
Cliques in k-partite Graphs
and their Application in Textile Engineering

Tore Gr�unert, Stefan Irnich, Hans-J�urgen Zimmermann
Lehrstuhl f�ur Unternehmensforschung (Operations Research),

Rheinisch-Westf�alische Technische Hochschule Aachen, Germany

Markus Schneider, Burkhard Wulfhorst
Institut f�ur Textiltechnik der

Rheinisch-Westf�alischen Technischen Hochschule Aachen, Germany

Abstract

In many practical cases one has to choose an arrangement of di�erent

objects so that they are compatible. Whenever the compatibility of the
objects can be checked by a pair-wise comparison the problem can be

modelled using the graph-theoretic notion of cliques. We consider a

special case of the problem where the objects can be grouped so that

exactly one object in every group has to be chosen. This object has to

be compatible to every other object selected from the other groups. The

problem was motivated by a braiding application from textile technol-

ogy. The task is to route a set of thread-spools (bobbins) on a machine

from their origins to their destinations so that collisions are avoided.

We present a new model and algorithm in order to solve this important

practical problem.

Key words: Maximum clique, k-partite graph, branch and bound,

braiding

1 Introduction

Many practically relevant problems in design of complex systems include set-
tings where a number of objects have to be selected from a large set of objects
so that they are compatible. Compatibility can be checked by pair-wise com-
parison of objects. These problems can be modelled using the graph-theoretic
notion of cliques. Given an undirected graph G = (V;E) with vertex set V
and edge set E a clique C � V is a subset of the vertex set so that every
vertex in C is connected to every other vertex in C. A clique of size s = jCj
is called a s-clique. If we de�ne a vertex for every object of the design prob-
lem and connect compatible objects by an edge in the respective graph, then
every clique is a collection of compatible objects. Di�erent objectives can be
formulated in the context of cliques. Here we will restrict ourselves to search

1

for maximum cliques. These are cliques with maximal cardinality.
Maximum clique problems are di�cult to solve - both from a practical and

theoretical point of view. The maximum clique problem is NP-hard [11], which
implies that it is unlikely that there exists a polynomial time algorithm for
solving the problem. Moreover, the problem is extremely di�cult to solve to
optimality in practice. Depending on the structure of the graph, problems
with more than about 500 nodes are beyond the reach of the best optimisation
algorithms. Larger problems can only be attacked by heuristics, which do not
guarantee that maximum cliques are found.
Our research was motivated by a design problem in textile engineering, more

speci�cally in computer aided braiding. The task is to �nd a compatible move-
ment of bobbins along non-colliding paths so that a desired pattern is man-
ufactured. We will show how the problem can be modelled as a maximum
clique problem in k-partite graphs. A graph is k-partite if the node set can
be partitioned into k disjoint sets (partitions) so that no vertices within any
partition are connected by an edge. From a designer's point of view this means
that the objects can be grouped into k groups and that one searches for exactly
one object from every group, which is compatible to all selected objects from
the other groups. Note that the size of the maximum clique is bounded by k.

This paper is organised as follows: the following section 2 gives a short
description of the applications, technical properties, and relevant objectives of
the braiding process. The construction of a convenient model is explained in
section 3. Section 4 gives a short review of relevant research on maximum clique
problems. A new branch and bound optimisation algorithm which solves the
model is introduced in section 5. Computational results for real-world braiding
instances and randomly generated instances are presented in section 6. Finally,
some conclusions, possibilities for improvement and future research are given
in section 7.

2 Braiding Technology

Fibre reinforced plastics, which are composed of a textile reinforcement and
a polymer matrix and, therefore, called composites, are successfully used in
many industrial branches. Applications can be found in such diverse �elds
as aerospace industry, mechanical engineering, sports gear, and medical ma-
terials. Compared to more traditional materials composites can be
exibly
adapted so that the material properties speci�cally satisfy given demands.
However, a wide introduction of these materials in the market con
icts with

the high costs. The largest fraction of manufacturing costs stems from the
lay-up of two-dimensional textile semi-manufactures (e.g. fabrics) to a three-
dimensional component. Therefore, braiding is an appealing alternative. The
basic principle of all braiding machines is that on the machine plate, pairs

2

of horn gears rotate in opposite directions to each other so that the thread
spools, the so-called bobbins, travel around the horn gears following the guide
tracks cut into the bedplate. In this way the threads interlace each other to
the braid, which is then taken up vertically.
Taking conventional braiding technology as a basis, a method of producing

three-dimensional (3-D) braids (Fig. 1) has been developed during the last
years at the Institut f�ur Textiltechnik of the RWTH Aachen, the so-called 3-D
rotary braiding technique [22]. With this world-wide unique prototype it is for

Figure 1: 3-D braid

the �rst time possible to position every single of the 400 threads at any place
in the cross-section of the textile. It consequently becomes possible to produce
an architecture of the threads in accordance with the given load situation or
the asked geometry. Due to this fact the novel braiding technology creates out-
standing properties in 3-D technical textiles. 3-D braids o�er the opportunity
of producing the required component con�gurations in one processing stage
without the need for any further stages of cutting to shape and forming into
plied assemblies. The consequences are signi�cantly higher impact damage
tolerance levels and structural energy absorption (work capacity and vibration
damping) [22].
In contrast to conventional braiding machines the horn gear modules in 3-D

rotary braiding machine are assembled in columns and rows to form a braiding
bedplate (Fig. 2). The horn gear consists of four wings; a wing can be empty
or carry one bobbin. The braiding plate of the above mentioned prototype
with an area of 2.20 square meters consists of 10� 10 horn gears, so that 400

3

wings are at one's disposal.
In order to make the bobbin movement
exible, a horn gear module incor-

porates a controlled combined clutch-brake in such a way that each individual
horn gear and consequently the bobbins situated on it can be individually ac-
tivated or stopped (Fig. 2). That means that the three movement states of the

Figure 2: principle of a 3-D rotary braiding machine

horn gears are \90�-rotation, left", \90�-rotation, right", and \stop". In ad-
dition, rotary switch-points are incorporated between adjacent rotors which,
according to the status of the points, retain the bobbin on the horn gear
(i.e. status \cycle", cf. switch-points between the upper and lower horn gears
in Fig. 2) or transfer it to the adjacent horn gear (i.e. status \transfer", cf.
switch-points between the left and the right horn gears in Fig. 2).
The introduction of this element of
exibility into the braiding process re-

quires a synchronisation of all horn gears and switch-points. For this reason
the normally continuous braiding process is clocked. It is separated into sin-
gle steps in such a way that during one step the horn gears rotate 90� or
stand still. Before every new step all switch-points can be changed either to
the status \cycle" or \transfer". For a transfer of a bobbin to an adjacent
horn gear, both horn gears have to rotate clock- and counterclockwise and the
switch-point between them has to be turned to the status \transfer". Other-
wise the bobbin will remain on the �rst horn gear or a so-called bobbin-horn
gear collision will occur (Fig. 3). The two possible cases for a bobbin-horn gear

4

Figure 3: bobbin-horn gear collision

collision are presented in Fig. 3. Another situation which leads to an error is
if two bobbins try to pass one switch-point at the same time (Fig. 4). For
both possible states of the switch-point a bobbin-bobbin collision takes place.
The clocking of the process allows the de�nition of the braiding pattern by

initial and end positions of all bobbins on the bedplate. Starting with an initial
con�guration each bobbin has to reach its end position within a given number
of steps.
With these novel technical facilities it is possible for the bobbin paths to

be deliberately varied at every stage. With a view to textile engineering it
is desired that approximately 50% of the wings are mounted with bobbins,
which move on the machine in such a way that the bobbin paths interlace each
other frequently and symmetrically. From the textile engineer's point of view
the new braiding technique drastically increases the potential applications of
braiding. But a high productivity of the machine has to be ensured in such
a way that for a quick production of the braids as many threads as possible
interlace each other at every step. Due to this the number of moving bobbins
has to be as large as possible.
However, the di�cult question to answer is how a given braiding pattern can

be manufactured, i.e. how the clutch and horn gear control should be operated,
so that collisions are avoided and the braiding pattern becomes feasible. The
enormous number of possible controls motivated the modeling of the problem
as an optimisation problem and the implementation of an algorithm in order
to assist the engineer during the design process.

5

Figure 4: bobbin-bobbin collision

3 Model

This section describes the construction of a suitable optimisation model for
the braiding problem. It is constructed in a two-stage process. In the �rst
stage possible paths for each bobbin are enumerated using a shortest path
calculation and an enumeration scheme for di�erent paths. This is described
in sub-section 3.1. The compatibility of di�erent paths depends on the control
of the horn gears and the switch points. Sub-section 3.2 shows how di�erent
paths can be compared. This leads to the de�nition of the so-called path
compatibility graph. Sub-section 3.3 eventually establishes the relationship
between the path compatibility graph and the maximum clique problem in
k-partite graphs.

3.1 Alternative Paths for Each Bobbin

The task of the �rst stage is to create a set Pb of alternative paths for each
bobbin b 2 B. There exists a braiding digraph D = (V;A) for each 3D-rotary
machine. Its vertices V correspond to the positions on the braiding �eld. For
a 3D-rotary machine with m� n horn gears D has 4mn vertices.
The information represented by D is whether a bobbin can move from one

position of the braiding �eld to another within only one step. Two vertices v
and v0 are connected by an arc a = (v; v0) if and only if the 3D-rotary machine
can move a bobbin from v to v0 in one step. The neighbourhood of a position

6

v0 2 V is the set ND(v0) = fv 2 V j(v0; v) 2 Ag. Since some of the machines
can only move a gear horn in one direction or keep it �x, the resulting braiding
digraph may not be symmetric and contains loops f(v; v)jv 2 V g � A.
A path p is a (T + 1)-vector (v0; v1; : : : ; vT) of positions vi 2 V where each

member is a neighbour of its predecessor, i.e. vi+1 2 ND(vi). A path p belongs
to the set of alternative paths Pb corresponding to bobbin b if v0 = v

p
0 and

vT = v
p
T . v

p
0 and v

p
T are the initial and end positions of bobbin b on the

bedplate.
In order to compute all alternative paths Pb from position v

p
0 to position v

p
T

we use enumeration: the �rst step is to compute the length dij of a shortest
path between position vi and position vj for all pairs (vi; vj) 2 V �V . We can
then decide if it is possible to reach the end position v

p
T from a given position

v 2 V at time t in T � t steps. Starting with a sub-path (v0 = v
p
0; v1; : : : ; vt�1)

for bobbin b all successor positions vt 2 V must be neighbours vt 2 ND(vt�1)
and a path of length up to T � t must exist between the position vt and the
end position vbT . We do not give further details of the enumeration procedure
since this is not the interesting or critical part of our model.
Creating alternative paths for each bobbin in the �rst phase has an additional

advantage: technical criteria to judge the quality of the braid can be used
within the enumeration or as a kind of post processing to �lter out those paths
which do not meet certain requirements. One example is the use of tracks or
corridors. For each time t 2 f0; 1; : : : ; Tg the track or corridor describes one
or several neighbouring positions a bobbin is allowed to move to.

3.2 The Path Compatibility Graph

The model we use is based on the concept of compatible paths. Two paths are
compatible if they do not belong to the same bobbin, do not block the same
positions in the braiding �eld at the same time, do not use the same switch
point for a transition between the periods t � 1 and t, t 2 1; : : : ; T , and the
implied horn gear rotation does not con
ict. The required information can
be computed for two paths p and p0 in O(T + 1) as follows: the blocking of
identical positions requires the elements of the path vectors to be pair-wise
distinct. For each transition from period t � 1 to period t one can compute
the index of the a�ected switch point from the entries of the path vector vt�1

and vt. The implied rotation of the horn gear can be computed equivalently.
Both computations can be done in constant time. It remains to compare this
information for every transition t to t + 1 of the paths resulting in an overall
e�ort of O(T + 1).
The path compatibility graph G = (P;E) has exactly one node for each

generated path, i.e. P =
S
b2B Pb. Two paths p and p0 are connected by an

edge e 2 E if and only if they are compatible. Recall that two paths for the
same bobbin are incompatible. The path compatibility graph is, therefore,
jBj-partite with respect to the bobbins, i.e. there do not exist edges e and

7

e0 between nodes p and p0 where p; p0 2 Pb; b 2 B. This is an important
characteristic, which is explicitly exploited in our algorithm. The construction
of G requires all pairs of paths to be compared. This implies a quadratic e�ort
in the number of paths. The entire graph can consequently be constructed
in O((jP j(T + 1))2) time and requires O(jP j2) memory, which can indeed be
prohibitive for very large instances.

3.3 A Solution of the Braiding Problem

The original braiding problem was to determine a path from an origin to a
destination for each bobbin on the braiding �eld so that collisions are avoided.
We now show that the problem corresponds to the determination of a clique
C � P of size jBj in the path compatibility graph. First, note that every clique
in G corresponds to the selection of a set of compatible paths. Secondly, each
path belongs to a di�erent bobbin since paths belonging to the same bobbin
are not connected. Thirdly, a complete solution requires that exactly one path
is chosen for every bobbin. This requires the clique to be of size jBj. Note that
there cannot exist any larger cliques in G due to the partition-property. The
problem is, therefore, equivalent to the maximum clique problem in jBj-partite
graphs.

4 Algorithms for the Maximum Clique Prob-

lem

The maximum clique problem has been studied extensively in literature. So-
lution approaches include optimisation algorithms such as branch and bound
[8, 12, 18, 4, 10, 1, 2, 20], cutting plane techniques [21, 3, 5], and methods based
on nonlinear (quadratic) programming [13, 7]. The most e�cient optimisation
algorithms are capable of solving problems with up to about 500 vertices to
optimality. As can be expected their e�ciency tends to decrease with increas-
ing density of the graph. With the limited applicability of the optimisation
algorithms in mind, researchers have proposed heuristics, which do not guaran-
tee that the maximum clique is found. These methods include metaheuristics
such as tabu search [14, 23], genetic algorithms [9], restricted backtracking
[15], and neural networks [16, 19] as well as problem-oriented heuristics, which
apply results from graph theory, for example, for special types of graphs in a
heuristic way [6, 17].
The earliest approaches to the maximum clique problem were based on

branch and bound (or implicit enumeration). Most branch and bound meth-
ods exploit the relationship between the maximum clique problem and related
combinatorial problems such as coloring, independent set, and vertex cover.
For example, an upper bound on the size of a maximum clique is given by the

8

chromatic number, i.e. the minimum number of colors necessary to color all
adjacent vertices with di�erent colors. The chromatic number is di�cult to
�nd and one, therefore, uses coloring heuristics instead. Such a coloring can
be used as a bounding criterion. Branching is usually performed by growing a
clique by the addition of one vertex in each node of the search tree. Such an
operation is feasible if and only if the added vertex is adjacent to all vertices
in the current clique.
It is beyond the scope of this paper to give a complete overview over the

di�erent approaches to the maximum clique problem. We have decided to
emphasize the important implications for the problem discussed here instead.
First, we are not aware of any specialised algorithm for the case of k-partite
graphs. Secondly, the optimisation algorithms proposed so far are not able to
solve problems of the size necessary in our case. Thirdly, it has been shown
that any heuristic solution with clique size less than k is useless since it does
not correspond to a feasible solution for our problem. Moreover, the user may
want to evaluate di�erent solutions (i.e. di�erent cliques of the same size) from
a di�erent, i.e. textile technology, point of view. We have, therefore, decided to
develop a specialised optimisation algorithm for the maximum clique problem
in k-partite graphs.

5 The Algorithm

We now focus on the branch and bound algorithm for �nding all k-cliques in
a k-partite graph G = (P;E) where the set of nodes is partitioned according
to P =

S
b2B Pb.

The main idea is to construct a partial solution S � P in every step of the
solution process. A partial solution corresponds to a clique of G, so starting
with an empty set S = ; we insert one node to the set S in every step of the
branch-and-bound search tree.
Given a partial solution S the corresponding set PN = PN(S) � P contains

all nodes compatible to all nodes of S. Remember that only nodes of di�erent
partitions Pb can be compatible. Let the partial solution S consist of exactly
one element of the partitions B0 � B. Then PN(S) has a representation as

PN(S) =
[

b2BC

0 =BnB0

PNb

where PNb � Pb is de�ned by

PNb =
\
s2S

(Pb \NG(s)) :

The set NG(s) includes all nodes adjacent to node s, i.e. NG(s) is the neigh-
bourhood of s in G. If any of the sets PNb is empty, we know that no clique
of size jBj with S � C can exist. So we can terminate the current node of the

9

search tree corresponding to the partial solution S (bounding).
Otherwise (all PNb 6= ;) we have to do a branching step: we �rst choose

one partition b� 2 B nB0. Secondly we loop over all elements vb� 2 PNb� and
re-start the search with the new partial solution S [fvb�g.
The way in which the partition b� 2 B n B0 for branching is chosen is

of great importance. In order to keep the search tree small we decided to
choose PNb� with minimum cardinality among all sets PNb with b 2 B n B0,
i.e. jPNb�j � jPNbj for all b 2 B nB0.
The following three data-structures describe the state of the solution process.

They are given in a syntax similar to template classes in the C++ program-
ming language [24]. The new C++ Standard Template Library (STL) supports
data structures composed of lists, vectors, maps, queues, and simple types.

1. The �rst data-structure solution is a vector of nodes with B compo-
nents:

vector<node> solution [jBj].
It represents a partial solution, i.e. the i-th entry of this vector can ei-
ther be a node of the i-th partition solution [i] 2 Pi or be unde�ned
solution [i] = ?. All de�ned components solution[i] = vi 2 Pi are
compatible nodes and, therefore, they form a clique
C = fsolution [i] ji 2 B, solution [i] 6= ?g. At the end of of the solu-
tion process when all components of solution are de�ned C is a maxi-
mum clique of size jBj.

2. The second data-structure compatible nodes is a vector of size jBj, its
components are lists of nodes, i.e.

vector<list<node>> compatible nodes [jBj].
The idea behind this de�nition is to record in the i-th component all
nodes of partition Pi which are compatible to all de�ned members of the
partial solution stored in solution.
So if B0 � B is the subset of all de�ned components of the vector
solution, every list compatible nodes [b] for b 2 B0 is an empty list.
For its complement set BC

0 = B nB0 � B the list compatible nodes [b]
for b 2 BC

0 contains exactly all nodes of partition Pb which are compatible
to all solution[i] 2 Pi for i 2 B0.

3. The algorithm presented below is called recursively. For every level l of
the recursion the vector erased

vector<list<node>> erased [jBj]
contains in its l-th component a list of all nodes which are erased from
the data-structure compatible nodes in level l of the recursive process.

One additional vector to store the number of the partition b 2 B a given node
v 2 P belongs to is needed:

vector<int> partition [jP j]

10

The entry b = partition [v] means that v 2 Pb. The initialization of the vec-
tors partition, compatible nodes and solution is simple. At the beginning
erased is a vector of empty lists, so no initialization is necessary.

(* Initialization *)

FORALL (b 2 B)

FORALL (v 2 Pb)

LET partition [v] := b

FORALL (v 2 P)

INSERT (compatible nodes [partition [v]] ; v)

FORALL (b 2 B)

LET solution [b] = ?

The function FINDCLIQUE loops over all nodes of the partition one wants
to start with, that is the partition with number start partition no. The idea
is to enlarge the actual solution stored in solution with a node i. All de�ned
components of solution together with the new node i represent the current,
partial solution. One now has to decide if the partial solution is useless (bound-
ing) or if it may possibly be enlarged to a complete jBj-clique (branching).
The �rst inner loop updates the set of compatible nodes compatible nodes ac-
cording to the new partial solution. All the incompatible nodes must be erased
from compatible nodes. This is recorded in erased. If the new partial solu-
tion were a part of a jBj-clique, only one set of compatible nodes could become
empty, that is the set compatible nodes [start partition no] corresponding to
the partition of the new node. By counting with
new empty partitions the number of lists that become empty one has to stop,
if new empty partitions is greater than one.
Otherwise the partial solution could be a subset of a jBj-clique. So node

i is stored in solution. If solution has exactly jBj de�ned components, or
equivalently, if the depth level in the search tree is equal to jBj, then a clique
is found and the result can be displayed. If solution has unde�ned compo-
nents, a new partition for branching must be chosen. The depth-�rst search
continues with the partition corresponding to the smallest, non-empty list in
the vector compatible nodes. This heuristic approach tries to keep the num-
ber of iterated calls of the function FINDCLIQUE small.
The second inner loop reverses all decisions made for node i: all nodes

erased from compatible nodes have to be inserted into their corresponding
list of compatible nodes. The algorithm is stated in pseudo-code below. The
procedure is started with level = 1 and start partition no = b�, where b� is
the index of a partition Pb of minimal size, i.e. jPb�j � jPbj for all b 2 B:

11

FINDCLIQUE(1, b�)

FINDCLIQUE(level, start partition no)

f

FORALL (i in compatible nodes [start partition no])

f

LET new empty partitions := 0

(* �rst inner loop *)

FORALL (b 2 B)

IF (new empty partitions � 1)

FORALL (j in compatible nodes [b])

IF (not compatible(i; j))

INSERT (erased [level] ; j)

ERASE (compatible nodes [b] ; j)

IF (compatible nodes [b] is empty)

LET new empty partitions := new empty partitions+ 1

IF (new empty partitions � 1)

LET (solution [start partition no] := i)

IF (level = jBj)

OUTPUT (solution)

ELSE

(* branching *)

LET new part no := Index of smallest; non� empty list in

fcompatible nodes [k] jk 2 Bg

CALL FINDCLIQUE(level+ 1, new part no)

LET solution [start partition no] := ?

(* second inner loop *)

FORALL (j in erased [level])

INSERT (compatible nodes [partition [j]] ; j)

ERASE (erased [level] ; j)

g

g

6 Computational Results

This section presents computational results for both real-world braiding prob-
lems and randomly generated problems. All computational tests were per-
formed on a 100 MHz Pentium PC under Windows NT 4.0 with 32 MB RAM.
The algorithm was programmed in C++ and compiled using the Microsoft
Visual C++ compiler, version 5.0. The compiler target option was set to
`release'.

12

6.1 Real World Problems

From a textile engineer's point of view real-world problems can be described
by the braiding pattern they correspond to and their size. The input to our
algorithm, however, is not the braiding pattern but the initial and �nal position
of the bobbins on the bedplate together with the number of steps which are
allowed before all bobbins have to reach their destination. The number of
possible paths tends to increase drastically with the number of steps. Moreover,
one usually prefers solutions with the minimal number of steps since they
correspond to maximum productivity.
The computational results for the real-world problems are given in table

1. The �rst column gives the name of the problem. Attributes of the path
compatibility graph are described next. Important attributes are the number of
bobbins, which is equal to the number of partitions, the minimal and maximal
size of a partition, the number of nodes, i.e. the number of generated paths,
and the density of the graph. The density is equal to the number of edges
divided by the possible number of edges, i.e. density = jEj

jP j�(jP j�1)
. The density

of the graphs we consider here is extremely high. This follows from the fact
that a path is compatible to almost all other paths since the other paths cover
other regions of the bedplate.
The next columns summarize important aspects of the computation results.

The �rst column gives the number of cliques. If the number is greater than
1; 000, then computation is halted. The tests column gives the number of calls
to the routine that evaluates the compatibility of two paths. This number is
also given as the percentage of calls relative to the possible number of edges jP j�
(jP j� 1). This indicates whether it is useful to pre-compute the compatibility
information before the initialisation of the algorithm or to compute them as
needed during the branch and bound phase. The double test column gives
the number of compatibility tests, which are computed at least twice. The
following four columns show the computational times in milliseconds. The
time the algorithm requires before the �rst clique is found is given in the
�rst column. The second column gives the time until termination, i.e. the
calculation of all cliques or the �rst 1,000 cliques. The next two columns give
the same values for the case where the compatibility information was computed
before the branch and bound phase.
The tests and double tests columns show that only a small fraction of the

possible compatibility tests were performed. However, for some of the instances
the fraction is about 50%. This is the case whenever the number of cliques is
large. It is also important to store compatibility information, which already
has been computed. This is revealed by the comparison of the tests and double
tests columns. The relevant percentages lie very close to each other in most
cases, indicating that it is likely that a compatibility information is used more
than once.
It can be seen in the time columns that the algorithm is very fast when

13

name graph G = (
S

b2B
Pb; E) results

eval. time eval. time
part. min max nodes density cliques tests double on-line (ms) o�-line (ms)
jBj jPbj jPbj jP j tests �rst overall �rst overall

A1.5x5.2p.5t 36 1 5 108 81% 0 1184 0 { 90 { 10
10.3% 0.0%

A1.5x5.2p.6t 36 6 15 348 80% 2 26552 10592 941 1862 31 61
22.0% 8.8%

A1.5x5.2p.7t 36 21 35 948 80% >1000 679783 522655 15682 38906 331 2093
75.7% 58.2%

A1.5x5.3p.7t 36 1 26 416 77% 0 729 0 { 80 { 10
0.4% 0.0%

A1.5x5.3p.8t 36 8 44 876 76% 1 34651 5527 4136 8452 40 100
4.5% 0.7%

A1.5x5.3p.9t 36 36 85 2136 75% >1000 1476010 1077683 30163 256489 130 4576
32.4% 23.6%

A2.5x5.2p.5t 48 1 5 208 89% 1 2488 0 200 200 10 10
5.8% 0.0%

A2.5x5.2p.6t 48 6 15 648 86% 20 74779 22685 2774 9464 30 151
17.9% 5.4%

A2.5x5.3p.7t 48 1 8 288 86% 0 264 0 { 30 { 1
0.3% 0.0%

A2.5x5.3p.8t 48 8 29 1132 82% 1 71140 29762 7401 14802 80 190
5.6% 2.32%

A2.5x5.3p.9t 48 36 85 3488 81% 37 8056642 6462768 185576 1808840 581 21871
66.3% 53.1%

LZ.10x10.5t.0a 134 1 50 1966 93% 0 58 0 { 10 { 1
0.002% 0.0%

LZ.10x10.5t.2a 134 1 80 2984 93% 2 122540 1 83190 83200 211 221
1.4% 0.00001%

A1.10x10.2p.5t 188 1 6 756 96% 0 4568 0 { 621 { 10
0.8% 0.0%

A1.10x10.2p.6t 188 6 15 2328 96% 2 478323 75635 132721 243851 340 781
8.8% 1.4%

A1.10x10.2p.7t 188 21 35 5768 95% >1000 13678336 10097286 822152 5232620 1101 28050
41.1% 30.4%

A.20x20.4t.0a 631 8 20 5072 99% 0 3288 28 { 671 { 20
0.01% 0.0001%

A.20x20.4t.2a 631 17 40 12413 { >1000 3544057 5826 5862220 6019770 5458 6289
2.3% 0.003%

Table 1: Results for some test instances from 3-D rotary braiding

the compatibility information is already available (eval. o�-line column). The
largest value is about 28 seconds for the 5,768 node problem. It is, on the
other hand, always necessary to compute the compatibility information on-
line in practice since larger instances do not allow the information to be pre-
computed o�-line. The 12,413 node problem would, for example, require about
10 days for the computation of the entire compatibility matrix.
The data do not reveal any other signi�cant relationship between problem

factors such as, for example, the number of nodes, the partition size, and the
number of cliques and the computational time. This may also be attributed
to the small number of real-world instances, which are currently available.

14

6.2 Randomly Generated Problems

We also tested our branch and bound algorithm on randomly generated prob-
lems. The procedure similar to that described in [14].
The generator works with 5 input parameters (b; s; s; a; b). The number b

determines the number of partitions jBj. The parameters s � s control the
size of each partition Pb, which is randomly chosen from fs; : : : ; sg where all
sizes occur with equal probability 1

1+s�s
. The union of the partitions Pb gives

the set of nodes P . The real numbers a and b control the density of the random
graph and satisfy 0 � a � b � 1. The procedure is given below:

p̂-generator(b; s; s; a; b)

f

LET B = f1; : : : ; bg

(* Construct nodes *)

LET offset := 0

FORALL (b 2 B)

LET s [b] := uniform(fs; : : : ; sg);

LET Pb := foffset+ 0; : : : ; offset+ s [b]g

offset := offset+ s [b]

LET P := P1 [: : : P
b

(* Construct edges *)

FORALL (i 2 P)

LET p̂ [i] := uniform(a,b);

FORALL (b 2 B)

FORALL (i 2 Pb)

FORALL (j 2 Pb+1 [: : : [P
b
)

generate edge (i; j) with probability p̂[i]+p̂[j]
2

g

We now focus on the case a = b, i.e. the p̂-generator is equivalent to the uni-
form random generator on a b-partite graph. We set p := a = b. For nodes
i < j let Xij be the random variable which is equal to one if the nodes i and
j are connected by an edge and zero otherwise. For i; j belonging to di�erent
partitions the random variables Xij are i.i.d. and the probability for the ex-
istence of an edge is P (Xij = 1) = p. The number of cliques in the random
graph can be modelled by the random variable

C =
X

(i1;:::;i
b
)2P1�:::�P

b

Y
1�l<k�b

Xilik :

It is easy to see that the expectation of C is

E(C) =

0
@ bY
b=1

jPbj

1
A � p b(b�1)

2 : (1)

15

We would like to construct graphs with a small number of b-cliques. One
such clique can be expected if we choose p so that E(C) = 1 in (1). This gives
an analytical expression for the value of p, given the number and the sizes of
the partitions:

p =
b(b�1)

2

s
1

jP1j � : : : � jPbj
(2)

The computational experiments con�rm the theoretically derived attributes

graph G = (
S

b2B
Pb; E) p̂-generator results

part. min max nodes density a b cliques tests time (ms)
jBj jPbj jPbj jP j �rst overall
5 50 50 250 10.93% 0.14 0.14 0 17554 { 130
5 50 50 250 11.62% 0.15 0.15 1 18605 120 140
5 50 50 250 15.78% 0.20 0.20 29 28590 1 210
5 50 50 250 19.63% 0.25 0.25 267 46041 1 310
5 50 50 250 12.12% 0.00 0.3 9 20851 10 150
5 50 50 250 16.02% 0.00 0.4 148 33726 1 260
5 50 50 250 18.12% 0.00 0.45 568 45989 1 360
5 50 50 250 20.11% 0.00 0.50 >1000 46273 1 411
10 26(20) 37(40) 295 43.99% 0.49 0.49 3 182184 31 842
10 26(20) 37(40) 295 44.85% 0.50 0.50 14 219144 240 1182
10 26(20) 37(40) 295 45.75% 0.51 0.51 29 265537 10 1192
10 26(20) 37(40) 295 45.19% 0.40 0.60 48 245387 40 1652
10 26(20) 37(40) 295 45.66% 0.30 0.70 433 372726 30 2073
10 50 50 500 37.77% 0.42 0.42 0 747648 { 4747
10 50 50 500 38.64% 0.43 0.43 3 892442 2303 4787
10 50 50 500 39.53% 0.44 0.44 9 1088444 1633 5568
10 50 50 500 41.35% 0.46 0.46 61 1684557 350 8152
10 50 50 500 43.10% 0.48 0.48 440 2717872 120 12828
10 50 50 500 44.91% 0.50 0.50 >1000 2003282 10 9233
50 5(5) 15(15) 501 88.99% 0.91 0.91 0 171220194 { 358084
50 5(5) 15(15) 501 89.77% 0.918 0.918 482 1534853121 50462 3854740
50 5(5) 15(15) 501 89.94% 0.92 0.92 >1000 1235851864 37974 2579290
20 23(20) 39(40) 594 66.46% 0.70 0.70 0 73493399 { 280082
20 23(20) 39(40) 594 67.38% 0.71 0.71 8 127138450 19288 472900
20 23(20) 39(40) 594 68.32% 0.72 0.72 156 229690558 3626 848350
20 23(20) 39(40) 594 67.91% 0.70 0.73 55 170665743 40258 627412
20 23(20) 39(40) 594 68.15% 0.65 0.78 608 235265070 4387 863632
30 11(10) 30(30) 611 57.83% 0.60 0.60 0 94733 { 371
30 11(10) 30(30) 611 67.53% 0.70 0.70 0 862871 { 3625
30 11(10) 30(30) 611 77.08% 0.80 0.80 0 174211708 { 634393
30 11(10) 30(30) 611 78.06% 0.81 0.81 0 446547173 { 1438960
30 11(10) 30(30) 611 79.01% 0.82 0.82 12 1283321587 706776 3575110
30 11(10) 30(30) 611 80.96% 0.84 0.84 >1000 72706651 3425 186849
30 11(10) 30(30) 611 84.80% 0.88 0.88 >1000 48581 10 281
100 10 10 1000 69.22% 0.70 0.70 0 45168 { 150
100 10 10 1000 79.10% 0.80 0.80 0 248668 { 661
100 10 10 1000 84.06% 0.85 0.85 0 1664263 { 4447
100 10 10 1000 89.02% 0.90 0.90 0 91863172 { 221499
100 10 10 1000 90.99% 0.92 0.92 0 2271710076 { 4738870
100 10 10 1000 92.98% 0.94 0.94 { { { {
100 10 10 1000 94.00% 0.95 0.95 { { { {
100 10 10 1000 96.00% 0.97 0.97 >1000 114376 50 400

Table 2: Results for some randomly generated instances

of the randomly generated graphs. The most di�cult problems are those for
which the probability of a jBj-clique is about one, according to the formula

16

(2). Slight modi�cations of the values of a and b around this value strongly
in
uence the di�culty (and computation time). Most problems in table 2
are of this di�cult type. The problems p̂(30; 10; 30; :; :) and p̂(100; 10; 10; :; :)
prove that di�culties are indeed encountered for a narrow range of node degree
values. Consider the problems with 1,000 vertices. According to formula 2 ex-
actly one clique can be expected if a = b = 0:954. The two instances closest
to this value, p̂(100; 10; 10; 0:94; 0:94) and p̂(100; 10; 10; 0:95; 0:95), could not
be solved by our algorithm within a reasonable amount of time. It could be
proved that no clique exists for smaller values of a and b and that more than
1,000 cliques exist for larger values.
An analysis of the relationship between the density and the computational

time reveals that it is almost linear for �xed values of the number of partitions
and the size of the partitions. Moreover, the time to �nd the �rst or a single
maximum clique tends to fall with increasing density. This can be expected
since there are more maximum cliques in denser graphs and these tend to
share a large number of nodes, which restricts the computational e�ort which
is necessary in order to traverse the search tree between the cliques.

7 Conclusions and Future Research

This paper was motivated by a braiding application from textile technology.
The task was to route a given number of bobbins from their origins to their
destinations on a bedplate avoiding possible collisions and con
icting controls.
The complexity of this task increases drastically with the size of the prob-
lem and engineers encounter massive di�culties when attempting to solve this
problem manually. We have, therefore, modelled the problem as the problem
of �nding maximum cliques in k-partite graphs.
The partition property of the graph can be exploited algorithmically. This

leads to the development of a new branch and bound algorithm. The algo-
rithm is able to solve fairly large practical size problems to optimality within
a short time. The computation is delayed by the fact that the compatibility
information, i.e. the edges of the graph, has to be computed on-line during the
branch and bound phase. This time-consuming task increases the computation
time substantially in practice.
From a textile engineering point of view this optimisation model only sup-

ports a limited part of the design process. It still requires the engineer to de�ne
origins and destinations for all bobbins on the bedplate. This is not e�ective
when up to 1,000 bobbins have to be considered. One, therefore, essentially
needs a computer-assisted system which transforms braiding patterns directly
into positions for the bobbins, which can then be routed on the bedplate ac-
cording to the solution of our algorithm. It is, in addition, desirable to allow a
user to evaluate the mechanical properties of di�erent braids which correspond

17

to di�erent cliques in the solution.
Seen from an OR perspective, we believe that the problem of determining

maximum cliques in k-partite graphs has many other applications in practice.
One might, for example, try to route a number of vehicles on a rail-network
or automatically guided vehicles in a factory so that collisions are avoided. It
should also be pointed out that the algorithm can be used to �nd cliques in
general graph: �rst determine di�erent partitions by a graph coloring heuristic
where each color corresponds to one partition. Next, add a dummy node to
each partition and connect it to every other node in the other partitions. Even-
tually, a required clique size has to be entered and the problem can be solved
by our algorithm. This requires only a slight modi�cation of the algorithm.
A promising path for further improvements is to add a heuristic procedure

to the branch and bound algorithm. This procedure can be called at di�erent
levels of the branch and bound tree in the hope of generating a maximum
clique quicker. Such a procedure is especially relevant in the cases where no
clique is found by the exploration of the branch and bound tree and the search
cannot be terminated since the bounding criteria do not apply.

References

[1] Babel, L., Finding Maximum Cliques in Arbitrary and in Special
Graphs, Computing, 1991, 46, 321-341.

[2] Babel, L. and Tinhofer, G., A Branch and Bound Algorithm for the
Maximum Clique Problem, ZOR - Methods and Models of Operations

Research, 1990, 34, 207-217.

[3] Balas, E. and Samuelson, H., A node covering algorithm, Naval Re-
search Logistics Quarterly, 1977, 24(2), 213-233.

[4] Balas, E. and Yu, C.S., Finding a Maximum Clique in an Arbitrary
Graph, SIAM Journal on Computing, 1986, 15(4), 1054-1068.

[5] Balas, E., Ceria, S., Cornu�ejols, G., and Pataki, G., Polyhedral meth-
ods for the maximum clique problem. In Cliques, Coloring, and Sat-

is�ability, DIMACS Series in Discrete Mathematics and Theoretical

Computer Science, eds. D.S. Johnson and M.A. Trick. American Math-
ematical Society, Providence, Rhode Island, 1996, pp. 11-28.

[6] Balas, E. and Niehaus, W., Finding large cliques in arbitrary graphs by
bipartite matching. In Cliques, Coloring, and Satis�ability, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, eds.
D.S. Johnson and M.A. Trick. American Mathematical Society, Prov-
idence, Rhode Island, 1996, pp. 29-52.

18

[7] Bourjolly, J.-M., Gill, P., Laporte, G., and Mercure, H., An exact
quadratic 0-1 algorithm for the stable set problem. In Cliques, Color-

ing, and Satis�ability, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, eds. D.S. Johnson and M.A. Trick.
American Mathematical Society, Providence, Rhode Island, 1996, pp.
53-74.

[8] Bron, C. and Kerbosch, J., Finding all cliques of an undirected graph,
Communications of the ACM, 1973, 16(9), 575-577.

[9] Fleurent, C., Ferland, J.A., Object-oriented implementation of heuris-
tic search methods for Graph Coloring, Maximum Clique, and Satis-
�ability. In Cliques, Coloring, and Satis�ability, DIMACS Series in

Discrete Mathematics and Theoretical Computer Science, eds. D.S.
Johnson and M.A. Trick. American Mathematical Society, Providence,
Rhode Island, 1996, pp. 53-74.

[10] Friden, C., Hertz, A. and De Werra, D., TABARIS: An Exact Algo-
rithm Based on Tabu Search for Finding a Maximum Independent Set
in a Graph, Computers and Operations Research, 1990, 17(5), 437-445.

[11] Garey, M.R. and Johnson, D.S., Computers and Intractability.A Guide

to the Theory of NP-Completeness. W.H. Freeman and Company, New
York, 1979.

[12] Gerhards, L. and Lindenberg, W., Clique detection for nondirected
graphs: Two new algorithms, Computing, 1979, 21, 295-322.

[13] Gibbons, L.E., Hearn, D.W. and Pardalos, P.M., A continuous based
heuristic for the maximum clique problem. In Cliques, Coloring, and

Satis�ability, DIMACS Series in Discrete Mathematics and Theoret-

ical Computer Science, eds. D.S. Johnson and M.A. Trick. American
Mathematical Society, Providence, Rhode Island, 1996, pp. 103-124.

[14] Gendreau, M., Soriano, P., and Salvail, L., Solving the Maximum
Clique Problem Using a Tabu Search Approach, Annals of Operations
Research, 1993, 41, 385-403.

[15] Goldberg, M.K. and Rivenburgh, R.D., Constructing cliques using re-
stricted backtracking. In Cliques, Coloring, and Satis�ability, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, eds.
D.S. Johnson and M.A. Trick. American Mathematical Society, Prov-
idence, Rhode Island, 1996, pp. 89-102.

[16] Grossman, T., Applying the INN model to the maximum clique prob-
lem. In Cliques, Coloring, and Satis�ability, DIMACS Series in Dis-

crete Mathematics and Theoretical Computer Science, eds. D.S. John-

19

son and M.A. Trick. American Mathematical Society, Providence,
Rhode Island, 1996, pp. 125-146.

[17] Homer, S. and Peinado, M., Experiments with polynomial-time
CLIQUE approximation algorithms on very large graphs. In Cliques,

Coloring, and Satis�ability, DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, eds. D.S. Johnson and M.A. Trick.
American Mathematical Society, Providence, Rhode Island, 1996, pp.
147-168.

[18] Hsu, W.-L., Ikura, Y. and Nemhauser, G., A Polynomial Algorithm for
Maximum Weighted Vertex Packings on Graphs Without Long Odd
Cycles, Mathematical Programming, 1981, 20, 225-232.

[19] Jagota, A., Sanchis, L. and Ganesan, R., Approximately solving Max-
imum Clique using neural network and related heuristics. In Cliques,

Coloring, and Satis�ability, DIMACS Series in Discrete Mathematics

and Theoretical Computer Science, eds. D.S. Johnson and M.A. Trick.
American Mathematical Society, Providence, Rhode Island, 1996, pp.
169-204.

[20] Mannino, C. and Sassano, A., Edge projection and the maximum car-
dinality stable set problem. In Cliques, Coloring, and Satis�ability,

DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, eds. D.S. Johnson and M.A. Trick. American Mathematical
Society, Providence, Rhode Island, 1996, pp. 205-220.

[21] Nemhauser, G., Trotter, Jr., L.E., Vertex Packings: Structural Prop-
erties and Algorithms, Mathematical Programming, 1975, 8, 232-248.

[22] Obolenski, B. and Pickett, A., Final Report to the BMBF-Project
"`Composites with three-dimensional braided reinforcement", Aachen,
1996.

[23] Soriano, P. and Gendreau, M., Tabu search algorithms for the maxi-
mum clique problem. In Cliques, Coloring, and Satis�ability, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, eds.
D.S. Johnson and M.A. Trick. American Mathematical Society, Prov-
idence, Rhode Island, 1996, pp. 221-242.

[24] Stroustrup, B., The C++ programming language, third edition,
Addison-Wesley, 1997.

[25] Wulfhorst, B. and Schneider, M., Novel three-dimensional braided
structures with continuous transition between di�erent cross-sectional
forms, Band- und Flechtindustrie, 1996, 33(3), 88-92.

20

