete feasible route if they end at the same vertex (v(P ) = v(P ′)), the capacity of the vehicle is not

exceeded (q(P ) + q(P ′)− qv(P ) ≤ Cl), and the sequence of customer visits is feasible in the ng-route sense

(|Π(P ) ∩Π(P ′)| = 1). The reduced cost of the resulting route are

c̃(P ) + c̃(P ′)−
∑

s∈Θ:v(P )/∈Us∧Ss(P )+Ss(P ′)=2

σs +
∑

s∈Θ:v(P )∈Us∧Ss(P )+Ss(P ′)=0

σs.

Completion bounds The dominance between labels allows the elimination of unpromising labels if there

exists a label that is provably superior. Another strategy to discard unpromising labels is the use of com-

pletion bounds. The basic idea is to compute lower bounds for the cost of completing a label L(P ) to a

feasible route. Clearly, if the resulting estimated reduced cost of a complete route is not negative, the corre-

sponding label can be discarded because the real reduced cost of the route cannot be negative. Completion

bounds are typically obtained by running the labeling algorithm on a relaxation of the pricing subproblem in

the opposite direction, i.e., solve the relaxed problem with backward labeling to obtain completion bounds

for the original problem solved with a forward labeling algorithm. As pointed out before, labeling in the

VRPPC pricing subproblem is completely symmetric so that completion bounds for the forward labeling of
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the bidirectional labeling algorithm can be obtained by using the forward labeling on a relaxed version of

the problem. In our approach, we relax the pricing subproblem in two different ways. First, we use smaller

ng-neighborhoods Ni. Second, we consider only a fraction of the lmSR cuts (those with smallest dual price)

explicitly in the labeling. As proposed by Contardo and Martinelli (2014), the effect of the remaining lmSR

is partly incorporated into the completion bounds by subtracting σs/2 from the reduced cost c̃lij , l ∈ L of

the edges {i, j} with i, j ∈ Us.

Let ĉ(i, q) be the minimum reduced cost of a label at vertex i with load q that results from the forward

labeling algorithm solving the described relaxation of the pricing subproblem for vehicle type l ∈ L. Then,

in the bidirectional labeling algorithm for the original pricing subproblem of l, all labels L(P ) at node v(P )

for which c̃(P ) + minq≤Cl−q(P ) ĉ(i, q) ≥ 0 holds are discarded.

Edge elimination A final acceleration technique that we use in our algorithm is the elimination of edges

that cannot be part of any optimal solution as proposed by Irnich et al. (2010). Define the edge reduced cost

ĉlij for edge {i, j} ∈ E and vehicle type l ∈ L as the minimal reduced cost of any route r ∈ Ωl regarding the

current dual solution that uses edge {i, j}. If for some {i, j} ∈ E , l ∈ L the edge reduced cost ĉlij are larger

than the current integrality gap, then edge {i, j} can be removed from the pricing subproblem for vehicle

type l ∈ L. Irnich et al. (2010) have shown that the values ĉlij for all edges {i, j} ∈ E can be computed by

concatenating forward and backward labels L(P ) with v(P ) = i and L(P ′) with v(P ′) = j resulting from

a call to the full forward and backward labeling algorithm for l ∈ L. Again, due to symmetry reasons, labels

from the forward labeling can be interpreted also as backward labels in the VRPPC so that a single call to

the forward algorithm is sufficient to compute the ĉlij for each l ∈ L.

Heuristic pricers For the column-generation process, it is not necessary to identify a route with minimal

reduced cost in every iteration. Instead, it is sufficient to provide any route with negative reduced cost.

Consequently, pricing heuristics can be used to solve the pricing subproblems as long as they find such routes.

The exact solution algorithm for the pricing subproblems only has to be invoked if the heuristic pricers fail

to identify additional routes. In our BPC approach, we use limited discrepancy search (LDS, Feillet et al.

2007) to solve the pricing subproblems heuristically. The basic idea of LDS is to divide the set of edges

into good and bad edges and to limit the number of bad edges that are allowed in the routes by discarding

labels that exceed the allowed number. We define for each node the five best edges (w.r.t. reduced cost) as

good edges, all other edges are bad edges. Furthermore, we consider two different values (zero and one) for

the number of allowed bad edges, giving rise to two different heuristic pricers with differing computational

effort. The pricing solvers are then executed in the following order: LDS with no bad edges, LDS with one

bad edge, the exact labeling algorithm. Within the three pricing algorithms, the pricing subproblems for the

different vehicle types l ∈ L are solved in the order of increasing capacity Cl. Whenever one or more routes

with negative reduced cost are found by a combination of pricing solvers and pricing subproblem, they are

returned to the master program, and the remaining solver-subproblem combinations are not invoked in this

pricing iteration.

3.4 Branching

Denote by λ̄r and ȳi the values of variables λr and yi in a solution of the LP-relaxation of model (1).

Furthermore, let x̄ij =
∑

l∈L
∑

r∈Ωl
bijrλ̄r be the aggregated flow over edge {i, j} ∈ E in this solution.

Recall that bijr gives the number of times edge {i, j} is traversed by route r.
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We use the following hierarchical branching scheme. First, we branch on the overall number of customers

served by the common carrier
∑

i∈N ȳi. Second, we branch on the number of vehicles of type l ∈ L given

by
∑

r∈Ωl
λ̄r. If this is fractional for several vehicle types, we branch on the one that is closest to 0.5. Third,

we branch on single yi variables and the customer with ȳi closest to 0.65 is chosen first. Finally, we branch

on the edges E of the undirected graph G giving priority to the edge {i, j} for which x̄ij is closest to 0.5.

All branching decision can be implemented by adding a single constraint to model (1). Moreover, the pricing

subproblems remain structurally unchanged, and all branching decision preserve the inherent symmetry of

the VRPPC. The node selection strategy is best first.

4 Large neighborhood search for the VRPPC

This section describes our LNS for solving VRPPC. LNS was introduced by Shaw (1998) as a local search

method with larger moves that make distant solutions accessible. The large moves are realized by means

of a removal and an insertion step: a possibly large part of the solution, i.e., in the context of VRPs a

subset of customers, is removed and then reintegrated into the partial solution. A similar approach was

proposed by Schrimpf et al. (2000) as ruin and recreate. Ropke and Pisinger (2006b) introduced adaptive

LNS, which allows to use a range of different operators that are selected with a probability depending on

their past success. Our LNS is based on the latter approach, but we select each operator with the same

fixed probability instead of adapting probabilities during the search. Figure 1 shows our solution method in

pseudocode.

Sc ← generateInitialSolution()
for η iterations do
St ← Sc
for two rounds do

for all r ∈ St do
{Decompose solution into subproblem Pr for selected route r. Generate solution of subproblem
from the tentative solution of the original problem.}
SPr ← copyPartialSolution(Pr,St)
{Randomly select removal operator. Draw δ customers to remove from SPr .}
SPr ← applyRemoval(SPr , δ)
{Randomly select insertion operator to reinsert customers.}
SPr ← applyInsertion(SPr )
if acceptSA(SPr ,St) then
St ← integrate(SPr ,St)

end if
end for

end for
if St is feasible and with a probability of 0.25 then
St ← VND(St)

end if
updatePenaltyFactor(St)
ΩLNS ← addFeasibleRoutes(St)
if acceptSA(St,Sc) then
Sc ← St

end if
end for
Sbest ← postProcessing(ΩLNS)

Figure 1: Overview of the LNS algorithm.
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First, we generate an initial feasible solution Sc with a modified savings algorithm (Section 4.1). In the

following improvement phase, we allow infeasible solutions and penalize violations in the objective function

(Section 4.2). The improvement phase (Section 4.3) works as follows: In every iteration, we decompose the

original problem into a sequence of subproblems Pr. Then, we derive a first solution SPr to subproblem Pr
from the tentative solution St and apply a randomly selected removal and insertion operator on the solution

of the subproblem. Afterwards, the new solution is reintegrated into the current solution of the original

problem based on a simulated annealing (SA) acceptance criterion. After all subproblems are processed, we

repeat the procedure for another round. If the resulting complete solution is feasible, we apply a variable

neighborhood descent (VND) with a probability of 0.25. The final acceptance decision of the iteration is

again based on SA. Finally, we save every feasible route found during the search. In a post-processing step,

these routes are recombined into the best possible feasible solution (Section 4.4).

4.1 Generation of initial solution

We use a modified savings algorithm (see Clarke and Wright 1964) to create an initial feasible solution for

the VRPPC. The idea is to first serve each customer with a dedicated route, and then to merge pairs of routes

as long as a positive saving can be realized and vehicle capacity is not violated. In each iteration, we merge

the pair with the highest saving. To merge two routes r1 and r2, we consider only the edges incident to the

depot and remove one edge of r1 and one edge of r2. Then, we replace them by an edge directly linking the

corresponding customer i of r1 and j of r2.

In the basic version of the algorithm, a tendency to favor peripheral routes can be observed, i.e., to prefer

routes that serve customers that are far from the depot and to eventually isolate customers that are located

close to the depot (Gaskell 1967). We calculate the saving s(i, j) when linking customers i and j as s(i, j) =

c0i + cj0−λ · cij , where λ is a weight to balance between the distance to the depot and the distance between

customers (see, e.g., Gaskell 1967, Yellow 1970). We randomly select λ ∈ [0.6, 1.6] using the values

proposed in Li et al. (2005) to define the interval. To ensure that at most |K| vehicles are used, we implement

the following simple procedure. In the beginning, none of the initial single-customer routes are assigned to

vehicles. We only merge two single-customer routes if an unused vehicle is available, in this case we assign

a vehicle to the resulting two-customer route. Otherwise, we refrain from merging the two routes. When

two multiple-customer routes are merged, we release one vehicle. Finally, all the customers of the remaining

single-customer routes are assigned to the common carrier.

4.2 Generalized cost function and penalty calculation

During the search, we allow solutions that violate the vehicle capacity constraint and add a penalty to the

objective function value to account for the respective violation. Although restoring feasibility of a solution is

always possible by assigning certain customers to the common carrier, we allow temporary violations to be

able to traverse the solution space more freely. The objective value of a solution S is given by the generalized

cost function fgen(S) (see, e.g., Gendreau et al. 1994):

fgen(S) = f(S) + γ · L(S) = fvar (S) + ffix (S) + γ · L(S).

The term f(S) comprises two parts: fvar (S) denotes the cost for the distance traveled by the private fleet

and the cost of outsourcing customers to the common carrier; ffix (S) denotes the cost of using the vehicles

of the private fleet. The penalty for capacity violations is calculated as the product of a penalty factor γ and
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the total capacity violation L(S) of solution S. For all operators that our algorithm uses to modify a solution,

L(S) can be calculated in O(1) time.

We initially set the penalty factor to γ = h̄max , where h̄max denotes the maximum cost per demand unit

to subcontract any customer, i.e., h̄max = maxi∈N (hi/qi). Then, we update γ as follows: If the capacity

constraint has been violated for two iterations, the penalty factor is multiplied by %, and vice versa it is

divided by % if the capacity constraint is satisfied for two iterations. We restrict the value of the penalty

factor to the interval γ ∈ [0.001, 10.0 · h̄max ].

4.3 Solution improvement

In every iteration of the improvement phase, we decompose the original problem into a series of subprob-

lems Pr, one for each route r ∈ St, and solve these subproblems one at a time. However, instead of solving

each subproblem from scratch, we derive a solution SPr of Pr from St and improve this solution (Sec-

tion 4.3.1). Improvement is achieved by applying a randomly selected removal and insertion operator to SPr

(Section 4.3.2). Then, an acceptance criterion based on SA decides whether SPr is integrated into St or

discarded (Section 4.3.3). If we accept the new solution, we immediately replace the corresponding routes

in St with the modified routes and update the customers assigned to the common carrier according to SPr .

Note that the definition of the next subproblem to be investigated depends on the solution of the current

subproblem because we modify St continuously. The entire procedure is repeated for two rounds (in every

round one subproblem Pr originates from each route r).

If the resulting solution is feasible, we further improve the solution by applying a VND with a probability of

0.25 (Section 4.3.4). Then, at the end of every iteration, the SA criterion (Section 4.3.3) decides whether the

search is continued from the new solution. The search terminates after η iterations.

4.3.1 Decomposition strategy

Although problem decomposition is generally used in algorithms developed to tackle large-scale VRP in-

stances (see, e.g., Vidal et al. 2013), we observed that even for medium-sized instances of the VRPPC, we

often find better solutions if we focus the search on partial solutions instead of the overall problem. We

define subproblems by means of the set of customers to be served and the vehicles available to carry out the

service. Our decomposition strategy works as follows: In randomized order, we generate one subproblem

Pr for each route r of the private fleet. Based on the tentative solution St, each subproblem Pr is defined by:

i) The customers and the vehicle that are currently assigned to route r.

ii) All customers and vehicles of a random number α of routes that are closest to route r. The number of

routes α is drawn from the interval [2, b|K|/4c] if |K| ≥ 12 and set to α = min(|K| − 1, 2), otherwise.

We select the α routes that are closest to route r by measuring the distance between routes as the

Euclidean distance between their centers of gravity, where the center of gravity of a route is calculated

as the average of the coordinates of the vertices of the route.

iii) Customers that are closely-located to route r and that are currently assigned to the common carrier.

To select such customers, we create a rectangular box that contains all customers already present in Pr
after steps i) and ii), and we add a margin to every side of the bounding box that corresponds to 10% of

the maximal distance between any two customers in the instance. Then, we add all customers to Pr that

are assigned to the common carrier in St and that are positioned within the enlarged box.
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4.3.2 Removal and insertion operators

We remove δ customers from SPr . Let |Pr| denote the number of vertices in the current subproblem of our

instance Pr. Then δ is drawn from the interval [ωmin , ωmax ] · min(|Pr|, 100) with parameters ωmin and

ωmax .

Our LNS uses the following removal operators:

Random removal removes arbitrary customers from the routes of the private fleet and from the common

carrier.

Route and common carrier removal selects at random routes from the private fleet or it selects the com-

mon carrier and removes the customers assigned until δ customers are removed.

Worst removal was proposed in Ropke and Pisinger (2006a) in order to remove customers whose presence

in the solution strongly contributes to the objective function value. We do not use the direct contribution

to fgen(S) to identify these customers but introduce problem-specific measures to select customers for

removal. Whenever the worst removal operator is selected, we select one of three measures at random that

is then used until δ customers are removed. Let S−i denote a solution where customer i is removed and

is either replaced by the connection between its predecessor and successor if it was previously assigned to

the private fleet or removed without additional modification if it was assigned to the common carrier. For

each customer i, let Wx(i) denote the value of one of the following measures x:

i) change of variable cost: W1(i) = fvar (S)− fvar (S−i) ,

ii) change of variable cost compared to subcontracting: W2(i) = fvar (S)− fvar (S−i)− hi,

iii) and change of variable cost per unit of demand: W3(i) = (fvar (S)− fvar (S−i))/qi.

Measure W1 is implemented in two variants, one variant including customers assigned to the common

carrier and one variant ignoring these customers, and measureW2 does not consider customers assigned to

the common carrier. In the next step, the customers are sorted in descending order ofWx(i), and the vertex

at position bD · bχrem c is chosen, where D is the size of the list, b is a uniform random number ∈ [0, 1],

and χrem is a parameter to control the amount of diversification. After a customer is removed, the values

are updated.

Shaw removal was introduced in Shaw (1997) in order to select customers for removal that are similar to

each other. We define the similarity R(i, j) between two customers i and j by their geographical distance

dij , the difference in demand |qi − qj |, and the difference in subcontracting cost |hi − hj |. Each term is

weighted with a parameter χ and normalized using the maximum value in the instance:

R(i, j) = χd
dij

max
i,j∈V

(dij)
+ χq

|qi − qj |
max
i∈N

(qi)−min
i∈N

(qi)
+ χh

|hi − hj |
max
i∈N

(hi)−min
i∈N

(hi)
.

The first customer is randomly selected, and we sort all remaining customers j ∈ S in ascending order of

their R(i, j)-value. From this list, the customer at position bD · bχrem c is chosen as described above. The

next iteration starts from an already removed customer that is selected at random.

Historical node-pair removal was introduced in Ropke and Pisinger (2006b). The idea is to remove edges

from the current solution that have so far been only present in solutions with poor quality. To this end, an

auxiliary graph G̃ = (Ṽ, Ẽ) is created and initially a large weight wẽ is assigned to each edge ẽ ∈ Ẽ . In the

following, for each edge e that is present in the current solution S, the edge weight in the auxiliary graph

is replaced if the current objective function value is smaller than the previous weight, i.e., wẽ := f(S) if

f(S) < wẽ.
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To select customers, we assign to every customer served by the private fleet the sum of the weights wẽ of

the two edges incident to the customer and then sort the customers in descending order according to this

value. Now, the customers with the highest value are removed. We adapt this procedure to also account for

customers that are assigned to the common carrier (for which there are no edges) as follows: i) in addition

to the edge weights, we store for each vertex ṽ a weight wṽ that contains the best objective function value

of any solution encountered so far in which the customer was subcontracted and include them in the list, ii)

because each customer served by the private fleet is assigned the sum of two edge weights, but customers

served by the common carrier are only assigned one vertex weight, we divide each edge-related value by

2 before we add it to the list to make the measures comparable.

The following insertion operators are used in our LNS:

Greedy insertion basic determines for each unassigned customer i the minimal increase of the generalized

cost function ∆fgen(S+i) when i is inserted into the routes of the private fleet. Then, the customer with

the smallest value of min(∆fgen(S+i), hi) is assigned to either the best route of the private fleet at its

best position (if the first term is smaller) or to the common carrier (if the second term is smaller). This is

repeated until all customers are assigned.

Greedy insertion priority works similar to the basic version, but we modify the selection criterion for the

next customer to insert. The idea is to prefer customers in the beginning that are expensive to subcontract

and that have a low demand. Therefore, instead of selecting the customer i based on the minimum cost

increase ∆fgen(S+i), we calculate for each customer i) the difference between the minimum cost change

for the assignment to the private fleet and the cost of subcontracting the customer in relation to its demand,

i.e., (∆fgen(S+i) − hi)/qi, and ii) the direct subcontracting cost per unit, i.e., hi/qi. Then, we select the

customer for insertion where the minimum of these two values is smallest. If the first value is smaller,

we insert the customer at the cost-minimal position in the corresponding route of the private fleet. If the

second value is smaller, we assign it to the common carrier.

Regret-2 insertion aims at finding a customer insertion order that tries to avoid negative future conse-

quences, i.e., we insert a customer now because otherwise we might regret it. A description of the regret-k

insertion is given in Ropke and Pisinger (2006a), we only implement the case k = 2 because larger values

of k did not improve the solution quality in preliminary studies. The regret-2 value is calculated as the

difference between the second best assignment to a route of the private fleet or to the common carrier and

the best assignment. In every step, we choose the customer with the currently highest regret-2 value and

insert this customer into the best route or assign it to the common carrier, whichever is cheaper. If the best

assignment corresponds to the common carrier, we assume a regret-2 value of zero because the common

carrier has unlimited capacity.

Insertion diversification adapts the three previously introduced insertion operators by adding an additional

term to the change of the objective function value. On the one hand, we set the cost hi of subcontract-

ing customer i to hi := hi + ι where ι is uniformly chosen from the interval ι ∈ [−ζ · hmax , ζ · hmax ]

with hmax = maxi∈N (hi) and parameter ζ in order to try different configurations of subcontracted cus-

tomers. On the other hand, for assignments to the private fleet, we use a principle known as continuous

diversification (Cordeau et al. 2001) that originated in the context of tabu search but is less restrictive than

using a tabu list. Assignments to routes of the private fleet are changed based on the history of the so-

lution process in order to encourage customer-route combinations that have not occurred very frequently.

To this end, we measure the frequency uij of assigning customer i to route j and derive a penalty term

κ · |K| ·
√
uij · f(Sbest)/|N | that grows sublinearly with this frequency. The penalty depends on a param-

eter κ = 0.1 that controls the extent of diversification, the number of vehicles |K|, and the currently best

objective function value per customer f(Sbest)/|N |.
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Probabilistic insertion randomizes the order of customer insertions and the decision whether to assign a

customer to one of the vehicle routes or to the common carrier. The next customer i is selected randomly,

and then we calculate the changes of the objective function value ∆fxgen(S+i) with x = r for assigning i

to route r at its cost-minimal position and with x = c for assigning i to the common carrier. Now, we use

roulette wheel selection with probabilities inversely proportional to the changes in the objective value to

decide whether to assign customer i to route r at the best position on the route or to the common carrier,

i.e., the higher the increase when assigned to x, the lower the probability to select it. The parameter χins

controls the amount of diversification.

4.3.3 Acceptance criterion

We use an SA-based acceptance criterion (Kirkpatrick et al. 1983) to decide i) whether to replace the solution

to each subproblem with the newly generated solution for the subproblem, and ii) whether to continue the

search from the tentative solution St after all subproblems have been solved or to continue from the current

solution Sc. Based on the temperature T and the difference between the objective function value of a new so-

lution Snew and the previous solution Sold , SA decides whether to accept deteriorating solutions (improving

ones are always accepted) with probability p(Snew ,Sold , T ) = e(fgen (Sold )−fgen (Snew ))/T .

We set start and end temperature such that a new solution that deteriorates the initial solution by τmax % and

τmin%, respectively, is accepted with a probability of 50%. After each iteration, T decreases by a constant

factor, which is determined such that the end temperature is reached after 50% of the total iterations. From

there, we keep T constant instead of further decreasing it to allow more diversification in the search. Pretests

have shown that this has strong positive effects on the solution quality. To evaluate the acceptance of a

new solution SPr , we determine fgen(Snew ) as the objective value of the complete solution that would be

obtained if SPr replaced the previous solution to Pr. This is necessary because the temperature T is scaled

to the value of complete solutions of the original problem.

4.3.4 Variable neighborhood descent

After two rounds of problem decomposition and improvement using LNS, feasible solutions are improved

by a VND with a probability of 0.25. The VND follows a first-improvement strategy, and the list of neigh-

borhoods contains the following operators in the given order: relocate (Waters 1987), exchange (Savelsbergh

1992), and a restricted version of 2-add-drop (Bolduc et al. 2008). Relocate and exchange are implemented

in inter- and intra-route fashion. The 2-add-drop operator is specific to the VRPPC and was originally intro-

duced as combined operator that i) transfers up to two customers from the common carrier to the private fleet

or vice versa, and ii) transfers a single customer from the private fleet to the common carrier and at the same

time inserts another customer currently assigned to the common carrier at the best possible position within

the routes of the private fleet. We use only the second variant.

To limit the computational effort, we restrict the search to promising moves as follows: For each customer i,

we store the closest 0.3 · min(|V|, 150) vertices in an immutable neighbor list. We generate only those

relocate moves of which either the new successor or predecessor of i is contained in the neighbor list of i,

but we always evaluate the move where i is assigned to the common carrier. For exchange moves, only

vertices in the neighbor list of i are considered as exchange partners of i. For 2-add-drop moves, we do not

restrict the search to closely located vertices because good insertion positions can be far from the removal

position.
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4.4 Set covering with fleet constraints

Finally, we apply a post-processing step that aims at improving on the best found solution by solving a

set-covering problem with constraints on the fleet composition. Similar techniques have been successfully

used in, e.g., Rochat and Taillard (1995), Groër et al. (2011), and Subramanian et al. (2013). For each

vehicle group l ∈ L, we collect all feasible routes encountered during the search in a pool of routes ΩLNS
l .

Whenever we find a route of a vehicle of group l that serves the same customers as a route already present in

the respective pool but with lower cost, we replace the corresponding route. Then, we solve formulation (1)

using a commercial solver with a time limit of min(300, |
⋃
l∈LΩLNS

l |/100) seconds. We initialize the solver

with Sbest in order to decrease the computing time. If we obtain a solution in which customers are contained

in more than one route, we simply remove the redundant occurrences.

5 Numerical studies

This section details the experiments to assess the performance of our BPC and our LNS. Section 5.1 intro-

duces the benchmark instances on which both algorithms are evaluated. Section 5.2 discusses the parameter

tuning, the value of individual components, and the comparison to the state-of-the-art for our LNS. Results

of our BPC algorithm are presented in Section 5.3.

5.1 Test instances

In our computational studies, we use the benchmark sets available from the literature. Bolduc et al. (2008)

introduce two sets that assume a homogeneous vehicle fleet. These sets are based on the well-known capac-

itated VRP instances of Christofides et al. (1979) (14 instances with 50–199 customers) and Golden et al.

(1998) (20 instances with 200–483 customers). The names of the instances of these sets start with CE and

G, respectively. To obtain VRPPC instances, the original instances are adapted as follows: i) the number of

vehicles is reduced such that only 80% of the total demand of the customer can be satisfied by the private

fleet, ii) the vehicle fixed costs are set based on the average route length of the best known solution to the

original instance, and iii) the cost of subcontracting a customer is based on the best known objective value

of the original instance, the distance of the customer to the depot, and its demand. To obtain instances with

a heterogeneous fleet, both sets are further modified in Bolduc et al. (2008). The vehicles are divided into

two or three different vehicle types, with 80%, 100% and 120% of the capacity and of the fixed cost of the

vehicles of the homogeneous fleet. The instance names of these sets start with CE-H and G-H, respectively.

5.2 Performance of our LNS

Experimental environment and parameter setting For our LNS, we perform all numerical experiments

with a single core of a desktop computer equipped with an Intel I7 processor at 2.8 GHz with 8 GB of RAM

and running Windows 7 Enterprise. The algorithm is implemented in Java, and the commercial solver used to

solve the set-covering problem (Section 4.4) is Gurobi at version 7.0.1. Ten runs per instance are performed.

We set the total number of search iterations to η = 20, 000 because this value offers a good trade-off between

run-time and solution quality. We tune the other parameters of the algorithm as follows: We use only three

randomly selected instances from the set CE and three instances from the set G to keep the computational

tuning effort low and to avoid overfitting the algorithm to the benchmark set. We begin with a reasonable
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base setting of the parameters that we have determined during the development of our algorithm. Then,

we iteratively modify the base value of each parameter to a reasonable lower and higher value. We keep

the best value for each parameter (based on the average quality of 10 runs) and continue with the next

parameter. Parameters that are closely related are grouped and changed simultaneously to keep the testing

effort moderate. We examine the following parameters in the given order: The external cost noise factor

(ζ), the weight factors for the Shaw removal operator (χd, χh, χq), the minimal and maximal factors for

the number of customers to remove (ωmin , ωmax ), the removal diversification factor (χrem ), the continuous

diversification factor (κ), the probabilistic insertion factor χins , the minimal and maximal SA deterioration

percentage (τmin , τmax ), and finally the penalty update factor %. Table 1 summarizes the results of our

parameter study. The base value is given in the middle and the best value is marked in bold and used as final

setting. For each setting, we report the deviation in percent of the objective value ∆f to the value of the best

setting. We conclude that our solution method is quite robust against parameter variations as the deviation

from the best setting is always below 0.2%.

LNS
ζ 0.25 0.5 0.75

∆f (%) 0.02 0.00 0.1

(χd, χh, χq) (4,5,6) (6, 5, 4) (6, 4, 5)

∆f (%) 0.00 0.03 0.19

(ωmin , ωmax ) (0.05, 0.4) (0.1,0.4) (0.1, 0.6)

∆f (%) 0.09 0.00 0.02

χrem 26 36 46

∆f (%) 0.16 0.00 0.03

κ 0.02 0.1 0.5

∆f (%) 0.00 0.04 0.17

χins 2 4 6

∆f (%) 0.07 0.00 0.09

SA & Penalties
τmin 0.01 0.05 0.1

∆f (%) 0.17 0.00 0.03

τmax 0.1 0.2 0.4

∆f (%) 0.07 0.00 0.02

% 1.02 1.1 1.5

∆f (%) 0.14 0.00 0.12

Table 1: Results of our parameter study on a subset of the VRPPC instances. We mark the best setting for each
parameter in bold and use it as final setting. For each setting, we report the deviation (∆f ) to the best setting of the
respective parameter.

Influence of algorithmic components To assess the effect that different components of the algorithm have

on the quality and speed of our LNS, we compare the following variants of the LNS on the benchmark sets

with homogeneous (Table 2) and heterogeneous fleet (Table 3):

LNS Our LNS with all components as described above

LNS–noSC In this setting, we omit the set covering as post-processing step. To be able to observe the

undistorted effect of the post processing, the results of LNS–noSC and LNS presented in the following

are based on the same runs: LNS–noSC is the result of the LNS before the post-processing phase

starts.
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LNS–noDec This setting does not use the problem decomposition technique but instead applies the removal

and insertion operators on complete solutions. To make the comparison fair, we double the number of

total search iterations because we always do two rounds of destroy and repair in the variants featuring

decomposition.

For each instance, column |N | reports the number of customers, column BKS the previously best known

solution value from the literature (in the case of Table 2 taken from Vidal et al. (2016) and in the case of

Table 3 taken from Bolduc et al. (2008), Potvin and Naud (2011) and from the updated results for Côté and

Potvin (2009) reported in Appendix A). For each variant of the LNS, column ∆best reports the percentage

gap between the best solution obtained in the 10 runs and the previous best known solution, and column t

gives the run-time in seconds. Finally, columns LNS list the best objective value f that we found during the

overall testing and the respective gap to the BKS ∆f . Note that the best solution value for each instance is

marked in bold, and average values are provided in the last row.

The solution behavior is rather similar on both types of instances: The two variants using decomposition

show a clearly superior solution quality while having higher run-times. Of these two, LNS shows a better

solution quality than LNS–noSC, but the average run-time increases by roughly 25%. The results show

that both algorithmic components—decomposition and post-processing—have a positive impact on solution

quality and a negative one on run-time. In real-world applications, the decision for one of the variants

depends on the desired tradeoff between solution quality and run-time that the planner wants to achieve. For

the following comparison to the state-of-the-art, we put the major emphasis on solution quality and only

investigate variant LNS.

Comparison to the state-of-the-art As Table 2 shows, LNS is able to match 10 and improve 6 previous

BKS out of the 34 instances with a homogeneous vehicle fleet. During the overall testing, LNS matches 12

and improves 12 BKS of these instances. On the instances with a heterogeneous fleet (see Table 3), LNS

matches 1 and improves 26 out of 34 instances, and LNS matches 3 and improves 29 instances.

Table 4 gives an aggregate comparison of LNS to the state-of-the-art methods from the literature: RIP

(Bolduc et al. 2008), TS (Côté and Potvin 2009), TS+ (Potvin and Naud 2011), AVNS (Stenger et al. 2013b),

AVNS-RN (Stenger et al. 2013a), UGHS (Vidal et al. 2016), MS-ILS (Vidal et al. 2016), and MS-LS (Vidal

et al. 2016). The upper part of the table is devoted to the comparison on the instances with a homogeneous

fleet, the lower part to those with a heterogeneous fleet. The first three rows in each part report the average

percentage gap to the previous best known solution in percent achieved by each method in the best of the

runs on the respective instance set. The solutions reported for RIP are obtained by solving each instance only

once, all other heuristics report the best solution found in 10 runs. The fourth row gives the average run-time

per instance in minutes. Finally, in row CPU@GHz, we list the processor and clock rate of the computers

on which the respective methods were tested. We indicate with † results that are not directly comparable

because they are obtained using truncated customer coordinates. Please note that the results reported for

TS are based on non-truncated coordinates because the authors repeated the testing of their algorithm and

provided us with this data. We report their updated results in Appendix A.

On the homogeneous-fleet instances, LNS provides the best solution quality on set CE and the second-best

quality after UHGS on set G within very competitive run-times. On the heterogeneous-fleet instances, LNS

is able to significantly improve the average solution quality by more than 1% compared to all competitors.

However, run-times compared to TS are also clearly higher.
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LNS LNS–noSC LNS–noDec LNS

Inst. |N | BKS ∆best(%) t(sec) ∆best(%) t(sec) ∆best(%) t(sec) f ∆f (%)

CE
CE-01 50 1119.47 0.00 27 0.00 27 0.00 13 1119.47 0.00
CE-02 75 1814.52 0.00 53 0.00 53 0.00 118 1814.52 0.00
CE-03 100 1919.05 0.00 73 0.00 73 0.11 67 1919.05 0.00
CE-04 150 2505.39 0.08 133 0.08 133 0.00 161 2505.39 0.00
CE-05 199 3081.59 0.23 298 0.25 272 0.35 374 3086.75 0.17
CE-06 50 1207.47 0.00 27 0.00 27 0.00 13 1207.47 0.00
CE-07 75 2004.53 0.00 53 0.00 53 0.00 109 2004.53 0.00
CE-08 100 2052.05 0.00 73 0.07 73 0.09 94 2052.05 0.00
CE-09 150 2422.74 -0.12 130 -0.12 128 -0.08 190 2419.84 -0.12
CE-10 199 3381.67 -0.12 288 -0.09 269 0.08 404 3376.80 -0.14
CE-11 120 2330.94 0.00 104 0.00 104 0.00 58 2330.94 0.00
CE-12 100 1952.86 0.04 73 0.04 73 0.00 82 1952.86 0.00
CE-13 120 2858.83 0.00 104 0.00 104 0.00 60 2858.83 0.00
CE-14 100 2213.02 0.00 72 0.00 72 0.00 65 2213.02 0.00
G
G-01 240 14131.18 0.21 349 0.25 305 0.58 352 14134.20 0.02
G-02 320 19142.75 0.06 471 0.20 400 1.35 463 19145.60 0.01
G-03 400 24409.02 0.45 604 0.63 465 1.90 526 24671.36 1.07
G-04 480 34362.8 -0.52 731 -0.45 554 1.29 623 34183.06 -0.52
G-05 200 14223.63 1.07 193 1.19 189 0.70 132 14246.68 0.16
G-06 280 21382.16 0.92 279 1.01 264 0.54 216 21502.53 0.56
G-07 360 23373.38 0.50 550 0.51 399 1.21 464 23398.93 0.11
G-08 440 29797.62 -0.34 683 -0.10 510 1.59 587 29697.75 -0.34
G-09 255 1326.2637 0.35 460 0.35 323 0.29 437 1325.03 -0.09
G-10 323 1593.79492 0.13 697 0.13 498 0.43 474 1586.50 -0.46
G-11 399 2173.82151 0.30 917 0.30 627 0.63 510 2163.72 -0.46
G-12 483 2494.56071 0.27 1036 0.27 757 0.49 543 2490.23 -0.17
G-13 252 2258.02 0.08 869 0.08 661 0.99 536 2260.86 0.13
G-14 320 2683.73 0.00 1209 0.29 914 1.27 579 2682.90 -0.03
G-15 396 3145.11 0.07 1672 0.07 1370 0.74 637 3149.87 0.15
G-16 480 3620.71 0.11 2107 0.11 1803 0.82 695 3614.79 -0.16
G-17 240 1666.31 0.00 446 0.00 385 0.04 325 1666.31 0.00
G-18 300 2730.55 0.09 1015 0.17 712 0.39 560 2731.98 0.05
G-19 360 3497.2 -0.02 1476 0.06 1170 0.61 634 3492.31 -0.14
G-20 420 4312.45 -0.10 2080 -0.01 1771 0.90 734 4303.56 -0.21
Avg. 0.11 569 0.16 457 0.51 348 -0.01

Table 2: Detailed results and comparison of algorithmic components on the instance sets with a homogeneous fleet.
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5.3 Results obtained with our branch-price-and-cut algorithm

All algorithmic components of the BPC were coded in C++ and compiled into 64-bit single-thread code

with MS Visual Studio 2013. The callable library of CPLEX 12.6.0 was used for re-optimizing the master

program. The computational experiments of the BPC were conducted on a standard PC with an Intel I7-

5930k 3.5 GHz processor with 64 GB of main memory. The time limit was set to two hours.

Tables 5 and 6 summarize the results of our BPC on the homogeneous and heterogeneous instance sets,

respectively. The columns have the following meaning: IUB is the initial upper bound given to the algorithm

(from our LNS or from the literature), LB denotes the lower bound provided by the algorithm when the time

limit was reached (values in bold indicate that the instance was solved to proven optimality within the time

limit while values marked with an asterisk constitute new best known solutions), ∆LB(%) is the optimality

gap in percent, t(sec) the run-time in seconds taken by the algorithm to solve an instance to proven optimality

(or TL if the time limit was reached), #Nds is the number of solved branch-and-bound nodes, and #Cuts the

number of generated cuts.

Our results reveal that the proposed exact approach is able to solve some small to medium-sized instances

to optimality in reasonable time. Thereby, new best known solutions are found for two of the instances from

benchmark set CE-H. For the larger instances, only lower bounds can be provided within the time limit of two

hours. For the two largest instances G-12/G-H-12, we were not able solve the root node in the computation

time of two hours. The average optimality gaps are 0.22%, 0.78%, 0.31%, and 1.10% for the instances sets

CE, G, CE-H, and G-H, respectively. Thus, the lower bounds provided by our BPC seem to be rather tight

while the upper bounds from our LNS (and from other state-of-the-art heuristics) also seem to be of good

quality.

6 Conclusion

We present the first exact solution method for the VRPPC. Our BPC algorithm solves instances with up to 75

customers to optimality and provides tight lower bounds for instances with up to 480 customers. In addition,

we propose an LNS as upper bounding procedure, which is among the best heuristic solution methods for

the VRPPC. Our LNS features a decomposition procedure which may also be interesting for the solution of

other VRP variants.

As future research, it seems worthwhile to extend the VRPPC to a planning problem spanning multiple days.

This is motivated by applications in e-commerce, where often some customers have a desired delivery date,

but others are indifferent about the concrete delivery date as long as it lies within a certain time frame. The

idea here is to simultaneously solve the VRRPC on multiple days, i.e., one type of customers must be served

on specified days, the other type can be scheduled freely, and those that cannot be served economically may

be subcontracted.
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LNS LNS–noSC LNS–noDec LNS

Inst. |N | BKS ∆best(%) t(sec) ∆best(%) t(sec) ∆best(%) t(sec) f ∆f (%)

CE-H
CE-H-01 50 1191.70 0.19 27 0.19 27 0.19 16 1191.70 0.00
CE-H-02 75 1790.67 0.46 49 0.46 49 -0.07 121 1789.41 -0.07
CE-H-03 100 1917.96 -0.10 70 -0.10 70 -0.23 78 1913.49 -0.23
CE-H-04 150 2475.16 -0.10 131 0.04 129 -0.01 149 2465.51 -0.39
CE-H-05 199 3143.01 -0.76 322 -0.76 274 -0.50 416 3119.10 -0.76
CE-H-06 50 1204.48 0.00 26 0.00 26 0.00 13 1204.48 0.00
CE-H-07 75 2025.98 0.34 53 0.34 53 0.04 103 2026.70 0.04
CE-H-08 100 1984.36 -0.28 71 -0.28 71 0.00 64 1978.79 -0.28
CE-H-09 150 2438.73 -0.32 130 -0.28 128 -0.42 150 2424.43 -0.59
CE-H-10 199 3267.85 -0.71 287 -0.58 253 -0.54 387 3240.00 -0.85
CE-H-11 120 2303.13 -0.06 105 -0.06 105 0.00 62 2301.78 -0.06
CE-H-12 100 1908.74 -0.04 74 -0.04 72 -0.04 109 1908.05 -0.04
CE-H-13 120 2842.18 -0.07 104 -0.07 104 -0.02 59 2832.88 -0.33
CE-H-14 100 1907.74 0.30 71 0.30 71 0.17 68 1907.75 0.00
G-H
G-H-01 240 14251.75 -0.81 325 -0.69 303 -0.74 277 14097.33 -0.95
G-H-02 320 18560.07 -0.57 539 -0.51 400 -0.04 453 18412.40 -0.80
G-H-03 400 25356.63 -1.34 589 -1.19 465 -0.45 503 25016.72 -1.34
G-H-04 480 34589.11 -0.75 774 -0.65 553 0.85 627 34328.99 -0.75
G-H-05 200 15667.13 -1.10 184 -1.04 182 -0.25 99 15398.76 -1.71
G-H-06 280 19975.32 -0.74 337 -0.70 301 -0.60 306 19743.63 -1.16
G-H-07 360 23510.98 -0.04 531 0.08 398 0.73 431 23293.54 -0.92
G-H-08 440 27420.68 -0.23 659 -0.13 496 0.65 554 27358.69 -0.23
G-H-09 255 1331.83 0.10 468 0.10 331 0.24 448 1324.99 -0.27
G-H-10 323 1561.52 0.23 596 0.23 425 -0.02 463 1556.39 -0.05
G-H-11 399 2195.31 -0.30 935 -0.21 638 0.37 524 2185.08 -0.30
G-H-12 483 2487.38 0.36 1176 0.36 873 1.03 559 2488.08 0.03
G-H-13 252 2239.18 -0.42 727 -0.29 568 0.05 519 2218.92 -0.85
G-H-14 320 2682.85 -0.88 1156 -0.88 916 -0.17 625 2649.32 -1.25
G-H-15 396 3131.89 -0.39 1705 -0.35 1403 0.55 681 3108.53 -0.45
G-H-16 480 3629.41 -0.60 2111 -0.60 1807 0.77 738 3598.41 -0.60
G-H-17 240 1695.75 -0.58 571 -0.38 376 -0.29 460 1685.97 -0.58
G-H-18 300 2740.05 -0.37 1004 -0.27 701 0.46 590 2729.61 -0.38
G-H-19 360 3464.70 -0.22 1451 -0.16 1145 0.23 675 3453.41 -0.33
G-H-20 420 4352.35 -0.80 2129 -0.80 1820 0.45 798 4311.17 -0.95
Avg. -0.31 573 -0.26 457 0.07 357 -0.51

Table 3: Detailed results and comparison of algorithmic components on the instance sets with a heterogeneous fleet.
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RIP TS TS+ AVNS AVNS-RN UHGS MS-ILS MS-LS LNS

Avg. ∆best(%)

CE 1.063 0.345 0.309 0.196 0.131 0.015 0.065 1.405 0.008
G 1.988 1.807 †0.225 0.636 0.554 0.110 0.469 2.643 0.181
CE & G 1.666 1.258 †0.266 0.473 0.380 0.074 0.317 2.211 0.110
Avg. t(min) 1×17.45 10×2.98 10×34.86 10×11.94 10×12.14 10×26.40 10×16.62 10×1.89 10×9.49

Avg. ∆best(%)

CE-H 0.646 0.391 0.291 -0.082
G-H 1.324 1.162 †-0.344 -0.473
CE-H & G-H 1.084 0.879 †-0.093 -0.305
Avg. t(min) 1×17.50 10×2.86 10×40.56 10×9.55

CPU@GHz Xeon@3.6 I7@3.4 Opteron@2.2 I5@2.67 I5@2.67 Xeon@3.07 Xeon@3.07 Xeon@3.07 I7@2.8

Table 4: Overview of results obtained with LNS and heuristics from the literature.

Inst. |N | IUB LB ∆LB(%) t(sec) #Nds #Cuts

CE
CE-01 50 1119.47 1119.47 0.00 10.7 27 127
CE-02 75 1814.52 1814.52 0.00 489.7 224 227
CE-03 100 1919.05 1916.49 0.13 TL 237 240
CE-04 150 2505.39 2495.26 0.41 TL 312 289
CE-05 199 3081.59 3066.67 0.49 TL 265 339
CE-06 50 1207.47 1207.47 0.00 13.9 25 147
CE-07 75 2004.53 2004.53 0.00 280.8 154 229
CE-08 100 2052.05 2049.11 0.14 TL 219 233
CE-09 150 2419.84 2407.18 0.53 TL 257 267
CE-10 199 3376.80 3355.75 0.63 TL 240 270
CE-11 120 2330.94 2323.89 0.30 TL 5 21
CE-12 100 1952.86 1950.79 0.11 TL 217 225
CE-13 120 2858.83 2850.75 0.28 TL 7 21
CE-14 100 2213.02 2211.63 0.06 TL 149 225

G
G-01 240 14131.20 14044.00 0.62 TL 150 225
G-02 320 19142.80 18987.20 0.82 TL 56 225
G-03 400 24409.00 24200.60 0.86 TL 1 0
G-04 480 34183.10 33898.40 0.84 TL 1 0
G-05 200 14223.60 14144.50 0.56 TL 33 225
G-06 280 21382.20 21299.60 0.39 TL 29 225
G-07 360 23373.40 23172.40 0.87 TL 2 0
G-08 440 29679.80 29439.60 0.82 TL 1 0
G-09 255 1325.03 1308.85 1.24 TL 11 60
G-10 323 1586.50 1567.65 1.20 TL 1 0
G-11 399 2163.72 2137.78 1.21 TL 1 0
G-12 483 2490.23 — — TL 0 0
G-13 252 2258.02 2234.83 1.04 TL 44 225
G-14 320 2682.90 2658.79 0.91 TL 49 225
G-15 396 3145.11 3109.45 1.15 TL 16 60
G-16 480 3614.79 3578.88 1.00 TL 2 0
G-17 240 1666.31 1666.31 0.00 43.5 1 0
G-18 300 2730.55 2719.11 0.42 TL 270 225
G-19 360 3492.31 3479.43 0.37 TL 154 225
G-20 420 4303.56 4278.97 0.57 TL 47 225

Table 5: Results of the BPC for the homogeneous instances.
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Inst. |N | IUB LB ∆LB(%) t(sec) #Nds #Cuts

CE-H
CE-H-01 50 1191.70 1191.70 0.00 598.4 78 226
CE-H-02 75 1790.67 ∗1789.41 0.00 2773.3 604 226
CE-H-03 100 1913.49 1906.78 0.35 TL 91 233
CE-H-04 150 2465.51 2449.38 0.66 TL 140 225
CE-H-05 199 3119.10 3095.40 0.77 TL 129 225
CE-H-06 50 1204.48 1204.48 0.00 56.7 36 186
CE-H-07 75 2025.98 ∗2025.05 0.00 5426.8 762 225
CE-H-08 100 1978.79 1973.81 0.25 TL 163 225
CE-H-09 150 2424.43 2414.22 0.42 TL 198 225
CE-H-10 199 3240.00 3218.85 0.66 TL 104 225
CE-H-11 120 2301.78 2286.11 0.69 TL 3 10
CE-H-12 100 1908.05 1903.41 0.24 TL 118 225
CE-H-13 120 2832.88 2824.19 0.31 TL 3 10
CE-H-14 100 1907.74 1907.74 0.00 2088.6 78 225

G-H
G-H-01 240 14097.30 14002.80 0.67 TL 83 225
G-H-02 320 18412.40 18218.10 1.07 TL 15 101
G-H-03 400 25016.70 24729.70 1.16 TL 1 0
G-H-04 480 34329.00 33407.20 2.76 TL 1 0
G-H-05 200 15398.80 15370.10 0.19 TL 69 225
G-H-06 280 19743.60 19595.60 0.76 TL 8 70
G-H-07 360 23293.50 23158.40 0.58 TL 1 0
G-H-08 440 27358.70 26864.30 1.84 TL 1 0
G-H-09 255 1324.99 1308.17 1.29 TL 1 0
G-H-10 323 1556.39 1530.34 1.70 TL 1 0
G-H-11 399 2185.08 2152.47 1.52 TL 1 0
G-H-12 483 2488.08 — — TL 0 0
G-H-13 252 2218.92 2194.40 1.12 TL 47 225
G-H-14 320 2649.32 2621.75 1.05 TL 16 50
G-H-15 396 3108.53 3059.82 1.59 TL 9 40
G-H-16 480 3598.41 3547.73 1.43 TL 1 0
G-H-17 240 1685.97 1682.40 0.21 TL 320 225
G-H-18 300 2729.61 2718.39 0.41 TL 165 225
G-H-19 360 3453.41 3430.93 0.66 TL 67 225
G-H-20 420 4311.17 4270.90 0.94 TL 28 151

Table 6: Results of the BPC for the heterogeneous instances.
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A Appendix

Table 7 provides updated results for the TS introduced in Côté and Potvin (2009). The coordinates of

customers in instances of sets G and G-H are specified with a precision of four decimal places, but the

results reported in Côté and Potvin (2009) are obtained treating them as integers. The authors repeated their

tests with the higher precision and provided us with the results in order to make the TS comparable with

other methods. Columns denoted fbest report the best objective value of TS obtained in 10 runs and columns

t(sec) the total run-time in seconds to perform 10 runs using an I7 processor with 3.3 GHz. Note that the

experiments in Potvin and Naud (2011) were also performed with integer coordinates as they are based on

the same code. However, we cannot provide updated results for TS+ because we could not reach the author

with the latest version of the code.

TS TS

Inst. fbest t(sec) Inst. fbest t(sec)

CE CE-H
CE-01 1119.47 75 CE-H-01 1191.70 80
CE-02 1816.28 96 CE-H-02 1792.36 97
CE-03 1922.19 207 CE-H-03 1918.47 208
CE-04 2529.40 350 CE-H-04 2481.46 356
CE-05 3113.33 487 CE-H-05 3150.06 464
CE-06 1207.47 77 CE-H-06 1208.08 77
CE-07 2006.52 95 CE-H-07 2029.40 93
CE-08 2065.95 208 CE-H-08 1989.61 219
CE-09 2437.76 331 CE-H-09 2451.16 332
CE-10 3406.67 491 CE-H-10 3270.25 496
CE-11 2332.03 307 CE-H-11 2335.25 302
CE-12 1952.86 154 CE-H-12 1912.47 154
CE-13 2862.16 307 CE-H-13 2871.79 304
CE-14 2219.31 167 CE-H-14 1925.46 167
G G-H
G-01 14284.07 1306 G-H-01 14233.25 1345
G-02 19675.29 2484 G-H-02 18727.91 2618
G-03 25543.93 5918 G-H-03 26042.63 4895
G-04 36221.59 8481 G-H-04 36518.80 7677
G-05 14866.58 1917 G-H-05 15897.83 1530
G-06 22455.49 3384 G-H-06 20582.61 2585
G-07 24203.51 4794 G-H-07 24228.65 4436
G-08 30822.56 6154 G-H-08 28505.81 6413
G-09 1326.26 1085 G-H-09 1328.61 1079
G-10 1593.79 1733 G-H-10 1557.13 2036
G-11 2173.82 3073 G-H-11 2191.75 3018
G-12 2494.56 4901 G-H-12 2501.02 4836
G-13 2274.56 596 G-H-13 2237.86 657
G-14 2702.49 1066 G-H-14 2683.88 1124
G-15 3162.90 1921 G-H-15 3122.68 1989
G-16 3643.39 3002 G-H-16 3620.27 3123
G-17 1674.64 563 G-H-17 1702.66 607
G-18 2752.80 919 G-H-18 2754.05 940
G-19 3523.57 1654 G-H-19 3493.83 1657
G-20 4355.19 2378 G-H-20 4360.03 2383

Table 7: Updated results for the TS of Côté and Potvin (2009).
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