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Abstract

Local search is the most frequently used heuristic technique for solving combinatorial
optimization problems. It is also the basis for modern metaheuristics, like, e.g., Tabu
Search, and Variable Neighborhood Search. The paper introduces sequential search
as a generic technique for the efficient exploration of local-search neighborhoods. One
of its key concepts is the systematic decomposition of moves, which allows pruning
within local search based on associated partial gains. The application of theoretical
concepts to several well-known neighborhoods of the vehicle-routing problem (VRP)
is demonstrated. Computational tests show substantial speedup factors, e.g., up to
10000 for the 3-opt* neighborhood. This underlines the superiority of sequential
search over straightforward techniques in the VRP context.
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1 Introduction

Local search is the most frequently used heuristic technique for solving combi-
natorial optimization problems. It is also the basis for modern metaheuristics,
like, e.g., Tabu Search and Variable Neighborhood Search. Most of the effort
spent within a local-search algorithm is used for scanning the neighborhood,
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i.e., the set of solutions close to the current solution. It is, therefore, desirable
to use efficient algorithms within local search to speed up the subroutine that
performs the scan.

Sequential search is a technique that allows neighborhoods within local-search
algorithms to be investigated in a highly efficient way. It was discovered
independently in the 1970’s by Christofides and Eilon (1972) and Lin and
Kernighan (1973) in algorithms for the traveling-salesman problem (TSP) and
the graph-partitioning problem, Kernighan and Lin (1970). Although the Lin-
Kernighan algorithm and its extensions still belong to the best heuristics for
solving TSPs, little attention has been paid to applying sequential search to
other problems. This might be attributed to the fact that the definition of a
sequential search algorithm for a given neighborhood is not a straightforward
task and that the principle requires some assumptions that are not met for all
kinds of problems and neighborhoods.

In this paper we give a generic description of sequential search and show when
and how it can be applied within local-search algorithms. As an example we use
classical neighborhoods of the capacitated vehicle-routing problem (CVRP).
The CVRP is a good candidate to study, since it is more constrained than
the TSP and much more difficult to solve in practice. The intention of the
paper is not to present a new and better algorithm for the CVRP. Instead,
the paper presents sequential search as a generic technique. It is compared to
traditional algorithms for the exploration of the neighborhood, which one can
characterize as lexicographic search approaches.

The paper is structured as follows. In Section 2, we define the CVRP and
review classical and some recent papers on this problem. Section 3 introduces
the concepts and terminology of local search. Based on the definition of moves,
move decompositions, and gains, a generic description of lexicographic search
and sequential search is provided. In Section 4, the general principles of lexico-
graphic and sequential search are applied to different, classical, neighborhoods
of the CVRP. This enables a direct comparison between the two methods. In
order to show the effectiveness of sequential search, we provide computational
results for implementations of both lexicographic and sequential search al-
gorithms for the different neighborhoods of the CVRP in Section 5. Final
conclusions are given in Section 6.

2 The Capacitated Vehicle-Routing Problem

The CVRP is one of the basic problems of vehicle routing. In this paper, we
study the undirected version of the problem. Let N be a set of customers
and 0 a depot. Define the undirected graph G = (V, E), where V' = NU{0} is



the node set and E is the edge set. A tour R = (vg,v1,...,Up, vps1) is a cycle
in GG, which starts at the depot vy = 0, visits the customers vy,...,v, € N,
and ends at the depot vy1; = 0. Every customer ¢ € N has a positive integer
demand g;. The demand must be satisfied by a set of F identical vehicles with
positive integer capacity Q. A tour is (capacity-)feasible if ¥°_, q,, < Q, i.e., if
the total demand of the customers does not exceed the capacity of the vehicle.
Let the cost of using edge {i,j} € E be ¢;;. Then the cost of a tour R is
¢(R) = S5 o Coimin- A set {RY, ... RF} of F tours is a tour plan if it covers
each customer exactly once. A tour plan is feasible (i.e., it provides a feasible
solution to the CVRP) if all of its tours are feasible.

A variant of the CVRP is the distance constrained VRP (DCVRP). In the
DCVRP demand is associated with edges, see e.g. Li et al. (1992). Denote
by ¢;; the travel time/distance of traversing edge {i, j} and by ) the mazimum
travel time/distance. A tour R = (vg,v1,...,0,Up11) is (travel-time-)feasible
if g(R) = Y50 uw, < Q holds. Given the number F of vehicles, the fea-
sibility problem of a CVRP is equivalent to solving a bin-packing problem,
see e.g. Toth and Vigo (1998). However, in cases where travel-time-feasibility
is relevant, no such correspondence exists. Two conflicting objective functions
have been studied for the CVRP and DCVRP: minimizing the number of tours
and minimizing costs. In this paper we only consider cost minimization, i.e.,
the objective function ¢(RY,..., RF) = SF_| ¢(R¥). For the sake of brevity,
the paper mainly focuses on the presentation of the CVRP, but all search
techniques are also applicable to the CVRP with distance constraints.

The CVRP is one of the most studied problems in combinatorial optimization.
Since its first description by Dantzig and Ramser (1959), numerous papers
have been published describing models, algorithms, and extensions. Starting
in the 1960’s with the well-known savings algorithm by Clarke and Wright
(1964), the development of so-called classical heuristics continued until the
1980’s. These heuristics are classified, described and empirically studied in
the paper by Laporte and Semet (2002). Better solutions to the CVRP can be
obtained with metaheuristics. Classical papers are the ones by Taillard (1993),
Osman (1993), Gendreau et al. (1994), and Rochat and Taillard (1995). The
main drawback of these algorithms is the heavy computational effort required
to get good solutions and the large number of parameters that have to be
adjusted. As pointed out in Cordeau et al. (2002), the goal has now switched
towards obtaining good solutions for larger instances consistently within an
acceptable time limit using metaheuristics with a small number of parameters.
Recent algorithmic developments by, e.g., Cordeau et al. (2001) and Toth and
Vigo (2003) support this trend. An overview of metaheuristics for the CVRP
can be found in the paper by Gendreau et al. (2002).

Exact solutions to the CVRP are obtained by branch-and-bound and branch-
and-cut algorithms. Branch-and-bound algorithms are based on different re-



laxations, sometimes within an additive bounding scheme. An overview of
different approaches can be found in the paper by Toth and Vigo (2002a). Re-
cently, some advances have been made with LP-based models embedded within
the branch-and-cut-scheme. An overview is given in the paper by Naddef and
Rinaldi (2002). A promising branch-and-price-and-cut approach is reported
in Fukasawa et al. (2003). However, none of these exact methods can consis-
tently solve instances with more than 100 customers. Therefore, heuristics and
metaheuristics are required for solving larger instances.

3 Local Search

Combinatorial optimization problems can be stated as min,ex ¢(z), where X
is the set of feasible solutions and ¢ the cost function. For practically relevant
instances of AP -hard combinatorial optimization problems, the set X is in
general too large to be searched exhaustively. One of the most popular tech-
niques for searching a subset of feasible solutions is local search. Local search is
a general heuristic approach that starts with a feasible solution as the current
solution and iteratively replaces the current solution by a better and similar,
so-called neighbor solution, until no better neighbor solution can be found.

The heart of a local-search procedure is the definition of a neighborhood N,
which is a mapping N : X — 2% : N(z) C X. Each element 2’ € N (z) is
called neighbor of x. Neighbors x’ with cost c¢(z') < ¢(x) are called improving
neighbors. Local search starts with an initial feasible solution 2° € X. In
each iteration t it replaces the current solution z' by an improving neighbor
't e N(xt), if such an improving neighbor exists. The local-search procedure
terminates with a local optimum, i.e., a solution z for which the neighorhood
N (z") contains no improving solution.

Algorithm 1 Generic Local Search

: Input: A feasible solution z° € X. LET ¢ = 0.
REPEAT
SEARCH for an improving neighbor z’ in the neighborhood N (x?) of the current solution zt.
IF there exists an improving neighbor solution z’ € A/ (z?),
THEN LET z'*t! =2’ and t =t + 1.
UNTIL no more improvements can be found.

Output: A local optimum z¢.

N OO WN

For further details of local search, we refer the reader to the books of Aarts
and Lenstra 1997 and Rayward-Smith et al. 1996.

There are several options for choosing improving neighbor solutions in step 3. If
the search method is enumerative (i.e., neighbor solutions 2’ € A (z') and their
costs c(x') are evaluated one after another), taking the first improving solution
or taking a best improving solution are two extreme strategies known as first



improvement and best improvement. Another well-known strategy, called d-
best improvement, terminates the search when d improving neighbor solutions
have been found. Then the best solution from this set is taken as the next
solution. From the worst-case point of view, all search strategies are equivalent,
since showing that the last 2! is a local optimal solution requires the entire
neighborhood N (z") to be scanned.

3.1 Moves and their Decomposition

Neighborhoods are often defined implicitly by a set of moves. A move m trans-
forms a solution into a neighbor solution. Some of the moves m € M might
transform a feasible solution x into an object m(z), which has a structure
similar to a feasible solution, but does not necessarily satisfy all constraints
that define feasible solutions. In the following, we will call such an object a
solution. An example in the case of the VRP is the swap of two customers
between two tours, which might violate a capacity constraint.

For a formal definition of a mowe, it is helpful to consider the set of all solutions,
Z O X. In general, we denote by M the set of moves where a move m € M is
a map from Z to itself, i.e., m : Z — Z. From the above discussion it is clear
that a move m maps solutions to solutions. For a given x € Z, the extended
neighborhood contains all neighbors of x, either feasible or infeasible. Every
move, m € M, with m(z) € X is called a feasible move w.r.t. z.

In order to analyze moves, we will decompose them into smaller parts, the so-
called partial moves. A given decomposition m = pyo...opyop; of a move m
into ¢ > 2 partial moves pq, po, ..., p, means that an x € Z is first transformed
to p1(x), second pp(x) is transformed to py(p;(x)), and so on. Note that the
decomposition of a move into partial moves is not uniquely defined by the
move itself. In general, there exist various decompositions for the same move,
differing in the number ¢ of stages and the structure of the partial moves. In
the case of the VRP, there exist two basic types of partial moves. They are
the building blocks of more complex (partial) moves, which we will consider
9dd adds the edge {i,j} to the current solution and

later. The partial move pf;
the partial move p deletes the edge {k,(} from the current solution.

3.2 Costs and Gains of (Partial) Moves

Recall that ¢(z) is the cost of a solution € Z. We denote the gain of move
m € M applied to solution = € Z by g(m,x) = ¢(x) —c(m(x)). For the CVRP,
the gain g(m, x) only depends on the added and deleted edges and thus only
on the symmetric difference of x and m(x). In order to implement efficient



pruning rules in LS, it is necessary to allocate a gain g(p;, ) to each of the
partial moves p;, i = 1,...,/, depending only on the current solution x and
not on the intermediate solutions generated by the partial moves py,...,p;_1.
Let the move m € M be decomposed into the partial moves pyo ... o ps o p;.
For efficiency reasons it is desirable that the gain of a move m is the sum
of the gains of its partial moves pi,...,ps. A corresponding decomposition
m =ppo...0pyoppis called cost-independent if

L

g(m,z) =" g(p;, x) (1)

i=1

holds. If the equality is not fulfilled for all decompositions, then sufficient con-
ditions, which guarantee (1) can be defined. These are referred to as legitimacy
conditions, cf. Glover (1992). For instance, legitimacy conditions can require
that only compatible subsets of partial moves occur simultaneously or restrict
the ordering of partial moves.

The decomposition m = p; o ... 0 py o py is order-independent if m(z) =
Pr(1) © - - - O Dx(2) © Px(1y(x) holds for all solutions # € Z and all permutations 7
of {1,2,...,1}. Tt is called cyclic-independent if the same holds only for cyclic
permutations 7. We will show below that cyclic-independent move decompo-
sitions are essential in the development of efficient search algorithms.

3.3 Search Techniques

In this paper we study two generic search techniques, lexicographic search
and sequential search. In order to explain both approaches, we consider the
following generic search problem: A neighborhood N(z) of size O (n*) is im-
plicitly given by moves m with {1,142, ...,1;} a subset of {1,...,n} of
cardinality k.

11,8250k

3.3.1 Lexicographic Search

A natural way to determine the k different elements i1 < in < ... < i
is to implement k nested loops. The first loop considers the elements i; €
{1,...,n}, the second loop the elements iy € {i; + 1,...,n}, and, in general
the p-th loop the elements i, € {i,_1+1,...,n}. The iterator of an inner loop
is always larger than the iterator of an outer loop, i.e., 4,41 > 4; holds for all
I €{1,...,n—1}. Hence, this approach is referred to as lezicographic search.



Algorithm 2 Generic Lexicographic Search

1: Input: z € X; Gnin € R minimum gain.

2: LET G* = Gmin-

3: LOOP i € {1,2,...,n}

4: LOOP iy € {i1 +1,2,...,n}

5:

6: LOOP i € {ig—1+1,2,...,n}

7: IF (myy,... 5 (x) € X AND G* < g(miy,..i,2) )
8: LET G* = g(miy,... i, T)-

9: LET (37,43, ... ’L)—(’Ll,lg,...,ik).

10: Output: IF (G* > Gyin) THEN RETURN (i} )

The above search algorithm finds the best (w.r.t. the objective ¢), not neces-
sarily improving neighbor solution 2/ € A(x). With an aspiration level given
by a minimum gain G,,;, = 0, the algorithm either finds an improving neigh-
bor 2/ = My gx it (x) or returns the information that no such solution exists,
ie., G*=0.

Step 7 of Algorithm 2 checks whether the neighbor solution is feasible and
improving. In order to obtain an efficient search algorithm, it is crucial that
the feasibility check and the computation of the gain can be done in constant
time. Therefore, a preprocessing for computing additional aggregated infor-
mation (about substructures of the current solution x) might be necessary to
guarantee an O (n¥) algorithm. We will come back to this important issue in
Section 4.8.

3.3.2  Sequential Search

Cyclic-independent neighborhoods are closely linked to the concept of se-
quential search, first developed by Christofides and Eilon (1972) and Lin and
Kernighan (1973). The basic idea of this approach is to consider all relevant
partial moves of a cyclic independent neighborhood recursively. Sequential
search accelerates the search for an improving neighbor solution by pruning
the search as early as possible so that (on average) only a small fraction of
the entire neighborhood has to be scanned. Pruning is based on an evaluation
of partial moves and their corresponding partial gains.

For the description of sequential search we assume that all moves m; , .
have a cyclic-independent and cost-independent decomposition into k£ partial
moves, according to m; ;. =p; ; op; ;. 0...0p, ;. op, ;.. In the case of
k = 3, it means that m; , .. decomposes into p; ; op;, ;. OP; i = Piy iy OPi i, ©
Disiy = DPiy iy ©Pig.ir OPiy i5- SUch a decomposition seems complicated at first, but
it makes sense for many types of moves: Typically the gain of a move m; , .
does not depend directly on the individual indices 4;, [ = 1,2,...,k, but on
combinations of consecutive indices, i.e., (i;,4;41) for j =1,...,k (With the
definition jx1 = 71). Examples are partial moves Dijijn where one element i;
replaces another element 7, so that the partial gain g(pijyijﬂ, x) depends on



both, i; and 4;,,. This sequential arrangement of indices has motivated us to
call the search technique that exploits this property sequential search.

The attractiveness of sequential search in cyclic- and cost-independent neigh-
borhoods is due to the following theorem of Lin and Kernighan (1973):

Theorem 1 If a sequence of numbers (gi)le has a positive sum Zle g; > 0,
then there is a cyclic permutation w of these numbers such that every partial
sum s positive, i.e., St_, Gr(i) > 0 for all 1 < 0 < k.

The theorem implies that all improving moves m; ;. can be constructed as
a sequence of partial moves, where the sum of the partial gain is positive for
all sub-sequences. The direct implication is that at stage 1 of the search, we
need only consider partial moves with a positive gain, i.e., g(p; ;,,7) > 0
or g(ps,i,x) > 0 or ...g(p; ;,x) > 0. The cyclic-independence and the
symmetry of the decomposition allow us to re-formulate this condition to
9(ps, i, T) > 0. Note that one can always exchange the indices in a cyclic way
such that the first pair is denoted by (i1,42). However, we can no longer pos-
tulate 71 < i5. In general at stage p, one can restrict the search to those partial
moves p; ; . having g(p; ; ,2) > —Gp1, where G, = st 9(Piiy,,» ) 18
the accumulated partial gain of the preceding stages. Thus, the total gain G,
at stage p—1 limits the choice of a partial move at stage p. Lin and Kernighan
refer to this rule as the gain criterion.

An implementation of the gain criterion has to guarantee that the pruning of
the search for promising partial moves can be performed efficiently. At stage p,
where i1,149,...,7,_1 are known, the new index 4, has to be chosen such that
9(p;, 14,»%) > —Gp_1 holds. For some neighborhoods, the limitation of the
search can be done on-the-fly. For typical routing neighborhoods, the search
for promising i, is performed with help of a neighbor list associated with 7,_;.
The neighbor list NL(i,_;) is a data structure which stores elements i, by in-
creasing values of g(pipimp, x). Neighbor lists are computed in a preprocessing
step, i.e., before LS is started. The following algorithm summarizes the above
description of sequential search.

Algorithm 3 Generic Sequential Search

1: Input: z € X; G € R minimum gain.

2: LET G* = Gumin.

3: LOOP i € {1,2,...,n}

4: COMPUTE B; (based on i1).

5: LOOP iz € NL(i1) as long as g(p; ;%) > B1

6: COMPUTE By (based on g(p;, ,,,®) and i2).

7: LOOP i3 € NL(i2) as long as g(pil‘h,x) + g(piZ‘ig,x) > Ba

8:

9: COMPUTE Bj_1 (based on Z;:f g(pil il“,:c) and ig_1).
10: LOOP i € {ix—1 +1,2,...,n} as long as z;:ll g(pik‘ikﬂ,z) > Br_1
11: IF ( Miq ..., ik (Z) € X AND g(mil ,,,,, ik,fE) > G* )
12: LET G* = g(miy,... i, T)-

13: LET (’L'T,’L;,...,i;;)Z(il,ig,...,ik).



14: Output: TF (G* > Gmin) THEN RETURN (47,45, ...,4%).

The crucial point for the efficiency of Algorithm 3 is the computation of the
bounds Bi, Bs,...,Bi_1 in the steps 4, 6, and 9. Bound B; takes only in-
dex 7; into account in order to limit the search for iy resp. p;, ; with positive
gain g(p;, ;,»*) > 0. In general, at stage ¢ the bound B, is computed based
on the already known partial gains and the index i,_; in order to restrict the
exploration to indices ;.

The following corollary provides two extensions of the gain criterion of Lin
and Kernighan: First, it allows to search for moves with a (not necessarily
positive) gain of at least G*. Second, whenever a feasible move with gain G*
has been found, the exploration at stage ¢ can be limited to partial moves
such that the sum of the partial gains is at least (G*/k.

Corollary 1 Given a number G*. If a sequence of numbers (g;)%_, fulfills
Zle gi > G*, then there is a cyclic permutation m of these numbers such that
for every partial sum Y/, Gr(y > LG* [k holds for all 1 < ¢ < k.

Proof: Define g, = g; — G*/k for i € {1,...,k} and use Theorem 1

for the sequence (g/)%_,. o

4 Neighborhoods and Search Algorithms for the VRP

Local-search procedures for the VRP which replace one tour plan by another
have a long tradition, see Kindervater and Savelsbergh (1997). In this section
we provide descriptions of both sequential and lexicographic search implemen-
tations for different VRP neighborhoods. Since the implementation of lexico-
graphic search is rather straightforward, we will focus on the implementation
of sequential search. In the following we will use a representation of tour plans
as Hamiltonian cycles. It allows to handle inner-tour moves (i.e., moves, which
do only change a single tour) as well as inter-tour moves (i.e., moves which
change the assignment of customers to routes) in a unifying way.

4.1 Giant Tour Representation of VRP Solutions

For the definition of neighbor solutions it is important to have a well-defined
representation of all elements z € X. This subsection formalizes the giant tour
representation for the VRP, which has also been used to represent multiple
salesman TSP, MTSP, see Bellmore and Hong (1974) and Rao (1980). Given

a tour plan with F different tours R’ = (0, v}, 05, ... 0y, 0), 1 €4{1,2,..., F},



pi € Ny, the corresponding giant tour uses F’' copies 0y, ..., 0g of the depot and
is defined as & = (0y,vf,..., 0}, 02,0%,... 02, 03,07, ...,...,0p,0f ..., 0F  0y).
Note that a giant tour representation is not unique since tours can be arbitrar-
ily permuted and inverted (in the case of symmetric problems). Any Hamil-
tonian cycle in the extended graph Gy = (Vp, Ey), with V5 ={04,...,0p}UN
and By = (E\{{0,5} : 5 e N}U{{0;,5} :i=1,....,F,j € N}U{{0;,0;} :
i,j =1,...,F i # j}, corresponds to a tour plan. The tour plan is feasible
if and only if all sub-paths between two consecutive depot nodes represent

feasible tours.

In the context of local search, we assume that a current solution z = z! is
given. In order to describe the associated giant tour, one builds two arrays of
length |Vy| which contain the following information: The array node is indexed
by positions i € {1,2,3,...,|V,|} and node[i] € V; is the node of the giant tour
at position i. For the sake of convenience, we assume that one can access the
elements in a wrap-around fashion, e.g., node[0] = node[|Vyl|], node[|Vo| + 1] =
node[1], etc. Contrarily, the array pos gives for each node t € V the current
position pos[t] € {1,2,3,...,|Vi|} of the node ¢ in the giant tour.

4.2 Construction of Neighbor Lists

For a node t € Vp, the neighbor list N L(t) stores the nodes ¢’ € V5 \{t} ordered
by non-decreasing values c;. If only the K first elements of the neighbor list
are considered, we obtain the list denoted by NL¥(¢) and call it the candidate
list of node t.

4.3 The 2-Opt* Neighborhood

By replacing two edges from the giant tour by two edges which do not belong
to the giant tour, one can construct two types of neighbor tour plans. The
union of all these neighbor tour plans define the 2-opt* neighborhood of the
current tour plan. We will now describe the two types of neighborhoods by
their corresponding moves. The first type of moves, well-known as 2-opt moves
and first described by Croes (1958), produces a Hamiltonian cycle. The second
type of moves transforms the Hamiltonian cycle into two subtours. These so-
called special 2-opt* or crossover moves are easier to describe in the context
of sequential search. We, therefore, start with their description.

10



4.3.1 The Special 2-Opt*/Crossover neighborhood

A special 2-opt™ move removes two edges and adds two incident edges in such
a way that the giant tour is transformed into two subtours. While such an op-
eration is not feasible in the TSP context, it implies a new tour plan whenever
both subtours contain a depot node. The special 2-opt* neighborhood and its
generalization of removing and adding k edges, called k-opt* neighborhood,
was first introduced by Potvin et al. (1989).

Figure 1 shows that a special 2-opt™ move is completely determined by two
positions i1, in the giant tour, since the four involved nodes t1, t5, t3,t4 are
located at the positions i1, 71 + 1, i and iy + 1. The symmetry implies a

Fig. 1. Principle of a Special 2-Opt* /Crossover Move. Deleted Edges are grey, added
Edges black.

20pt*

decomposition of the special 2-Opt* move m;, 7™ into two partial moves, i.e.,

m?fgt* = Diyip © Pigiy = Piyiy © Diyip- Lhe partial move p; . removes the tour
edge linking position 7; with 7; + 1 and adds the non-tour edge linking the
positions 4, + 1 and iy. Hence, its partial gain is g(p;, ;,, ) = Cnodelir]nodefi, +1] —
Crodeli+1],nodeliz]- Note that this decomposition is both symmetric and cost-
independent. Given position ¢; and the condition that p, , has a positive
partial gain, the search for suitable positions i can be performed using node-
neighbor lists. Let t; = nodeli;] and ty = node[i; +1]. The node t3 at position is
has to be a neighbor node of node ¢y with ¢, , < ¢, +,. Therefore, position 7;
defines a bound B; = ¢, 4, and t3 has to be found among all neighbors of ¢,
closer than B;. The following two algorithms show how the best special 2-opt*
neighbor of a given tour plan x € X can be found either using lexicographic
search or sequential search.

11



Algorithm 4 Lexicographic Algorithm 5 Sequential

Search for Special 2-Opt* Search for Special 2-Opt*

1: Input: z € X; Gpmin € R minimum gain. 1: Input: z € X; Gimin € R minimum gain.

2: LET G* = Gmin- 2: LET G* = Gnin-

3: LOOP i €{1,2,...,n} 3: LOOP i €{1,2,...,n}

4: LET ¢1 = nodeli1]. 4: LET t1 = nodeli1].

5: LET t2 = node[i1 + 1]. 5: LET t2 = nodeli1 + 1].

6: 6: LET B1 =ct,6, — G*/2.

7: LOOP iz € {i1 + 1,41 + 2,...,n} 7: LOOP t3 € NL(t2) as long as ct,,15 < B1
8: LET t3 = nodel[iz]. 8: LET i3 = pos[ts].

9: LET t4 = nodeliz + 1]. 9: LET t4 = nodeliz + 1].

10: LET G = Cty,ty — Ctg,tg T Ctg,ty — Cty,t1- 10: LET G = Cty,tg — Cto,tg T Ctg ity — Cty tq-
11: IF ( G > G* and feasible ) 11: IF ( G > G* and feasible )

12: LET G* = G. 12: LET G* = G.

13: LET (’L’{,’LS) = (i1, 12). 13: LET (’L’l‘,l;) = (i1,12).

14: OQutput: IF (G* > Gmin) THEN 14: Output: IF (G* > G,in) THEN

15: RETURN (i%,i}). 15: RETURN (i, i3).

In step 11 one has to check whether each subtour contains at least one de-
pot and the two new tours respect the capacity constraints. Note that the
computation of the bound B; uses Corollary 1 with k =2 and ¢ = 1.

4.3.2  The 2-Opt Neighborhood

A 2-opt move partitions the given (giant) tour into two segments, inverts
one of the segments, and rejoins the segments so that a new tour results.
Figure 2 shows that a 2-opt move is determined by two edges associated with

o ) . . . 20pt
the positions 7; and i5. It can be decomposed into two partial moves milg =

Fig. 2. Principle of a 2-Opt Move.

P, © Pk = Dy © Pitlys Where p? oo € {—1,+1} removes the tour edge
linking nodes at the positions ¢; and i; +0 and adds the edge between positions
11 + o and iy. In contrast to the 2-opt* move, this decomposition of the 2-
opt move is not fully symmetric. Given the partial move defined above with
the inserted edge {u,v} and the deleted edge {v,w}, the node w is either
the predecessor or the successor of v in the tour. While lexicographic search
algorithms can directly take this slight asymmetry into account, sequential
search algorithms have to handle it explicitly. The fact that either p™ or
p~! has to be improving is taken into account by a double outer loop to
determine 4; (which is the symmetric counterpart of i3) and o € {—1,+1}.
The following two algorithms illustrate the similarities and differences in the
two implementations of 2-opt lexicographic search and sequential search. They
both compute the 2-opt move pfll2 opi_;"’i} with gain at least G*, if such a move
exists.
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Algorithm 6 Sequential Algorithm 7 Lexicographic
Search for 2-Opt Search for 2-Opt

1: Input: z € X; Gpnin € R minimum gain. 1: Input: z € X; Gpin € R minimum gain.
2: LET G* = Gmin- 2: LET G* = Gmin-

3: LOOP i € {1,2,...,n}, 3: LOOP i €{1,2,...,n}

4: oce{-1,+1} 4:

5: LET t; = node[i1]. 5: LET t; = node[i1].

6: LET t2 = nodeli1 + o). 6: LET t2 = nodeli1 + 1].

7: LET By =ct, 1, — G*/2. 7:

8: TL.LOOP t3 € NL(tQ) as long as Cto,tg < By 8: TL.LOOP i5 € {il +3,i1 +4,.. .,TL}

9: LET i2 = poslts]. 9: LET t3 = nodeliz].

10: LET ¢4 = nodeliz — o). 10: LET t4 = nodeliz — 1].

11: LETG:Ct17t2 _Ctg,t3 +Ct3,t4 — Clyg,tq- 11: LET G:Ctl,tg —ctz,t3+ct3’t4 — Cty,tq-
12: IF ( G > G* and feasible ) 12: IF ( G > G* and feasible )

13: LET G* =G. 13: LET G* =G.

14: LET (i%,i%,0%) = (i1,42,0). 14: LET (if,i%,0%) = (i1, 49, +1).
15: Output: IF (G* > Gpin) THEN 15: Output: IF (G* > Gpin) THEN

16: RETURN (z’l‘, i3, o*). 16: RETURN (Z’f , 15, o*).

The feasibility check in step 12 has to distinguish two cases. If one of the
segments does not contain a depot (i.e., both removed edges belong to the
same tour), then the new solution is always capacity-feasible. If both segments
contain a depot, the feasibility check is similar to the one for 2-opt* moves.

Since the implementation of lexicographic search for the remaining neighbor-
hoods follows the same pattern as in the case of 2-opt™ and 2-opt, we only
present sequential search algorithms in the following.

4.4 The Swap Neighborhood

The swap move mj,';” replaces the node at position 7, by a node at posi-

tion is and vice versa. Consequently, the four edges linking the positions (i; —
1,41), (41,41 + 1), (ia — 1,12), (i, 19 + 1) are deleted and the four edges linking
the positions (i1 — 1,42), (i2,41 + 1), (ia — 1,41), (41,92 + 1) are added to the
current solution, see Figure 3.

i-l i gl

(-

\‘0‘,

. .o

D RE

irfl i -1

Fig. 3. Principle of a Swap Move.

There exist several decompositions of m;;" into two cost-independent partial

moves of the same type. One possibility is to define p, ; as a partial move
which deletes the edges between positions (i3 — 1,41), (41,41 + 1) and then
adds (iz —1,11), (i1,%2+1). Then, mj"iF = p; ;. 0P, i1 = Piyi, ©Piy .y 18 & cyclic
independent decomposition into cost-independent partial moves. To make the
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notation more convenient, define t; = nodeli;], to = nodeliz| and vy, vy (resp.
w1, ws) as the corresponding predecessor (successor) nodes in the giant tour.
The partial gain of p; ;, 15 9(Pi, 4p>T) = Corty + Ctiwr — Cogity — Ctyywp- When
looking for improving swap moves by sequential search, the gain criterion tells
us that we can restrict our attention to a first partial move p; ,, with positive
gain (but possibly i; > iy).

We propose to search for partial moves p; , with positive partial gains by
first considering all positions i1 € {1,...,n}. The task is then to restrict the
search for possible positions i, under the condition that ¢; is known. This
can be done with neighbor lists. Let By = (cy, ¢, + Ct,.0,)/2, which is a fixed
constant when position 4, is chosen. The condition g(p,, ;,, ) > 0 is equivalent
to (¢t — B1) 4 (Ctywy — B1) < 0 which implies ¢, ,, < By Or ¢y, < Bi.
This prunes the search for vy (resp. ws) to candidate edges of length less
than Bj. Position iy is determined as the successor position of node vy (resp.
the predecessor position of node ws).

Algorithm 8 Sequential Search for Swap

1: Input: z € X; Gpin € R minimum gain.

2: LET G* = Gonin.

3: LOOP i €{1,2,...,n},

4: oce{-1,+1}

5: LET v; = nodeli1 — 1], t1 = node[i1], w1 = node[i + 1].

6: LET Bi = (cuy,t; +Cty,w,)/2 — G*/2.

7: LOOP t € NL(t1) as long as ¢t ,+ < B1

8: LET ip = pos[t] + o.

9: LET vg = nodeliz — 1], t2 = node[iz], w2 = nodeliz + 1].
10: LET G = Cyq,tq + Cty, w1 + Cug,to + Cto,wo — Cuy,tag — Cto,wy — Cug,t; — Ctq,wo-
11: IF ( G > G* and feasible )

12: LET G* = G.

13: LET (ZI,Z;) = (il,iz).

14: Output: IF (G* > Gpin) THEN

15: RETURN (i%,43).

The feasibility check in step 11 has to guarantee both the legitimacy conditions
of the decomposition and the feasibility of the resulting tours. The feasibility
of the resulting tours only needs to be checked if the nodes ¢; and ¢5 belong
to different tours. Otherwise the swap only exchanges the positions of the
nodes within a single tour, which does not affect the capacity constraints. The
legitimacy conditions require that the nodes t; and ¢, are not adjacent in the
giant tour (i.e., iy # ip£1) since if iy = i1 31, the swap move m, ", is feasible,
but only exchanges two edges. In this case the computed partial gains do not
equal the gain g(m, %, z). Therefore, the legitimacy conditions forbid this
feasible swap move to be computed as a composition of two partial moves.
However, it can be shown that this case corresponds to a special 2-opt move
and therefore can be computed within a search algorithm for 2-opt or in linear

time within an additional loop checking only this special case.
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4.5 The String-Fxchange Neighborhood

As the name suggests, a string-exchange move takes two subpaths (—strings)
of the giant tour and exchanges them. Typically, one restricts the length of the
two strings to a small value k& € N implying a neighborhood of size O (k? - n?),
which is quadratic for fixed values of k. The case kK = 1 coincides with the
swap move. For k > 2, there exist two variants of string-exchange moves, either
inverting segments or not. Figure 4 shows the principle of a string-exchange
with inversion. The other case can be handled analogously.

A i+l iz-1 I3

R OO ®

. String <k— ',\ R

oy RY

o\ —String<k— ,* .\,.
- OO @
-1 .

i i+l iy

Ha=0)
i

Fig. 4. Principle of a String-Exchange Move. Variant with both Strings inverted.

From Figure 4 one can see that the string-exchange move can be decomposed

: : : str—exch __ _+1 —1 +1 —1 :

into four partial moves, i.e., m;" 5% = D; i, © Diyiy © Piyis © Pig.iy- Lhis de-

composition is order-independent. Since the string-exchange move consists of
str—exch __ , 2—opt 2—opt . .

two 2-opt moves m;"; S = m; 7 om; .0, the string-exchange move is not

completely symmetric in all four partial moves. However, there is a symmetry

between the two pairs (i1, 42) and (i4,43). This symmetry allows us to restrict

. . . . +1 - .
the exploration to find an 1mprov1n§[1part1al move p;, ;. in the first stage (this
covers the symmetric counterpart pi4,i3)'

Notice that we take the asymmetry in ¢; and 75 into account considering both
p;fzé and pz;lil at the first stage. Once that 7; and iy are determined, there
are only k? possibilities to choose i3 and i4. The resulting sequential search
algorithm can be summarized as follows.
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Algorithm 9 Sequential Search for String-Exchange with
Segment Inversion
1: Input: z € X; Gpmin € R minimum gain.

2: LET G* = Gmin-
3: LOOP i1 €{1,2,...,n},
4: oce{-1,+1}
5: LET t¢1 = node[i1], t2 = node[i1 + o].
6: LET By = ciy .1, — G*/A.
7: LOOP t3 € NL(t2) as long as c¢¢y,t5 < B1
8: LET iz = pos[ts], t4 = nodeliz — o].
9: LET B2 = ct;,t5 — Ctg,tg T Ctg,ty — Ctyty — G*/2.
10: IF B> >0
11: LOOP i3 € {i1 +20,...,i1 + (k+ 1)o}
12: LET t5 = nodelis], ts = nodeliz — o].
13: LOOP i4 € {iz — 20,...,iz — (k + 1)o}
14: LET t7 = node[ia], ts = node[ia + o].
15: LET G = cty,ty — Cta,ts T Ctg,tq — Cty,ty T Cts,te — Ctg,tr T Ctytg — Ctg,ts-
16: IF ( G > G* and feasible )
17: LET G* =G.
18: LET (i}, 43, 1%,15,0%) = (i1,12, 13,14, 0).
19: Output: IF (G* > Gpin) THEN
20: RETURN (i%, 43,45, i%, 0%).
. . . * —o* * —o* .
The resulting string-exchange move is pf. ;x © p;%x © P ix © pigf’iz. In our im-

plementation, the exchanged strings have to consist of customer nodes only.
Therefore, the feasibility check in step 16 reduces to a comparison of the de-
mands of the strings with the residual capacities of the two tours.

4.6 The k-Opt and k-Opt* Neighborhoods

We now consider the generalization of 2-opt* moves to k-opt™ moves with & >
2. A k-opt move deletes k different edges from a (giant) tour and inserts k other
edges so that the result is a Hamiltonian cycle. k-opt™ moves allow that the
new solution decomposes into at most k subtours. The new solution can be
re-interpreted as a new tour plan x’ of the VRP if and only if each subtour
contains at least one depot node.

Given a k-opt* move m and a tour plan x € X, the symmetric difference of x
and m(x) can be interpreted as the result of one or several sequences where in-
cident edges of the solution graph are subsequently deleted and added. Every
sequence forms a so-called alternating cycle. If a move can be represented
as one sequence it corresponds to a single alternating cycle. Otherwise, it
corresponds to multiple alternating cycles. If a move corresponds to a single
alternating cycle, it can be decomposed into cyclic independent partial moves
of the add-delete type described above. Otherwise, other cyclic independent
move decompositions may exist, but give rise to more complex implementa-
tions of sequential search that are beyond the scope of this paper. All k-opt*
moves with & < 3 can be represented by single alternating cycles. This is
not the case for k > 4. Therefore, only a subset of the k-opt* moves can be
found using sequential search with the delete-add moves described above. For
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a more detailed analysis of the so-called single alternating cycle neighborhoods,
see Funke et al. (2004).

4.6.1 The 3-Opt and 3-Opt* Neighborhood

All types of 3-opt and 3-opt™ moves define single alternating cycle neighbor-
hoods, i.e., deleted and added edges of these moves form a single alternating
cycle C = (tl, to, t3, 14,15, tg, t1>, where {tl, tg}, {t3, t4}, {t5, tﬁ} are removed
from the current giant tour x and {ta, 3}, {t4, %5}, {ts, t1} are added to the re-
sulting tour. Assuming that the nodes ¢, t3 and ¢5 with odd indeces are at posi-
tions 4y, i and i3, all 3-opt™ moves decompose into mg' 757 = pi'; opi”; opi?, .
Figure 5 visualizes the above description. Again, the decomposition is cyclic-

Fig. 5. Example of a 3-Opt* Move. Move depicted here produces two Subtours.

independent. The sequential search algorithm is now easy to formulate:

Algorithm 10 Sequential Search for 3-Opt*

1: Input: z € X; Gpnin € R minimum gain.

2: LET G* = Gmin-

3: LOOP iy € {1,2,...,n},

4: o1 € {—1,+1}

5: LET t1 = node[i1], t2 = node[i1 + o1].

6: LET By = Cty,ty — G*/3.

7: LOOP t3 € NL(t2) as long as c¢¢,,t5 < B1

8: o2 € {—1,+1}

9: LET iz = pos[ts], t4 = nodeliz + o2].

10: LET B2 = cty,ty — Cty,t3 + Ctg,ts — 2G*/3.

11: LOOP t5 € NL(t4) as long as c¢,,¢, < B2

12: o3 € {—1,+1}

13: LET i3 = pos[ts], t¢ = nodeliz + o3].

14: LET G = ct;,t5 — Ctg,tg + Ctg,ty — Cty,ts T Cts,ts — Cte,ty-
15: IF ( G > G* and feasible )

16: LET G* =G.

17: LET (i7,3,43,07,05,03) = (i1,12,43,01,02,03)-
18: Output: IF (G* > Gpin) THEN

19: RETURN (i%,4}, 3%, 0%, 0%, o).

The feasibility check is difficult to implement: The three positions iy, s, 3
and directions (oy,09,03) split the giant tour into three segments. One or
several subtours are built by concatenation and one has to check whether
these subtours form one or several feasible VRP tours. Additional legitimacy
conditions have to be checked in step 15. They require that all added and
deleted edges are disjoint. However, Section 4.8 will show that checking the

17



feasibility of the concatenation of several tour sub-paths can always be done
in constant time.

4.6.2  Or-Opt and Relocation Neighborhoods

Or-opt and relocation moves are special 3-opt moves, which relocate a short
segment, i.e., a segment is first removed and subsequently inserted at different
position in the (giant) tour. While in a relocation move, which is also called
2.5-opt in Bentley (1992); Johnson and McGeoch (1997), the short segment is
restricted to contain a single node, Or-opt moves (Or, 1976) relocate a string
of length k, typically with k& € {1,2,3}. Hence, for fixed k the neighborhood is

. . . —opt

qu?dratlc of size O (k-n?). The move decomposes into mg, . %, = pii, opil. o
+

pi37i1‘

Fig. 6. Principle of an Or-Opt Move. At least one Segment has to be short, w.l.o.g.
the Segment (to,...,15).

Searching for a best neighbor solution 2’ € A (x) in the Or-opt (resp. relo-
cation, k = 1) neighborhood has to take the asymmetry into account, i.e.,
that the length of one of the segments does not exceed k. Without loss of
generality one can assume that the segment (¢o, ..., ¢5) is short, which means
that i3 € {i1 +1,...,4; + k} or equivalently i, € {i3—k,...,i3— 1} holds, see
Figure 6. As before, the gain criterion tells us that for an Or-opt move to be
improving, at least one of the three partial moves must have a positive gain,
ie., g(pih,,x) > 0or g(ptl,,x) > 0 or g(pt’ ,x) > 0. This can be used in
three different loops leading to the following algorithm.
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Algorithm 11 Sequential Search for Or-Opt

1: Input: z € X; Gpnin € R minimum gain.

2: LET G* = Goin.

3: LOOP i €{1,2,...,n},

4: LET t1 = node[il], to = node[il + 1}, B1 = Cty,ty — G*/3.
5: LOOP t3 € NL(t2) as long as c¢¢y,t5 < B1

6: LET i2 = poslts], ta = nodelia + 1].

7: LOOP i3 € {iy +1,...,i1 + k}

8: LET t5 = node[is], ts = node[iz + 1].

9: ... Steps 14-17 of Algorithm 10

10: LOOP iy € {1,2,...,n},

11: LET t3 = node[ig], ta = node[ig + 1}, B1 = Ctg,ty — G*/3.
12: LOOP t5 € NL(t4) as long as c¢y,t5 < B1

13: LET i3 = poslts], t¢ = nodeliz + 1].

14: LOOP iy € {ig — k,... i3 — 1}

15: LET t1 = node[i1], t2 = node[i1 + 1].

16: ... Steps 14-17 of Algorithm 10

17: LOOP iz € {1,2,...,n},

18: LET t¢5 = nodelis], te = node[iz + 1].

19: LOOPile{ig,—k,...,ig—l}

20: LET ¢1 = nodeli1].

21: IF Cig.tq — Ctg,ty > G*/3 THEN

22: LET t2 = nodelii + 1].

23: LET By = Cts,tg — Ctg,t1 T Cty,ta — 2G*/3.
24: LOOP t3 € NL(t2) as long as c¢y,t5 < B2
25: LET iz = pos[ts], t4 = node[iz + 1].

26: ... Steps 14 17 of Algorithm 10

27: Output: IF (G* > Gpyin) THEN

28: RETURN (i, 3, 43).

Note that the inner loop in step 7 (resp. 14, 19) implies only a constant
effort O (k) = O (1). Therefore, each of the three blocks requires O (n?) op-
erations in the worst-case, but fewer operations on average due to the gain
criterion. The feasibility test has to check the legitimacy condition for Or-opt
moves in all three blocks. This means that the positions 71,4, and 3 fulfill
either i1 < i3 < iy or i3 < 49 < 17 O 1y < 47 < 13.

4.7 Other Neighborhoods

The report Funke et al. (2003) shows that node-ejection-chains and cyclic-
transfers are additional examples of cyclic-independent and cost-independent
neighborhoods. Hence, the gain criterion and sequential search are applicable.

4.8 Feasibility Checking in Constant Time

All CVRP moves presented in this section can be described as edge exchanges,
i.e., the splitting of the giant tour into ¢ > 2 segments and the concatenation
of (possibly inverted) segments to one or several subtours of the giant tour. For
a subtour to be feasible, it has to contain at least one depot node. In order to
check whether a segment S = (¢,...,t') contains a depot node, one performs a
linear time preprocessing to build a vector tour, which gives, for each node ¢,

19



the corresponding tour index in the giant tour. Hence, S = (¢,...,t’) contains
a depot if one of the endpoints ¢ or ¢’ is a depot node or tour[t] # tour[t'].

The feasibility of the concatenation of segments Si,95,...,S, depends on
the accumulated demand in each subpath joining two depot nodes. Assume
(w.l.o.g) that S; contains a depot and that S,, p € {2,...,¢} is the next
segment, which also contains a depot node (if all remaining segments do not
contain a depot, let Spy; := S; and p = £ 4+ 1). Now, the concatenation of
S1,52,...,95, is feasible w.r.t. the vehicle capacity if

e the accumulated demand qe”d(Sl) from the last depot contained in S; to
the last node of 57,

e plus the sum of the accumulated demands ¢*(S,) along the segments S,
qge{2,....,p—1},

e plus the accumulated demand ¢****(S,) from the first node of .S, to the first
depot contained in S,

does not exceed the vehicle capacity, i.e., ¢4(S1)+ Y025 ¢(S,) +¢***(S1) <
@ holds. In order to have constant-time access to the above values, we propose
to build two vectors gs and ge, indexed by the nodes V' of the giant tour, con-
taining the following values: ¢s[t] is the accumulated demand (accumulated
along the giant tour) of the path starting at node ¢ and ending at the next
succeeding depot node. Similarly, ge[t] is the accumulated demand of the path
starting at the last depot node, which precedes node ¢, to node t. The compu-
tation of the vectors ¢s and ge requires linear time only when nodes are con-
sidered in ascendind /descending order of the giant tour. For any segment S =
(t,...,t") one has ¢*(S) = gs[t] and ¢®*4(S) = ge[t']. If S does not contain a
depot node, then ¢*(S) = gs[t']—gqs[t]+q: = qe[t]—qe[t']+q holds. With tour,
gs and ge a priori computed, the concatenation of Si,..., S, can be checked
in constant time. Subsequent concatenations of segments .S, S,41 ..., Sk can
be handled analogously, so that the overall feasibility check requires constant
time only.

It is worth to mention that the same kind of techniques allow constant-time
feasibility checks for the DCVRP. The only difference to the CVRP is that
one has to consider inter-connection times and distances in the concatenation
of segments.

5 Computational Results

The following computational results are based on a large number of ran-
domly generated large-scale CVRP instances. We have examined the run-
ning time of sequential and lexicographic search algorithms, the impact of
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best-improvement and first-improvement stopping rules on running time and
solution quality, and similarly, the impact of using candidate lists.

5.1 Test Instances

The benchmark instances are generated by varying the number of customers,
the customer distribution within the Euclidian plane, the demand distribution
of customers, and the vehicle capacity. Altogether there are 600 instances
grouped into 10 series of 60 instances each. Any series include instances of 15
different sizes, i.e., number n = |N| of customers, ranging from n = 250 to
n = 2500. For each size there are four different demand distributions. Table 1
summarizes the series. Customers i € N are located at integers point (x;,y;) of

Series Location (x;,y;) Demand ¢; Capacity Q
uniform from uniform from

1 [—100, +100]? [10, 30] {500, 1000, 1500, 2000}
2 [~100, +100]2 110, 50] {750, 1500, 2250, 3000}
3 [—100, +100]2 10, 90] {1250, 2500, 3750, 5000}
4 [~100, +100]? [1,99] {1250, 2500, 3750, 5000}
5 [—100, +100]2 (90, 110] {2500, 5000, 7500, 10000}
6 [~1000,+1000] 1,1] (25,50,75,100}
7 [—1000, +1000]? [1,3] {50, 100, 150,200}
8 [—1000, +1000]2 [50, 150] {2500, 5000, 7500, 10000}
9 [~1000,+1000] 8,12] {250, 500, 750, 1000}
10 [—1000, +1000]? [100, 300] {5000, 10000, 15000, 20000}

Table 1
Generation of CVRP Test Instances, Distribution of Customers and Demands,
Choice of Capacities

the 2-dimensional Euclidian plane using uniform numbers from [—100, +100]?
or from [—1000, +1000]>.

The cost ¢;; is the Euclidian distance rounded to the next integer, as de-
scribed in Reinelt (1991). The demands ¢; are generated using different in-
teger uniform distributions as, e.g., demands in a small range [90,110], or
in a wide range [1,99], or unit demands with ¢; = 1 for all i € N. The
vehicle capacity () is determined by multiplying the average demand by fac-
tors f = 25, 50, 75, and 100. Hence, the generated instances have an aver-
age number of f customers on each tour. All instances are also available at
www.dpor.rwth-aachen.de/vrp-instances.
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5.2 Relative Speedup

The first part of the computational study compares the times for searching the
neighborhoods discussed in Section 4 with either a sequential search or a lex-
icographic search algorithm. The comparison is based on first computing four
different starting solutions for each of the 600 instances using a parametrized
savings algorithm, see Clarke and Wright (1964) and Paessens (1988).

For each of the starting solutions a local optimum w.r.t. all neighborhoods is
computed in the following way. Given the current solution x, one searches for
a best improving 2-opt neighbor solution 2’ € N/ (z). This is done by applying
both the sequential and the lexicographic search variant of the 2-opt algorithm
to the current solution z. If an improving neighbor is found, it becomes the new
current solution z. Next, the remaining neighborhoods, i.e., 2-opt™*, swap, relo-
cation, Or-opt, and string-exchange, are searched in the same manner. Then,
2-opt will be repeated and so on. Sequential and lexicographic algorithms are
always compared using the same current solution x. If the corresponding gain
is positive, the move is performed. (Note: Sequential search and lexicographic
search algorithms do not necessarily find the same neighbor with maximum
gain due to degeneracy. The next iteration was always continued with the se-
quential search solution.) The whole run terminates when a solution is found
which cannot be improved by any neighborhood under consideration. This
search strategy is called variable neighborhood descent (VND, see Mladenovié
and Hansen (1997); Hansen and Mladenovi¢ (2001, 2002)). In order to make
the search more symmetric, we decided to perform the neighborhood selection
in a cyclic way (which is in fact a small variation of VND).

All algorithms were coded in C++, compiled in release mode (using MS Visual
Studio 6.0), and run on a standard PC (Intel x86 family 15 model 2, 2.4 GHz,
1GB main memory, on MS-Win 2000).

Figure 7 depicts the acceleration factor, i.e., the ratio of the time spent in lex-
icographic search divided by the time of sequential search, for each of the six
quadratic neighborhoods under consideration. Each point (=factor) in the di-
agram corresponds to a fixed pair of size n and average number f of customers
in a tour. It is computed considering several thousands of runs (10 series, 4
starting solutions, from 35 up to 500 iterations). Note that we have chosen
the maximum string length & = 3 for Or-opt and relocation neighborhoods.

All six diagrams show that there is a substantial speedup when the classical
lexicographical search approach is replaced by a sequential search procedure.
The most remarkable insight is that for all neighborhoods considered, the
acceleration factor mainly depends on the average number f of customers in a
route. The smaller f is, the more constrained is the problem instance and the
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Fig. 7. Acceleration Factor Comparing the Running Times of Lexicographic Search
and Sequential Search Algorithms.

smaller is the acceleration factor. One may interpret the results in the following
way. In more constrained problems (i.e., with smaller values f) there are more
improving moves which are not necessarily feasible. Since sequential search
prunes the search only based on cost (and not on feasibility) considerations,
it is less effective in problems with tighter constraints.

A second aspect to analyze is the correlation between the acceleration factor
and the size of the instances. Considering the diagrams it can be recognized
that there is a positive correlation between the acceleration factor and n for
the swap and relocation neighborhoods. For special 2-opt*, 2-opt, and Or-
opt neighborhoods, there is obviously no significant correlation. That means
that there is no decrease in the speedup. Large acceleration factors can be
observed when comparing lexicographic and sequential search algorithms for
the string-exchange neighborhood. The factor is in the range between 24 and
more than 750, while the maximum string length was chosen as & = 3. The
string-exchange neighborhood is the only neighborhood under consideration,
for which the acceleration drastically decreases with the size n of the instances.
At the first glance it seems that for larger instances, the sequential search
approach might become slower than the lexicographical search approach. This
is not the case. Additional computational tests for larger instances with up to
5000 customers have shown that the acceleration never falls below a certain
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threshold (never below factor 20 for f = 25). The decrease of the acceleration
factor with increasing n depends on the check in step 10 of Algorithm 8. In an
earlier implementation, with corresponding results presented in Irnich et al.
(2004), we forgot to prune the search according to the criterion By > 0. As a
result, the acceleration factor was nearly constant for fixed f, but substantially
smaller. It is an open research problem why the behavior differs for the types
of neighborhoods we considered.

Since the lexicographic search for improving 3-opt™ neighbors is too time-
consuming, we modified the computational tests in the following way. The
3-opt* search procedures are only applied to current solutions which are lo-
cal optima w.r.t. all other (quadratic) neighborhoods. If an improving 3-opt*
neighbor is found, the search is again directed to determine a local optimum
of the quadratic neighborhoods. Consequently, the number of computation-
ally costly searches within the 3-opt* neighborhood is small in comparison
to the number of searches in the quadratic neighborhoods. However, due to
the fast growing effort of lexicographic search in the 3-opt™ neighborhood, we
considered instances with n < 500 only. Results for the 3-opt* neighborhood
are depicted in Figure 8. The acceleration factor is between 300 for f = 25
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Fig. 8. Acceleration Factor Comparing Lexicographic Search and Sequential Search
Algorithms, Average Running Times of a Single Sequential Search Iteration for
3-Opt™* moves.

and more than 10.000 for f = 100. The time for a single sequential search
iteration for the 3-opt™ neighborhood (see also Section 5.3) ranges from a few
milliseconds to about 2 seconds for large-scale instances with 500 customers
and f = 100. Both, the acceleration factor and the time for a single iteration,
explain why lexicographic search is computationally intractable for even larger
problem instances.

5.8  Running Time of Sequential Search Procedures

Next we analyze the average running time of a single sequential search step
(i.e., step 3 in Algorithm 1) depending on both, the size n of the instance and
the average number f of customers in a tour. Figure 9 summarizes the results.

24



8]
(%)
(=]

— Special 2-Opt* /=100 - 2-Opt
E10 1 £25 7=100
S S
§ 8 - § 20
wn 175]
g 6 a 157
g 4 210 A
e =
31 2 ;%n 51
0 T T T T T 0 T T T T T
0 500 1000 . 1500 2000 2500 0 500 1000 . 1500 2000 2500
Size n Size n
350 -
70 Swap =100 - String-Exchange £=100

0 T T T T T 0 * i T T T
0 500 1000 . 1500 2000 2500 0 500 1000 . 1500 2000 2500
Size n Size n
. }2 Relocation =100 60 Or-Opt =100
716 4
EL] 0
= 1
5 12 A 0
@ 10 A

Avg Time per
EN
=1
|

0 T T T T T
0 500 1000g;,. ,, 1500 2000 2500 0 500 1000 g;, ,, 1500 2000 2500

=}

Fig. 9. Average Running Times of a Single Sequential Search Iteration Depending
on the Size n and the Number f of Customers per Tour.

These curves can be analyzed with different regression models, e.g., quadratic
t(n) = an® + fn, potential t(n) = an®, log-linear t(n) = an + Bnlogn, etc.
In all cases a quadratic regression model with a very small coefficient for the
quadratic term fits well (with B2 > 0.99). Our interpretation of that finding is
that always a small but quadratic number (growing with n) of moves has to be
scanned, in particular when they have a positive gain but are not improving
(i.e., they seem promising but are infeasible w.r.t. the current solution).

For some types of moves, a potential regression model gives a tight approxima-
tion saying, e.g., that the average running time of 2-opt is *7°P'(n) ~ an'%,

of Or-opt* is t97(n) ~ an'*, and of string-exchange is 5" ~¢*"(n) ~ an?

5.4 First-Improvement versus Best-Improvement

The previous computational results were all based on a best-improvement (BI)
strategy, see also Section 3. In this section we will quantify the relationship
of best-improvement and first-improvement (FI) sequential search algorithms
w.r.t. running time and quality of the computed local optima. Hansen and
Mladenovié¢ (1999) already made comparisons for the symmetric TSP and their
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findings were the following. Starting from a random solution, FI computes
better results that BI. Conversely, starting local search from a given greedy
or nearest-neighbor solution, BI is better and faster than FI on average.

Here, we will analyze the running time and solutions quality for both strategies
applied to savings solutions of the CVRP. We use the 40 different instances
with n = 1000 customers (10 series, f = 25,50, 745,100) and compute 18
(different) starting solutions using a parametrized savings algorithm. Starting
with the same initial solutions, BI and FI are separately applied in 2-opt,
2-opt™*, swap, relocation, Or-opt, and string-exchange local-search procedures
until a local optimum to all neighborhoods is found.

First, in contrast to the results of the previous sections, the value of f has no
significant impact on the solution quality or running time comparing BI and
FI. In about 85% of all 720 cases, FI was faster than BI. However, the average
running time of BI (=14.1s) exceeds the average running time of FI (=12.9s)
by only 9%. The reason for this is that each iteration of the FI local search
takes less time, but more iterations are needed to reach a local optimum.

In 55% of the cases, BI was better than FI. On average, BI terminates in a local
optimum 3.11% and FI 3.18% above the best known solution. This average
improvement of BI over FI of 0,07% is small. Hence, the results of Hansen and
Mladenovié¢ (1999) of the STSP cannot be projected to the CVRP.

5.5 Candidate Lists

In order to further accelerate local search one might use candidate lists N L (¢)
instead of a complete neighbor list N L(t) containing all nodes V' \ {¢t}. With
the same setup as in Section 5.4, we compare implementations using candidate
lists NL5(t) with K € {10,20,40,80} and a complete neighbor list NL(t),
i.e., K =n+ F — 1. The tradeoff between running time and solution quality
is measured by comparing the average running time avg time (until a local
optimum w.r.t. all quadratic neighborhoods is found) with the average ratio
%. Herein, obj is the cost of the computed local optimum and best the cost
of the best known solution of the instance. Figure 10 shows the results. Using
candidate list of moderate size can further reduce the running time, while
the solution quality decreases slowly. For instance, for K = 40 and n = 1000
customer instances under consideration, the time reduces on average by 60%
compared to the full neighbor list implementation and the loss in solution
quality is about 0.1%.
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Fig. 10. Comparison of Running Time and Solution Quality for Candidate Lists
NLX(t) of Different Length K

6 Conclusions

The paper has introduced sequential search as general and highly efficient
technique for scanning neighborhoods within local-search algorithms. It can
be applied both within classical local-search algorithms and modern meta-
heuristics based on local search. These include tabu search (Glover and La-
guna 1997), variable neighborhood descent and variable neighborhood search
(Mladenovi¢ and Hansen 1997; Hansen and Mladenovié¢ 2001, 2002), GRASP
(Festa and Resende 2004) and large-step Markov chains (Martin et al. 1992).

Based on the formal description of moves and move decompositions, it was
shown that the necessary conditions for applying sequential search depend on
both the problem and the partial moves that constitute the neighborhood. The
condition of cost-independence depends on the objective function of the prob-
lem, whereas the condition of cyclic independence follows from the definition
of the partial moves.

The paper shows that sequential search algorithms can be developed for the
classical neighborhoods of the CVRP. As indicated by the computational re-
sults, the efficiency is increased significantly in comparison to classical lexico-
graphic search implementations.

The main challenge in the development of new sequential search algorithms
is to find a decomposition of moves into partial moves that satisfy the neces-
sary conditions for applying sequential search. If successful, this can lead to
the development of new and significantly faster local-search algorithms and
metaheuristics for many types of combinatorial optimization problems.
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