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The paper “The Shortest-Path Problem with Resource Constraints and k-Cycle Elimination
for £ > 3” mainly focuses on the theoretical aspects of the shortest-path problem with re-
source constraints (SPPRC) and cycle elimination. The three examples of applying SPPRC-
k-cyc to solve VRPTW subproblems were meant to show the relevance of SPPRC-k-cyc and
not meant as a detailed computational study on VRPTW.

The online supplement can be vied as a complement to the theoretical work presented in
the paper. It gives a detailed analysis of the proposed method for the well-known Solomon
(1987) benchmark problems of VRPTW. The online supplement contains a comparison of
lower bounds and computation times for 168 different VRPTW instances ranging from 25

to 100 customers.
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1. Extended Computational Results

We start with a description of Solomon’s (1987) benchmark problems, give references to the
branch-and-price methodology as well as techniques to speed up and improve the solution

process. The main part presents the numerical results and discusses the outcome.

1.1. The Solomon Instances

For the computational study, we have used Solomon’s (1987) benchmark problems and the

same setup as in Kohl et al. (1999), Larsen (1999), and Rich (1999). There are two series of
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problems, one with approximately 5 to 10 customers per route (type 1) and a second one with
long routes with sometimes more than 25 customers in a route (type 2). Within each series,
there are three different types of problems, i.e. C-problems, R-problems, and RC-problems
where customers are located in clusters (C), randomly (R), and partly in clusters and partly
randomly (RC). Hence, there are six groups of problems referred to as (C1, R1, RC1, C2,
R2, RC2) with 56 instances. In addition to these original 100 customer problems, instances
with 25 and 50 customers are created by considering only the first 25, resp. 50, customers.
This leads to a test suite of 168 instances.

As in most papers on exact methods for Solomon’s problems the objective is to minimize
the total cost, i.e. the travelled distance. Travel times and distances are rounded with a
precision of one position after decimal point, see Kohl et al. (1999, page 111). In contrast to
this, papers on VRPTW heuristics use unrounded distances and times, and try to minimize
the number of routes as the main objective.

It is generally accepted that VRPTW instances with long routes are much harder to
solve than the ones with shorter routes. Nevertheless, there are still seven unsolved Solomon
benchmark problems with short routes (r104.100, r108.100, r112.100, rc104.100, rc106.100,
rc107.100, rc108.100). As reported in Cordeau et al. (2002), there are 35 unsolved problems

in the second set, even with 25 and 50 customers and one clustered instance ¢204.100.

1.2. Branch-and-Price Solution Methodology for the VRPTW

126 of these 168 Solomon problems could previously be solved to optimality, see Cordeau et al.
(2002). As far as we know, all of these successfully solved instances can be solved by column
generation techniques. From this point of view, column generation and its integration into
a branch-and-bound framework (branch-and-price) seems to be the best method at hand.
Nevertheless, the idea of k-cycle elimination can analogously be applied to price-directive
decomposition approaches based on Lagrangean relaxation, see e.g. Kallehauge et al. (2001).

For the sake of brevity, we do not give an overview of different models and methodologies
for the VRPTW here, but refer the reader to the survey paper Cordeau et al. (2002). General
references to column generation or branch-and-price are Wolsey (1998) and Barnhart et al.
(1998).

Several techniques to improve a standard branch-and-price approach for VRPTW have

been published. We use the following ideas:



e Pre-processing, see e.g. Desrochers et al. (1992): Resource window reduction and arc

elimination.

e In order to make the costs ¢;; and the times ¢;; fulfill the triangle inequality, an offset of
0.1 is added to all cost coefficients c;; except for the start depot i = s. The offset does
not change the optimal solution and all results can be substituted back by subtracting

0.1-n from the objective, see also Kohl et al. (1999).

e f-path cuts: The basic idea is to integrate cutting plane methods into the column gen-
eration technique (sometimes called 'branch-and-price-and-cut’). f-path cuts are valid
inequalities for the VRPTW which are added to the RMP when a violated inequality
is detected. 2-path cuts have been identified as one key approach to improve the col-
umn generation lower bound, see e.g. Kohl (1995), Kohl et al. (1999), and Rich (1999).
Their separation subproblem is not trivial but requires the solution of a TSPTW on

the corresponding subset of nodes S.

In our implementation, we use similar techniques as Rich (1999), i.e. Karger’s prob-
abilistic algorithm (Karger 1993, Karger and Stein 1993) to identify customer sets S
with small flows z(5) and a dynamic programming algorithm for the TSPTW, see e.g.
Dumas et al. (1995). We separate 1-path cuts and 2-path cuts only at the root node

of the branch-and-bound tree.

e Nearest neighbor networks for partial pricing, see Gamache et al. (1999), in Larsen

(1999) called limited subsequence:

The pricing problem has to compute at least one new route with negative reduced
cost as long as there exists one. By replacing the network G with its smaller {-nearest
neighbor network Gy, the pricing problem on Gy is a smaller problem. We work with
a hierarchy of three networks G5, G and the complete network GG. Pricing is firstly
done in Gf, if this fails, pricing is done on 1o and if this also fails, the complete pricing
is done on G. We always add the arcs (0,7) and (i,n + 1) which connect the depot

with all customers to Gy.

e Branching is first done on the number of vehicles (if the number of routes is fractional)
and on arcs secondly. We choose the arc (i,j) € A with fractional flow z;; which

maximizes ¢;; - min(z;;, 1 — ;). But there is one exception from this branching rule.



Within the branch-and-bound tree, solving instances with the additional constraint
that the number of vehicles (after branching) has to be equal to one is sometimes very
hard. We observed that the corresponding nodes of the branch-and-bound tree had
huge computation times and sometimes we were not able to solve them (within the

given time limit).

In order to overcome this problem we used the following strategy: Whenever a solution
of the RMP has a fractional number of vehicles #veh with 1 < #veh < 2 we do not

branch on the number of vehicles but on arcs.

In order to keep the number of branch-and-bound nodes to explore as small as possible,
we implemented the following rule. Within branch-and-bound a best-first node selection
strategy is used. It means that among all unsolved nodes we choose one with currently
minimum lower bound (note that each son node gets an initial lower bound from its father

before that node is solved by column generation).

1.3. Comparison of 2-, 3-, and 4-Cycle Elimination

All computations were performed on a standard PC with Intel Pentium III, 600MHz
with 512MB main memory. The algorithm is coded in C+-+ and the callable library of
CPLEX 7.0 CPLEX (1997) is used to solve the restricted master problem (RMP).

1.3.1. Comparison with a Restricted Computing Time of 1 Hour

We start with a detailed analysis of the lower bounds for k-cycle elimination with £ &
{2,3,4}. The computation time for each instance is restricted to one hour (=3600 seconds).

The Tables 1-3 contain the following information:
e The name of the instance is given in the first column.

e The integrality gap of the instance is the interval [Ib1(1) : opt] given by the lower bound
Ib1(1) computed without cycle-elimination (a plain SPPRC subproblem solver) and the
objective opt of an optimal solution. In case the optimum opt is not known, we give

a valid upper bound ub computed by a heuristic algorithm! and mark that entry with

ub*.

!Special thanks to Birger Funke who computed the upper bounds for some of the hard Solomon benchmark
instances with methods described in Funke (2003).



e Three compound sections are given for k£ = 2, £ = 3, and k£ = 4, and describe the

outcome of the branch-and-price procedure with the SPPRC-k-cyc subproblem solver.

e [by(k) is the lower bound implied by the LP-relaxation of the master program before
cutting planes are added. For some instances and different values of k we were not able
to solve the LP-relaxation of the master program to optimality. This fact is indicated

by an entry ‘.

o [by(k) is the lower bound after adding 1-path cuts and 2-path cuts. If by (k) and by (k)
are identical to (b (k—1) and lby(k—1) for k£ > 3 we do not print the same information

again.

e Whenever we are not able to solve the instance to optimality the entry [b(k) gives the

computed lower bound at the moment when the computation was stopped (3600s).

e The size of the branch-and-price search is given by the number of #ree nodes. For
instances not solved to optimality, this column indicates the number of the tree nodes

evaluated within one hour.

e T'(k) gives the time for completing the computation or TL (=time limit) when the

computation was stopped after 3600s.

A comparison of the detailed results for k-cycle elimination given in the Tables 1-3 can

be aggregated to the following characteristic numbers:

How many instances are solved to optimality with k = 27 112
How many instances are solved to optimality with & = 37 117
How many instances are solved to optimality with k& = 47 117

How many instances are solved to optimality with k € {2,3,4}7 124

How often is k = 3 optimal but £ = 2 not optimal? 7
How often is £ = 4 optimal but k£ = 3 not optimal? )
How often is £ = 4 optimal but k£ = 2 not optimal? 11
How often is k = 2 optimal but neither £ = 3 nor k£ = 4 optimal? 2
How often is time 7'(3) smaller than 7(2)? 42
How often is time 7°(4) smaller than 7°(3)7 17
How often is time 7°(4) smaller than 7(2)? 41
How often is T'(3) or T'(4) smaller than T(2)7 47

Comparing the results for £ = 3 and & = 4 against £ = 2 shows that 3-cycle and 4-

cycle elimination are successful only for some instances. “Successful” means, that improved
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Results for Solomon Benchmark Problems with 25 Customers

Table 1
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Results for Solomon Benchmark Problems with 50 Customers

Table 2
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Table 3: Results for Solomon Benchmark Problems with 100 Customers
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lower bounds imply significantly smaller branch-and-bound trees and that smaller trees over-
compensate the higher effort to solve SPPRC with k-cycle elimination (instead of solving
SPPRC without or only with 2-cycle elimination). The success for only some of the instances
had to be expected because not all fractional solutions of the RMPs contain routes with
cycles.

A comparison of the computing times shows that 47 of the 124 solved instances are solved
faster by 3- or 4-cycle elimination than with 2-cycle elimination. Ten instances (rc203.25,
rc206.25, rc207.25, r112.50, r203.50, r205.50, r209.50, rc202.50, rc205.50, r¢206.50) could only
be solved by the new algorithms (k = 3,4) within one hour computing time. Five of them
(r203.50, r209.50, rc202.50, rc205.50, rc206.50) were previously unsolved. The previously
unsolved instance r204.25 is now solved to optimality by all of the three algorithms (k =
2,3,4). This is due to the modified branching rule.

There are two instances (r204.50, ¢203.100) for which the new algorithms (k = 3, 4) failed
to compute the optimal solution, which are solved by using 2-cycle elimination. It seems
that k-cycle elimination with £ > 3 is more successful for instances with long routes than
for instances with short routes and more useful when customers are not clustered.

For some instances, especially those with long routes, the difference in the lower bounds

Iby(k) and lby(k) and computation times are impressive. We point out some examples.

RC205.50 For the instance rc205.50 the lower bounds rise from [b;(1) = 481.604 to
1b1(2) = 541,592, 1by(3) = 589,313, Iby(4) = 621.6 and with cutting planes from bx(2) =
581.528 to lby(3) = 612.683, lbo(4) = 630.2. At the same time the computing times fall from
T(2) > 3600s (unsolved) to 7'(3) = 729.9s and T'(4) = 82.4s. The optimal solution with
opt = 631.0 is very close to the solution corresponding to 4-cycle elimination and cutting

planes.

RC202.25 Another interesting example is the instance rc202.25. The size of the branch-
and-bound tree falls from 130 node for kK = 2 to 7 resp. 6 nodes for £k = 3 or k = 4. From
this, a speedup of factor T'(3)/T(2) ~ 75 for 3-cycle elimination or of factor 7'(4)/7T(2) ~ 39

for 4-cycle elimination results.

Visualization In order to illustrate the difference in the computed lower bounds b (k)

and [by(k) with respect to the values of k € {2,3,4}, it makes sense to visualize the portion
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Figure 1: Results for the Solomon Problems with 25 Customers and Long Routes

of the integrality gap that has been closed by applying k-cycle elimination (the same measure
has been used in Kohl et al. (1999) to show the effectiveness of the f-path cuts). For different
values of k > 0 the numbers

by (k) — Iy (1) Iby(k) — 11 (1)
opt — by (1) a opt — by (1)

describe the relative portion of the integrality gap that has been closed by k-cycle elimination
with /without using additional f-path cuts. Obviously, these numbers only exist when the
denominator is positive, i.e. the corresponding instance has an integrality gap opt—1b;(1) > 0.
If the optimal solution is not known we use a best known upper bound ub* instead of opt. The
Figures 1-4 depict the closed portion of the integrality gap for the problems with 25 customers
and long routes, all instances with 50 customers, and the instances with 100 customers
and short routes. Each figure shows the portion of the integrality gap [lbi(1),opt] resp.
[Ib1(1), ub*] which has been closed by applying k-cycle elimination. For instances with a
proper positive integrality gap (up to) six values lbi(k), lbo(k) for k € {2,3,4} are given.
The three lower bounds 1by(2),1b1(3),1b;(4) obtained without cutting planes as well as the
three values (b1(2), [b1(3), 1b1(4) valid after adding f-path cuts are displayed in a line. Values
for k = 2 are marked with ¢, ¢, for £ = 3 with B,0, and for £k = 4 with ®, 0. The remaining
groups of instances are not presented because there is either almost always no integrality
gap (series C1, R1, and RC1 with 25 customers) or we were not able to compute many of

the bounds within one hour (series C2, R2, and RC2 with 100 customers).
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Figure 2: Results for the Solomon Problems with 50 Customers and Short Routes

*

*

*

‘.u_m ‘80Z3d
‘_u_m A0
‘_u_m B0z
‘_u_m p=inreal.
‘.u_m “FOZId
‘_u_m ‘e0Zad
‘_u_m 20zd
‘_u_m Wz2d
I n5tizd

| 050ked

I 05'e0zd

| n5e0zd

I n5°L0zd

| n54a0zd

I 055024

| 05t+0zd

| n5e0zd

| 05 Z02d

I nstozd

I 052020

| 05°L0z0

I 059027

| 055023

I 05020

| 05E023

I 05 Z023

n0510z7

1,0

0,8

0,6

0,4

0,2

=
<}

Figure 3: Results for the Solomon Problems with 50 Customers and Long Routes
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Figure 4: Results for the Solomon Problems with 100 Customers and Short Routes

1.3.2. Extensive Computational Test

The lower bounds and upper bounds given in the Tables 1-3 are useful to select some of the
instances for applying the same algorithm without a time limit. Techniques for eliminating
useless arcs from the graph underlying the SPPRC as described in Irnich (2004) allow for
a speedup of the computations within the branch-and-bound search tree. Based on these
acceleration techniques, Table 4 shows the information about optimal solutions for more
than 15 previously unsolved instances from Solomon’s benchmark problems. For instances
marked with * different results have been reported in Cordeau et al. (2002). The problem
¢204.100 has been solved with 2-cycle elimination mainly because of extensive partial pricing

These results include four new optimal solutions for problems with short routes (series
R1 and RC1). For these instances (r104.100, rc104.100, rc107.100, and rc108.100) 3-cycle
elimination performs better than cycle-elimination for £ > 4. The reason for this is that the
fractional RMP solutions for £k = 3 contain only a small portion of routes with cycles.

For the problems of series 2 higher values of k are sometime necessary to compute strong
lower bounds. The instances rc202.100, rc203.50, and rc205.100 could only be solved with

very long computation times using 5-cycle elimination.
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Table 4: Optimal Solutions for Previously Unsolved VRPTW Instances.
Instance  Distance #vehicles k-cycle Tree Time (in s)

r104.100 971.5 11 3 2396 268106.0
rc104.100 1132.3 10 3 6757 986809.0
rc107.100 1207.8 12 3 1493 42770.7
rc108.100 1114.2 11 3 707 71263.0
c204.100 588.1 3 2 12 04254.4
r203.50 605.3 5 3 23 470.4
r204.25 355.0 2 4 35 231.7
r204.50 506.4 2 4 132 23749.5
r205.50%* 690.1 4 4 137 1091.4
r206.50 632.4 4 3 1615 22455.3
r208.25* 328.2 1 3 16 363.5
r209.50 600.6 4 4 7 255.4
r210.50 645.6 4 3 960 11551.4
r211.50 535.5 3 3 1972 21323.0
rc202.50 613.6 D 4 28 503.3
rc202.100 1092.3 8 3 239 124018.0
rc203.25% 326.9 2 4 297 3455.3
rc203.50 955.3 4 3 38 04229.2
rc205.50%* 630.2 5 4 d 82.4
rc205.100 1154.0 7 d 65 13295.9
rc206.50 610.0 2 4 62 934.9
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