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Abstract

In most vehicle routing and crew scheduling applications solved by column genera-
tion, the subproblem corresponds to a shortest path problem with resource constraints
(SPPRC) or one of its variants. This paper proposes a classification and a generic
formulation for the SPPRCs, briefly discusses complex modeling issues involving re-
sources, and presents the most commonly used SPPRC solution methods. First and
foremost, it provides a comprehensive survey on the subject.

Résumé

Dans la plupart des problèmes de tournées de véhicule et d’horaires d’équipage
résolus par génération de colonnes, le sous-problème correspond à un problème de plus
court chemin avec contraintes de ressources (PCCCR) ou à une de ses variantes. Cet
article propose une classification et une formulation générique pour les PCCCRs, dis-
cute brièvement certains aspects complexes de modélisation impliquant des ressources
et présente les méthodes de résolution les plus couramment utilisées pour les PCCCRs.
D’abord et avant tout, il s’agit d’une synthèse détaillée sur le sujet.
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1 Introduction

For more than two decades, column generation (also known as branch-and-price when
embedded in a branch-and-bound framework) has been successful at solving a wide variety
of vehicle routing and crew scheduling problems (see e.g. Desrosiers et al. (1995), Barnhart
et al. (1998), Desaulniers et al. (1998), and most chapters in this book). In most of
these applications, the master problem of the column generation method is a (possibly
generalized) set partitioning or set covering problem with side constraints, where most
of the variables, if not all, are associated with vehicle routes or crew schedules. These
route and schedule variables are generated by one or several subproblems, each of them
corresponding to a shortest path problem with resource constraints (SPPRC) or one of its
variants. The SPPRC has contributed to the success of the column generation method
for this class of problems for three main reasons. Firstly, through its resource constraints,
it constitutes a flexible tool for modeling complex cost structures for an individual route
or schedule, as well as a wide variety of rules that define the feasibility of a route or a
schedule. Secondly, because it does not possess the integrality property (i.e., there may be
a positive gap between its optimal value and that of its linear relaxation) as discussed in
Desrosiers et al. (1984), the column generation approach can derive tighter bounds than
those obtained from the linear relaxation of arc-based formulations. Thirdly, there exist
efficient algorithms at least for some important variants of the SPPRC.

The SPPRC was introduced in the Ph.D. dissertation of Desrochers (1986) as a sub-
problem of a bus driver scheduling problem. It consists of finding a shortest path among
all paths that start from a source node, end at a sink node, and satisfy a set of constraints
defined over a set of resources. A resource corresponds to a quantity, such as the time, the
load picked-up by a vehicle, or the duration of a break in a work shift, that varies along a
path according to functions, called resource extension functions (REFs). A REF is defined
for every arc in the network and every resource considered. It provides a lower bound on
the value that the corresponding resource can take at the head node of the corresponding
arc, given the values taken by all the resources at its tail node. The resource constraints
are given as intervals, called resource windows, which restrict the values that can be taken
by the resources at every node along a path. Such a constraint is defined for every node
in the network and every resource considered.

Figure 1 provides an SPPRC example that involves the resource time. The source and
sink nodes are denoted by s and t, respectively. Each arc (i, j) bears a two-dimensional
vector: the first component tij provides the travel time (duration) of using the arc, while
the second cij indicates the cost associated with it. Given a value Ti taken by the resource
at a node i (Ti is said to be the visiting time at node i), the REF for an arc (i, j) is defined
as fij(Ti) = Ti + tij , i.e., it computes the (earliest) arrival time at node j when starting
at node i at time Ti. The resource window [ai, bi] associated with each node i is specified
in brackets beside it. It indicates at what time node i can be visited. If the arrival time of
a path ending at a node i exceeds bi, then this path is deemed infeasible. Otherwise, it is
feasible even if its arrival time precedes ai since waiting at a node is allowed, that is, the
visiting time at node i can be greater than the arrival time at this node.
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Figure 1: A small SPPRC example

In the example of Figure 1, three paths link the source node s to the sink node t. The
first path P1 = (s, 1, t), denoted by the sequence of nodes visited, is resource-feasible since
it is possible to find visiting times along that path which satisfy all resource constraints.
Indeed, setting Ts = 0 (the only feasible value at node s), it is easy to see that the
arrival times (T1 = 8 and Tt = 12) at nodes 1 and t provided by the appropriate REFs
(fs1(Ts) and f1t(T1)) are all feasible with respect to the resource windows. The second
path P2 = (s, 2, t) is also resource-feasible. However, waiting is needed at node 2 since the
arrival time provided by fs2(0) = 5 is smaller than a2 = 9. In this case, the visiting time T2

can be set at 9, and the subsequent visiting time Tt at 11, respectively. Finally, the third
path P3 = (s, 3, t) is not resource-feasible since, along that path, Ts = 0, T3 ≥ fs3(0) = 12,
and the earliest arrival time at node t is f3t(12) = 16. Hence, the resource window [9, 15]
at node t cannot be met. Since the cost of P1 (3 + 7 = 10) is smaller than the cost of P2

(5 + 6 = 11), the former path is optimal with respect to cost. However, path P2 has a
smaller earliest arrival time at node t. If the network in Figure 1 were only a sub-network
within a bigger network, then extending path P2 to a node could be feasible but extending
P1 could be infeasible.

This gives us a first glance at the core of SPPRC’s difficulty. The SPPRC is very
close to a multi-criteria problem. In the following we will consider both criteria, time and
cost, as resources. Paths are uncomparable when one path is better than a second path
in one criterion and worse in another criterion. Resource constraints make it necessary to
consider all uncomparable paths that arrive at a node, since resource constraints might
forbid extending any subset of these paths but allow an extension of the others.

The two-resource SPPRC, better known as the shortest path problem with time windows
(SPPTW), was first studied in Desrosiers et al. (1983) and Desrosiers et al. (1984). The
resource cost is unconstrained while the resource time is restricted by corresponding time
windows. Desrochers (1986) generalized the SPPTW to the case with several resources.
Since then, several variants of the SPPRC have appeared in the literature. For instance,
Ioachim et al. (1998) proposed the SPPTW with time dependent linear costs at the nodes
and Dumas et al. (1991) the SPPTW with pickups and deliveries.
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The contribution of this chapter is three-fold. Firstly, it presents a classification of
the SPPRC variants and provides a generic SPPRC formulation that includes all vari-
ants studied so far (Section 2). Secondly, it discusses non-trivial modeling issues for the
SPPRC (Section 3). Finally, it surveys the most important papers on this subject, namely,
those introducing a new variant of the SPPRC (Section 2) or proposing an interesting
methodological contribution (Section 4).

2 Classification of the SPPRCs

The intention of this section is to provide a generic formulation for a comprehensive class of
shortest path problems with resource constraints presented in the literature so far. Variants
of the SPPRC, which we consider, are extensions of the classical shortest path problem,
where the cost is replaced by multi-dimensional resource vectors, which are accumulated
along paths and constrained at intermediate nodes. Different types of SPPRCs can be clas-
sified by (i) the way in which resources are accumulated, leading to different definitions of
resource feasible paths, (ii) the existence of additional path-structural constraints exclud-
ing specific paths, e.g., non-elementary paths, (iii) the objective, (iv) and the underlying
network.

We state all SPPRCs on a digraph G = (V, A), where V and A are non-empty sets of
nodes and arcs, respectively. A path P = (e1, . . . , ep) is a finite sequence of arcs (some
arcs may occur more than once) where the head node of ei ∈ A is identical to the tail
node of ei+1 ∈ A for all i = 1, . . . , p− 1. For the sake of convenience, we assume that G is
simple so that a path can be written as P = (v0, v1, . . . , vp) with the understanding that
(vi−1, vi) ∈ A holds for all i ∈ {1, . . . , p}. The length of this path is p.

2.1 Resource Feasible Paths

The description of feasible paths provides a basis for the generic definition of the SPPRC.
In the following, we distinguish between feasibility w.r.t. resources and feasibility w.r.t.
path-structural constraints. This section focuses on the first aspect while path-structural
constraints are discussed in the next section.

Resource constraints can be formulated by means of (minimal) resource consumptions
and resource intervals (e.g., the travel times tij and time windows [ai, bi] in the SPPTW).
Let R be the number of resources. A vector T = (T 1, . . . , TR)⊤ ∈ R

R is called a resource
vector and its components resource variables (remark: x⊤ denotes the transposed vector to
the vector x). T is said to be not greater than (i.e., dominates) S = (S1, . . . , SR)⊤ ∈ R

R if
the inequality T i ≤ Si holds for all components i = 1, . . . , R. We denote this by T ≤ S. For
two resource vectors a and b the interval [a, b] is defined as the set {T ∈ R

R : a ≤ T ≤ b}.

Resource intervals, also called resource windows, associated with a node i ∈ V are
denoted by [ai, bi] with ai, bi ∈ R

R, ai ≤ bi. The changes in the resource consumptions
associated with an arc (i, j) ∈ A are given by a vector fij = (f r

ij)
R
r=1 of so-called resource

extension functions (REFs). A REF f r
ij : R

R → R depends on a resource vector Ti ∈ R
R,

which corresponds to the resource consumption accumulated along a path from s to i, i.e.,
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up to the tail node i of arc (i, j). Hence, the result fij(Ti) ∈ R
R can be interpreted as a

resource consumption accumulated along the path (s, . . . , i, j). “Classical” SPPRCs, like
the SPPTW presented in the introduction, only consider REFs of the form

f r
ij(Ti) = T r

i + trij (1)

where trij are constants associated with the arc (i, j). Classical REFs are separable by
resources, i.e., there exist no interdependencies between different resources. The more
general definition of REFs provides a powerful instrument for modeling practically relevant
resource interdependencies.

Instead of giving an implicit MIP-formulation for the SPPRC, we state the resource
constraints by considering individual paths. The reason for this is that node repetitions
within a path (which are allowed in our path definition) prohibit to model resource con-
sumptions by individual resource variables associated with a node. For a given path
P = (v0, v1, . . . , vp), one has to refer to the p + 1 different positions i = 0, 1, . . . , p. A
path P is resource-feasible if there exist resource vectors Ti ∈ [avi

, bvi
] for all positions

i = 0, 1, . . . , p such that fvi,vi+1
(Ti) ≤ Ti+1 holds for all i = 0, . . . , p − 1. T (P ) is defined

as the set of all feasible resource vectors at the last node vp of P = (v0, v1, . . . , vp), i.e.,

T (P ) =
{

Tp ∈ [avp
, bvp

] : ∃ Ti ∈ [avi
, bvi

], fvi,vi+1
(Ti) ≤ Ti+1

for all i = 0, . . . , p − 1} . (2)

Let F(u, v) be the set of all resource-feasible paths from a node u to a node v. Note that
P ∈ F(u, v) holds if and only if T (P ) 6= ∅.

2.2 Path-Structural Constraints

Path-structural constraints can model further requirements concerning the feasibility of
paths, which are not covered by resources. Such additional requirements might either be
an integral part of a feasible path’s definition or be implied by branching rules, which come
up in the context of branch-and-price and require modifications of the pricing problem.
Sometimes, these modifications cannot be handled by simply removing some arcs or nodes
of the underlying network. In order to specify those constraints, we need some definitions.
An elementary path is a path in which all nodes are pairwise different. Contrarily, a cycle
is a path (v0, v1, . . . , vp) of length p > 1 having v0 = vp. We call any cycle of length less
than or equal to k a k-cycle.

The following SPPRC variants have been proposed in the literature and defined accord-
ing to path-structural constraints. Let G be the set of all paths feasible with respect to
these constraints.

For the elementary SPPRC (ESPPRC), G = {elementary paths}. On acyclic graphs,
all paths are elementary so that SPPRC and ESPPRC coincide. In general (i.e., for
networks with cycles), the ESPPRC has been identified to be NP -hard in the strong sense
(Dror (1994)) and has been first studied and solved by Beasley and Christofides (1989).
In many vehicle routing applications the pricing problem is an ESPPRC. Guéguen et al.
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(1998), Chabrier (2002), and Rousseau et al. (2003) solved ESPPRC pricing problems in
the context of the vehicle routing problem with time windows (VRPTW). These approaches
are known for their very tight lower bounds computed by the LP-relaxation of the VRPTW
set-partitioning master program.

For the SPPRC, G = {all paths}, that is, no path-structural constraints are imposed.
The SPPRC occurs as a subproblem in numerous vehicle and crew scheduling problems
which are most of the time formulated over acyclic time-space networks (see Desrosiers
et al. (1984); Vance et al. (1997); Desaulniers et al. (1998); Gamache et al. (1999)).

Since the ESPPRC is very hard to solve (in some cases it is prohibitively hard), classical
solution approaches for vehicle routing problems which are formulated over cyclic graphs
are also based on the corresponding non-elementary SPPRC, because it can be solved
using pseudo-polynomial algorithms (see Section 4.1). Influential contributions which rely
on this idea were Desrosiers et al. (1986), Desrochers et al. (1992), and Desrosiers et al.
(1995). However, while solving the enclosing problem by branch-and-price, this subproblem
relaxation sometimes leads to weak lower bounds and possibly impractical large branch-
and-bound trees.

For the SPPRC with k-cycle elimination (SPPRC-k-cyc), G = {k-cycle-free paths}. A
compromise between solving the ESPPRC and the SPPRC is to forbid cycles of small
length. Several examples of VRPTW instances, e.g., taken from the benchmark library
of Solomon (1987), show that cycle elimination for small values of k can substantially
improve the master program lower bounds. This justifies an additional effort to eliminate
cycles (compared to solving a pure SPPRC) while the corresponding ESPPRC is practically
impossible to solve. The case k = 2 was first analyzed by Houck et al. (1980) and used
in the VRPTW context by Kolen et al. (1987) and Desrochers et al. (1992). Irnich and
Villeneuve (2003) recently proposed an algorithm for the general case of k ≥ 2.

For the SPPRC with forbidden paths (SPPRCFP), G = {all paths} \ Gforbidden where

Gforbidden is a set of forbidden paths. This set is implicitly defined as the set of all paths

that contain at least one element of a finite set of pre-specified sub-paths. Villeneuve and

Desaulniers (2000) introduced this type of SPPRC which occurs two-fold in the context

of branch-and-price. First, in some applications one wants to branch so that a route or

schedule is excluded from the (restricted) master program (see Desaulniers et al. (2002b);

Arunapuram et al. (2003)). This makes it necessary to also exclude the corresponding path

from being generated by the SPPRC pricing procedure. Second, some constraints might be

impossible or very hard to model with resources. Instead of considering them directly, one

iteratively solves relaxed SPPRCs to get tentative solutions, which are excluded from the

SPPRC by means of forbidden paths as long as not all constraints are respected. Examples

of hard-to-model constraints stem from aircrew scheduling applications, see e.g. Fahle et al.

(2002).

Two additional types of constraints, precedence constraints and pairing constraints,

are important in the pickup and delivery context. Given two nodes i, j ∈ V , a path P

fulfills the (i, j)-pairing constraint if node i occurs as often as node j in P (possibly P
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contains none of them). A path P fulfills the (i, j)-precedence constraint if P contains

no sub-path connecting j with i. The SPPRC with pickups and deliveries (SPPRCPD)

is a subproblem of the vehicle routing problem with time windows, pickups and deliveries

(see Dumas et al. (1991); Desaulniers et al. (2002a)). In this problem, transportation

requests i ∈ I must be satisfied where a request requires a pickup at an origin i+ and a

delivery at a destination i−. Consequently, the SPPRCPD contains an (i+, i−)-pairing and

an (i+, i−)-precedence constraint for each request i ∈ I.

In a branch-and-price context, each node and each arc represent a (possibly empty)

sequence of tasks, where a task (e.g., a flight leg, a train segment, or a crew pairing) is

associated with a set partitioning constraint in the master problem. A task can be part

of several sequences and can therefore be represented by several nodes and arcs. For any

path P = (v0, v1, . . . , vp) there is a (uniquely defined) task sequence W (P ) given by the

concatenation of the sequences of tasks of v0, (v0, v1), v1, (v1, v2), . . . , (vp−1, vp), vp. All of

the above path-structural constraints might also be formulated w.r.t. the task sequences.

For instance, the task-ESPPRC considers only paths P for which W (P ) does not contain

task repetitions or the task-SPPRC-2-cyc does not allow paths having a 2-cycle in W (P ).

Several branching rules proposed in the literature impose additional constraints on how

two given tasks have to be covered by the paths. The branching rules of Ryan and Foster

(1981) decide whether two tasks i and j are covered by the same path or by different

paths. Hence, one branch is simply an (i, j)-pairing constraint. The other branch is an

(i, j)-anti-pairing constraint which forbids tasks i and j to be together in W (P ), i.e.,

G = {P : i /∈ W (P ) or j /∈ W (P )}. Similarly, the inter-task constraints (introduced

in Desrochers and Soumis (1989)) decide whether two given tasks i and j are performed

consecutively or not. In this case, an (i, j)-follower constraint guarantees on one branch

that, for each path P ∈ G, W (P ) contains task i followed by task j or none of these tasks.

On the other branch, an (i, j)-non-follower constraint only allows paths P ∈ G for which

W (P ) does not contain task i followed by task j.

Summing up the definitions of resource feasibility and path-structural constraints, we

know that the set F =
⋃

v∈V (F(s, v)∩G) contains all feasible paths to a one-to-all SPPRC

problem.

2.3 Objectives and Generic SPPRC Formulation

The objective of the SPPRC is formulated by means of a resource vector at the last nodes

of feasible paths. Recall that in general, for a single path P ∈ F there exist many feasible

choices for the resource vectors T ∈ T (P ). Problems whose objective depends only on a

single resource, called cost resource, are normally one-to-one shortest path problems with

a source node s and a sink node t. They can be formulated as follows:

min
P∈F(s,t)∩G

(

min
T∈T (P )

T cost

)

. (3)
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Computing the minimum cost of a path P = (v0, . . . , vp) requires the determination of

feasible resource vectors T0, . . . , Tp along the path. Similarly to the feasibility problem

T (P ) 6= ∅ discussed above, this can be a hard problem. In contexts with time windows,

Dumas et al. (1990) optimized the cost of a given path for time-dependent convex incon-

venience costs at all nodes.

A much more general formulation of the SPPRC is based on considering the set of

Pareto-optimal resource vectors. For a given set M ⊂ R
R, an element m ∈ M is Pareto-

optimal if x 6≤ m holds for all x ∈ M, x 6= m. It means that none of the cones xx

for x ∈ M, x 6= m contain a Pareto-optimal point m, where a cone T x is defined as

{S ∈ R
R : S ≥ T}. For v ∈ V , let PO(v) be the set of Pareto-optimal vectors in

⋃

P∈F(s,v)∩G T (P ). The SPPRC can be formulated as follows.

Generic SPPRC: Find for each node v ∈ V and for each Pareto-optimal
resource vector T ∈ PO(v) one feasible (representative) s-v-path P ∈ F(s, v)∩G
having T ∈ T (P ).

For the sake of convenience, we call the representative path P a Pareto-optimal path. Since

all solutions to a problem minm∈M α⊤ · m for a non-negative weight vector α ∈ R
R
+, α 6= 0

are Pareto-optimal points of M , the generic SPPRC formulation also solves all problems

of the form

min
P∈F(s,t)∩G

(

min
T∈T (P )

α⊤T

)

(4)

for any weight vector α ∈ R
R
+. Problem (3) is a special case of (4).

2.4 Properties of T (P )

We will now study properties of the set T (P ) for a fixed path P = (v0, v1, . . . , vp) under

different assumptions concerning the REFs. Knowing T (P ) and its structure is essential

to (efficiently) resolve the following two basic tasks:

• Given a path P . Is P resource feasible, i.e., P ∈ F(v0, vp) or not?

• Given the prefix P ′ = (v0, . . . , vp−1) of P = (v0, . . . , vp−1, vp), compute T (P ) using

T (P ′).

Furthermore, compact implicit representations of T (P ) are substantial for checking if a

path P (or any of its extensions) is or might be a Pareto-optimal path. For instance,

efficient dominance checks in the context of dynamic programming are based on represent-

ing T (P ) by either using a single Pareto-optimal point T (P ) or a function gP (·) to describe

the set of Pareto-optimal points in T (P ), see Section 4.1.

Before discussing different cases, we state the following universal property: If T ∈ T (P )

then T x ∩ [avp
, bvp

] ⊆ T (P ), i.e., the set T (P ) contains the cone, restricted to the resource

interval, generated by each point in this set.
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Classical SPPRC and non-decreasing REFs In the classical SPPRC the set T (P )
has a simple representation as a cone restricted by [avp

, bvp
]. Let Pi = (v0, . . . , vi), i =

0, . . . , p be the prefix of P of length i. Each set T (Pi) has a unique cone-defining element
T (Pi) ∈ T (Pi) such that T (Pi) = T (Pi)

x ∩ [avi
, bvi

] holds. The resource vector T (Pi) can
be recursively computed by

T (P0) = av0
and (5)

T (Pi) = max{avi
, fvi−1,vi

(T (Pi−1))} for all i ∈ {1, . . . , p}.

The same is true when all REFs are non-decreasing functions, meaning that each
f r

ij(T
1
i , T 2

i , . . . , TR
i ) is a non-decreasing function in one variable T k

i , when the other R − 1
components are kept fixed. Under these assumptions T (P ) is still a cone. Formula (5)
computes T (P ) with T (P )x ∩ [avp

, bvp
] = T (P ) efficiently.

As a consequence, the generic SPPRC formulation can be simplified as follows.

Generic SPPRC with non-decreasing REFs: Find for each node v ∈ V
one feasible representative s-v-path P ∈ F(s, v) ∩ G for which T (P ) is Pareto-
optimal in {T (Q) : Q ∈ F(s, v) ∩ G}.

Formulation (4) can then be re-written as minP∈F(s,t)∩G α⊤T (P ).

Linear REFs If the REFs are linear but not necessarily non-decreasing, it is easy to see
that T (P ) is a bounded polyhedron. The description of the polyhedron T (P ) (e.g., by its
extreme points) can get more and more complicated the longer the path P is (see Ioachim
et al. (1998) and Section 4.1.2).

For instance, consider the path P = (1, 2), R = 2 resources, resource intervals
[a1, b1] = [0, 1]2 and [a2, b2] = [0, 1]× [−1, 1] and the REF f12(T

1
1 , T 2

1 ) = (T 1
1 , T 2

1 −T 1
1 ). It is

easy to see that T (P ) is {(T 1
2 , T 2

2 ) ∈ [0, 1] × [−1, 1] : T 2
2 ≥ −T 1

2 }. There exists no element
T ∈ T (P ) such that T (P ) ⊆ T x holds. Note that all vectors T = (λ,−λ) for λ ∈ [0, 1] are
Pareto-optimal points of T (P ).

General REFs For arbitrary REFs, checking whether P ∈ F(u, v) or equivalently
T (P ) 6= ∅ holds or not can be an NP -hard problem. A known NP -complete prob-
lem is the binary knapsack lower bound feasibility problem (KLBFP) (see Nemhauser
and Wolsey (1988)): Does there exist a feasible solution with profit at least lb for a given
lower bound lb to the knapsack problem max

∑n
i=1 pixi,

∑n
i=1 wixi ≤ C, x ∈ {0, 1}n? One

can easily transform this decision problem into an SPPRC with three resources: negative
profit, weight, and decision. Let G = (V, A) be a line graph with nodes V = {0, 1, . . . , n}
and arcs A = {(0, 1), (1, 2), (2, 3), . . . , (n − 1, n)}. Let [a0, b0] = [0, 0] × [0, C] × [0, 1],
[an, bn] = [−∞,−lb] × [0, C] × [0, 1], and [ai, bi] = [−∞, 0] × [0, C] × [0, 1] be the resource
windows at all nodes i ∈ V \ {0, n}. Define the REFs to be fi−1,i(p, w, x) = (p, w, 0) for
x = 0, and fi−1,i(p, w, x) = (p − pi, w + wi, 0) for x 6= 0. The answer to the KLBFP is
“yes” if and only if T (P ) 6= ∅ for the path P = (0, 1, . . . , n).
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2.5 Underlying Network

The SPPRCs can also be differentiated according to whether or not their underlying net-
work is acyclic or cyclic. The existence of cycles implies that there exist infinitely many dif-
ferent paths in G (not necessarily feasible w.r.t. resource and path-structural constraints).
Thus, the SPPRC might be unbounded. In the following, we exclude these cases from our
consideration.

The following discretization of G = (V, A) formally makes the underlying network
acyclic. If there exists at least one non-decreasing resource r (i.e., f r

ij(Ti)−T r
i > 0, or trij > 0

in the classical SPPRC with f r
ij(Ti) = T r

i + trij for all (i, j) ∈ A, e.g., the resource time in
many applications) it is possible to transform (V, A) into an acyclic time-space network.
Each node v ∈ V is replaced by several copies copy1(v), . . . , copyp(v) corresponding to
a time discretization of the resource interval for r. Nevertheless, this transformation is
only a formal device, e.g., used in the unified model of Desaulniers et al. (1998). Cycles
of the original network correspond with paths visiting two or more copies of the same
original node. Solving the ESPPRC in G is, therefore, equivalent to solving an SPPRC
with task-cycle elimination in the discretized network.

3 Modeling Issues

The modeling of standard constraints like capacity constraints, path length restrictions
and time windows is obvious from the introduction. Other simple examples can be found
in Vance et al. (1997), Gamache et al. (1999), and Desaulniers et al. (1999). This section
will, therefore, focus on non-trivial modeling issues, provide examples and give references
to some relevant literature.

In some applications, one wants to model exact resource consumptions instead of min-
imal resource consumptions. For the SPPTW it means that waiting is not allowed so that
the arrival time at each node is always identical to the visiting time. In general, the in-
equalities in (2) defining a resource-feasible path P = (v0, v1, . . . , vp) have to be replaced
by T r

i+1 = f r
vi,vi+1

(Ti). By R= (resp. R≤) we denote the resources which force an equality
(resp. inequality) in (2). However, as suggested in Gamache et al. (1998), a resource r ∈ R=

might equivalently be replaced by two resources r1, r2 ∈ R≤ where the resource intervals
and REFs for r1 are identical to those for r while those for r2 are [ar2

i , br2

i ] = [−br
i ,−ar

i ]
and f̃ r2

ij (T̃i) = −f r
ij(T̃

1
i , . . . , T̃ r−1

i ,−T̃ r2

i , T̃ r+1
i , . . . , T̃R

i ) (the˜ symbol refers to the case with
the r1 and r2 resources).

Section 2.2 has provided several examples of path-structural constraints. Most of them
can be modeled with additional resources (one for each constraint) in a standard SPPRC.
For the ESPPRC, Beasley and Christofides (1989) proposed to add to R≤ an additional
resource rv for each node v ∈ V . (For a compact notation, we use the Kronecker-symbol
with δij = 1 if i = j, and δij = 0, otherwise.) The resource intervals are defined as
[arv

i , brv

i ] = [0, 1 − δsi] for all i ∈ V and the REFs by f rv

ij (Ti) = T rv

i + δiv for all (i, j) ∈ A.
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Table 1 gives an overview of how (anti-)pairing constraints, precedence constraints, and

(non-)follower constraints can be modeled by means of resources. In this table, M is a suf-

ficiently large positive integer. For the first group (pairing, anti-pairing, and precedence)

we assume that a single task is associated with each node. Note that the modeling pro-

posed for the (k, ℓ)-pairing and precedence constraints is equivalent to the set component

proposed by Dumas et al. (1991) for the SPPRCPD.

If a single task is associated with each node, follower and non-follower constraints simply

imply the removal of some of the arcs (see e.g. Desrochers and Soumis (1989)). Therefore,

we present these constraints for the case that sequences of tasks are associated with arcs

and nodes. We assume that tasks are numbered from 1 to N , the last task of any non-

empty task sequence W (·) is denoted by l(W (·)). For empty task sequences one defines

l(W (∅)) = 0.

All follower and non-follower constraints can be modeled with a single resource r, where
T r

i ∈ {1, . . . , N} means that the last task of the task sequence of the current path (s, . . . , vi)
was the one with number T r

i . T r
i = 0 means that the current path has an empty task

sequence. The definition of the corresponding REFs is:

fr
ij(Ti) =















T r
i if W ((i, j), j) = ∅

l(W ((i, j), j)) if T r
i 6= 0, W ((i, j), j) 6= ∅, and (T r

i ,W ((i, j), j)) feasible
l(W ((i, j), j)) if T r

i = 0, W ((i, j), j) 6= ∅, and W ((i, j), j) feasible
−1 otherwise.

(6)

The strength of the non-classical REF concept is that it allows multiple resources

to depend on each other. In several applications such as the aircrew pairing problem

Vance et al. (1997), the cost of a path depends on several resources. A second example

of non-trivial dependent REFs stems from the capacity constraints of the VRPTW with

simultaneous pickups and deliveries, see Min (1989); Desaulniers et al. (1998). Here, each

customer i ∈ V \ {s, t} has demanded for delivery qd
i and for pickup qp

i . A vehicle of

capacity Q starts at the depot s with the entire delivery demand of the tour loaded. It

services each customer (pickup after delivery) so that the vehicle reaches the final depot t

having the entire pickup demand on board. A feasible path (route) is one in which the

pickups of already visited nodes plus the deliveries of the following customers do not ex-

ceed the vehicle capacity on any arc traveled. The feasibility problem is modeled with

two dependent resources rp, rmax ∈ R≤, where the resource variable T
rp

i is demand al-

ready picked (directly after node i) and T rmax

i is the maximum load in the vehicle on the

path from s to i. Obviously, one has [a
rp

i , b
rp

i ] = [armax

i , brmax

i ] = [0, Q] for all i ∈ V and

f
rp

ij (T
rp

i , T rmax

i ) = T
rp

i + qp
j for all (i, j) ∈ A. For the maximum load, one has non-linear

but non-decreasing REFs f rmax

ij (T
rp

i , T rmax

i ) = max{T
rp

i + qp
j , T

rmax

i + qd
j }. It means that

the maximum load at node j (following node i) is either the entire pickup demand at

the end of the path, computed by T
rp

i + qp
j , or results from the maximum load on the

sub-path (0, . . . , i) to which the delivery of j has to be added.
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Constraint Type Resource interval REF
[ar

i , b
r
i ] f r

ij(Ti)

for all i ∈ V for all (i, j) ∈ A

(k, ℓ)-pairing R= [0, 0] for i = s, t T r
i + δik − δiℓ

[−M, M ] for i ∈ V \ {s, t}

(k, ℓ)-anti-pairing R= [0, 0] for i = s T r
i + δik − δiℓ

[0, M ] for i = k, [−M, 0] for i = ℓ
[−M, M ] for i ∈ V \ {s, k, ℓ}

(k, ℓ)-precedence R≤ [0, 1 − δik] T r
i + δiℓ

(k, ℓ)-pairing R= [0, 0] for i = s, k, t T r
i + δiℓ − δik

and precedence [−1,−1] for i = ℓ
[−1, 1] for all i ∈ V \ {s, t, k, ℓ}

(k, ℓ)-follower R= [l(W (s)), l(W (s))] for i = s
and [0, N ] for i ∈ V \ {s} (see equation 6)
(k, ℓ)-non-follower

Table 1: Resource intervals and REFs for task-related constraints

The modeling of other non-linear resource consumptions is straightforward, e.g., soft

time windows (see Dumas et al. (1990)), load-dependent travel costs or time-dependent

travel times (connections (i, j) with different travel durations depending on the time of the

day). Complex schedule regulations and their modeling can be found in Desaulniers et al.

(1997) and Vance et al. (1997).

Another non-trivial example of dependent resources is the computation of the minimal

waiting time for an SPPTW path. With the notation for the SPPTW given in the introduc-

tion, the total waiting time along path P = (v0, v1, . . . , vp) is given by Tp−T0−
∑p

i=1 ti−1,i.

Desaulniers and Villeneuve (2000) showed that three resources with non-decreasing REFs

are enough to compute both the earliest arrival time and the minimal waiting time (or

equivalently, an associated waiting cost).

4 Solution Methods

This section describes different methodologies developed for solving the SPPRCs, namely,

dynamic programming which has been used extensively, Lagrangean relaxation, constraint

programming, and heuristics. It also presents a graph modification approach for the SP-

PRCFP.
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4.1 Dynamic Programming and Labeling Algorithms

Dynamic programming solution approaches for the SPPRC systematically build new paths,

starting from the trivial path P = (s), by extending paths one-by-one into all feasible

directions. Their efficiency depends on the ability to identify and discard paths which are

not useful either to build a Pareto-optimal set of paths or to be extended into Pareto-

optimal paths. Discarding non-useful paths is achieved by a dominance sub-algorithm

based on dominance rules, which strongly depend on the path-structural constraints and

the properties of the REFs.

For the sake of efficiency, paths in the dynamic programming algorithms are encoded by

labels. Paths sharing a common prefix are represented by using a single chain of labels for

their common prefix. This is implemented with the help of a tree data structure in which

a label corresponding to path P = (v0, . . . , vp−1, vp) is directly linked back to the label of

the prefix path (v0, . . . , vp−1) (see e.g. Ahuja et al. (1993) for an introduction to labeling

algorithms). Beside encoding the path itself, the label typically stores a representation of

T (P ), e.g., given by the unique resource vector T (P ) in case of non-decreasing REFs. In

Ioachim et al. (1998) a more complex representation of T (P ) is stored in the labels, while

Irnich and Villeneuve (2003) store additional (compressed) information to accelerate the

dominance algorithm.

In order to formalize the above ideas, we need some definitions. For a given path

P = (v0, v1, . . . , vp) we call v(P ) = vp the resident node of P . A path P = (v0, v1, . . . , vp)

is a feasible extension of path Q = (w0, w1, . . . , wq) if (Q, P ) = (w0, . . . , wq, v0, . . . , vp) ∈
F(w0, vp)∩G. The set of all feasible extensions is E(Q) = {P : (Q, P ) ∈ F(w0, v(P ))∩G}.

Labeling algorithms rely on the manipulation of two sets. The first set U is the set of

unprocessed paths, which have not yet been extended. The second set P is the set of useful

paths. Useful paths P ∈ P have already been processed. They have been identified to

be Pareto-optimal or might be prefixes of Pareto-optimal paths (note that Pareto-optimal

paths might have prefixes which are not Pareto-optimal, see Section 4.1.2). Both sets, U
and P, change dynamically in the course of the labeling algorithm.

One can identify two basic procedures invoked by the labeling algorithm (see the pseudo-

code below). In the path extension step an unprocessed path Q ∈ U is chosen, all feasible

extensions (Q, v) with v ∈ V are constructed and added to U , while Q itself is removed

from U . Thus, the extension step replaces one element of U by all of its feasible one-

node extensions. Once processed, an element is transferred to the set P. If possible, the

dominance algorithm reduces the sets U and P. Its goal is to accelerate the overall labeling

procedure by limiting the number of necessary extension steps.

The path extension step and the dominance algorithm maintain the following invariant:

The useful paths P and all extensions of unprocessed paths U together contain a solution

of the SPPRC. Recall from Section 2.3 that an SPPRC solution is not necessarily unique

since it contains representatives taken from a set of desired solutions, e.g., one path for
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each Pareto-optimal resource vector. Therefore, let Σ be the set of all different solutions

of an SPPRC, where each element S ∈ Σ is a set of paths, e.g., Pareto-optimal paths. The

above invariant is

∃S ∈ Σ : S ⊆ {(Q, P ) : Q ∈ U , P ∈ E(Q)} ∪ P. (7)

The algorithm is initialized with U = {P0} and P = ∅ where P0 = (s) is the triv-

ial path. Each path P = (v0, v1, . . . , vp) ∈ F results from an extension of P0, i.e.,

(v1, . . . , vp) ∈ E(P0). Hence, condition (7) holds for the initialization. Obviously, the

path extension step also maintains the invariant. The crucial point is to define dominance

rules in such a way that the dominance algorithm also respects (7). We focus on that aspect

in Section 4.1.2. By doing so, the algorithm finally terminates with an S ⊆ P for some

S ∈ Σ. In a post-processing filtering step Pareto-optimal solutions can be extracted from P.

Generic Dynamic Programming SPPRC Algorithm {
(* Initialize *)
SET U = {(s)} and P = ∅

WHILE U 6= ∅ DO
(* Path extension step *)
CHOOSE a path Q ∈ U and REMOVE Q from U
FORALL arcs (v(Q), w) ∈ A of the forward star of v(Q) DO

IF (Q,w) ∈ F(s, w) ∩ G THEN ADD (Q,w) to U
ADD Q to P
(* Dominance step *)
IF (* any condition *)

APPLY dominance algorithm to paths from U ∪ P ending
at some node v

(* Filtering step *)
FILTER P, i.e., identify a solution S ⊆ P

}

Several remarks should be made.

1. If one performs path extension steps only, but no dominance steps, the result is

P = F , i.e., the algorithm computes all feasible paths.

2. The path extension step leaves the freedom to choose paths Q ∈ U according to

different processing strategies. These path selection strategies can lead to label setting

or label correcting algorithms depending on the underlying network and the REFs.

These issues will be discussed in Section 4.1.1.

3. The dominance algorithm can be applied at any time in the course of the algorithm.

In order to keep the effort small, it makes sense to delay the dominance algorithm

to a point when there is a chance to remove several of the paths at the same time,

before they are processed in the path extension step.



Les Cahiers du GERAD G–2004–11 – Revised 14

The dominance rules strongly depend on the problem at hand. Section 4.1.2 discusses

the impact of different path-structural constraints and classical, non-decreasing, spe-

cial or general REFs.

4. There exist efficient algorithms for the filtering step to identify, e.g., Pareto-optimal

paths (see Bentley (1980); Kung et al. (1975)).

4.1.1 Label Setting and Label Correcting Algorithms The defining property of a
label setting algorithm is that those labels chosen to be extended (in the path extension step)
are kept until the end of the labeling process. They will not be identified as discardable in
subsequent calls of the dominance algorithm. Labeling algorithms that do not guarantee
this behavior are called label correcting algorithms. The general ideas of label setting as
well as label correcting algorithms in the context of the one-dimensional shortest path
problem (SPP) are, for instance, explained in the book of Ahuja et al. (1993).

An acyclic network G = (V, A) naturally gives rise to label setting algorithms if paths
are treated (that is, chosen and extended) according to a topological order of their resident
nodes. More precisely, the above generic algorithm loops over the topologically sorted
nodes v = s, v2, . . . , v|V |, applies the dominance algorithm to the paths {P ∈ U∪P : v(P ) =
v} resident at the current node v, and extends those paths who survive the dominance
process into all feasible directions.

It is possible to mimic an acyclic network for the treatment of labels if the resource
consumptions for at least one resource r are strictly positive, i.e., f r

ij(Ti)−T r
i > 0 holds for

all (i, j) ∈ A and all Ti ∈ [ai, bi]. In this case, the labeling algorithm chooses unprocessed
paths Q ∈ U with minimum (or “small”) T (Q)r for extension first. It is guaranteed that
paths Q already treated only produce extensions (Q, P ) with T (Q, P )r > T (Q)r. Hence,
newly generated paths cannot enforce the elimination of already treated paths. Desrochers
and Soumis (1988) used the concept of generalized buckets to identify paths with small
value T (Q)r.

Label correcting algorithms solve shortest path instances with negative arc lengths. The
existence of negative resource consumptions f r

ij(Ti)−T r
i for an arc (i, j) and all resources r

(i.e., negative trij for the classical SPPRC) means that the strategy of treating paths in
a strictly increasing order of their resource vectors has to be replaced by a more flexible
processing strategy. The well-known Ford-Bellman label correcting algorithm for the SPP
adds newly generated labels to the end of a queue and extends labels one-by-one starting
with the label currently at the top of the queue. Powell and Chen (1998) have presented a
more sophisticated generalized label correcting strategy for the SPPRC, which is directly
applicable to the general SPPRC case.

4.1.2 Dominance Rules and Dominance Algorithms Efficient dominance rules
have been described for the SPPRC, ESPPRC and SPPRC-k-cyc with non-decreasing
REFs. Recall that in these cases each path P ∈ F(s, v) has a unique resource vector
T (P ) ∈ T (P ), which is the only Pareto-optimal point of T (P ).
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Dominance rules identify paths Q to be non-useful in the following sense: Q is neither
necessary to describe the set of Pareto-optimal solutions PO(v(Q)), nor feasible exten-
sions Q′ ∈ E(Q) lead to paths (Q, Q′) necessary to construct PO(v(Q′)). Such a path Q
can be discarded. Typically, dominance rules identify non-useful paths by comparing
T (Q) and E(Q) with the corresponding values T (P ) and E(P ) of paths P resident at
node v(P ) = v(Q). We discuss the cases SPPRC, ESPPRC, SPPRC-2-cyc, and SPPRC-
k-cyc with non-decreasing REFs in detail.

SPPRC Given two different paths P, Q ∈ U ∪ P, v(P ) = v(Q) with T (P ) ≤ T (Q), the
dominance algorithm can discard path Q while keeping P , which results from the following
two arguments. First, T (P ) ≤ T (Q) means that T (Q) is not necessary to represent Pareto-
optimal paths ending at v(Q). Second, one has to investigate possible extensions of Q. The
fact T (P ) ≤ T (Q), the absence of any path-structural constraints and the non-decreasing
REF imply E(P ) ⊇ E(Q). Therefore, any Q′ ∈ E(Q) fulfills (P, Q′) ∈ F and T (P, Q′) ≤
T (Q, Q′). There do not result any Pareto-optimal resource consumptions from extensions
of Q which could not have been built using extensions of P . Hence Q can be discarded.

Note that dominance rules are sensitive to the occurrence of paths with identical re-
source vectors. Therefore, one has to distinguish between dominance and discarding dom-
inated paths. Two paths P, Q ∈ F(s, v) with T (P ) = T (Q) dominate each other but
only one of these two can be eliminated (while the other one is kept). (Irnich and Vil-
leneuve, 2003) propose techniques to resolve ambiguity and analyze them for the SPPRC
and SPPRC-k-cyc cases.

ESPPRC In presence of path-structural constraints, the relation T (P ) ≤ T (Q) does not
necessarily imply the relation E(P ) ⊇ E(Q). For the ESPPRC, the reason is that paths
P ∈ G can only be extended to nodes not already visited. We denote the set of visited
nodes by V (P ). A restricted dominance rule for the ESPPRC allows to discard path Q
if T (P ) ≤ T (Q) and V (P ) ⊆ V (Q) since both conditions together imply E(P ) ⊇ E(Q).
Beasley and Christofides (1989) modeled the sets V (P ) for paths P ∈ F by one additional
resource for each node of V .

Guéguen et al. (1998) improved the idea of Beasley and Christofides. They interpreted
the set V (P ) differently as the “set of nodes which cannot be visited any more”. By analyz-
ing the resource vector T (P ) they identified additional unvisited nodes which are impossible
to reach (e.g., because of current time, time window constraints and non-negative travel
times). These nodes are added to the set V (P ) to form the set V̄ (P ). As a result, the
above dominance rule based on the “extended” sets V̄ (P ) can eliminate more paths.

SPPRC-2-cyc An informal description of a dominance rule for the 2-cycle elimination
case is the following: Keep only a Pareto-best path P1 and a second-best path P2 which is
extended from a different predecessor node. For any path P = (v0, . . . , vp−1, vp) with p ≥ 1,
the node vp−1 is called the predecessor node and denoted pred(P ). It is easy to see that the
SPPRC dominance rule applies to paths P, Q, v(P ) = v(Q), T (P ) ≤ T (Q) having identical
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Figure 2: Example of an SPPTW with 2-cycle elimination

predecessor nodes. Kohl (1995) and Larsen (1999) showed that if E(P ) does not contain the
one-node path (pred(P )), i.e., the dominating path P cannot be extended to its predecessor
node, the SPPRC dominance rule also remains valid. Contrarily, given three different
paths P1, P2, Q, v(P1) = v(P2) = v(Q), T (P1), T (P2) ≤ T (Q) with different predecessors
pred(P1) 6= pred(P2), one can discard path Q while keeping P1 and P2. The proof of this
rule is based on the fact that pred(P1) 6= pred(P2) implies E(P1) ∪ E(P2) ⊇ E(Q).

An example of an SPPTW with 2-cycle elimination is shown in Figure 2 and illus-
trates the two above-mentioned dominance rules. First, at node 1 the paths P and Q
fulfill T (P ) ≤ T (Q). Since pred(P ) 6= pred(Q) it is not allowed to eliminate Q. This is
substantial because the dominated path Q = (s, 1) is a prefix of the Pareto-optimal path
P1 = (s, 1, 2, t) at the sink t. The path-structural constraints imply that some dominated
paths, like Q, are still useful paths. Second, path Q′ at node t can be discarded because the
two dominating paths P1 and P2 have different predecessor nodes (alternatively, because
P2 and Q′ have the same predecessor node).

SPPRC-k-cyc Handling the k-cycle elimination case for k ≥ 3 needs sophisticated data
structures (see Irnich and Villeneuve (2003)). In essence, the dominance rule efficiently
checks whether

E(Q) ⊆
⋃

P∈P∪U : T (P )≤T (Q),v(P )=v(Q)

E(P ) (8)
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Figure 3: Example of an SPPTWTC: travel time and travel cost are given as pairs (tij , cij)
for each arc (i, j), time windows [ai, bi] and linear node costs wi are given for each node i,
paths ending at node t are P1 = (s, 0, 1, t), P2 = (s, 0, 2, t), and P3 = (s, 0, 3, t).

holds, i.e., all extensions of dominating paths cover the extensions of Q. A path Q for

which (8) holds can be discarded. There exists a finite representation of the right hand side

of (8), which uses up to (k − 1)!2 vectors (so-called set forms) with
(

k
2

)

entries. Moreover,

these set forms can be used to efficiently encode and update the relation (8) so that the

evaluation of (8) can be performed in constant time. From a complexity point of view, the

main result of this dominance rule is that the maximum number of paths stored in P ∪ U

grows by a factor α(k) compared to the classical SPPRC. The factor α(k) is independent

of the size of the underlying network and bounded by α(k) ≤ k(k − 1)!2.

SPPTWTC Another case where efficient dominance rules have been described is the

shortest path problem with time windows and time costs (SPPTWTC) (see Ioachim et al.

(1998)). An SPPTWTC instance is uniquely defined by the SPPTW data, i.e., travel

costs cij , travel times tij , and time windows [aj , bj ], together with arbitrary node costs

wj ∈ R (positive as well as negative) for the nodes j ∈ V . Visiting the node j at time T time
j

causes additional time costs or profits of wjT
time
j . Hence, depending on the sign of wj it

is advantageous to visit node j as early or as late as possible. When negative and positive

time costs occur together at the nodes of a path, the determination of feasible visiting

times T time
j with minimum overall cost is an optimization problem in itself.
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Formally, the SPPTWTC is a two-resource problem with a resource time and a time-

dependent resource cost. The REFs for time are given by f time
ij (T time

i ) = T time
i +tij and for

cost by f cost
ij (T time

j , T cost
i ) = T cost

i + cij + wjT
time
j . This is a (minor) extension of the REF

concept of Section 2 because f cost
ij depends on a resource variable T time

j of the node j (and

not only on resource variables Ti at node i). Figure 3 shows a small SPPTWTC example.

Next to each node, the resource space (a time-cost diagram) shows the set T (P ) for each

of the feasible paths P . Obviously, T (P ) is a bounded polyhedron.

Dominance rules for the SPPTWTC were proposed by Ioachim et al. (1998). Although

presented differently, their main ideas are the following. The set T (P ) is determined by its

lower envelope, which is a piecewise linear (cost) function fP (T time) with a maximum of

p + 1 pieces when P has length p (in the following we use T = T time). The function fP (T )

is convex and only its first strictly decreasing part is relevant for dominance (since the

objective is to find the minimum-cost path, the nonnegative slope segments are useless

(see (Ioachim et al., 1998, p. 196)). Hence, the relevant piecewise linear cost function is

gP (T ) =

{

fP (T ), for T ≤ arg minT fP (T )
f∗, for T ≥ arg minT fP (T )

with the minimum f∗ = minT fP (T ). Simple update formulas allow to compute gP (T ) from

gP ′(T ) when P ′ is the prefix path of P = (P ′, v). A path Q can be discarded if there exists

paths P1, . . . , Pk ending at v = v(Q) = v(P1) = · · · = v(Pk) with T (Q)x ⊆
⋃k

i=1 T (Pi)
x (for

a set X the symbol Xx denotes the set
⋃

x∈X xx). This dominance rule can be implemented

by computing the minimum cost function Gv(T ) = minP gP (T ) over all paths P ending

at node v. Each path Q with v(Q) = v which does not contribute to the minimum cost

function Gv(T ) can be discarded. Figure 4 shows the situation for the three paths P1, P2,

and P3 ending at node t from the above example. All paths P1, P2, P3 contribute to Gt(T ),

which is composed of four pieces imposed by gP1
(T ) for T ∈ [5, 9), gP2

(T ) for T ∈ [9, 13.3̄],

gP3
(T ) for T ∈ [13.3̄, 17], and gP1

(T ) for T ∈ [17, 20]. None of the paths are dominated by

the other paths.

4.2 Lagrangean Relaxation

The constrained shortest path problem (CSPP) is a specialized s-t-SPPRC with indepen-

dent additive resource consumptions along arcs. The resource consumption is constrained

only as a whole and not by individual resource intervals. The objective is to find a least-

cost s-t-path with resource consumptions within a pre-specified interval. Among others,

Beasley and Christofides (1989) and Borndörfer et al. (2001) proposed to solve the CSPP

with Lagrangean relaxation for computing lower bounds and a tree search procedure ex-

ploiting these computed lower bounds. For the remainder of this section we assume that

the underlying network G = (V, A) is acyclic.
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Figure 4: Piecewise linear cost functions representing T (P ) for the paths P1 = (s, 1, t),
P2 = (s, 2, t), and P3 = (s, 3, t).

For a formal description of the CSPP, consider R different resources including cost as
the last resource R with cost matrix C = (cij) = (tRij). For the remaining resources, let R =

(trij) ∈ R
(R−1)×|A| be the resource consumption matrix with non-negative consumptions trij

for r = 1, . . . , R−1. The REFs are f r
ij(Ti) = Ti + trij for all r = 1, . . . , R and (i, j) ∈ A, and

the resource accumulation is Tj = fij(Ti) whenever arc (i, j) is traversed. Lower bounds l ∈
R

R−1 and upper bounds u ∈ R
R−1 on the overall accumulated resource consumptions

are implied by defining [as, bs] = [0, 0], [at, bt] = [l, u], and [ai, bi] = [0, u] at all other
nodes i ∈ V \ {s, t}. For a given path P and its incidence vector x ∈ {0, 1}|A|, the resource
consumption is Rx and the cost is c⊤x. P is feasible if l ≤ Rx ≤ u holds. Borndörfer
et al. (2001) have added a goal value g ∈ [l, u] for the resource consumption Rx to the
formulation of Beasley and Christofides (1989). Slack and surplus variables z+, z− measure
the deviation of Rx from g, which is penalized by p+, p− ∈ R

R−1
≥0 . The CSPP can be stated

as follows.

zCSPP = min c⊤x + p⊤−z− + p⊤+z+ (9a)

subject to Ix = es − et (9b)

Rx + z+ − z− = g (9c)

(z−, z+) ≤ (u − g, g − l) (9d)

x ∈ {0, 1}|A|, z−, z+ ∈ R
R
≥0 (9e)

Cost (9a) is a combination of accumulated travel costs and the penalty for the deviation
of Rx from g. Flow conservation constraints (9b) are given by means of the arc-node
incidence matrix I ∈ {−1, 0, 1}|V |×|A| and unit vectors es, et ∈ {0, 1}|V |. They guarantee
that {(i, j) : xij = 1} forms a path in the acyclic network G. Constraints (9d) bounds the
slack and surplus variables so that l ≤ Rx ≤ u is ensured.
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A Lagrangean relaxation of (9) can be obtained by relaxing the resource consumption
constraints (9c). Let π ∈ R

R−1 be an associated dual price vector. The Lagrangean dual
of (9) is maxπ∈RR−1 zDCSPP (π) where the Lagrangean subproblem decomposes into the
following two parts:

zDCSPP (π) = P (π) + B(π) + π⊤g (10a)

with P (π) = min(c⊤ − π⊤R)x,

Ix = es − et, x ∈ {0, 1}|A| (10b)

and B(π) = min(p⊤+ − π⊤)z+ + (p⊤− + π⊤)z−,

0 ≤ z− ≤ u − g, 0 ≤ z+ ≤ g − l. (10c)

The first part (10b) is an SPP, which can be solved with a label setting algorithm (see Ahuja
et al. (1993)). The second part (10c) is a minimization problem defined over a box, which
is trivial to solve by inspection of the signs of the components of (p⊤+ −π⊤) and (p⊤− +π⊤).

High quality solutions for the above Lagrangean dual formulation can be computed with
any subgradient optimization method, e.g., a coordinate ascent method as in Borndörfer
et al. (2001). The same authors proposed to use such a dual solution π∗ and the dual
solution of (10b) obtained for π = π∗ (i.e., a distance vector (hv(π

∗))v∈V ) to compute
so-called Lagrangean distance labels:

gv(π
∗) = hv(π

∗) − hs(π
∗) + B(π∗) + g⊤π∗, for all v ∈ V .

These labels are very useful to prune the search tree because of the following property. Let
x1 ∈ {0, 1}|A| and x2 ∈ {0, 1}|A| be path incidence vectors of an s-v-path and a v-t-path,
respectively. If x = x1+x2 is a feasible CSPP path and π∗ ∈ R

R−1 a Lagrangean multiplier
vector, then

zCSPP (x) ≥ gv(π
∗) + (c⊤ − π∗ ⊤R)x2 (11)

where zCSPP (x) denotes the cost of path x. The inequality means that if the right-hand
side is non-negative then there exists no prefix path x1 such that x1 + x2 has a negative
(reduced) cost. Consequently, one should implement a tree search for finding negative
(reduced) cost CSPP paths in G by systematically building v-t-paths x2 starting at the
sink node t. A tentative path x2 can be discarded if the right-hand side of (11) becomes
non-negative. Note that additional constraints that could not be considered in (9) can
always be taken into account in the search phase.

4.3 Constraint Programming

Constraint programming (CP) relies on a model which is defined by a set of variables, each
with an initial domain, and a set of constraints. A CP approach is composed of a search
mechanism to explore the solution space, a domain reduction algorithm for each constraint
that tries to remove inconsistent values from the domains of the variables involved in
that constraint, and a propagation algorithm that propagates these domain changes among
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the constraints. It allows to consider a wide spectrum of constraints (algebraic and non-
algebraic), including some that cannot be modeled using resources or simple path-structural
constraints: for instance, an employee cannot work more than 8 hours in every 24-hour
period. Within column generation approaches, CP has recently been used to tackle the
SPPRC on an acyclic network (de Silva (2001); Fahle et al. (2002)) and the ESPPRC
(Rousseau et al. (2003)). In both cases, the goal is solely to find at least one feasible path
with a negative (reduced) cost. This goal is modeled as a constraint (the cost of a feasible
path must be negative), yielding a constraint satisfaction problem.

Fahle et al. (2002) considered an SPPRC on an acyclic network where a task, defined
by a starting and an ending time, is associated with each node. They proposed a model
where a boolean variable is associated with each node. Such a variable is set to true if the
corresponding node is part of the path currently built. In this case, we will say that the
node is selected. Additional variables are also used to specify, for instance, the minimal
amount of rest to assign after each task. Their model includes simple constraints such as the
boolean variables associated with two nodes whose tasks must be performed concurrently
cannot be set at true simultaneously, or the total duration of the tasks associated with
the selected nodes cannot exceed the maximum worked time in a schedule. Given a set of
selected nodes, these two types of constraints can be used to fix some boolean variables to
false.

In de Silva (2001), a different CP model is used. It involves variables to indicate the
successor node next[t] of each node t and variables to specify the amount of accumulated
resource consumptions at each node. Nodes with next[t] = t are not included in the current
path. Path constraints model resource consumptions along the selected (partial) path, e.g.,
for the reduced cost, total working time, etc. Each time that a successor node is selected,
the propagation algorithm is invoked, i.e., constraints are verified by solving an SPP for
every unselected node of the underlying network. For instance, one can exclude a node
(i.e., set next[t] = t) if the value of the path with the shortest worked time and passing
through that node t and all selected nodes exceeds the maximum total worked time. A
similar decision propagation based on the (reduced) cost of a path can also be executed.
So-called goals, e.g., based on reduced cost shortest path computations, control how new
tasks are added to the current partial path. The search tree is usually explored until a
prespecified number of negative cost paths are found or until a time limit is reached.

For the ESPPRC, Rousseau et al. (2003) used a similar model with variables for the
successor node and variables for the accumulated resource consumptions. Some of the
constraints they consider are: all successor nodes must be different, no subtours are allowed,
lower bounds provided by the resource REFs must be respected, the (reduced) cost of a
feasible path must be negative. For verifying this last constraint, the authors compute a
lower bound by solving an assignment problem. The choice of the next variable to branch
on in the search tree is made in such a way to construct a path from the source to the sink
node.
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4.4 Heuristics

Even with sophisticated solution methods, solving an SPPRC instance might still be very

time-consuming. In the column generation context, solving SPPRCs to proven optimality

is only necessary to show that no negative reduced cost paths exist in the last pricing

step. In preceding iterations it is sufficient to approximately solve the SPPRC, i.e., to

compute any negative reduced cost feasible paths. That is the point where heuristics for

the SPPRC come into play. In addition, they might be applied when the entire column

generation problem is treated heuristically. In the following, we distinguish between three

major areas of application for heuristics: pre-processing, dynamic programming, and direct

search.

Classical pre-processing techniques eliminate arcs and reduce the resource intervals (see

e.g. Desrochers et al. (1992)). The heuristic version of this idea is to solve a given SPPRC

instance on a hierarchy of restricted networks, where each of the restricted networks con-

tains only a limited number of arcs, e.g., defined by the p > 0 “nearest neighbors” of

each node. Starting with the smallest p-nearest-neighbor network, one solves the associ-

ated SPPRC, and if no solution is found, one continues with the next p. This idea has

been used in many implementations (e.g. Dumas et al. (1991); Savelsbergh and Sol (1998);

Larsen (1999); Irnich and Villeneuve (2003)). Another idea is to replace some of the re-

sources by less accurate resources to get an easier-to-solve SPPRC network. Gamache

et al. (1999) gave the example where a restricted network measures time rounded up to

the nearest hour while the exact global network uses minutes.

Dynamic programming heuristics are based on the techniques of Section 4.1 but heuris-

tically accelerate the computation. For the VRPTW, Larsen (1999) used a so-called forced

early stop rule to quit from the dynamic program when an adequate number of negative re-

duced cost columns has been found and a pre-defined number of labels has been generated.

Chabrier (2002) tried to solve the ESPPRC by using the standard path extension step

(i.e., not extending a path to a node already visited) with the stronger SPPRC dominance

rule (i.e., only the resource vectors are compared but not the visited nodes). Clearly, this

procedure is quick but might fail to detect any negative reduced cost path. Therefore,

he proposed to iteratively apply a dynamic programming procedure which combines the

ESPPRC extension step with a gradually parametrizable dominance rule. A parameter

DomLevel (between 0 and ∞) defines the length of a path after which the ESPPRC domi-

nance rule is applied. If the partial path is shorter, the heuristic SPPRC dominance rule is

applied. Larger values of DomLevel make the modified dynamic programming procedure

substantially faster. The case DomLevel = 0 corresponds with the exact ESPPRC and

is expected to be quite slow (especially for non-adjusted dual variables). Hence, starting

with a large value for DomLevel, the dynamic programming algorithm with the modified

dominance rule is iteratively applied with decreasing values of DomLevel until a negative

reduced cost path is found (or the ESPPRC is solved exactly).
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Finally, direct search heuristics are mainly based on local search. Such improvement
procedures start from a given feasible path P and delete, insert, or replace nodes or ex-
change arcs in order to find an improving feasible path P ′ with smaller reduced cost. Note
that after solving the restricted master program, the basic variables provide a set of paths
with reduced cost 0 from which an improvement algorithm might start. Successful column
generation applications which use these techniques can be found in Savelsbergh and Sol
(1998) and Xu et al. (2003).

4.5 A Graph Modification Approach for the SPPRCFP

The graph modification approach for the SPPRCFP defined on a given network G = (V, A)
is not a solution method in itself but a method that manipulates G to obtain a new network
G′ = (V ′, A′) from which all forbidden paths are removed while the other paths of G are still
feasible. One can then apply any of the proposed methods for the SPPRC to the network G′

to solve the given SPPRCFP. Formally, let H be the set of forbidden sub-paths and let
Gforbidden = {(P, Q, P ′) : P, Q, P ′ paths, Q ∈ H} so that G = {all paths} \ Gforbidden is the
set of all feasible paths for the SPPRCFP. The approach of Villeneuve and Desaulniers
(2000) merges the original graph G with the state graph of a finite automaton, which
identifies the infeasible sub-paths in H. We illustrate the procedure by an example in
which G is given in Figure 5(a) and H = {(1, 2, 4), (2, 1), (2, 3, 1)}.

(a)

(c)
(b)

Figure 5: (a) Example network G = (V, A) for the SPPRCFP. (b) State graph S = (VS , AS)
of a finite automaton which identifies the sub-paths of H = {(1, 2, 4), (2, 1), (2, 3, 1)}. “•”
stands for any label v ∈ V except those corresponding to the other out-arcs of the same
node. (c) Resulting SPPRCFP network G′ = (V ′, A′), node 12 corresponds with node 2 of
the original network and node 23 with node 3.

The approach works in two stages. First, the algorithm of Aho and Corasick (1975) is
used to construct the state graph S = (VS , AS) of a finite automaton, which processes the
nodes of a path P to detect the first sub-path in H it contains. The nodes (states) in VS
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correspond to the prefixes of the sub-paths in H, i.e., VS = {∅, 1, 12, 124, 2, 21, 23, 231} in
the example (see Figure 5(b)). Each time that a node of P is processed, the automaton
performs a state transition. Possible transitions are represented by labeled arcs. There is
an arc (z1, z2) ∈ AS labeled with v ∈ V (v represents a possible node of P ) that connects
two different states z1 and z2 if z1 /∈ H and z2 = (σ(z1), v), where σ(z1) is the longest
(possibly empty) suffix of z1 for which (σ(z1), v) ∈ VS . Further loops, i.e., (124, 124),
(231, 231), and (21, 21) guarantee that once a forbidden sequence has been detected, the
automaton stays in the corresponding state. The remaining transitions connect a state z1

back to the initial state ∅. The states z ∈ H indicate that a forbidden path has been
detected.

Second, the original graph G has to be merged with the state graph S to produce a new
graph G′ = (V ′, A′). Prefixes z ∈ VS of length 1 are identified with the nodes of V . The new
node set V ′ consists of all original nodes V and all nodes of VS except the state ∅ and the
states z ∈ H. In the example, the new node set V ′ is {s, 1, 2, 3, 4, 12, 23, t}. In order to get
the new arc set A′, one has to join the sets A and {(z, z′) ∈ AS : z, z′ ∈ V ′} and to perform
three operations: (i) remove all loops of the arc set AS ; (ii) remove from the original arc
set A the first arc of each sub-path in H; (iii) replace each transition (z, ∅) of the finite
automaton by a set of arcs (z, v) with v ∈ V such that (z, v) /∈ VS but (λ(z), v) ∈ A where
λ(z) denotes the last node of the prefix z. In the example, all loops and the arcs (1, 2),
(2, 1) and (2, 3) are removed while the arc (23, 4) replaces the transition (23, ∅). The new
digraph G′ = (V ′, A′) is depicted in Figure 5(c). A node z in V ′ represents the node
λ(z) in V so that paths in G′ are in correspondence with paths in G. For instance, the
path (s, 1, 12, 23, 2, 4, t) corresponds with the feasible path (s, 1, 2, 3, 2, 4, t) of the original
network.

5 Conclusions

This survey has highlighted the richness of the SPPRC. In particular, it showed its great
flexibility to incorporate a wide variety of constraints, yielding numerous SPPRC variants
as well as diversified solution methods. We have given a new classification scheme and a
generic formulation, which integrates the special purpose SPPRC formulations presented
in the literature so far. Future research on the SPPRC will focus on developing more
efficient exact and heuristic algorithms for some of the most difficult SPPRCs such as the
ESPPRC or the SPPRC with general REFs. Additionally, with the application of column
generation to a wider class of vehicle routing and crew scheduling problems, one should
expect new variants of the SPPRC that will require the adaptation of existing solution
methods or the development of new ones.
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