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tLo
al sear
h is the most frequently used heuristi
 te
hnique for solving 
ombinatorialoptimization problems. It is also the basis for modern metaheuristi
s, like, e.g., TabuSear
h, and Variable Neighborhood Sear
h. The paper introdu
es sequential sear
has a generi
 te
hnique for the e�
ient exploration of lo
al-sear
h neighborhoods. Oneof its key 
on
epts is the systemati
 de
omposition of moves, whi
h allows pruningwithin lo
al sear
h based on asso
iated partial gains. The appli
ation of theoreti
al
on
epts to several well-known neighborhoods of the vehi
le-routing problem (VRP)is demonstrated. Computational tests show substantial speedup fa
tors, e.g., up to10 000 for the 3-opt* neighborhood. This underlines the superiority of sequentialsear
h over straightforward te
hniques in the VRP 
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1 Introdu
tionLo
al sear
h is the most frequently used heuristi
 te
hnique for solving 
ombi-natorial optimization problems. It is also the basis for modern metaheuristi
s,like, e.g., Tabu Sear
h and Variable Neighborhood Sear
h. Most of the e�ortspent within a lo
al-sear
h algorithm is used for s
anning the neighborhood,
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i.e., the set of solutions 
lose to the 
urrent solution. It is, therefore, desirableto use e�
ient algorithms within lo
al sear
h to speed up the subroutine thatperforms the s
an.Sequential sear
h is a te
hnique that allows neighborhoods within lo
al-sear
halgorithms to be investigated in a highly e�
ient way. It was dis
overedindependently in the 1970's by Christo�des and Eilon (1972) and Lin andKernighan (1973) in algorithms for the traveling-salesman problem (TSP) andthe graph-partitioning problem, Kernighan and Lin (1970). Although the Lin-Kernighan algorithm and its extensions still belong to the best heuristi
s forsolving TSPs, little attention has been paid to applying sequential sear
h toother problems. This might be attributed to the fa
t that the de�nition of asequential sear
h algorithm for a given neighborhood is not a straightforwardtask and that the prin
iple requires some assumptions that are not met for allkinds of problems and neighborhoods.In this paper we give a generi
 des
ription of sequential sear
h and show whenand how it 
an be applied within lo
al-sear
h algorithms. As an example we use
lassi
al neighborhoods of the 
apa
itated vehi
le-routing problem (CVRP).The CVRP is a good 
andidate to study, sin
e it is more 
onstrained thanthe TSP and mu
h more di�
ult to solve in pra
ti
e. The intention of thepaper is not to present a new and better algorithm for the CVRP. Instead,the paper presents sequential sear
h as a generi
 te
hnique. It is 
ompared totraditional algorithms for the exploration of the neighborhood, whi
h one 
an
hara
terize as lexi
ographi
 sear
h approa
hes.The paper is stru
tured as follows. In Se
tion 2, we de�ne the CVRP andreview 
lassi
al and some re
ent papers on this problem. Se
tion 3 introdu
esthe 
on
epts and terminology of lo
al sear
h. Based on the de�nition of moves,move de
ompositions, and gains, a generi
 des
ription of lexi
ographi
 sear
hand sequential sear
h is provided. In Se
tion 4, the general prin
iples of lexi
o-graphi
 and sequential sear
h are applied to di�erent, 
lassi
al, neighborhoodsof the CVRP. This enables a dire
t 
omparison between the two methods. Inorder to show the e�e
tiveness of sequential sear
h, we provide 
omputationalresults for implementations of both lexi
ographi
 and sequential sear
h al-gorithms for the di�erent neighborhoods of the CVRP in Se
tion 5. Final
on
lusions are given in Se
tion 6.2 The Capa
itated Vehi
le-Routing ProblemThe CVRP is one of the basi
 problems of vehi
le routing. In this paper, westudy the undire
ted version of the problem. Let N be a set of 
ustomersand 0 a depot. De�ne the undire
ted graph G = (V,E), where V = N ∪{0} is2



the node set and E is the edge set. A tour R = (v0, v1, . . . , vℓ, vℓ+1) is a 
y
lein G, whi
h starts at the depot v0 = 0, visits the 
ustomers v1, . . . , vℓ ∈ N ,and ends at the depot vℓ+1 = 0. Every 
ustomer i ∈ N has a positive integerdemand qi. The demand must be satis�ed by a set of F identi
al vehi
les withpositive integer 
apa
ity Q. A tour is (
apa
ity-)feasible if ∑ℓ
i=1 qvi

≤ Q, i.e., ifthe total demand of the 
ustomers does not ex
eed the 
apa
ity of the vehi
le.Let the 
ost of using edge {i, j} ∈ E be cij. Then the 
ost of a tour R is
c(R) =

∑ℓ
i=0 cvi,vi+1

. A set {R1, . . . , RF} of F tours is a tour plan if it 
oversea
h 
ustomer exa
tly on
e. A tour plan is feasible (i.e., it provides a feasiblesolution to the CVRP) if all of its tours are feasible.A variant of the CVRP is the distan
e 
onstrained VRP (DCVRP). In theDCVRP demand is asso
iated with edges, see e.g. Li et al. (1992). Denoteby qij the travel time/distan
e of traversing edge {i, j} and by Q the maximumtravel time/distan
e. A tour R = (v0, v1, . . . , vℓ, vℓ+1) is (travel-time-)feasibleif q(R) =
∑ℓ

i=0 qvi,vi+1
≤ Q holds. Given the number F of vehi
les, the fea-sibility problem of a CVRP is equivalent to solving a bin-pa
king problem,see e.g. Toth and Vigo (1998). However, in 
ases where travel-time-feasibilityis relevant, no su
h 
orresponden
e exists. Two 
on�i
ting obje
tive fun
tionshave been studied for the CVRP and DCVRP: minimizing the number of toursand minimizing 
osts. In this paper we only 
onsider 
ost minimization, i.e.,the obje
tive fun
tion c(R1, . . . , RF ) =

∑F
k=1 c(Rk). For the sake of brevity,the paper mainly fo
uses on the presentation of the CVRP, but all sear
hte
hniques are also appli
able to the CVRP with distan
e 
onstraints.The CVRP is one of the most studied problems in 
ombinatorial optimization.Sin
e its �rst des
ription by Dantzig and Ramser (1959), numerous papershave been published des
ribing models, algorithms, and extensions. Startingin the 1960's with the well-known savings algorithm by Clarke and Wright(1964), the development of so-
alled 
lassi
al heuristi
s 
ontinued until the1980's. These heuristi
s are 
lassi�ed, des
ribed and empiri
ally studied inthe paper by Laporte and Semet (2002). Better solutions to the CVRP 
an beobtained with metaheuristi
s. Classi
al papers are the ones by Taillard (1993),Osman (1993), Gendreau et al. (1994), and Ro
hat and Taillard (1995). Themain drawba
k of these algorithms is the heavy 
omputational e�ort requiredto get good solutions and the large number of parameters that have to beadjusted. As pointed out in Cordeau et al. (2002), the goal has now swit
hedtowards obtaining good solutions for larger instan
es 
onsistently within ana

eptable time limit using metaheuristi
s with a small number of parameters.Re
ent algorithmi
 developments by, e.g., Cordeau et al. (2001) and Toth andVigo (2003) support this trend. An overview of metaheuristi
s for the CVRP
an be found in the paper by Gendreau et al. (2002).Exa
t solutions to the CVRP are obtained by bran
h-and-bound and bran
h-and-
ut algorithms. Bran
h-and-bound algorithms are based on di�erent re-3



laxations, sometimes within an additive bounding s
heme. An overview ofdi�erent approa
hes 
an be found in the paper by Toth and Vigo (2002a). Re-
ently, some advan
es have been made with LP-based models embedded withinthe bran
h-and-
ut-s
heme. An overview is given in the paper by Naddef andRinaldi (2002). A promising bran
h-and-pri
e-and-
ut approa
h is reportedin Fukasawa et al. (2003). However, none of these exa
t methods 
an 
onsis-tently solve instan
es with more than 100 
ustomers. Therefore, heuristi
s andmetaheuristi
s are required for solving larger instan
es.3 Lo
al Sear
hCombinatorial optimization problems 
an be stated as minx∈X c(x), where Xis the set of feasible solutions and c the 
ost fun
tion. For pra
ti
ally relevantinstan
es of NP -hard 
ombinatorial optimization problems, the set X is ingeneral too large to be sear
hed exhaustively. One of the most popular te
h-niques for sear
hing a subset of feasible solutions is lo
al sear
h. Lo
al sear
h isa general heuristi
 approa
h that starts with a feasible solution as the 
urrentsolution and iteratively repla
es the 
urrent solution by a better and similar,so-
alled neighbor solution, until no better neighbor solution 
an be found.The heart of a lo
al-sear
h pro
edure is the de�nition of a neighborhood N ,whi
h is a mapping N : X → 2X : N (x) ⊂ X. Ea
h element x′ ∈ N (x) is
alled neighbor of x. Neighbors x′ with 
ost c(x′) < c(x) are 
alled improvingneighbors. Lo
al sear
h starts with an initial feasible solution x0 ∈ X. Inea
h iteration t it repla
es the 
urrent solution xt by an improving neighbor
xt+1 ∈ N (xt), if su
h an improving neighbor exists. The lo
al-sear
h pro
edureterminates with a lo
al optimum, i.e., a solution xt for whi
h the neigborhood
N (xt) 
ontains no improving solution.Algorithm 1 Generi
 Lo
al Sear
h1: Input: A feasible solution x0 ∈ X. LET t = 0.2: REPEAT3: SEARCH for an improving neighbor x′ in the neighborhood N (xt) of the 
urrent solution xt.4: IF there exists an improving neighbor solution x′ ∈ N (xt),5: THEN LET xt+1 = x′ and t = t + 1.6: UNTIL no more improvements 
an be found.7: Output: A lo
al optimum xt.For further details of lo
al sear
h, we refer the reader to the books of Aartsand Lenstra 1997 and Rayward-Smith et al. 1996.There are several options for 
hoosing improving neighbor solutions in step 3. Ifthe sear
h method is enumerative (i.e., neighbor solutions x′ ∈ N (xt) and their
osts c(x′) are evaluated one after another), taking the �rst improving solutionor taking a best improving solution are two extreme strategies known as �rst4



improvement and best improvement. Another well-known strategy, 
alled d-best improvement, terminates the sear
h when d improving neighbor solutionshave been found. Then the best solution from this set is taken as the nextsolution. From the worst-
ase point of view, all sear
h strategies are equivalent,sin
e showing that the last xt is a lo
al optimal solution requires the entireneighborhood N (xt) to be s
anned.3.1 Moves and their De
ompositionNeighborhoods are often de�ned impli
itly by a set of moves. A move m trans-forms a solution into a neighbor solution. Some of the moves m ∈ M mighttransform a feasible solution x into an obje
t m(x), whi
h has a stru
turesimilar to a feasible solution, but does not ne
essarily satisfy all 
onstraintsthat de�ne feasible solutions. In the following, we will 
all su
h an obje
t asolution. An example in the 
ase of the VRP is the swap of two 
ustomersbetween two tours, whi
h might violate a 
apa
ity 
onstraint.For a formal de�nition of amove, it is helpful to 
onsider the set of all solutions,
Z ⊇ X. In general, we denote by M the set of moves where a move m ∈ M isa map from Z to itself, i.e., m : Z → Z. From the above dis
ussion it is 
learthat a move m maps solutions to solutions. For a given x ∈ Z, the extendedneighborhood 
ontains all neighbors of x, either feasible or infeasible. Everymove, m ∈ M , with m(x) ∈ X is 
alled a feasible move w.r.t. x.In order to analyze moves, we will de
ompose them into smaller parts, the so-
alled partial moves. A given de
omposition m = pℓ ◦ . . . ◦ p2 ◦ p1 of a move minto ℓ ≥ 2 partial moves p1, p2, . . . , pℓ means that an x ∈ Z is �rst transformedto p1(x), se
ond p1(x) is transformed to p2(p1(x)), and so on. Note that thede
omposition of a move into partial moves is not uniquely de�ned by themove itself. In general, there exist various de
ompositions for the same move,di�ering in the number ℓ of stages and the stru
ture of the partial moves. Inthe 
ase of the VRP, there exist two basi
 types of partial moves. They arethe building blo
ks of more 
omplex (partial) moves, whi
h we will 
onsiderlater. The partial move padd

ij adds the edge {i, j} to the 
urrent solution andthe partial move pdel
kl deletes the edge {k, l} from the 
urrent solution.3.2 Costs and Gains of (Partial) MovesRe
all that c(x) is the 
ost of a solution x ∈ Z. We denote the gain of move

m ∈ M applied to solution x ∈ Z by g(m,x) = c(x)−c(m(x)). For the CVRP,the gain g(m,x) only depends on the added and deleted edges and thus onlyon the symmetri
 di�eren
e of x and m(x). In order to implement e�
ient5



pruning rules in LS, it is ne
essary to allo
ate a gain g(pi, x) to ea
h of thepartial moves pi, i = 1, . . . , ℓ, depending only on the 
urrent solution x andnot on the intermediate solutions generated by the partial moves p1, . . . , pi−1.Let the move m ∈ M be de
omposed into the partial moves pℓ ◦ . . . ◦ p2 ◦ p1.For e�
ien
y reasons it is desirable that the gain of a move m is the sumof the gains of its partial moves p1, . . . , pℓ. A 
orresponding de
omposition
m = pℓ ◦ . . . ◦ p2 ◦ p1 is 
alled 
ost-independent if

g(m,x) =
ℓ∑

i=1

g(pi, x) (1)holds. If the equality is not ful�lled for all de
ompositions, then su�
ient 
on-ditions, whi
h guarantee (1) 
an be de�ned. These are referred to as legitima
y
onditions, 
f. Glover (1992). For instan
e, legitima
y 
onditions 
an requirethat only 
ompatible subsets of partial moves o

ur simultaneously or restri
tthe ordering of partial moves.The de
omposition m = pl ◦ . . . ◦ p2 ◦ p1 is order-independent if m(x) =
pπ(l) ◦ . . . ◦ pπ(2) ◦ pπ(1)(x) holds for all solutions x ∈ Z and all permutations πof {1, 2, . . . , l}. It is 
alled 
y
li
-independent if the same holds only for 
y
li
permutations π. We will show below that 
y
li
-independent move de
ompo-sitions are essential in the development of e�
ient sear
h algorithms.3.3 Sear
h Te
hniquesIn this paper we study two generi
 sear
h te
hniques, lexi
ographi
 sear
hand sequential sear
h. In order to explain both approa
hes, we 
onsider thefollowing generi
 sear
h problem: A neighborhood N (x) of size O (nk) is im-pli
itly given by moves mi1,i2,...,ik

with {i1, i2, . . . , ik} a subset of {1, . . . , n} of
ardinality k.3.3.1 Lexi
ographi
 Sear
hA natural way to determine the k di�erent elements i1 < i2 < . . . < ikis to implement k nested loops. The �rst loop 
onsiders the elements i1 ∈
{1, . . . , n}, the se
ond loop the elements i2 ∈ {i1 + 1, . . . , n}, and, in generalthe p-th loop the elements ip ∈ {ip−1 +1, . . . , n}. The iterator of an inner loopis always larger than the iterator of an outer loop, i.e., il+1 > il holds for all
l ∈ {1, . . . , n − 1}. Hen
e, this approa
h is referred to as lexi
ographi
 sear
h.

6



Algorithm 2 Generi
 Lexi
ographi
 Sear
h1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LOOP i2 ∈ {i1 + 1, 2, . . . , n}5: ...6: LOOP ik ∈ {ik−1 + 1, 2, . . . , n}7: IF ( mi1,...,ik
(x) ∈ X AND G∗ < g(mi1,...,ik

, x) )8: LET G∗ = g(mi1,...,ik
, x).9: LET (i∗

1
, i∗

2
, . . . , i∗

k
) = (i1, i2, . . . , ik).10: Output: IF (G∗ > Gmin) THEN RETURN (i∗

1
, i∗

2
, . . . , i∗

k
).The above sear
h algorithm �nds the best (w.r.t. the obje
tive c), not ne
es-sarily improving neighbor solution x′ ∈ N (x). With an aspiration level givenby a minimum gain Gmin = 0, the algorithm either �nds an improving neigh-bor x′ = mi∗

1
,i∗

2
,...,i∗

k
(x) or returns the information that no su
h solution exists,i.e., G∗ = 0.Step 7 of Algorithm 2 
he
ks whether the neighbor solution is feasible andimproving. In order to obtain an e�
ient sear
h algorithm, it is 
ru
ial thatthe feasibility 
he
k and the 
omputation of the gain 
an be done in 
onstanttime. Therefore, a prepro
essing for 
omputing additional aggregated infor-mation (about substru
tures of the 
urrent solution x) might be ne
essary toguarantee an O (nk) algorithm. We will 
ome ba
k to this important issue inSe
tion 4.8.3.3.2 Sequential Sear
hCy
li
-independent neighborhoods are 
losely linked to the 
on
ept of se-quential sear
h, �rst developed by Christo�des and Eilon (1972) and Lin andKernighan (1973). The basi
 idea of this approa
h is to 
onsider all relevantpartial moves of a 
y
li
 independent neighborhood re
ursively. Sequentialsear
h a

elerates the sear
h for an improving neighbor solution by pruningthe sear
h as early as possible so that (on average) only a small fra
tion ofthe entire neighborhood has to be s
anned. Pruning is based on an evaluationof partial moves and their 
orresponding partial gains.For the des
ription of sequential sear
h we assume that all moves mi1,i2,...,ikhave a 
y
li
-independent and 
ost-independent de
omposition into k partialmoves, a

ording to mi1,i2,...,ik

= pik,i1
◦ pik−1,ik

◦ . . . ◦ pi2,i3
◦ pi1,i2

. In the 
ase of
k = 3, it means that mi1,i2,i3

de
omposes into pi3,i1
◦pi2,i3

◦pi1,i2
= pi2,i3

◦pi1,i2
◦

pi3,i1
= pi1,i2

◦pi3,i1
◦pi2,i3

. Su
h a de
omposition seems 
ompli
ated at �rst, butit makes sense for many types of moves: Typi
ally the gain of a move mi1,i2,...,ikdoes not depend dire
tly on the individual indi
es il, l = 1, 2, . . . , k, but on
ombinations of 
onse
utive indi
es, i.e., (ij, ij+1) for j = 1, . . . , k (with thede�nition jk+1 = j1). Examples are partial moves pij ,ij+1
, where one element ijrepla
es another element ij+1 so that the partial gain g(pij ,ij+1

, x) depends on7



both, ij and ij+1. This sequential arrangement of indi
es has motivated us to
all the sear
h te
hnique that exploits this property sequential sear
h.The attra
tiveness of sequential sear
h in 
y
li
- and 
ost-independent neigh-borhoods is due to the following theorem of Lin and Kernighan (1973):Theorem 1 If a sequen
e of numbers (gi)
k
i=1 has a positive sum ∑k

i=1 gi > 0,then there is a 
y
li
 permutation π of these numbers su
h that every partialsum is positive, i.e., ∑ℓ
i=1 gπ(i) > 0 for all 1 ≤ ℓ ≤ k.The theorem implies that all improving moves mi1,i2,...,ik


an be 
onstru
ted asa sequen
e of partial moves, where the sum of the partial gain is positive forall sub-sequen
es. The dire
t impli
ation is that at stage 1 of the sear
h, weneed only 
onsider partial moves with a positive gain, i.e., g(pi1,i2
, x) > 0or g(pi2,i3

, x) > 0 or . . . g(pik,i1
, x) > 0. The 
y
li
-independen
e and thesymmetry of the de
omposition allow us to re-formulate this 
ondition to

g(pi1,i2
, x) > 0. Note that one 
an always ex
hange the indi
es in a 
y
li
 waysu
h that the �rst pair is denoted by (i1, i2). However, we 
an no longer pos-tulate i1 < i2. In general at stage p, one 
an restri
t the sear
h to those partialmoves pip,ip+1

having g(pip,ip+1
, x) > −Gp−1, where Gp−1 =

∑p−1
l=1 g(pil,il+1

, x) isthe a

umulated partial gain of the pre
eding stages. Thus, the total gain Gp−1at stage p−1 limits the 
hoi
e of a partial move at stage p. Lin and Kernighanrefer to this rule as the gain 
riterion.An implementation of the gain 
riterion has to guarantee that the pruning ofthe sear
h for promising partial moves 
an be performed e�
iently. At stage p,where i1, i2, . . . , ip−1 are known, the new index ip has to be 
hosen su
h that
g(pip−1,ip , x) > −Gp−1 holds. For some neighborhoods, the limitation of thesear
h 
an be done on-the-�y. For typi
al routing neighborhoods, the sear
hfor promising ip is performed with help of a neighbor list asso
iated with ip−1.The neighbor list NL(ip−1) is a data stru
ture whi
h stores elements ip by in-
reasing values of g(pip−1,ip , x). Neighbor lists are 
omputed in a prepro
essingstep, i.e., before LS is started. The following algorithm summarizes the abovedes
ription of sequential sear
h.Algorithm 3 Generi
 Sequential Sear
h1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: COMPUTE B1 (based on i1).5: LOOP i2 ∈ NL(i1) as long as g(p

i1i2
, x) > B16: COMPUTE B2 (based on g(p

i1,i2
, x) and i2).7: LOOP i3 ∈ NL(i2) as long as g(p
i1,i2

, x) + g(p
i2,i3

, x) > B28: ...9: COMPUTE Bk−1 (based on ∑k−2

l=1
g(p

il,il+1
, x) and ik−1).10: LOOP ik ∈ {ik−1 + 1, 2, . . . , n} as long as ∑k−1

l=1
g(p

ik,ik+1
, x) > Bk−111: IF ( mi1,...,ik

(x) ∈ X AND g(mi1,...,ik
, x) > G∗ )12: LET G∗ = g(mi1,...,ik

, x).13: LET (i∗
1
, i∗

2
, . . . , i∗

k
) = (i1, i2, . . . , ik).8



14: Output: IF (G∗ > Gmin) THEN RETURN (i∗
1
, i∗

2
, . . . , i∗

k
).The 
ru
ial point for the e�
ien
y of Algorithm 3 is the 
omputation of thebounds B1, B2, . . . , Bk−1 in the steps 4, 6, and 9. Bound B1 takes only in-dex i1 into a

ount in order to limit the sear
h for i2 resp. pi1,i2

with positivegain g(pi1,i2
, x) > 0. In general, at stage ℓ the bound Bℓ is 
omputed basedon the already known partial gains and the index iℓ−1 in order to restri
t theexploration to indi
es iℓ.The following 
orollary provides two extensions of the gain 
riterion of Linand Kernighan: First, it allows to sear
h for moves with a (not ne
essarilypositive) gain of at least G∗. Se
ond, whenever a feasible move with gain G∗has been found, the exploration at stage ℓ 
an be limited to partial movessu
h that the sum of the partial gains is at least ℓG∗/k.Corollary 1 Given a number G∗. If a sequen
e of numbers (gi)

k
i=1 ful�lls∑k

i=1 gi > G∗, then there is a 
y
li
 permutation π of these numbers su
h thatfor every partial sum ∑ℓ
i=1 gπ(i) > ℓG∗/k holds for all 1 ≤ ℓ ≤ k.Proof: De�ne g′

i = gi − G∗/k for i ∈ {1, . . . , k} and use Theorem 1for the sequen
e (g′
i)

k
i=1. ⋄

4 Neighborhoods and Sear
h Algorithms for the VRPLo
al-sear
h pro
edures for the VRP whi
h repla
e one tour plan by anotherhave a long tradition, see Kindervater and Savelsbergh (1997). In this se
tionwe provide des
riptions of both sequential and lexi
ographi
 sear
h implemen-tations for di�erent VRP neighborhoods. Sin
e the implementation of lexi
o-graphi
 sear
h is rather straightforward, we will fo
us on the implementationof sequential sear
h. In the following we will use a representation of tour plansas Hamiltonian 
y
les. It allows to handle inner-tour moves (i.e., moves, whi
hdo only 
hange a single tour) as well as inter-tour moves (i.e., moves whi
h
hange the assignment of 
ustomers to routes) in a unifying way.4.1 Giant Tour Representation of VRP SolutionsFor the de�nition of neighbor solutions it is important to have a well-de�nedrepresentation of all elements x ∈ X. This subse
tion formalizes the giant tourrepresentation for the VRP, whi
h has also been used to represent multiplesalesman TSP, MTSP, see Bellmore and Hong (1974) and Rao (1980). Givena tour plan with F di�erent tours Ri = (0, vi
1, v

i
2, . . . , v

i
pi
, 0), i ∈ {1, 2, . . . , F},9



pi ∈ N0, the 
orresponding giant tour uses F 
opies 01, . . . , 0F of the depot andis de�ned as x = (01, v
1
1, . . . , v

1
p1

, 02, v
2
1, . . . , v

2
p2

,03, v
3
1, . . . ,. . . , 0F , vF

1 . . . , vF
pF

, 01).Note that a giant tour representation is not unique sin
e tours 
an be arbitrar-ily permuted and inverted (in the 
ase of symmetri
 problems). Any Hamil-tonian 
y
le in the extended graph G0 = (V0, E0), with V0 = {01, . . . , 0F} ∪Nand E0 = (E \ {{0, j} : j ∈ N} ∪ {{0i, j} : i = 1, . . . , F, j ∈ N} ∪ {{0i, 0j} :
i, j = 1, . . . , F, i 6= j}, 
orresponds to a tour plan. The tour plan is feasibleif and only if all sub-paths between two 
onse
utive depot nodes representfeasible tours.In the 
ontext of lo
al sear
h, we assume that a 
urrent solution x = xt isgiven. In order to des
ribe the asso
iated giant tour, one builds two arrays oflength |V0| whi
h 
ontain the following information: The array node is indexedby positions i ∈ {1, 2, 3, . . . , |V0|} and node[i] ∈ V0 is the node of the giant tourat position i. For the sake of 
onvenien
e, we assume that one 
an a

ess theelements in a wrap-around fashion, e.g., node[0] = node[|V0|], node[|V0|+ 1] =
node[1], et
. Contrarily, the array pos gives for ea
h node t ∈ V0 the 
urrentposition pos[t] ∈ {1, 2, 3, . . . , |Vi|} of the node t in the giant tour.
4.2 Constru
tion of Neighbor ListsFor a node t ∈ V0, the neighbor list NL(t) stores the nodes t′ ∈ V0\{t} orderedby non-de
reasing values ctt′ . If only the K �rst elements of the neighbor listare 
onsidered, we obtain the list denoted by NLK(t) and 
all it the 
andidatelist of node t.
4.3 The 2-Opt* NeighborhoodBy repla
ing two edges from the giant tour by two edges whi
h do not belongto the giant tour, one 
an 
onstru
t two types of neighbor tour plans. Theunion of all these neighbor tour plans de�ne the 2-opt* neighborhood of the
urrent tour plan. We will now des
ribe the two types of neighborhoods bytheir 
orresponding moves. The �rst type of moves, well-known as 2-opt movesand �rst des
ribed by Croes (1958), produ
es a Hamiltonian 
y
le. The se
ondtype of moves transforms the Hamiltonian 
y
le into two subtours. These so-
alled spe
ial 2-opt* or 
rossover moves are easier to des
ribe in the 
ontextof sequential sear
h. We, therefore, start with their des
ription.10



4.3.1 The Spe
ial 2-Opt*/Crossover neighborhoodA spe
ial 2-opt* move removes two edges and adds two in
ident edges in su
ha way that the giant tour is transformed into two subtours. While su
h an op-eration is not feasible in the TSP 
ontext, it implies a new tour plan wheneverboth subtours 
ontain a depot node. The spe
ial 2-opt* neighborhood and itsgeneralization of removing and adding k edges, 
alled k-opt* neighborhood,was �rst introdu
ed by Potvin et al. (1989).Figure 1 shows that a spe
ial 2-opt* move is 
ompletely determined by twopositions i1, i2 in the giant tour, sin
e the four involved nodes t1, t2, t3, t4 arelo
ated at the positions i1, i1 + 1, i2 and i2 + 1. The symmetry implies a
t1 t2

t3t4

i1 i +11

i2i  +12Fig. 1. Prin
iple of a Spe
ial 2-Opt*/Crossover Move. Deleted Edges are grey, addedEdges bla
k.
de
omposition of the spe
ial 2-Opt* move m2Opt∗

i1,i2 into two partial moves, i.e.,
m2Opt∗

i1,i2 = pi1,i2
◦ pi2,i1

= pi2,i1
◦ pi1,i2

. The partial move pi1,i2
removes the touredge linking position i1 with i1 + 1 and adds the non-tour edge linking thepositions i1 +1 and i2. Hen
e, its partial gain is g(pi1,i2

, x) = cnode[i1],node[i1+1]−
cnode[i1+1],node[i2]. Note that this de
omposition is both symmetri
 and 
ost-independent. Given position i1 and the 
ondition that pi1,i2

has a positivepartial gain, the sear
h for suitable positions i2 
an be performed using node-neighbor lists. Let t1 = node[i1] and t2 = node[i1+1]. The node t3 at position i2has to be a neighbor node of node t2 with ct2,t3 < ct1,t2 . Therefore, position i1de�nes a bound B1 = ct1,t2 and t3 has to be found among all neighbors of t2
loser than B1. The following two algorithms show how the best spe
ial 2-opt*neighbor of a given tour plan x ∈ X 
an be found either using lexi
ographi
sear
h or sequential sear
h. 11



Algorithm 4 Lexi
ographi
Sear
h for Spe
ial 2-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LET t1 = node[i1].5: LET t2 = node[i1 + 1].6:7: LOOP i2 ∈ {i1 + 1, i1 + 2, . . . , n}8: LET t3 = node[i2].9: LET t4 = node[i2 + 1].10: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).

Algorithm 5 SequentialSear
h for Spe
ial 2-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LET t1 = node[i1].5: LET t2 = node[i1 + 1].6: LET B1 = ct1,t2 − G∗/2.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: LET i2 = pos[t3].9: LET t4 = node[i2 + 1].10: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).In step 11 one has to 
he
k whether ea
h subtour 
ontains at least one de-pot and the two new tours respe
t the 
apa
ity 
onstraints. Note that the
omputation of the bound B1 uses Corollary 1 with k = 2 and ℓ = 1.4.3.2 The 2-Opt NeighborhoodA 2-opt move partitions the given (giant) tour into two segments, invertsone of the segments, and rejoins the segments so that a new tour results.Figure 2 shows that a 2-opt move is determined by two edges asso
iated withthe positions i1 and i2. It 
an be de
omposed into two partial moves m2Opt

i1,i2 =

t1 t2

t4t3

i1 i +11

i2 i -12Fig. 2. Prin
iple of a 2-Opt Move.
p+1

i1,i2 ◦ p−1
i2,i1 = p−1

i2,i1 ◦ p+1
i1,i2 , where pσ

i1,i2
, σ ∈ {−1, +1} removes the tour edgelinking nodes at the positions i1 and i1+σ and adds the edge between positions

i1 + σ and i2. In 
ontrast to the 2-opt* move, this de
omposition of the 2-opt move is not fully symmetri
. Given the partial move de�ned above withthe inserted edge {u, v} and the deleted edge {v, w}, the node w is eitherthe prede
essor or the su

essor of v in the tour. While lexi
ographi
 sear
halgorithms 
an dire
tly take this slight asymmetry into a

ount, sequentialsear
h algorithms have to handle it expli
itly. The fa
t that either p+1 or
p−1 has to be improving is taken into a

ount by a double outer loop todetermine i1 (whi
h is the symmetri
 
ounterpart of i2) and σ ∈ {−1, +1}.The following two algorithms illustrate the similarities and di�eren
es in thetwo implementations of 2-opt lexi
ographi
 sear
h and sequential sear
h. Theyboth 
ompute the 2-opt move pσ∗

i∗
1
,i∗

2
◦p−σ∗

i∗
2
,i∗

1
with gain at least G∗, if su
h a moveexists. 12



Algorithm 6 SequentialSear
h for 2-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET t1 = node[i1].6: LET t2 = node[i1 + σ].7: LET B1 = ct1,t2 − G∗/2.8: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B19: LET i2 = pos[t3].10: LET t4 = node[i2 − σ].11: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .12: IF ( G > G∗ and feasible )13: LET G∗ = G.14: LET (i∗
1
, i∗

2
, σ∗) = (i1, i2, σ).15: Output: IF (G∗ > Gmin) THEN16: RETURN (i∗

1
, i∗

2
, σ∗).

Algorithm 7 Lexi
ographi
Sear
h for 2-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4:5: LET t1 = node[i1].6: LET t2 = node[i1 + 1].7:8: LOOP i2 ∈ {i1 + 3, i1 + 4, . . . , n}9: LET t3 = node[i2].10: LET t4 = node[i2 − 1].11: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .12: IF ( G > G∗ and feasible )13: LET G∗ = G.14: LET (i∗
1
, i∗

2
, σ∗) = (i1, i2, +1).15: Output: IF (G∗ > Gmin) THEN16: RETURN (i∗

1
, i∗

2
, σ∗).The feasibility 
he
k in step 12 has to distinguish two 
ases. If one of thesegments does not 
ontain a depot (i.e., both removed edges belong to thesame tour), then the new solution is always 
apa
ity-feasible. If both segments
ontain a depot, the feasibility 
he
k is similar to the one for 2-opt* moves.Sin
e the implementation of lexi
ographi
 sear
h for the remaining neighbor-hoods follows the same pattern as in the 
ase of 2-opt* and 2-opt, we onlypresent sequential sear
h algorithms in the following.4.4 The Swap NeighborhoodThe swap move mswap

i1,i2 repla
es the node at position i1 by a node at posi-tion i2 and vi
e versa. Consequently, the four edges linking the positions (i1 −
1, i1), (i1, i1 + 1), (i2 − 1, i2), (i2, i2 + 1) are deleted and the four edges linkingthe positions (i1 − 1, i2), (i2, i1 + 1), (i2 − 1, i1), (i1, i2 + 1) are added to the
urrent solution, see Figure 3.

v1 w1

v2w2

i1 i +11

i2i  +12

i -11

i -12

t1

t2Fig. 3. Prin
iple of a Swap Move.There exist several de
ompositions of mswap
i1,i2 into two 
ost-independent partialmoves of the same type. One possibility is to de�ne pi1,i2

as a partial movewhi
h deletes the edges between positions (i1 − 1, i1), (i1, i1 + 1) and thenadds (i2−1, i1), (i1, i2 +1). Then, mswap
i1,i2 = pi1,i2

◦pi2,i1
= pi2,i1

◦pi1,i2
is a 
y
li
independent de
omposition into 
ost-independent partial moves. To make the13



notation more 
onvenient, de�ne t1 = node[i1], t2 = node[i2] and v1, v2 (resp.
w1, w2) as the 
orresponding prede
essor (su

essor) nodes in the giant tour.The partial gain of pi1,i2

is g(pi1,i2
, x) = cv1,t1 + ct1,w1

− cv2,t1 − ct1,w2
. Whenlooking for improving swap moves by sequential sear
h, the gain 
riterion tellsus that we 
an restri
t our attention to a �rst partial move pi1,i2

with positivegain (but possibly i1 > i2).We propose to sear
h for partial moves pi1,i2
with positive partial gains by�rst 
onsidering all positions i1 ∈ {1, . . . , n}. The task is then to restri
t thesear
h for possible positions i2 under the 
ondition that i1 is known. This
an be done with neighbor lists. Let B1 = (cv1,t1 + ct1,w1

)/2, whi
h is a �xed
onstant when position i1 is 
hosen. The 
ondition g(pi1,i2
, x) > 0 is equivalentto (ct1,v2

− B1) + (ct1,w2
− B1) < 0 whi
h implies ct1,v2

< B1 or ct1,w2
< B1.This prunes the sear
h for v2 (resp. w2) to 
andidate edges of length lessthan B1. Position i2 is determined as the su

essor position of node v2 (resp.the prede
essor position of node w2).Algorithm 8 Sequential Sear
h for Swap1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET v1 = node[i1 − 1], t1 = node[i1], w1 = node[i1 + 1].6: LET B1 = (cv1,t1 + ct1,w1

)/2 − G∗/2.7: LOOP t ∈ NL(t1) as long as ct1,t < B18: LET i2 = pos[t] + σ.9: LET v2 = node[i2 − 1], t2 = node[i2], w2 = node[i2 + 1].10: LET G = cv1,t1 + ct1,w1
+ cv2,t2 + ct2,w2

− cv1,t2 − ct2,w1
− cv2,t1 − ct1,w2

.11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).The feasibility 
he
k in step 11 has to guarantee both the legitima
y 
onditionsof the de
omposition and the feasibility of the resulting tours. The feasibilityof the resulting tours only needs to be 
he
ked if the nodes t1 and t2 belongto di�erent tours. Otherwise the swap only ex
hanges the positions of thenodes within a single tour, whi
h does not a�e
t the 
apa
ity 
onstraints. Thelegitima
y 
onditions require that the nodes t1 and t2 are not adja
ent in thegiant tour (i.e., i1 6= i2±1) sin
e if i2 = i1±1, the swap move mswap

p,p±1 is feasible,but only ex
hanges two edges. In this 
ase the 
omputed partial gains do notequal the gain g(mswap
p,p±1, x). Therefore, the legitima
y 
onditions forbid thisfeasible swap move to be 
omputed as a 
omposition of two partial moves.However, it 
an be shown that this 
ase 
orresponds to a spe
ial 2-opt moveand therefore 
an be 
omputed within a sear
h algorithm for 2-opt or in lineartime within an additional loop 
he
king only this spe
ial 
ase.14



4.5 The String-Ex
hange NeighborhoodAs the name suggests, a string-ex
hange move takes two subpaths (=strings)of the giant tour and ex
hanges them. Typi
ally, one restri
ts the length of thetwo strings to a small value k ∈ N implying a neighborhood of size O (k2 ·n2),whi
h is quadrati
 for �xed values of k. The 
ase k = 1 
oin
ides with theswap move. For k ≥ 2, there exist two variants of string-ex
hange moves, eitherinverting segments or not. Figure 4 shows the prin
iple of a string-ex
hangewith inversion. The other 
ase 
an be handled analogously.
i1 i +11

i2 i -12

t1

t3 t4

t2 t6 t5

t7t8

i3i -13

i4i +14

String k£

String k£

Fig. 4. Prin
iple of a String-Ex
hange Move. Variant with both Strings inverted.
From Figure 4 one 
an see that the string-ex
hange move 
an be de
omposedinto four partial moves, i.e., mstr−exch

i1,i2,i3,i4 = p+1
i1,i2 ◦ p−1

i2,i1 ◦ p+1
i4,i3 ◦ p−1

i3,i4 . This de-
omposition is order-independent. Sin
e the string-ex
hange move 
onsists oftwo 2-opt moves mstr−exch
i1,i2,i3,i4 = m2−opt

i1,i2 ◦m2−opt
i4,i3 , the string-ex
hange move is not
ompletely symmetri
 in all four partial moves. However, there is a symmetrybetween the two pairs (i1, i2) and (i4, i3). This symmetry allows us to restri
tthe exploration to �nd an improving partial move p±1

i1,i2 in the �rst stage (this
overs the symmetri
 
ounterpart p±1
i4,i3).Noti
e that we take the asymmetry in i1 and i2 into a

ount 
onsidering both

p+1
i1,i2 and p−1

i2,i1 at the �rst stage. On
e that i1 and i2 are determined, thereare only k2 possibilities to 
hoose i3 and i4. The resulting sequential sear
halgorithm 
an be summarized as follows.15



Algorithm 9 Sequential Sear
h for String-Ex
hange withSegment Inversion1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET t1 = node[i1], t2 = node[i1 + σ].6: LET B1 = ct1,t2 − G∗/4.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: LET i2 = pos[t3], t4 = node[i2 − σ].9: LET B2 = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 − G∗/2.10: IF B2 > 011: LOOP i3 ∈ {i1 + 2σ, . . . , i1 + (k + 1)σ}12: LET t5 = node[i3], t6 = node[i3 − σ].13: LOOP i4 ∈ {i2 − 2σ, . . . , i2 − (k + 1)σ}14: LET t7 = node[i4], t8 = node[i4 + σ].15: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 + ct5,t6 − ct6,t7 + ct7,t8 − ct8,t5 .16: IF ( G > G∗ and feasible )17: LET G∗ = G.18: LET (i∗
1
, i∗

2
, i∗

3
, i∗

4
, σ∗) = (i1, i2, i3, i4, σ).19: Output: IF (G∗ > Gmin) THEN20: RETURN (i∗

1
, i∗

2
, i∗

3
, i∗

4
, σ∗).The resulting string-ex
hange move is pσ∗

i∗
1
,i∗

2
◦ p−σ∗

i∗
2
,i∗

1
◦ pσ∗

i∗
4
,i∗

3
◦ p−σ∗

i∗
3
,i∗

4
. In our im-plementation, the ex
hanged strings have to 
onsist of 
ustomer nodes only.Therefore, the feasibility 
he
k in step 16 redu
es to a 
omparison of the de-mands of the strings with the residual 
apa
ities of the two tours.4.6 The k-Opt and k-Opt* NeighborhoodsWe now 
onsider the generalization of 2-opt* moves to k-opt* moves with k >

2. A k-opt move deletes k di�erent edges from a (giant) tour and inserts k otheredges so that the result is a Hamiltonian 
y
le. k-opt* moves allow that thenew solution de
omposes into at most k subtours. The new solution 
an bere-interpreted as a new tour plan x′ of the VRP if and only if ea
h subtour
ontains at least one depot node.Given a k-opt* move m and a tour plan x ∈ X, the symmetri
 di�eren
e of xand m(x) 
an be interpreted as the result of one or several sequen
es where in-
ident edges of the solution graph are subsequently deleted and added. Everysequen
e forms a so-
alled alternating 
y
le. If a move 
an be representedas one sequen
e it 
orresponds to a single alternating 
y
le. Otherwise, it
orresponds to multiple alternating 
y
les. If a move 
orresponds to a singlealternating 
y
le, it 
an be de
omposed into 
y
li
 independent partial movesof the add-delete type des
ribed above. Otherwise, other 
y
li
 independentmove de
ompositions may exist, but give rise to more 
omplex implementa-tions of sequential sear
h that are beyond the s
ope of this paper. All k-opt*moves with k ≤ 3 
an be represented by single alternating 
y
les. This isnot the 
ase for k ≥ 4. Therefore, only a subset of the k-opt* moves 
an befound using sequential sear
h with the delete-add moves des
ribed above. For16



a more detailed analysis of the so-
alled single alternating 
y
le neighborhoods,see Funke et al. (2004).4.6.1 The 3-Opt and 3-Opt* NeighborhoodAll types of 3-opt and 3-opt* moves de�ne single alternating 
y
le neighbor-hoods, i.e., deleted and added edges of these moves form a single alternating
y
le C = (t1, t2, t3, t4, t5, t6, t1), where {t1, t2}, {t3, t4}, {t5, t6} are removedfrom the 
urrent giant tour x and {t2, t3}, {t4, t5}, {t6, t1} are added to the re-sulting tour. Assuming that the nodes t1, t3 and t5 with odd inde
es are at posi-tions i1, i2 and i3, all 3-opt* moves de
ompose intomσ1,σ2,σ3

i1,i2,i3 = pσ1

i1,i2◦p
σ2

i2,i3◦p
σ3

i3,i1 .Figure 5 visualizes the above des
ription. Again, the de
omposition is 
y
li
-
t4t3

t1

i1
t2

i +11

i2 i -12

t6

i3
t5

i -13

¾ = +11 ¾ = -13

¾ = -12Fig. 5. Example of a 3-Opt* Move. Move depi
ted here produ
es two Subtours.independent. The sequential sear
h algorithm is now easy to formulate:Algorithm 10 Sequential Sear
h for 3-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ1 ∈ {−1, +1}5: LET t1 = node[i1], t2 = node[i1 + σ1].6: LET B1 = ct1,t2 − G∗/3.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: σ2 ∈ {−1, +1}9: LET i2 = pos[t3], t4 = node[i2 + σ2].10: LET B2 = ct1,t2 − ct2,t3 + ct3,t4 − 2G∗/3.11: LOOP t5 ∈ NL(t4) as long as ct3,t4 < B212: σ3 ∈ {−1, +1}13: LET i3 = pos[t5], t6 = node[i3 + σ3].14: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t5 + ct5,t6 − ct6,t1 .15: IF ( G > G∗ and feasible )16: LET G∗ = G.17: LET (i∗
1
, i∗

2
, i∗

3
, σ∗

1
, σ∗

2
, σ∗

3
) = (i1, i2, i3, σ1, σ2, σ3).18: Output: IF (G∗ > Gmin) THEN19: RETURN (i∗

1
, i∗

2
, i∗

3
, σ∗

1
, σ∗

2
, σ∗

3
).The feasibility 
he
k is di�
ult to implement: The three positions i1, i2, i3and dire
tions (σ1, σ2, σ3) split the giant tour into three segments. One orseveral subtours are built by 
on
atenation and one has to 
he
k whetherthese subtours form one or several feasible VRP tours. Additional legitima
y
onditions have to be 
he
ked in step 15. They require that all added anddeleted edges are disjoint. However, Se
tion 4.8 will show that 
he
king the17



feasibility of the 
on
atenation of several tour sub-paths 
an always be donein 
onstant time.
4.6.2 Or-Opt and Relo
ation NeighborhoodsOr-opt and relo
ation moves are spe
ial 3-opt moves, whi
h relo
ate a shortsegment, i.e., a segment is �rst removed and subsequently inserted at di�erentposition in the (giant) tour. While in a relo
ation move, whi
h is also 
alled
2.5-opt in Bentley (1992); Johnson and M
Geo
h (1997), the short segment isrestri
ted to 
ontain a single node, Or-opt moves (Or, 1976) relo
ate a stringof length k, typi
ally with k ∈ {1, 2, 3}. Hen
e, for �xed k the neighborhood isquadrati
 of size O (k ·n2). The move de
omposes into mor−opt

i1,i2,i3 = p+1
i1,i2 ◦ p+1

i2,i3 ◦
p+1

i3,i1 .
t3t4

t1

i1
t2

i +11

i2i  +12

t5

i3
t6

i +13

Fig. 6. Prin
iple of an Or-Opt Move. At least one Segment has to be short, w.l.o.g.the Segment (t2, . . . , t5).
Sear
hing for a best neighbor solution x′ ∈ N (x) in the Or-opt (resp. relo-
ation, k = 1) neighborhood has to take the asymmetry into a

ount, i.e.,that the length of one of the segments does not ex
eed k. Without loss ofgenerality one 
an assume that the segment (t2, . . . , t5) is short, whi
h meansthat i3 ∈ {i1 + 1, . . . , i1 + k} or equivalently i1 ∈ {i3 − k, . . . , i3 − 1} holds, seeFigure 6. As before, the gain 
riterion tells us that for an Or-opt move to beimproving, at least one of the three partial moves must have a positive gain,i.e., g(p+1

i1,i2 , x) > 0 or g(p+1
i2,i3 , x) > 0 or g(p+1

i3,i1 , x) > 0. This 
an be used inthree di�erent loops leading to the following algorithm.18



Algorithm 11 Sequential Sear
h for Or-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: LET t1 = node[i1], t2 = node[i1 + 1], B1 = ct1,t2 − G∗/3.5: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B16: LET i2 = pos[t3], t4 = node[i2 + 1].7: LOOP i3 ∈ {i1 + 1, . . . , i1 + k}8: LET t5 = node[i3], t6 = node[i3 + 1].9: ... Steps 14�17 of Algorithm 1010: LOOP i2 ∈ {1, 2, . . . , n},11: LET t3 = node[i2], t4 = node[i2 + 1], B1 = ct3,t4 − G∗/3.12: LOOP t5 ∈ NL(t4) as long as ct4,t5 < B113: LET i3 = pos[t5], t6 = node[i3 + 1].14: LOOP i1 ∈ {i3 − k, . . . , i3 − 1}15: LET t1 = node[i1], t2 = node[i1 + 1].16: ... Steps 14�17 of Algorithm 1017: LOOP i3 ∈ {1, 2, . . . , n},18: LET t5 = node[i3], t6 = node[i3 + 1].19: LOOP i1 ∈ {i3 − k, . . . , i3 − 1}20: LET t1 = node[i1].21: IF ct5,t6 − ct6,t1 > G∗/3 THEN22: LET t2 = node[i1 + 1].23: LET B2 = ct5,t6 − ct6,t1 + ct1,t2 − 2G∗/3.24: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B225: LET i2 = pos[t3], t4 = node[i2 + 1].26: ... Steps 14�17 of Algorithm 1027: Output: IF (G∗ > Gmin) THEN28: RETURN (i∗
1
, i∗

2
, i∗

3
).Note that the inner loop in step 7 (resp. 14, 19) implies only a 
onstante�ort O (k) = O (1). Therefore, ea
h of the three blo
ks requires O (n2) op-erations in the worst-
ase, but fewer operations on average due to the gain
riterion. The feasibility test has to 
he
k the legitima
y 
ondition for Or-optmoves in all three blo
ks. This means that the positions i1, i2 and i3 ful�lleither i1 < i3 < i2 or i3 < i2 < i1 or i2 < i1 < i3.4.7 Other NeighborhoodsThe report Funke et al. (2003) shows that node-eje
tion-
hains and 
y
li
-transfers are additional examples of 
y
li
-independent and 
ost-independentneighborhoods. Hen
e, the gain 
riterion and sequential sear
h are appli
able.4.8 Feasibility Che
king in Constant TimeAll CVRP moves presented in this se
tion 
an be des
ribed as edge ex
hanges,i.e., the splitting of the giant tour into ℓ ≥ 2 segments and the 
on
atenationof (possibly inverted) segments to one or several subtours of the giant tour. Fora subtour to be feasible, it has to 
ontain at least one depot node. In order to
he
k whether a segment S = (t, . . . , t′) 
ontains a depot node, one performs alinear time prepro
essing to build a ve
tor tour, whi
h gives, for ea
h node t,19



the 
orresponding tour index in the giant tour. Hen
e, S = (t, . . . , t′) 
ontainsa depot if one of the endpoints t or t′ is a depot node or tour[t] 6= tour[t′].The feasibility of the 
on
atenation of segments S1, S2, . . . , Sℓ depends onthe a

umulated demand in ea
h subpath joining two depot nodes. Assume(w.l.o.g) that S1 
ontains a depot and that Sp, p ∈ {2, . . . , ℓ} is the nextsegment, whi
h also 
ontains a depot node (if all remaining segments do not
ontain a depot, let Sℓ+1 := S1 and p = ℓ + 1). Now, the 
on
atenation of
S1, S2, . . . , Sp is feasible w.r.t. the vehi
le 
apa
ity if
• the a

umulated demand qend(S1) from the last depot 
ontained in S1 tothe last node of S1,
• plus the sum of the a

umulated demands qall(Sq) along the segments Sq,

q ∈ {2, . . . , p − 1},
• plus the a

umulated demand qstart(Sp) from the �rst node of Sp to the �rstdepot 
ontained in Spdoes not ex
eed the vehi
le 
apa
ity, i.e., qend(S1)+

∑p−1
q=2 qall(Sq)+qstart(S1) ≤

Q holds. In order to have 
onstant-time a

ess to the above values, we proposeto build two ve
tors qs and qe, indexed by the nodes V of the giant tour, 
on-taining the following values: qs[t] is the a

umulated demand (a

umulatedalong the giant tour) of the path starting at node t and ending at the nextsu

eeding depot node. Similarly, qe[t] is the a

umulated demand of the pathstarting at the last depot node, whi
h pre
edes node t, to node t. The 
ompu-tation of the ve
tors qs and qe requires linear time only when nodes are 
on-sidered in as
endind/des
ending order of the giant tour. For any segment S =
(t, . . . , t′) one has qstart(S) = qs[t] and qend(S) = qe[t′]. If S does not 
ontain adepot node, then qall(S) = qs[t′]−qs[t]+qt = qe[t]−qe[t′]+qt′ holds. With tour,
qs and qe a priori 
omputed, the 
on
atenation of S1, . . . , Sp 
an be 
he
kedin 
onstant time. Subsequent 
on
atenations of segments Sp, Sp+1 . . . , Sk 
anbe handled analogously, so that the overall feasibility 
he
k requires 
onstanttime only.It is worth to mention that the same kind of te
hniques allow 
onstant-timefeasibility 
he
ks for the DCVRP. The only di�eren
e to the CVRP is thatone has to 
onsider inter-
onne
tion times and distan
es in the 
on
atenationof segments.5 Computational ResultsThe following 
omputational results are based on a large number of ran-domly generated large-s
ale CVRP instan
es. We have examined the run-ning time of sequential and lexi
ographi
 sear
h algorithms, the impa
t of20



best-improvement and �rst-improvement stopping rules on running time andsolution quality, and similarly, the impa
t of using 
andidate lists.
5.1 Test Instan
esThe ben
hmark instan
es are generated by varying the number of 
ustomers,the 
ustomer distribution within the Eu
lidian plane, the demand distributionof 
ustomers, and the vehi
le 
apa
ity. Altogether there are 600 instan
esgrouped into 10 series of 60 instan
es ea
h. Any series in
lude instan
es of 15di�erent sizes, i.e., number n = |N | of 
ustomers, ranging from n = 250 to
n = 2500. For ea
h size there are four di�erent demand distributions. Table 1summarizes the series. Customers i ∈ N are lo
ated at integers point (xi, yi) ofSeries Lo
ation (xi, yi) Demand qi Capa
ity Quniform from uniform from1 [−100, +100]2 [10, 30] {500, 1000, 1500, 2000}2 [−100, +100]2 [10, 50] {750, 1500, 2250, 3000}3 [−100, +100]2 [10, 90] {1250, 2500, 3750, 5000}4 [−100, +100]2 [1, 99] {1250, 2500, 3750, 5000}5 [−100, +100]2 [90, 110] {2500, 5000, 7500, 10000}6 [−1000, +1000]2 [1, 1] {25, 50, 75, 100}7 [−1000, +1000]2 [1, 3] {50, 100, 150, 200}8 [−1000, +1000]2 [50, 150] {2500, 5000, 7500, 10000}9 [−1000, +1000]2 [8, 12] {250, 500, 750, 1000}10 [−1000, +1000]2 [100, 300] {5000, 10000, 15000, 20000}Table 1Generation of CVRP Test Instan
es, Distribution of Customers and Demands,Choi
e of Capa
itiesthe 2-dimensional Eu
lidian plane using uniform numbers from [−100, +100]2or from [−1000, +1000]2.The 
ost cij is the Eu
lidian distan
e rounded to the next integer, as de-s
ribed in Reinelt (1991). The demands qi are generated using di�erent in-teger uniform distributions as, e.g., demands in a small range [90, 110], orin a wide range [1, 99], or unit demands with qi = 1 for all i ∈ N . Thevehi
le 
apa
ity Q is determined by multiplying the average demand by fa
-tors f = 25, 50, 75, and 100. Hen
e, the generated instan
es have an aver-age number of f 
ustomers on ea
h tour. All instan
es are also available atwww.dpor.rwth-aa
hen.de/vrp-instan
es.21



5.2 Relative SpeedupThe �rst part of the 
omputational study 
ompares the times for sear
hing theneighborhoods dis
ussed in Se
tion 4 with either a sequential sear
h or a lex-i
ographi
 sear
h algorithm. The 
omparison is based on �rst 
omputing fourdi�erent starting solutions for ea
h of the 600 instan
es using a parametrizedsavings algorithm, see Clarke and Wright (1964) and Paessens (1988).For ea
h of the starting solutions a lo
al optimum w.r.t. all neighborhoods is
omputed in the following way. Given the 
urrent solution x, one sear
hes fora best improving 2-opt neighbor solution x′ ∈ N (x). This is done by applyingboth the sequential and the lexi
ographi
 sear
h variant of the 2-opt algorithmto the 
urrent solution x. If an improving neighbor is found, it be
omes the new
urrent solution x. Next, the remaining neighborhoods, i.e., 2-opt*, swap, relo-
ation, Or-opt, and string-ex
hange, are sear
hed in the same manner. Then,2-opt will be repeated and so on. Sequential and lexi
ographi
 algorithms arealways 
ompared using the same 
urrent solution x. If the 
orresponding gainis positive, the move is performed. (Note: Sequential sear
h and lexi
ographi
sear
h algorithms do not ne
essarily �nd the same neighbor with maximumgain due to degenera
y. The next iteration was always 
ontinued with the se-quential sear
h solution.) The whole run terminates when a solution is foundwhi
h 
annot be improved by any neighborhood under 
onsideration. Thissear
h strategy is 
alled variable neighborhood des
ent (VND, see Mladenovi¢and Hansen (1997); Hansen and Mladenovi¢ (2001, 2002)). In order to makethe sear
h more symmetri
, we de
ided to perform the neighborhood sele
tionin a 
y
li
 way (whi
h is in fa
t a small variation of VND).All algorithms were 
oded in C++, 
ompiled in release mode (using MS VisualStudio 6.0), and run on a standard PC (Intel x86 family 15 model 2, 2.4 GHz,1GB main memory, on MS-Win 2000).Figure 7 depi
ts the a

eleration fa
tor, i.e., the ratio of the time spent in lex-i
ographi
 sear
h divided by the time of sequential sear
h, for ea
h of the sixquadrati
 neighborhoods under 
onsideration. Ea
h point (=fa
tor) in the di-agram 
orresponds to a �xed pair of size n and average number f of 
ustomersin a tour. It is 
omputed 
onsidering several thousands of runs (10 series, 4starting solutions, from 35 up to 500 iterations). Note that we have 
hosenthe maximum string length k = 3 for Or-opt and relo
ation neighborhoods.All six diagrams show that there is a substantial speedup when the 
lassi
allexi
ographi
al sear
h approa
h is repla
ed by a sequential sear
h pro
edure.The most remarkable insight is that for all neighborhoods 
onsidered, thea

eleration fa
tor mainly depends on the average number f of 
ustomers in aroute. The smaller f is, the more 
onstrained is the problem instan
e and the22
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Fig. 7. A

eleration Fa
tor Comparing the Running Times of Lexi
ographi
 Sear
hand Sequential Sear
h Algorithms.smaller is the a

eleration fa
tor. One may interpret the results in the followingway. In more 
onstrained problems (i.e., with smaller values f) there are moreimproving moves whi
h are not ne
essarily feasible. Sin
e sequential sear
hprunes the sear
h only based on 
ost (and not on feasibility) 
onsiderations,it is less e�e
tive in problems with tighter 
onstraints.A se
ond aspe
t to analyze is the 
orrelation between the a

eleration fa
torand the size of the instan
es. Considering the diagrams it 
an be re
ognizedthat there is a positive 
orrelation between the a

eleration fa
tor and n forthe swap and relo
ation neighborhoods. For spe
ial 2-opt*, 2-opt, and Or-opt neighborhoods, there is obviously no signi�
ant 
orrelation. That meansthat there is no de
rease in the speedup. Large a

eleration fa
tors 
an beobserved when 
omparing lexi
ographi
 and sequential sear
h algorithms forthe string-ex
hange neighborhood. The fa
tor is in the range between 24 andmore than 750, while the maximum string length was 
hosen as k = 3. Thestring-ex
hange neighborhood is the only neighborhood under 
onsideration,for whi
h the a

eleration drasti
ally de
reases with the size n of the instan
es.At the �rst glan
e it seems that for larger instan
es, the sequential sear
happroa
h might be
ome slower than the lexi
ographi
al sear
h approa
h. Thisis not the 
ase. Additional 
omputational tests for larger instan
es with up to5000 
ustomers have shown that the a

eleration never falls below a 
ertain23



threshold (never below fa
tor 20 for f = 25). The de
rease of the a

elerationfa
tor with in
reasing n depends on the 
he
k in step 10 of Algorithm 8. In anearlier implementation, with 
orresponding results presented in Irni
h et al.(2004), we forgot to prune the sear
h a

ording to the 
riterion B2 > 0. As aresult, the a

eleration fa
tor was nearly 
onstant for �xed f , but substantiallysmaller. It is an open resear
h problem why the behavior di�ers for the typesof neighborhoods we 
onsidered.Sin
e the lexi
ographi
 sear
h for improving 3-opt* neighbors is too time-
onsuming, we modi�ed the 
omputational tests in the following way. The3-opt* sear
h pro
edures are only applied to 
urrent solutions whi
h are lo-
al optima w.r.t. all other (quadrati
) neighborhoods. If an improving 3-opt*neighbor is found, the sear
h is again dire
ted to determine a lo
al optimumof the quadrati
 neighborhoods. Consequently, the number of 
omputation-ally 
ostly sear
hes within the 3-opt* neighborhood is small in 
omparisonto the number of sear
hes in the quadrati
 neighborhoods. However, due tothe fast growing e�ort of lexi
ographi
 sear
h in the 3-opt* neighborhood, we
onsidered instan
es with n ≤ 500 only. Results for the 3-opt* neighborhoodare depi
ted in Figure 8. The a

eleration fa
tor is between 300 for f = 25
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eleration Fa
tor Comparing Lexi
ographi
 Sear
h and Sequential Sear
hAlgorithms, Average Running Times of a Single Sequential Sear
h Iteration for3-Opt* moves.and more than 10.000 for f = 100. The time for a single sequential sear
hiteration for the 3-opt* neighborhood (see also Se
tion 5.3) ranges from a fewmillise
onds to about 2 se
onds for large-s
ale instan
es with 500 
ustomersand f = 100. Both, the a

eleration fa
tor and the time for a single iteration,explain why lexi
ographi
 sear
h is 
omputationally intra
table for even largerproblem instan
es.5.3 Running Time of Sequential Sear
h Pro
eduresNext we analyze the average running time of a single sequential sear
h step(i.e., step 3 in Algorithm 1) depending on both, the size n of the instan
e andthe average number f of 
ustomers in a tour. Figure 9 summarizes the results.24
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Fig. 9. Average Running Times of a Single Sequential Sear
h Iteration Dependingon the Size n and the Number f of Customers per Tour.These 
urves 
an be analyzed with di�erent regression models, e.g., quadrati

t(n) = αn2 + βn, potential t(n) = αnβ, log-linear t(n) = αn + βn log n, et
.In all 
ases a quadrati
 regression model with a very small 
oe�
ient for thequadrati
 term �ts well (with R2 > 0.99). Our interpretation of that �nding isthat always a small but quadrati
 number (growing with n) of moves has to bes
anned, in parti
ular when they have a positive gain but are not improving(i.e., they seem promising but are infeasible w.r.t. the 
urrent solution).For some types of moves, a potential regression model gives a tight approxima-tion saying, e.g., that the average running time of 2-opt is t2−opt(n) ≈ αn1.65,of Or-opt* is tOr(n) ≈ αn1.35, and of string-ex
hange is tstr−exch(n) ≈ αn2.5.4 First-Improvement versus Best-ImprovementThe previous 
omputational results were all based on a best-improvement (BI)strategy, see also Se
tion 3. In this se
tion we will quantify the relationshipof best-improvement and �rst-improvement (FI) sequential sear
h algorithmsw.r.t. running time and quality of the 
omputed lo
al optima. Hansen andMladenovi¢ (1999) already made 
omparisons for the symmetri
 TSP and their25



�ndings were the following. Starting from a random solution, FI 
omputesbetter results that BI. Conversely, starting lo
al sear
h from a given greedyor nearest-neighbor solution, BI is better and faster than FI on average.Here, we will analyze the running time and solutions quality for both strategiesapplied to savings solutions of the CVRP. We use the 40 di�erent instan
eswith n = 1000 
ustomers (10 series, f = 25, 50, 745, 100) and 
ompute 18(di�erent) starting solutions using a parametrized savings algorithm. Startingwith the same initial solutions, BI and FI are separately applied in 2-opt,2-opt*, swap, relo
ation, Or-opt, and string-ex
hange lo
al-sear
h pro
eduresuntil a lo
al optimum to all neighborhoods is found.First, in 
ontrast to the results of the previous se
tions, the value of f has nosigni�
ant impa
t on the solution quality or running time 
omparing BI andFI. In about 85% of all 720 
ases, FI was faster than BI. However, the averagerunning time of BI (=14.1s) ex
eeds the average running time of FI (=12.9s)by only 9%. The reason for this is that ea
h iteration of the FI lo
al sear
htakes less time, but more iterations are needed to rea
h a lo
al optimum.In 55% of the 
ases, BI was better than FI. On average, BI terminates in a lo
aloptimum 3.11% and FI 3.18% above the best known solution. This averageimprovement of BI over FI of 0,07% is small. Hen
e, the results of Hansen andMladenovi¢ (1999) of the STSP 
annot be proje
ted to the CVRP.
5.5 Candidate ListsIn order to further a

elerate lo
al sear
h one might use 
andidate listsNLK(t)instead of a 
omplete neighbor list NL(t) 
ontaining all nodes V \ {t}. Withthe same setup as in Se
tion 5.4, we 
ompare implementations using 
andidatelists NLK(t) with K ∈ {10, 20, 40, 80} and a 
omplete neighbor list NL(t),i.e., K = n + F − 1. The tradeo� between running time and solution qualityis measured by 
omparing the average running time avg time (until a lo
aloptimum w.r.t. all quadrati
 neighborhoods is found) with the average ratio
obj−best

best
. Herein, obj is the 
ost of the 
omputed lo
al optimum and best the 
ostof the best known solution of the instan
e. Figure 10 shows the results. Using
andidate list of moderate size 
an further redu
e the running time, whilethe solution quality de
reases slowly. For instan
e, for K = 40 and n = 1000
ustomer instan
es under 
onsideration, the time redu
es on average by 60%
ompared to the full neighbor list implementation and the loss in solutionquality is about 0.1%. 26
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Fig. 10. Comparison of Running Time and Solution Quality for Candidate Lists
NLK(t) of Di�erent Length K6 Con
lusionsThe paper has introdu
ed sequential sear
h as general and highly e�
ientte
hnique for s
anning neighborhoods within lo
al-sear
h algorithms. It 
anbe applied both within 
lassi
al lo
al-sear
h algorithms and modern meta-heuristi
s based on lo
al sear
h. These in
lude tabu sear
h (Glover and La-guna 1997), variable neighborhood des
ent and variable neighborhood sear
h(Mladenovi¢ and Hansen 1997; Hansen and Mladenovi¢ 2001, 2002), GRASP(Festa and Resende 2004) and large-step Markov 
hains (Martin et al. 1992).Based on the formal des
ription of moves and move de
ompositions, it wasshown that the ne
essary 
onditions for applying sequential sear
h depend onboth the problem and the partial moves that 
onstitute the neighborhood. The
ondition of 
ost-independen
e depends on the obje
tive fun
tion of the prob-lem, whereas the 
ondition of 
y
li
 independen
e follows from the de�nitionof the partial moves.The paper shows that sequential sear
h algorithms 
an be developed for the
lassi
al neighborhoods of the CVRP. As indi
ated by the 
omputational re-sults, the e�
ien
y is in
reased signi�
antly in 
omparison to 
lassi
al lexi
o-graphi
 sear
h implementations.The main 
hallenge in the development of new sequential sear
h algorithmsis to �nd a de
omposition of moves into partial moves that satisfy the ne
es-sary 
onditions for applying sequential sear
h. If su

essful, this 
an lead tothe development of new and signi�
antly faster lo
al-sear
h algorithms andmetaheuristi
s for many types of 
ombinatorial optimization problems.27
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