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i.e., the set of solutions lose to the urrent solution. It is, therefore, desirableto use e�ient algorithms within loal searh to speed up the subroutine thatperforms the san.Sequential searh is a tehnique that allows neighborhoods within loal-searhalgorithms to be investigated in a highly e�ient way. It was disoveredindependently in the 1970's by Christo�des and Eilon (1972) and Lin andKernighan (1973) in algorithms for the traveling-salesman problem (TSP) andthe graph-partitioning problem, Kernighan and Lin (1970). Although the Lin-Kernighan algorithm and its extensions still belong to the best heuristis forsolving TSPs, little attention has been paid to applying sequential searh toother problems. This might be attributed to the fat that the de�nition of asequential searh algorithm for a given neighborhood is not a straightforwardtask and that the priniple requires some assumptions that are not met for allkinds of problems and neighborhoods.In this paper we give a generi desription of sequential searh and show whenand how it an be applied within loal-searh algorithms. As an example we uselassial neighborhoods of the apaitated vehile-routing problem (CVRP).The CVRP is a good andidate to study, sine it is more onstrained thanthe TSP and muh more di�ult to solve in pratie. The intention of thepaper is not to present a new and better algorithm for the CVRP. Instead,the paper presents sequential searh as a generi tehnique. It is ompared totraditional algorithms for the exploration of the neighborhood, whih one anharaterize as lexiographi searh approahes.The paper is strutured as follows. In Setion 2, we de�ne the CVRP andreview lassial and some reent papers on this problem. Setion 3 introduesthe onepts and terminology of loal searh. Based on the de�nition of moves,move deompositions, and gains, a generi desription of lexiographi searhand sequential searh is provided. In Setion 4, the general priniples of lexio-graphi and sequential searh are applied to di�erent, lassial, neighborhoodsof the CVRP. This enables a diret omparison between the two methods. Inorder to show the e�etiveness of sequential searh, we provide omputationalresults for implementations of both lexiographi and sequential searh al-gorithms for the di�erent neighborhoods of the CVRP in Setion 5. Finalonlusions are given in Setion 6.2 The Capaitated Vehile-Routing ProblemThe CVRP is one of the basi problems of vehile routing. In this paper, westudy the undireted version of the problem. Let N be a set of ustomersand 0 a depot. De�ne the undireted graph G = (V,E), where V = N ∪{0} is2



the node set and E is the edge set. A tour R = (v0, v1, . . . , vℓ, vℓ+1) is a ylein G, whih starts at the depot v0 = 0, visits the ustomers v1, . . . , vℓ ∈ N ,and ends at the depot vℓ+1 = 0. Every ustomer i ∈ N has a positive integerdemand qi. The demand must be satis�ed by a set of F idential vehiles withpositive integer apaity Q. A tour is (apaity-)feasible if ∑ℓ
i=1 qvi

≤ Q, i.e., ifthe total demand of the ustomers does not exeed the apaity of the vehile.Let the ost of using edge {i, j} ∈ E be cij. Then the ost of a tour R is
c(R) =

∑ℓ
i=0 cvi,vi+1

. A set {R1, . . . , RF} of F tours is a tour plan if it overseah ustomer exatly one. A tour plan is feasible (i.e., it provides a feasiblesolution to the CVRP) if all of its tours are feasible.A variant of the CVRP is the distane onstrained VRP (DCVRP). In theDCVRP demand is assoiated with edges, see e.g. Li et al. (1992). Denoteby qij the travel time/distane of traversing edge {i, j} and by Q the maximumtravel time/distane. A tour R = (v0, v1, . . . , vℓ, vℓ+1) is (travel-time-)feasibleif q(R) =
∑ℓ

i=0 qvi,vi+1
≤ Q holds. Given the number F of vehiles, the fea-sibility problem of a CVRP is equivalent to solving a bin-paking problem,see e.g. Toth and Vigo (1998). However, in ases where travel-time-feasibilityis relevant, no suh orrespondene exists. Two on�iting objetive funtionshave been studied for the CVRP and DCVRP: minimizing the number of toursand minimizing osts. In this paper we only onsider ost minimization, i.e.,the objetive funtion c(R1, . . . , RF ) =

∑F
k=1 c(Rk). For the sake of brevity,the paper mainly fouses on the presentation of the CVRP, but all searhtehniques are also appliable to the CVRP with distane onstraints.The CVRP is one of the most studied problems in ombinatorial optimization.Sine its �rst desription by Dantzig and Ramser (1959), numerous papershave been published desribing models, algorithms, and extensions. Startingin the 1960's with the well-known savings algorithm by Clarke and Wright(1964), the development of so-alled lassial heuristis ontinued until the1980's. These heuristis are lassi�ed, desribed and empirially studied inthe paper by Laporte and Semet (2002). Better solutions to the CVRP an beobtained with metaheuristis. Classial papers are the ones by Taillard (1993),Osman (1993), Gendreau et al. (1994), and Rohat and Taillard (1995). Themain drawbak of these algorithms is the heavy omputational e�ort requiredto get good solutions and the large number of parameters that have to beadjusted. As pointed out in Cordeau et al. (2002), the goal has now swithedtowards obtaining good solutions for larger instanes onsistently within anaeptable time limit using metaheuristis with a small number of parameters.Reent algorithmi developments by, e.g., Cordeau et al. (2001) and Toth andVigo (2003) support this trend. An overview of metaheuristis for the CVRPan be found in the paper by Gendreau et al. (2002).Exat solutions to the CVRP are obtained by branh-and-bound and branh-and-ut algorithms. Branh-and-bound algorithms are based on di�erent re-3



laxations, sometimes within an additive bounding sheme. An overview ofdi�erent approahes an be found in the paper by Toth and Vigo (2002a). Re-ently, some advanes have been made with LP-based models embedded withinthe branh-and-ut-sheme. An overview is given in the paper by Naddef andRinaldi (2002). A promising branh-and-prie-and-ut approah is reportedin Fukasawa et al. (2003). However, none of these exat methods an onsis-tently solve instanes with more than 100 ustomers. Therefore, heuristis andmetaheuristis are required for solving larger instanes.3 Loal SearhCombinatorial optimization problems an be stated as minx∈X c(x), where Xis the set of feasible solutions and c the ost funtion. For pratially relevantinstanes of NP -hard ombinatorial optimization problems, the set X is ingeneral too large to be searhed exhaustively. One of the most popular teh-niques for searhing a subset of feasible solutions is loal searh. Loal searh isa general heuristi approah that starts with a feasible solution as the urrentsolution and iteratively replaes the urrent solution by a better and similar,so-alled neighbor solution, until no better neighbor solution an be found.The heart of a loal-searh proedure is the de�nition of a neighborhood N ,whih is a mapping N : X → 2X : N (x) ⊂ X. Eah element x′ ∈ N (x) isalled neighbor of x. Neighbors x′ with ost c(x′) < c(x) are alled improvingneighbors. Loal searh starts with an initial feasible solution x0 ∈ X. Ineah iteration t it replaes the urrent solution xt by an improving neighbor
xt+1 ∈ N (xt), if suh an improving neighbor exists. The loal-searh proedureterminates with a loal optimum, i.e., a solution xt for whih the neigborhood
N (xt) ontains no improving solution.Algorithm 1 Generi Loal Searh1: Input: A feasible solution x0 ∈ X. LET t = 0.2: REPEAT3: SEARCH for an improving neighbor x′ in the neighborhood N (xt) of the urrent solution xt.4: IF there exists an improving neighbor solution x′ ∈ N (xt),5: THEN LET xt+1 = x′ and t = t + 1.6: UNTIL no more improvements an be found.7: Output: A loal optimum xt.For further details of loal searh, we refer the reader to the books of Aartsand Lenstra 1997 and Rayward-Smith et al. 1996.There are several options for hoosing improving neighbor solutions in step 3. Ifthe searh method is enumerative (i.e., neighbor solutions x′ ∈ N (xt) and theirosts c(x′) are evaluated one after another), taking the �rst improving solutionor taking a best improving solution are two extreme strategies known as �rst4



improvement and best improvement. Another well-known strategy, alled d-best improvement, terminates the searh when d improving neighbor solutionshave been found. Then the best solution from this set is taken as the nextsolution. From the worst-ase point of view, all searh strategies are equivalent,sine showing that the last xt is a loal optimal solution requires the entireneighborhood N (xt) to be sanned.3.1 Moves and their DeompositionNeighborhoods are often de�ned impliitly by a set of moves. A move m trans-forms a solution into a neighbor solution. Some of the moves m ∈ M mighttransform a feasible solution x into an objet m(x), whih has a struturesimilar to a feasible solution, but does not neessarily satisfy all onstraintsthat de�ne feasible solutions. In the following, we will all suh an objet asolution. An example in the ase of the VRP is the swap of two ustomersbetween two tours, whih might violate a apaity onstraint.For a formal de�nition of amove, it is helpful to onsider the set of all solutions,
Z ⊇ X. In general, we denote by M the set of moves where a move m ∈ M isa map from Z to itself, i.e., m : Z → Z. From the above disussion it is learthat a move m maps solutions to solutions. For a given x ∈ Z, the extendedneighborhood ontains all neighbors of x, either feasible or infeasible. Everymove, m ∈ M , with m(x) ∈ X is alled a feasible move w.r.t. x.In order to analyze moves, we will deompose them into smaller parts, the so-alled partial moves. A given deomposition m = pℓ ◦ . . . ◦ p2 ◦ p1 of a move minto ℓ ≥ 2 partial moves p1, p2, . . . , pℓ means that an x ∈ Z is �rst transformedto p1(x), seond p1(x) is transformed to p2(p1(x)), and so on. Note that thedeomposition of a move into partial moves is not uniquely de�ned by themove itself. In general, there exist various deompositions for the same move,di�ering in the number ℓ of stages and the struture of the partial moves. Inthe ase of the VRP, there exist two basi types of partial moves. They arethe building bloks of more omplex (partial) moves, whih we will onsiderlater. The partial move padd

ij adds the edge {i, j} to the urrent solution andthe partial move pdel
kl deletes the edge {k, l} from the urrent solution.3.2 Costs and Gains of (Partial) MovesReall that c(x) is the ost of a solution x ∈ Z. We denote the gain of move

m ∈ M applied to solution x ∈ Z by g(m,x) = c(x)−c(m(x)). For the CVRP,the gain g(m,x) only depends on the added and deleted edges and thus onlyon the symmetri di�erene of x and m(x). In order to implement e�ient5



pruning rules in LS, it is neessary to alloate a gain g(pi, x) to eah of thepartial moves pi, i = 1, . . . , ℓ, depending only on the urrent solution x andnot on the intermediate solutions generated by the partial moves p1, . . . , pi−1.Let the move m ∈ M be deomposed into the partial moves pℓ ◦ . . . ◦ p2 ◦ p1.For e�ieny reasons it is desirable that the gain of a move m is the sumof the gains of its partial moves p1, . . . , pℓ. A orresponding deomposition
m = pℓ ◦ . . . ◦ p2 ◦ p1 is alled ost-independent if

g(m,x) =
ℓ∑

i=1

g(pi, x) (1)holds. If the equality is not ful�lled for all deompositions, then su�ient on-ditions, whih guarantee (1) an be de�ned. These are referred to as legitimayonditions, f. Glover (1992). For instane, legitimay onditions an requirethat only ompatible subsets of partial moves our simultaneously or restritthe ordering of partial moves.The deomposition m = pl ◦ . . . ◦ p2 ◦ p1 is order-independent if m(x) =
pπ(l) ◦ . . . ◦ pπ(2) ◦ pπ(1)(x) holds for all solutions x ∈ Z and all permutations πof {1, 2, . . . , l}. It is alled yli-independent if the same holds only for ylipermutations π. We will show below that yli-independent move deompo-sitions are essential in the development of e�ient searh algorithms.3.3 Searh TehniquesIn this paper we study two generi searh tehniques, lexiographi searhand sequential searh. In order to explain both approahes, we onsider thefollowing generi searh problem: A neighborhood N (x) of size O (nk) is im-pliitly given by moves mi1,i2,...,ik

with {i1, i2, . . . , ik} a subset of {1, . . . , n} ofardinality k.3.3.1 Lexiographi SearhA natural way to determine the k di�erent elements i1 < i2 < . . . < ikis to implement k nested loops. The �rst loop onsiders the elements i1 ∈
{1, . . . , n}, the seond loop the elements i2 ∈ {i1 + 1, . . . , n}, and, in generalthe p-th loop the elements ip ∈ {ip−1 +1, . . . , n}. The iterator of an inner loopis always larger than the iterator of an outer loop, i.e., il+1 > il holds for all
l ∈ {1, . . . , n − 1}. Hene, this approah is referred to as lexiographi searh.
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Algorithm 2 Generi Lexiographi Searh1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LOOP i2 ∈ {i1 + 1, 2, . . . , n}5: ...6: LOOP ik ∈ {ik−1 + 1, 2, . . . , n}7: IF ( mi1,...,ik
(x) ∈ X AND G∗ < g(mi1,...,ik

, x) )8: LET G∗ = g(mi1,...,ik
, x).9: LET (i∗

1
, i∗

2
, . . . , i∗

k
) = (i1, i2, . . . , ik).10: Output: IF (G∗ > Gmin) THEN RETURN (i∗

1
, i∗

2
, . . . , i∗

k
).The above searh algorithm �nds the best (w.r.t. the objetive c), not nees-sarily improving neighbor solution x′ ∈ N (x). With an aspiration level givenby a minimum gain Gmin = 0, the algorithm either �nds an improving neigh-bor x′ = mi∗

1
,i∗

2
,...,i∗

k
(x) or returns the information that no suh solution exists,i.e., G∗ = 0.Step 7 of Algorithm 2 heks whether the neighbor solution is feasible andimproving. In order to obtain an e�ient searh algorithm, it is ruial thatthe feasibility hek and the omputation of the gain an be done in onstanttime. Therefore, a preproessing for omputing additional aggregated infor-mation (about substrutures of the urrent solution x) might be neessary toguarantee an O (nk) algorithm. We will ome bak to this important issue inSetion 4.8.3.3.2 Sequential SearhCyli-independent neighborhoods are losely linked to the onept of se-quential searh, �rst developed by Christo�des and Eilon (1972) and Lin andKernighan (1973). The basi idea of this approah is to onsider all relevantpartial moves of a yli independent neighborhood reursively. Sequentialsearh aelerates the searh for an improving neighbor solution by pruningthe searh as early as possible so that (on average) only a small fration ofthe entire neighborhood has to be sanned. Pruning is based on an evaluationof partial moves and their orresponding partial gains.For the desription of sequential searh we assume that all moves mi1,i2,...,ikhave a yli-independent and ost-independent deomposition into k partialmoves, aording to mi1,i2,...,ik

= pik,i1
◦ pik−1,ik

◦ . . . ◦ pi2,i3
◦ pi1,i2

. In the ase of
k = 3, it means that mi1,i2,i3

deomposes into pi3,i1
◦pi2,i3

◦pi1,i2
= pi2,i3

◦pi1,i2
◦

pi3,i1
= pi1,i2

◦pi3,i1
◦pi2,i3

. Suh a deomposition seems ompliated at �rst, butit makes sense for many types of moves: Typially the gain of a move mi1,i2,...,ikdoes not depend diretly on the individual indies il, l = 1, 2, . . . , k, but onombinations of onseutive indies, i.e., (ij, ij+1) for j = 1, . . . , k (with thede�nition jk+1 = j1). Examples are partial moves pij ,ij+1
, where one element ijreplaes another element ij+1 so that the partial gain g(pij ,ij+1

, x) depends on7



both, ij and ij+1. This sequential arrangement of indies has motivated us toall the searh tehnique that exploits this property sequential searh.The attrativeness of sequential searh in yli- and ost-independent neigh-borhoods is due to the following theorem of Lin and Kernighan (1973):Theorem 1 If a sequene of numbers (gi)
k
i=1 has a positive sum ∑k

i=1 gi > 0,then there is a yli permutation π of these numbers suh that every partialsum is positive, i.e., ∑ℓ
i=1 gπ(i) > 0 for all 1 ≤ ℓ ≤ k.The theorem implies that all improving moves mi1,i2,...,ik

an be onstruted asa sequene of partial moves, where the sum of the partial gain is positive forall sub-sequenes. The diret impliation is that at stage 1 of the searh, weneed only onsider partial moves with a positive gain, i.e., g(pi1,i2
, x) > 0or g(pi2,i3

, x) > 0 or . . . g(pik,i1
, x) > 0. The yli-independene and thesymmetry of the deomposition allow us to re-formulate this ondition to

g(pi1,i2
, x) > 0. Note that one an always exhange the indies in a yli waysuh that the �rst pair is denoted by (i1, i2). However, we an no longer pos-tulate i1 < i2. In general at stage p, one an restrit the searh to those partialmoves pip,ip+1

having g(pip,ip+1
, x) > −Gp−1, where Gp−1 =

∑p−1
l=1 g(pil,il+1

, x) isthe aumulated partial gain of the preeding stages. Thus, the total gain Gp−1at stage p−1 limits the hoie of a partial move at stage p. Lin and Kernighanrefer to this rule as the gain riterion.An implementation of the gain riterion has to guarantee that the pruning ofthe searh for promising partial moves an be performed e�iently. At stage p,where i1, i2, . . . , ip−1 are known, the new index ip has to be hosen suh that
g(pip−1,ip , x) > −Gp−1 holds. For some neighborhoods, the limitation of thesearh an be done on-the-�y. For typial routing neighborhoods, the searhfor promising ip is performed with help of a neighbor list assoiated with ip−1.The neighbor list NL(ip−1) is a data struture whih stores elements ip by in-reasing values of g(pip−1,ip , x). Neighbor lists are omputed in a preproessingstep, i.e., before LS is started. The following algorithm summarizes the abovedesription of sequential searh.Algorithm 3 Generi Sequential Searh1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: COMPUTE B1 (based on i1).5: LOOP i2 ∈ NL(i1) as long as g(p

i1i2
, x) > B16: COMPUTE B2 (based on g(p

i1,i2
, x) and i2).7: LOOP i3 ∈ NL(i2) as long as g(p
i1,i2

, x) + g(p
i2,i3

, x) > B28: ...9: COMPUTE Bk−1 (based on ∑k−2

l=1
g(p

il,il+1
, x) and ik−1).10: LOOP ik ∈ {ik−1 + 1, 2, . . . , n} as long as ∑k−1

l=1
g(p

ik,ik+1
, x) > Bk−111: IF ( mi1,...,ik

(x) ∈ X AND g(mi1,...,ik
, x) > G∗ )12: LET G∗ = g(mi1,...,ik

, x).13: LET (i∗
1
, i∗

2
, . . . , i∗

k
) = (i1, i2, . . . , ik).8



14: Output: IF (G∗ > Gmin) THEN RETURN (i∗
1
, i∗

2
, . . . , i∗

k
).The ruial point for the e�ieny of Algorithm 3 is the omputation of thebounds B1, B2, . . . , Bk−1 in the steps 4, 6, and 9. Bound B1 takes only in-dex i1 into aount in order to limit the searh for i2 resp. pi1,i2

with positivegain g(pi1,i2
, x) > 0. In general, at stage ℓ the bound Bℓ is omputed basedon the already known partial gains and the index iℓ−1 in order to restrit theexploration to indies iℓ.The following orollary provides two extensions of the gain riterion of Linand Kernighan: First, it allows to searh for moves with a (not neessarilypositive) gain of at least G∗. Seond, whenever a feasible move with gain G∗has been found, the exploration at stage ℓ an be limited to partial movessuh that the sum of the partial gains is at least ℓG∗/k.Corollary 1 Given a number G∗. If a sequene of numbers (gi)

k
i=1 ful�lls∑k

i=1 gi > G∗, then there is a yli permutation π of these numbers suh thatfor every partial sum ∑ℓ
i=1 gπ(i) > ℓG∗/k holds for all 1 ≤ ℓ ≤ k.Proof: De�ne g′

i = gi − G∗/k for i ∈ {1, . . . , k} and use Theorem 1for the sequene (g′
i)

k
i=1. ⋄

4 Neighborhoods and Searh Algorithms for the VRPLoal-searh proedures for the VRP whih replae one tour plan by anotherhave a long tradition, see Kindervater and Savelsbergh (1997). In this setionwe provide desriptions of both sequential and lexiographi searh implemen-tations for di�erent VRP neighborhoods. Sine the implementation of lexio-graphi searh is rather straightforward, we will fous on the implementationof sequential searh. In the following we will use a representation of tour plansas Hamiltonian yles. It allows to handle inner-tour moves (i.e., moves, whihdo only hange a single tour) as well as inter-tour moves (i.e., moves whihhange the assignment of ustomers to routes) in a unifying way.4.1 Giant Tour Representation of VRP SolutionsFor the de�nition of neighbor solutions it is important to have a well-de�nedrepresentation of all elements x ∈ X. This subsetion formalizes the giant tourrepresentation for the VRP, whih has also been used to represent multiplesalesman TSP, MTSP, see Bellmore and Hong (1974) and Rao (1980). Givena tour plan with F di�erent tours Ri = (0, vi
1, v

i
2, . . . , v

i
pi
, 0), i ∈ {1, 2, . . . , F},9



pi ∈ N0, the orresponding giant tour uses F opies 01, . . . , 0F of the depot andis de�ned as x = (01, v
1
1, . . . , v

1
p1

, 02, v
2
1, . . . , v

2
p2

,03, v
3
1, . . . ,. . . , 0F , vF

1 . . . , vF
pF

, 01).Note that a giant tour representation is not unique sine tours an be arbitrar-ily permuted and inverted (in the ase of symmetri problems). Any Hamil-tonian yle in the extended graph G0 = (V0, E0), with V0 = {01, . . . , 0F} ∪Nand E0 = (E \ {{0, j} : j ∈ N} ∪ {{0i, j} : i = 1, . . . , F, j ∈ N} ∪ {{0i, 0j} :
i, j = 1, . . . , F, i 6= j}, orresponds to a tour plan. The tour plan is feasibleif and only if all sub-paths between two onseutive depot nodes representfeasible tours.In the ontext of loal searh, we assume that a urrent solution x = xt isgiven. In order to desribe the assoiated giant tour, one builds two arrays oflength |V0| whih ontain the following information: The array node is indexedby positions i ∈ {1, 2, 3, . . . , |V0|} and node[i] ∈ V0 is the node of the giant tourat position i. For the sake of onveniene, we assume that one an aess theelements in a wrap-around fashion, e.g., node[0] = node[|V0|], node[|V0|+ 1] =
node[1], et. Contrarily, the array pos gives for eah node t ∈ V0 the urrentposition pos[t] ∈ {1, 2, 3, . . . , |Vi|} of the node t in the giant tour.
4.2 Constrution of Neighbor ListsFor a node t ∈ V0, the neighbor list NL(t) stores the nodes t′ ∈ V0\{t} orderedby non-dereasing values ctt′ . If only the K �rst elements of the neighbor listare onsidered, we obtain the list denoted by NLK(t) and all it the andidatelist of node t.
4.3 The 2-Opt* NeighborhoodBy replaing two edges from the giant tour by two edges whih do not belongto the giant tour, one an onstrut two types of neighbor tour plans. Theunion of all these neighbor tour plans de�ne the 2-opt* neighborhood of theurrent tour plan. We will now desribe the two types of neighborhoods bytheir orresponding moves. The �rst type of moves, well-known as 2-opt movesand �rst desribed by Croes (1958), produes a Hamiltonian yle. The seondtype of moves transforms the Hamiltonian yle into two subtours. These so-alled speial 2-opt* or rossover moves are easier to desribe in the ontextof sequential searh. We, therefore, start with their desription.10



4.3.1 The Speial 2-Opt*/Crossover neighborhoodA speial 2-opt* move removes two edges and adds two inident edges in suha way that the giant tour is transformed into two subtours. While suh an op-eration is not feasible in the TSP ontext, it implies a new tour plan wheneverboth subtours ontain a depot node. The speial 2-opt* neighborhood and itsgeneralization of removing and adding k edges, alled k-opt* neighborhood,was �rst introdued by Potvin et al. (1989).Figure 1 shows that a speial 2-opt* move is ompletely determined by twopositions i1, i2 in the giant tour, sine the four involved nodes t1, t2, t3, t4 areloated at the positions i1, i1 + 1, i2 and i2 + 1. The symmetry implies a
t1 t2

t3t4

i1 i +11

i2i  +12Fig. 1. Priniple of a Speial 2-Opt*/Crossover Move. Deleted Edges are grey, addedEdges blak.
deomposition of the speial 2-Opt* move m2Opt∗

i1,i2 into two partial moves, i.e.,
m2Opt∗

i1,i2 = pi1,i2
◦ pi2,i1

= pi2,i1
◦ pi1,i2

. The partial move pi1,i2
removes the touredge linking position i1 with i1 + 1 and adds the non-tour edge linking thepositions i1 +1 and i2. Hene, its partial gain is g(pi1,i2

, x) = cnode[i1],node[i1+1]−
cnode[i1+1],node[i2]. Note that this deomposition is both symmetri and ost-independent. Given position i1 and the ondition that pi1,i2

has a positivepartial gain, the searh for suitable positions i2 an be performed using node-neighbor lists. Let t1 = node[i1] and t2 = node[i1+1]. The node t3 at position i2has to be a neighbor node of node t2 with ct2,t3 < ct1,t2 . Therefore, position i1de�nes a bound B1 = ct1,t2 and t3 has to be found among all neighbors of t2loser than B1. The following two algorithms show how the best speial 2-opt*neighbor of a given tour plan x ∈ X an be found either using lexiographisearh or sequential searh. 11



Algorithm 4 LexiographiSearh for Speial 2-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LET t1 = node[i1].5: LET t2 = node[i1 + 1].6:7: LOOP i2 ∈ {i1 + 1, i1 + 2, . . . , n}8: LET t3 = node[i2].9: LET t4 = node[i2 + 1].10: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).

Algorithm 5 SequentialSearh for Speial 2-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4: LET t1 = node[i1].5: LET t2 = node[i1 + 1].6: LET B1 = ct1,t2 − G∗/2.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: LET i2 = pos[t3].9: LET t4 = node[i2 + 1].10: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).In step 11 one has to hek whether eah subtour ontains at least one de-pot and the two new tours respet the apaity onstraints. Note that theomputation of the bound B1 uses Corollary 1 with k = 2 and ℓ = 1.4.3.2 The 2-Opt NeighborhoodA 2-opt move partitions the given (giant) tour into two segments, invertsone of the segments, and rejoins the segments so that a new tour results.Figure 2 shows that a 2-opt move is determined by two edges assoiated withthe positions i1 and i2. It an be deomposed into two partial moves m2Opt

i1,i2 =

t1 t2

t4t3

i1 i +11

i2 i -12Fig. 2. Priniple of a 2-Opt Move.
p+1

i1,i2 ◦ p−1
i2,i1 = p−1

i2,i1 ◦ p+1
i1,i2 , where pσ

i1,i2
, σ ∈ {−1, +1} removes the tour edgelinking nodes at the positions i1 and i1+σ and adds the edge between positions

i1 + σ and i2. In ontrast to the 2-opt* move, this deomposition of the 2-opt move is not fully symmetri. Given the partial move de�ned above withthe inserted edge {u, v} and the deleted edge {v, w}, the node w is eitherthe predeessor or the suessor of v in the tour. While lexiographi searhalgorithms an diretly take this slight asymmetry into aount, sequentialsearh algorithms have to handle it expliitly. The fat that either p+1 or
p−1 has to be improving is taken into aount by a double outer loop todetermine i1 (whih is the symmetri ounterpart of i2) and σ ∈ {−1, +1}.The following two algorithms illustrate the similarities and di�erenes in thetwo implementations of 2-opt lexiographi searh and sequential searh. Theyboth ompute the 2-opt move pσ∗

i∗
1
,i∗

2
◦p−σ∗

i∗
2
,i∗

1
with gain at least G∗, if suh a moveexists. 12



Algorithm 6 SequentialSearh for 2-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET t1 = node[i1].6: LET t2 = node[i1 + σ].7: LET B1 = ct1,t2 − G∗/2.8: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B19: LET i2 = pos[t3].10: LET t4 = node[i2 − σ].11: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .12: IF ( G > G∗ and feasible )13: LET G∗ = G.14: LET (i∗
1
, i∗

2
, σ∗) = (i1, i2, σ).15: Output: IF (G∗ > Gmin) THEN16: RETURN (i∗

1
, i∗

2
, σ∗).

Algorithm 7 LexiographiSearh for 2-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n}4:5: LET t1 = node[i1].6: LET t2 = node[i1 + 1].7:8: LOOP i2 ∈ {i1 + 3, i1 + 4, . . . , n}9: LET t3 = node[i2].10: LET t4 = node[i2 − 1].11: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 .12: IF ( G > G∗ and feasible )13: LET G∗ = G.14: LET (i∗
1
, i∗

2
, σ∗) = (i1, i2, +1).15: Output: IF (G∗ > Gmin) THEN16: RETURN (i∗

1
, i∗

2
, σ∗).The feasibility hek in step 12 has to distinguish two ases. If one of thesegments does not ontain a depot (i.e., both removed edges belong to thesame tour), then the new solution is always apaity-feasible. If both segmentsontain a depot, the feasibility hek is similar to the one for 2-opt* moves.Sine the implementation of lexiographi searh for the remaining neighbor-hoods follows the same pattern as in the ase of 2-opt* and 2-opt, we onlypresent sequential searh algorithms in the following.4.4 The Swap NeighborhoodThe swap move mswap

i1,i2 replaes the node at position i1 by a node at posi-tion i2 and vie versa. Consequently, the four edges linking the positions (i1 −
1, i1), (i1, i1 + 1), (i2 − 1, i2), (i2, i2 + 1) are deleted and the four edges linkingthe positions (i1 − 1, i2), (i2, i1 + 1), (i2 − 1, i1), (i1, i2 + 1) are added to theurrent solution, see Figure 3.

v1 w1

v2w2

i1 i +11

i2i  +12

i -11

i -12

t1

t2Fig. 3. Priniple of a Swap Move.There exist several deompositions of mswap
i1,i2 into two ost-independent partialmoves of the same type. One possibility is to de�ne pi1,i2

as a partial movewhih deletes the edges between positions (i1 − 1, i1), (i1, i1 + 1) and thenadds (i2−1, i1), (i1, i2 +1). Then, mswap
i1,i2 = pi1,i2

◦pi2,i1
= pi2,i1

◦pi1,i2
is a yliindependent deomposition into ost-independent partial moves. To make the13



notation more onvenient, de�ne t1 = node[i1], t2 = node[i2] and v1, v2 (resp.
w1, w2) as the orresponding predeessor (suessor) nodes in the giant tour.The partial gain of pi1,i2

is g(pi1,i2
, x) = cv1,t1 + ct1,w1

− cv2,t1 − ct1,w2
. Whenlooking for improving swap moves by sequential searh, the gain riterion tellsus that we an restrit our attention to a �rst partial move pi1,i2

with positivegain (but possibly i1 > i2).We propose to searh for partial moves pi1,i2
with positive partial gains by�rst onsidering all positions i1 ∈ {1, . . . , n}. The task is then to restrit thesearh for possible positions i2 under the ondition that i1 is known. Thisan be done with neighbor lists. Let B1 = (cv1,t1 + ct1,w1

)/2, whih is a �xedonstant when position i1 is hosen. The ondition g(pi1,i2
, x) > 0 is equivalentto (ct1,v2

− B1) + (ct1,w2
− B1) < 0 whih implies ct1,v2

< B1 or ct1,w2
< B1.This prunes the searh for v2 (resp. w2) to andidate edges of length lessthan B1. Position i2 is determined as the suessor position of node v2 (resp.the predeessor position of node w2).Algorithm 8 Sequential Searh for Swap1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET v1 = node[i1 − 1], t1 = node[i1], w1 = node[i1 + 1].6: LET B1 = (cv1,t1 + ct1,w1

)/2 − G∗/2.7: LOOP t ∈ NL(t1) as long as ct1,t < B18: LET i2 = pos[t] + σ.9: LET v2 = node[i2 − 1], t2 = node[i2], w2 = node[i2 + 1].10: LET G = cv1,t1 + ct1,w1
+ cv2,t2 + ct2,w2

− cv1,t2 − ct2,w1
− cv2,t1 − ct1,w2

.11: IF ( G > G∗ and feasible )12: LET G∗ = G.13: LET (i∗
1
, i∗

2
) = (i1, i2).14: Output: IF (G∗ > Gmin) THEN15: RETURN (i∗

1
, i∗

2
).The feasibility hek in step 11 has to guarantee both the legitimay onditionsof the deomposition and the feasibility of the resulting tours. The feasibilityof the resulting tours only needs to be heked if the nodes t1 and t2 belongto di�erent tours. Otherwise the swap only exhanges the positions of thenodes within a single tour, whih does not a�et the apaity onstraints. Thelegitimay onditions require that the nodes t1 and t2 are not adjaent in thegiant tour (i.e., i1 6= i2±1) sine if i2 = i1±1, the swap move mswap

p,p±1 is feasible,but only exhanges two edges. In this ase the omputed partial gains do notequal the gain g(mswap
p,p±1, x). Therefore, the legitimay onditions forbid thisfeasible swap move to be omputed as a omposition of two partial moves.However, it an be shown that this ase orresponds to a speial 2-opt moveand therefore an be omputed within a searh algorithm for 2-opt or in lineartime within an additional loop heking only this speial ase.14



4.5 The String-Exhange NeighborhoodAs the name suggests, a string-exhange move takes two subpaths (=strings)of the giant tour and exhanges them. Typially, one restrits the length of thetwo strings to a small value k ∈ N implying a neighborhood of size O (k2 ·n2),whih is quadrati for �xed values of k. The ase k = 1 oinides with theswap move. For k ≥ 2, there exist two variants of string-exhange moves, eitherinverting segments or not. Figure 4 shows the priniple of a string-exhangewith inversion. The other ase an be handled analogously.
i1 i +11

i2 i -12

t1

t3 t4

t2 t6 t5

t7t8

i3i -13

i4i +14

String k£

String k£

Fig. 4. Priniple of a String-Exhange Move. Variant with both Strings inverted.
From Figure 4 one an see that the string-exhange move an be deomposedinto four partial moves, i.e., mstr−exch

i1,i2,i3,i4 = p+1
i1,i2 ◦ p−1

i2,i1 ◦ p+1
i4,i3 ◦ p−1

i3,i4 . This de-omposition is order-independent. Sine the string-exhange move onsists oftwo 2-opt moves mstr−exch
i1,i2,i3,i4 = m2−opt

i1,i2 ◦m2−opt
i4,i3 , the string-exhange move is notompletely symmetri in all four partial moves. However, there is a symmetrybetween the two pairs (i1, i2) and (i4, i3). This symmetry allows us to restritthe exploration to �nd an improving partial move p±1

i1,i2 in the �rst stage (thisovers the symmetri ounterpart p±1
i4,i3).Notie that we take the asymmetry in i1 and i2 into aount onsidering both

p+1
i1,i2 and p−1

i2,i1 at the �rst stage. One that i1 and i2 are determined, thereare only k2 possibilities to hoose i3 and i4. The resulting sequential searhalgorithm an be summarized as follows.15



Algorithm 9 Sequential Searh for String-Exhange withSegment Inversion1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ ∈ {−1, +1}5: LET t1 = node[i1], t2 = node[i1 + σ].6: LET B1 = ct1,t2 − G∗/4.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: LET i2 = pos[t3], t4 = node[i2 − σ].9: LET B2 = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 − G∗/2.10: IF B2 > 011: LOOP i3 ∈ {i1 + 2σ, . . . , i1 + (k + 1)σ}12: LET t5 = node[i3], t6 = node[i3 − σ].13: LOOP i4 ∈ {i2 − 2σ, . . . , i2 − (k + 1)σ}14: LET t7 = node[i4], t8 = node[i4 + σ].15: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t1 + ct5,t6 − ct6,t7 + ct7,t8 − ct8,t5 .16: IF ( G > G∗ and feasible )17: LET G∗ = G.18: LET (i∗
1
, i∗

2
, i∗

3
, i∗

4
, σ∗) = (i1, i2, i3, i4, σ).19: Output: IF (G∗ > Gmin) THEN20: RETURN (i∗

1
, i∗

2
, i∗

3
, i∗

4
, σ∗).The resulting string-exhange move is pσ∗

i∗
1
,i∗

2
◦ p−σ∗

i∗
2
,i∗

1
◦ pσ∗

i∗
4
,i∗

3
◦ p−σ∗

i∗
3
,i∗

4
. In our im-plementation, the exhanged strings have to onsist of ustomer nodes only.Therefore, the feasibility hek in step 16 redues to a omparison of the de-mands of the strings with the residual apaities of the two tours.4.6 The k-Opt and k-Opt* NeighborhoodsWe now onsider the generalization of 2-opt* moves to k-opt* moves with k >

2. A k-opt move deletes k di�erent edges from a (giant) tour and inserts k otheredges so that the result is a Hamiltonian yle. k-opt* moves allow that thenew solution deomposes into at most k subtours. The new solution an bere-interpreted as a new tour plan x′ of the VRP if and only if eah subtourontains at least one depot node.Given a k-opt* move m and a tour plan x ∈ X, the symmetri di�erene of xand m(x) an be interpreted as the result of one or several sequenes where in-ident edges of the solution graph are subsequently deleted and added. Everysequene forms a so-alled alternating yle. If a move an be representedas one sequene it orresponds to a single alternating yle. Otherwise, itorresponds to multiple alternating yles. If a move orresponds to a singlealternating yle, it an be deomposed into yli independent partial movesof the add-delete type desribed above. Otherwise, other yli independentmove deompositions may exist, but give rise to more omplex implementa-tions of sequential searh that are beyond the sope of this paper. All k-opt*moves with k ≤ 3 an be represented by single alternating yles. This isnot the ase for k ≥ 4. Therefore, only a subset of the k-opt* moves an befound using sequential searh with the delete-add moves desribed above. For16



a more detailed analysis of the so-alled single alternating yle neighborhoods,see Funke et al. (2004).4.6.1 The 3-Opt and 3-Opt* NeighborhoodAll types of 3-opt and 3-opt* moves de�ne single alternating yle neighbor-hoods, i.e., deleted and added edges of these moves form a single alternatingyle C = (t1, t2, t3, t4, t5, t6, t1), where {t1, t2}, {t3, t4}, {t5, t6} are removedfrom the urrent giant tour x and {t2, t3}, {t4, t5}, {t6, t1} are added to the re-sulting tour. Assuming that the nodes t1, t3 and t5 with odd indees are at posi-tions i1, i2 and i3, all 3-opt* moves deompose intomσ1,σ2,σ3

i1,i2,i3 = pσ1

i1,i2◦p
σ2

i2,i3◦p
σ3

i3,i1 .Figure 5 visualizes the above desription. Again, the deomposition is yli-
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i2 i -12
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i3
t5

i -13

¾ = +11 ¾ = -13

¾ = -12Fig. 5. Example of a 3-Opt* Move. Move depited here produes two Subtours.independent. The sequential searh algorithm is now easy to formulate:Algorithm 10 Sequential Searh for 3-Opt*1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: σ1 ∈ {−1, +1}5: LET t1 = node[i1], t2 = node[i1 + σ1].6: LET B1 = ct1,t2 − G∗/3.7: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B18: σ2 ∈ {−1, +1}9: LET i2 = pos[t3], t4 = node[i2 + σ2].10: LET B2 = ct1,t2 − ct2,t3 + ct3,t4 − 2G∗/3.11: LOOP t5 ∈ NL(t4) as long as ct3,t4 < B212: σ3 ∈ {−1, +1}13: LET i3 = pos[t5], t6 = node[i3 + σ3].14: LET G = ct1,t2 − ct2,t3 + ct3,t4 − ct4,t5 + ct5,t6 − ct6,t1 .15: IF ( G > G∗ and feasible )16: LET G∗ = G.17: LET (i∗
1
, i∗

2
, i∗

3
, σ∗

1
, σ∗

2
, σ∗

3
) = (i1, i2, i3, σ1, σ2, σ3).18: Output: IF (G∗ > Gmin) THEN19: RETURN (i∗

1
, i∗

2
, i∗

3
, σ∗

1
, σ∗

2
, σ∗

3
).The feasibility hek is di�ult to implement: The three positions i1, i2, i3and diretions (σ1, σ2, σ3) split the giant tour into three segments. One orseveral subtours are built by onatenation and one has to hek whetherthese subtours form one or several feasible VRP tours. Additional legitimayonditions have to be heked in step 15. They require that all added anddeleted edges are disjoint. However, Setion 4.8 will show that heking the17



feasibility of the onatenation of several tour sub-paths an always be donein onstant time.
4.6.2 Or-Opt and Reloation NeighborhoodsOr-opt and reloation moves are speial 3-opt moves, whih reloate a shortsegment, i.e., a segment is �rst removed and subsequently inserted at di�erentposition in the (giant) tour. While in a reloation move, whih is also alled
2.5-opt in Bentley (1992); Johnson and MGeoh (1997), the short segment isrestrited to ontain a single node, Or-opt moves (Or, 1976) reloate a stringof length k, typially with k ∈ {1, 2, 3}. Hene, for �xed k the neighborhood isquadrati of size O (k ·n2). The move deomposes into mor−opt

i1,i2,i3 = p+1
i1,i2 ◦ p+1

i2,i3 ◦
p+1

i3,i1 .
t3t4

t1

i1
t2

i +11

i2i  +12

t5

i3
t6

i +13

Fig. 6. Priniple of an Or-Opt Move. At least one Segment has to be short, w.l.o.g.the Segment (t2, . . . , t5).
Searhing for a best neighbor solution x′ ∈ N (x) in the Or-opt (resp. relo-ation, k = 1) neighborhood has to take the asymmetry into aount, i.e.,that the length of one of the segments does not exeed k. Without loss ofgenerality one an assume that the segment (t2, . . . , t5) is short, whih meansthat i3 ∈ {i1 + 1, . . . , i1 + k} or equivalently i1 ∈ {i3 − k, . . . , i3 − 1} holds, seeFigure 6. As before, the gain riterion tells us that for an Or-opt move to beimproving, at least one of the three partial moves must have a positive gain,i.e., g(p+1

i1,i2 , x) > 0 or g(p+1
i2,i3 , x) > 0 or g(p+1

i3,i1 , x) > 0. This an be used inthree di�erent loops leading to the following algorithm.18



Algorithm 11 Sequential Searh for Or-Opt1: Input: x ∈ X; Gmin ∈ R minimum gain.2: LET G∗ = Gmin.3: LOOP i1 ∈ {1, 2, . . . , n},4: LET t1 = node[i1], t2 = node[i1 + 1], B1 = ct1,t2 − G∗/3.5: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B16: LET i2 = pos[t3], t4 = node[i2 + 1].7: LOOP i3 ∈ {i1 + 1, . . . , i1 + k}8: LET t5 = node[i3], t6 = node[i3 + 1].9: ... Steps 14�17 of Algorithm 1010: LOOP i2 ∈ {1, 2, . . . , n},11: LET t3 = node[i2], t4 = node[i2 + 1], B1 = ct3,t4 − G∗/3.12: LOOP t5 ∈ NL(t4) as long as ct4,t5 < B113: LET i3 = pos[t5], t6 = node[i3 + 1].14: LOOP i1 ∈ {i3 − k, . . . , i3 − 1}15: LET t1 = node[i1], t2 = node[i1 + 1].16: ... Steps 14�17 of Algorithm 1017: LOOP i3 ∈ {1, 2, . . . , n},18: LET t5 = node[i3], t6 = node[i3 + 1].19: LOOP i1 ∈ {i3 − k, . . . , i3 − 1}20: LET t1 = node[i1].21: IF ct5,t6 − ct6,t1 > G∗/3 THEN22: LET t2 = node[i1 + 1].23: LET B2 = ct5,t6 − ct6,t1 + ct1,t2 − 2G∗/3.24: LOOP t3 ∈ NL(t2) as long as ct2,t3 < B225: LET i2 = pos[t3], t4 = node[i2 + 1].26: ... Steps 14�17 of Algorithm 1027: Output: IF (G∗ > Gmin) THEN28: RETURN (i∗
1
, i∗

2
, i∗

3
).Note that the inner loop in step 7 (resp. 14, 19) implies only a onstante�ort O (k) = O (1). Therefore, eah of the three bloks requires O (n2) op-erations in the worst-ase, but fewer operations on average due to the gainriterion. The feasibility test has to hek the legitimay ondition for Or-optmoves in all three bloks. This means that the positions i1, i2 and i3 ful�lleither i1 < i3 < i2 or i3 < i2 < i1 or i2 < i1 < i3.4.7 Other NeighborhoodsThe report Funke et al. (2003) shows that node-ejetion-hains and yli-transfers are additional examples of yli-independent and ost-independentneighborhoods. Hene, the gain riterion and sequential searh are appliable.4.8 Feasibility Cheking in Constant TimeAll CVRP moves presented in this setion an be desribed as edge exhanges,i.e., the splitting of the giant tour into ℓ ≥ 2 segments and the onatenationof (possibly inverted) segments to one or several subtours of the giant tour. Fora subtour to be feasible, it has to ontain at least one depot node. In order tohek whether a segment S = (t, . . . , t′) ontains a depot node, one performs alinear time preproessing to build a vetor tour, whih gives, for eah node t,19



the orresponding tour index in the giant tour. Hene, S = (t, . . . , t′) ontainsa depot if one of the endpoints t or t′ is a depot node or tour[t] 6= tour[t′].The feasibility of the onatenation of segments S1, S2, . . . , Sℓ depends onthe aumulated demand in eah subpath joining two depot nodes. Assume(w.l.o.g) that S1 ontains a depot and that Sp, p ∈ {2, . . . , ℓ} is the nextsegment, whih also ontains a depot node (if all remaining segments do notontain a depot, let Sℓ+1 := S1 and p = ℓ + 1). Now, the onatenation of
S1, S2, . . . , Sp is feasible w.r.t. the vehile apaity if
• the aumulated demand qend(S1) from the last depot ontained in S1 tothe last node of S1,
• plus the sum of the aumulated demands qall(Sq) along the segments Sq,

q ∈ {2, . . . , p − 1},
• plus the aumulated demand qstart(Sp) from the �rst node of Sp to the �rstdepot ontained in Spdoes not exeed the vehile apaity, i.e., qend(S1)+

∑p−1
q=2 qall(Sq)+qstart(S1) ≤

Q holds. In order to have onstant-time aess to the above values, we proposeto build two vetors qs and qe, indexed by the nodes V of the giant tour, on-taining the following values: qs[t] is the aumulated demand (aumulatedalong the giant tour) of the path starting at node t and ending at the nextsueeding depot node. Similarly, qe[t] is the aumulated demand of the pathstarting at the last depot node, whih preedes node t, to node t. The ompu-tation of the vetors qs and qe requires linear time only when nodes are on-sidered in asendind/desending order of the giant tour. For any segment S =
(t, . . . , t′) one has qstart(S) = qs[t] and qend(S) = qe[t′]. If S does not ontain adepot node, then qall(S) = qs[t′]−qs[t]+qt = qe[t]−qe[t′]+qt′ holds. With tour,
qs and qe a priori omputed, the onatenation of S1, . . . , Sp an be hekedin onstant time. Subsequent onatenations of segments Sp, Sp+1 . . . , Sk anbe handled analogously, so that the overall feasibility hek requires onstanttime only.It is worth to mention that the same kind of tehniques allow onstant-timefeasibility heks for the DCVRP. The only di�erene to the CVRP is thatone has to onsider inter-onnetion times and distanes in the onatenationof segments.5 Computational ResultsThe following omputational results are based on a large number of ran-domly generated large-sale CVRP instanes. We have examined the run-ning time of sequential and lexiographi searh algorithms, the impat of20



best-improvement and �rst-improvement stopping rules on running time andsolution quality, and similarly, the impat of using andidate lists.
5.1 Test InstanesThe benhmark instanes are generated by varying the number of ustomers,the ustomer distribution within the Eulidian plane, the demand distributionof ustomers, and the vehile apaity. Altogether there are 600 instanesgrouped into 10 series of 60 instanes eah. Any series inlude instanes of 15di�erent sizes, i.e., number n = |N | of ustomers, ranging from n = 250 to
n = 2500. For eah size there are four di�erent demand distributions. Table 1summarizes the series. Customers i ∈ N are loated at integers point (xi, yi) ofSeries Loation (xi, yi) Demand qi Capaity Quniform from uniform from1 [−100, +100]2 [10, 30] {500, 1000, 1500, 2000}2 [−100, +100]2 [10, 50] {750, 1500, 2250, 3000}3 [−100, +100]2 [10, 90] {1250, 2500, 3750, 5000}4 [−100, +100]2 [1, 99] {1250, 2500, 3750, 5000}5 [−100, +100]2 [90, 110] {2500, 5000, 7500, 10000}6 [−1000, +1000]2 [1, 1] {25, 50, 75, 100}7 [−1000, +1000]2 [1, 3] {50, 100, 150, 200}8 [−1000, +1000]2 [50, 150] {2500, 5000, 7500, 10000}9 [−1000, +1000]2 [8, 12] {250, 500, 750, 1000}10 [−1000, +1000]2 [100, 300] {5000, 10000, 15000, 20000}Table 1Generation of CVRP Test Instanes, Distribution of Customers and Demands,Choie of Capaitiesthe 2-dimensional Eulidian plane using uniform numbers from [−100, +100]2or from [−1000, +1000]2.The ost cij is the Eulidian distane rounded to the next integer, as de-sribed in Reinelt (1991). The demands qi are generated using di�erent in-teger uniform distributions as, e.g., demands in a small range [90, 110], orin a wide range [1, 99], or unit demands with qi = 1 for all i ∈ N . Thevehile apaity Q is determined by multiplying the average demand by fa-tors f = 25, 50, 75, and 100. Hene, the generated instanes have an aver-age number of f ustomers on eah tour. All instanes are also available atwww.dpor.rwth-aahen.de/vrp-instanes.21



5.2 Relative SpeedupThe �rst part of the omputational study ompares the times for searhing theneighborhoods disussed in Setion 4 with either a sequential searh or a lex-iographi searh algorithm. The omparison is based on �rst omputing fourdi�erent starting solutions for eah of the 600 instanes using a parametrizedsavings algorithm, see Clarke and Wright (1964) and Paessens (1988).For eah of the starting solutions a loal optimum w.r.t. all neighborhoods isomputed in the following way. Given the urrent solution x, one searhes fora best improving 2-opt neighbor solution x′ ∈ N (x). This is done by applyingboth the sequential and the lexiographi searh variant of the 2-opt algorithmto the urrent solution x. If an improving neighbor is found, it beomes the newurrent solution x. Next, the remaining neighborhoods, i.e., 2-opt*, swap, relo-ation, Or-opt, and string-exhange, are searhed in the same manner. Then,2-opt will be repeated and so on. Sequential and lexiographi algorithms arealways ompared using the same urrent solution x. If the orresponding gainis positive, the move is performed. (Note: Sequential searh and lexiographisearh algorithms do not neessarily �nd the same neighbor with maximumgain due to degeneray. The next iteration was always ontinued with the se-quential searh solution.) The whole run terminates when a solution is foundwhih annot be improved by any neighborhood under onsideration. Thissearh strategy is alled variable neighborhood desent (VND, see Mladenovi¢and Hansen (1997); Hansen and Mladenovi¢ (2001, 2002)). In order to makethe searh more symmetri, we deided to perform the neighborhood seletionin a yli way (whih is in fat a small variation of VND).All algorithms were oded in C++, ompiled in release mode (using MS VisualStudio 6.0), and run on a standard PC (Intel x86 family 15 model 2, 2.4 GHz,1GB main memory, on MS-Win 2000).Figure 7 depits the aeleration fator, i.e., the ratio of the time spent in lex-iographi searh divided by the time of sequential searh, for eah of the sixquadrati neighborhoods under onsideration. Eah point (=fator) in the di-agram orresponds to a �xed pair of size n and average number f of ustomersin a tour. It is omputed onsidering several thousands of runs (10 series, 4starting solutions, from 35 up to 500 iterations). Note that we have hosenthe maximum string length k = 3 for Or-opt and reloation neighborhoods.All six diagrams show that there is a substantial speedup when the lassiallexiographial searh approah is replaed by a sequential searh proedure.The most remarkable insight is that for all neighborhoods onsidered, theaeleration fator mainly depends on the average number f of ustomers in aroute. The smaller f is, the more onstrained is the problem instane and the22
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threshold (never below fator 20 for f = 25). The derease of the aelerationfator with inreasing n depends on the hek in step 10 of Algorithm 8. In anearlier implementation, with orresponding results presented in Irnih et al.(2004), we forgot to prune the searh aording to the riterion B2 > 0. As aresult, the aeleration fator was nearly onstant for �xed f , but substantiallysmaller. It is an open researh problem why the behavior di�ers for the typesof neighborhoods we onsidered.Sine the lexiographi searh for improving 3-opt* neighbors is too time-onsuming, we modi�ed the omputational tests in the following way. The3-opt* searh proedures are only applied to urrent solutions whih are lo-al optima w.r.t. all other (quadrati) neighborhoods. If an improving 3-opt*neighbor is found, the searh is again direted to determine a loal optimumof the quadrati neighborhoods. Consequently, the number of omputation-ally ostly searhes within the 3-opt* neighborhood is small in omparisonto the number of searhes in the quadrati neighborhoods. However, due tothe fast growing e�ort of lexiographi searh in the 3-opt* neighborhood, weonsidered instanes with n ≤ 500 only. Results for the 3-opt* neighborhoodare depited in Figure 8. The aeleration fator is between 300 for f = 25
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�ndings were the following. Starting from a random solution, FI omputesbetter results that BI. Conversely, starting loal searh from a given greedyor nearest-neighbor solution, BI is better and faster than FI on average.Here, we will analyze the running time and solutions quality for both strategiesapplied to savings solutions of the CVRP. We use the 40 di�erent instaneswith n = 1000 ustomers (10 series, f = 25, 50, 745, 100) and ompute 18(di�erent) starting solutions using a parametrized savings algorithm. Startingwith the same initial solutions, BI and FI are separately applied in 2-opt,2-opt*, swap, reloation, Or-opt, and string-exhange loal-searh proeduresuntil a loal optimum to all neighborhoods is found.First, in ontrast to the results of the previous setions, the value of f has nosigni�ant impat on the solution quality or running time omparing BI andFI. In about 85% of all 720 ases, FI was faster than BI. However, the averagerunning time of BI (=14.1s) exeeds the average running time of FI (=12.9s)by only 9%. The reason for this is that eah iteration of the FI loal searhtakes less time, but more iterations are needed to reah a loal optimum.In 55% of the ases, BI was better than FI. On average, BI terminates in a loaloptimum 3.11% and FI 3.18% above the best known solution. This averageimprovement of BI over FI of 0,07% is small. Hene, the results of Hansen andMladenovi¢ (1999) of the STSP annot be projeted to the CVRP.
5.5 Candidate ListsIn order to further aelerate loal searh one might use andidate listsNLK(t)instead of a omplete neighbor list NL(t) ontaining all nodes V \ {t}. Withthe same setup as in Setion 5.4, we ompare implementations using andidatelists NLK(t) with K ∈ {10, 20, 40, 80} and a omplete neighbor list NL(t),i.e., K = n + F − 1. The tradeo� between running time and solution qualityis measured by omparing the average running time avg time (until a loaloptimum w.r.t. all quadrati neighborhoods is found) with the average ratio
obj−best

best
. Herein, obj is the ost of the omputed loal optimum and best the ostof the best known solution of the instane. Figure 10 shows the results. Usingandidate list of moderate size an further redue the running time, whilethe solution quality dereases slowly. For instane, for K = 40 and n = 1000ustomer instanes under onsideration, the time redues on average by 60%ompared to the full neighbor list implementation and the loss in solutionquality is about 0.1%. 26
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