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Abstract

This paper introduces a special kind of multi-depot pickup and de-
livery problem. In contrast to the general pickup and delivery prob-
lem (GPDP, see e.g. [19, 31]) all requests have to be picked up at or
delivered to one central location which has the function of a hub or
consolidation point. In hub transportation networks routes between
customers and the hub are often short, i.e. involve only one or very
few customers. The reason for this can been seen in narrow time win-
dows as well as in high quantities which make it possible to fully load
a vehicle at one customer. Thus, the focus here is on problems where
all possible routes can easily be enumerated, i.e. the problem primarily
considers the assignment of transportation requests to routes. We as-
sume that many problems in transportation logistics can be modeled
and solved similarly whenever routes can be enumerated and the tem-
poral aspects of transportation requests are important.
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1 Introduction

This paper introduces a special kind of multi-depot pickup and de-
livery problem. It has applications in transportation networks where
a division into global and local services is possible. Here we assume
global services between main locations to be fixed. Local services are
transportation requests feeding each of the locations on the main net-
work, the so-called hubs. The design of a feeding network for a single
hub means to cover a set of transportation requests, pickups as well
as deliveries. In contrast to the general pickup and delivery problem



(GPDP, see e.g. [19, 31]) all requests have to be either picked up at or
delivered to the hub.

The problem we examine here considers multiple depots and het-
erogeneous vehicles. It is, therefore, called 'multi-depot pickup and
delivery problem with a single hub and heterogeneous vehicles’ (MD-
PDPSH). In the following pickup always means to load something at a
location and deliver it to the hub. Delivery is always defined as loading
some good at the hub and deliver it to a location. One characteristic
of hub transportation networks is that many different requests have to
be transported between one location and the hub. Thus, in general we
assume that there are different requests for pickup or delivery at a spe-
cific location, i.e. requests with a different quantity and with different
time windows occur. For the rest of the paper we further assume that
all pickup or delivery locations are also depots of a given heterogeneous
fleet of vehicles.

The main difference to most other vehicle routing and scheduling
problems is that planning primarily decides on the assignment of re-
quests to a vehicle. The routing information is less important than the
decision which requests are transported by the same vehicle and what
type of vehicle is used.

Many vehicle routing and scheduling problems can be formulated
as set partitioning problems (SPP) or set covering problems (SCP).
Very successful solution methods have been developed around these
formulations. They all have in common that requests R have to be
fulfilled by a cost minimal subset T™* of the set T" of all feasible trips.
The costs of T are always defined as the sum of the costs ¢; of all
selected trips ¢ € T*. In the SPP or SCP columns correspond to feasible
trips. They can be described by the incidence vector 2* = (21, ..., 2()
which is a vector of |R| entries either one or zero indicating if the trip
t covers the corresponding requests or not. The set covering or set
partitioning models can be stated as

minz Ci ¢ (1)

teT
subject to
>
ZzﬁAt{:}1 for all 7 € R (2)
ter o
M €{0,1} forallteT. (3)



Classes of problems differ in their particular definition of a request and
possibly some additional constraints which have to be added to the
model (1) to (3). For the vehicle routing problem (VRP) requests usu-
ally mean visiting customers to meet their demands using a vehicle of
restricted capacity. The VRP with time windows (VRPTW, see [16])
additionally takes into account a time window for every customer. For
pickup and delivery problems (see e.g. [19, 31, 32]) a request corre-
sponds to a transportation of a quantity from a pickup location to a
delivery location. In a vehicle scheduling environment (see e.g. [29])
a request normally is a trip between two locations with a fixed start-
ing time and duration. Desaulniers et al. [17] present an excellent
overview and a unified framework for deterministic time constrained
vehicle routing and crew scheduling problems.

We will show that a two-stage procedure, which first enumerates all
(relevant) columns and then solves the SCP model using a set covering
heuristic, is an easy to implement algorithm. Two-stage algorithms of
this kind are widely used in the area of airline scheduling (see e.g. [18]).
In the crew pairing problem, for example, a set of pairings (a sequence
of duties of a crew forming a legal workday, starting and ending at a
crew base) has to be constructed to cover a set of flight legs at minimal
costs.

The aim of this paper is to present some new algorithmic and
methodological results. We describe a heuristic algorithm which solves
large scale instances of the MDPDPSH. But we focus on instances
where the time windows of the transportation requests are relatively
narrow. Consequently most of the routes between the depots and the
hub are short routes. This specific property of the problem enables us
to give a new formulation of the concepts of feasible and efficient trips.

For other routing and scheduling problems like the VRP, VRPTW,
GPDP, and MDVSP the most or only successful solution methods are
based on column generation and branch-and-price (an overview is given
in [5], special purpose algorithms are presented e.g. in [1, 16, 30, 32]).
We will also show how column generation may be used for solving the
MDPDPSH. The decomposition we use in the enumeration procedure
leads to a pricing problem with a new structure of a combined clique
and knapsack problem. A subsequent paper will present results on this
approach.

Our work was inspired by a practical problem at the Deutsche Post



AG, Germany ‘s post service. Reorganization of the Deutsche Post AG
has forced massive structural and organizational changes. A new trans-
portation network has been designed to reduce operation costs while
keeping the service standards high. The Elite Foundation in collabo-
ration with the department of Operations Research of RWTH Aachen
have developed a decision support system which assists planners at
Deutsche Post AG to improve their plans (see [22, 23]). The MD-
PDPSH is one subproblem, the ground feeding problem, in the design
process of the global area transportation network (GATN): 84 letter
mail centers (LMCs) are located in different regions of Germany. Two
out of them have to exchange the letter mail addressed to customers in
the other region. Because of time restrictions letter mail transporta-
tion is partly done by air-services (see [13]). So LMCs situated near
one airport have to deliver letter mail to flights starting at the airport.
On the other hand, letter mail from flights landing at the airport has
to be picked up and delivered to the LMCs. The airport corresponds
to a hub and the LMCs correspond to pickup and delivery points. The
letters which have to be transported between LMCs and flights repre-
sent the transportation requests.

This paper is organized as follows. In section 2 the MDPDPSH is
defined and a network model is presented. Starting from this model we
develop a new description of feasible and efficient trips. These descrip-
tions stem from the decomposition of the entire problem into assign-
ment subproblems for each route/vehicle pair. In section 3 we present
the algorithm we have developed for the MDPDPSH. The algorithm
consists of two phases. In the first phase efficient feasible trips are
enumerated. An algorithm to enumerate relevant route/vehicle combi-
nations as well as an algorithm to enumerate assignments of requests
to each route/vehicle combination are presented. The second phase
uses a set covering heuristic for which we give some brief remarks. In
section 4 we present the computational results for 30 real-world test
instances of the MDPDPSH. In section 5 we discuss the application
of the branch- and-price methodology to the MDPDPSH. The struc-
ture of the pricing problem as well as some remarks on the branching
scheme are included. Finally, in section 6 we make some concluding
remarks.



2 The multi-depots pickup and delivery problem
with a single hub (MDPDPSH)

We give a formulation of the MDPDPSH as a network model. Although
the model is mathematically well-defined, the problem of representing
feasible trips can be done in a (what we believe) more adequate manner.
We show that a decomposition of trips into route/vehicle combinations,
on the one hand, and transported requests, on the other hand, opens
up new possibilities in this direction.

2.1 Notation

Let R = {ry,..., g} be the set of transportation requests between
the hub or consolidation point 0 and some locations N = {1,...,n}.
Every request involves the hub 0, so the set R can be partitioned into
two subsets R, and Ry, i.e. R = R, U Rq. On the one hand, requests
r € R, require a pickup at location v(r) and a delivery to the hub 0.
On the other hand, requests r € R; have to be picked up at the hub 0
and delivered to location v(r). R, are called pickup requests and R, are
called delivery requests. Every request » € R has an associated time
window [a,,b,]. The entire transportation process has to take place
within this time window. Consequently, a, is the earliest pickup time
and b, is the latest delivery time. A quantity ¢, has to be transported.

All locations N = {1,...,n} serve as depots of vehicles. That
means that all vehicles starting at depot v € N have to return to the
same depot v at the end of the planning period. The vehicle fleet is
assumed to be heterogeneous and F' is the set of all different types of
vehicles. Vehicle types differ in cost and time for driving and loading,
and capacity. At depot v € N the subset F), of vehicle types is located.
The number of vehicles of a certain type available at a depot v € N is
unbounded. We have to point out that we always (except for section
2.3) consider only types of vehicles f € F but for short we speak of a
vehicle f where no confusion may occur.

In order to describe different costs and times of a vehicle f on its
way to the hub or back from the hub we double all locations. Let N— =
{17,...,n"} be the set of pickup locations and N* = {1F,...,n"} be
the set of delivery locations. 0~ corresponds to the entrance and 0% to
the exit of the hub. We set N, = N~ U {07} and N = Nt U {0"}.
The transportation process done by a vehicle of type f can be modeled



by a weighted digraph (V, 4; (c};), (t;)) where V' = Ny U Ny is the set
of nodes and

A= (Ng x Ny) U (NG x N ) u (07,07 u{(v",v7)|v € N}

is the set of arcs. Let tifj be the time and cifj be the costs of driving and
possibly loading when vehicle f drives from ¢ to j. For i, € N~ or
i,7 € N7 loading at i or unloading at j respectively is included. Arcs of
the form (¢0~) mean loading at ¢ € N, driving from i to the hub, and
unloading at the hub. For arcs (0*j) with j € N* we have an analogue
meaning. The arc (0707) is used when transportation to and from the
hub is considered. Finally, the arcs of the form (vt,v™) are needed
to model routes as cycles in (V, A). Thus, we make a clear distinction
between nodes of this network V' and locations N. An example of a
small network is presented in figure 1 and will be discussed in greater
detail in section 2.3.
For all depot locations v € N~ U NT the set

R(v) ={r € Rlu(r) = v}

includes all requests which have to be picked up from v for v € N~ or
delivered to v for v € Nt respectively.

Finally, waiting is penalized by a cost factor c{;ait according to the
time the vehicle f waits. Obviously only waiting at the hub location
makes sense. But waiting at the hub is required whenever some pickup
request 7 € R, and some delivery request r’ € Ry having b, < a, are
transported by the same vehicle.

2.2 Trips

The problem is to find a cost minimal set of trips which realize all
transportation requests. Thus, we have to concentrate on the definition
of a trip: a trip ¢t = (p, f, R;) is a combination of

1. a route p;
All routes have to be cycles starting and ending at the same depot
vi. The cycle p = (v1,...,Un,, VUn,+1 = v1) in (V, A) has to visit
0~ exactly once, or 07 exactly once, or both. Consequently, three
types of routes can occur:



(a) A route can visit only pickup locations and the hub and, thus,
is of the form (vi,...,vp,—1,0 ,v1) with {vy,...,v,1} C
N—.

(b) On the contrary it can visit the hub and only delivery nodes,
Le.p= (01,07, v3,...,05,,v1) with {vs,...,v,,,} C N*.

(c) A route can visit both pickup and delivery locations and,
therefore, p is of the form (vy, ..., v, 07,0, vkys, ..., Uy, 1)
with {vi,..., v} C N~ and {vg41,...,vn,} C N7,

For short we call a route of type (a) pickup route, a route of type
(b) delivery route, and a route of type (c¢) pickup and delivery
route.

2. a vehicle of type f;

3. a subset of requests R; C R;
Only requests belonging to visited locations can be transported.
On the route p = (v1,...,vy,,,v1) the requests

R(p) = U R(v;)
ie{l,...,np }:v; 20— ,0F
can possibly be transported.

In order to describe the feasibility of trips three conditions have to
be satisfied:

e (Availability) The vehicle of type f must be available at the depot
vy from where the trip starts (and where it ends), i.e. f € F,,.

e (Capacity) The capacity of the vehicle f must be large enough on
the sub-route to the hub as well as on the sub-route from the hub
to the depot, i.e.

Y <@ and ) ¢ <@ (4)

reRpNR reRgNR:

e (Time Compatibility) All requests R, transported by trip ¢ must
be compatible concerning their time windows. We will focus on
this aspect in section 2.4.



2.3 Network Model

The model we present now is a network model which deals with vehicles
and not types of vehicles. Therefore, let K be a set of vehicles and
f(k) € F the type of vehicle k € K. As before a route can be defined
as a cycle in the network but to deal with temporal aspect we need a
start and an end of a cycle. Therefore, we define backward arcs B as
the connection of the end of the route with its start:

B={(0",j)li e N }U{(j,0M)]i e NTYU{(Fj")li € N}

In order to ensure that a vehicle of a certain type f is available at the
depot where the trip starts (availability) we define a set of forbidden
(backward) arcs

X = {07, )7 e N7 f ¢ FiYUL(,07)]5 € N*, f ¢ Fj}
V{7 7M)Ii €N, f ¢ Fy}.

All backward arcs to and from locations j where vehicle f is not avail-
able are not allowed. Let A/ be the arc set A from which the forbidden
arcs X/ are removed. Every cycle in (V, A7) corresponds to a feasible
route p (for some vehicle of type f) if and only if the hub node 0~, the
hub node 0" or both are visited exactly once. This is equivalent to the
condition that one of the arcs belonging to

Hy = {(074)|i € N"}U{(070")} U {(i0")]i € N7}

is used. A dummy arc (0707) is added to the arc set A/ (and also to
the sets B and Hyp) in order to allow not using a vehicle k. Figure 1
shows the network (V, A') for the case of three depots N = {1,2,3}
and one type of vehicle f only available at depot 1 and 3, the forbidden
arcs X/ = {(07,27),(2%,07),(2%,27)} are removed from the arc set
AJ. The network model can now be stated as follows: the decision
variables xfj describe the route of vehicle k, the variables zF describe
whether request r is assigned to vehicle k£ or not, and Tf is the time of
arriving/leaving location j with vehicle k.

min Z Z cfj(k)xfj + cfu(fi)t (Té& — Té“_) (5)
keK \ (ij)eAf (k)
subject to

Figure 1
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here




szzl forallT € R

keK
Z xfj: Z xfl forall ke Kl eV
ji(lj)eAs®) ji(jleAs®
k _
> =1
(i7)€ Ho

D YA
JENG :(Ij)e AT (k)
forall ke K,r € R,,l =v(r) e N~
F=1= Z xfl =1
JENG:(jl)e AF(K)

forall k € K,r € Rg,l =v(r) e N* (10)
F=1=4q, < Tf(r) forall r € R, (11)
F=1=TF <b, forallreR, (12)
F=1=0q <TF  foralre Ry, (13)
7 =1=T), <b  forallreR, (14)
ok =1=TF+ /) <TF forall k € K, (ij) € A/® \ B(15)
Z kg < QW forall k € K (16)
rERy
Z kg < QW forall k € K (17)
reRy

Tk —TE >0 forallke K

zy; €{0,1}  forall k € K, (ij) € A/®)
2 e{0,1} foralre R ke K
TF>0 foralljeV,keK

The costs (5) consist of two components, one is route dependent and
the other is time-dependent (waiting at the hub). The constraints (6)
ensure that every request is transported. (7) are the classical network
flow constraints of the routes. Every route visits the hub 0 exactly once
because of constraint (8). Constraints (9) and (10) ensure that a vehicle
k visits all pickup and delivery locations for requests transported by k.
(11) to (15) force time compatibility. (16) and (17) are the capacity
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constraints of the route from the depot to the hub and from the hub to
the depot respectively. Finally, constraint (18) ensures that the waiting
time is non-negative.

In contrast to formulations of the GPDP (see e.g. [19, 31]) this for-
mulation does not have a different node for every pickup location and
every delivery location in the network (V, A7). Instead of this we have
only one node for geographically identical locations but we distinguish
between pickup locations and delivery locations. The advantage of re-
ducing the number of request locations is not apparent if we try to use
a standard method for solving (5) to (21). This would mean to decom-
pose the entire problem into a master problem and one subproblem for
each depot and each vehicle. The master problem is a set partitioning
problem of the form (1) to (3). The subproblems are shortest path
problems with side constraints concerning time, precedence relations,
and capacity (see e.g. [32]).

2.4 Decomposition into route/vehicle combinations

We decided to do a different decomposition because of the special char-
acteristic of the presented problem. The question in the MDPDPSH
is not really to determine routes for vehicles. Because of the relatively
narrow time windows of the requests and the large quantities (compared
to the vehicle capacities) which have to be transported most routes are
short, i.e. direct trips between depot and hub are favoured most of the
time. Only a fraction of routes visits some additional pickup or delivery
locations which are different from the start-depot.

In section 3.1 we give a possible definition of what ’'relevant com-
binations’ could mean. We now take a closer look at the advantage of
having such a combination (p, f) of a route p and a type of vehicle f.
Remember that columns of the SPP/SCP (1) to (3) correspond to trips
and that a trip ¢t = (p, f, R;) is a combination of a route p, a type of
vehicle f, and some requests R;. If a feasible combination of a route p
and a vehicle f is given, then the feasibility of the trip ¢ only depends
on the choice of the requests R;. For the rest of this subsection we
focus on this aspect.

First of all for given p and f we know the set of all requests R(p),
which can be served by the route p. The question is whether a subset
R; C R(p) of requests can be transported by the same vehicle f on the
route p. The choice of the requests R; has to take into account three

10



aspects:

e Time compatibility: We can give an exact definition of what time
compatibility means when we look at the constraints (11) to (15)
for a given vehicle k (of type f(k)) and a given route p (which has
a correspondence in the decision variables z7; for (ij) € AT,
All feasible values of the variables ¥ and T* corresponding to
the constraints (9) to (15) imply a time compatible set Ry = {r €
R(p)|2* = 1}. Although time compatibility is now clearly defined,
we give a more adequate formulation as a clique at the end of this

section.

e Capacity: As we have seen before the capacity constraints are
given by (4) or similarly in the network model by (16) and (17).

e Route compatibility: It only makes sense to visit a location v €
N~ U NT if at least one request is picked up (for v € N7) or
delivered (for v € N*). That means that the set R, must contain
at least one element of every set R(v;) (with v; # 07,07) if the
route p is of the form (vy,vs, ..., vp,,v1).

Concerning time compatibility the advantage of knowing route p and
vehicle f is that time compatibility becomes a property depending on
pairs of requests ry, 7, € R(p). For a request r € R it is now possible to
compute a corresponding "hub time window’ htw(r, p, f). For pickup
requests r € I, this time window indicates the time interval possible for
arriving at the hub when transporting r on route p with vehicle f. Let
r € R(p)N R, be a pickup request of route p = (vy,...,v;,07,...). The
request r is transported from its pickup location v(r) = v; (for some
J with 1 < j < k) to the hub 0~. The time for this transportation
process is

k
d(r,p, f) := Zt{:ivi-H (for r € R(p) N R,).
i

The time window for arriving at the hub is, therefore, given by
htw(r, p, f) = [ar +d(r,p, [),b;]  (for r € R(p) N Ry).

Analogously for a delivery request » € R(p) N R, on the route p the
time window htw(r, p, f) describes the time interval for leaving the hub

11



under the condition that r is transported. If the route p is given by p =
(vi,...,07, vk, ..., vp,,v1) and request r has to be delivered to location
v(r) = v; (with & < j < n,), then the time of the transportation
process is

J
d(r,p, f) = Zt{;flvi (for r € R(p) N Ry).
i=k

The hub time window for leaving the hub is
htw(r,p, £) = [ar, b — d(r,p, )] (for 7 € R(p) N Ry).

The question whether two requests 7,7’ € R(p) can be transported
by the same vehicle f on route p can be decided by looking at the
hub time windows htw(r, p, f) and htw(r', p, f). Two pickup requests
or two delivery requests r,r’ are compatible if their hub time windows
have a non-empty intersection. On the other hand, a pickup request
r and a delivery request r’ are compatible if delivery of r to the hub
can be done before pickup of 7" at the hub. Using this information we

define a binary symmetric relation @) by

@) 1
roR
htw(r,p, f) Nhtw(r',p, f) #0  if r,”' € R,
= orr,r’" € Ry,
ar +d(r,p, f) < by —d(r',p, f) if (r € R, and r' € Ry).

Especially the fact htw(r, p, f) = () means that request r cannot be
transported by vehicle f on the route p because the transportation
process needs more time than the time window [a,, b,] allows.

We are now able to describe the region of all feasible assignments
of requests R, C R(p) to a route/vehicle combination (p, f). Let p =
(v1,...,Un,,v1) be the route and f € F,, a type of vehicle available at
the depot v;. The indicator variables z, € {0,1} for every r € R(p) are
equal to one if and only if r € R;.

Z 420 <1 forall r,r’ € R(p) with 7%’ ¢/ (22)
> g <@Q! (23)
reRy
> g <@ (24)
reRy
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Yz >1 forall1 <i<n,withv; £07,00  (25)

reR(v;)
z, =0 forall r € R(p) with htw(r,p, f) =0 (26)
z € {0,1} for all r € R(p) (27)

The structure of constraints (22) to (27) is now clearly visible. The
requests in R; have to satisfy the clique constraints (22). To elaborate
this we define a graph G®/) = (R(p), E®/)) with the set of possible
requests as nodes and a set of edges corresponding to the compatibility
relation =, i.e. (r,7") € E®) if and only if r %S . Any time compat-
ible set Ry C R(p) is a clique in G®/) i.e. asubset of pairwise adjacent
nodes. The constraints (23) and (24) form knapsack constraints on the
pickup requests and the delivery requests in R; respectively. Finally we
add the route compatibility constraints (25) and the constraints (26)
and call them ’additional constraints’.

Example 1 In this example p = (17,27,07,07,1%,17) is a pickup

and delivery route. The times for vehicle f are t{_2_ = 50, tg_ - =
100, té,OJr =0, and t(};rﬁ = 120 minutes, the capacity of vehicle f is

Q' =10. The set R(p) consists of eight requests, two and three pickup
requests at depot 1~ and 2~ respectively, and three delivery requests
to the start-depot 1*. Table 1 describes them in detail.

The table also contains the hub time windows htw(r, p, f), which
can easily computed from the data above. Figure 2 shows the graph
G®/) with some additional information. A feasible subset of requests
R, C R(p) corresponds to a subset of nodes which is a clique (time
compatibility), has weights (the number above a node is its weight
q,) which satisfy the two knapsack constraints for pickup and deliv-
ery (capacity), and contains at least one node from every dotted box
corresponding to the different depot locations (route compatibility).

3 The Algorithm

Using the set partitioning/covering model (1) to (3) explicitly implies
a two-phase algorithm. First we have to construct the model by enu-
merating all relevant trips. The decomposition of this task into the
enumeration of all relevant route/vehicle combinations and after that
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assigning all relevant subsets of requests to all route/vehicle combina-
tions is the approach we follow in this paper. The point is that checking
the efficiency of a trip t = (p, f, R;) is much easier when we look at
the requests R; of a fixed relevant combination (p, f). We switched to
a set covering (instead of set partitioning) model for two reasons: on
the one hand, solving a SCP is in general much easier than solving the
equivalent SPP. On the other hand, only covering all requests can be
guaranteed if only columns corresponding to efficient trips are included
in the model (1) to (3).

Secondly, the solver for set covering problems has to compute at
least a ’good’, feasible solution of the SCP. We decided to implement a
heuristic algorithm to speed up computation times and to handle even
large-scale instances of the MDPDPSH.

3.1 Enumeration of route/vehicle combinations

We first derive a simple criterion for testing whether a combination of
a route p and a type of vehicle f is relevant or not. The idea behind
this criterion is to check if time compatibility and route compatibility
can be fulfilled simultaneously. We will show that this can be done by
a polynomial time procedure.

For a given route p = (vy,vy,...,vp,,v1) we define

DW= {v;lv; e N™,1 <i < n,}
and
DP = {v;|v; e N*,1 <i<np}
as the set of all visited depots for pickup and delivery. For r € R(p)

htw(r, p, f) is the hub time window, which can be written as [a}, bf].

We define two sets of times, one for the pickup requests and one for
the delivery requests in R(p):

1) = {ailr € R(p) N Ry} and T = {b]|r € R(p) N Ry}

In order to ensure that the product set To"" x TP/ is always non-

empty we define T, = {—oc} for delivery routes and T") = {c0}
for pickup routes. We can now state the following lemma:

Lemma 1 Let ¢ = (p, f) be a combination of a route p and a vehicle
type f. Combination c is relevant (i.e. time compatibility and route
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compatibility can be fulfilled simultaneously) if and only if the following
condition s satisfied

Yty ta) € THD x TP . (28)
(tp < tq
AVv; € DZ(,p) :3r; € R(v;) : t, € htw(ry,p, f)
NYv; € Dép) : 3Irj € R(vj) : tg € htw(rj,p, f)).

The complexity of checking this condition is polynomially bounded by
the size of the set of possible requests |R(p)|.

Proof: We first proof the validity of the criterion (28): as-
sume that R, C R(p) is time and route compatible. It is now
easy to see that ty, := min,ep,nr, ay and t := max,cp,nr, b
fulfill condition (28).

On the other hand, if the pair (¢,,?,) and requests r; € R(v;)

(for each v; € DY or v; € DP) respectively) satisfy condition

(28), then the set R, := {r;Jv; € D’ UD'} is time and route
compatible. Therefore, the route p is relevant.

Now we proof the statement on the complexity: let n = |R(p)]
be the size of set R(p). Obviously the computation of the hub
time windows htw(r, p, f) for r € R(p) can be done in O (n?)
time (only the case with a route of length n,, n, < |R(p)|
makes sense, otherwise route compatibility is violated). There
are at the most n? pairs (f,,t4) with ¢, < ¢; to examine.
For each such a pair there are at the most |R(p)| depots

v; € DY U DY This is true because the number of de-
pots can be estimated by |[DY' UDY| < n, < |R(p)|. Finally

we have to test at most |R(v;)| < |R(p)| requests r; € R(v;).
Thus, the total complexity is of order O (n?). O

*
r

It is also easy to consider the capacity conditions: we only have to
take the request r; € R(v;) with ¢, € htw(r;, p, f) or t4 € htw(r;, p, f)
respectively, which has a minimal weight ¢,,. We can sum up all g,, for
pickup requests and delivery requests separately and check these sums
against the capacity Q7. We left this aspect out of lemma 1 for clarity
of the presentation.
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Algorithm 1: Enumeration of relevant route/vehicle combi-
nations:

1. Start with an empty set £ (labeled) and a set U (unlabeled) of
short routes between depot and hub for all available vehicles:

U = {((vV,07,v7),f)[forallv e N, f € F,} (29)
U{((v*",07,v7), f) [forallv e N, f € F,} (30)
U{((v=,07,0",v*,v7), f) |for allv € N, f € F,}(31)

The set (29) corresponds to pickup routes, the set (30) to delivery
routes, and the set (31) to pickup and delivery routes.

2. Choose any combination ¢ = (p, f) of U and label it, i.e. remove
it from U and insert it into the set £ (labeled). If it is possible to
extend the route p by one additional new location v (insert v just
before hub 07 if it is different from the locations visited so far
or insert v just behind hub 07" if it is different from the locations
which are visited later).

All new combinations ¢ = (p, f) which satisfy criterion (28) are
inserted into the set U.

3. Repeat step 2 until the set U is empty. Then L is the set of all
relevant route/vehicle combinations.

In general the algorithm always stops after a finite number of itera-
tions because the number of routes is finite. In our specific case where
time windows for transportation are relatively narrow this algorithm
constructs only short routes.

3.2 Enumeration of (efficient) trips

The idea is to enumerate all relevant assignments of requests R, C
R(p) of a given pair (p, f). In subsection 2.4 we discussed in detail
what feasibility of a trip t = (p, f, R;) means, i.e. which properties the
sett R; must have. Thus, from a theoretical point of view the model
(1) to (3) is well defined. The problem with this model is that it is
not possible to enumerate all feasible trips due to their large number
in practically relevant instances of the MDPDPSH. But even if it is
possible to enumerate them, solving a large SCP remains a difficult
task. The concept of efficiency may help to overcome these problems.
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First of all we point out that the cost of a trip ¢t = (p, f, R;) mainly
depends on the route p and the vehicle f. The requests R; only in-
fluence the time for waiting at the hub. Because waiting is required if
R, contains pickup requests as well as delivery requests and delivery to
the hub has to be performed before pickup.

In general the cost for waiting should be dominated by the other
costs. As a consequence every two feasible sets of requests Ri, Ry C
R(p) lead to trips (p, f, R1) and (p, f, Ry) with nearly identical costs.
We call a trip t = (p, f, R;) efficient if there is no proper superset R*,
R* D R, such that t* = (p, f, R*) is a feasible trip. Efficiency requires
putting as many requests R(p) into the vehicle f as possible on its route
p. This is completely equivalent to the general concept of efficiency if
the costs for waiting at the hub cf;az-t are zero. Even if the costs are
positive but relatively small, both concepts coincide with one another.

The point is that enumeration of all efficient trips for a given combi-
nation (p, f) is a practicable task. For the MDPDPSH only a fraction
of all feasible trips is also efficient. Thus, to reduce the size of the
model (1) to (3) we only include columns corresponding to efficient
trips. This can be seen as a heuristic whenever the costs for waiting at
the hub ¢/ . are positive.

We present an algorithm to enumerate efficient trips. The
procedures are given in a syntax similar to the C or C++
programming language. @ We assume that two simple functions
'RouteCompatible(p, f, R;)’ and ’Efficient(p, f, R;)’ are available.
Function 'RouteCompatible(p, f, R)’ returns the value "TRUE’ if the
trip (p, f, R;) satisfies the route compatibility constraint (25) and
'FALSE’ otherwise. The function ’Efficient(p, f, R;)’ returns "TRUE’
for efficient trips (p, f, R;) and 'FALSE’ for inefficient trips.

Another function ’ChooseNextCompatible(R;, C')’ returns some re-
quest ¢ € C. The idea behind this function is the following. Let
R;,C C R(p) be subsets of requests. The set R; contains the already
assigned requests (i.e. R; is a clique in the time compatibility graph
GPI) = (R(p), E®)), and the set C' contains all requests compatible
with every element of R;. Therefore, each set R, U {c} for any ¢ € C
is also a clique in G®/). The function decides which element of the
set. C' has to be assigned to R; next. To speed up the computation
we implemented the following rule. If p = (vy,...,v,,,v1) is the route,
then we distinguish two cases:
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1. If for every 1 < i < n, the set R, contains at least one element
of R(v;) (i.e. R(v;) N Ry # 0), then return the request r € C' with
minimum index.

2. Otherwise let 1 < i* < n, be the minimum index i with R(v;) N
R; = (. Then return the element ¢ € C'N R(v;+) with minimum
index. (Remark: The set C'N R(v;) is not empty if the set B, UC
is route compatible.)

Thus, the idea is to return one element belonging to each of the sets
R(v;) at the beginning in order to construct route compatible subsets
as fast as possible.

Algorithm 2: Enumeration of requests for a given route/vehicle
pair (p, f)

Enumerate(p, f, R:, C)
(
// Tests for Termination
if not RouteCompatible(p, f, R: U C)
then return
if C = () and Efficient(p, f, R;)
then insert R; into R(P:7)
if C = ) then return
r*:=ChooseNextCompatible(R;, C')
// Two possible decisions:
// a) insert r* into Ry
if (r* € Ry and q(R; N Ry) + ¢ < QF)
or (r* € Rq and q(Ry N Rq) + ¢+ < Q)
then Enumerate(p, f, R, U {r*},{c € Cle #r* AVr € R, : ¢ " r})
// b) do not insert r* into Ry
Enumerate(R¢, C \ {r*})

)

The procedure ’Enumerate’ starts with R; as the empty set and C' in-
cluding all possible requests which can be transported, i.e. have a true
hub time window:

Enumerate(d, {r € R(p)|htw(r,p, f) # 0})
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The result of the procedure 'Enumerate’ for a given pair (p, f) is
the set R™/) containing the sets of requests R, which lead to efficient

tI'ipS (pa f7 Rt)

Example 2 For the data of example 1 only three different efficient
trips t = (p, f, Ry) exist, namely Ry, = {2,3,4,6}, R, = {2,4,6,7}
or Ry, = {2,4,5,8}. The algorithm presented here needs 26 recursive
calls to enumerate these three trips. We want to point out that the
number of efficient trips is small in comparison to the number of 22
feasible trips. Computational studies indicate that this is also true on
average.

In addition to the ideas elaborated above we decided to include
some dominance checks. If two different types of vehicles fi, fo € F,
are available at depot v, vehicle f; dominates f, if f; has higher costs
than f; while capacity and driving times of f; are at the most as large
as those of f,. In these cases we do not construct any route/vehicle
combinations using vehicle f, and starting at v. In most cases it is not
possible to exclude vehicle type fo from all trips because the dominating
vehicle type f; is not available at all depots.

Another helpful criterion takes advantage of the fact that a vehicle
f1 with higher capacity than f; should normally be more expensive and
slower. If a set of requests R; is computed for the combination (p, f1),
but R, fits into the smaller vehicle f;, we do not construct the trip
(pa fla Rt)

Finally we do not include any pickup and delivery trip ¢t =
(p, f,R:) (i.e. a trip with R, " R, # 0 and R, N Ry # 0) which
can be replaced by a cheaper combination of a pickup trip and a
delivery trip. To elaborate this idea we construct from the route

p=(v1,..., 0, 07,07, vp4s,...0,,,v1) the corresponding pickup route
p = (v1,...,v,07,0;) and the corresponding delivery route py =
(Vn,, 0", Ugs3, ..., Unp). If the combined costs of the trips ¢ =

(p1, fyRe N Ry) and to = (po, f, Ry N Ry) are less than the costs of
t, then including ¢ into the model (1) to (3) makes no sense.

3.3 The set covering solver

The set covering problem (SCP) belongs to the class of NP -complete
problems [21]. Many exact and heuristic algorithms have been pub-
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lished the last twenty years. Most exact algorithms (see e.g. [4, 8, 11])
use Lagrangian heuristics and subgradient optimization embedded into
a branch and bound environment. Heuristic algorithms mainly split
into two classes: some use principles similar to the exact methods but
incorporate heuristic ideas for computing good, feasible solutions and
to fix variables [9, 14, 15, 24]. Other methods [10, 20] are based on
local search controlled by genetic algorithms as a meta-heuristic.

As far as we know, the most successful heuristic for the SCP up to
now was published in 1996 by A. Caprara, M. Fischetti and P. Toth
[14, 15]. Tt outperforms other heuristic methods in computation speed
and solution quality. We decided to implement this method with some
small modifications [25].

We were able to solve 48 of 65 of the test problems from the OR-
library [7] to the optimum (or to the best known solution up to now)
on average two to three times faster than reported in [14, 15].

3.4 Overview of the algorithm
We now present a brief overview of the algorithm:
1. Model generation:

(a) Enumeration of relevant route/vehicle combinations: Algo-
rithm 1 determines the set £ of all relevant route/vehicle
combinations ¢ = (p, f).

(b) Enumeration of relevant trips: For each route/vehicle com-
bination ¢ = (p, f) € L call Algorithm 2. Algorithm 2 deter-
mines the set R®/) of efficient request subsets. Construct
the set of trips

T= {t = (p7 fa Rt)|(p7 f) € ‘CaRt € R(p’f)}

(c) Perform dominance checks on the set T' as explained in sec-
tion 3.2. Remove all dominated trips from the set 7T'.

2. Set covering solver:
Solve the SCP (1) to (3) with the corresponding set of trips 7.

3. Postprocessing:
Assign multiple covered requests to exactly one trip: In some
cases requests are covered by more than one trip t € T* of a
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solution T C T of the SCP (1) to (3) (that does not mean that
any of the trips T* is redundant).

4 Computational Results

The algorithm described above has been implemented as one sub-
system in the decision support system ISLT (see [22, 23] for details).
ISLT is successfully used by planners at Deutsche Post AG’s head-
quarters in Bonn.

The main objective of the computational tests was to evaluate the
influence of the parameters number of requests |R|, number of depots
|N|, and number of vehicle types |F| over the size of the constructed
SCP model. In order to judge the quality of (at least some) solved
instances we first focus on the determination of a lower bound for the
MDPDPSH.

4.1 Computation of Lower Bounds

The idea is to relax the problem by allowing to use fractional numbers
of vehicles. Obviously in this case it makes no sense to use other
routes than the direct ones between depots and hub. Consequently,
the problem splits into |N| single problems for transportation between
each of the depots and the hub (we assume that the triangle inequality
is valid for costs and times, i.e. clfj + c;-ck > csz and tzfj + t;-ck > tsz for all
ares (ij), (jk), (ik) € A7),

The only decision we have to make is which type of vehicle we use
for a specific request and which pickup requests are transported by
the same vehicle with which delivery requests. The second question is
important because we always have the alternative to transport pickup
and delivery requests by the same vehicle, or to transport them in two
vehicles which are empty on one way between depot and hub. The costs
for waiting at the hub compete with the costs for using empty vehicles
on the way to the hub or back from the hub. This aspect becomes
more obvious when we consider the costs. For the moment we assume
that we use some fixed vehicle f € F'. The costs for transporting one
unit of a pickup request r € R, by a trip which does only pickups is

Cf Cy(r),0— + Co—,u(r)
X Qf '
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Similarly the costs for transporting one unit of a delivery request r € Ry
by a trip which does only performs deliveries is

Cf _ Cv(r),0+ + CO+,v(r)
Y,r Qf .

If a pickup request r € R, and a delivery request ' € R, of the same
depot (i.e. v(r) = v—, v(r') = v* for some v € N) are transported
together, additional costs for waiting at the hub may occur. Conse-
quently, the costs of transporting one unit of r and one unit of ' by
the same vehicle of type f are

Fo_ Co(r),0- T Cot @) T+ c{uait(min{O, ar — bp})
Cr,r’ - .
Qf
In cases where no common transport of r and ' is possible (i.e. a, > b,/)
we set cf = 0.

r,r!
The question of choosing a type of vehicle is now easy to decide.

We have to choose from the set of available vehicles Fy ) the one with
the lowest costs. In addition, this vehicle must be able to transport
the request (i.e. must have a non-empty hub time window). The cor-
responding minimal costs are ¢} y for r € Ry, ¢j., for r € Ry, and ¢},
for r € R,, 7" € Ry.

It is easy to see that a lower bound LB, for the costs of trans-
portation between depot v € N and the hub is given by the value
of the following classical transportation problem (TP, see e.g. [27]).
The TP is defined by supply nodes S, = R(v~) U {Y} and demand
nodes D, = R(v") U {X}. With the definitions qx = >>.cpi_) 4r,
qy = zreR(vﬂ q¢r, and cy,x = 0, all quantities ¢s, g4 and costs ¢ , for
s € S,d € D are well-defined.

Lemma 2 A lower bound of the MDPDPSH is given by

LB = ZLBU.

The proof of this lemma is left to the reader.

4.2 Test Instances

We used data of six different hubs labeled from A to F. Each hub deter-
mines a set of requests I and a set of depots N. Table 2 describes these
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hub locations. The quantity of letters to be transported is measured
by the corresponding number of letter transport boxes (LTB, one LTB
is about 4.5 kg).

Five different vehicle fleet scenarios are used to analyze the influence
of increasing the number of vehicle types. Scenario 1 and scenario 2
consider only small but quick transporters. Scenarios 3 to 5 also allow
more and more larger but slower lorries. Details are given in table 3.

Test instances have been generated by combining each hub with
each of the vehicle fleet scenarios. Therefore, table 4 contains for each
hub A to F and each vehicle fleet scenario 1 to 5 some characteristic
information:

route/vehicle comb. This row contains the number of different rel-
evant route/vehicle combinations |L|.

relevant trips The number of different relevant trips found
by the enumeration procedure is given here.
This number is also the number of columns
|T’| in the set covering problem (1) to (3).

trips in solution The number of trips in the heuristic solution
of the MDPDPSH is displayed here.

overall cost This row contains the cost of the heuristic so-
lution, i.e. the sum of the cost of all trips used.

lower bound This is the lower bound of the specific instance
computed according to lemma 2.

time model The computation time for the construction of
the model is given here. This contains the
time for the enumeration of relevant route/ve-
hicle pair and the enumeration of efficient trips.
All computational tests were performed on a
300 MHz AMD K6 Personal Computer under
Windows NT 4.0 with 128 MB RAM. The al-
gorithm was programmed in C++ and com-
piled using the Microsoft Visual C++ com-
piler, version 5.0. The compiler target option
was set to ‘release’.

time SCP solver This is the time for solving the corresponding
set covering problem.
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time SCP best sol. The set covering heuristic finds good heuristic
solutions in a fraction of the overall computa-
tion time. This row shows the time needed to
compute the best solution output at the end.

We were able to solve all of the 30 test instances of the MDPDPSH.
In order to keep the number of route/vehicle combinations small we
implemented some additional rule for the 10 large-scale instances of
hub E and hub F. All routes were only allowed to have at most two
pickup locations and at most two delivery locations. In addition to this
we decided to include at most 1000 relevant trips in the SCP for each
route/vehicle combination. Whenever more than 1000 trips are found
we randomly choose 1000 different ones. SCP ranging from 34 rows
and 242 columns to 293 rows and 357797 columns.

Computation times for the instances of hub A and B are below
five seconds, for instances of hub C and D below six minutes, and for
instances of hub E and F below 150 minutes.

The number of feasible, efficient trips primarily grows with the num-
ber of requests. The quotient 'number of trips’ to 'number of requests’
rises from about 7 for the smallest instance of hub A to about 1200
for the large-scale instance of hub F. Nevertheless, the absolute num-
ber of feasible, efficient trips remains in an algorithmically tractable
area. Capara, Fischetti, and Toth report on large-scale SCP instances
with more than one million columns solved by their implementation of
the algorithm [14, 15]. But due to the complexity of the SCP solution
times of the algorithm strongly increase with the number of columns
in model (1) to (3).

Unfortunately, the lower bounds computed by the relaxation de-
scribed in section 4.1 are in general weak. The ratio of ’overall costs’
to the computed ’'lower bound’ is between 1.36 and 2.79. Only for
some large-scale instances (e.g. F1, F2, F3) these bounds are tight,
thus, computed solutions can be judged as 'good’ solutions.

Another important aspect becomes visible by comparing the num-
ber of different vehicle types |F'| with the number of feasible trips |T|
in the model. Due to the dominance criteria elaborated in section 3.2
the number of relevant route/vehicle combinations grows sub-linearly
in the number of different vehicle types |F| and the maximal capacity
Q7 (ie. |T| < O(|F|- maxser @F)). Thus, analyzing scenarios with a
more diverse vehicle fleet may be possible.
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Concerning computational times a further result is that the time for
model construction is always less than the time for solving the SCP.
Therefore, the bottleneck of the entire algorithm seems to be solving
the constructed SCP model. But one has to keep in mind that 'good’
feasible solutions are already available after a small fraction of time
before the SCP solver terminates. Nevertheless, a solution time below
150 minutes even for the largest instances seems acceptable.

From the practical point of view (i.e. of the planners at the Deutsche
Post AG) integration of the MDPDPSH into the decision support sys-
tem ISLT has resulted in a powerful tool to support planners in re-
designing their ground feeding networks. Compared to former man-
ually planned solutions they were able to reduce costs on average by
about 15%. In some special cases improvements of up to 30% could be
achieved.

5 Future Research Activities

The main problem in judging the results presented in the previous sec-
tion is that lower bounds based on the relaxation of section 4.1 are
weak. As outlined before, a column generation approach is supposed
to produce stronger lower bounds as many publications in the vehicle
routing and crew scheduling area show. The strength of column gen-
eration lower bounds is not only supported by computational studies
but also by theoretical results (see e.g. [12]). In this section we follow
[5] in respect to terms and concepts.

We propose column generation for the MDPSPSH according to the
decomposition approach on route/vehicle pairs. More precisely, we
start from the restricted master program (RMP) of the set partitioning
formulation (1) to (3) (i.e. the LP-relaxation with only some feasible
columns 77 C T'). The pricing problem for route/vehicle combination
(p, f) has to assign requests R; C R(p) to this combination (p, f). Let
7,7 € R be the dual prices of the constraints (2) of the RMP. The
pricing problem of combination ¢ = (p, f) € L has the feasibility region
(22) to (27). Its objective function is given by

min ¢, ) = Cp,p) + C{uait * twait — Z T Zr (32)
r€R(p)
with ¢ 5 = ?ﬁl C’({ivi+1 the costs of using vehicle f on the route p,
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and t,.; the time for waiting at the hub. The waiting time #,4;; can
be determined by

zr = 1A zp =1 = tyait = ap — by
for all r € R(p) N R, and all ' € R(p) N Ry (33)
twait = 0 (34)

Consequently the pricing problem is given by (32), (22) to (27), (33)
and (34). For pure pickup or pure delivery trips the waiting time #,,
is always zero, thus, restrictions (33) and (34) can be removed. The
costs —m, of elements r € R(p) are the weights of the clique nodes as
well as the profits of the items in the knapsack.

Pricing problems which determine shortest paths under side con-
straints are usually solved by dynamic programming. For the GPDP,
for example, recent dynamic programming algorithms are only able to
handle corresponding shortest path problems of moderate size (about
50 transportation requests and small loads ¢, and capacities @/, see
[32]). In contrast to this we believe that branch and bound algo-
rithms are more appropriate in our case of a combined clique/knapsack
problem since most exact solution approaches for maximum (weighted)
cliques as well as knapsack problems use branch and bound. Recent
algorithms for these problems [2, 3, 26] are able to solve instances with
a few hundred nodes or thousands of items respectively.

The question is how to handle a combined clique/knapsack prob-
lem algorithmically. On the one hand, it is possible to use algorithms
for the maximum weighted clique problem and to view the knapsack
constraints as side constraints, which have to be considered in addi-
tion. On the other hand, there exist many successful algorithms for
the knapsack problem and it may be possible to incorporate the clique
constraints into one of them in an easy manner.

Finally, we give some remarks on a branching strategy for a branch-
and-price algorithm for the MDPDPSH. Branching is required when
the RMP is solved to the optimum, no new columns price out, and
the optimal solution of the RMP is not integral. According to the
branching rule due to Ryan and Foster [28, 5], two requests r,s € R
have either to be assigned to the same trip or to different trips. More
precisely, if A = (A);eqv is a fractional solution of the RMP (i.e. at least
one component is fractional), then there exist two different requests
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s,r € R with

0< Y N<L

teT":zt=1,2t=1

Consequently branching on the two subsets
To={teT|zt=2=1vz =2=0}

and
Ty={teT|t+2 <1}

can be done. The branch of set T} requires that requests r and s are
assigned to the same trip. In the pricing problem this can be easily
achieved by replacing the corresponding nodes of r and s by a new

common node (only route/vehicle combinations with 7 “ s have to be
considered). In the branch of set Ty a trip is only allowed to transport
one of the requests s and r, or none of them. This is also compatible
with the pricing problem when we define s and r as non-compatible

nodes r(%) s. This branching strategy is, therefore, compatible with
the structure of the pricing problem.

6 Conclusions

This paper has introduced a special type of pickup and delivery prob-
lems, which has important applications in several areas of transporta-
tion. Many transportation systems are configured so that a number of
scheduled regular services provide the backbone of the system. This
implies that feeding operations are necessary in order to transport com-
modities to and from the entry points (hubs) of the backbone system.
For example, in the LTL motor carrier industry with regular scheduled
services these hubs are the end-of-line terminals. In public transport
these may be intercity bus or train stations and in the airline industry
they are central air hubs. This shows that the postal system we have
considered is one of many possible applications of this problem.

A common feature of pickup-and-delivery routes in such systems
is the small number of stops on the route to and from the hub. This
often makes it possible to enumerate all possible routes of the feeding
vehicles. On the other hand, there are usually many commodities with
possibly different time windows, which have to be transported between
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the hub and the local service points. Instead of making copies of the
pickup or delivery point for each request as in the usual approaches we
have chosen to exploit the special structure of the problem. Mathe-
matically, this leads to subproblems which combine features of clique,
knapsack, and some additional constraints. Using this approach, which
is integrated into a decision support system for planning of transporta-
tion in mail delivery, we have been able to solve fairly large real-world
instances. A comparison with existing solutions showed the potential
for substantial gains.

The results we presented here suggest several promising paths for
future research. First, the lower bounds we derived from the trans-
portation problems are rather poor due to their simplicity. Secondly,
we have shown that the core model we have used can be conveniently
integrated into a column generation/branch-and-price algorithm. We
believe that such an approach will be able to solve at least medium-size
instances to optimality and provide good lower bounds. This will allow
us to judge the quality of the heuristic solutions more precisely.

Acknowledgements

The author is grateful to the Deutsche Post AG in particular to the
director of the transportation department J. Weith for the possibility to
engage in this interesting project and to the project-leader M. Katz for
constructive collaboration. Special thanks to Tore Griinert for many
fruitful discussions and some remarks and corrections on early versions
of this paper.

References

[1] Appelgren, L.H. (1969), A column generation algorithm for
the ship scheduling algorithm”, Transportation Science 3, 53-
68.

[2] Babel, L. (1991), ”Finding Maximum Cliques in Arbitrary and
in Special Graphs”, Computing 46, 321-341.

[3] Babel, L., and Tinhofer, G. (1990), ” A Branch and Bound Al-
gorithm for the Maximum Clique Problem”, ZOR - Methods
and Models of Operations Research 34, 207-217.

28



[4]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

Balas, E., and Ho, A. (1980), ”"Set covering algorithms us-
ing cutting planes, heuristics, and subgradient optimization:
a computational study”, Mathematical Programming Study 12,

37-60.

Barnhart, C., and Johnson, E.L., and Nemhauser, G.L., and
Savelsbergh, M.W.P., and Vance, P.H. (1998), ”Brach-and-

price: column generation for solving huge integer programs”,
Operations Research 46, 316-329.

Barnhart, C., and Scheur, R.R. (1996), ” Air network design for
express shipment service”, Operations Research 44, 852-863.

Beasley, J. (1990), ”OR-Library: distributing test problems by
electronic mail”, Journal of the Operational Research Society
40, 1069-1072.

Beasley, J. (1987), ”An algorithm for the set covering algo-
rithm”, Furopean Journal of Operational Research 31, 85-93.

Beasley, J. (1990), ” A Lagrangian heuristic for the set-covering
problem”, Naval Research Logistics 37, 151-164.

Beasley, J., and Chu, P.C. (1996), ” A genetic algorithm for the
set covering problem”, Furopean Journal of Operational Re-
search 94, 392-404.

Beasley, J., and Jornsten, K. (1992), ”Enhancing an algorithm
for the set covering problem”, Journal of Operational Research
58, 293-300.

Bramel, J., and Simchi-Levi, D. (1997), ”On the effectiveness of
set covering formulations for the vehicle routing problem with
time windows”, Operations Research 45, 295-301.

Biidenbender, K., and Griinert, T., and Sebastian, H.-J. (1998),
A tabu search algorithm for the direct flight network design
problem, Working Paper 98/14, Department of Operations Re-
search, Rheinisch-Westfilische Technische Hochschule Aachen,
1998.

29



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Caprara, A., and Fischetti, M., and Toth, P., ” A heuristic algo-
rithm for the set covering problem”, in: W.H. Cunningham, and
S.T. McCormick, and M. Queyranne (eds.), Proc. 5th IPCO,
Springer LNCS 1084, 1996, 72-81.

Caprara, A., and Fischetti, M., and Toth, P. (1996), ” A heuris-
tic algorithm for the set covering problem”, Working Paper,
DEIS, University of Bologna, Italy.

Desrosiers, J., and Soumis, F., and Desrochers, M. (1984),
"Routing with time windows by column generation”, Networks
14, 545-565.

Desaulniers, G., and Desrosiers, J., and Ioachim, I., and
Solomon, M.M., and Soumis F., and Villeneuve, D., ” A unified
framework for deterministic time constrained vehicle routing
and crew scheduling problems”, in: G. Crainic and G. Laporte
(eds.), Fleet Management and Logistics, Kluwer, Boston, 1998,
57-93.

Desaulniers, G., and Desrosiers, J., and Gamache, M., and
Soumis, F., "Crew scheduling in air transportation”, in:
G. Crainic and G. Laporte (eds.), Fleet Management and Lo-
gistics, Kluwer, Boston, 1998, 169-185.

Dumas, Y., and Desrosiers, J., and Soumis, F. (1991), "The
pickup and delivery problem with time windows”, Furopean
Journal of Operational Research 54, 7-22.

Eremeev, A. (1998), A genetic algorithm with a non-binary
representation for the set covering problem”, working paper,
Omsk Branch of Sobolev Institute of Mathematics, RAS.

Garey, M., and Johnson, D., Computers and Intractibility: A
Guide to NP-Completeness, W. Freemand and Co., New York,
1979.

Griinert, T., and Sebastian, H.-J., and Thérigen, M. (1999),
"The design of a letter-mail transportation network by intelli-
gent techniques”, Proceedings of the Hawai’i International Con-
ference On System Sciences, to appear.

30



23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

Griinert, T., and Sebastian, H.-J., ”"Planning models for
long-haul operations of postal and express shipment compa-
nies”, Working Paper, Department of Operations Research,
Rheinisch-Westfélische Technische Hochschule Aachen, 1998.

Haddadi, S. (1997), ” A simple Lagragean heuristic for the set
covering problem”, European Journal of Operational Research
97, 200-204.

Irnich, S., ”Modellierungs eines Tourenplanungsprobems als
Set Covering Problem und Implementierung eines heuristischen
Losungsverfahrens”, Internal Paper, Elite Foundation, 1998.

Martello, S., and Toth, P., Knapsack Problems: Algorithms and
Computer Implementations, Wiley, Chichester, England, 1990.

Nemhauser, G.L., and Wolsey, L.A., Integer and Combinatorial
Optimization, Wiley, New York, 1988.

Ryan, D.M., and Foster, B.A., "An integer programming
approach to scheduling”, in: Computer Scheduling of Pub-
lic Transport Urban Passenger Vehicle and Crew Scheduling,
North-Holland, Amsterdam, 1981, 269-280.

Ribeiro, C., and Soumis, F. (1994), ”A column generation ap-
proach to the multiple-depot vehicle scheduling problem”, Op-
eration Research 42, 41-52.

Savelsbergh, M.W.P. (1997), ” A branch-and-price algorithm for
the generalized assignment problem”, Operations Research 45,
831-841.

Savelsbergh, M.W.P., and Sol, M. (1995), " The general pickup
and delivery problem”, Transportation Science 29, 17-29.

Savelsbergh, M.W.P., and Sol, M. (1998), "DRIVE: Dynamic
routing of independent vehicles”, Operations Research 46, 474-
490.

31



Figure 1: Network (V, A7) for a three depot problem and a vehicle f available
at depot 1 and 3. Backward arcs are displayed as dotted arcs.

Figure 2: Combined clique, knapsack problem with additional constraints

knapsack pickup

location 1

location 2~

knapsack delivery

request, type location time window quantity || hub time window

r v(r) [a, by qr htw(r, p, f)

1 pickup 1~ [01 : 50,08 : 00] 4 [04 : 20,08 : 00]
2 pickup 1~ [05:10,11:00] 3 [07 : 40,11 : 00]
3 pickup 2~ [07 : 30,10 : 00] 2 [09 : 10,10 : 00]
4 pickup 2~ [06 : 40,12 : 40] 3 [08 : 20,12 : 40]
5 pickup 2~ [08 : 10,10 : 20) 4 [09 : 50,10 : 20]
6 delivery 1t [08 : 10,11 : 20] 5 [08 : 10,09 : 20]
7 delivery 1+ [08 : 10,10 : 30] 4 [08: 10,08 : 30]
8 delivery 1t [10: 10,16 : 20] 5 [10: 10,14 : 20]

Table 1: Example for a route/vehicle combination with corresponding re-

quests and computing hub time windows
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hubA hubB hubC hubD hubE hubF
locations N 6 6 8 8 13 22
pickup requests R, 13 26 40 57 102 130
quantity ZreRP qr [LTB] | 2136 4139 5565 8767 12702 10153
delivery requests Ry 21 23 43 57 55 112
quantity ZreRd q- [LTB] | 3683 3518 5831 9346 6744 8102

Table 2: Hubs with specific data

| scenario 1 scenario 2 scenario 3 scenario 4 scenario 5

vehicle types F' 1 2 3 4 6
smallest, capacity Qf [LTB] 320 200 200 200 200
largest capacity Q7 [LT B] 320 320 400 640 1040

Table 3: Vehicle fleet scenarios
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instance  property scenario 1  scenario 2  scenario 3  scenario 4 scenario 5
route/vehicle comb. 89 178 250 322 466
relevant trips 242 266 408 1001 2204
trips in solution 27 28 17 13 10

A overall cost 3471 3274 2798 2269 2017
lower bound 1822 1822 1643 1251 930
time model 0.12 0.09 0.33 0.54 1.00
time SCP best sol. 0.21 0.05 0.04 0.07 0.19
time SCP solver 0.21 0.23 1.50 1.80 1.52
route/vehicle comb. 34 68 92 116 164
relevant trips 389 456 617 821 1074
trips in solution 32 32 22 17 14
B overall cost 5051 4682 4025 3600 3357
lower bound 2125 2125 1932 1531 1202
time model 0.09 0.13 0.18 0.27 0.41
time SCP best sol. 1.03 1.33 0.01 0.01 0.01
time SCP solver 1.13 1.37 1.71 2.29 2.68
route/vehicle comb. 158 316 431 546 776
relevant trips 2680 3075 4753 9239 16339
trips in solution 34 34 27 22 17
C overall cost 7792 7703 7165 6889 6473
lower bound 4656 4656 4316 3612 3030
time model 0.7 1.0 1.5 3.4 11.1
time SCP best sol. 6.1 6.8 1.3 9.1 62.3
time SCP solver 19.5 10.9 16.5 63.4 81.0
route/vehicle comb. 70 140 193 246 352
relevant trips 1679 1884 4222 12439 42375
trips in solution 72 74 51 39 33
D overall cost 12668 11994 10200 9219 8637
lower bound 5784 5784 5364 4508 3802
time model 0.8 1.2 2.4 13.8 107.5
time SCP best sol. 1.3 1.2 8.6 24.9 90.8
time SCP solver 10.3 19.5 29.6 205.1 263.7
route/vehicle comb. 208 416 614 812 1208
relevant trips 33522 38281 85961 153832 253993
trips in solution 56 59 46 28 19
E overall cost 13685 13685 11446 8598 6602
lower bound 8653 8653 7773 5564 3925
time model 19.0 21.9 62.8 283.9 1268.2
time SCP best sol. 1077.1 46.5 1805.0 1269.5 1067.7
time SCP solver 1439.0 1186.8 2022.2 2003.4 2087.9
route/vehicle comb. 369 738 1053 1368 1998
relevant trips 100603 152971 244514 326378 357797
trips in solution 39 38 34 26 19
F overall cost 14598 14399 13676 11394 8749
lower bound 10621 10621 9635 7322 5403
time model 405.6 479.3 810.2 1811.1 2905.6
time SCP best sol. 1269.0 788.1 3349.5 3232.5 1851.9
time SCP solver 4126.6 6108.8 7102.0 7103.1 3347.4

Table 4: Computational result
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