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tLo
al sear
h and lo
al sear
h-based metaheuristi
s are 
urrently the only available methodsfor obtaining good solutions to large vehi
le routing and s
heduling problems. In this paperwe provide a review of both 
lassi
al and modern lo
al sear
h neighborhoods for this 
lass ofproblems. The intention of this paper is not only to give an overview but to 
lassify and analyzethe stru
ture of di�erent neighborhoods. The analysis is based on a formal representation ofVRSP solutions given by a unifying giant-tour model. We des
ribe neighborhoods impli
itlyby a set of transformations 
alled moves and show how moves 
an be de
omposed further intopartial moves. The sear
h method has to 
ompose these partial moves into a 
omplete movein an e�
ient way. The goal is to �nd a lo
al best neighbor and to rea
h a lo
al optimum asqui
kly as possible. This 
an be a
hieved by sear
h methods, whi
h do not s
an all neighborsolutions expli
itly. Our analysis shows how the properties of the partial moves and the
onstraints of the VRSP in�uen
es the 
hoi
e of an appropriate sear
h te
hnique.Keywords: lo
al sear
h, sear
h te
hniques, vehi
le routing and s
hedulingThe paper gives an overview of lo
al sear
h for vehi
le routing and s
heduling problems (VRSPs).This will be a
hieved by a 
lassi�
ation and 
on
eptual integration of di�erent approa
hes fromthe literature. We will fo
us on two major building blo
ks of lo
al sear
h: the de�nition of theneighborhood and the exploration of the neighborhood using a suitable sear
h algorithm. The
lose relationship between neighborhoods and sear
h methods is exploited by some of the mostsu

essful algorithms for VRSPs, su
h as the famous Lin-Kernighan algorithm for the travelingsalesman problem (TSP). Despite the su

ess of these methods, only a small fra
tion of papers inthis area exploit the relationship between neighborhood de�nition and suitable sear
h algorithms.This 
an, to a 
ertain degree, be attributed to the di�
ulty of handling the 
omplex 
onstraintsand/or the non-additivity of the obje
tive fun
tion in 
onstrained VRSPs as opposed to the TSP.However, algorithms for more 
omplex VRSPs 
an also bene�t from a thorough analysis of theproblem, the neighborhood, and the sear
h methods. As pointed out in (Cordeau et al., 2002b),one of the major 
hallenges of metaheuristi
 design is to make them run faster, espe
ially forlarger instan
es. A proper design of the neighborhood and sear
h methods is one way to a
hievethis goal. 1



The intention of the paper is to provide a framework of 
on
epts helpful to analyze the stru
-ture of di�erent (VRSP) neighborhoods and to build e�
ient sear
h algorithms. We des
ribeneighborhoods impli
itly by a set of transformations 
alled moves and show how moves 
an bede
omposed further into partial moves. The sear
h method has to 
ompose these partial movesinto a 
omplete move in an e�
ient way. The goal is to �nd a lo
al best neighbor and to rea
h alo
al optimum as qui
kly as possible. This 
an be a
hieved by sear
h methods, whi
h do not s
anall neighbor solutions expli
itly. Our analysis shows how the properties of the partial moves andthe 
onstraints of the VRSP in�uen
es the 
hoi
e of an appropriate sear
h te
hnique.Vehi
le routing and s
heduling problems require that a �eet of vehi
les serves a number ofrequests in order to minimize 
osts. We 
onsider the node-routing version of these problems, whererequests o

ur at nodes of a network, and routes 
an be 
hara
terized by sequen
es of nodes thatare visited 
onse
utively by a vehi
le. When both the order of the nodes in the routes and thedetermination of arrival and/or departure times have to be 
onsidered, one obtains a 
ombinedrouting and s
heduling problem. Prominent examples of routing problems are the TSP (Lawleret al., 1985; Gutin and Punnen, 2002), the vehi
le routing problem (VRP) (Toth and Vigo, 2002b),and the pi
kup-and-delivery problem (PDP) (Savelsbergh and Sol, 1985; Desaulniers et al., 2002).When single or multiple time windows o

ur at the nodes, one obtains the TSP, VRP or PDPwith time windows, abbreviated as TSPTW, VRPTW and PDPTW, respe
tively (e.g., Desrosierset al., 1995; Desaulniers et al., 1998; Cordeau et al., 2002a; Bräysy and Gendreau, 2005b,a). Thes
ope of this paper is not limited to these problems but also en
ompasses the more general 
lassof routing problems that 
an be modeled with resour
e variables (Desaulniers et al., 1998; Funke,2003; Irni
h and Desaulniers, 2004).Solving these types of problems optimally is still a 
hallenge in the 
ase of larger instan
es.With the ex
eption of the TSP, where instan
es with several thousand nodes 
an be solved tooptimality on a regular basis (Gutin and Punnen, 2002), instan
es of the other problems withmore than about �fty nodes 
an be intra
tably hard to solve optimally. Therefore, heuristi
s andmetaheuristi
s are used for solving larger instan
es of these problems.In this paper, we address both 
lassi
al and newly developed methods for lo
al sear
h in the
ontext of VRSPs. These approa
hes are 
lassi�ed a

ording to the stru
ture and size of theneighborhood and the sear
h methods that are employed to sear
h the neighborhood. Roughlyspeaking, the quality of the solutions in
reases with the size of the neighborhood. However, largeneighborhoods may be too big to sear
h exhaustively. This is why methods for intelligently pruningthe neighborhood sear
h are so important. Intelligent pruning allows lo
al sear
h methods to s
anpotentially larger neighborhoods without ex
eeding the requirement for limited 
omputationaltime.The paper is organized as follows: In Se
tion 1, we shortly introdu
e lo
al sear
h and theimportant 
on
ept of moves and move de
ompositions. A formalism for the representation ofthese 
on
epts in the 
ontext of vehi
le routing and s
heduling is provided and the de
ompositionof the obje
tive fun
tion is dis
ussed. In Se
tion 2, we 
lassify the di�erent neighborhoods thathave been suggested in the literature and dis
uss their similarities and di�eren
es. If possible,an estimation of the neighborhood size and possible move de
ompositions are given. Se
tion 3introdu
es di�erent sear
h te
hniques. We provide generi
 des
riptions of the approa
hes andgive examples of their possible appli
ations. We 
over both dire
t sear
h te
hniques, whi
h areused within 
lassi
al approa
hes of lo
al sear
h as well as indire
t sear
h approa
hes that havebeen introdu
ed in the 
ontext of very large-s
ale neighborhood sear
h. We �nally give some
on
lusions and outline some promising paths for future resear
h.2



1 Lo
al Sear
hNearly all heuristi
s and metaheuristi
s for VRSPs rely heavily on the de�nition of neighborhoodsolutions and lo
al sear
h (LS). This se
tion introdu
es LS applied to VRSPs. We present thebasi
 notation and 
on
epts of lo
al sear
h algorithms for 
ombinatorial optimization problems,
larify the de�nition of moves and their de
omposition into partial moves, dis
uss possibilities torepresent VRSP solutions in the 
ontext of LS, and formalize the 
on
ept of gains of (partial)moves for di�erent VRSP 
ost fun
tions.Let (X, c) be a 
ombinatorial optimization problem of the form minx∈X c(x), where X is a�nite but large set of feasible solutions and c(x) the 
ost of x. For instan
e, X is the set of tours inthe TSP and c(x) is the 
ost of the tour x ∈ X. The basis of all lo
al sear
h methods is the use of aset of elementary moves that transform a given solution x ∈ X into a di�erent, so-
alled, neighborsolution x′. The set of all solutions that 
an be rea
hed from the 
urrent solution using the set ofmoves is 
alled the neighborhood of the 
urrent solution w.r.t. the move set, i.e., N (x) ⊂ X. An
x′ ∈ N (x) with the property c(x′) < c(x) is an improving neighbor solution. Feasible solutions
x ∈ X, whi
h do not have any improving neighbor solutions, i.e., c(x′) ≥ c(x) for all x′ ∈ N (x),are 
alled lo
al optima w.r.t. N . In every iteration of a lo
al sear
h method, some (and in theworst 
ase all) neighbors x′ ∈ N (x) of the 
urrent solution x are evaluated in order to �nd atleast one improving neighbor solution. If it exists, a move is made to the improving neighborsolution, whi
h then be
omes the 
urrent solution. Otherwise, a lo
al optimum w.r.t. the 
urrentneighborhood N is found and the lo
al sear
h stops.1.1 The Lo
al Sear
h AlgorithmDenoting the 
urrent iteration 
ounter by t and the 
urrent solution by xt ∈ X, one obtains thefollowing generi
 des
ription of a lo
al sear
h method:Algorithm 1: Generi
 Lo
al Sear
h1: Initialize the algorithm with a feasible solution x0 ∈ X and set the iteration 
ounter t := 0.2: REPEAT3: Sear
h for an improving neighbor x′ in the neighborhood N (xt) of the 
urrent solution xt.4: IF there exists an improving neighbor solution x′ ∈ N (xt),4: THEN set xt+1 := x′ and t := t + 1.5: UNTIL no more improvements are found.Several remarks regarding the design of Algorithm 1 should be made. First, the speed of theneighborhood evaluation depends on the 
omputational e�ort to determine the 
ost c(x′) of aneighbor solution x′ and 
he
king its feasibility. If this 
an be a
hieved qui
kly, e.g., in 
onstanttime for ea
h neighbor x′ ∈ N (x), larger neighborhoods 
an be sear
hed (e.g., Aarts and Lenstra1997, p. 128�; Kernighan and Lin 1970).Se
ond, sear
h step 3 gives the �exibility of terminating the sear
h whenever one improvingneighbor from the set of all improving neighbor solutions has been found. If the sear
h methodis enumerative (i.e., all neighbor solutions x′ ∈ N (x) and their 
ost c(x′) are evaluated one afteranother), taking the �rst improving solution or taking a best improving solution are two extremestrategies known as �rst sear
h and best sear
h. Another well known strategy, 
alled d-best sear
h,
onsists of terminating the sear
h when d improving neighbor solutions are found. Then, the bestsolution from this set is taken as the next solution. All these strategies try to take advantage of the3



inherent trade-o� between sear
hing more thoroughly within a single neighborhood or sear
hingmore qui
kly in several neighborhoods with smaller in
remental improvements. From the worst-
ase point of view, all sear
h strategies are equivalent, sin
e showing that the last xt is a lo
aloptimal solution requires the entire neighborhood N (xt) to be s
anned.Third, we would like to emphasize that �nding a best improving solution in a given neigh-borhood is itself an optimization problem. This optimization problem 
an be solved by expli
itenumeration te
hniques or by suitable optimization algorithms. These in
lude te
hniques, su
has dynami
 programming and bran
h-and-bound or network optimization algorithms for shortestpaths or 
y
les, mat
hings, et
. In all 
ases, heuristi
s 
an be employed to speed up the sear
h.Finally, the neighborhood N 
an be dynami
, i.e., using di�erent neigborhoods N t, dependingon the iteration t and the sear
h history. Dynami
 neighorhoods are a 
ore 
on
ept of metaheuris-ti
s, but are beyond the s
ope of this paper. We refer the interested reader to the books of Aartsand Lenstra (1997); Gambardella et al. (1999); Voÿ et al. (1999).1.2 Moves and their De
ompositionFor a pre
ise de�nition of the term move, it is helpful to 
onsider an en
losing superset of solutions
Z ⊇ X . The idea of a solution y ∈ Z is that some of the moves m ∈ M might transform a feasiblesolution x into an obje
t y = m(x), whi
h has a stru
ture similar to a feasible solution, but doesnot ne
essarily satisfy all 
onstraints that de�ne feasible solutions. For instan
e, shifting a nodefrom one position to another position in a TSPTW tour transforms one tour x into another tour x′,but might violate several time window 
onstraints. Another example is the swap of two 
ustomersbetween two VRP tours, whi
h might violate a 
apa
ity 
onstraint. In general, we denote by Mthe set of moves where a move m ∈ M is a (possibly partial) map from Z to itself, i.e., m : Z → Z.Sin
e a move might not be appli
able to all solutions x ∈ Z, m(x) is not always well-de�ned. Fromthe above dis
ussion, it is 
lear that a move m does not ne
essarily map feasible solutions x ∈ Xinto feasible solutions. For a given x ∈ Z, the extended neighborhood N̂ (x) = {m(x) : m ∈ M}
ontains all neighbors of x, either feasible or infeasible. Clearly, the neighborhood N (x) ⊂ Xis given by N (x) = N̂ (x) ∩ X. Every move, m ∈ M , with m(x) ∈ X is 
alled a feasible movew.r.t. x.The number of neighbor solutions of a given solution x is 
alled the size of the neighborhood.When all moves m ∈ M generate di�erent neighbor solutions m(x) ∈ N̂ (x), the size of N̂ (x) 
aneasily determined by 
ounting the elements of M . Sin
e the number |N (x)| of feasible elementsin the neighborhood is (in general) depending on x, we will mostly examine sizes of extendedneighborhoods N̂ (x).In order to analyze di�erent moves, we de
ompose them into smaller parts, the so-
alledpartial moves. A given de
omposition m = pl ◦ . . . ◦ p2 ◦ p1 of a move m into l ≥ 2 partial moves
p1, p2, . . . , pl means that an x ∈ Z is �rst transformed into p1(x), se
ond p1(x) is transformedinto p2(p1(x)), and so on. Of 
ourse, we have to 
onsider the stru
tures that o

ur after havingapplied one or several partial moves. In general, the ith partial move transforms elements of anintermediate stru
ture Yi−1 to elements of another intermediate stru
ture Yi, while for the �rstand last stru
ture Y0 = Yl = Z holds. As a result, m : Z → Z de
omposes into

m : Z = Y0
p1
−→ Y1

p2
−→ Y2

p3
−→ . . .

pl−1
−→ Yl−1

pl−→ Yl = Z.We neither 
laim that the de
omposition into partial moves is self-evident nor that it is unique.Nevertheless, there are some interesting 
ases that we would like to study. In the 
ase that theintermediate stru
tures are taken from a single set Y di�ering from Z (i.e., Y = Y1 = Y2 =4



. . . = Yl−1 and Y 6= Z), we 
all p1 an opening partial move and pl a 
losing partial move, whileall other intermediate partial moves map Y into itself. Su
h intermediate stru
tures are 
alledreferen
e stru
tures. Whenever the intermediate stru
tures have an identi
al form, it is possibleto vary the number of intermediate partial moves, whi
h results in 
hains of intermediate partialmoves of variable length. As we will see later, the famous Lin-Kernighan neighborhood as wellas the eje
tion-
hain neighborhoods are 
onstru
ted in this way. A se
ond important 
ase iswhen Z 
oin
ides with all intermediate stru
tures. We will refer to 
omposite moves whenever
X = Y = Z. This implies that a 
omposite move 
onsists of a 
hain of partial moves su
h thatevery partial move maps from one referen
e stru
ture to an identi
al referen
e stru
ture.1.3 Representation of VRSP SolutionsIn order to des
ribe the neighborhoods formally, a 
on
ise representation of VRSP solutions isneeded. The basis for su
h a des
ription is a dire
ted routing graph G = (V, A). The node set
V 
onsists of request nodes R ⊂ V and possibly route-start O ⊂ V and route-end nodes D ⊂ V .The interpretation of the request nodes depends on the problem at hand. In the 
ase of the VRP,every request node 
orresponds to a 
ustomer that has to be visited exa
tly on
e. In the PDP, arequest node is either a pi
kup or a delivery. In 
omplex routing appli
ations, a request may even
onsist of more than a pair of pi
kup and delivery nodes. In the 
ontext of vehi
le s
heduling(e.g., the multi-depot vehi
le s
heduling problem), one request node 
orresponds to an operationstarting at a given lo
ation and ending at another lo
ation. This operation has to be performedwithout overlapping other operations at a prede�ned time or within a given time window.Solutions of VRSP, whi
h involve more than a single vehi
le 
an be represented as a 
olle
tionof routes. Su
h a route is a path in G, starting with a route-start node o ∈ O and ending witha 
ompatible route-end node d ∈ D, visiting a sequen
e of request nodes in between. Again,the 
ompatibility of pairs (o, d) of route-start and route-end nodes depends on the problem athand. For single-depot problems with a homogeneous �eet of vehi
les, all o ∈ O and d ∈ Dare 
ompatible. In multi-depot problems the sets O and D are partitioned a

ording to the nDdepots/garages, e.g., O = O1 ·∪ . . . ·∪OnD , D = D1 ·∪ . . . ·∪DnD , and o ∈ Ok, d ∈ Dl are 
ompatibleif and only if k = l. In general we assume that O and D have the same 
ardinality, H = |O| = |D|,and that 
ompatible route-start and route-end nodes are de�ned by a relation ∼ , i.e., a subsetof O × D.A solution to a VRSP is 
alled a route plan. A route plan x = (r1, r2, . . . , rH) is an H-tuple ofpaths in G where ea
h node v ∈ V is 
overed exa
tly on
e, ea
h path ri starts with a route-startnode oi ∈ O and ends with a 
ompatible route-end node di ∈ D. Note that this de�nition impliesthat every route-start and route-end node o

urs in exa
tly one route. If oi and di are 
onne
teddire
tly, then the 
orresponding vehi
le travels dire
tly from its origin to its destination, e.g., fromand to its depot. In some appli
ations the possibility of not using a vehi
le is modeled exa
tly inthis way. We will denote the number of nodes in a route plan by n = |V | and 
all its elements riroutes. The nodes 
overed by route ri are denoted by V (ri).Note that the order of the routes in su
h a representation is arbitrary, sin
e any permutationof the routes represents the same solution. Alternatively, one might think of solutions to VRSPsas sets of routes (instead of tuples). We do not 
onsider this option mainly for two reasons:First, in a software implementation, one has to 
hose an ordering. Se
ond, ordering the routesgives rise to two �natural� representations. The giant route is the path (r1, r2, . . . , rH) in whi
hea
h route-end node di is 
onne
ted to the next route-start node oi+1 (for i = 1, 2, . . . , H − 1).Similarly, the giant tour is the 
y
le (r1, r2, . . . , rH) in whi
h, additionally, dH is 
onne
ted to o1.5



The giant-tour representation of a route plan is a generalization of the MTSP representation ofthe VRP (Christo�des and Eilon, 1969) to more general VRSPs. It has the advantage of allowingsingle and multiple route problems to be handled in a very similar way. Figure 1 depi
ts su
h arepresentation for the 
ase with four routes, departing from two depots.
(a)

o1 o2 o3 o4 d4d3d1 d2

(b)Figure 1: Giant-Tour Representation1.4 ConstraintsUp to now nothing has been said about the 
onstraints of VRSPs and modeling feasibility. Mostpra
ti
ally relevant 
onstraints 
an be modeled by so-
alled resour
e variables (Desaulniers et al.,1998; Funke, 2003; Irni
h and Desaulniers, 2004). These resour
e variables may be part of intra-route or inter-route 
onstraints. Intra-route 
onstraints pertain to the resour
e variables of a singleroute whereas inter-route 
onstraints are de�ned for several, interdependent routes. Well-knownexamples of intra-route 
onstraints are vehi
le 
apa
ities, tour length restri
tions, pre
eden
es,and time window 
onstraints. Examples of inter-route 
onstraints are a limited number of 'long'tours, sorting 
apa
ity 
onstraints in par
el or letter delivery systems, and a restri
ted numberof do
king stations at depots. Consider, for example, a depot where vehi
les arrive over time. Ifthe number of vehi
les, whi
h 
an be served in a 
ertain interval is bounded, then the feasibilityof a route plan depends on the arrival time of all vehi
les, whi
h visit the depot. We know ofno systemati
 heuristi
 approa
hes in the literature for handling inter-route 
onstraints, althoughthey 
an be very important in some appli
ations. However, sin
e the literature on this is s
ar
e,we will fo
us on intra-route 
onstraints in the following.A formal des
ription of 
onstrained resour
es 
an be easily explained by the example of timewindows. The beginning of servi
e times Ti, i ∈ V , are given for every node i, and the vehi
les
hedule 
an be des
ribed entirely by giving these times at all nodes. If the node oi is the route-start node, then T
oi is the departure time. In most s
heduling problems, single or multiple timewindows [aℓ

i , b
ℓ
i ], ℓ = 1, . . . , L(i) are given for all nodes i ∈ V of the network. Every interval

[aℓ
i , b

ℓ
i ] de�nes feasible beginning of servi
e times for node i. If a vehi
le arrives within su
h atime window, the s
hedule is feasible. If it arrives before the �rst or between two time windows,it has to wait until the beginning of (the se
ond) time window. If it arrives later than the endof the last time window L(i), the s
hedule is infeasible. When a vehi
le moves from node i tonode j, the resour
e variable time in
reases by at least tij + si, whi
h is the travel time alongar
 (i, j) ∈ A plus the servi
e time at node i. Thus, 
hoosing ar
 (i, j) within a route plan implies

Tj − Ti ≥ tij + si.There are more general resour
e variable 
on
epts, e.g., for modeling time or load dependent6



travel times, multiple 
apa
ities, et
. Resour
e extension fun
tions (Desaulniers et al., 1998;Irni
h and Desaulniers, 2004) are useful for this type of model extensions, but their des
riptionand dis
ussion is beyond the fo
us of this paper.In the following it will be su�
ient to redu
e the question of feasibility of a route plan to anora
le ô, i.e., a fun
tion ô : Z −→ {yes, no}. The neighborhood N (x) of a route plan x 
onsistsof all feasible route plans and 
an be 
omputed by N (x) = {m(x) : m ∈ M, ô(m(x)) = yes}.Nevertheless, we have to keep in mind that the e�ort of 
alling the ora
le has a strong impa
t onthe e�
ien
y of the overall sear
h algorithm. In su

essful LS implementations, the ora
le andthe sear
h strategy are 
arefully adapted to ea
h other.1.5 Costs and Gains of (Partial) MovesIn this subse
tion we study how the obje
tive fun
tion of the VRSP and the de
omposition of amove into partial moves both in�uen
e the ability to allo
ate 
osts or gains to partial moves. Su
han allo
ation is attra
tive within sear
h algorithms, sin
e one may be able to show that the move
annot lead to an improvement before all partial moves have been applied.Re
all that c(x) is the 
ost of a solution x ∈ Z. We denote the gain of move m ∈ M appliedto solution x ∈ Z by g(m, x) := c(x)− c(m(x)). For VRSPs 
osts are related to the edges 
hosenin the solution x. We assume that the overall 
ost is the sum of the 
osts cij(x) asso
iated withthe edges of the giant-tour representation, i.e.,
c(x) =

∑

(i,j)∈giant tour(x)

cij(x).The following three 
ases apply to nearly all pra
ti
ally relevant appli
ations:1. Edge-dependent 
osts cij(x) = cij for ea
h (i, j) ∈ A. This is the simplest 
ase where 
ostsdepend only on the edge under 
onsideration. In this 
ase gains 
an be 
omputed fast andimmediately when edges are added or removed. Edge-dependent 
osts 
over the situationof standard TSP, VRP and PDP.2. Vehi
le-dependent 
osts cij(x) = cod
ij , whi
h depend on the route-start node o and route-end node d of the route that 
ontains the edge (i, j). The respe
tive gains of (partial)moves 
an only be determined when the assignment of request nodes to routes (i.e., to

(o, d)-
ombinations) has been made. The 
on
ept of vehi
le-dependent 
osts is su�
ient tomodel, for example, heterogeneous �eet and multi-depot problems.3. Resour
e-dependent 
osts cij(x) = cij(T
1
i , . . . , T p

i , T 1
j , . . . , T p

j ) where T 1
i , . . . , T p

i and T 1
j , . . . , T p

jare resour
e variables of nodes i ∈ V and j ∈ V . Time-dependent and load-dependent 
osts
an be modeled in this way (Desaulniers et al., 1998). Resour
e-dependent 
osts 
over themost general 
ases of intra-route 
onstraints, but delay the 
ost 
omputation of some/allroutes to a point when the entire new route plan x′ = m(x) has been 
onstru
ted. Anexample is the 
omputation of the waiting 
osts of a route in problems with time windows,whi
h depend on the departure time of all visited nodes (Desaulniers and Villeneuve, 2000).The 
lassi�
ation of a VRSP a

ording to one of the three 
ases determines the possibility ofallo
ating gains to partial moves at 
ertain stages of the sear
h pro
edure.In order to implement e�
ient pruning rules in LS, it is ne
essary to allo
ate a gain g(pi, x) toea
h of the partial moves pi, i = 1, . . . , l, depending only on the 
urrent solution x, but not on any7



intermediate solution. Let the move m ∈ M be de
omposed into partial moves pl ◦ . . .◦p2 ◦p1. Forthe gain fun
tions it is desirable that the gain of a move m is the sum of the gains of its partialmoves p1, . . . , pl. A de
omposition m = pl ◦ . . . ◦ p2 ◦ p1 is 
alled 
ost independent if
g(m, x) =

l
∑

i=1

g(pi, x) (1)holds. If the equality is not ful�lled in all 
ases, then su�
ient 
onditions whi
h guarantee (1)
an be given. These are 
alled legitima
y 
onditions, 
f. Glover (1996a). For example, legitima
y
onditions might require that only 
ompatible subsets of partial moves o

ur simultaneously orrestri
t the ordering of partial moves.For the 
ase Y = Z, the de
omposition m = pl ◦ . . . ◦ p2 ◦ p1 is order-independent if
m(x) = pπ(l) ◦ . . . ◦ pπ(2) ◦ pπ(1)(x)holds for all solutions x ∈ Z and all permutations π of {1, 2, . . . , l}. It is 
alled 
y
li
 independentif the same holds for 
y
li
 permutations π only.It should be pointed out that even if the exa
t evaluation of a partial move has to be delayedwhen 
ost independen
e is not ful�lled, approximations or lower bounds may be used for pruningthe sear
h pro
ess.2 Neighborhood TypesFor the des
ription of di�erent neighborhood types, we assume that VRSP solutions x are givenby their giant-tour representation. Then, ea
h solution x ∈ Z 
an be transformed into any othersolution x′ ∈ Z of a VRSP by deleting and adding a number of edges. Hen
e, every lo
al sear
hmethod for VRSPs 
ould, in prin
iple, be regarded as a spe
ial variant of an edge ex
hange.On the other hand, some transformations 
an be des
ribed better by 
onsidering nodes. Typi
alexamples are the relo
ation of one or several nodes from one route to another or from their 
urrentpositions to di�erent positions within the same route.We will use the term edge ex
hange when the number of dire
tly involved nodes is larger thanthe number of dire
tly involved edges, and we use the term node ex
hange when the opposite istrue. Note that we refer to �edges� both for dire
ted and undire
ted graphs, sin
e this is very
ommon in the vehi
le routing literature.In 
ases where the number of dire
tly involved nodes and edges is approximately the same,the 
lassi�
ation of a move as a node or an edge ex
hange may not be 
lear.A third 
ategory of neighborhoods are the 
ombinatorial neighborhoods. In these neighbor-hoods, the set of all feasible moves must 
orrespond with the feasible region of some 
ombinatorialoptimization problem. Sear
hing for the best improving neighbor is, therefore, equivalent to solv-ing the asso
iated 
ombinatorial optimization problem. Examples of 
ombinatorial optimizationproblems are the assignment problem, the shortest path problem and some of its extensions, andnetwork �ow problems. Furthermore, in some 
ases the de
ision variables of the 
ombinatorialoptimization problem are in one-to-one 
orresponden
e with appropriately de�ned partial moves.The 
onstraints of the 
ombinatorial optimization problems guarantee that only 
ompatible partialmoves are sele
ted in order to produ
e new feasible solutions.The fourth and last 
ategory of neighborhoods we 
onsider are the partially 
onstru
tive neigh-borhoods. In these neighborhoods, a number of nodes is removed from the 
urrent solution andre-inserted using some optimization algorithm or heuristi
.8



In the following, the major neighborhood stru
tures for VRSPs are des
ribed, in
luding thenotation, the 
ardinality of the neighborhood, the de
omposition of moves into partial moves (ifinteresting), and referen
es to the original papers.2.1 Node-Ex
hange NeighborhoodsIn this paper, we will use the α∗-notation for des
ribing the node-ex
hange neighborhoods. Thisnotation is motivated by the (M, P )-notation suggested by Taillard (1993) and the 
y
li
 transfernotation suggested by Thompson and Psaraftis (1993). It is based on the route plan de�nitiongiven above. Let us assume that we are given ℓ disjoint segments (e.g., ℓ di�erent routes) s1, . . . , sℓof the route plan x. Denote by |si| the number of nodes in segment si. Then a node ex
hange 
anbe des
ribed by the ℓ-dimensional ve
tor α = (α1, . . . , αℓ), αi ∈ N, i = 1, . . . , ℓ where min{αi, |si|}nodes are moved from path si to path si+1 if i < ℓ and from sℓ to s1 if i = ℓ. In many 
ases it isassumed that the nodes from path si take positions of the nodes removed from path si+1. If thisis the 
ase, we write αi instead of αi. If it is allowed that less than min{αi, |si|} nodes are movedfrom si to si+1, then we write α∗
i instead of αi.The 
on
ept of node ex
hanges is not limited to those routing problems where requests 
anbe des
ribed entirely by one node (su
h as in the 
ase of the TSP and VRP). However, mostimplementations so far 
onsider exa
tly this 
ase. If one wants to handle the more general 
ase,it is usually required that all nodes belonging to one request are moved simultaneously (e.g., thepi
kup and delivery node in the 
ase of the PDP). The following subse
tions illustrate di�erentnode-ex
hange neighborhoods and the α∗-notation.Note that the α∗-notation is not normalized w.r.t. 
y
li
 shifts, e.g., the neighborhood givenby (a, b, c) is identi
al to (b, c, a) and (c, a, b). In the following, we will give only one of thesepossible des
riptions.2.1.1 Relo
ationRelo
ation, also 
alled insertion, is the simplest and most basi
 node ex
hange. One node ismoved from its 
urrent position and inserted into a di�erent position. In α∗-notation this 
an bedes
ribed by (1, 0). The size of the relo
ation neighborhood is O (n2), sin
e there are n possiblenodes that 
an be moved from their 
urrent position to (n − 2) other positions.The relo
ation move mreloc 
an be de
omposed into two partial moves. In order to simplify thenotation, we assume that the prede
essor and su

essor of a node i are i−1 and i+1, respe
tively.First, a node i is removed from its 
urrent segment, whi
h means removing the edges (i−1, i) and

(i, i + 1) and inserting the edge (i− 1, i + 1). Now, node i is free (i.e., not 
onne
ted to the gianttour) and, therefore, this partial move is 
alled pfree
i . Se
ond, the free node i is inserted into ase
ond segment between 
onse
utive nodes j and j + 1. Consequently, the se
ond partial move isdenoted by pins

i,j , whi
h removes the edge (j, j + 1) and inserts the edges (j, i) and (i, j + 1). Theintermediate stru
ture Y into (from) whi
h pfree
i (pins

i,j ) maps, is the set
Y = Y one−free−node =

{

(i, x̂) : i ∈ R, x̂ is a (feasible) route plan for V \ {i}
}

. (2)Of 
ourse, the 
omposition mreloc
ij := pins

ij ◦ pfree
i is only well-de�ned if j 6= i and j 6= i − 1. Foredge-dependent 
osts, the gain of the partial moves are g(pfree

i , x) = ci−1,i + ci,i+1 − ci−1,i+1 and
g(pins

ij , x) = cj,j+1 − cji − ci,j+1. The partial moves pfree
i and pins

ij are 
ost independent in the 
aseof edge-dependent 
osts. The gain of the relo
ation move is g(mreloc
ij , x) = g(pfree

i , x) + g(pins
ij , x).9



2.1.2 Ex
hangeIn an ex
hange move, one node is moved from the �rst path to the se
ond path and a se
ondnode is moved vi
e-versa. Some authors use the term inter
hange instead of ex
hange. Wewill only use the term ex
hange in order to avoid 
onfusion with the λ-inter
hange move. The
orresponding α∗-notation is (1, 1). Clearly, ea
h (1, 1)-ex
hange move 
an be represented as the
omposition of two (partial) relo
ation moves, i.e., mexchange
i1,j1,i2,j2

= mreloc
i1,j1

◦ mreloc
i2,j2

. The size of the
(1, 1)-ex
hange neighborhood N̂ (x) is O (n4), sin
e it is the 
ombination of two relo
ation moves.For the ex
hange move it is easy to verify that its partial moves mreloc

i1,j1
and mreloc

i2,j2
are 
ost- andpermutation-independent (in 
ase of edge dependent 
osts), if the ten nodes {i1−1, i1, i1+1, j1, j1+

1, i2 − 1, i2, i2 + 1, j2, j2 + 1} are pairwise disjoint (these are su�
ient legitima
y 
onditions).In many implementations presented in the literature it is required that the nodes take theposition of their 
ounterparts, i.e., (1,1) in α∗-notation. This is also 
alled a swap move. A swapof nodes i and j is given by mswap
ij = mreloc

i,j−1 ◦mreloc
j,i−1 whi
h is a de
omposition into two dependentpartial moves. Note that one 
an restri
t swap moves to the 
ase where j 6= i − 1, i, i + 1,sin
e otherwise the resulting move is either the identity or a relo
ation move. The size of theneighborhood redu
es to O (n2) in the 
ase of a swap. As we will see later when dis
ussinge�
ient sear
h te
hniques for the swap move, there are other independent de
ompositions intopartial moves.2.1.3 λ-Inter
hangeThe term λ-inter
hange was introdu
ed by Osman (1993). It is a generalization of the ex
hangemove des
ribed above. In a λ-inter
hange one moves at most λ nodes from one segment to anotherand vi
e-versa, i.e., (λ∗, λ∗) in α∗-notation. In most implementations, also in the original paperof Osman, it is required that the nodes are inserted in the positions of the removed nodes, i.e.,

(λ∗, λ∗) in α∗-notation. Note that the λ-inter
hange for λ = 2 in
ludes the moves (1, 0), (1, 1),
(2, 0), (2, 1) and (2, 2). In order to evaluate the size of the λ-inter
hange neighborhood for (λ∗, λ∗),we �rst 
onsider the possible 
hoi
es to remove 2k nodes (k ≤ λ). There are (

n
2k

) possibilities tosele
t 2k di�erent nodes. After having sele
ted 2k nodes, there are O (n2k) (for k signi�
antlysmaller than n) possibilities to re-insert them into the segments. This gives a neighborhood sizeof O
(

∑λ
k=0

(

n
2k

)

n2k
)

= O
((

n
2λ

)

n2λ
)

= O
(

n4λ
). In the 
ase of (λ∗, λ∗), we still have (

n
2k

)possibilities to sele
t 2k di�erent nodes. However, there are only (2k)! (whi
h is 
onstant forsmall k) ways to re-insert the nodes, resulting in a neighborhood size of O (

n2λ
). We are onlyaware of papers where (1∗, 1∗) has been used. Note that in general, λ-inter
hange moves 
annotbe represented by a 
omposition of ex
hange moves. Figure 2 depi
ts a 2-inter
hange move that
annot be represented by ex
hange moves, sin
e the involved nodes are not swapped pair-wise.2.1.4 Node-Eje
tion ChainsEje
tion 
hains are a powerful 
on
ept introdu
ed by Glover for solving various 
ombinatorialoptimization problems (Glover, 1992, 1996a; Glover and Laguna, 1997). Eje
tion 
hains havebeen used to solve the TSP and VRP. Here we des
ribe the use of node-eje
tion 
hains (NEC) inthe 
ontext of the VRP, as a generalization of the 
on
ept implemented by Rego (1998).In the �rst step of a NEC, a node i1 is removed from its 
urrent position and inserted intoanother position, 
urrently taken by another node i2. In the se
ond step, node i2 is again removedfrom its 
urrent position and inserted to yet another node position i3, et
. Rego 
onsiders two10



(a) (b)Figure 2: A 2-Inter
hange Move that 
annot be 
omposed of Ex
hange Moves, (a) Before theMove, dotted Lines indi
ate whi
h Nodes are ex
hanged, (b) After the Movepossibilities for performing the last move of su
h an eje
tion 
hain. In the �rst 
ase, termed 'multi-node ex
hange pro
ess' (MNEP), the last eje
ted node is inserted into the position left empty bythe �rst removed node. In the se
ond 
ase, termed 'multi-node insert pro
ess' (MNIP), the lastnode is inserted into another position without eje
ting a node. In α∗-notation a NEC is given by
α = (α1, . . . , αℓ) = (1, . . . , 1) for MNEP and by α = (α1, . . . , αℓ) = (1, . . . , 1, 0) for MNIP. Thenumber ℓ is the depth of the NEC. In the following we will 
onsider MNEP only, sin
e MNIP 
aneasily be modelled as an ex
hange pro
ess by using an additional dummy node.The NEC move de
omposes naturally into alternating sequen
es of partial moves pfree

ij
and

pins
ij ,ij+1

for j = 1, . . . , ℓ − 1, i.e.,
mNEC

(i1,...,iℓ)
: Z

pfree
i1−→ Y

pins
i1,i2−→ Z

pfree
i2−→ Y

pins
i2,i3−→ Z

pfree
i3−→ . . .

pfree
iℓ−→ Y

pins
iℓ,i1−→ Z. (3)Again, Y = Y one−node−free is the stru
ture de�ned by (2). We assume that all nodes i1, i2, . . . , iℓare di�erent.In order to provide a basis for the des
ription of appropriate LS pro
edures that will bepresented in Subse
tion 3.1.2, we are now giving a more detailed analysis of the partial movesand their dependen
ies. We assume edge-dependent 
osts. At �rst we point out that the move

mNEC
(i1,...,iℓ)

given by (3) is a 
y
li
 shift of the ℓ nodes i1, i2, . . . , iℓ. The 
orresponding 2ℓ partialmoves are 
y
li
 independent as 
an be seen from Figure 3. mNEC
(i1,...,iℓ)

moves are in one-to-one
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Figure 3: Par-tial Moves in aNode-Eje
tionChain mNEC
(i,j,k)with l = 3
orresponden
e with 
y
les of partial moves (CPM). Neighborhood sear
h (i.e., sear
hing for moves11



with 
ertain properties, e.g., improving moves) is, therefore, equivalent to sear
hing for CPM with
orresponding properties.From Subse
tion 2.1.1 we know that pfree
i and its su

eeding partial move pins

ij are 
ostindependent (if j 6= i − 1, i, i + 1). In 
ontrast, pins
ij and its su

essor pfree

j are not 
ost in-dependent. To see this, note that the 
omposition pins&free
ij := pfree

j ◦ pins
ij adds the edges

(j − 1, i), (i, j + 1) and removes the edges (j − 1, j), (j, j + 1) and, therefore, the gain is equal to
g(pins&free

ij , x) = cj−1,j + cj,j+1 − cj−1,i − ci,j+1. This does not 
oin
ide with the sum of the gainsof the partial moves pfree
j and pins

ij . As a result, the above de
omposition of move mNEC
(i1,...,iℓ)

into
2ℓ partial moves is not 
ost independent.However, it is possible to de
ompose a CPM into 
ost independent parts. With the abovegiven gain g(pins&free

ij , x) it is easy to see that pins&free
i1,iℓ

◦ pins&free
iℓ,iℓ−1

◦ . . . ◦ pins&free
i2,i3

◦ pins&free
i1,i2is su
h a de
omposition if the following legitima
y 
onditions are ful�lled. If a node i eje
tsnode j, then in the remaining part of the NEC-move it is prohibited to move node i, the newprede
essor j − 1 or su

essor j + 1. This implies that the nodes i1, . . . , iℓ have to be 
hosensu
h that ik /∈ {ij − 1, ij , ij + 1} holds for all k 6= j. From the 
ost independen
y it followsthat �nding improving moves mNEC is equivalent to dete
ting CPM with a positive overall gain

∑ℓ
j=1 g(pins&free

ij ,ij+1
, x). The point is that the atoms pins&free

ij ,ij+1
of this de
omposition 
an be pri
edindependently.Next we determine the size of the NEC neighborhood. It follows from the legitima
y 
onditionsthat every eje
tion of a node j blo
ks the two nodes j − 1 and j + 1 from being eje
ted insubsequent partial moves. Thus, the maximum depth of a NEC is ℓmax = ⌊n

2 ⌋. For a givendepth ℓ ∈ {1, . . . , ℓmax}, there are n(n − 2) · · · (n − 2ℓ + 2) = O
(

2ℓ
(

⌊n
2
⌋

ℓ

)) possibilities forsele
ting the ℓ nodes in the NEC. The order of these nodes 
an be permuted. Hen
e, the totalneighborhood size is O (

∑⌊n
2
⌋

ℓ=1 2ℓ
(

⌊n
2
⌋

ℓ

)

(ℓ − 1)!
).2.1.5 Cy
li
 TransfersThe 
on
ept of 
y
li
 transfers (CTs), introdu
ed in (Thompson and Psaraftis, 1993) is verysimilar to that of an eje
tion 
hain. Generally, in a 
y
li
 transfer, m nodes are moved fromroute r1 to route r2, from route r2 to route r3 et
., until m nodes are moved from route rb toroute r1. Su
h a general move is 
alled a 'b-
y
li
 m-transfer'. In α∗-notation it is given by

α = (α1, . . . , αb) = (m, . . . , m). In the original paper it is also allowed to move less than m nodesfrom one route to the next using so-
alled 'dummy demands'. In α∗-notation this is the move
α = (α1, . . . , αb) = (m∗, . . . , m∗). A single CT move 
an be des
ribed by the b sets of nodes whi
hare 
y
li
ly shifted among their routes. Let Si be the set of nodes whi
h are removed from route
ri and inserted into route ri+1 (for abbreviation we set rb+1 := r1 and Sb+1 := S1). Analogous tothe NEC neighborhood, the 
y
li
-transfer move mCT

(S1,S2,...,Sb)

an be de
omposed into 2b partialmoves pfree

Si
and pins

Si,Si+1
:

mCT
(S1,S2,...,Sb)

: Z
pfree

S1−→ Y
pins

S1,S2−→ Z
pfree

S2−→ Y
pins

S2,S3−→ Z
pfree

S3−→ . . .
pfree

Sb−→ Y
pins

Sb,S1−→ Z.The operation pfree
Si

removes the nodes Si from their 
urrent positions in the route ri, while pins
Si,Si+1inserts the nodes Si into the route ri+1 under the assumption that the nodes Si+1 will be removedfrom ri+1 in the following partial move. The intermediate stru
ture Y 
onsists of pairs (S, x̂),where S is a subset of nodes and x̂ is a route plan on V \ S.12



In 
ontrast to the NECs des
ribed above, CT neighborhoods do not require that the insertednodes take the pla
e of the removed nodes. Rather, a new route ri+1′ has to be determined whi
hnow in
ludes the nodes (V (ri+1) ∪ Si) \ Si+1. For example, in the 
ase of the VRP(TW), onewould have to solve a TSP(TW) to generate ri+1. Sin
e solving these subproblems to optimalityis, in general, too time-
onsuming, one usually resorts to an insertion heuristi
.In the following, we assume that the 
osts c(x) of a route plan 
an be 
omputed as the sumof 
osts c(ri) of the single routes. When inter-route resour
es (see p. 6) in�uen
e the 
ost of theroute-plan this assumption might be violated. As in the 
ase of NEC, mCT
(S1,...,Sb)

de
omposes into
b 
ost independent partial moves pins&free

Si,Si+1
:= pfree

Si
◦ pins

Si,Si+1
, i = 1, . . . , b. The gain of pins&free

Si,Si+1is g(pins&free
Si,Si+1

, x) = c(ri+1) − c(ri+1′) where c(ri+1′) is the 
ost of the new route ri+1′. If theredoes not exist a feasible route ri+1′ for the node set (V (ri+1) ∪ Si) \ Si+1 (or no feasible route isfound), then one sets g(mCT
(Si,Si+1), x) = −∞.CT neighborhoods are more general than NEC neighborhoods in the sense that several nodesmight be shifted simultaneously within a single partial move, and the ordering of the nodes inthe new route might be 
ompletely di�erent from their previous ordering. On the other hand,CT require that node sets Si, Sj of a move mCT 
ome from di�erent routes. This assumption isnot ne
essary in the general NEC approa
h. We will see later that this 'di�erent route legitima
y
ondition' is very useful when the neighborhood is sear
hed for improving solutions, sin
e it allowsintra-route 
onstraints to be handled impli
itly when solving a dynami
 program or shortest pathproblem. Thus, routing problems with 
omplex intra-route 
onstraints 
an be handled using thisapproa
h.In order to bound the size of the CT neighborhood, we assume that all H routes have ap-proximately the length n/H. The number of di�erent b-
y
li
 m-transfers is O

(

(

H
b

)

· 2bn/H
),sin
e there are (

H
b

) possibilities to 
hoose the b routes and ea
h route ri has approximately 2n/Hsubsets Si. Hen
e, the CT neighborhood is larger than the neighborhood of the NEC with thedi�erent routes legitima
y 
ondition.2.2 Edge-Ex
hange NeighborhoodsEdge-ex
hange neighborhoods are the most 
ommonly used neighborhoods in heuristi
s for VR-SPs. They 
an be des
ribed by a pro
ess of subsequently removing and re-inserting edges.2.2.1 General Des
riptionRemoving k di�erent edges d1, . . . , dk ∈ A from the giant tour x 
reates exa
tly k subpaths
(s1, s2, . . . , sk) whi
h are 
alled segments in the 
ontext of edge ex
hanges. In order to 
onstru
ta neighbor giant tour x′ = m(x) from these segments one has to add the same number k of edges,denoted by a1, a2 . . . , ak ∈ A. (More generally, one 
an 
reate a union of edge disjoint 
y
leswhi
h is then transformed ba
k into a single tour.) The added edges have to 
onne
t pairs ofnodes in
ident to at least one of the removed edges, i.e., start-nodes or end-nodes of the di�erentsegments. Ea
h node is in
ident to the same number of removed and added edges. Therefore, thespanning graph G(d1, . . . , dk, a1, . . . , ak) 
an be de
omposed into alternating 
y
les of removedand added edges.Deleting the edges d1, . . . , dk and inserting new edges a1, . . . , ak 
an be interpreted with respe
tto the following two aspe
ts: First, when an edge ai 
onne
ts a segment s with another segment s′,then these segments be
ome prede
essor and su

essor segments, respe
tively. Consequently, the13



inserted edges determine the permutation of the segments. Se
ond, 
onne
ting one segment swith the �rst (last) node of segment s′ implies that the se
ond segment has to be traversed in itsgiven (its reverse) order. Hen
e, the inserted edges also determine whether segments are invertedor not.Therefore, ea
h edge-ex
hange move m whi
h deletes k and adds k edges 
an be 
onsidered asthe subsequent exe
ution of the following four operations:1. k-segmentation. This operation removes k edges from the giant tour x resulting in ksegments s1, . . . , sk.2. k-inversion. This operation inverts a subset of the k segments, i.e., s±1
i .3. k-permutation. This operation 
hanges the order of the segments s±1

π(1), . . . , s
±1
π(k).4. k-
on
atenation. This operator 
on
atenates the segments that result from applying thethree �rst operators into a new giant tour x′.When all inserted edges di�er from the deleted edges, the move is 
alled a proper move.There are some details that we would like to point out. Any permutation π of the in-di
es {1, 2, . . . , k} 
an be represented in 
y
le-notation, e.g., as (1, 3, 4)(2, 5) when the permutationmaps 1 to 3, 3 to 4, 4 to 1, and ex
hanges 2 and 5. The result of applying π to s±1

1 , . . . , s±1
k and
on
atenating the permuted segments is a 
y
le (giant tour), if and only if π is a 
y
li
 permuta-tion. Non-
y
li
 permutations π transform x into multiple 
y
les. These multiple 
y
les do notne
essarily 
orrespond with feasible route plans. However, as we will see in Se
tion 2.2.3, some ofthese stru
tures are easily re-interpretable as 
y
les and might, therefore, generate �interesting�giant tours x′.The set of moves, for whi
h the operators inversion and permutation are identi
al, de�ne amove type or edge-ex
hange type. In order to give a 
lear des
ription of di�erent edge-ex
hangetypes we introdu
e the abc-notation. In this notation, one uses the �rst k letters of the alphabet,where the ith letter 
orresponds to the ith segment of the giant tour. If the letter is upper
ase, the
orresponding segment is reversed. For example, the 
ode aBDc 
orresponds to moves where these
ond and the fourth segments are reversed and the third and fourth segments 
hange position.To indi
ate that a new 
y
le starts we write �|�, i.e., aC|bd means that the �rst and the reversedthird segment form one 
y
le while the se
ond and the forth segments form the se
ond non-reverse
y
le (for the moment we do not 
are about the question of how to transform these two 
y
lesba
k to a single 
y
le).Next, we want the ab
-notation to be unambiguous, i.e., the notation should not depend onthe numbering of the segments within the giant tour. Let us assume that the segment �a� is �xedby an appropriate de�nition, e.g., stating that segment �a� in
ludes the node with index 1. Any
y
li
 permutation π 
an be uniquely written with �a� as the �rst element of the 
y
le. This meansthat the 
y
li
 permutation (a, c, d, b) 
annot be written as (c, d, b, a) or (d, b, a, c) or (b, a, c, d).From this argument it follows that we have to distinguish (k − 1)! di�erent 
y
li
 permutations.In the 
ase of multiple 
y
les, the ab
-notation �rst presents the 
y
le whi
h 
ontains segment

a, followed by the 
y
le with the smallest remaining segment number (a

ording to the letters inthe alphabet), et
. For instan
e, instead of aDf |c|eB one has to write aDf |Be|c.Furthermore, in symmetri
 problems a giant tour x′ and the reversed giant tour x′−1 representidenti
al solutions, e.g., Ab is identi
al to aB. In 
ontrast, asymmetri
 problems have to takethe orientation of the �rst segment a into a

ount. In the following des
ription of edge-ex
hange14



moves, we will fo
us on the symmetri
 
ase only. The results remain valid for the asymmetri

ase if we keep in mind the fa
tor two for inverting the �rst segment.Assignment of Route-Start and Route-End Nodes and Inversion of Segments Re
allthat every route starts with a route-start node and ends with a route-end node. Any move thata�e
ts at least two routes may disrupt this 
on�guration. The simplest 
ase is the appli
ation ofthe so-
alled 2-opt move to two routes, an instan
e of the so-
alled 
ross ex
hange. This move isdepi
ted in Fig. 4. The problem with this situation is that the feasible assignment of route-start
o1

o2d2

d1

(a) o1

o2d2

d1

(b)Figure 4: A Cross Move that disrupts the Stru
ture of the Route, starting with a Route-StartNode and terminating with a Route-End Node, (a) Before and (b) after the Ex
hangeand route-end nodes is disrupted by the move. Therefore, a new assignment of route-start androute-end nodes to the routes is ne
essary. However, this problem is an optimization problemby itself. Even in the 
ase of two routes, there might be four possibilities (if all route-start androute-end nodes are 
ompatible, i.e., o1 ∼ d1, o1 ∼ d2, o2 ∼ d1 and o2 ∼ d2 holds) of assigninga 
ombination to the routes. A 
loser investigation of this problem shows that in general it 
anbe modeled as a planar three-dimensional assignment problem (Magos and Miliotis, 1994).In order to save the e�ort of solving an optimization problem, there is a simple way toimplement the inversion of a segment s. First, if s solely 
onsists of request nodes, thenthe the segment 
an be inverted dire
tly. Se
ond, if s 
ontains a single (o, d)-pair, i.e.,
s = (v1, v2, . . . , vp, d, o, w1, w2, . . . , wq), then the inverted segment should be de�ned as s−1 =
(wq, . . . , w2, w1, d, o, vp, . . . , v2, v1). This implies that after permutation and 
on
atenation, thenew giant tour still 
onsists of routes starting (ending) with nodes o ∈ O (d ∈ D) in
luding somerequest nodes. Third, if the segment s 
ontains one or several routes rh(i), rh(i)+1, . . . , rh(j), i.e.,
s = (v1, v2, . . . , vp, d, rh(i), rh(i)+1, . . . , rh(j), o, w1, w2, . . . , wq), then the inverted segment shouldbe s−1 = (wq, . . . , w2, w1, d, rh(i), rh(i)+1, . . . , rh(j), o, vp, . . . , v2, v1), whi
h means that the inter-mediate routes should not be inverted. The reason is that the order of the single routes in the gianttour is arbitrary, and a 
omplete inversion of all in
luded routes is 'more likely' to be infeasible ifthe problem at hand is asymmetri
.2.2.2 k-OptThe oldest and most widely used neighborhood is the so-
alled k-opt neighborhood (see, e.g.,Croes, 1958; Lin, 1965). In these neighborhoods, k ≥ 2 edges are removed from the giant tourand k edges are inserted, resulting in a di�erent route plan. The de�ning 
hara
teristi
 of k-optmoves is that the permutation π of the segments is a 
y
li
 permutation. Although k-opt movesare usually employed within single-route problems, su
h as the TSP and TSPTW, they generalizeto multiple-route problems in the giant-tour representation.15



When deleted and inserted edges are not disjoint (an edge is �rst removed and later the sameedge is added ba
k to the tour (delete-add), or an edge is added and the same edge is deleted later(add-delete)) one gets a non-proper move whi
h 
an also be found as a k′-opt move with k′ < k.For all k ≥ 2, the size of the k-opt neighborhood 
an be derived from the above de�nition.There are (

n
k

) possibilities to 
hose the edges for segmentation, 2k−1 possibilities for performing aninversion, and (k − 1)! possibilities for doing a 
y
li
 permutation. The size of the neighborhoodis, therefore, bounded by (

n
k

)

2k−1(k − 1)!. This is an upper bound, sin
e the segmentation mayresult in degenerated segments, whi
h 
annot be inverted. For k ≥ 3, we have also in
ludedall neighborhoods from 2, . . . , k − 1 in the 
al
ulation. On the other hand, the number of movetypes for a given k is exa
tly MT (k) := 2k−1(k − 1)!, sin
e the two operations k-inversion and
k-permutation generate exa
tly this number of moves. The number of 2-opt and 3-opt move typesis MT (2) = 2 and MT (3) = 8, respe
tively. The two 2-opt move types are the identity (whi
his a non-proper move) and the move where the edges (i, i + 1) and (j, j + 1) are repla
ed by
(i, j) and (i + 1, j + 1) and the segment between the nodes i + 1 and j is inverted. The eight3-opt move types depi
ted in Fig. 5 
ontain one identi
al tour, three 2-opt move types, and onlyfour proper 3-opt move types. Let us denote the number of proper move types for a given k
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Figure 5: The Eight 3-Opt Move Typesby PMT (k). We know that PMT (2) = 1 and PMT (3) = 4. For an arbitrary k, the valueof PMT (k) 
an be 
omputed as follows. After having 
hosen the k edges to remove, we haveto subtra
t from MT (k) the number of proper moves that 
an be generated with fewer than kedges. For a given k and a given i < k, there are (

k
i

) possibilities to sele
t subsets with exa
tly
i edges. Moreover, the identity move, where all k edges are re-inserted after deletion, also hasto be substra
ted from the number of non-proper moves. This results in the re
ursive formula
PMT (k) = MT (k) −

∑k−1
i=2

(

k
i

)

PMT (i) − 1, k ≥ 3 and PMT (2) = 1 for the number of proper
k-opt moves. Table 1 depi
ts the values of MT (k), PMT (k) and PMT (k)/MT (k) for sele
tedvalues of k. This shows that the ratio between proper k-opt move types and the k-opt movetypes lies between 0.5 and 0.6 for 'relevant' values of k. It should also be noted that the ratioin
reases monotoni
ally with k.We would also like to point out that the restri
tion of 
onsidering only proper k-opt movetypes does not ex
lude the possibility of 
reating moves that 
an be 
omposed of several k′-optmoves with k′ < k having all deleted and added edges disjoint. This o

urs for the �rst time when
k = 4. For example, the proper 4-opt move type aBcD 
an be 
omposed of the two independent2-opt move types aB and cD, as 
an be seen from Fig. 6.16



k 2 3 4 5 6 7 8 9 10 50 100
MT (k) 2 8 48 384 3840 46080 645120 1.03E+07 1.86E+08 3.42E+77 5.92E+185
PMT (k) 1 4 25 208 2121 25828 365457 5.90E+06 1.07E+08 2.06E+77 3.57E+185
PMT (k)
MT (k) 0.5 0.5 0.52 0.54 0.55 0.56 0.57 0.57 0.57 0.6 0.6Table 1: Growth of (proper) Move Types for k-Opt Moves

Figure 6: A Proper 4-Opt Move Type whi
h 
an be 
omposed of two inde-pendent 2-Opt Move TypesOr-Opt The only 3-opt move whi
h does not reverse any segments is the move acb. This is aninstan
e of the so-
alled Or-opt move (Or, 1976), where one usually requires that the number ofnodes within at least one of the segments b and c is less than or equal to three. Therefore, thesize of the Or-opt neighborhood is not 
ubi
, but quadrati
. Su
h restri
tions on path lengths area general way to speed up the sera
h within edge-ex
hange neighborhoods.2.2.3 k-Opt*A generalization of the k-opt moves for multiple-route problems was introdu
ed by Potvin et al.(1989). In 
ontrast to the k-opt neighborhood, the permutation de�ning the k-opt* move is notne
essarily a 
y
li
 permutation π. For example, aE|Bc|d represents a move type whi
h generatesthree subtours (
y
les). The �rst one 
onsists of segment a and the reversed segment e, the se
ondone 
onne
ts the reversed segment b with c, and the last one is formed by the single segment d.The k-opt* neighborhood in
ludes the k-opt neighborhood.The formation of a subtour is feasible if and only if the 
y
le represents a giant tour of thenodes it 
overs. This means that 
ompatible pairs o ∼ d of tour-start and tour-end nodes haveto form individual routes of the subtour. Furthermore, ea
h 
y
le has to in
lude at least one
ombination of route-start and route-end nodes. Fig. 7 depi
ts su
h a repla
ement operation fora 
on�guration resulting from a 2-opt* move.
(a) (b)Figure 7: Transformation of the Intermediate Stru
ture, (a) that results from the Appli
ation ofa 2-Opt* Move to (b) an equivalent Giant Tour17



The transformation of multiple 
y
les into one giant tour (whi
h represents the route plan) isdone by 
on
atenating the individual routes in a 
y
li
 way. The �nal ordering of these routes isarbitrary.The size of the k-opt* neighborhood 
an be 
omputed in analogy to the size of the k-optneighborhood. The only di�eren
e is that here π is an arbitrary permutation. Thus, the size ofthe k-opt* neighborhood is bounded by (

n
k

)

2k−1k!, whi
h is (approximately) k times the size ofthe k-opt neighborhood.2.2.4 Spe
ial Inter-Route NeighborhoodsMost heuristi
s and metaheuristi
s for VRSPs use a set of restri
ted k-opt operators that arepresumably very e�
ient in this 
ontext. The advantage of using restri
ted k-opt operators isthat the e�ort of sear
hing is usually lower than the O (nk)-e�ort needed for sear
hing the entire
k-opt neighborhood. Most of these operators are stru
tured so that no paths need to be reversed.Cross Ex
hange A 
ross ex
hange is identi
al to applying a 2-opt or 2-opt* move to two routes.The 
ase of applying the 2-opt* move 
orresponds to swapping the end segments between tworoutes. In most appli
ations where the order of the nodes is important, 
ross ex
hanges are limitedto this 
ase.String Relo
ation A segment, i.e., a 'string', is removed from one route and inserted into adi�erent route. This is equivalent to applying the Or-opt move to two routes. If the length of thestring is restri
ted, then the Or-opt neighborhood is quadrati
.String Ex
hange Two strings from two di�erent routes are ex
hanged. This is equivalent toapplying the well-known 'double-bridge' move of the TSP (an 'ad
b'-move) to two di�erent routes.Due to di�erent terminologies, this move is sometimes also referred to as a 
ross ex
hange. If thelength of the two segments is restri
ted, then the string-ex
hange neighborhood 
an be sear
hedin quadrati
 time. Without su
h restri
tions, the size of the string-ex
hange neighborhood isbounded by O (n4). Note that the 
ross ex
hange is equivalent to a spe
ial 
ase of the stringex
hange in the single-depot 
ase, where an endpoint of both of the strings is 
onne
ted dire
tlyto the depot.2.2.5 Lin-Kernighan NeighborhoodRe
all that in an edge-ex
hange move m, the added edges are denoted by a1, a2, . . . , ak, the deletededges by d1, d2, . . . , dk, and that all these edges together impli
itly de�ne a set of alternating 
y
les.The alternating 
y
les 
ompletely determine the move m be
ause they 
onsist of the symmetri
di�eren
e of the edges from the 
urrent giant tour x and the new giant tour x′. By SAC-k-optwe denote all k-opt moves whose deleted and added edges generate a single alternating 
y
leFunke et al. (2004). All 2-opt and 3-opt moves are 
ontained in the SAC-2-opt and SAC-3-opt neighborhoods, respe
tively. However, it is well-known that the double-bridge move acbdis not 
ontained in the SAC-4-opt neighborhood (see, e.g., Rego and Glover, 2002). Therefore,the SAC-k-opt neighborhood is a proper subset of the k-opt neighborhood. The Lin-Kernighanneighborhood (LK), introdu
ed in (Lin and Kernighan, 1973), is a proper subset of SAC-k-opt,whi
h further restri
ts the way edges 
an be added and deleted in the alternating 
y
le. It requiresthat the pro
ess of subsequent deletion and addition of edges satis�es some stru
tural properties18



and that all added and deleted edges are disjoint. The 
orresponding moves have the property ofde
omposing naturally into 
y
li
 independent partial moves (see p. 8). Lin and Kernighan haveformulated the gain 
riterion for general 
y
li
 independent moves, whi
h makes the sear
h in theTSP-
ase highly e�
ient (see Subse
tion 3.1.2).In order to give a formal des
ription of the neighborhood and its de
omposition, we have tolabel the nodes that are in
ident with the added and deleted edges. Tra
ing along the alternating
y
le shows that there exist 2k (not ne
essarily di�erent) nodes i1, i2, . . . , ik and j1, j2, . . . , jk su
hthat the deleted edges 
an be written as dp = (ip, jp) and the added edges 
an be written as
ap = (jp, ip+1) for all p = 1, . . . , k (with the setting ik+1 := i1). The move m is determined bythe nodes i1, i2, . . . , ik and j1, j2, . . . , jk of the alternating 
y
le. The partial move pdel

ij deletes theedge (i, j) from the 
urrent tour (or more generally, from a given graph) and the partial move padd
jiadds the edge (j, i). Using this notation and introdu
ing the intermediate stru
tures Z and Y ,whi
h will be explained below, the 
y
li
 edge-ex
hange move m 
an be written as:

mLK
i1,...,ik,

j1,...,jk

: Z
pdel

i1,j1−→ Y
padd

j1,i2−→ Z
pdel

i2,j2−→ Y ∗
padd

j2,i3−→ Z
pdel

i3,j3−→ . . .
pdel

ik,jk−→ Y
padd

jk,i1−→ Z. (4)LK is a restri
ted neighborhood with moves mLK of variable length, where the move alwaysstarts with the deletion of an edge. The alternative of starting with the addition of an edge leadsto a so-
alled edge-eje
tion 
hain and has been studied by Glover (1992). LK restri
ts the steps ofthe de
omposition (4) to the 
ase where after the deletion of an edge, the generated stru
ture isa Hamiltonian path y, i.e., Y is the set of all Hamiltonian paths. The intermediate obje
ts z ∈ Zare 
o-
alled stem-and-
y
les. They result from the addition of an edge from an endpoint of aHamiltonian path to another node. The stem-and-
y
le referen
e stru
ture Z was introdu
edin (Glover, 1996a, 1992).Sin
e all edges are pairwise disjoint, the LK neighborhood only 
ontains moves that ex
hangeexa
tly k edges with k other edges. Hen
e, LK is a subset of the neighborhood de�ned by theproper k-opt moves (see p.14).From our point of view, the above de
omposition is the kernel of the famous Lin and Kernighanneighborhood. Its variability relies on the fa
t that at ea
h add-step one 
an either add the edge
(jp, i1), whi
h transforms the 
urrent path into a (giant) tour (i.e., a 
losing partial move), orone may add a �short� edge (jp, ip+1) with ip+1 6= i1, whi
h 
ontinues the alternating delete-add-pro
ess. The se
ond alternative allows the generation of edge ex
hanges with variable length.In (Lin and Kernighan, 1973), the authors allow the se
ond deletion of an edge to either 
reatea Hamiltonian path or a path with a single 
y
le. This slightly 
hanges the LK-neighborhood into alarger neighborhood LK*. The motivation for this modi�
ation a

ording to (Lin and Kernighan,1973, p. 506) is that LK* 
ontains all 3-opt moves, while LK does not. More spe
i�
ally, the Or-opt move (type a
b) is not 
ontained in the LK neighborhood, but belongs to LK*. A 
omparisonof neighborhoods of the Lin-Kernighan type and eje
tion-
hain moves proposed in (Glover, 1991,1996a) 
an be found in (Funke et al., 2004).2.3 Combinatorial NeighborhoodsLarge neighborhoods have the potential to 
ontain more and better solutions than small neigbor-hoods. Ahuja et al. (1999) stress that large-s
ale neighborhoods do not ne
essarily produ
e moree�e
tive heuristi
s unless one 
an sear
h the larger neighborhood in a very e�
ient manner. Inthis subse
tion, we fo
us on large neighborhoods for VRSP whi
h 
an be sear
hed e�e
tively by a19



suitable algorithm, based on, e.g., dynami
 programming or a mat
hing approa
h. We 
all theseneighborhoods 
ombinatorial neighborhoods (CN).2.3.1 Assignment-based NeighborhoodsIn the last few years, several resear
hers have 
onsidered the so-
alled assignment neighborhood,(see, e.g., De��neko and Woeginger, 2000). We give a VRSP spe
i�
 presentation of the ideas here.The �rst step of the pro
edure is to split the 
urrent giant tour x into 2k segments ofthe form x = (f1, e1, f2, e2, . . . , fk, ek), i.e., a 2k-segmentation. Subsequently one removesthe segments e1, . . . , ek from their 
urrent positions, permutes and reinserts them between thesegments f1 . . . , fk, while keeping their ordering �xed. This yields a new giant tour x′ =
(f1, eπ(1), f2, eπ(2), . . . , fk, eπ(k)). While the removed segments ei might be empty, the �xed seg-ments fi have to in
lude at least one node. The reason for this is that one wants to 
ompute aninsertion 
ost cij for inserting the removed segment ei between the segments fj and fj+1 (with
fk+1 := f1). Computing su
h 
ost 
oe�
ients cij is trivial in the 
ase of edge-dependent 
osts andalso appli
able for vehi
le-dependent 
osts.Finding a minimum 
ost insertion of all removed segments amounts to solving an assignmentproblem on (cij)1≤i,j≤k. The assignment problem is the least-
ost sele
tion of k di�erent partialmoves passign

it,jt
, t = 1, . . . , k where the partial move passign

i,j inserts segment ei between fj and
fj+1. Partial moves with di�erent indi
es it 6= is and jt 6= js for t 6= s are 
ost independent andpermutation-independent, i.e., ful�ll the legitima
y 
ondition.The assignment neighborhood has been suggested in the 
ontext of the TSP with all segments
onsisting of a single node, i.e., k = ⌈n/2⌉ and possibly one empty segment. It means that everyse
ond node of the TSP-tour 
an be arbitrarily permuted. This 
hoi
e of segments does notautomati
ally generalize to other more 
omplex routing problems, sin
e one 
annot model those
onstraints in the assignment framework. However, assignment neighborhoods are appli
able tothose VRSP where the feasibility of a route plan 
an be determined by 
onsidering all routesindependently. Then, the splitting of the 
urrent giant tour into 2k segments has to be performedin a restri
ted way.2.3.2 Partial Order NeighborhoodsAnother type of 
ombinatorial neighborhood is the one suggested by Balas and Simonetti (2001).Here, the 
urrent route plan is re-optimized under the 
ondition that the 
hange of the relativeposition of ea
h node within the route does not ex
eed a 
ertain pre-spe
i�ed integer value. This
ondition implies a partial order on the nodes of the route plan. In (Balas, 1999) it was shownthat in the 
ase of the TSP, this problem 
an be solved e�
iently by a shortest path 
al
ulation.However, when more 
omplex 
onstraints, su
h as time windows, have to be taken into a

ount,the labeling pro
edures su�er from the well-known problem of a large number of undominatedlabels. In (Balas and Simonetti, 2001) it was suggested to alleviate this problem by heuristi
allylimiting the number of labels kept at ea
h node. For an analysis of the neighborhood size, see theoriginal papers.2.3.3 Pyramidal NeighborhoodsAssume that the nodes in the 
urrent route plan are numbered 
onse
utively from 1 to n. Then,any pyramidal neighbor of the 
urrent route plan is a route plan where the indi
es of the nodes�rst in
rease from 1 to n and then de
rease again. For example, two pyramidal neighbors of the20



route plan (1, 2, 3, 4, 5, 6, 7, 8, 9, 1) are (1, 3, 4, 5, 9, 8, 7, 6, 2, 1) and (1, 3, 4, 6, 7, 8, 9, 5, 2, 1). Costoptimal pyramidal neighbors 
an be found in O (n2) using dynami
 programming or shortest path
omputations (see, e.g., Gilmore et al., 1985). The size of the neighborhood is O (2n−1) (Carlierand Villon, 1990).One drawba
k of the pyramidal neighborhood is that nodes 1 and 2 and nodes n−1 and n aredire
tly 
onne
ted by the edges (1, 2) or (2, 1) resp. (n−1, n) or (n, n−1). Therefore, Carlier andVillon (1990) suggested rotating the indi
es of the 
urrent route plan n times and to use everynode on
e as the starting point of a 
y
li
 numbering.So far, the pyramidal neighborhood has only been used in the 
ontext of the TSP. However,as we will show below, this neighborhood 
an be generalized to take into a

ount all types ofintra-route 
onstraints that 
an be modeled as resour
es, su
h as time windows and pre
eden
es.2.3.4 Route-First Cluster-Se
ondWhereas all the other 
ombinatorial neighborhoods mainly modify the routing of the 
urrentroute plan, this neighborhood fo
uses on the 
lustering aspe
t of the routing problem. The route-�rst 
luster-se
ond approa
h of Beasley (1983) was developed as a 
onstru
tive heuristi
 to solveVRSPs. Here we des
ribe how the approa
h 
an be used within a lo
al sear
h 
ontext. Re
ently,a simpli�ed version of this neighborhood has been employed within a Geneti
 Algorithm for theVRP by Prins (2003).Suppose that all route-start and route-end nodes have been removed from the 
urrent routeplan. This partitions the route plan into H segments, p1, . . . , pH . The route-�rst 
luster-se
ondneighborhood 
onsists of all solutions that 
an be obtained by 
onne
ting the segments to a gi-ant route and subsequently partitioning this giant route into H new routes. Note that we allowany number of routes to be empty. Consider, for example, the three routes p1 = (o1, 2, 4, 7, d1),
p2 = (o2, 3, 1, 9, 6, d2) and p3 = (o3, 5, 8, d3). One neighbor solution 
an be found by �rst 
on-sidering the permutation (p2, p1, p3) that results in the giant route (3, 1, 9, 6, 2, 4, 7, 5, 8) and then
lustering this giant route into the three new routes p′1 = (o1, 3, 1, 9, d1), p′2 = (o2, 6, 2, d2) and
p′3 = (o3, 4, 7, 5, 8, d3). Se
tion 3.2.1 will explain how to determine a least 
ost 
lustering by solvinga (possibly 
onstrained) shortest path problem.The size of this neighborhood 
an be 
omputed as follows: There are (H − 1)! di�erent 
y
li
permutations of the segments that result in a giant route. After pat
hing the routes into a giantroute and deleting the route-start and route-end nodes, n − 2H nodes remain. For a given giantroute, any 
lustering with H routes 
an be des
ribed entirely by the set of �rst nodes that partitionthe giant route, e.g., the nodes 3, 6, 4 in the example above. Note that, for a given value of H, the
lustering may lead to a solution 
ontaining between one and H new routes. Denote the number ofnew routes by 1 ≤ ℓ ≤ H. For a �xed value of ℓ, the number of 
lusters is (

n−2H
l

). Thus, the totalnumber of 
lusters is ∑H
ℓ=1

(

n−2H
l

), whi
h is O (

(

n−2H
H

)

). After having determined the 
lusters, itremains to assign pairs of 
ompatible route-start and route-end nodes. There are H!2 possibilitiesto perform su
h an assignment. Taking into a

ount the (H − 1)! possibilities of 
onstru
ting thegiant route, we obtain O
(

(

n−2H
H

)

(H!)3
) as an estimate of the size of the neighborhood. Sin
eusually the number of routes is mu
h smaller than the number of nodes, we obtain the estimate

O (nHH!3).
21



2.3.5 Spe
ial Graph Stru
turesFor some routing problems, su
h as the TSP, optimal solutions 
an be found when the underlyingrouting graph has a spe
ial stru
ture. The most famous of these graph stru
tures are the so-
alledHalin Graphs (see Cornuéjols et al., 1983, for the 
ase of TSP). Sin
e optimal solutions for theseproblems 
an be found e�
iently in O (n), a neighborhood of the 
urrent tour 
an be de�ned byadding some edges to the tour (a so-
alled extension) so that the resulting graph has the desiredproperty and then 
onsidering all tours within the resulting graph as the neighborhood.A similar approa
h is dis
ussed by Glover and Punnen (1994). However, they do not solve theproblem optimally over the spe
ially de�ned subgraph but rather give algorithms that dominatean exponential-size set of tours w.r.t. their graph 
onstru
tion.We do not 
onsider these types of neighborhood in this paper sin
e they are usually restri
tedto spe
ialized problems su
h as the TSP and 
annot be readily generalized to more 
omplexVRSPs.2.4 Partially Destru
tive/Constru
tive NeighborhoodsPartially destru
tive/
onstru
tive neighborhoods (DCNs) 
an be 
hara
terized by a two-steppro
ess. In the �rst step, a number of nodes or segments are removed from the route plan.Then, in a se
ond step, the removed nodes are inserted into the route plan using some type of
onstru
tive algorithm. This algorithm 
an be either an optimization algorithm, su
h as dynami
programming or bran
h-and-bound, or any heuristi
, for example, an insertion method.These types of neighborhoods do not �t ni
ely into the lo
al sear
h framework de�ned above,sin
e they depend on the algorithm used for the 
onstru
tion of the new solution after the removalof the nodes. However, they are often used within a lo
al sear
h framework and we have, therefore,de
ided to in
lude them in the survey.In order to distinguish di�erent types of DCNs, we suggest the following string α|β|γ notation:The parameter α gives the number of nodes that are removed from the route plan. If these nodeshave to be 
onse
utive within the 
urrent route plan, we write α. The se
ond parameter β des
ribeshow the remaining dis
onne
ted route plan is treated. If β = connect, then the prede
essor of theremoved node is 
onne
ted to the su

essor of the removed node. If β = open, then the segmentsthat result after deletion of the nodes are left open. If β = alg, then the remaining segments of theroute plan are re-
onne
ted using the algorithm alg. For example, if the segments are re-
onne
tedusing a nearest neighbor algorithm, then we have β = NN . The third parameter γ des
ribes howthe removed nodes are re-inserted into the route plan. This is typi
ally a
hieved using someinsertion or optimization algorithm, su
h as bran
h-and-bound or shortest path 
al
ulations. If,for example, a 
heapest insertion strategy is used, then we have γ = CI.Without going into the details of this type of neighborhoods, we would like to mention severaltypi
al examples of destru
tive/
onstru
tive neighborhoods. The general idea of removing a set ofnodes from the route plan and then re-inserting them again has been used by Russell and Gribbin(1991); Russell (1995). Here, a total of �ve nodes is removed and re-inserted again by 
heapestinsertion. In our notation, the approa
h 
an be des
ribed by 5|connect|CI. A similar approa
h hasbeen suggested by Toth and Vigo (1996) for a solution of a dial-a-ride problem with time windows.They 
onsider removing one or two requests (
orresponding to a pi
kup and a delivery lo
ation)and to reinsert them in the 
heapest possible position in another route, whi
h 
orresponds to1 or 2|connect|CI in our notation. A more general view of a partially destru
tive/
onstru
tiveneighborhood is the so-
alled ruin-and-re
reate metaheuristi
 suggested in (S
hrimpf et al., 2000).22



Here, the authors suggest to 'ruin' parts of the route plan using a 
ontrolled random sear
h andto re-insert the nodes using an insertion heuristi
. In 
ontrast to many of the other approa
hes,the number of removed nodes is usually quite large in this approa
h.An even simpler version of the remove-and-reinsert idea is suggested by Burke et al. (2001).They introdu
e the 
on
ept of a hyperedge, whi
h is simply a segment. The length λ of a hyperedgeis equal to the number of edges (i.e., the number of nodes less one) in the segment. A HyperOptmove 
onsists of removing k hyperedges of length λ and re-inserting them in an optimal way (bydynami
 programming) into the route plan, while keeping the remaining paths �xed. Thus, thistype of neighborhood 
an be abbreviated as k(λ − 1)|open|DynProg. A similar neighborhood ofthe type k(λ− 1)|open|random is 
alled hyper-shake and is used for diversi�
ation of the sear
h.Finally, we would like to mention the US move. Unstringing-and-Stringing (US) is used withinthe GENIUS heuristi
 for the TSP(TW) (Gendreau et al., 1992, 1998). The idea of the USpro
edure is to remove a node from the 
urrent tour, re-
onne
t the remaining nodes by a reversegeneralized insertion (GENI) pro
edure and re-insert the removed node, again using the GENIpro
edure. In our notation, the US neighborhood 
an be des
ribed by 1|reverseGENI|GENI.3 Sear
h Te
hniquesIn this se
tion we will study the following problem: Given a neighborhood in a VRSP, how 
an onesear
h e�
iently in order to rea
h a lo
al optimum as qui
kly as possible? We will distinguish twogeneri
 approa
hes: dire
t sear
h by enumeration and indire
t sear
h by optimization. By dire
tsear
h, we mean approa
hes that subsequently add and/or delete edges or nodes and evaluate theresult of these operations dire
tly. Usually one 
an 
onsider these approa
hes as some type oftree sear
h method. Indire
t sear
h methods try to map the problem of �nding a best improvingsolution in the neighborhood into some optimization problem, su
h as a shortest path, assignmentor set pa
king problem. The sear
h for improving neighbor solutions is then equivalent to solvingthe optimization algorithm exa
tly or by a heuristi
.Before going into the details of neighborhood exploration, it should be noted that the sear
hmethods are only relevant for algorithms that s
an the entire neighborhood (at least in a '�rstimprove' manner). Some metaheuristi
s, like Simulated Annealing and Geneti
/Evolutionary Al-gorithms do not s
an the neighborhood but rather sample from it by 
hoosing neighbor solutionsrandomly. As outlined for the TSP in (Johnson and M
Geo
h, 1997), a method that uses a 
on-trolled random experiment by sampling from neighbor lists outperforms a total random sampling.However, these issues will not be dis
ussed any further in this paper.In order to suggest a suitable sear
h te
hnique not only the type of neighborhood but alsothe obje
tive/
ost fun
tion and the relevant 
onstraints have to be 
onsidered. The obje
tivefun
tion in�uen
es whether a 
ost independent de
omposition of moves 
an exist or not. In
ase of edge-dependent and vehi
le-dependent 
osts, this only depends on the neighborhood. Ifthe 
osts depend on resour
e variables, no 
ost independent de
omposition exists. Considering
onstraints, one has to distinguish between methods that guarantee feasibility of neighbor solutionsby 
he
king the 
onstraints during the sear
h and other methods that obtain the neighbor solutionby 
omposition of partial moves that are guaranteed to be feasible. A third group of algorithms isdriven mainly by 
ost improvement (gain) 
onsiderations. They only work for loosely 
onstrainedproblems, sin
e the sear
h method will mostly determine infeasible solutions with high pro�tabilityif the problem is highly 
onstrained. 23



3.1 Dire
t Sear
h Te
hniquesDire
t sear
h te
hniques are used within neighborhoods that move or ex
hange edges or nodes.Suppose that we are given su
h a neighborhood of sizeO (nk). In order to sear
h this neighborhoode�
iently, we would like to redu
e the e�ort (at least on average) by pruning early in the sear
h.There are several te
hniques available to avoid spending this e�ort in every iteration. However,we will fo
us on the basi
 sear
h methods, whereas further a

eleration te
hniques are beyondthe s
ope of this paper (e.g., �xing edges, Lin and Kernighan (1973); Walshaw (2002), treatingsegments as nodes, Kindervater and Savelsbergh (1997); Funke (2003), 
andidate lists, Glover(1991); Rego and Glover (2002), don't look bits, Bentley (1992); Johnson and M
Geo
h (1997);Gambardella et al. (1999); Cordone and Wolfer Calvo (2001)).Consider the problem of ex
hanging k edges (resp. nodes) with k other edges (nodes). Alldire
t sear
h methods start by sele
ting the �rst edge (node), then the se
ond edge (node) et
.until the k-th edge (node) has been sele
ted so that a 
omplete ex
hange has been spe
i�ed. Thegoal of a sear
h method should be to limit the number of possible edges or nodes at ea
h stage
1 ≤ i ≤ k of this general approa
h as mu
h as possible in order to keep the e�ort low. Sometimesit is possible to prove that after the i-th stage, there are no or only a small number of edges ornodes available for sele
tion. This 
an redu
e the sear
h e�ort drasti
ally. The two main 
riteriafor a redu
tion of the sear
h spa
e are 
ost and feasibility. The idea of 
ost-based redu
tions isto prove at an early stage i < k that no improvement 
an be found that in
ludes the nodes oredges of the stages 1, . . . , i. Feasibility redu
tions use the same idea but try to prove at an earlystage i < k that no feasible ex
hange exists that in
ludes the nodes or edges of the stages 1, . . . , i.Unfortunately, the options for using both approa
hes simultaneously are very limited. Therefore,one usually has to de
ide whether to apply 
ost or feasibility redu
tions in the sear
h. In thesequel, we introdu
e two dire
t sear
h approa
hes for k-opt. Lexi
ographi
 sear
h is motivated byfeasibility redu
tions whereas sequential sear
h is based on 
ost redu
tions.3.1.1 Lexi
ographi
 Sear
hThe natural approa
h for developing an algorithm that ex
hanges k elements with k other elementsis to spe
ify the k elements by a set of k nested loops. The �rst loop 
onsiders the elements
i1 = 1, . . . , n (n is the number of elements), the se
ond loop the elements i2 := i1 + 1, . . . , n andthe k-th loop the elements ik := ik−1 +1, . . . , n. Sin
e the iterator of an inner loop is always largerthan the iterator of an outer loop, i.e., il+1 > il, l = 1, . . . , n − 1, this sear
h approa
h is referredto as lexi
ographi
 sear
h. In the following, we will assume that the elements are nodes or edgesand numbered a

ording to their position in the 
urrent route plan. Given the k elements, theneighborhood type spe
i�es the possible moves that 
an be performed.
k-opt Let us �rst 
onsider the 
ase of k-opt moves and a �xed given move type. Given the k edgesto be removed, the segmentation is �xed. The determination of the k segments is implementedusing k nested loops to �x the edges for removal. Let us assume that the algorithm is in its ith loop,i.e., the �rst i segments are �xed. Pruning the sear
h 
an be performed by the following feasibilityredu
tions: Knowing the �rst i segments it 
an sometimes be shown that the 
on
atenation ofsome of the segments result in infeasible subpaths, independent of the remaining segments. Forexample, in the k-opt move type aB . . ., the 
on
atenation of the segments a and B to aB 
anbe infeasible regardless of the remaining segments. This means that the sear
h 
an be terminatedbefore all the k edges have been spe
i�ed. 24



If one wants to implement lexi
ographi
 sear
h for all move types and a given value of k,then it is useful to identify all move types a priori and to store them in a move-type table. Now
onsider the same situation as above, i.e., that i < k edges have been �xed. Then one 
an applythe termination argument for all move types in the move type table and terminate the sear
hwhen all move types have been identi�ed as infeasible in one of the stages 1, . . . , i.
λ-Inter
hange As a se
ond example, 
onsider λ-inter
hange, where the nodes need to take thepositions of a removed node when inserted again, i.e., the 
ase (λ∗, λ∗) in α∗-notation. We assumethat ea
h set of λ nodes has to 
ome from one of the H routes of the 
urrent route plan. We alsoassume that the number of nodes in the i-th route (i = 1, . . . , H) is given by ni.The inter
hange pro
edure 
an be implemented by nested loops. Two outer loops 
ontrol thesele
tion of the two routes that ex
hange nodes. Let us assume that we are inside these loopsand that the two routes r1 and r2 have been sele
ted. The �rst inner loop iterates over the nodes
i1 := 2, . . . , n1−λ of the �rst route (it is assumed that the route-start and route-end nodes 
annotbe 
ontained in an inter
hange), the se
ond loop over the nodes i2 := i1 + 1, . . . , n1 − λ + 1 andthe λ−th loop over iλ := iλ−1 + 1, . . . , n1 − 1. The same set of λ loops sele
ts the λ nodes fromthe se
ond route. After the 2λ nodes have been �xed for possible ex
hange, one needs to 
omputeall (λ!)2 possible ways to re-insert the nodes into the open positions.Summary The major advantage of lexi
ographi
 sear
h is the systemati
 way in whi
h thesegments are built. In every loop, exa
tly one element is added to or deleted from a segment.Thus, for every segment one 
an e�
iently update all ne
essary information regarding resour
es,su
h as, e.g., load, arrival times, waiting times, pre
eden
es et
. This information 
an be used,in many 
ases, to prune the sear
h at an early stage as well as to 
he
k feasibility of the move in
onstant time. Most of these ideas have been published by Savelsbergh and his 
o-authors. For asurvey, see (Kindervater and Savelsbergh, 1997). In some 
ases, one knows a priori that some ofthe segments need to be reversed. Again, the information regarding the segments to be inverted
an be updated e�
iently during the lexi
ographi
 sear
h and even used for early terminationwhenever a segment to be inverted be
omes infeasible due to, e.g., a time window or pre
eden
e
onstraint violation.3.1.2 Sequential Sear
hSequential sear
h has been developed for problems where k elements (edges or nodes) are repla
edby k other elements. It is a 
ost or gain oriented sear
h algorithm that exploits the 
ost inde-penden
e of moves and 
y
li
 independen
e of neighborhoods. The basi
 idea of this approa
h isto 
onsider all relevant partial moves of a 
y
li
 independent neighborhood re
ursively. In 
on-trast to lexi
ographi
 sear
h, the elements in sequential sear
h are not sele
ted a

ording to anyorder spe
i�ed by the 
urrent route plan but rather 
onsidering 
andidate lists. These 
andidatelists are sorted in the order of in
reasing 
ost of the elements. Sequential sear
h is parti
ularlyattra
tive if the number of elements in every sele
tion step (i.e., the length of the 
andidate list)is redu
ed from O (n) to some small 
onstant. The major disadvantage of sequential sear
h isthat the feasibility of a move 
annot be 
he
ked before all k elements have been spe
i�ed and the
he
k will (in the 
ase of non-trivial 
onstraints) require at least linear time. Therefore, there is atrade-o� between the redu
tion of the sear
h spa
e in sequential sear
h and the extra e�ort thathas to be paid to 
he
k feasibility. A parti
ular bad s
enario is the dis
overy of many potentiallyimproving, but infeasible moves. 25



In order to sear
h a neighborhood entirely by sequential sear
h, it has to be 
y
li
 independent,although it 
an be used heuristi
ally with non-
y
li
-independent neighborhoods, as dis
ussedbelow for the Lin-Kernighan heuristi
. The se
ond requirement is that the partial moves have tobe 
ost independent.Many of the node and edge-ex
hange neighborhoods 
onsidered in this paper have a 
y
li
independent de
omposition into partial moves. Examples are the λ-inter
hange, NEC, and 
y
li
-transfer neighborhoods in the 
ase of node ex
hanges, and a large fra
tion of the k-opt move typesas well as the edge-eje
tion 
hains.Re
all that 
ost independen
y of partial moves depends on the obje
tive fun
tion under 
on-sideration and thus a neighborhood that de
omposes into partial moves 
an be used for sequentialsear
h if and only if the 
ost independen
y assumption holds. In this subse
tion we will assumethat 
ost independen
y holds for the moves we study.The attra
tiveness of sequential sear
h in 
y
li
 neighborhoods is due to the following theoremof Lin and Kernighan (1973):Theorem 1 If a sequen
e of numbers (gi)
k
i=1 has a positive sum ∑k

i=1 gi > 0, there is a 
y
li
permutation π of these numbers su
h that every partial sum is positive, i.e., ∑p
i=1 gπ(i) > 0 forall 1 ≤ p ≤ k.Proof: Let q be the largest index for whi
h ∑q−1

i=1 gi is minimum. Choose π su
h that
π(1) = q. If q ≤ p ≤ n, gq + . . .+gp = (g1 + . . . + gp)− (g1 + . . . + gq−1) > 0. If 1 ≤ p < q,then gq + . . . + gn + g1 + . . . + gp ≥ gq + . . . + gn + g1 + . . . + gq−1 > 0. ⋄The theorem implies that, for �nding an improving move m = pk ◦ . . .◦p1 within a given neighbor-hood whi
h de
omposes into 
y
li
 independent partial moves, we need to 
onsider those movesonly where Gi :=

∑i
l=1 g(pi, x) > 0 holds for all i = 1, . . . , k. The dire
t impli
ation is that atstage i of the sear
h we need to 
onsider moves with a gain g(pi, x) > −Gi−1 only. Thus, thetotal gain at stage i− 1 limits the 
hoi
e of a partial move at stage i. We refer to this rule as thegain 
riterion. The gain 
riterion is fundamental for the e�e
tiveness of k-opt and Lin-Kernighanalgorithms for the TSP, see Se
tion 2.2.5 and, e.g., (Aarts and Lenstra 1997, p. 238�, Bentley1992). Interestingly, the path referen
e stru
ture used within the Lin-Kernighan neighborhoodis not 
y
li
 independent. Therefore, Theorem 1 does not apply. Rather, it is used heuristi
allywith ex
ellent results. This should be kept in mind when 
onsidering the exploitation of the gain
riterion within a sear
h algorithm. The gain 
riterion is also exploited in e�e
tive algorithms for2-opt and 3-opt for the TSP (Bentley, 1992; Johnson and M
Geo
h, 1997). In Irni
h et al. (2004)the use sequential sear
h for 
apa
itated VRP is investigated. A 
omparison of lexi
ographi
 andsequential sear
h showed substantial speedups for the sequential sear
h approa
h. However, weare not aware of any of the 'modern' metaheuristi
s for VRSPs that exploit this very importantspeedup te
hnique.In order to des
ribe a generi
 sequential sear
h algorithm, 
onsider the de
omposition m =

pk◦. . .◦p2◦p1 of a move m into k ≥ 2 partial moves. The 
y
li
 independen
e of the neighborhoodimplies that any sequen
e pj−1 ◦ . . . ◦ p1 ◦ pk . . . pj with 1 ≤ j ≤ k represents the same move m.For the gain 
riterion to be appli
able, the sear
h algorithm has to guarantee that every 
y
li
permutation of the moves is generated.Hen
e, the algorithm has to generate all the partial moves p1, . . . , pk on the �rst sear
h level.Ea
h of these partial moves has to satisfy the gain 
riterion, otherwise, it will be dis
ardedimmediately. On the se
ond level, the 
omposed partial moves p2 ◦p1, p3 ◦p2, . . . , pk ◦pk−1, p1 ◦pk26



that extend non-dis
arded partial moves from the �rst level have to be generated. Again, all move
ompositions on the se
ond level have to satisfy the gain 
riterion and 
an otherwise be dis
arded.The same is true for the third level and so on until all k levels have been investigated.This implies that the sequential sear
h algorithm has to meet two requirements: First, ithas to generate all 
ompositions of partial moves a

ording to the 
y
li
 de
omposition of theneighborhood. Se
ond, it 
an apply the gain 
riterion to all 
ompositions of partial moves inorder to fathom the sear
h as mu
h as possible. The �rst requirement dire
tly shows the 
loserelationship between the de
omposition of the neighborhood and e�
ient sear
h, while the se
ondrequirement dire
tly implies the 
ost independen
e of partial moves. We now give some examplesof how sequential sear
h 
an be applied e�
iently in the 
ontext of vehi
le routing and s
heduling.2-Opt The 2-opt moves are single alternating 
y
le moves and, therefore, 
y
li
. We de
omposethe 2-opt neighborhood into two partial moves. The partial move p1 := padd
j1,i2

◦ pdel
i1,j1


onsists ofdeleting the edge d1 = (i1, j1) and subsequently adding the edge a1 = (j1, i2). The partial move
p2 := padd

j2,i1
◦ pdel

i2,j2
deletes the edge d2 = (i2, j2) and �nally adds the edge a2 = (j2, i1). Let usdenote the length of the involved edges by |dl| and |al|, l = 1, 2, respe
tively. The partial gainsof the two partial moves are equal to g1 := |d1| − |a1| and g2 := |d2| − |a2| and the gain 
riterionrequires that both g1 > 0 and g1 + g2 > 0 hold. Now suppose that we want to employ sequentialsear
h to �nd an improving 2-opt move. First, we loop over i1 := 1, . . . , n to determine the node

i1. Next, we 
onsider one of the edges in
ident with i1 in the tour to obtain the edge d1 := (i1, j1).This determines the length of the edge d1 and from the gain 
riterion, g(p1, x) > 0, we knowthat we only have to 
onsider adding edges a1 := (j1, i2) that satisfy |a1| < |d1|. This is usuallydone e�
iently by storing a list of edges in
ident with every node ordered by in
reasing length (inasymmetri
 problems, ingoing and outgoing edges are stored separately). Suppose that we havefound an edge on this list whi
h satis�es |a1| < |d1|. Then, the entire move has been spe
i�ed,sin
e there is only one possibility of obtaining a feasible 2-opt move. After having 
he
ked thispossibility, we ba
ktra
k to the �rst level and 
he
k the other edge in
ident to i1. This is ne
essaryto generate all 
y
li
 permutations of the moves p1 and p2. Fig. 8 depi
ts the generation of 2-optmoves by this pro
edure. Fig. 8(a) shows the situation after the appli
ation of p1 as the �rstpartial move a

ording to m = p2 ◦ p1, i.e., with i1 = v1, j1 = w1, and i2 = v2. This move isgenerated by taking j1 as the node adja
ent to i1 in the 
lo
kwise dire
tion. Fig. 8(b) shows thesituation after applying the move p2 �rst, a

ording to m = p1 ◦p2, i.e., with i1 = v2, j1 = w2, and
i2 = v1. Here, the node j1 is obtained by taking the node adja
ent to i1 in the 
ounter
lo
kwisedire
tion. It is therefore ne
essary to 
onsider both dire
tions � 
lo
kwise and 
ounter
lo
kwise �when sele
ting j1.Lin-Kernighan As a se
ond example we 
onsider the Lin-Kernighan partial moves based on thepath referen
e stru
ture dis
ussed in Se
tion 2.2.5. Here edges are deleted and added subsequentlyand the edge to be deleted next is always in
ident to the endpoint of the last added edge and vi
eversa. At stage i, the edges d1, . . . , di have been deleted and the edges a1, . . . , ai have been added.The gain of ea
h move is gi := |di|− |ai|. Now 
onsider stage i+1. The next edge to delete is di+1and there is no 
hoi
e due to the path referen
e stru
ture. From the endpoint of di+1 we 
an addan edge ai+1 that satis�es |ai+1| ≤ Gi−|di+1|. If no su
h edge exists, the sear
h 
an be terminatedat this stage. This implies that the sear
h depth of the algorithm is adjusted dynami
ally by thegain 
riterion. The Lin-Kernighan algorithm does not sear
h the entire neighborhood of the pathreferen
e stru
ture but rather does a depth-�rst sear
h, where in every iteration, the next added27
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h for Finding improving 2-Opt Moves, (a) The Partial Move

p1 = padd
w1,v2

◦ pdel
v1,w1

is applied �rst, (b) The Partial Move p2 = padd
w2,v1

◦ pdel
v2,w2

is applied �rstedge is sele
ted a

ording to a greedy 
riterion. Another feature of the algorithm is that it 
he
ksthe tour length resulting from a 
losing partial move at ea
h iteration and �nally sele
ts the movethat results in the minimum tour length over all levels of the sear
h. Re
all that the de
ompositionof moves that results from the path referen
e stru
ture is not 
y
li
. Therefore, although it isthe �rst e�
ient appli
ation of the gain 
riterion within a lo
al sear
h algorithm, the theoremprovided by Lin and Kernighan does not apply to this neighborhood in an exa
t sense, but ratheris a heuristi
 
riterion to 
ut o� bran
hes of the sear
h tree (albeit a very e�
ient one).Swap The swap move mswap
ij repla
es a node i of the giant tour by a node j and vi
e versa.Consequently, the four edges (i−1, i), (i, i+1), (j−1, j), (j, j+1) are deleted and the four edges (i−

1, j), (j, i+1), (j−1, i), (i, j+1) are added to the 
urrent solution x. The swap move was presentedin Subse
tion 2.1.2 as 
omposed of two dependent relo
ation partial moves mreloc
i,j−1 ◦ mreloc

j,i−1.There also exist several de
ompositions of mswap
ij into two 
ost independent partial moves of thesame type. One possibility is to de�ne pij as a partial move whi
h deletes the edges (i−1, i), (i, i+1)and then adds the edges (j − 1, i), (i, j + 1). Then, mswap

ij = pij ◦ pji = pji ◦ pij is a 
y
li
de
omposition into 
ost independent partial moves. The partial gain of pij is g(pij , x) = ci−1,i +
ci,i+1 − cj−1,i − ci,j+1. When looking for improving swap moves by sequential sear
h, the gain
riterion tells us that we 
an restri
t our attention to a �rst partial move pij with positive gain.We propose to sear
h for those pij with positive gain by �rst 
onsidering all nodes i ∈ V . Thetask is then to restri
t the sear
h for possible nodes j under the 
ondition that i is known. This
an be done with 
andidate lists of edges in
ident to node i ordered in
reasingly by their 
ost.Let α :=

ci−1,i+ci,i+1

2 , whi
h is a �xed 
onstant when node i is 
hosen. The 
ondition g(pij , x) > 0is equivalent to (cj−1,i − α) + (ci,j+1 − α) < 0 whi
h implies cj−1,i < α or ci,j+1 < α. As a
onsequen
e, only ingoing edges (j − 1, i) of 
ost less than α and outgoing edges (i, j + 1) of 
ostless than α have to be 
onsidered. Finally, when j is 
hosen, the total gain g(pij , x) + g(pji, x)
an be 
he
ked in 
onstant time.Another de
omposition of mswap
ij is to de�ne a partial move qij that removes the edges (i −

1, i), (j − 1, j) and adds the edges (i− 1, j), (j − 1, i). Then, mswap
ij = qij ◦ qi+1,j+1 = qi+1,j+1 ◦ qij .This is also a de
omposition into two 
ost independent partial moves of the same type and,therefore, the gain 
riterion applies in a similar way.Granular Tabu Sear
h Granular Tabu Sear
h, suggested by Toth and Vigo (2002a), uses avariant of the idea of sequential sear
h. In this approa
h the following four simple moves are used:28



2-opt, relo
ation, Or-opt with a segment length of two, and swap. In all these moves the algorithmrequires that the �rst added edge is 'short', i.e., belongs to a 
andidate list. This 
andidate list
ontains edges, whose length is below a 
ertain threshold. The threshold is varied during thesear
h in order to intensify or diversify the sear
h. Sin
e all the moves that are used in thisalgorithm 
an be spe
i�ed entirely by the �rst added edge, this 
an be 
onsidered as a very simpleversion of sequential sear
h.Summary Sequential sear
h is a very powerful te
hnique that 
ould be used su

essfully insolving a number of VRSPs. If a 
ost-based strategy is used for 
onstru
ting the 
andidate lists,it is usually required that the obje
tive fun
tion 
an be de
omposed into partial gains and thatea
h partial move 
ontributes a �xed amount to the obje
tive fun
tion. This requirement for 
ostindependen
y is not generally ful�lled. For example, if the duration of the trips or the latestarrivals should be minimized, then this requirement is not met. However, in problems wheredistan
e or an equivalent measure has to be minimized, this is an interesting alternative to othersear
h methods that 
ould be the basis for a number of highly e�
ient algorithms.3.2 Optimization-based Indire
t Sear
h Te
hniquesThe idea of indire
t sear
h te
hniques is to re-formulate the problem of �nding the best movein a given neighborhood so that suitable optimization algorithms or heuristi
s 
an be used forthe sear
h. Two main approa
hes have been dis
ussed in the literature. The �rst approa
h ismove-
omposition, whi
h is based on the idea of expli
itly mapping the partial moves whi
h 
anbe applied to the 
urrent solution to the de
ision variables of an auxiliary problem. The optimalsolution to this auxiliary problem then de�nes a gain-maximizing 
olle
tion of partial moves that
an be applied to the 
urrent solution. The se
ond type of approa
hes are the 
ombinatorialstru
ture approa
hes. They impli
itly restri
t the neighborhood of the 
urrent solution to satisfysome 
ombinatorial requirements that allow the sear
h for improving neighboring solutions to beimplemented very e�
iently.Both approa
hes employ a type of indire
t sear
h, whi
h is usually referred to as very large-s
ale neighborhood sear
h (Ahuja et al., 1999). It 
an be des
ribed generi
ally by the followingalgorithm:Algorithm 2: Optimization-based Indire
t Lo
al Sear
h1: Initialize the algorithm with a feasible solution x0 and set the iteration 
ounter t := 0.2: REPEAT3: Generate an instan
e P (xt) of the optimization problem 
orresponding to the neighborhood N (xt)(either from s
rat
h or using knowledge about the last move).4: Find a neighbor solution x′ by sear
hing for the optimal or an improving solution of P (xt).5: If an improving solution x′ has been found, then set t := t + 1 and xt+1 := x′.6: UNTIL no more improvements are found.The time-
onsuming parts of this algorithm are the generation of the optimization probleminstan
e and its solution by a 
onvenient algorithm. Indeed, the optimization problem may be
NP -hard, thus requiring suitable heuristi
s to be used for sear
h in step 4.
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3.2.1 Move-Composition Approa
hesThe general idea of these approa
hes is the de
omposition of a very large neighborhood into aset of partial moves. These partial moves are used to de�ne an optimization problem (often ona network), whi
h 
an be solved by an appropriate algorithm. The result is a sele
tion of moves,whose 
omposition is both feasible and gain-maximal in the (very large) neighborhood. If theauxiliary optimization problem is based on a graph, we 
all this graph an improvement graph. This
on
ept was �rst suggested by Thompson and Psaraftis (1993). However, as shown below, otheroptimization problems may be formulated within move-
omposition approa
hes. Sin
e the optimalsolution of the auxiliary problem impli
itly dominates a large (usually exponential) number ofother solutions, this approa
h gives rise to the so-
alled 
ombinatorial leverage e�e
t, introdu
edin (Glover and Punnen, 1994), that 
onsiders the size of the neighborhood in relation to the e�ortrequired to s
an it.Cy
li
 Improvement Graphs The 
on
ept of 
y
li
 improvement graphs goes ba
k to Thomp-son and Psaraftis (1993) and is 
losely related to the 
on
ept of 
y
li
 transfers des
ribed earlier.Here we give a slightly generalized des
ription of the original 
on
ept. The 
y
li
 improvementgraph models the eje
tion of a node or a set of nodes by another node or set of nodes via ar
s.By de�nition of 
y
li
 transfers, these node sets belong to di�erent routes. Let the node set ofthe improvement graph 
ontain all nodes or sets of nodes that 
ould be part of an eje
tion 
hain.Let two nodes of the improvement graph be Si and Sj . An ar
 (Si, Sj) of the improvement graphmodels the operation of removing the node set Sj from its 
urrent route and inserting the nodeset Si into that route. The gain G(Si, Sj) depends on how the insertion 
ost is 
omputed. This
an be done by any heuristi
 or optimization algorithm for the single route problem. In order toredu
e 
omplexity, simple heuristi
s are used in most 
ases. The 
ost or length of an ar
 (Si, Sj) isequal to the negative gain −G(Si, Sj). Then, it is easy to see that any 
y
le with negative lengthin the improvement graph 
orresponds to a 
ost improving 
y
li
 ex
hange. Unfortunately, theproblem of dete
ting su
h a 
y
le is NP -hard, sin
e it again 
orresponds to a resour
e-
onstrainedshortest path problem. In su
h a problem, one introdu
es a resour
e for ea
h route and requiresthat this resour
e is only used on
e in a solution. Several heuristi
s have been developed for thisproblem (Ahuja et al., 2001a). It should be noted that the 
ase where a node or a set of nodes iseje
ted by an empty set 
an easily be handled by introdu
ing a dummy node in the improvementgraph (Ahuja et al., 2001b). This allows insertion moves to be handled in addition to ex
hangemoves.Note that, sin
e the 
y
li
-transfer neighborhood is 
y
li
, the gain 
riterion 
an be employed.This means that in any negative length 
y
le, the total length of any 
y
li
 subset of edges mustbe negative.Cluster-Partition Graphs Cluster-partition graphs were introdu
ed in (Beasley, 1983) in or-der to solve the 
lustering problem in the route-�rst 
luster-se
ond heuristi
 for the vehi
le routingproblem. Here, we 
onsider the solution of �nding the best improving solution in a neighborhoodas des
ribed in Subse
tion 2.3.4, where the initial routing, i.e., the order of the routes, is �xed.Suppose that all depot nodes o ∼ d have been removed from the route plan and that theresulting single-route segments have been ordered and 
on
atenated to yield a giant route wherethe nodes are numbered 
onse
utively from 1 to n. The 
luster-partition graph is based on thegiant-route representation and 
an be de�ned as follows: Let the node set be V = {1, . . . , n + 1}.For every pair (i, j) with j > i in the 
luster-partition graph, there exists an ar
 (i, j) for vehi
le h ∈30



H if the route (oh, i, i+1, . . . , j−1, dh) is feasible. If several vehi
les have identi
al 
hara
teristi
sand the same depot 
ombination, then they 
an be handled as identi
al vehi
les. The 
ost Ch
ij ofthe ar
 (i, j) is equal to the 
ost of this route. It is easy to see that an optimal 
lustering w.r.t. thegiven giant route 
an be found by solving a (possibly resour
e-
onstrained) shortest path problemfrom node 1 to node n + 1.The Composition of Complete Moves The 
omposition of 
omplete moves, su
h as the2-opt, Or-opt, or swap moves into a 
ompound move, was suggested by Congram et al. (2002);Ergun et al. (2002). Let us �rst 
onsider the 2-opt neighborhood to explain the idea behind thistype of large-s
ale neighborhood sear
h. A feasible, 
ost independent 
ombination of several 2-optmoves m = m2−opt

i1j1
◦ m2−opt

i2j2
◦ . . . ◦ m2−opt

itjt
(a so-
alled 
ompound move) with �small� individualimprovements is sometimes superior to the single best move m2−opt

ibestjbest
in the neighborhood. Fea-sibility 
onstraints and/or a legitima
y 
ondition might forbid the exe
ution of the moves withsmall improvement after the best improving move has been exe
uted.For simpli
ity, we restri
t the following des
ription to the 2-opt moves 
ase. An improvementgraph for this neighborhood 
an be 
onstru
ted by re-labeling the nodes in the 
urrent solutionsby 1, . . . , n. One 2-opt move 
an be des
ribed entirely by two nodes (i, j) ∈ {1, . . . , n}, i + 2 ≤ j.This 
orresponds to the deletion of the edges d1 = (i, i + 1) and d2 = (j − 1, j), the addition ofthe edges a1 = (i, j − 1) and a2 = (i + 1, j), and the reversal of the segment (i + 1, j − 1). Thealternative of reversing the paths (1, . . . , i) and (j, . . . , n) is not 
onsidered here. Let the totalgain of this 2-opt move be G2(i, j). Then, the following improvement graph 
an be 
onstru
ted:Let V := {1, . . . , n+1} be the set of nodes, where n+1 
orresponds to a 
opy of node 1. The ar
set 
onsists of all feasible 2-opt moves, A = {(i, j) : the 2-opt move (i, j) is feasible}. Moreover,the improvement graph 
ontains the ar
s (i, i + 1), i = 1, . . . , n, that 
orrespond to leaving theedge (i, i + 1) un
hanged by the 
ompound move. The 
ost of an ar
 (i, j) ∈ A, j 6= i + 1 is equalto −G2(i, j) and the 
ost of an ar
 (i, i + 1) is equal to 0. Then the shortest path from 1 to n + 1
orresponds to the 
omposition of 2-opt moves that lead to the maximal 
ost redu
tion. If thelength of this path is negative, then an improving 
ompound move is found, otherwise, the 
urrentsolution is 2-optimal.Note that the 
on
ept of this type of improvement graph is to de�ne moves by the segmentthey a�e
t. Clearly, this 
on
ept is not limited to 2-opt moves but 
an readily be generalized toin
lude relo
ation and ex
hange moves as well as other moves, e.g., 2-opt*, Or-opt, and double-bridge moves. The dire
t generalization to swap moves requires that two swaps (i, j) and (k, l)satisfy the legitima
y 
ondition i < j, j + 1 < k < l, i.e., do not overlap (Congram et al., 2002;Ergun et al., 2002).A pre-requisite for this approa
h is that all relevant moves be enumerated a priori by a 
onve-nient dire
t sear
h method. Both lexi
ographi
 and sequential sear
h 
an be used for this purpose.In both 
ases, one has to 
he
k feasibility of the moves when intra-route 
onstraints are relevantin the VRSP under 
onsideration. However, when 
omplex resour
es, su
h as time windows, arerelevant, then the 
omposition of several feasible moves does not ne
essarily result in a 
ompoundfeasible move. In this 
ase it is ne
essary to store the 
hange of resour
e variables (e.g., load,arrival times) as a fun
tion of the involved nodes. Instead of solving a simple shortest path prob-lem, a resour
e 
onstrained shortest path problem has to be solved. Unfortunately, this problemis NP -hard, so heuristi
s may be used instead (Ahuja et al., 2001a).Ergun et al. (2002) relax the independen
e requirement of moves by allowing two subsequentmoves to overlap slightly. If this is the 
ase, a new move is de�ned, whi
h is di�erent from the move31



that would be obtained if the two single moves had been applied independently. Thus, a 
orre
tionterm has to be added to the evaluation. This is a

ounted for by storing the 
orrespondinginformation for all pairs of ar
s in the improvement graph and solving a shortest path problemwith turn penalties instead of a regular shortest path problem.A problem of this approa
h in the multiple-route 
ase is that it requires all ar
s (i, j) to beordered so that j > i. Otherwise, the independen
e of moves 
annot be guaranteed easily. Thus,in multiple-route problems, the order of the routes a�e
ts the type of 
ompound moves that 
anbe generated using this neighborhood.Assignment-based Approa
hes Obviously, assignment-based neighborhoods, as des
ribed inSubse
tion 2.3.1 
an impli
itly be sear
hed by solving the 
orresponding assignment problem.Finding the best Double-Bridge Move in O (n2) The 
omposition of the double bridgemove as two 
ost independent, 
rossed 2-opt* moves is des
ribed in (Glover, 1996b). The bestimproving double bridge move of a TSP 
an be determined with O (n2) e�ort. Assume that thenodes of the giant tour are numbered 1, 2, . . . , n su
h that all edges are of the form (i, i + 1). Adouble bridge move mDB is determined by its two alternating 
y
les of deleted and added edges,i.e., two 2-opt* moves pi1,i2 and pi3,i4 . The tri
k of Glover is to build an a
y
li
 digraph D with
O (n2) nodes and ar
s in whi
h ea
h feasible 
ombination 1 ≤ i1 < i3 < i2 < i4 ≤ n is uniquely
oded as a path P (i1, i2, i3, i4). Furthermore, the length of su
h a path P (i1, i2, i3, i4) is the 
ostof the double bridge move.3.2.2 Combinatorial Stru
ture Approa
hesMost of the 
ombinatorial stru
ture approa
hes have so far been developed for the TSP (Cornuéjolset al., 1983; Glover and Punnen, 1994). As dis
ussed above, we will not go into the details of theseapproa
hes, sin
e they do not generalize to more 
omplex VRSPs. We do, however, believe thatthese types of approa
hes have a big potential also in the 
ontext of VRSPs and that more resear
his ne
essary in order to develop more generally appli
able algorithms than those available today.Two approa
hes that 
an be generalized to some extent in
lude partial order neighborhoods andpyramidal tour improvement neighborhoods.Partial Order Neighborhoods The restri
tive possibilities for moving a node relative to its
urrent position in the route lies at the heart of the dynami
 programming approa
h by Balas(1999) and Balas and Simonetti (2001). The dire
t exploitation of these possibilities enables oneto redu
e the number of possible states in a dynami
 programming approa
h from exponentialto linear. The algorithm of Balas and Simonetti (2001) exploits this fa
t and also provides aforward dynami
 programming re
ursion, whi
h 
an be 
onsidered a shortest path approa
h. Forthe details of the implementation, we refer to the original paper.Pyramidal Tour Improvement Graphs An optimal pyramidal tour neighbor for the TSP
an be found in O (n2) using dynami
 programming or shortest path 
al
ulations (Gilmore et al.,1985). Here we are interested in its generalization to more 
omplex VRSPs and �rst des
ribe the
orresponding improvement graph suggested in (Ahuja et al., 1999). The improvement graph � abipartite digraph � 
onsists of 2n nodes V = V 1∪V 2, where V 1 = {1, . . . , n} and V 2 = {1′, . . . , n′}.Let us 
all the nodes in V 1 forward nodes and the nodes in V 2 ba
kward nodes. All ar
s in the32



improvement graph 
onne
t forward nodes with ba
kward nodes or vi
e versa. Their interpretationis as follows: Consider the ar
 (i, j′), i ∈ V 1, j′ ∈ V 2, j ≥ i. This ar
 
orresponds to the 
ase thatthe segment (i, . . . , j) in the 
urrent route is �xed and visited in this order in the �rst part ofthe route. The ar
 (j′, k), j′ ∈ V 2, k ∈ V 1, k > j + 1, 
orresponds to the 
ase where the segment
(j + 1, . . . , k − 1) is skipped in the �rst part and visited in the reverse order (k − 1, . . . , j + 1) inthe se
ond half of the route, i.e., the edges (j, j + 1) and (k − 1, k) are deleted and the edge (j, k)is introdu
ed.Let the 
ost of the edge (f, g) in the original routing problem be cfg. Then, the gain G(i, j′)that 
orresponds to an ar
 (i, j′), i ∈ V 1, j′ ∈ V 2, j ≥ i in the improvement graph 
an be 
omputedusing Table 2. The 
ost of the ar
 (j′, k), j′ ∈ V 2, k ∈ V 1, k > j + 1, is equal to G(j′, k) =

G(i, j′) j′ = 1 j′ = i, i + 1, . . . , n − 1 j′ = n

i = 1 −cj,j+1 + cj+1,1 −cj,j+1 + cj+1,1 0
i = 2, 3, . . . , n − 1 � cj+1,i−1 −cn,1 + cn,i−1

i = n � � −cn−1,n + cn,n−1Table 2: Costs of the Ar
s in the Shortest Path Problem for Finding optimal Pyramidal Tours
cjk−

∑k−1
ℓ=j cℓ,ℓ+1+

∑j+2
ℓ=k−1 cℓ,ℓ−1. Any path P from 1 to n′ in the improvement graph 
orrespondsto a pyramidal tour x′, and the 
ost of su
h a path is −g(x, x′), i.e., a shortest path 
orrespondswith a best (improving) neighbor solution. Note that if the segment (j + 1, . . . , k − 1) whi
his reversed 
ontains one or more entire routes, then inversion 
an be avoided for these routes.Of 
ourse, the 
ost of the ar
s in the improvement graph have to take this into a

ount. If areversion 
auses a segment to be infeasible, then the 
orresponding ar
 
an be removed from theimprovement graph.In 
ase 
omplex resour
es play a role in the VRSP under 
onsideration, a resour
e-
onstrainedshortest path problem from node 1 to node n′ 
an be solved in order to 
he
k for an improvingpyramidal neighbor. It 
an be veri�ed that any path with negative 
osts 
orresponds to animproving neighbor.Clearly, the order of the routes in the giant route determine the feasible pyramidal tours and,thus, the results of the algorithm. Again, one has to use heuristi
s to �nd 'good' orders of theroutes.Although appli
able to solve VRSPs with 
omplex 
onstraints, the potential of the pyramidalneighborhood is quite limited in 
ases where time windows and/or pre
eden
es o

ur. The reasonis that some nodes that o

ur early in the route will have to o

ur late in a neighbor route if anyimprovement is to be found. However, it is unlikely that su
h an operation is feasible when timewindows and pre
eden
es o

ur. This problem 
an be avoided by 
onsidering pyramidal toursthat are de�ned only for parts of the original tour, so that nodes are not moved too 'far' fromtheir 
urrent positions.Con
lusionsThis paper has provided an overview and a 
on
eptual integration of di�erent 
lassi
al and modernapproa
hes of lo
al sear
h for solving 
omplex VRSPs. The formal des
ription is based on theso-
alled giant-tour representation, whi
h allows problems with 
omplex 
onstraints to be modeledwithin one 
on
eptual framework. The problems in
lude those that 
an be modeled by resour
e33



variables, e.g., heterogeneous �eet problems with time windows, route-duration 
onstraints, andsimultaneous pi
kups and deliveries.The basis of all lo
al sear
h algorithms is the de�nition of a neighborhood and the designof an appropriate sear
h method. In order to obtain a theoreti
al basis for the des
ription ofthe neighborhood, we have introdu
ed the 
on
ept of moves and their de
omposition into partialmoves. Di�erent de
ompositions 
an result in di�erent types of move independen
e. Dependingon the obje
tive fun
tion, partial moves may give rise to partial gains, thus enabling the sear
halgorithm to prune regions of the sear
h spa
e.Sear
h methods 
an be 
lassi�ed into dire
t and indire
t sear
h methods. Dire
t sear
h meth-ods 
an be 
lassi�ed further into sequential sear
h methods, whi
h are based on the gain 
riterionand lexi
ographi
 sear
h methods that are based on 
onstraint evaluations. Most indire
t sear
hmethods have so far been studied in the 
ontext of the TSP. Here, we have assessed their prospe
tsw.r.t. an extension to 
omplex VRSPs.For a given VRSP, the design of a suitable lo
al sear
h algorithm should be based on ananalysis of not only 
ost independen
e and 
y
li
 independen
e of the partial moves but also thestru
tural properties of the 
onstraints. In addition to giving an overview of the most widelyused neighborhoods, the paper also provides a theoreti
al basis for judging the appli
ability ofdi�erent lo
al sear
h methods. This should enable resear
hers to design new and e�
ient lo
alsear
h algorithms both for '
lassi
al' and more 
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