
A Note on Single Alternating Cycle Neighborhoods

for the TSP

Birger Funke, Tore Grünert, and Stefan Irnich
Lehr- und Forschungsgebiet Operations Research und Logistik Management,
Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Germany
e-mail: {birger,tore,sirnich}@or.rwth-aachen.de

Abstract

This paper investigates two different local search approaches for the TSP. Both approaches are
based on the general concept of single-alternating cycle neighborhoods. The first approach, stems from
the famous heuristic suggested by Lin and Kernighan and the second is based on the notion of stem-
and-cycles developed by Glover in the early nineties. We show that the corresponding neighborhoods
are not identical and that only a subset of moves can be found when Lin & Kernighan’s gain criterion
is applied.

Introduction

The Traveling Salesman Problem (TSP) is the most widely studied problem in combinato-
rial optimization, see, e.g., (Lawler et al., 1985; Gutin and Punnen, 2002). The objective
is to find a cost-minimal Hamiltonian cycle, i.e. a cycle in a graph that contains each node
exactly once. Although large instances of the problem can now be solved to optimality,
see (Applegate et al., 2003a), heuristics and metaheuristics are needed if good results have
to be computed within short time limits. In this note we will focus on the symmetric
version of the problem, the STSP defined by a cost matrix C = (cij) with cij = cji for all
i, j = 1, . . . , n.

The most successful and widely applied methods for solving large-scale TSPs to near
optimality are variations of the Lin-Kernighan (LK) algorithm, (Lin and Kernighan, 1973;
Applegate et al., 2003b; Johnson and McGeoch, 1997; Johnson and McGeoch, 2002). About
10 years ago, a similar, but different, approach was suggested by Glover in (Glover, 1991;
Glover, 1992a). Recent computational experiments, see (Rego and Glover, 2002), indicate
that methods based on so-called ejection chains (ECs) have the potential of outperforming
the Lin-Kernighan-based approaches if implemented properly.

Both variants of LK and ECs are variations of the more general concept of local search
performed along an alternating cycle in the following sense. The algorithms subsequently
add and drop edges which share an endpoint so that after a number of iterations, a tour
is transformed into another tour. Deleted and added edges form an alternating cycle. The
Lin-Kernighan heuristic starts this process by deleting an edge and the Stem-and-Cycle
methods, suggested by Glover, start by adding an edge. Since both methods generate
alternating cycles, one might come to the conclusion that the same neighbor solutions can
be reached by both methods and that they are, in fact, equivalent. We will show below,
that this is not the case.

We start in Section 1 by defining the concepts of local search, k-Opt moves, alternating
cycles and sequential search in the context of the STSP. Section 2 introduces the notion
of cyclic-independence and show how it is related to the concept of sequential search in-
troduced by Lin and Kernighan. A notation to classify different types of k-Opt moves is
presented in Section 3. In Section 4, we discuss single-alternating cycle neighborhoods in
general and show how the different neighborhoods are related to each other and the more

1



general class of k-Opt neighborhoods. Finally, in Section 5 we give some conclusions and
outline promising paths for future research.

1 Local Search, k-Opt, and Alternating Cycles

The STSP can be stated as a combinatorial optimization problem of the form minx∈X c(x),
where X is the set of feasible solutions (i.e. Hamiltonian cycles) and c the cost function.
Clearly, the set X is in general too big to be searched entirely. The heuristics LK and
EC are based on the local search (LS) concept. The heart of a local search procedure
is the definition of a neighborhood N which is a mapping N : X → 2X : N (x) ⊂ X.
Each element x′ ∈ N (x) is called neighbor of x. Neighbors x′ with cost c(x′) < c(x) are
called improving neighbors. LS starts with a initial feasible solution x0 ∈ X and iteratively
replaces the current solution xt by an improving neighbor xt+1 ∈ N (xt) as long as such
an improving neighbor exists. The LS procedure terminates with a local optimum, i.e. a
solution xt for which the neigborhood N (xt) contains no improving solution.

Neighborhoods for the TSP are usually defined implicitly by a set of moves. A move m
transforms a solution into another solution. Many variations of this general approach exist,
a good introduction can be found in the book (Aarts and Lenstra, 1997). For a precise
definition of the term move, it is helpful to consider an enclosing superset of solutions
Z ⊇ X . The idea of a solution x ∈ Z is that some of the moves m ∈ M might transform a
feasible solution x ∈ X into an object m(x), which has a structure similar, but not identical
to a tour. In general, we denote by M the set of moves where a move m ∈ M is a map
from Z to itself, i.e. m : Z → Z. From the above discussion, it is clear that a move m does
not necessarily map feasible solutions x ∈ X into feasible solutions. For a given x ∈ Z, the
extended neighborhood N̂ (x) = {m(x) : m ∈ M} contains all neighbors of x, either feasible

or infeasible. Clearly, the neighborhood N (x) ⊂ X is given by N (x) = N̂ (x) ∩ X. Every
move, m ∈ M , with m(x) ∈ X is called a feasible move w.r.t. x.

A k-Opt move m deletes k edges d1, d2, . . . , dk from a given tour x ∈ X and adds
k edges a1, a2, . . . , ak in such a way that the result is another Hamiltonian cycle x′ ∈
X. The symmetric difference of the edges taken from the current tour x and the new
tour x′ = m(x) spans a subgraph G(d1, . . . , dk, a1, . . . , ak), which decomposes into one
or several alternating cycles. Note that the alternating cycles completely determine the
move m. If G(d1, . . . , dk, a1, . . . , ak) is connected, the moves (neighborhood) are called
single alternating cycle k-Opt moves (SAC-k-Opt) (neighborhoods, SACN).

In order to analyze different moves, we will decompose them into smaller parts, the
so-called partial moves. In the context of this note, only two types of partial move are
considered, i.e. padd

ij which adds the edge (i, j) to the current structure and pdel
kl which deletes

the edge (k, l) from the current structure. A given decomposition m = pl ◦ . . . ◦ p2 ◦ p1 of a
move m into l ≥ 2 partial moves p1, p2, . . . , pl means that an x ∈ Z is first transformed into
p1(x), second p1(x) is transformed into p2(p1(x)), and so on. Of course, we have to consider
the structures that occur after having applied one or several partial moves. In general, the
ith partial move transforms elements of an intermediate structure Yi−1 to elements of
another intermediate structure Yi, while for the first and last structure Y0 = Yl = Z holds.
As a result, m : Z → Z decomposes into

m : Z = Y0
p1−→ Y1

p2−→ Y2
p3−→ . . .

pl−1

−→ Yl−1
pl−→ Yl = Z.

2



There are some interesting cases that we would like to study. When some or all sets Yi

are identical, we refer to Y = Yi as reference structures. In this case it is possible to vary
the number of intermediate partial moves, which results in chains of intermediate partial
moves of variable length. Both the LK and the ECs are constructed in this way.

2 Cyclic Independence and Sequential Search

Given a move m and a decomposition of the move into partial moves, it is advantageous to
study whether or not the order of application of the partial moves influences the resulting
move. For the case Yi = Z, the decomposition m = pl ◦ . . . ◦ p2 ◦ p1 is cyclic-independent if

m(x) = pπ(l) ◦ . . . ◦ pπ(2) ◦ pπ(1)(x)

holds for all solutions x ∈ Z and all cyclic permutations π of {1, 2, . . . , l}.
Cyclic-independent neighborhoods are closely linked to the concept of sequential search,

first developed by Lin and Kernighan. The basic idea of this approach is to consider
all relevant partial moves of a cyclic independent neighborhood recursively. In sequential
search, the elements are not selected according to any order specified by the current tour
but rather using neighbor lists. These neighbor lists are sorted in the order of increasing
cost of the edges. Sequential search is particularly attractive if the number of elements in
every selection step (i.e. the length of the neighbor list) is reduced from O (n) to some
small constant. In order to search a neighborhood exactly by sequential search, it has to
be cyclic-independent, although it can be used heuristically with non-cyclic-independent
neighborhood, as discussed below for the Lin-Kernighan heuristic. The attractiveness
of sequential search in cyclic neighborhoods is due to the following theorem of Lin and
Kernighan, (Lin and Kernighan, 1973):

Theorem 1 If a sequence of numbers (gi)
k
i=1 has a positive sum

∑k

i=1 gi > 0, there is
a cyclic permutation π of these numbers such that every partial sum is positive, i.e.∑p

i=1 gπ(i) > 0 for all 1 ≤ p ≤ k.

Proof: Let q be the largest index for which
∑q−1

i=1 gi is minimum. Choose π such
that π(1) = q. If q ≤ p ≤ n, gq + . . . + gp = (g1 + . . . + gp) − (g1 + . . . + gq−1) > 0.
If 1 ≤ p < q, then gq + . . .+ gn + g1 + . . .+ gp ≥ gq + . . .+ gn + g1 + . . .+ gq−1 > 0. �

Denote by g(pi, x) the partial gain of the partial move pi w.r.t. x ∈ Z. Obviously, we have
g(padd

ij , x) = −cij and g(pdel
kl , x) = ckl.

The theorem implies that, for finding an improving move m = pk ◦ . . . ◦ p1 within
a given neighborhood which decomposes into cyclic-independent partial moves, we need
only consider those moves where Gi :=

∑i

l=1 g(pi, x) > 0 for all i = 1, . . . , k. The direct
implication is that at stage i of the search we need only consider moves with a gain g(pi, x) >
−Gi−1. Thus, the total gain at stage i−1 limits the choice of a partial move at stage i. We
refer to this rule as the gain criterion. The gain criterion is fundamental for the effectiveness
of the Lin-Kernighan algorithm. We will see below that the reference structure used within
the Lin-Kernighan neighborhood is not cyclic-independent. Therefore, Theorem 1 does not
apply. Rather, it is used heuristically with excellent results. This should be kept in mind
when considering the exploitation of the gain criterion within a search algorithm. The gain

3



criterion is also exploited in effective algorithms for 2- and 3-Opt for the TSP, see, e.g.,
(Bentley, 1992; Johnson and McGeoch, 1997).

In order to describe a generic sequential search algorithm, consider the decomposition
m = pk ◦ . . . ◦ p2 ◦ p1 of a move m into k ≥ 2 partial moves. The cyclic independence of the
neighborhood implies that any sequence pj−1 ◦ . . . ◦ p1 ◦ pk . . . pj with 1 ≤ j ≤ k represents
the same move m. For the gain criterion to be applicable, the search algorithm has to
guarantee that every cyclic permutation of the moves is generated.

Hence, the algorithm has to generate all the partial moves p1, . . . , pk on the first search
level. Each of these partial moves has to satisfy the gain criterion, otherwise, it will be
discarded immediately. On the second level, the composed partial moves p2 ◦ p1, p3 ◦
p2, . . . , pk ◦ pk−1, p1 ◦ pk that extend non-discarded partial moves from the first level have
to be generated. Again, all move compositions on the second level have to satisfy the gain
criterion and can otherwise be discarded. The same is true for the third level and so on
until all k levels have been investigated.

3 abc-Notation for k-Opt Move Types

This section introduces a notation for different types of k-Opt moves. It is useful for
distinguishing moves contained in the LK, EC, and SAC neighborhoods. All k-Opt moves
can be described as a result of applying the following four operations:

1. k-segmentation. This operation removes k edges from the tour x resulting in k
segments s1, . . . , sk.

2. k-inversion. This operation inverts a subset of the k segments, i.e. s±1
i .

3. k-permutation. This operation changes the order of the segments s±1
π(1), . . . , s

±1
π(k)

according to a cyclic permutation π.

4. k-concatenation. This operator concatenates the segments that result from applying
the three first operators into a new tour x′.

The set of moves for which the operators inversion and permutation are identical define a
move type or edge exchange type. When all inserted edges differ from the deleted edges,
the move is called a proper move.

In order to give a clear description of different edge exchange types we introduce the abc-
notation. In this notation, one uses the first k letters of the alphabet, where the ith letter
corresponds to the ith segment of the tour. If the letter is uppercase, the corresponding
segment is reversed. For example, the code aBDc corresponds to moves where the second
and the fourth segments are reversed and the third and fourth segments change position.
Next, we want the abc-notation to be unambiguous, i.e. the notation should not depend
on the numbering of the segments within the tour. Let us assume that the segment “a” is
fixed at the first position and is not reversed by an appropriate definition, e.g., stating that
segment “a” includes the node with index 1. As a result, any cyclic permutation π can be
uniquely written in the abc-notation.

4



4 Single Alternating Cycle Neighborhoods

In this section we focus on the SACN neighborhood and its corresponding moves where the
added and deleted edges form a single alternating cycle. The moves have the property of
decomposing naturally into cyclic-independent partial moves. It should be noted that for
a given k and the assumption that all added and deleted edges are pairwise disjoint, the
SACN only contains moves that exchange exactly k edges with k other edges. Hence, the
SACN is a subset of the neighborhood defined by the proper k-Opt moves. In this section
we will analyze the relationship between SACN and the more restricted neighborhoods of
LK and EC, which have been used in the TSP-literature. Before going into the details of
SACN, we discuss k-Opt moves that have multiple alternating cycles.

4.1 Single and Multiple Alternating Cycles

All 2-Opt moves are SAC-2-Opt moves, all 3-Opt are SAC-3-Opt moves, and the smallest
multiple alternating cycle examples are the double-bridge move (type adcb) and the twisted
double-bridge moves (types adBC and aCDb), see Figure 1. These moves produce two

j , j i

i j

i , i

j

j

i

1 1

2 25

3

3 4

45

a b

c d

a b

D C

Figure 1: Double bridge move (type
adcb), twisted double bridge move
(type aCDb), and generation of the
double bridge move by a SAC-5-Opt
move

alternating cycles, each of which has two added and two deleted edges. Therefore, the
(twisted) double-bridge move is not contained in the SAC-4-Opt neighborhood. However,
it is important to mention that the double bridge move is included in SAC-5-Opt when
one allows the same (or inverse) edge (i, j) to be added and deleted. Figure 1(c) shows the
construction of the double bridge move as a SAC-5-Opt move.

Generally, it is possible to connect r alternating cycles with r − 1 edges which have to
be added and deleted. Since each alternating cycle must consist of at least four (two added
and two deleted) edges, the maximum number rmax of alternating cycles is rmax = bk/2c.
For instance, two alternating cycles are maximum for k = 4 and k = 5, and all these moves
can be found in SAC-(k + 1)-Opt. Three alternating cycles are maximum for k = 6 and
k = 7. All 6-Opt moves can be constructed in SAC-8-Opt.

Note that the above decomposition of multiple alternating cycle moves is not cyclic-
independent, since deleting a previously added edge requires that one has to add a non-tour
edge first and remove it later. These two operations cannot be interchanged. The same
holds for adding a deleted edge, where the edge has to be part of the tour.

4.2 Decomposition of Single Alternating Cycle Moves

To extend the above notation of added and deleted edges to the case of single alternating
cycle moves, we have to label the incident nodes. Tracing along the alternating cycle shows
that there exist 2k (not necessarily different) nodes i1, i2, . . . , ik and j1, j2, . . . , jk such that

5



the deleted edges can be written as dp = (ip, jp) and the added edges can be written as
ap = (jp, ip+1) for all p = 1, . . . , k (with the setting ik+1 := i1). The move m is determined
by the nodes i1, i2, . . . , ik and j1, j2, . . . , jk of the alternating cycle. From this representation
one gets a natural decomposition of the move into an alternating sequence of “delete-edge”
and “add-edge” partial moves, i.e. pdel

ij and padd
ji . Using this notation and introducing some

intermediate structures which will be explained below, the cyclic edge exchange move m
can be written as

mSACN
i1,...,ik,

j1,...,jk

: Zsmc

padd
j1,i2−→ Y ′

pdel
i2,j2−→ Zsmc

padd
j2,i3−→ Y ′

pdel
i3,j3−→ Zsmc

padd
j3,i4−→ . . .

padd
jk,i1−→ Y ′

pdel
i1,j1−→ Zsmc. (1)

when the process is started with an edge addition, or alternatively

mSACN
i1,...,ik,

j1,...,jk

: Zsmc

pdel
i1,j1−→ Ypmc

padd
j1,i2−→ Zsmc

pdel
i2,j2−→ Ypmc

padd
j2,i3−→ Zsmc

pdel
i3,j3−→ . . .

pdel
ik,jk−→ Ypmc

padd
jk,i1−→ Zsmc.

(2)
when the process is started with an edge deletion. For the application of the gain criterion,
we assume that two consecutive partial moves of the above decompositions are joined to
a single partial move to which the gain criterion can be applied. We thus obtain k partial
moves, where the `th partial move in decomposition (1) is given by p` := pdel

i`+1,j`+1
◦ padd

j`,i`+1

and the `th partial move in decomposition (2) is given by p` := padd
j`,i`+1

◦ pdel
i`,j`

.

It is interesting to consider the intermediate structures Zsmc, Ypmc, and Y ′ which result
from this decomposition. We will discuss them in detail below and show that the well-
known Lin-Kernighan edge exchange neighborhood (Lin and Kernighan, 1973) as well as
neighborhoods which rely on the stem-and-cycle reference structure introduced in (Glo-
ver, 1992a; Glover, 1992b) are subsets of the SACN. Furthermore, we will analyze the
relationship between these neighborhoods.

First, the structure Zsmc has to contain all tours. In general, deleting an edge (i1, j)
from a cycle and adding an incident edge (j, i2) creates a stem-and-cycle structure. A
stem-and-cycle (SC) is a special graph structure that consists of a set of cycle nodes that
all lie on a cycle or subtour of the routing graph, see Fig. 2. This cycle contains exactly one

r

r'

r''

t

Figure 2: The stem-and-cycle structure with the root r, the subroots r
′

and r
′′, and the tip t

node, the root r, which has degree three and forms the beginning of a path, the so-called
stem. The other endpoint of the stem is the tip t. The nodes adjacent to the root r in the
cycle are the subroots r′, r′′. When the stem degenerates, i.e. tip and root coincide, one
obtains a cycle. Therefore, the set ZSC of all stem-and-cycle structures is a superset of the
set X of Hamiltonian cycles.

We start with an analysis of the decomposition (1). Consider a given SC. Adding an
edge (t, j) from the tip to the SC and subsequently deleting an incident edge (j, q) either
creates another SC or a SC and a node disjoint cycle. The four different structures that
can result from this operation are depicted in Fig. 3.

Therefore, the reference structure Zsmc consists of all unions of a single SC with SC ∈
ZSC and possibly q ≥ 0 cycles C1, . . . , Cq, so that every node of the routing graph belongs

6



t

r

t

j

j

j
r

t

r

q

q

q j

t

r

q
Figure 3: The three possible cases re-
sulting from the rules R1 and R2 of
Glover (Glover, 1992b) and the fourth
possibility that transforms a stem-
and-cycle into a stem-and-multicycle

to the SC or exactly one of the q cycles. The elements z ∈ Zsmc are called stem-and-
multicycle. An element of this reference structure is depicted in Fig. 4 and it exactly

t r

Figure 4: The stem-and-multicycle reference struc-
ture

describes the intermediate structure Zsmc of the decomposition (1), where incident edges
are subsequently added and deleted.

In contrast, the decomposition (2) always deletes an edge (r, r′) from the root r to one
of the subroots of the SC. The deletion of an edge (r, r′) transforms a SC into a single
path. In general, the structures Ypmc consist of a single path P possibly together with a
set of q ≥ 0 node disjoint cycles C1, . . . , Cq. We call Ypmc the set of path-and-multicycles.
Adding an edge from an endpoint (i.e. the former subroot r′) of a path P to any other
node of this path creates a SC. On the other hand, adding an edge from an endpoint
of P to a node which belongs to one of the cycles, e.g., Cq, aggregates the path P and the
cycle Cq into a SC. The result is the union of a SC with the q − 1 cycles C1, . . . , Cq−1.
Summing up both cases, the addition of an edge starting at an endpoint of the path of
the path-and-multicycle y ∈ Ypmc gives a stem-and-multicycle z ∈ Zsmc. An important
special case is the addition of an arc which connects both endpoints of the path, i.e. the
transformation of the path into a single cycle. The last partial move in (2) must be of this
type. This chain of arguments sufficiently explains the correctness of decomposition (2).

The same argument holds in the inverse case of decomposition (1), where subsequent
add/delete partial moves transform one z ∈ Zsmc into another z′ ∈ Zsmc. This follows from
the fact that an add/delete combination is the inverse of a delete/add combination. The
advantage of this “symmetry argument” is that we can avoid analyzing the intermediate
structures Y ′ which do not have a simple representation.

4.3 The Lin-Kernighan Neighborhood

The Lin-Kernighan neighborhood (LK) is a restricted SAC-k-Opt neighborhood with moves
mLK of variable length, where the move always starts with the deletion of an edge. LK
restricts the steps of the decomposition (2) to the case where after the deletion of an edge,
the generated structure is a (Hamiltonian) path y ∈ YP , and not a path-and-multicycle.
The intermediate objects z that result from the addition of an edge have to be simple
stem-and-cycles z ∈ ZSC. Consequently, a LK move decomposes into

mLK
i1,...,ik,

j1 ,...,jk

: ZSC

pdel
i1,j1−→ YP

padd
j1,i2−→ ZSC

pdel
i2,j2−→ Y ∗

P

padd
j2,i3−→ ZSC

pdel
i3,j3−→ . . .

pdel
ik,jk−→ YP

padd
jk,i1−→ ZSC. (3)

7



Furthermore, all deleted edges d1 = (i1, j1), d2 = (i2, j2), . . . and all added edges a1 =
(j1, i2), a2 = (j2, i3), . . . have to be disjoint. From our point of view, the above decompo-
sition is the kernel of the famous Lin and Kernighan neighborhood, suggested in (Lin and
Kernighan, 1973). Its variability relies on the fact that at each add-step one can either add
the edge (jp, i1), which transforms the current path into a tour (i.e. a closing partial move),
or one may add a “short” edge (jp, ip+1) with ip+1 6= i1 which continues the alternating
delete-add-process. The second alternative allows finding/generating edge exchanges with
variable length.

In (Lin and Kernighan, 1973), the authors allow the second deletion of an edge to either
create a Hamiltonian path or a path with a single cycle. In (3) the symbol Y ∗

P denotes the
set of path-and-cycle structures which contains Hamiltonian paths as well as the union of
a path with a cycle, which together cover all nodes of the routing graph. Clearly, Y ∗

P ⊃ YP

holds. This slightly changes the LK-neighborhood into a larger neighborhood LK*. The
motivation for this modification according to (Lin and Kernighan, 1973, p. 506) is that
LK* contains all 3-Opt moves, while LK does not. More specifically, the Or-Opt move
(type acb), suggested in (Or, 1976), creates a path-and-cycle after the second deletion
step, whereas the first and the third steps create Hamiltonian paths, respectively. This

a b c

i1

a b c

j1

a b c

i2

a b c

j2

a b c

i3

a b c

j
3

a b c

i4

a b c

a b c

j1

a b c

i2

a b c

j2

a b c

i3

a b c

a b c
j
3

Figure 5: The original tour
and the resulting configura-
tion for the Or-Opt move after
the six delete and add steps.
The left hand side shows the
decomposition with the path
and multicycle reference struc-
ture, which starts with a delete

step. The right hand side
shows the SC decomposition
with the stem and cycle ref-
erence structure, which starts
with an add step.

is shown in Fig. 5, which depicts the original tour and the six add/delete steps of the
decomposition. The Or-Opt move ’acb’ is completely symmetric. Hence, the occurrence
of the path-and-cycle is independent from the choice of the first node i1 from which the
search process is started.

When looking at other moves, e.g., the ’acB’ 3-Opt move, the occurrence of a path-and-
cycle depends on the initial choice of the node ip, p = 1, 2, 3. It is easy to verify that in only
one out of these three cases an intermediate path-and-cycle structure is generated. The
consequence is that the LK neighborhood is not cyclic-independent. This is interesting,
since the argument of a cyclic neighborhood is used as a motivation for the gain criterion
by Lin and Kernighan.

4.4 Edge Ejection Chains – Stem-and-Cycle

The inverse strategy of first adding an edge and subsequently deleting an incident edge is
closely related to the work on ejections chains and the stem-and-cycle reference structure

8



presented by F. Glover in (Glover, 1992b).
We assume that the decomposition (1) is restricted to the case

mSC
i1,...,ik,

j1,...,jk

: ZSC

padd
j1,i2−→ Y ′

pdel
i2,j2−→ ZSC

padd
j2,i3−→ Y ′

pdel
i3,j3−→ ZSC

padd
j3,i4−→ . . .

padd
jk,i1−→ Y ′

pdel
i1,j1−→ ZSC . (4)

where the reference structure is a stem-and-cycle (SC) (but not a stem-and-multicycle).
This exactly corresponds to the transformation of a given SC with tip t and root r according
to the following two rules: (R1) Add an edge {t, j} where j belongs to the cycle. Identify
the deleted edge {j, q} to be either of the two edges of the cycle incident at j. (R2) Add an
edge {t, j} where j belongs to the stem. Identify the deleted edge {j, q} by requiring q to
lie on the portion of the stem between j and t. In both rules, R1 and R2, node q becomes
the new tip of the new SC while the root node r remains fixed. The three possible cases
resulting from rules R1 and R2 are depicted as the three leftmost cases in Figure 3.

Glover shows that ejection chains of the form (1) can be used to transform a given
tour x into any other tour x′ when deleting an added edge is allowed. Moreover, the
chain can be started from an arbitrarily chosen node, an added edge might be deleted
later (but no deleted edge is added later), 2k additions and deletions are sufficient (when
x′ contains k edges not contained in x), and the chain can be chosen in such a way that
no two consecutive partial moves of deleting previously added edges occur (Glover, 1992b,
Thm. 1).

The original decomposition (1) with the more general stem-and-multicycle reference
structure corresponds with a rule set R1*–R4*, where the first two rules coincide with the
rule R1 and R2 given above and the other two rules allow the creation of an additional
cycle or the merger of a SC and a cycle into a single SC. These four rules are sufficient
to transform any given tour x into any other tour x′ within k add/delete steps where 2k is
the cardinality of the symmetric difference of x and x′ (Glover, 1992b, Thm. 4).

For the remaining part of this subsection we require the decomposition (4), i.e. the
move mSC , to contain only disjoint added and deleted edges. Then SC is a proper superset
of LK, i.e. each Lin-Kernighan move mLK can be replaced by an SC-move mSC with the
same number of partial moves and there exist SC-moves with no equivalent LK-move. In
order to see this, consider an arbitrarily chosen LK-move given by (3) (with Y ∗

P replaced
by YP ). This move can be constructed by the move (4) starting at the second partial move
padd

j1,i2
and ending with the partial move pdel

i1,j1
. The requirement of LK to generate a single

path after each deletion partial move corresponds to the requirement of SC not to generate
a stem-and-multicycle. It is shown in Fig. 5 that the Or-Opt move (type acb) is contained
in SC, making SC a proper superset of LK.

There are moves in SACN which are not contained in SC. The SAC-5-Opt move of type
aedcb which reverses the ordering of all five segments without inverting any segment is not
in SC. For other types of moves, e.g. the SAC-4-Opt move acbD, the question whether
the decomposition (1) generates a stem-and-multicycle depends on the node/edge chosen
for starting the ejection chain. A proof of these simple results is straightforward.

5 Conclusions

In this note we have investigated an important class of neighborhoods which are relevant
for local search in the context of the TSP. It could be shown that LK ⊂ SC ⊂ SACN ⊂

9



k − Opt. Fig. 6 contains examples (with a minimum number k of added/deleted edges)
of moves contained in one of the neighborhoods but not in the corresponding smaller
ones. We have also shown that the concept of cyclic independence is at the core of a

k k-Opt, 2³

double bridge

adcb

twisted
double bridge

aCDb

SACNSAC-5-Opt

aedcb

SCOr-Opt (c.i.)

acb

SAC-4-Opt
(not c.i.)

acbD

SAC-3-Opt
(not c.i.)

acB

LK

Figure 6: The rela-
tionship between differ-
ent subsets of the k-Opt
neighborhood. c.i. =
cyclic independent

sequential search algorithm, such as the method by Lin and Kernighan. Interestingly,
the move decomposition given by Lin and Kernighan is not cyclic independent and, thus,
the application of the gain criterion is a heuristic and not an exact search algorithm for
scanning the entire neighborhood. The same holds in the case of SC. Hence, in both cases
the application of sequential search is a heuristic and not an exact technique.

Finally, it should be noted that Glover (Glover, 1992b, Thm. 4) extends ideas of the
stem-and-multicycle reference structure also to the case of k-Opt moves with multiple
alternating cycles and to the asymmetric case. In addition, he defines subpath ejection
chains and the double-rooted reference structures bicycle and tricycle. It remains an open
question whether algorithms based on Stem-and-Cycle can outperform those based on
Lin-Kernighan in practice. Theoretically, this seems possible, since the Lin-Kernighan
neighborhood is strictly contained in the Stem-and-Cycle neighborhood. However, the
success of such an approach will depend on the potentials for finding efficient data structures
which allow the partial moves in a Stem-and-Cycle to be performed efficiently, see (Fredman
et al., 1995) for the Lin-Kernighan algorithm. Finding such data structures is an interesting
open research problem.

References

Aarts, E. and Lenstra, J. (1997). Local search in combinatorial optimization. Wiley,
Chichester.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2003a). Implementing the dantzig-
fulkerson-johnson algorithm for large traveling salesman problems. Mathematical Pro-
gramming, Series B, 97(1–2):91–153.

Applegate, D., Cook, W., and Rohe, A. (2003b). Chained Lin-Kernighan for large traveling
salesman problems. INFORMS Journal on Computing, 15(1):82–92.

Bentley, J. (1992). Fast algorithms for geometric traveling salesman problems. Operations
Research Society of America, 4(4):387–411.

10



Fredman, M., Johnson, D., McGeoch, L., and Ostheimer, G. (1995). Data structures for
traveling salesman. Journal of Algorithms, 18:432–479.

Glover, F. (1991). Multilevel tabu search and embedded search neighborhoods for the
travling salesman problem. Technical report, US West Chair in Systems Science, Uni-
versity of Colorado, Boulder, School of Business, Campus Box 419, Boulder, CO, 80309.

Glover, F. (1992a). Ejection chains, reference structures and alternating path methods
for traveling salesman problems. Technical report, US West Chair in Systems Science,
University of Colorado, Boulder, School of Business, Campus Box 419, Boulder, CO,
80309.

Glover, F. (1992b). New ejection chain and alternating path methods for traveling salesman
problems. In Balci, O., Sharda, R., and Zenios, S., editors, Computer Science and
Operations Research - New developments in their interfaces, pages 491–508. Pergamon
Press.

Gutin, G. and Punnen, A., editors (2002). The Traveling Salesman Problem and Its Vari-
ations, volume 12 of Combinatorial Optimization. Kluwer, Dordrecht.

Johnson, D. and McGeoch, L. (1997). The traveling salesman problem: A case study in
local optimization. In Aarts, E. and Lenstra, J., editors, Local Search in Combinatorial
Optimization, chapter 8, pages 215–310. Wiley, Chichester.

Johnson, D. and McGeoch, L. (2002). Experimental analysis of heuristics for the stsp. In
Gutin, G. and Punnen, A., editors, The Traveling Salesman Problem and Its Variations,
volume 12 of Combinatorial Optimization. Kluwer, Dordrecht.

Lawler, E., Lenstra, J., Rinnooy Kan, A., and Shmoys, D., editors (1985). The Traveling
Salesman Problem. A Guided Tour of Combinatorial Optimization. Wiley-Interscience
Series in Discrete Mathematics. Wiley, Chichester.

Lin, S. and Kernighan, B. (1973). An effective heuristic algorithm for the traveling-salesman
problem. Operations Research, 21:498–516.

Or, I. (1976). Traveling Salesman-Type Problems and their Relation to the Logistics of
Regional Blood Banking. PhD thesis, Department of Industrial Engineering and Man-
agement Sciences. Northwestern University, Evanston, IL.

Rego, C. and Glover, F. (2002). Local search and metaheuristics. In Gutin, G. and
Punnen, A., editors, The Traveling Salesman Problem and Its Variations, volume 12
of Combinatorial Optimization, chapter 8, pages 309–368. Kluwer, Dordrecht.

11


