
Loal Searh for Vehile Routing and Sheduling Problems:Review and Coneptual IntegrationBirger Funke, Tore GrünertGTS Systems and Consulting GmbHHerzogenrath, Germanye-mail: funke�gts-systems.de, gruenert�gts-systems.deStefan IrnihDeutshe Post Lehrstuhl für Optimierung von DistributionsnetzwerkenRWTH Aahen UniversityAahen, Germanye-mail: sirnih�or.rwth-aahen.dephone: +49 (0) 241 809 6192 AbstratLoal searh and loal searh-based metaheuristis are urrently the only available methodsfor obtaining good solutions to large vehile routing and sheduling problems. In this paperwe provide a review of both lassial and modern loal searh neighborhoods for this lass ofproblems. The intention of this paper is not only to give an overview but to lassify and analyzethe struture of di�erent neighborhoods. The analysis is based on a formal representation ofVRSP solutions given by a unifying giant-tour model. We desribe neighborhoods impliitlyby a set of transformations alled moves and show how moves an be deomposed further intopartial moves. The searh method has to ompose these partial moves into a omplete movein an e�ient way. The goal is to �nd a loal best neighbor and to reah a loal optimum asquikly as possible. This an be ahieved by searh methods, whih do not san all neighborsolutions expliitly. Our analysis shows how the properties of the partial moves and theonstraints of the VRSP in�uenes the hoie of an appropriate searh tehnique.Keywords: loal searh, searh tehniques, vehile routing and shedulingThe paper gives an overview of loal searh for vehile routing and sheduling problems (VRSPs).This will be ahieved by a lassi�ation and oneptual integration of di�erent approahes fromthe literature. We will fous on two major building bloks of loal searh: the de�nition of theneighborhood and the exploration of the neighborhood using a suitable searh algorithm. Thelose relationship between neighborhoods and searh methods is exploited by some of the mostsuessful algorithms for VRSPs, suh as the famous Lin-Kernighan algorithm for the travelingsalesman problem (TSP). Despite the suess of these methods, only a small fration of papers inthis area exploit the relationship between neighborhood de�nition and suitable searh algorithms.This an, to a ertain degree, be attributed to the di�ulty of handling the omplex onstraintsand/or the non-additivity of the objetive funtion in onstrained VRSPs as opposed to the TSP.However, algorithms for more omplex VRSPs an also bene�t from a thorough analysis of theproblem, the neighborhood, and the searh methods. As pointed out in (Cordeau et al., 2002b),one of the major hallenges of metaheuristi design is to make them run faster, espeially forlarger instanes. A proper design of the neighborhood and searh methods is one way to ahievethis goal. 1



The intention of the paper is to provide a framework of onepts helpful to analyze the stru-ture of di�erent (VRSP) neighborhoods and to build e�ient searh algorithms. We desribeneighborhoods impliitly by a set of transformations alled moves and show how moves an bedeomposed further into partial moves. The searh method has to ompose these partial movesinto a omplete move in an e�ient way. The goal is to �nd a loal best neighbor and to reah aloal optimum as quikly as possible. This an be ahieved by searh methods, whih do not sanall neighbor solutions expliitly. Our analysis shows how the properties of the partial moves andthe onstraints of the VRSP in�uenes the hoie of an appropriate searh tehnique.Vehile routing and sheduling problems require that a �eet of vehiles serves a number ofrequests in order to minimize osts. We onsider the node-routing version of these problems, whererequests our at nodes of a network, and routes an be haraterized by sequenes of nodes thatare visited onseutively by a vehile. When both the order of the nodes in the routes and thedetermination of arrival and/or departure times have to be onsidered, one obtains a ombinedrouting and sheduling problem. Prominent examples of routing problems are the TSP (Lawleret al., 1985; Gutin and Punnen, 2002), the vehile routing problem (VRP) (Toth and Vigo, 2002b),and the pikup-and-delivery problem (PDP) (Savelsbergh and Sol, 1985; Desaulniers et al., 2002).When single or multiple time windows our at the nodes, one obtains the TSP, VRP or PDPwith time windows, abbreviated as TSPTW, VRPTW and PDPTW, respetively (e.g., Desrosierset al., 1995; Desaulniers et al., 1998; Cordeau et al., 2002a; Bräysy and Gendreau, 2005b,a). Thesope of this paper is not limited to these problems but also enompasses the more general lassof routing problems that an be modeled with resoure variables (Desaulniers et al., 1998; Funke,2003; Irnih and Desaulniers, 2004).Solving these types of problems optimally is still a hallenge in the ase of larger instanes.With the exeption of the TSP, where instanes with several thousand nodes an be solved tooptimality on a regular basis (Gutin and Punnen, 2002), instanes of the other problems withmore than about �fty nodes an be intratably hard to solve optimally. Therefore, heuristis andmetaheuristis are used for solving larger instanes of these problems.In this paper, we address both lassial and newly developed methods for loal searh in theontext of VRSPs. These approahes are lassi�ed aording to the struture and size of theneighborhood and the searh methods that are employed to searh the neighborhood. Roughlyspeaking, the quality of the solutions inreases with the size of the neighborhood. However, largeneighborhoods may be too big to searh exhaustively. This is why methods for intelligently pruningthe neighborhood searh are so important. Intelligent pruning allows loal searh methods to sanpotentially larger neighborhoods without exeeding the requirement for limited omputationaltime.The paper is organized as follows: In Setion 1, we shortly introdue loal searh and theimportant onept of moves and move deompositions. A formalism for the representation ofthese onepts in the ontext of vehile routing and sheduling is provided and the deompositionof the objetive funtion is disussed. In Setion 2, we lassify the di�erent neighborhoods thathave been suggested in the literature and disuss their similarities and di�erenes. If possible,an estimation of the neighborhood size and possible move deompositions are given. Setion 3introdues di�erent searh tehniques. We provide generi desriptions of the approahes andgive examples of their possible appliations. We over both diret searh tehniques, whih areused within lassial approahes of loal searh as well as indiret searh approahes that havebeen introdued in the ontext of very large-sale neighborhood searh. We �nally give someonlusions and outline some promising paths for future researh.2



1 Loal SearhNearly all heuristis and metaheuristis for VRSPs rely heavily on the de�nition of neighborhoodsolutions and loal searh (LS). This setion introdues LS applied to VRSPs. We present thebasi notation and onepts of loal searh algorithms for ombinatorial optimization problems,larify the de�nition of moves and their deomposition into partial moves, disuss possibilities torepresent VRSP solutions in the ontext of LS, and formalize the onept of gains of (partial)moves for di�erent VRSP ost funtions.Let (X, c) be a ombinatorial optimization problem of the form minx∈X c(x), where X is a�nite but large set of feasible solutions and c(x) the ost of x. For instane, X is the set of tours inthe TSP and c(x) is the ost of the tour x ∈ X. The basis of all loal searh methods is the use of aset of elementary moves that transform a given solution x ∈ X into a di�erent, so-alled, neighborsolution x′. The set of all solutions that an be reahed from the urrent solution using the set ofmoves is alled the neighborhood of the urrent solution w.r.t. the move set, i.e., N (x) ⊂ X. An
x′ ∈ N (x) with the property c(x′) < c(x) is an improving neighbor solution. Feasible solutions
x ∈ X, whih do not have any improving neighbor solutions, i.e., c(x′) ≥ c(x) for all x′ ∈ N (x),are alled loal optima w.r.t. N . In every iteration of a loal searh method, some (and in theworst ase all) neighbors x′ ∈ N (x) of the urrent solution x are evaluated in order to �nd atleast one improving neighbor solution. If it exists, a move is made to the improving neighborsolution, whih then beomes the urrent solution. Otherwise, a loal optimum w.r.t. the urrentneighborhood N is found and the loal searh stops.1.1 The Loal Searh AlgorithmDenoting the urrent iteration ounter by t and the urrent solution by xt ∈ X, one obtains thefollowing generi desription of a loal searh method:Algorithm 1: Generi Loal Searh1: Initialize the algorithm with a feasible solution x0 ∈ X and set the iteration ounter t := 0.2: REPEAT3: Searh for an improving neighbor x′ in the neighborhood N (xt) of the urrent solution xt.4: IF there exists an improving neighbor solution x′ ∈ N (xt),4: THEN set xt+1 := x′ and t := t + 1.5: UNTIL no more improvements are found.Several remarks regarding the design of Algorithm 1 should be made. First, the speed of theneighborhood evaluation depends on the omputational e�ort to determine the ost c(x′) of aneighbor solution x′ and heking its feasibility. If this an be ahieved quikly, e.g., in onstanttime for eah neighbor x′ ∈ N (x), larger neighborhoods an be searhed (e.g., Aarts and Lenstra1997, p. 128�; Kernighan and Lin 1970).Seond, searh step 3 gives the �exibility of terminating the searh whenever one improvingneighbor from the set of all improving neighbor solutions has been found. If the searh methodis enumerative (i.e., all neighbor solutions x′ ∈ N (x) and their ost c(x′) are evaluated one afteranother), taking the �rst improving solution or taking a best improving solution are two extremestrategies known as �rst searh and best searh. Another well known strategy, alled d-best searh,onsists of terminating the searh when d improving neighbor solutions are found. Then, the bestsolution from this set is taken as the next solution. All these strategies try to take advantage of the3



inherent trade-o� between searhing more thoroughly within a single neighborhood or searhingmore quikly in several neighborhoods with smaller inremental improvements. From the worst-ase point of view, all searh strategies are equivalent, sine showing that the last xt is a loaloptimal solution requires the entire neighborhood N (xt) to be sanned.Third, we would like to emphasize that �nding a best improving solution in a given neigh-borhood is itself an optimization problem. This optimization problem an be solved by expliitenumeration tehniques or by suitable optimization algorithms. These inlude tehniques, suhas dynami programming and branh-and-bound or network optimization algorithms for shortestpaths or yles, mathings, et. In all ases, heuristis an be employed to speed up the searh.Finally, the neighborhood N an be dynami, i.e., using di�erent neigborhoods N t, dependingon the iteration t and the searh history. Dynami neighorhoods are a ore onept of metaheuris-tis, but are beyond the sope of this paper. We refer the interested reader to the books of Aartsand Lenstra (1997); Gambardella et al. (1999); Voÿ et al. (1999).1.2 Moves and their DeompositionFor a preise de�nition of the term move, it is helpful to onsider an enlosing superset of solutions
Z ⊇ X . The idea of a solution y ∈ Z is that some of the moves m ∈ M might transform a feasiblesolution x into an objet y = m(x), whih has a struture similar to a feasible solution, but doesnot neessarily satisfy all onstraints that de�ne feasible solutions. For instane, shifting a nodefrom one position to another position in a TSPTW tour transforms one tour x into another tour x′,but might violate several time window onstraints. Another example is the swap of two ustomersbetween two VRP tours, whih might violate a apaity onstraint. In general, we denote by Mthe set of moves where a move m ∈ M is a (possibly partial) map from Z to itself, i.e., m : Z → Z.Sine a move might not be appliable to all solutions x ∈ Z, m(x) is not always well-de�ned. Fromthe above disussion, it is lear that a move m does not neessarily map feasible solutions x ∈ Xinto feasible solutions. For a given x ∈ Z, the extended neighborhood N̂ (x) = {m(x) : m ∈ M}ontains all neighbors of x, either feasible or infeasible. Clearly, the neighborhood N (x) ⊂ Xis given by N (x) = N̂ (x) ∩ X. Every move, m ∈ M , with m(x) ∈ X is alled a feasible movew.r.t. x.The number of neighbor solutions of a given solution x is alled the size of the neighborhood.When all moves m ∈ M generate di�erent neighbor solutions m(x) ∈ N̂ (x), the size of N̂ (x) aneasily determined by ounting the elements of M . Sine the number |N (x)| of feasible elementsin the neighborhood is (in general) depending on x, we will mostly examine sizes of extendedneighborhoods N̂ (x).In order to analyze di�erent moves, we deompose them into smaller parts, the so-alledpartial moves. A given deomposition m = pl ◦ . . . ◦ p2 ◦ p1 of a move m into l ≥ 2 partial moves
p1, p2, . . . , pl means that an x ∈ Z is �rst transformed into p1(x), seond p1(x) is transformedinto p2(p1(x)), and so on. Of ourse, we have to onsider the strutures that our after havingapplied one or several partial moves. In general, the ith partial move transforms elements of anintermediate struture Yi−1 to elements of another intermediate struture Yi, while for the �rstand last struture Y0 = Yl = Z holds. As a result, m : Z → Z deomposes into

m : Z = Y0
p1
−→ Y1

p2
−→ Y2

p3
−→ . . .

pl−1
−→ Yl−1

pl−→ Yl = Z.We neither laim that the deomposition into partial moves is self-evident nor that it is unique.Nevertheless, there are some interesting ases that we would like to study. In the ase that theintermediate strutures are taken from a single set Y di�ering from Z (i.e., Y = Y1 = Y2 =4



. . . = Yl−1 and Y 6= Z), we all p1 an opening partial move and pl a losing partial move, whileall other intermediate partial moves map Y into itself. Suh intermediate strutures are alledreferene strutures. Whenever the intermediate strutures have an idential form, it is possibleto vary the number of intermediate partial moves, whih results in hains of intermediate partialmoves of variable length. As we will see later, the famous Lin-Kernighan neighborhood as wellas the ejetion-hain neighborhoods are onstruted in this way. A seond important ase iswhen Z oinides with all intermediate strutures. We will refer to omposite moves whenever
X = Y = Z. This implies that a omposite move onsists of a hain of partial moves suh thatevery partial move maps from one referene struture to an idential referene struture.1.3 Representation of VRSP SolutionsIn order to desribe the neighborhoods formally, a onise representation of VRSP solutions isneeded. The basis for suh a desription is a direted routing graph G = (V, A). The node set
V onsists of request nodes R ⊂ V and possibly route-start O ⊂ V and route-end nodes D ⊂ V .The interpretation of the request nodes depends on the problem at hand. In the ase of the VRP,every request node orresponds to a ustomer that has to be visited exatly one. In the PDP, arequest node is either a pikup or a delivery. In omplex routing appliations, a request may evenonsist of more than a pair of pikup and delivery nodes. In the ontext of vehile sheduling(e.g., the multi-depot vehile sheduling problem), one request node orresponds to an operationstarting at a given loation and ending at another loation. This operation has to be performedwithout overlapping other operations at a prede�ned time or within a given time window.Solutions of VRSP, whih involve more than a single vehile an be represented as a olletionof routes. Suh a route is a path in G, starting with a route-start node o ∈ O and ending witha ompatible route-end node d ∈ D, visiting a sequene of request nodes in between. Again,the ompatibility of pairs (o, d) of route-start and route-end nodes depends on the problem athand. For single-depot problems with a homogeneous �eet of vehiles, all o ∈ O and d ∈ Dare ompatible. In multi-depot problems the sets O and D are partitioned aording to the nDdepots/garages, e.g., O = O1 ·∪ . . . ·∪OnD , D = D1 ·∪ . . . ·∪DnD , and o ∈ Ok, d ∈ Dl are ompatibleif and only if k = l. In general we assume that O and D have the same ardinality, H = |O| = |D|,and that ompatible route-start and route-end nodes are de�ned by a relation ∼ , i.e., a subsetof O × D.A solution to a VRSP is alled a route plan. A route plan x = (r1, r2, . . . , rH) is an H-tuple ofpaths in G where eah node v ∈ V is overed exatly one, eah path ri starts with a route-startnode oi ∈ O and ends with a ompatible route-end node di ∈ D. Note that this de�nition impliesthat every route-start and route-end node ours in exatly one route. If oi and di are onneteddiretly, then the orresponding vehile travels diretly from its origin to its destination, e.g., fromand to its depot. In some appliations the possibility of not using a vehile is modeled exatly inthis way. We will denote the number of nodes in a route plan by n = |V | and all its elements riroutes. The nodes overed by route ri are denoted by V (ri).Note that the order of the routes in suh a representation is arbitrary, sine any permutationof the routes represents the same solution. Alternatively, one might think of solutions to VRSPsas sets of routes (instead of tuples). We do not onsider this option mainly for two reasons:First, in a software implementation, one has to hose an ordering. Seond, ordering the routesgives rise to two �natural� representations. The giant route is the path (r1, r2, . . . , rH) in whiheah route-end node di is onneted to the next route-start node oi+1 (for i = 1, 2, . . . , H − 1).Similarly, the giant tour is the yle (r1, r2, . . . , rH) in whih, additionally, dH is onneted to o1.5



The giant-tour representation of a route plan is a generalization of the MTSP representation ofthe VRP (Christo�des and Eilon, 1969) to more general VRSPs. It has the advantage of allowingsingle and multiple route problems to be handled in a very similar way. Figure 1 depits suh arepresentation for the ase with four routes, departing from two depots.
(a)

o1 o2 o3 o4 d4d3d1 d2

(b)Figure 1: Giant-Tour Representation1.4 ConstraintsUp to now nothing has been said about the onstraints of VRSPs and modeling feasibility. Mostpratially relevant onstraints an be modeled by so-alled resoure variables (Desaulniers et al.,1998; Funke, 2003; Irnih and Desaulniers, 2004). These resoure variables may be part of intra-route or inter-route onstraints. Intra-route onstraints pertain to the resoure variables of a singleroute whereas inter-route onstraints are de�ned for several, interdependent routes. Well-knownexamples of intra-route onstraints are vehile apaities, tour length restritions, preedenes,and time window onstraints. Examples of inter-route onstraints are a limited number of 'long'tours, sorting apaity onstraints in parel or letter delivery systems, and a restrited numberof doking stations at depots. Consider, for example, a depot where vehiles arrive over time. Ifthe number of vehiles, whih an be served in a ertain interval is bounded, then the feasibilityof a route plan depends on the arrival time of all vehiles, whih visit the depot. We know ofno systemati heuristi approahes in the literature for handling inter-route onstraints, althoughthey an be very important in some appliations. However, sine the literature on this is sare,we will fous on intra-route onstraints in the following.A formal desription of onstrained resoures an be easily explained by the example of timewindows. The beginning of servie times Ti, i ∈ V , are given for every node i, and the vehileshedule an be desribed entirely by giving these times at all nodes. If the node oi is the route-start node, then T
oi is the departure time. In most sheduling problems, single or multiple timewindows [aℓ

i , b
ℓ
i ], ℓ = 1, . . . , L(i) are given for all nodes i ∈ V of the network. Every interval

[aℓ
i , b

ℓ
i ] de�nes feasible beginning of servie times for node i. If a vehile arrives within suh atime window, the shedule is feasible. If it arrives before the �rst or between two time windows,it has to wait until the beginning of (the seond) time window. If it arrives later than the endof the last time window L(i), the shedule is infeasible. When a vehile moves from node i tonode j, the resoure variable time inreases by at least tij + si, whih is the travel time alongar (i, j) ∈ A plus the servie time at node i. Thus, hoosing ar (i, j) within a route plan implies

Tj − Ti ≥ tij + si.There are more general resoure variable onepts, e.g., for modeling time or load dependent6



travel times, multiple apaities, et. Resoure extension funtions (Desaulniers et al., 1998;Irnih and Desaulniers, 2004) are useful for this type of model extensions, but their desriptionand disussion is beyond the fous of this paper.In the following it will be su�ient to redue the question of feasibility of a route plan to anorale ô, i.e., a funtion ô : Z −→ {yes, no}. The neighborhood N (x) of a route plan x onsistsof all feasible route plans and an be omputed by N (x) = {m(x) : m ∈ M, ô(m(x)) = yes}.Nevertheless, we have to keep in mind that the e�ort of alling the orale has a strong impat onthe e�ieny of the overall searh algorithm. In suessful LS implementations, the orale andthe searh strategy are arefully adapted to eah other.1.5 Costs and Gains of (Partial) MovesIn this subsetion we study how the objetive funtion of the VRSP and the deomposition of amove into partial moves both in�uene the ability to alloate osts or gains to partial moves. Suhan alloation is attrative within searh algorithms, sine one may be able to show that the moveannot lead to an improvement before all partial moves have been applied.Reall that c(x) is the ost of a solution x ∈ Z. We denote the gain of move m ∈ M appliedto solution x ∈ Z by g(m, x) := c(x)− c(m(x)). For VRSPs osts are related to the edges hosenin the solution x. We assume that the overall ost is the sum of the osts cij(x) assoiated withthe edges of the giant-tour representation, i.e.,
c(x) =

∑

(i,j)∈giant tour(x)

cij(x).The following three ases apply to nearly all pratially relevant appliations:1. Edge-dependent osts cij(x) = cij for eah (i, j) ∈ A. This is the simplest ase where ostsdepend only on the edge under onsideration. In this ase gains an be omputed fast andimmediately when edges are added or removed. Edge-dependent osts over the situationof standard TSP, VRP and PDP.2. Vehile-dependent osts cij(x) = cod
ij , whih depend on the route-start node o and route-end node d of the route that ontains the edge (i, j). The respetive gains of (partial)moves an only be determined when the assignment of request nodes to routes (i.e., to

(o, d)-ombinations) has been made. The onept of vehile-dependent osts is su�ient tomodel, for example, heterogeneous �eet and multi-depot problems.3. Resoure-dependent osts cij(x) = cij(T
1
i , . . . , T p

i , T 1
j , . . . , T p

j ) where T 1
i , . . . , T p

i and T 1
j , . . . , T p

jare resoure variables of nodes i ∈ V and j ∈ V . Time-dependent and load-dependent ostsan be modeled in this way (Desaulniers et al., 1998). Resoure-dependent osts over themost general ases of intra-route onstraints, but delay the ost omputation of some/allroutes to a point when the entire new route plan x′ = m(x) has been onstruted. Anexample is the omputation of the waiting osts of a route in problems with time windows,whih depend on the departure time of all visited nodes (Desaulniers and Villeneuve, 2000).The lassi�ation of a VRSP aording to one of the three ases determines the possibility ofalloating gains to partial moves at ertain stages of the searh proedure.In order to implement e�ient pruning rules in LS, it is neessary to alloate a gain g(pi, x) toeah of the partial moves pi, i = 1, . . . , l, depending only on the urrent solution x, but not on any7



intermediate solution. Let the move m ∈ M be deomposed into partial moves pl ◦ . . .◦p2 ◦p1. Forthe gain funtions it is desirable that the gain of a move m is the sum of the gains of its partialmoves p1, . . . , pl. A deomposition m = pl ◦ . . . ◦ p2 ◦ p1 is alled ost independent if
g(m, x) =

l
∑

i=1

g(pi, x) (1)holds. If the equality is not ful�lled in all ases, then su�ient onditions whih guarantee (1)an be given. These are alled legitimay onditions, f. Glover (1996a). For example, legitimayonditions might require that only ompatible subsets of partial moves our simultaneously orrestrit the ordering of partial moves.For the ase Y = Z, the deomposition m = pl ◦ . . . ◦ p2 ◦ p1 is order-independent if
m(x) = pπ(l) ◦ . . . ◦ pπ(2) ◦ pπ(1)(x)holds for all solutions x ∈ Z and all permutations π of {1, 2, . . . , l}. It is alled yli independentif the same holds for yli permutations π only.It should be pointed out that even if the exat evaluation of a partial move has to be delayedwhen ost independene is not ful�lled, approximations or lower bounds may be used for pruningthe searh proess.2 Neighborhood TypesFor the desription of di�erent neighborhood types, we assume that VRSP solutions x are givenby their giant-tour representation. Then, eah solution x ∈ Z an be transformed into any othersolution x′ ∈ Z of a VRSP by deleting and adding a number of edges. Hene, every loal searhmethod for VRSPs ould, in priniple, be regarded as a speial variant of an edge exhange.On the other hand, some transformations an be desribed better by onsidering nodes. Typialexamples are the reloation of one or several nodes from one route to another or from their urrentpositions to di�erent positions within the same route.We will use the term edge exhange when the number of diretly involved nodes is larger thanthe number of diretly involved edges, and we use the term node exhange when the opposite istrue. Note that we refer to �edges� both for direted and undireted graphs, sine this is veryommon in the vehile routing literature.In ases where the number of diretly involved nodes and edges is approximately the same,the lassi�ation of a move as a node or an edge exhange may not be lear.A third ategory of neighborhoods are the ombinatorial neighborhoods. In these neighbor-hoods, the set of all feasible moves must orrespond with the feasible region of some ombinatorialoptimization problem. Searhing for the best improving neighbor is, therefore, equivalent to solv-ing the assoiated ombinatorial optimization problem. Examples of ombinatorial optimizationproblems are the assignment problem, the shortest path problem and some of its extensions, andnetwork �ow problems. Furthermore, in some ases the deision variables of the ombinatorialoptimization problem are in one-to-one orrespondene with appropriately de�ned partial moves.The onstraints of the ombinatorial optimization problems guarantee that only ompatible partialmoves are seleted in order to produe new feasible solutions.The fourth and last ategory of neighborhoods we onsider are the partially onstrutive neigh-borhoods. In these neighborhoods, a number of nodes is removed from the urrent solution andre-inserted using some optimization algorithm or heuristi.8



In the following, the major neighborhood strutures for VRSPs are desribed, inluding thenotation, the ardinality of the neighborhood, the deomposition of moves into partial moves (ifinteresting), and referenes to the original papers.2.1 Node-Exhange NeighborhoodsIn this paper, we will use the α∗-notation for desribing the node-exhange neighborhoods. Thisnotation is motivated by the (M, P )-notation suggested by Taillard (1993) and the yli transfernotation suggested by Thompson and Psaraftis (1993). It is based on the route plan de�nitiongiven above. Let us assume that we are given ℓ disjoint segments (e.g., ℓ di�erent routes) s1, . . . , sℓof the route plan x. Denote by |si| the number of nodes in segment si. Then a node exhange anbe desribed by the ℓ-dimensional vetor α = (α1, . . . , αℓ), αi ∈ N, i = 1, . . . , ℓ where min{αi, |si|}nodes are moved from path si to path si+1 if i < ℓ and from sℓ to s1 if i = ℓ. In many ases it isassumed that the nodes from path si take positions of the nodes removed from path si+1. If thisis the ase, we write αi instead of αi. If it is allowed that less than min{αi, |si|} nodes are movedfrom si to si+1, then we write α∗
i instead of αi.The onept of node exhanges is not limited to those routing problems where requests anbe desribed entirely by one node (suh as in the ase of the TSP and VRP). However, mostimplementations so far onsider exatly this ase. If one wants to handle the more general ase,it is usually required that all nodes belonging to one request are moved simultaneously (e.g., thepikup and delivery node in the ase of the PDP). The following subsetions illustrate di�erentnode-exhange neighborhoods and the α∗-notation.Note that the α∗-notation is not normalized w.r.t. yli shifts, e.g., the neighborhood givenby (a, b, c) is idential to (b, c, a) and (c, a, b). In the following, we will give only one of thesepossible desriptions.2.1.1 ReloationReloation, also alled insertion, is the simplest and most basi node exhange. One node ismoved from its urrent position and inserted into a di�erent position. In α∗-notation this an bedesribed by (1, 0). The size of the reloation neighborhood is O (n2), sine there are n possiblenodes that an be moved from their urrent position to (n − 2) other positions.The reloation move mreloc an be deomposed into two partial moves. In order to simplify thenotation, we assume that the predeessor and suessor of a node i are i−1 and i+1, respetively.First, a node i is removed from its urrent segment, whih means removing the edges (i−1, i) and

(i, i + 1) and inserting the edge (i− 1, i + 1). Now, node i is free (i.e., not onneted to the gianttour) and, therefore, this partial move is alled pfree
i . Seond, the free node i is inserted into aseond segment between onseutive nodes j and j + 1. Consequently, the seond partial move isdenoted by pins

i,j , whih removes the edge (j, j + 1) and inserts the edges (j, i) and (i, j + 1). Theintermediate struture Y into (from) whih pfree
i (pins

i,j ) maps, is the set
Y = Y one−free−node =

{

(i, x̂) : i ∈ R, x̂ is a (feasible) route plan for V \ {i}
}

. (2)Of ourse, the omposition mreloc
ij := pins

ij ◦ pfree
i is only well-de�ned if j 6= i and j 6= i − 1. Foredge-dependent osts, the gain of the partial moves are g(pfree

i , x) = ci−1,i + ci,i+1 − ci−1,i+1 and
g(pins

ij , x) = cj,j+1 − cji − ci,j+1. The partial moves pfree
i and pins

ij are ost independent in the aseof edge-dependent osts. The gain of the reloation move is g(mreloc
ij , x) = g(pfree

i , x) + g(pins
ij , x).9



2.1.2 ExhangeIn an exhange move, one node is moved from the �rst path to the seond path and a seondnode is moved vie-versa. Some authors use the term interhange instead of exhange. Wewill only use the term exhange in order to avoid onfusion with the λ-interhange move. Theorresponding α∗-notation is (1, 1). Clearly, eah (1, 1)-exhange move an be represented as theomposition of two (partial) reloation moves, i.e., mexchange
i1,j1,i2,j2

= mreloc
i1,j1

◦ mreloc
i2,j2

. The size of the
(1, 1)-exhange neighborhood N̂ (x) is O (n4), sine it is the ombination of two reloation moves.For the exhange move it is easy to verify that its partial moves mreloc

i1,j1
and mreloc

i2,j2
are ost- andpermutation-independent (in ase of edge dependent osts), if the ten nodes {i1−1, i1, i1+1, j1, j1+

1, i2 − 1, i2, i2 + 1, j2, j2 + 1} are pairwise disjoint (these are su�ient legitimay onditions).In many implementations presented in the literature it is required that the nodes take theposition of their ounterparts, i.e., (1,1) in α∗-notation. This is also alled a swap move. A swapof nodes i and j is given by mswap
ij = mreloc

i,j−1 ◦mreloc
j,i−1 whih is a deomposition into two dependentpartial moves. Note that one an restrit swap moves to the ase where j 6= i − 1, i, i + 1,sine otherwise the resulting move is either the identity or a reloation move. The size of theneighborhood redues to O (n2) in the ase of a swap. As we will see later when disussinge�ient searh tehniques for the swap move, there are other independent deompositions intopartial moves.2.1.3 λ-InterhangeThe term λ-interhange was introdued by Osman (1993). It is a generalization of the exhangemove desribed above. In a λ-interhange one moves at most λ nodes from one segment to anotherand vie-versa, i.e., (λ∗, λ∗) in α∗-notation. In most implementations, also in the original paperof Osman, it is required that the nodes are inserted in the positions of the removed nodes, i.e.,

(λ∗, λ∗) in α∗-notation. Note that the λ-interhange for λ = 2 inludes the moves (1, 0), (1, 1),
(2, 0), (2, 1) and (2, 2). In order to evaluate the size of the λ-interhange neighborhood for (λ∗, λ∗),we �rst onsider the possible hoies to remove 2k nodes (k ≤ λ). There are (

n
2k

) possibilities toselet 2k di�erent nodes. After having seleted 2k nodes, there are O (n2k) (for k signi�antlysmaller than n) possibilities to re-insert them into the segments. This gives a neighborhood sizeof O
(

∑λ
k=0

(

n
2k

)

n2k
)

= O
((

n
2λ

)

n2λ
)

= O
(

n4λ
). In the ase of (λ∗, λ∗), we still have (

n
2k

)possibilities to selet 2k di�erent nodes. However, there are only (2k)! (whih is onstant forsmall k) ways to re-insert the nodes, resulting in a neighborhood size of O (

n2λ
). We are onlyaware of papers where (1∗, 1∗) has been used. Note that in general, λ-interhange moves annotbe represented by a omposition of exhange moves. Figure 2 depits a 2-interhange move thatannot be represented by exhange moves, sine the involved nodes are not swapped pair-wise.2.1.4 Node-Ejetion ChainsEjetion hains are a powerful onept introdued by Glover for solving various ombinatorialoptimization problems (Glover, 1992, 1996a; Glover and Laguna, 1997). Ejetion hains havebeen used to solve the TSP and VRP. Here we desribe the use of node-ejetion hains (NEC) inthe ontext of the VRP, as a generalization of the onept implemented by Rego (1998).In the �rst step of a NEC, a node i1 is removed from its urrent position and inserted intoanother position, urrently taken by another node i2. In the seond step, node i2 is again removedfrom its urrent position and inserted to yet another node position i3, et. Rego onsiders two10



(a) (b)Figure 2: A 2-Interhange Move that annot be omposed of Exhange Moves, (a) Before theMove, dotted Lines indiate whih Nodes are exhanged, (b) After the Movepossibilities for performing the last move of suh an ejetion hain. In the �rst ase, termed 'multi-node exhange proess' (MNEP), the last ejeted node is inserted into the position left empty bythe �rst removed node. In the seond ase, termed 'multi-node insert proess' (MNIP), the lastnode is inserted into another position without ejeting a node. In α∗-notation a NEC is given by
α = (α1, . . . , αℓ) = (1, . . . , 1) for MNEP and by α = (α1, . . . , αℓ) = (1, . . . , 1, 0) for MNIP. Thenumber ℓ is the depth of the NEC. In the following we will onsider MNEP only, sine MNIP aneasily be modelled as an exhange proess by using an additional dummy node.The NEC move deomposes naturally into alternating sequenes of partial moves pfree

ij
and

pins
ij ,ij+1

for j = 1, . . . , ℓ − 1, i.e.,
mNEC

(i1,...,iℓ)
: Z

pfree
i1−→ Y

pins
i1,i2−→ Z

pfree
i2−→ Y

pins
i2,i3−→ Z

pfree
i3−→ . . .

pfree
iℓ−→ Y

pins
iℓ,i1−→ Z. (3)Again, Y = Y one−node−free is the struture de�ned by (2). We assume that all nodes i1, i2, . . . , iℓare di�erent.In order to provide a basis for the desription of appropriate LS proedures that will bepresented in Subsetion 3.1.2, we are now giving a more detailed analysis of the partial movesand their dependenies. We assume edge-dependent osts. At �rst we point out that the move

mNEC
(i1,...,iℓ)

given by (3) is a yli shift of the ℓ nodes i1, i2, . . . , iℓ. The orresponding 2ℓ partialmoves are yli independent as an be seen from Figure 3. mNEC
(i1,...,iℓ)

moves are in one-to-one
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Figure 3: Par-tial Moves in aNode-EjetionChain mNEC
(i,j,k)with l = 3orrespondene with yles of partial moves (CPM). Neighborhood searh (i.e., searhing for moves11



with ertain properties, e.g., improving moves) is, therefore, equivalent to searhing for CPM withorresponding properties.From Subsetion 2.1.1 we know that pfree
i and its sueeding partial move pins

ij are ostindependent (if j 6= i − 1, i, i + 1). In ontrast, pins
ij and its suessor pfree

j are not ost in-dependent. To see this, note that the omposition pins&free
ij := pfree

j ◦ pins
ij adds the edges

(j − 1, i), (i, j + 1) and removes the edges (j − 1, j), (j, j + 1) and, therefore, the gain is equal to
g(pins&free

ij , x) = cj−1,j + cj,j+1 − cj−1,i − ci,j+1. This does not oinide with the sum of the gainsof the partial moves pfree
j and pins

ij . As a result, the above deomposition of move mNEC
(i1,...,iℓ)

into
2ℓ partial moves is not ost independent.However, it is possible to deompose a CPM into ost independent parts. With the abovegiven gain g(pins&free

ij , x) it is easy to see that pins&free
i1,iℓ

◦ pins&free
iℓ,iℓ−1

◦ . . . ◦ pins&free
i2,i3

◦ pins&free
i1,i2is suh a deomposition if the following legitimay onditions are ful�lled. If a node i ejetsnode j, then in the remaining part of the NEC-move it is prohibited to move node i, the newpredeessor j − 1 or suessor j + 1. This implies that the nodes i1, . . . , iℓ have to be hosensuh that ik /∈ {ij − 1, ij , ij + 1} holds for all k 6= j. From the ost independeny it followsthat �nding improving moves mNEC is equivalent to deteting CPM with a positive overall gain

∑ℓ
j=1 g(pins&free

ij ,ij+1
, x). The point is that the atoms pins&free

ij ,ij+1
of this deomposition an be priedindependently.Next we determine the size of the NEC neighborhood. It follows from the legitimay onditionsthat every ejetion of a node j bloks the two nodes j − 1 and j + 1 from being ejeted insubsequent partial moves. Thus, the maximum depth of a NEC is ℓmax = ⌊n

2 ⌋. For a givendepth ℓ ∈ {1, . . . , ℓmax}, there are n(n − 2) · · · (n − 2ℓ + 2) = O
(

2ℓ
(

⌊n
2
⌋

ℓ

)) possibilities forseleting the ℓ nodes in the NEC. The order of these nodes an be permuted. Hene, the totalneighborhood size is O (

∑⌊n
2
⌋

ℓ=1 2ℓ
(

⌊n
2
⌋

ℓ

)

(ℓ − 1)!
).2.1.5 Cyli TransfersThe onept of yli transfers (CTs), introdued in (Thompson and Psaraftis, 1993) is verysimilar to that of an ejetion hain. Generally, in a yli transfer, m nodes are moved fromroute r1 to route r2, from route r2 to route r3 et., until m nodes are moved from route rb toroute r1. Suh a general move is alled a 'b-yli m-transfer'. In α∗-notation it is given by

α = (α1, . . . , αb) = (m, . . . , m). In the original paper it is also allowed to move less than m nodesfrom one route to the next using so-alled 'dummy demands'. In α∗-notation this is the move
α = (α1, . . . , αb) = (m∗, . . . , m∗). A single CT move an be desribed by the b sets of nodes whihare ylily shifted among their routes. Let Si be the set of nodes whih are removed from route
ri and inserted into route ri+1 (for abbreviation we set rb+1 := r1 and Sb+1 := S1). Analogous tothe NEC neighborhood, the yli-transfer move mCT

(S1,S2,...,Sb)
an be deomposed into 2b partialmoves pfree

Si
and pins

Si,Si+1
:

mCT
(S1,S2,...,Sb)

: Z
pfree

S1−→ Y
pins

S1,S2−→ Z
pfree

S2−→ Y
pins

S2,S3−→ Z
pfree

S3−→ . . .
pfree

Sb−→ Y
pins

Sb,S1−→ Z.The operation pfree
Si

removes the nodes Si from their urrent positions in the route ri, while pins
Si,Si+1inserts the nodes Si into the route ri+1 under the assumption that the nodes Si+1 will be removedfrom ri+1 in the following partial move. The intermediate struture Y onsists of pairs (S, x̂),where S is a subset of nodes and x̂ is a route plan on V \ S.12



In ontrast to the NECs desribed above, CT neighborhoods do not require that the insertednodes take the plae of the removed nodes. Rather, a new route ri+1′ has to be determined whihnow inludes the nodes (V (ri+1) ∪ Si) \ Si+1. For example, in the ase of the VRP(TW), onewould have to solve a TSP(TW) to generate ri+1. Sine solving these subproblems to optimalityis, in general, too time-onsuming, one usually resorts to an insertion heuristi.In the following, we assume that the osts c(x) of a route plan an be omputed as the sumof osts c(ri) of the single routes. When inter-route resoures (see p. 6) in�uene the ost of theroute-plan this assumption might be violated. As in the ase of NEC, mCT
(S1,...,Sb)

deomposes into
b ost independent partial moves pins&free

Si,Si+1
:= pfree

Si
◦ pins

Si,Si+1
, i = 1, . . . , b. The gain of pins&free

Si,Si+1is g(pins&free
Si,Si+1

, x) = c(ri+1) − c(ri+1′) where c(ri+1′) is the ost of the new route ri+1′. If theredoes not exist a feasible route ri+1′ for the node set (V (ri+1) ∪ Si) \ Si+1 (or no feasible route isfound), then one sets g(mCT
(Si,Si+1), x) = −∞.CT neighborhoods are more general than NEC neighborhoods in the sense that several nodesmight be shifted simultaneously within a single partial move, and the ordering of the nodes inthe new route might be ompletely di�erent from their previous ordering. On the other hand,CT require that node sets Si, Sj of a move mCT ome from di�erent routes. This assumption isnot neessary in the general NEC approah. We will see later that this 'di�erent route legitimayondition' is very useful when the neighborhood is searhed for improving solutions, sine it allowsintra-route onstraints to be handled impliitly when solving a dynami program or shortest pathproblem. Thus, routing problems with omplex intra-route onstraints an be handled using thisapproah.In order to bound the size of the CT neighborhood, we assume that all H routes have ap-proximately the length n/H. The number of di�erent b-yli m-transfers is O

(

(

H
b

)

· 2bn/H
),sine there are (

H
b

) possibilities to hoose the b routes and eah route ri has approximately 2n/Hsubsets Si. Hene, the CT neighborhood is larger than the neighborhood of the NEC with thedi�erent routes legitimay ondition.2.2 Edge-Exhange NeighborhoodsEdge-exhange neighborhoods are the most ommonly used neighborhoods in heuristis for VR-SPs. They an be desribed by a proess of subsequently removing and re-inserting edges.2.2.1 General DesriptionRemoving k di�erent edges d1, . . . , dk ∈ A from the giant tour x reates exatly k subpaths
(s1, s2, . . . , sk) whih are alled segments in the ontext of edge exhanges. In order to onstruta neighbor giant tour x′ = m(x) from these segments one has to add the same number k of edges,denoted by a1, a2 . . . , ak ∈ A. (More generally, one an reate a union of edge disjoint yleswhih is then transformed bak into a single tour.) The added edges have to onnet pairs ofnodes inident to at least one of the removed edges, i.e., start-nodes or end-nodes of the di�erentsegments. Eah node is inident to the same number of removed and added edges. Therefore, thespanning graph G(d1, . . . , dk, a1, . . . , ak) an be deomposed into alternating yles of removedand added edges.Deleting the edges d1, . . . , dk and inserting new edges a1, . . . , ak an be interpreted with respetto the following two aspets: First, when an edge ai onnets a segment s with another segment s′,then these segments beome predeessor and suessor segments, respetively. Consequently, the13



inserted edges determine the permutation of the segments. Seond, onneting one segment swith the �rst (last) node of segment s′ implies that the seond segment has to be traversed in itsgiven (its reverse) order. Hene, the inserted edges also determine whether segments are invertedor not.Therefore, eah edge-exhange move m whih deletes k and adds k edges an be onsidered asthe subsequent exeution of the following four operations:1. k-segmentation. This operation removes k edges from the giant tour x resulting in ksegments s1, . . . , sk.2. k-inversion. This operation inverts a subset of the k segments, i.e., s±1
i .3. k-permutation. This operation hanges the order of the segments s±1

π(1), . . . , s
±1
π(k).4. k-onatenation. This operator onatenates the segments that result from applying thethree �rst operators into a new giant tour x′.When all inserted edges di�er from the deleted edges, the move is alled a proper move.There are some details that we would like to point out. Any permutation π of the in-dies {1, 2, . . . , k} an be represented in yle-notation, e.g., as (1, 3, 4)(2, 5) when the permutationmaps 1 to 3, 3 to 4, 4 to 1, and exhanges 2 and 5. The result of applying π to s±1

1 , . . . , s±1
k andonatenating the permuted segments is a yle (giant tour), if and only if π is a yli permuta-tion. Non-yli permutations π transform x into multiple yles. These multiple yles do notneessarily orrespond with feasible route plans. However, as we will see in Setion 2.2.3, some ofthese strutures are easily re-interpretable as yles and might, therefore, generate �interesting�giant tours x′.The set of moves, for whih the operators inversion and permutation are idential, de�ne amove type or edge-exhange type. In order to give a lear desription of di�erent edge-exhangetypes we introdue the abc-notation. In this notation, one uses the �rst k letters of the alphabet,where the ith letter orresponds to the ith segment of the giant tour. If the letter is upperase, theorresponding segment is reversed. For example, the ode aBDc orresponds to moves where theseond and the fourth segments are reversed and the third and fourth segments hange position.To indiate that a new yle starts we write �|�, i.e., aC|bd means that the �rst and the reversedthird segment form one yle while the seond and the forth segments form the seond non-reverseyle (for the moment we do not are about the question of how to transform these two ylesbak to a single yle).Next, we want the ab-notation to be unambiguous, i.e., the notation should not depend onthe numbering of the segments within the giant tour. Let us assume that the segment �a� is �xedby an appropriate de�nition, e.g., stating that segment �a� inludes the node with index 1. Anyyli permutation π an be uniquely written with �a� as the �rst element of the yle. This meansthat the yli permutation (a, c, d, b) annot be written as (c, d, b, a) or (d, b, a, c) or (b, a, c, d).From this argument it follows that we have to distinguish (k − 1)! di�erent yli permutations.In the ase of multiple yles, the ab-notation �rst presents the yle whih ontains segment

a, followed by the yle with the smallest remaining segment number (aording to the letters inthe alphabet), et. For instane, instead of aDf |c|eB one has to write aDf |Be|c.Furthermore, in symmetri problems a giant tour x′ and the reversed giant tour x′−1 representidential solutions, e.g., Ab is idential to aB. In ontrast, asymmetri problems have to takethe orientation of the �rst segment a into aount. In the following desription of edge-exhange14



moves, we will fous on the symmetri ase only. The results remain valid for the asymmetriase if we keep in mind the fator two for inverting the �rst segment.Assignment of Route-Start and Route-End Nodes and Inversion of Segments Reallthat every route starts with a route-start node and ends with a route-end node. Any move thata�ets at least two routes may disrupt this on�guration. The simplest ase is the appliation ofthe so-alled 2-opt move to two routes, an instane of the so-alled ross exhange. This move isdepited in Fig. 4. The problem with this situation is that the feasible assignment of route-start
o1

o2d2

d1

(a) o1

o2d2

d1

(b)Figure 4: A Cross Move that disrupts the Struture of the Route, starting with a Route-StartNode and terminating with a Route-End Node, (a) Before and (b) after the Exhangeand route-end nodes is disrupted by the move. Therefore, a new assignment of route-start androute-end nodes to the routes is neessary. However, this problem is an optimization problemby itself. Even in the ase of two routes, there might be four possibilities (if all route-start androute-end nodes are ompatible, i.e., o1 ∼ d1, o1 ∼ d2, o2 ∼ d1 and o2 ∼ d2 holds) of assigninga ombination to the routes. A loser investigation of this problem shows that in general it anbe modeled as a planar three-dimensional assignment problem (Magos and Miliotis, 1994).In order to save the e�ort of solving an optimization problem, there is a simple way toimplement the inversion of a segment s. First, if s solely onsists of request nodes, thenthe the segment an be inverted diretly. Seond, if s ontains a single (o, d)-pair, i.e.,
s = (v1, v2, . . . , vp, d, o, w1, w2, . . . , wq), then the inverted segment should be de�ned as s−1 =
(wq, . . . , w2, w1, d, o, vp, . . . , v2, v1). This implies that after permutation and onatenation, thenew giant tour still onsists of routes starting (ending) with nodes o ∈ O (d ∈ D) inluding somerequest nodes. Third, if the segment s ontains one or several routes rh(i), rh(i)+1, . . . , rh(j), i.e.,
s = (v1, v2, . . . , vp, d, rh(i), rh(i)+1, . . . , rh(j), o, w1, w2, . . . , wq), then the inverted segment shouldbe s−1 = (wq, . . . , w2, w1, d, rh(i), rh(i)+1, . . . , rh(j), o, vp, . . . , v2, v1), whih means that the inter-mediate routes should not be inverted. The reason is that the order of the single routes in the gianttour is arbitrary, and a omplete inversion of all inluded routes is 'more likely' to be infeasible ifthe problem at hand is asymmetri.2.2.2 k-OptThe oldest and most widely used neighborhood is the so-alled k-opt neighborhood (see, e.g.,Croes, 1958; Lin, 1965). In these neighborhoods, k ≥ 2 edges are removed from the giant tourand k edges are inserted, resulting in a di�erent route plan. The de�ning harateristi of k-optmoves is that the permutation π of the segments is a yli permutation. Although k-opt movesare usually employed within single-route problems, suh as the TSP and TSPTW, they generalizeto multiple-route problems in the giant-tour representation.15



When deleted and inserted edges are not disjoint (an edge is �rst removed and later the sameedge is added bak to the tour (delete-add), or an edge is added and the same edge is deleted later(add-delete)) one gets a non-proper move whih an also be found as a k′-opt move with k′ < k.For all k ≥ 2, the size of the k-opt neighborhood an be derived from the above de�nition.There are (

n
k

) possibilities to hose the edges for segmentation, 2k−1 possibilities for performing aninversion, and (k − 1)! possibilities for doing a yli permutation. The size of the neighborhoodis, therefore, bounded by (

n
k

)

2k−1(k − 1)!. This is an upper bound, sine the segmentation mayresult in degenerated segments, whih annot be inverted. For k ≥ 3, we have also inludedall neighborhoods from 2, . . . , k − 1 in the alulation. On the other hand, the number of movetypes for a given k is exatly MT (k) := 2k−1(k − 1)!, sine the two operations k-inversion and
k-permutation generate exatly this number of moves. The number of 2-opt and 3-opt move typesis MT (2) = 2 and MT (3) = 8, respetively. The two 2-opt move types are the identity (whihis a non-proper move) and the move where the edges (i, i + 1) and (j, j + 1) are replaed by
(i, j) and (i + 1, j + 1) and the segment between the nodes i + 1 and j is inverted. The eight3-opt move types depited in Fig. 5 ontain one idential tour, three 2-opt move types, and onlyfour proper 3-opt move types. Let us denote the number of proper move types for a given k
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Figure 5: The Eight 3-Opt Move Typesby PMT (k). We know that PMT (2) = 1 and PMT (3) = 4. For an arbitrary k, the valueof PMT (k) an be omputed as follows. After having hosen the k edges to remove, we haveto subtrat from MT (k) the number of proper moves that an be generated with fewer than kedges. For a given k and a given i < k, there are (

k
i

) possibilities to selet subsets with exatly
i edges. Moreover, the identity move, where all k edges are re-inserted after deletion, also hasto be substrated from the number of non-proper moves. This results in the reursive formula
PMT (k) = MT (k) −

∑k−1
i=2

(

k
i

)

PMT (i) − 1, k ≥ 3 and PMT (2) = 1 for the number of proper
k-opt moves. Table 1 depits the values of MT (k), PMT (k) and PMT (k)/MT (k) for seletedvalues of k. This shows that the ratio between proper k-opt move types and the k-opt movetypes lies between 0.5 and 0.6 for 'relevant' values of k. It should also be noted that the ratioinreases monotonially with k.We would also like to point out that the restrition of onsidering only proper k-opt movetypes does not exlude the possibility of reating moves that an be omposed of several k′-optmoves with k′ < k having all deleted and added edges disjoint. This ours for the �rst time when
k = 4. For example, the proper 4-opt move type aBcD an be omposed of the two independent2-opt move types aB and cD, as an be seen from Fig. 6.16



k 2 3 4 5 6 7 8 9 10 50 100
MT (k) 2 8 48 384 3840 46080 645120 1.03E+07 1.86E+08 3.42E+77 5.92E+185
PMT (k) 1 4 25 208 2121 25828 365457 5.90E+06 1.07E+08 2.06E+77 3.57E+185
PMT (k)
MT (k) 0.5 0.5 0.52 0.54 0.55 0.56 0.57 0.57 0.57 0.6 0.6Table 1: Growth of (proper) Move Types for k-Opt Moves

Figure 6: A Proper 4-Opt Move Type whih an be omposed of two inde-pendent 2-Opt Move TypesOr-Opt The only 3-opt move whih does not reverse any segments is the move acb. This is aninstane of the so-alled Or-opt move (Or, 1976), where one usually requires that the number ofnodes within at least one of the segments b and c is less than or equal to three. Therefore, thesize of the Or-opt neighborhood is not ubi, but quadrati. Suh restritions on path lengths area general way to speed up the serah within edge-exhange neighborhoods.2.2.3 k-Opt*A generalization of the k-opt moves for multiple-route problems was introdued by Potvin et al.(1989). In ontrast to the k-opt neighborhood, the permutation de�ning the k-opt* move is notneessarily a yli permutation π. For example, aE|Bc|d represents a move type whih generatesthree subtours (yles). The �rst one onsists of segment a and the reversed segment e, the seondone onnets the reversed segment b with c, and the last one is formed by the single segment d.The k-opt* neighborhood inludes the k-opt neighborhood.The formation of a subtour is feasible if and only if the yle represents a giant tour of thenodes it overs. This means that ompatible pairs o ∼ d of tour-start and tour-end nodes haveto form individual routes of the subtour. Furthermore, eah yle has to inlude at least oneombination of route-start and route-end nodes. Fig. 7 depits suh a replaement operation fora on�guration resulting from a 2-opt* move.
(a) (b)Figure 7: Transformation of the Intermediate Struture, (a) that results from the Appliation ofa 2-Opt* Move to (b) an equivalent Giant Tour17



The transformation of multiple yles into one giant tour (whih represents the route plan) isdone by onatenating the individual routes in a yli way. The �nal ordering of these routes isarbitrary.The size of the k-opt* neighborhood an be omputed in analogy to the size of the k-optneighborhood. The only di�erene is that here π is an arbitrary permutation. Thus, the size ofthe k-opt* neighborhood is bounded by (

n
k

)

2k−1k!, whih is (approximately) k times the size ofthe k-opt neighborhood.2.2.4 Speial Inter-Route NeighborhoodsMost heuristis and metaheuristis for VRSPs use a set of restrited k-opt operators that arepresumably very e�ient in this ontext. The advantage of using restrited k-opt operators isthat the e�ort of searhing is usually lower than the O (nk)-e�ort needed for searhing the entire
k-opt neighborhood. Most of these operators are strutured so that no paths need to be reversed.Cross Exhange A ross exhange is idential to applying a 2-opt or 2-opt* move to two routes.The ase of applying the 2-opt* move orresponds to swapping the end segments between tworoutes. In most appliations where the order of the nodes is important, ross exhanges are limitedto this ase.String Reloation A segment, i.e., a 'string', is removed from one route and inserted into adi�erent route. This is equivalent to applying the Or-opt move to two routes. If the length of thestring is restrited, then the Or-opt neighborhood is quadrati.String Exhange Two strings from two di�erent routes are exhanged. This is equivalent toapplying the well-known 'double-bridge' move of the TSP (an 'adb'-move) to two di�erent routes.Due to di�erent terminologies, this move is sometimes also referred to as a ross exhange. If thelength of the two segments is restrited, then the string-exhange neighborhood an be searhedin quadrati time. Without suh restritions, the size of the string-exhange neighborhood isbounded by O (n4). Note that the ross exhange is equivalent to a speial ase of the stringexhange in the single-depot ase, where an endpoint of both of the strings is onneted diretlyto the depot.2.2.5 Lin-Kernighan NeighborhoodReall that in an edge-exhange move m, the added edges are denoted by a1, a2, . . . , ak, the deletededges by d1, d2, . . . , dk, and that all these edges together impliitly de�ne a set of alternating yles.The alternating yles ompletely determine the move m beause they onsist of the symmetridi�erene of the edges from the urrent giant tour x and the new giant tour x′. By SAC-k-optwe denote all k-opt moves whose deleted and added edges generate a single alternating yleFunke et al. (2004). All 2-opt and 3-opt moves are ontained in the SAC-2-opt and SAC-3-opt neighborhoods, respetively. However, it is well-known that the double-bridge move acbdis not ontained in the SAC-4-opt neighborhood (see, e.g., Rego and Glover, 2002). Therefore,the SAC-k-opt neighborhood is a proper subset of the k-opt neighborhood. The Lin-Kernighanneighborhood (LK), introdued in (Lin and Kernighan, 1973), is a proper subset of SAC-k-opt,whih further restrits the way edges an be added and deleted in the alternating yle. It requiresthat the proess of subsequent deletion and addition of edges satis�es some strutural properties18



and that all added and deleted edges are disjoint. The orresponding moves have the property ofdeomposing naturally into yli independent partial moves (see p. 8). Lin and Kernighan haveformulated the gain riterion for general yli independent moves, whih makes the searh in theTSP-ase highly e�ient (see Subsetion 3.1.2).In order to give a formal desription of the neighborhood and its deomposition, we have tolabel the nodes that are inident with the added and deleted edges. Traing along the alternatingyle shows that there exist 2k (not neessarily di�erent) nodes i1, i2, . . . , ik and j1, j2, . . . , jk suhthat the deleted edges an be written as dp = (ip, jp) and the added edges an be written as
ap = (jp, ip+1) for all p = 1, . . . , k (with the setting ik+1 := i1). The move m is determined bythe nodes i1, i2, . . . , ik and j1, j2, . . . , jk of the alternating yle. The partial move pdel

ij deletes theedge (i, j) from the urrent tour (or more generally, from a given graph) and the partial move padd
jiadds the edge (j, i). Using this notation and introduing the intermediate strutures Z and Y ,whih will be explained below, the yli edge-exhange move m an be written as:

mLK
i1,...,ik,

j1,...,jk

: Z
pdel

i1,j1−→ Y
padd

j1,i2−→ Z
pdel

i2,j2−→ Y ∗
padd

j2,i3−→ Z
pdel

i3,j3−→ . . .
pdel

ik,jk−→ Y
padd

jk,i1−→ Z. (4)LK is a restrited neighborhood with moves mLK of variable length, where the move alwaysstarts with the deletion of an edge. The alternative of starting with the addition of an edge leadsto a so-alled edge-ejetion hain and has been studied by Glover (1992). LK restrits the steps ofthe deomposition (4) to the ase where after the deletion of an edge, the generated struture isa Hamiltonian path y, i.e., Y is the set of all Hamiltonian paths. The intermediate objets z ∈ Zare o-alled stem-and-yles. They result from the addition of an edge from an endpoint of aHamiltonian path to another node. The stem-and-yle referene struture Z was introduedin (Glover, 1996a, 1992).Sine all edges are pairwise disjoint, the LK neighborhood only ontains moves that exhangeexatly k edges with k other edges. Hene, LK is a subset of the neighborhood de�ned by theproper k-opt moves (see p.14).From our point of view, the above deomposition is the kernel of the famous Lin and Kernighanneighborhood. Its variability relies on the fat that at eah add-step one an either add the edge
(jp, i1), whih transforms the urrent path into a (giant) tour (i.e., a losing partial move), orone may add a �short� edge (jp, ip+1) with ip+1 6= i1, whih ontinues the alternating delete-add-proess. The seond alternative allows the generation of edge exhanges with variable length.In (Lin and Kernighan, 1973), the authors allow the seond deletion of an edge to either reatea Hamiltonian path or a path with a single yle. This slightly hanges the LK-neighborhood into alarger neighborhood LK*. The motivation for this modi�ation aording to (Lin and Kernighan,1973, p. 506) is that LK* ontains all 3-opt moves, while LK does not. More spei�ally, the Or-opt move (type ab) is not ontained in the LK neighborhood, but belongs to LK*. A omparisonof neighborhoods of the Lin-Kernighan type and ejetion-hain moves proposed in (Glover, 1991,1996a) an be found in (Funke et al., 2004).2.3 Combinatorial NeighborhoodsLarge neighborhoods have the potential to ontain more and better solutions than small neigbor-hoods. Ahuja et al. (1999) stress that large-sale neighborhoods do not neessarily produe moree�etive heuristis unless one an searh the larger neighborhood in a very e�ient manner. Inthis subsetion, we fous on large neighborhoods for VRSP whih an be searhed e�etively by a19



suitable algorithm, based on, e.g., dynami programming or a mathing approah. We all theseneighborhoods ombinatorial neighborhoods (CN).2.3.1 Assignment-based NeighborhoodsIn the last few years, several researhers have onsidered the so-alled assignment neighborhood,(see, e.g., De��neko and Woeginger, 2000). We give a VRSP spei� presentation of the ideas here.The �rst step of the proedure is to split the urrent giant tour x into 2k segments ofthe form x = (f1, e1, f2, e2, . . . , fk, ek), i.e., a 2k-segmentation. Subsequently one removesthe segments e1, . . . , ek from their urrent positions, permutes and reinserts them between thesegments f1 . . . , fk, while keeping their ordering �xed. This yields a new giant tour x′ =
(f1, eπ(1), f2, eπ(2), . . . , fk, eπ(k)). While the removed segments ei might be empty, the �xed seg-ments fi have to inlude at least one node. The reason for this is that one wants to ompute aninsertion ost cij for inserting the removed segment ei between the segments fj and fj+1 (with
fk+1 := f1). Computing suh ost oe�ients cij is trivial in the ase of edge-dependent osts andalso appliable for vehile-dependent osts.Finding a minimum ost insertion of all removed segments amounts to solving an assignmentproblem on (cij)1≤i,j≤k. The assignment problem is the least-ost seletion of k di�erent partialmoves passign

it,jt
, t = 1, . . . , k where the partial move passign

i,j inserts segment ei between fj and
fj+1. Partial moves with di�erent indies it 6= is and jt 6= js for t 6= s are ost independent andpermutation-independent, i.e., ful�ll the legitimay ondition.The assignment neighborhood has been suggested in the ontext of the TSP with all segmentsonsisting of a single node, i.e., k = ⌈n/2⌉ and possibly one empty segment. It means that everyseond node of the TSP-tour an be arbitrarily permuted. This hoie of segments does notautomatially generalize to other more omplex routing problems, sine one annot model thoseonstraints in the assignment framework. However, assignment neighborhoods are appliable tothose VRSP where the feasibility of a route plan an be determined by onsidering all routesindependently. Then, the splitting of the urrent giant tour into 2k segments has to be performedin a restrited way.2.3.2 Partial Order NeighborhoodsAnother type of ombinatorial neighborhood is the one suggested by Balas and Simonetti (2001).Here, the urrent route plan is re-optimized under the ondition that the hange of the relativeposition of eah node within the route does not exeed a ertain pre-spei�ed integer value. Thisondition implies a partial order on the nodes of the route plan. In (Balas, 1999) it was shownthat in the ase of the TSP, this problem an be solved e�iently by a shortest path alulation.However, when more omplex onstraints, suh as time windows, have to be taken into aount,the labeling proedures su�er from the well-known problem of a large number of undominatedlabels. In (Balas and Simonetti, 2001) it was suggested to alleviate this problem by heuristiallylimiting the number of labels kept at eah node. For an analysis of the neighborhood size, see theoriginal papers.2.3.3 Pyramidal NeighborhoodsAssume that the nodes in the urrent route plan are numbered onseutively from 1 to n. Then,any pyramidal neighbor of the urrent route plan is a route plan where the indies of the nodes�rst inrease from 1 to n and then derease again. For example, two pyramidal neighbors of the20



route plan (1, 2, 3, 4, 5, 6, 7, 8, 9, 1) are (1, 3, 4, 5, 9, 8, 7, 6, 2, 1) and (1, 3, 4, 6, 7, 8, 9, 5, 2, 1). Costoptimal pyramidal neighbors an be found in O (n2) using dynami programming or shortest pathomputations (see, e.g., Gilmore et al., 1985). The size of the neighborhood is O (2n−1) (Carlierand Villon, 1990).One drawbak of the pyramidal neighborhood is that nodes 1 and 2 and nodes n−1 and n arediretly onneted by the edges (1, 2) or (2, 1) resp. (n−1, n) or (n, n−1). Therefore, Carlier andVillon (1990) suggested rotating the indies of the urrent route plan n times and to use everynode one as the starting point of a yli numbering.So far, the pyramidal neighborhood has only been used in the ontext of the TSP. However,as we will show below, this neighborhood an be generalized to take into aount all types ofintra-route onstraints that an be modeled as resoures, suh as time windows and preedenes.2.3.4 Route-First Cluster-SeondWhereas all the other ombinatorial neighborhoods mainly modify the routing of the urrentroute plan, this neighborhood fouses on the lustering aspet of the routing problem. The route-�rst luster-seond approah of Beasley (1983) was developed as a onstrutive heuristi to solveVRSPs. Here we desribe how the approah an be used within a loal searh ontext. Reently,a simpli�ed version of this neighborhood has been employed within a Geneti Algorithm for theVRP by Prins (2003).Suppose that all route-start and route-end nodes have been removed from the urrent routeplan. This partitions the route plan into H segments, p1, . . . , pH . The route-�rst luster-seondneighborhood onsists of all solutions that an be obtained by onneting the segments to a gi-ant route and subsequently partitioning this giant route into H new routes. Note that we allowany number of routes to be empty. Consider, for example, the three routes p1 = (o1, 2, 4, 7, d1),
p2 = (o2, 3, 1, 9, 6, d2) and p3 = (o3, 5, 8, d3). One neighbor solution an be found by �rst on-sidering the permutation (p2, p1, p3) that results in the giant route (3, 1, 9, 6, 2, 4, 7, 5, 8) and thenlustering this giant route into the three new routes p′1 = (o1, 3, 1, 9, d1), p′2 = (o2, 6, 2, d2) and
p′3 = (o3, 4, 7, 5, 8, d3). Setion 3.2.1 will explain how to determine a least ost lustering by solvinga (possibly onstrained) shortest path problem.The size of this neighborhood an be omputed as follows: There are (H − 1)! di�erent ylipermutations of the segments that result in a giant route. After pathing the routes into a giantroute and deleting the route-start and route-end nodes, n − 2H nodes remain. For a given giantroute, any lustering with H routes an be desribed entirely by the set of �rst nodes that partitionthe giant route, e.g., the nodes 3, 6, 4 in the example above. Note that, for a given value of H, thelustering may lead to a solution ontaining between one and H new routes. Denote the number ofnew routes by 1 ≤ ℓ ≤ H. For a �xed value of ℓ, the number of lusters is (

n−2H
l

). Thus, the totalnumber of lusters is ∑H
ℓ=1

(

n−2H
l

), whih is O (

(

n−2H
H

)

). After having determined the lusters, itremains to assign pairs of ompatible route-start and route-end nodes. There are H!2 possibilitiesto perform suh an assignment. Taking into aount the (H − 1)! possibilities of onstruting thegiant route, we obtain O
(

(

n−2H
H

)

(H!)3
) as an estimate of the size of the neighborhood. Sineusually the number of routes is muh smaller than the number of nodes, we obtain the estimate

O (nHH!3).
21



2.3.5 Speial Graph StruturesFor some routing problems, suh as the TSP, optimal solutions an be found when the underlyingrouting graph has a speial struture. The most famous of these graph strutures are the so-alledHalin Graphs (see Cornuéjols et al., 1983, for the ase of TSP). Sine optimal solutions for theseproblems an be found e�iently in O (n), a neighborhood of the urrent tour an be de�ned byadding some edges to the tour (a so-alled extension) so that the resulting graph has the desiredproperty and then onsidering all tours within the resulting graph as the neighborhood.A similar approah is disussed by Glover and Punnen (1994). However, they do not solve theproblem optimally over the speially de�ned subgraph but rather give algorithms that dominatean exponential-size set of tours w.r.t. their graph onstrution.We do not onsider these types of neighborhood in this paper sine they are usually restritedto speialized problems suh as the TSP and annot be readily generalized to more omplexVRSPs.2.4 Partially Destrutive/Construtive NeighborhoodsPartially destrutive/onstrutive neighborhoods (DCNs) an be haraterized by a two-stepproess. In the �rst step, a number of nodes or segments are removed from the route plan.Then, in a seond step, the removed nodes are inserted into the route plan using some type ofonstrutive algorithm. This algorithm an be either an optimization algorithm, suh as dynamiprogramming or branh-and-bound, or any heuristi, for example, an insertion method.These types of neighborhoods do not �t niely into the loal searh framework de�ned above,sine they depend on the algorithm used for the onstrution of the new solution after the removalof the nodes. However, they are often used within a loal searh framework and we have, therefore,deided to inlude them in the survey.In order to distinguish di�erent types of DCNs, we suggest the following string α|β|γ notation:The parameter α gives the number of nodes that are removed from the route plan. If these nodeshave to be onseutive within the urrent route plan, we write α. The seond parameter β desribeshow the remaining disonneted route plan is treated. If β = connect, then the predeessor of theremoved node is onneted to the suessor of the removed node. If β = open, then the segmentsthat result after deletion of the nodes are left open. If β = alg, then the remaining segments of theroute plan are re-onneted using the algorithm alg. For example, if the segments are re-onnetedusing a nearest neighbor algorithm, then we have β = NN . The third parameter γ desribes howthe removed nodes are re-inserted into the route plan. This is typially ahieved using someinsertion or optimization algorithm, suh as branh-and-bound or shortest path alulations. If,for example, a heapest insertion strategy is used, then we have γ = CI.Without going into the details of this type of neighborhoods, we would like to mention severaltypial examples of destrutive/onstrutive neighborhoods. The general idea of removing a set ofnodes from the route plan and then re-inserting them again has been used by Russell and Gribbin(1991); Russell (1995). Here, a total of �ve nodes is removed and re-inserted again by heapestinsertion. In our notation, the approah an be desribed by 5|connect|CI. A similar approah hasbeen suggested by Toth and Vigo (1996) for a solution of a dial-a-ride problem with time windows.They onsider removing one or two requests (orresponding to a pikup and a delivery loation)and to reinsert them in the heapest possible position in another route, whih orresponds to1 or 2|connect|CI in our notation. A more general view of a partially destrutive/onstrutiveneighborhood is the so-alled ruin-and-rereate metaheuristi suggested in (Shrimpf et al., 2000).22



Here, the authors suggest to 'ruin' parts of the route plan using a ontrolled random searh andto re-insert the nodes using an insertion heuristi. In ontrast to many of the other approahes,the number of removed nodes is usually quite large in this approah.An even simpler version of the remove-and-reinsert idea is suggested by Burke et al. (2001).They introdue the onept of a hyperedge, whih is simply a segment. The length λ of a hyperedgeis equal to the number of edges (i.e., the number of nodes less one) in the segment. A HyperOptmove onsists of removing k hyperedges of length λ and re-inserting them in an optimal way (bydynami programming) into the route plan, while keeping the remaining paths �xed. Thus, thistype of neighborhood an be abbreviated as k(λ − 1)|open|DynProg. A similar neighborhood ofthe type k(λ− 1)|open|random is alled hyper-shake and is used for diversi�ation of the searh.Finally, we would like to mention the US move. Unstringing-and-Stringing (US) is used withinthe GENIUS heuristi for the TSP(TW) (Gendreau et al., 1992, 1998). The idea of the USproedure is to remove a node from the urrent tour, re-onnet the remaining nodes by a reversegeneralized insertion (GENI) proedure and re-insert the removed node, again using the GENIproedure. In our notation, the US neighborhood an be desribed by 1|reverseGENI|GENI.3 Searh TehniquesIn this setion we will study the following problem: Given a neighborhood in a VRSP, how an onesearh e�iently in order to reah a loal optimum as quikly as possible? We will distinguish twogeneri approahes: diret searh by enumeration and indiret searh by optimization. By diretsearh, we mean approahes that subsequently add and/or delete edges or nodes and evaluate theresult of these operations diretly. Usually one an onsider these approahes as some type oftree searh method. Indiret searh methods try to map the problem of �nding a best improvingsolution in the neighborhood into some optimization problem, suh as a shortest path, assignmentor set paking problem. The searh for improving neighbor solutions is then equivalent to solvingthe optimization algorithm exatly or by a heuristi.Before going into the details of neighborhood exploration, it should be noted that the searhmethods are only relevant for algorithms that san the entire neighborhood (at least in a '�rstimprove' manner). Some metaheuristis, like Simulated Annealing and Geneti/Evolutionary Al-gorithms do not san the neighborhood but rather sample from it by hoosing neighbor solutionsrandomly. As outlined for the TSP in (Johnson and MGeoh, 1997), a method that uses a on-trolled random experiment by sampling from neighbor lists outperforms a total random sampling.However, these issues will not be disussed any further in this paper.In order to suggest a suitable searh tehnique not only the type of neighborhood but alsothe objetive/ost funtion and the relevant onstraints have to be onsidered. The objetivefuntion in�uenes whether a ost independent deomposition of moves an exist or not. Inase of edge-dependent and vehile-dependent osts, this only depends on the neighborhood. Ifthe osts depend on resoure variables, no ost independent deomposition exists. Consideringonstraints, one has to distinguish between methods that guarantee feasibility of neighbor solutionsby heking the onstraints during the searh and other methods that obtain the neighbor solutionby omposition of partial moves that are guaranteed to be feasible. A third group of algorithms isdriven mainly by ost improvement (gain) onsiderations. They only work for loosely onstrainedproblems, sine the searh method will mostly determine infeasible solutions with high pro�tabilityif the problem is highly onstrained. 23



3.1 Diret Searh TehniquesDiret searh tehniques are used within neighborhoods that move or exhange edges or nodes.Suppose that we are given suh a neighborhood of sizeO (nk). In order to searh this neighborhoode�iently, we would like to redue the e�ort (at least on average) by pruning early in the searh.There are several tehniques available to avoid spending this e�ort in every iteration. However,we will fous on the basi searh methods, whereas further aeleration tehniques are beyondthe sope of this paper (e.g., �xing edges, Lin and Kernighan (1973); Walshaw (2002), treatingsegments as nodes, Kindervater and Savelsbergh (1997); Funke (2003), andidate lists, Glover(1991); Rego and Glover (2002), don't look bits, Bentley (1992); Johnson and MGeoh (1997);Gambardella et al. (1999); Cordone and Wolfer Calvo (2001)).Consider the problem of exhanging k edges (resp. nodes) with k other edges (nodes). Alldiret searh methods start by seleting the �rst edge (node), then the seond edge (node) et.until the k-th edge (node) has been seleted so that a omplete exhange has been spei�ed. Thegoal of a searh method should be to limit the number of possible edges or nodes at eah stage
1 ≤ i ≤ k of this general approah as muh as possible in order to keep the e�ort low. Sometimesit is possible to prove that after the i-th stage, there are no or only a small number of edges ornodes available for seletion. This an redue the searh e�ort drastially. The two main riteriafor a redution of the searh spae are ost and feasibility. The idea of ost-based redutions isto prove at an early stage i < k that no improvement an be found that inludes the nodes oredges of the stages 1, . . . , i. Feasibility redutions use the same idea but try to prove at an earlystage i < k that no feasible exhange exists that inludes the nodes or edges of the stages 1, . . . , i.Unfortunately, the options for using both approahes simultaneously are very limited. Therefore,one usually has to deide whether to apply ost or feasibility redutions in the searh. In thesequel, we introdue two diret searh approahes for k-opt. Lexiographi searh is motivated byfeasibility redutions whereas sequential searh is based on ost redutions.3.1.1 Lexiographi SearhThe natural approah for developing an algorithm that exhanges k elements with k other elementsis to speify the k elements by a set of k nested loops. The �rst loop onsiders the elements
i1 = 1, . . . , n (n is the number of elements), the seond loop the elements i2 := i1 + 1, . . . , n andthe k-th loop the elements ik := ik−1 +1, . . . , n. Sine the iterator of an inner loop is always largerthan the iterator of an outer loop, i.e., il+1 > il, l = 1, . . . , n − 1, this searh approah is referredto as lexiographi searh. In the following, we will assume that the elements are nodes or edgesand numbered aording to their position in the urrent route plan. Given the k elements, theneighborhood type spei�es the possible moves that an be performed.
k-opt Let us �rst onsider the ase of k-opt moves and a �xed given move type. Given the k edgesto be removed, the segmentation is �xed. The determination of the k segments is implementedusing k nested loops to �x the edges for removal. Let us assume that the algorithm is in its ith loop,i.e., the �rst i segments are �xed. Pruning the searh an be performed by the following feasibilityredutions: Knowing the �rst i segments it an sometimes be shown that the onatenation ofsome of the segments result in infeasible subpaths, independent of the remaining segments. Forexample, in the k-opt move type aB . . ., the onatenation of the segments a and B to aB anbe infeasible regardless of the remaining segments. This means that the searh an be terminatedbefore all the k edges have been spei�ed. 24



If one wants to implement lexiographi searh for all move types and a given value of k,then it is useful to identify all move types a priori and to store them in a move-type table. Nowonsider the same situation as above, i.e., that i < k edges have been �xed. Then one an applythe termination argument for all move types in the move type table and terminate the searhwhen all move types have been identi�ed as infeasible in one of the stages 1, . . . , i.
λ-Interhange As a seond example, onsider λ-interhange, where the nodes need to take thepositions of a removed node when inserted again, i.e., the ase (λ∗, λ∗) in α∗-notation. We assumethat eah set of λ nodes has to ome from one of the H routes of the urrent route plan. We alsoassume that the number of nodes in the i-th route (i = 1, . . . , H) is given by ni.The interhange proedure an be implemented by nested loops. Two outer loops ontrol theseletion of the two routes that exhange nodes. Let us assume that we are inside these loopsand that the two routes r1 and r2 have been seleted. The �rst inner loop iterates over the nodes
i1 := 2, . . . , n1−λ of the �rst route (it is assumed that the route-start and route-end nodes annotbe ontained in an interhange), the seond loop over the nodes i2 := i1 + 1, . . . , n1 − λ + 1 andthe λ−th loop over iλ := iλ−1 + 1, . . . , n1 − 1. The same set of λ loops selets the λ nodes fromthe seond route. After the 2λ nodes have been �xed for possible exhange, one needs to omputeall (λ!)2 possible ways to re-insert the nodes into the open positions.Summary The major advantage of lexiographi searh is the systemati way in whih thesegments are built. In every loop, exatly one element is added to or deleted from a segment.Thus, for every segment one an e�iently update all neessary information regarding resoures,suh as, e.g., load, arrival times, waiting times, preedenes et. This information an be used,in many ases, to prune the searh at an early stage as well as to hek feasibility of the move inonstant time. Most of these ideas have been published by Savelsbergh and his o-authors. For asurvey, see (Kindervater and Savelsbergh, 1997). In some ases, one knows a priori that some ofthe segments need to be reversed. Again, the information regarding the segments to be invertedan be updated e�iently during the lexiographi searh and even used for early terminationwhenever a segment to be inverted beomes infeasible due to, e.g., a time window or preedeneonstraint violation.3.1.2 Sequential SearhSequential searh has been developed for problems where k elements (edges or nodes) are replaedby k other elements. It is a ost or gain oriented searh algorithm that exploits the ost inde-pendene of moves and yli independene of neighborhoods. The basi idea of this approah isto onsider all relevant partial moves of a yli independent neighborhood reursively. In on-trast to lexiographi searh, the elements in sequential searh are not seleted aording to anyorder spei�ed by the urrent route plan but rather onsidering andidate lists. These andidatelists are sorted in the order of inreasing ost of the elements. Sequential searh is partiularlyattrative if the number of elements in every seletion step (i.e., the length of the andidate list)is redued from O (n) to some small onstant. The major disadvantage of sequential searh isthat the feasibility of a move annot be heked before all k elements have been spei�ed and thehek will (in the ase of non-trivial onstraints) require at least linear time. Therefore, there is atrade-o� between the redution of the searh spae in sequential searh and the extra e�ort thathas to be paid to hek feasibility. A partiular bad senario is the disovery of many potentiallyimproving, but infeasible moves. 25



In order to searh a neighborhood entirely by sequential searh, it has to be yli independent,although it an be used heuristially with non-yli-independent neighborhoods, as disussedbelow for the Lin-Kernighan heuristi. The seond requirement is that the partial moves have tobe ost independent.Many of the node and edge-exhange neighborhoods onsidered in this paper have a yliindependent deomposition into partial moves. Examples are the λ-interhange, NEC, and yli-transfer neighborhoods in the ase of node exhanges, and a large fration of the k-opt move typesas well as the edge-ejetion hains.Reall that ost independeny of partial moves depends on the objetive funtion under on-sideration and thus a neighborhood that deomposes into partial moves an be used for sequentialsearh if and only if the ost independeny assumption holds. In this subsetion we will assumethat ost independeny holds for the moves we study.The attrativeness of sequential searh in yli neighborhoods is due to the following theoremof Lin and Kernighan (1973):Theorem 1 If a sequene of numbers (gi)
k
i=1 has a positive sum ∑k

i=1 gi > 0, there is a ylipermutation π of these numbers suh that every partial sum is positive, i.e., ∑p
i=1 gπ(i) > 0 forall 1 ≤ p ≤ k.Proof: Let q be the largest index for whih ∑q−1

i=1 gi is minimum. Choose π suh that
π(1) = q. If q ≤ p ≤ n, gq + . . .+gp = (g1 + . . . + gp)− (g1 + . . . + gq−1) > 0. If 1 ≤ p < q,then gq + . . . + gn + g1 + . . . + gp ≥ gq + . . . + gn + g1 + . . . + gq−1 > 0. ⋄The theorem implies that, for �nding an improving move m = pk ◦ . . .◦p1 within a given neighbor-hood whih deomposes into yli independent partial moves, we need to onsider those movesonly where Gi :=

∑i
l=1 g(pi, x) > 0 holds for all i = 1, . . . , k. The diret impliation is that atstage i of the searh we need to onsider moves with a gain g(pi, x) > −Gi−1 only. Thus, thetotal gain at stage i− 1 limits the hoie of a partial move at stage i. We refer to this rule as thegain riterion. The gain riterion is fundamental for the e�etiveness of k-opt and Lin-Kernighanalgorithms for the TSP, see Setion 2.2.5 and, e.g., (Aarts and Lenstra 1997, p. 238�, Bentley1992). Interestingly, the path referene struture used within the Lin-Kernighan neighborhoodis not yli independent. Therefore, Theorem 1 does not apply. Rather, it is used heuristiallywith exellent results. This should be kept in mind when onsidering the exploitation of the gainriterion within a searh algorithm. The gain riterion is also exploited in e�etive algorithms for2-opt and 3-opt for the TSP (Bentley, 1992; Johnson and MGeoh, 1997). In Irnih et al. (2004)the use sequential searh for apaitated VRP is investigated. A omparison of lexiographi andsequential searh showed substantial speedups for the sequential searh approah. However, weare not aware of any of the 'modern' metaheuristis for VRSPs that exploit this very importantspeedup tehnique.In order to desribe a generi sequential searh algorithm, onsider the deomposition m =

pk◦. . .◦p2◦p1 of a move m into k ≥ 2 partial moves. The yli independene of the neighborhoodimplies that any sequene pj−1 ◦ . . . ◦ p1 ◦ pk . . . pj with 1 ≤ j ≤ k represents the same move m.For the gain riterion to be appliable, the searh algorithm has to guarantee that every ylipermutation of the moves is generated.Hene, the algorithm has to generate all the partial moves p1, . . . , pk on the �rst searh level.Eah of these partial moves has to satisfy the gain riterion, otherwise, it will be disardedimmediately. On the seond level, the omposed partial moves p2 ◦p1, p3 ◦p2, . . . , pk ◦pk−1, p1 ◦pk26



that extend non-disarded partial moves from the �rst level have to be generated. Again, all moveompositions on the seond level have to satisfy the gain riterion and an otherwise be disarded.The same is true for the third level and so on until all k levels have been investigated.This implies that the sequential searh algorithm has to meet two requirements: First, ithas to generate all ompositions of partial moves aording to the yli deomposition of theneighborhood. Seond, it an apply the gain riterion to all ompositions of partial moves inorder to fathom the searh as muh as possible. The �rst requirement diretly shows the loserelationship between the deomposition of the neighborhood and e�ient searh, while the seondrequirement diretly implies the ost independene of partial moves. We now give some examplesof how sequential searh an be applied e�iently in the ontext of vehile routing and sheduling.2-Opt The 2-opt moves are single alternating yle moves and, therefore, yli. We deomposethe 2-opt neighborhood into two partial moves. The partial move p1 := padd
j1,i2

◦ pdel
i1,j1

onsists ofdeleting the edge d1 = (i1, j1) and subsequently adding the edge a1 = (j1, i2). The partial move
p2 := padd

j2,i1
◦ pdel

i2,j2
deletes the edge d2 = (i2, j2) and �nally adds the edge a2 = (j2, i1). Let usdenote the length of the involved edges by |dl| and |al|, l = 1, 2, respetively. The partial gainsof the two partial moves are equal to g1 := |d1| − |a1| and g2 := |d2| − |a2| and the gain riterionrequires that both g1 > 0 and g1 + g2 > 0 hold. Now suppose that we want to employ sequentialsearh to �nd an improving 2-opt move. First, we loop over i1 := 1, . . . , n to determine the node

i1. Next, we onsider one of the edges inident with i1 in the tour to obtain the edge d1 := (i1, j1).This determines the length of the edge d1 and from the gain riterion, g(p1, x) > 0, we knowthat we only have to onsider adding edges a1 := (j1, i2) that satisfy |a1| < |d1|. This is usuallydone e�iently by storing a list of edges inident with every node ordered by inreasing length (inasymmetri problems, ingoing and outgoing edges are stored separately). Suppose that we havefound an edge on this list whih satis�es |a1| < |d1|. Then, the entire move has been spei�ed,sine there is only one possibility of obtaining a feasible 2-opt move. After having heked thispossibility, we baktrak to the �rst level and hek the other edge inident to i1. This is neessaryto generate all yli permutations of the moves p1 and p2. Fig. 8 depits the generation of 2-optmoves by this proedure. Fig. 8(a) shows the situation after the appliation of p1 as the �rstpartial move aording to m = p2 ◦ p1, i.e., with i1 = v1, j1 = w1, and i2 = v2. This move isgenerated by taking j1 as the node adjaent to i1 in the lokwise diretion. Fig. 8(b) shows thesituation after applying the move p2 �rst, aording to m = p1 ◦p2, i.e., with i1 = v2, j1 = w2, and
i2 = v1. Here, the node j1 is obtained by taking the node adjaent to i1 in the ounterlokwisediretion. It is therefore neessary to onsider both diretions � lokwise and ounterlokwise �when seleting j1.Lin-Kernighan As a seond example we onsider the Lin-Kernighan partial moves based on thepath referene struture disussed in Setion 2.2.5. Here edges are deleted and added subsequentlyand the edge to be deleted next is always inident to the endpoint of the last added edge and vieversa. At stage i, the edges d1, . . . , di have been deleted and the edges a1, . . . , ai have been added.The gain of eah move is gi := |di|− |ai|. Now onsider stage i+1. The next edge to delete is di+1and there is no hoie due to the path referene struture. From the endpoint of di+1 we an addan edge ai+1 that satis�es |ai+1| ≤ Gi−|di+1|. If no suh edge exists, the searh an be terminatedat this stage. This implies that the searh depth of the algorithm is adjusted dynamially by thegain riterion. The Lin-Kernighan algorithm does not searh the entire neighborhood of the pathreferene struture but rather does a depth-�rst searh, where in every iteration, the next added27
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2 w2(b)Figure 8: Using Sequential Searh for Finding improving 2-Opt Moves, (a) The Partial Move

p1 = padd
w1,v2

◦ pdel
v1,w1

is applied �rst, (b) The Partial Move p2 = padd
w2,v1

◦ pdel
v2,w2

is applied �rstedge is seleted aording to a greedy riterion. Another feature of the algorithm is that it heksthe tour length resulting from a losing partial move at eah iteration and �nally selets the movethat results in the minimum tour length over all levels of the searh. Reall that the deompositionof moves that results from the path referene struture is not yli. Therefore, although it isthe �rst e�ient appliation of the gain riterion within a loal searh algorithm, the theoremprovided by Lin and Kernighan does not apply to this neighborhood in an exat sense, but ratheris a heuristi riterion to ut o� branhes of the searh tree (albeit a very e�ient one).Swap The swap move mswap
ij replaes a node i of the giant tour by a node j and vie versa.Consequently, the four edges (i−1, i), (i, i+1), (j−1, j), (j, j+1) are deleted and the four edges (i−

1, j), (j, i+1), (j−1, i), (i, j+1) are added to the urrent solution x. The swap move was presentedin Subsetion 2.1.2 as omposed of two dependent reloation partial moves mreloc
i,j−1 ◦ mreloc

j,i−1.There also exist several deompositions of mswap
ij into two ost independent partial moves of thesame type. One possibility is to de�ne pij as a partial move whih deletes the edges (i−1, i), (i, i+1)and then adds the edges (j − 1, i), (i, j + 1). Then, mswap

ij = pij ◦ pji = pji ◦ pij is a ylideomposition into ost independent partial moves. The partial gain of pij is g(pij , x) = ci−1,i +
ci,i+1 − cj−1,i − ci,j+1. When looking for improving swap moves by sequential searh, the gainriterion tells us that we an restrit our attention to a �rst partial move pij with positive gain.We propose to searh for those pij with positive gain by �rst onsidering all nodes i ∈ V . Thetask is then to restrit the searh for possible nodes j under the ondition that i is known. Thisan be done with andidate lists of edges inident to node i ordered inreasingly by their ost.Let α :=

ci−1,i+ci,i+1

2 , whih is a �xed onstant when node i is hosen. The ondition g(pij , x) > 0is equivalent to (cj−1,i − α) + (ci,j+1 − α) < 0 whih implies cj−1,i < α or ci,j+1 < α. As aonsequene, only ingoing edges (j − 1, i) of ost less than α and outgoing edges (i, j + 1) of ostless than α have to be onsidered. Finally, when j is hosen, the total gain g(pij , x) + g(pji, x)an be heked in onstant time.Another deomposition of mswap
ij is to de�ne a partial move qij that removes the edges (i −

1, i), (j − 1, j) and adds the edges (i− 1, j), (j − 1, i). Then, mswap
ij = qij ◦ qi+1,j+1 = qi+1,j+1 ◦ qij .This is also a deomposition into two ost independent partial moves of the same type and,therefore, the gain riterion applies in a similar way.Granular Tabu Searh Granular Tabu Searh, suggested by Toth and Vigo (2002a), uses avariant of the idea of sequential searh. In this approah the following four simple moves are used:28



2-opt, reloation, Or-opt with a segment length of two, and swap. In all these moves the algorithmrequires that the �rst added edge is 'short', i.e., belongs to a andidate list. This andidate listontains edges, whose length is below a ertain threshold. The threshold is varied during thesearh in order to intensify or diversify the searh. Sine all the moves that are used in thisalgorithm an be spei�ed entirely by the �rst added edge, this an be onsidered as a very simpleversion of sequential searh.Summary Sequential searh is a very powerful tehnique that ould be used suessfully insolving a number of VRSPs. If a ost-based strategy is used for onstruting the andidate lists,it is usually required that the objetive funtion an be deomposed into partial gains and thateah partial move ontributes a �xed amount to the objetive funtion. This requirement for ostindependeny is not generally ful�lled. For example, if the duration of the trips or the latestarrivals should be minimized, then this requirement is not met. However, in problems wheredistane or an equivalent measure has to be minimized, this is an interesting alternative to othersearh methods that ould be the basis for a number of highly e�ient algorithms.3.2 Optimization-based Indiret Searh TehniquesThe idea of indiret searh tehniques is to re-formulate the problem of �nding the best movein a given neighborhood so that suitable optimization algorithms or heuristis an be used forthe searh. Two main approahes have been disussed in the literature. The �rst approah ismove-omposition, whih is based on the idea of expliitly mapping the partial moves whih anbe applied to the urrent solution to the deision variables of an auxiliary problem. The optimalsolution to this auxiliary problem then de�nes a gain-maximizing olletion of partial moves thatan be applied to the urrent solution. The seond type of approahes are the ombinatorialstruture approahes. They impliitly restrit the neighborhood of the urrent solution to satisfysome ombinatorial requirements that allow the searh for improving neighboring solutions to beimplemented very e�iently.Both approahes employ a type of indiret searh, whih is usually referred to as very large-sale neighborhood searh (Ahuja et al., 1999). It an be desribed generially by the followingalgorithm:Algorithm 2: Optimization-based Indiret Loal Searh1: Initialize the algorithm with a feasible solution x0 and set the iteration ounter t := 0.2: REPEAT3: Generate an instane P (xt) of the optimization problem orresponding to the neighborhood N (xt)(either from srath or using knowledge about the last move).4: Find a neighbor solution x′ by searhing for the optimal or an improving solution of P (xt).5: If an improving solution x′ has been found, then set t := t + 1 and xt+1 := x′.6: UNTIL no more improvements are found.The time-onsuming parts of this algorithm are the generation of the optimization probleminstane and its solution by a onvenient algorithm. Indeed, the optimization problem may be
NP -hard, thus requiring suitable heuristis to be used for searh in step 4.
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3.2.1 Move-Composition ApproahesThe general idea of these approahes is the deomposition of a very large neighborhood into aset of partial moves. These partial moves are used to de�ne an optimization problem (often ona network), whih an be solved by an appropriate algorithm. The result is a seletion of moves,whose omposition is both feasible and gain-maximal in the (very large) neighborhood. If theauxiliary optimization problem is based on a graph, we all this graph an improvement graph. Thisonept was �rst suggested by Thompson and Psaraftis (1993). However, as shown below, otheroptimization problems may be formulated within move-omposition approahes. Sine the optimalsolution of the auxiliary problem impliitly dominates a large (usually exponential) number ofother solutions, this approah gives rise to the so-alled ombinatorial leverage e�et, introduedin (Glover and Punnen, 1994), that onsiders the size of the neighborhood in relation to the e�ortrequired to san it.Cyli Improvement Graphs The onept of yli improvement graphs goes bak to Thomp-son and Psaraftis (1993) and is losely related to the onept of yli transfers desribed earlier.Here we give a slightly generalized desription of the original onept. The yli improvementgraph models the ejetion of a node or a set of nodes by another node or set of nodes via ars.By de�nition of yli transfers, these node sets belong to di�erent routes. Let the node set ofthe improvement graph ontain all nodes or sets of nodes that ould be part of an ejetion hain.Let two nodes of the improvement graph be Si and Sj . An ar (Si, Sj) of the improvement graphmodels the operation of removing the node set Sj from its urrent route and inserting the nodeset Si into that route. The gain G(Si, Sj) depends on how the insertion ost is omputed. Thisan be done by any heuristi or optimization algorithm for the single route problem. In order toredue omplexity, simple heuristis are used in most ases. The ost or length of an ar (Si, Sj) isequal to the negative gain −G(Si, Sj). Then, it is easy to see that any yle with negative lengthin the improvement graph orresponds to a ost improving yli exhange. Unfortunately, theproblem of deteting suh a yle is NP -hard, sine it again orresponds to a resoure-onstrainedshortest path problem. In suh a problem, one introdues a resoure for eah route and requiresthat this resoure is only used one in a solution. Several heuristis have been developed for thisproblem (Ahuja et al., 2001a). It should be noted that the ase where a node or a set of nodes isejeted by an empty set an easily be handled by introduing a dummy node in the improvementgraph (Ahuja et al., 2001b). This allows insertion moves to be handled in addition to exhangemoves.Note that, sine the yli-transfer neighborhood is yli, the gain riterion an be employed.This means that in any negative length yle, the total length of any yli subset of edges mustbe negative.Cluster-Partition Graphs Cluster-partition graphs were introdued in (Beasley, 1983) in or-der to solve the lustering problem in the route-�rst luster-seond heuristi for the vehile routingproblem. Here, we onsider the solution of �nding the best improving solution in a neighborhoodas desribed in Subsetion 2.3.4, where the initial routing, i.e., the order of the routes, is �xed.Suppose that all depot nodes o ∼ d have been removed from the route plan and that theresulting single-route segments have been ordered and onatenated to yield a giant route wherethe nodes are numbered onseutively from 1 to n. The luster-partition graph is based on thegiant-route representation and an be de�ned as follows: Let the node set be V = {1, . . . , n + 1}.For every pair (i, j) with j > i in the luster-partition graph, there exists an ar (i, j) for vehile h ∈30



H if the route (oh, i, i+1, . . . , j−1, dh) is feasible. If several vehiles have idential harateristisand the same depot ombination, then they an be handled as idential vehiles. The ost Ch
ij ofthe ar (i, j) is equal to the ost of this route. It is easy to see that an optimal lustering w.r.t. thegiven giant route an be found by solving a (possibly resoure-onstrained) shortest path problemfrom node 1 to node n + 1.The Composition of Complete Moves The omposition of omplete moves, suh as the2-opt, Or-opt, or swap moves into a ompound move, was suggested by Congram et al. (2002);Ergun et al. (2002). Let us �rst onsider the 2-opt neighborhood to explain the idea behind thistype of large-sale neighborhood searh. A feasible, ost independent ombination of several 2-optmoves m = m2−opt

i1j1
◦ m2−opt

i2j2
◦ . . . ◦ m2−opt

itjt
(a so-alled ompound move) with �small� individualimprovements is sometimes superior to the single best move m2−opt

ibestjbest
in the neighborhood. Fea-sibility onstraints and/or a legitimay ondition might forbid the exeution of the moves withsmall improvement after the best improving move has been exeuted.For simpliity, we restrit the following desription to the 2-opt moves ase. An improvementgraph for this neighborhood an be onstruted by re-labeling the nodes in the urrent solutionsby 1, . . . , n. One 2-opt move an be desribed entirely by two nodes (i, j) ∈ {1, . . . , n}, i + 2 ≤ j.This orresponds to the deletion of the edges d1 = (i, i + 1) and d2 = (j − 1, j), the addition ofthe edges a1 = (i, j − 1) and a2 = (i + 1, j), and the reversal of the segment (i + 1, j − 1). Thealternative of reversing the paths (1, . . . , i) and (j, . . . , n) is not onsidered here. Let the totalgain of this 2-opt move be G2(i, j). Then, the following improvement graph an be onstruted:Let V := {1, . . . , n+1} be the set of nodes, where n+1 orresponds to a opy of node 1. The arset onsists of all feasible 2-opt moves, A = {(i, j) : the 2-opt move (i, j) is feasible}. Moreover,the improvement graph ontains the ars (i, i + 1), i = 1, . . . , n, that orrespond to leaving theedge (i, i + 1) unhanged by the ompound move. The ost of an ar (i, j) ∈ A, j 6= i + 1 is equalto −G2(i, j) and the ost of an ar (i, i + 1) is equal to 0. Then the shortest path from 1 to n + 1orresponds to the omposition of 2-opt moves that lead to the maximal ost redution. If thelength of this path is negative, then an improving ompound move is found, otherwise, the urrentsolution is 2-optimal.Note that the onept of this type of improvement graph is to de�ne moves by the segmentthey a�et. Clearly, this onept is not limited to 2-opt moves but an readily be generalized toinlude reloation and exhange moves as well as other moves, e.g., 2-opt*, Or-opt, and double-bridge moves. The diret generalization to swap moves requires that two swaps (i, j) and (k, l)satisfy the legitimay ondition i < j, j + 1 < k < l, i.e., do not overlap (Congram et al., 2002;Ergun et al., 2002).A pre-requisite for this approah is that all relevant moves be enumerated a priori by a onve-nient diret searh method. Both lexiographi and sequential searh an be used for this purpose.In both ases, one has to hek feasibility of the moves when intra-route onstraints are relevantin the VRSP under onsideration. However, when omplex resoures, suh as time windows, arerelevant, then the omposition of several feasible moves does not neessarily result in a ompoundfeasible move. In this ase it is neessary to store the hange of resoure variables (e.g., load,arrival times) as a funtion of the involved nodes. Instead of solving a simple shortest path prob-lem, a resoure onstrained shortest path problem has to be solved. Unfortunately, this problemis NP -hard, so heuristis may be used instead (Ahuja et al., 2001a).Ergun et al. (2002) relax the independene requirement of moves by allowing two subsequentmoves to overlap slightly. If this is the ase, a new move is de�ned, whih is di�erent from the move31



that would be obtained if the two single moves had been applied independently. Thus, a orretionterm has to be added to the evaluation. This is aounted for by storing the orrespondinginformation for all pairs of ars in the improvement graph and solving a shortest path problemwith turn penalties instead of a regular shortest path problem.A problem of this approah in the multiple-route ase is that it requires all ars (i, j) to beordered so that j > i. Otherwise, the independene of moves annot be guaranteed easily. Thus,in multiple-route problems, the order of the routes a�ets the type of ompound moves that anbe generated using this neighborhood.Assignment-based Approahes Obviously, assignment-based neighborhoods, as desribed inSubsetion 2.3.1 an impliitly be searhed by solving the orresponding assignment problem.Finding the best Double-Bridge Move in O (n2) The omposition of the double bridgemove as two ost independent, rossed 2-opt* moves is desribed in (Glover, 1996b). The bestimproving double bridge move of a TSP an be determined with O (n2) e�ort. Assume that thenodes of the giant tour are numbered 1, 2, . . . , n suh that all edges are of the form (i, i + 1). Adouble bridge move mDB is determined by its two alternating yles of deleted and added edges,i.e., two 2-opt* moves pi1,i2 and pi3,i4 . The trik of Glover is to build an ayli digraph D with
O (n2) nodes and ars in whih eah feasible ombination 1 ≤ i1 < i3 < i2 < i4 ≤ n is uniquelyoded as a path P (i1, i2, i3, i4). Furthermore, the length of suh a path P (i1, i2, i3, i4) is the ostof the double bridge move.3.2.2 Combinatorial Struture ApproahesMost of the ombinatorial struture approahes have so far been developed for the TSP (Cornuéjolset al., 1983; Glover and Punnen, 1994). As disussed above, we will not go into the details of theseapproahes, sine they do not generalize to more omplex VRSPs. We do, however, believe thatthese types of approahes have a big potential also in the ontext of VRSPs and that more researhis neessary in order to develop more generally appliable algorithms than those available today.Two approahes that an be generalized to some extent inlude partial order neighborhoods andpyramidal tour improvement neighborhoods.Partial Order Neighborhoods The restritive possibilities for moving a node relative to itsurrent position in the route lies at the heart of the dynami programming approah by Balas(1999) and Balas and Simonetti (2001). The diret exploitation of these possibilities enables oneto redue the number of possible states in a dynami programming approah from exponentialto linear. The algorithm of Balas and Simonetti (2001) exploits this fat and also provides aforward dynami programming reursion, whih an be onsidered a shortest path approah. Forthe details of the implementation, we refer to the original paper.Pyramidal Tour Improvement Graphs An optimal pyramidal tour neighbor for the TSPan be found in O (n2) using dynami programming or shortest path alulations (Gilmore et al.,1985). Here we are interested in its generalization to more omplex VRSPs and �rst desribe theorresponding improvement graph suggested in (Ahuja et al., 1999). The improvement graph � abipartite digraph � onsists of 2n nodes V = V 1∪V 2, where V 1 = {1, . . . , n} and V 2 = {1′, . . . , n′}.Let us all the nodes in V 1 forward nodes and the nodes in V 2 bakward nodes. All ars in the32



improvement graph onnet forward nodes with bakward nodes or vie versa. Their interpretationis as follows: Consider the ar (i, j′), i ∈ V 1, j′ ∈ V 2, j ≥ i. This ar orresponds to the ase thatthe segment (i, . . . , j) in the urrent route is �xed and visited in this order in the �rst part ofthe route. The ar (j′, k), j′ ∈ V 2, k ∈ V 1, k > j + 1, orresponds to the ase where the segment
(j + 1, . . . , k − 1) is skipped in the �rst part and visited in the reverse order (k − 1, . . . , j + 1) inthe seond half of the route, i.e., the edges (j, j + 1) and (k − 1, k) are deleted and the edge (j, k)is introdued.Let the ost of the edge (f, g) in the original routing problem be cfg. Then, the gain G(i, j′)that orresponds to an ar (i, j′), i ∈ V 1, j′ ∈ V 2, j ≥ i in the improvement graph an be omputedusing Table 2. The ost of the ar (j′, k), j′ ∈ V 2, k ∈ V 1, k > j + 1, is equal to G(j′, k) =

G(i, j′) j′ = 1 j′ = i, i + 1, . . . , n − 1 j′ = n

i = 1 −cj,j+1 + cj+1,1 −cj,j+1 + cj+1,1 0
i = 2, 3, . . . , n − 1 � cj+1,i−1 −cn,1 + cn,i−1

i = n � � −cn−1,n + cn,n−1Table 2: Costs of the Ars in the Shortest Path Problem for Finding optimal Pyramidal Tours
cjk−

∑k−1
ℓ=j cℓ,ℓ+1+

∑j+2
ℓ=k−1 cℓ,ℓ−1. Any path P from 1 to n′ in the improvement graph orrespondsto a pyramidal tour x′, and the ost of suh a path is −g(x, x′), i.e., a shortest path orrespondswith a best (improving) neighbor solution. Note that if the segment (j + 1, . . . , k − 1) whihis reversed ontains one or more entire routes, then inversion an be avoided for these routes.Of ourse, the ost of the ars in the improvement graph have to take this into aount. If areversion auses a segment to be infeasible, then the orresponding ar an be removed from theimprovement graph.In ase omplex resoures play a role in the VRSP under onsideration, a resoure-onstrainedshortest path problem from node 1 to node n′ an be solved in order to hek for an improvingpyramidal neighbor. It an be veri�ed that any path with negative osts orresponds to animproving neighbor.Clearly, the order of the routes in the giant route determine the feasible pyramidal tours and,thus, the results of the algorithm. Again, one has to use heuristis to �nd 'good' orders of theroutes.Although appliable to solve VRSPs with omplex onstraints, the potential of the pyramidalneighborhood is quite limited in ases where time windows and/or preedenes our. The reasonis that some nodes that our early in the route will have to our late in a neighbor route if anyimprovement is to be found. However, it is unlikely that suh an operation is feasible when timewindows and preedenes our. This problem an be avoided by onsidering pyramidal toursthat are de�ned only for parts of the original tour, so that nodes are not moved too 'far' fromtheir urrent positions.ConlusionsThis paper has provided an overview and a oneptual integration of di�erent lassial and modernapproahes of loal searh for solving omplex VRSPs. The formal desription is based on theso-alled giant-tour representation, whih allows problems with omplex onstraints to be modeledwithin one oneptual framework. The problems inlude those that an be modeled by resoure33



variables, e.g., heterogeneous �eet problems with time windows, route-duration onstraints, andsimultaneous pikups and deliveries.The basis of all loal searh algorithms is the de�nition of a neighborhood and the designof an appropriate searh method. In order to obtain a theoretial basis for the desription ofthe neighborhood, we have introdued the onept of moves and their deomposition into partialmoves. Di�erent deompositions an result in di�erent types of move independene. Dependingon the objetive funtion, partial moves may give rise to partial gains, thus enabling the searhalgorithm to prune regions of the searh spae.Searh methods an be lassi�ed into diret and indiret searh methods. Diret searh meth-ods an be lassi�ed further into sequential searh methods, whih are based on the gain riterionand lexiographi searh methods that are based on onstraint evaluations. Most indiret searhmethods have so far been studied in the ontext of the TSP. Here, we have assessed their prospetsw.r.t. an extension to omplex VRSPs.For a given VRSP, the design of a suitable loal searh algorithm should be based on ananalysis of not only ost independene and yli independene of the partial moves but also thestrutural properties of the onstraints. In addition to giving an overview of the most widelyused neighborhoods, the paper also provides a theoretial basis for judging the appliability ofdi�erent loal searh methods. This should enable researhers to design new and e�ient loalsearh algorithms both for 'lassial' and more omplex real-world problems.ReferenesAarts, E. and Lenstra, J. (1997). Loal searh in ombinatorial optimization. Wiley, Chihester.Ahuja, R., Boland, N., and Dumitresu, I. (2001a). Exat and heuristi algorithms for the subsetdisjoint minimum ost yle problem. Tehnial report, MIT, Boston.Ahuja, R., Ergun, O., Orlin, J., and Punnen, A. (1999). A survey of very large-sale neighbor-hood searh tehniques. Tehnial report, Department of Industrial & Systems Engineering,University of Florida, Gainesville, FL 32611.Ahuja, R., Orlin, J., and Sharma, D. (2001b). Multi-exhange neighborhood strutures for theapaitated minimum spanning tree problem. Mathematial Programming, Series A, 91(1):71�97.Balas, E. and Simonetti, N. (2001). Linear time dynami-programming algorithms for new lassesof restrited TSPs: A omputational study. INFORMS Journal on Computing, 13(1):56�75.Balas, E. (1999). New lasses of e�iently solvable generalized traveling salesman problems.Annals of Operations Researh, 86:529�558.Beasley, J. (1983). Route �rst � luster seond methods for vehile routing. OMEGA InternationalJournal of Management Siene, 11(4):403�408.Bentley, J. (1992). Fast algorithms for geometri traveling salesman problems. Operations ResearhSoiety of Ameria, 4(4):387�411.Bräysy, O. and Gendreau, M. (2005a). Vehile routing with time windows, Part II: Metaheuristis.Transportation Siene, 39(1):119�139. 34
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