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aDeutshe Post Lehrstuhl für Optimierung von Distributionsnetzwerken, RWTHAahen University, Templergraben 64, D-52056 Aahen, Germany.AbstratThis note presents a generalization of postman problems with more �exibility ofserviing street segments. Street segments requiring a servie on both sides of thestreet an be overed either by two separate servies or by a single zigzag servie.A mixed integer formulation and a transformation of these postman problems intoa symmetri traveling salesman problem are presented. Even if the ost for zigzagservie is not smaller than the ost of two separate servies, there is still a potentialof improving solutions of the orresponding ar routing problem.Key words: postman problems, ar routing, transformation
1 IntrodutionThis note presents a new lass of postman problems whih an be de�ned asfollows. A postman has to deliver mail to the street segments of his distrit.Street segments an be divided into four lasses: First, street segments withhouses on one side of the street only. These require a single servie. Seond,street segments with houses on both sides, whih have to be servied sep-arately. Third, street segments with houses on both sides whih provide theoption to servie both sides with a single zigzag walk (going through the streetsegment one) or to servie the two sides separately. In all ases, additionaltraversals of a segment are allowed, but a traversal and di�erent modes of ser-vie imply di�erent osts. Fourth, so-alled non-required street segments maybe used to get from one point to another. The problem is to �nd a least ostpostman tour whih provides appropriate servie for all street segments of the
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given distrit. Literatur on ar routing, in whih zigzag servie has been men-tioned, is sare (Bodin et al. 1989, p. 49�51; Assad and Golden 1995, p. 436;Sniezek et al. 2002; zigzag servie is alled �meander� there). However, it seemsthat in this paper street segments are simply delared as �zigzag streets� sothat zigzag servie options are not onsidered in a model or orrespondingalgorithm.One of the most general postman problems studied in the literature is thewindy rural postman problem (WRPP, see Corberán et al. 2000), whih oversthe undireted, direted and mixed ases as well as the Chinese and rural ases.The windy ase is important for several real-world appliations that onsiderpartially direted street networks with either symmetri or asymmetri osts.For a general introdution to postman problems and ar routing we refer toEiselt et al. (1995b,a) and Dror (2000).We de�ne the windy rural postman problem with zigzag servie (WRPPZ) asa generalization of the WRPP. An instane of the WRPPZ is de�ned on anundireted graph G = (V,E) with node set V and edge set E. Without loss ofgenerality one an assume that G is simple, i.e., G does not ontain paralleledges or loops. Edges are partitioned into E = E0 ∪ E1 ∪ E2 ∪ E3 where E0are the non-required edges, E1 and E2 the edges requiring single resp. doubleservie (but zigzag servie is not allowed), and E3 edges that provide thezigzag servie option. Up to eight di�erent osts ck
ij, c

k
ji with k ∈ {0, 1, 2, 3}are assoiated with an edge {i, j} ∈ E. Herein, k = 0 stands for traversal,

k = 1 for serviing the �rst side, k = 2 the opposite side of the street segment,and k = 3 for zigzag servie, while ij and ji desribe the orientation of theservie/traversal. Obviously, for the edges e ∈ E \ E3 only some of the ostsare relevant, i.e., edges e ∈ E2 have six, edges e ∈ E1 have four, and edges
e ∈ E0 have two di�erent osts.Example 1 Consider the symmetri ost ase and a graph with V = {i, j, k}and E = E1 ∪ E3 with E1 = {{i, j}} and E3 = {{j, k}}. Independent of ostfor di�erent modes of servie, the ost minimal postman tour is (i, j, k, j, i).Its ost is c1

ij + c0
ij + min{c0

jk + c3
jk, c

1
jk + c2

jk}. Normally, one would expetthat traversal and zigzag servie together are more ostly than two separateservies. Hene, this is an example where zigzagging is not advantageous.Example 2 For a graph with nodes V = {i, j, k} and edges E = E1 ∪ E3with E1 = {{i, j}, {i, k}} and E3 = {{j, k}} and symmetri osts, di�erentpostman tours may be optimal depending on the hoie of the osts. First, thetour T1 = (i, j, k, i) servies edge {j, k} ∈ E3 with zigzag servie and its ostis c1
ij + c3

jk + c1
ik. Seond, the tour T2 = (i, j, k, j, k, j, i) overs edge {j, k} ∈

E3 by two separate servies and performs an additional traversal trough theedge {j, k} so that its ost is c1
ij +c0

jk +c1
jk +c2

jk +c1
ik. For real-world situations,one would expet c0

jk + c1
jk + c2

jk > c3
jk and, therefore, T1 is less ostly than T2.2



Third, the tour T3 = (i, j, k, j, i, k, i) only makes sense when the edge {j, k} ∈
E3 is overed by two separate servies. It is more ostly than T1 if c0

ij + c1
jk +

c2
jk + c0

ik > c3
jk (one would expet this inequality to hold). Consequently, thisis an example where zigzagging is advantageous.2 Integer Programming ModelAn intuitive formulation of the WRPPZ uses deision variables aording tothe di�erent possibilities of servie and traversal for eah edge. Hene, foreah edge {i, j} ∈ EK , K ∈ {0, 1, 2, 3}, we de�ne 2K deision variables

xk
ij, x

k
ji ∈ N0 for k ∈ {0, . . . , K}. The xk

ij model how often the orrespond-ing edge is servied/traversed in the partiular manner. In order to abbrevi-ate the formulation of an integer programming model, we de�ne the vetor
xij = (x0

ij, . . . , x
K
ij )

T for edges e = {i, j} ∈ EK . The assoiated osts are
cij = (c0

ij, . . . , c
K
ij )

T and, aordingly, 11T xij =
∑K

k=0 xk
ij. Moreover, let (S, T )be the set of edges in E with one endpoint in S ⊆ V and one in T ⊆ V .

zWRPPZ = min
∑

{i,j}∈E

(cT
ijxij + cT

jixji) (1)subjet to
x1

ij + x1
ji = 1 for all {i, j} ∈ E1 ∪ E2 (2)

x2
ij + x2

ji = 1 for all {i, j} ∈ E2 (3)
x1

ij + x1
ji + x3

ij + x3
ji = 1 for all {i, j} ∈ E3 (4)

x2
ij + x2

ji + x3
ij + x3

ji = 1 for all {i, j} ∈ E3 (5)
∑

{i,j}∈({i},V )

11T xij −
∑

{j,i}∈(V,{i})

11T xji = 0 for all i ∈ V (6)
∑

{i,j}∈(S,V \S)

11T (xij + xji) ≥ 2 for all ∅ 6= S ( V (7)
x0

ij, x
0
ji ∈ N0 for all {i, j} ∈ E0 (8)

x1
ij, x

1
ji ∈ {0, 1} for all {i, j} ∈ E1 ∪ E2 ∪ E3 (9)

x2
ij, x

2
ji ∈ {0, 1} for all {i, j} ∈ E2 ∪ E3 (10)

x3
ij, x

3
ji ∈ {0, 1} for all {i, j} ∈ E3 (11)The objetive (1) is to �nd a postman tour with minimum ost. Constraints (2)and (3) state that eah edge {i, j} ∈ E1 ∪ E2 has to be servied one resp.twie, in either diretion. Zigzag servie or separate servies in either diretionare guaranteed by (4) and (5) for all edges in E3. Flow onservation onstraintsare given by (6) and, in a rural ontext, the onnetivity of the postman touris enfored by onstraints (7). It is well-known that in (7) one an restrit the3



sets S to be the union of one or several onneted omponents of (V,E1∪E2∪
E3) (see, e.g., Eiselt et al. 1995a).Note that for the speial ase of a windy Chinese postman problem (i.e., alledges are of type E1 and osts ful�ll c0

ij = c1
ij) the formulation redues tothe one given by Grötshel and Win (1992) when variables are substituted by

x′
ij = x0

ij + x1
ij ∈ N0 so that equation (2) beomes x′

ij + x′
ji ≥ 1.3 Transformation into TSPWe propose a transformation that �rst maps the WRPPZ to an asymmetriTSP (ATSP). In ase the WRPPZ is not symmetri, the transformation ofJonker and Volgenant (1983) is then used to transform the resulting ATSPinto a symmetri TSP (STSP). This setion fouses on the �rst transformationonly. The key idea of the transformation is to model all required edges e ∈ E1∪

E2 ∪E3 of the WRPPZ by two or four ATSP nodes. We desribe the internalonnetions between nodes modeling a single WRPPZ edge e ∈ E1 ∪E2 ∪E3�rst and present the onnetion between di�erent edges afterwards. Let M > 0be a suitable large number. Edges e = {i, j} ∈ E1 are modeled by two nodes
ie, je with distanes aording to the distane matrix
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, (13)
where ∆ij is de�ned as ∆ij = M for edges e ∈ E2 and ∆ij = c3

ij − c1
ij − c2

ij foredges e ∈ E3. Hene, the orresponding ATSP-digraph has m = 2|E1|+4|E2∪
E3| nodes. Let C ′ = (c′ij) be the shortest path distane aording to the ost oftraversal, i.e., in the digraph (V,A0, c0), where A0 is the ar set that ontainstwo ars (i, j) and (j, i) for eah edge {i, j} ∈ E. Finally, nodes ie, ke′ in thetransformed graph that belong to di�erent edges e = {i, j}, e′ = {k, ℓ} ∈ E areonneted by ars (ie, ke′) and (ke′ , ie) with ost c′ik, resp., c′ki. The prinipleof the transformation is visualized in Figure 1.4
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3Fig. 1. Priniple of the Transformation of WRPPZ into ATSPThe orretness of the transformation an be seen as follows. Any ATSP touran only ontain up to |E1|+2|E2∪E3| = m/2 times a oe�ient −M . Hene,if M is large enough, an optimal ATSP tour onnets all pairs (ie, je), (i1e, j

1
e ),resp., (i2e, j

2
e ) of nodes belonging to the same required edge of the WRPPZ.Note further that any path (i1e, j

1
e , i

2
e, j

2
e ) for e ∈ E3 orresponds with the zigzagservie (in diretion from i to j) and that its ost is c1

ij + ∆ij + c2
ij − 2M =

c3
ij − 2M .The transformation presented here is similar to the transformations of arrouting problems into node routing problems given by Baldai and Maniezzo(2004) for the apaitated ar routing problem (CARP), exept that they donot onsider zigzag servies. Di�erent transformations have been proposed byLaporte (1997) for postman problems into generalized ATSP (using one/twonodes for eah direted/undireted required ar/edge) and Pearn et al. (1987)for CARP into apaitated VRP (using three nodes for eah required edge).4 Computational ResultsLaporte (1997) and Blais and Laporte (2003) have shown that transformationsof postman problems into TSP are not only appealing from a formal andmodeling point of view, but that they work quite well even for large-saleproblem instanes. On the one hand, introduing big-M distanes into theost matrix ertainly produes degenerate TSP instanes. On the other hand,exellent heuristi and exat solution methods are available for the TSP, seee.g. Gutin and Punnen (2002).The fous of the omputational tests presented here is, therefore, not to dis-uss the quality of ar-into-node routing transformations in general. Instead,we will show that inorporating zigzag options into a model/algorithm hasthe potential of providing better solutions. An empirial omputational testompares WRPPZ with WRPP. In order to make a fair omparison, we only5



onsider WRPPZ instanes where the ost of zigzag servie is idential tothe ost of the separate servies, i.e., c3
ij = c1

ij + c2
ij for all e = {i, j} ∈ E3.By hanging all edges e ∈ E3 into edges e ∈ E2 a WRPP instane with thesame osts but without zigzag option is reated. Optimal solutions are om-puted using CONCORDE, a branh-and-ut STSP implementation providedby Applegate et al. (1999).The random WRPPZ and WRPP instanes were generated as follows. Asequene x1, . . . , xH of integers is generated by x1 := 0, xp+1 := xp +

U(30, 70), p = 2, . . . , H, where U(30, 70) is a sample from the uniform dis-tribution on {30, 31, . . . , 70}. A seond sequene y1, . . . , yH is generated in thesame way. Eah node v ∈ V is loated at one of the positions (xp, yq), p, q ∈
{1, . . . , H} in the Eulidean plane. In order to simulate a street network,only horizontal and vertial onnetions to the �neighboring� nodes de�ne theedges e ∈ E, i.e., eah node v ∈ V is adjaent to up to four other nodes.A probability distribution p = (p0, p1, p2, p3) ontrols the type of eah edge
e ∈ E0 ∪ E1 ∪ E2 ∪ E3. Finally, all osts are symmetri and omputed bythe following rules. c0

ij is the Eulidean distane between i and j. A singleservie is twie and zigzag servie is four times as ostly as a traversal, i.e.,
c0
ij = c1

ij/2 = c2
ij/2 = c3

ij/4.Table 1 shows the results for ten di�erent distributions p and sizes H ∈
{4, 5, . . . , 9} of retangular street networks with H2 nodes. Eah entry in thetable shows the aggregated omputational results of 10 di�erent randomlygenerated instanes. The entry %dev is the deviation of the optimal objetivebetween WRPPZ and the orresponding WRPP, i.e., 100 · zWRPP−zWRPPZ

zWRPPZ
. Wepresent the average (avg), minimum (min), and maximum (max) deviationamong the 10 instanes of eah blok. Additionally, # omp is the number ofonneted omponents of the graph (V,E1 ∪ E2 ∪ E3)) and #nodes TSP thenumber of nodes in the resulting TSP.We interpret the results as follows. The deviation between WRPPZ andWRPPoptimal solutions is orrelated to the distribution p = (p0, p1, p2, p3) of theedges. It does not signi�antly depend on the average portion of zigzag edges,i.e., p3 or p3/(1 − p0). For example, in distribution p = (5, 1, 1, 3)/10 the por-tion of zigzag edges is 3

10
, resp., 3

5
, while in distribution p = (6, 2, 1, 1)/10the portion is 1

10
, resp., 1

4
, whih is muh smaller. Both distributions showa similar average deviation of about 2.25%. Similarly, the omputational re-sults show no orrelation between the deviation and the number of onnetedomponents or between the deviation and the size of the resulting TSP.It seems that the additional �exibility of zigzag servie is most useful whenonly a small number of edges have to be servied twie. The two distributionswith a maximum value of p2 = 0.4 give the smallest deviation, meaning thatthere is only a small potential for improvements when additional zigzagging6



is allowed. In addition, the �ve distributions with the highest improvement(average deviation) are those where the ratio of single and zigzag servie edgesompared to the double servie edges, i.e. the quotient (p1 + p3)/p2, is thehighest. The more it is possible to servie big parts of the network by a singlewalk through the edges, the higher is the gain of the additional �exibility tohoose zigzag servies.5 ConlusionsThe note has presented the WRPPZ as a generalization of postman prob-lems with real-world appliations in, e.g., waste-olletion and postal servies(Sniezek et al. 2002; Gendreau 2004; Voÿ 2004). The WRPPZ takes the optionof a single zigzag servie and two separate servies into aount. A transfor-mation into an ATSP/STSP was given. It is straightforward to apply the samekind of transformation to any kind of apaitated ar-routing problems. Froma theoretial point of view it is lear that the additional �exibility to buildfeasible postman tours (when zigzagging is an additional option) o�ers thepotential of building better solutions. The omputational tests indiate thatimprovements of some perent are possible. The size of the improvement de-pends on the ost of servies but also on the distribution of the types of servieedges.Nowadays, the best metaheuristis for postman problems and CARP ompeteto lose a small gap of a very few perent. In this ontext, improvementsaused by the additional zigzag option, even below 1%, an be signi�antin some ar-routing appliations. Obviously, one an expet more signi�antimprovements when the ost of a zigzag servie is smaller than the ost oftwo separate servies. The additional �exibility of hoosing between types ofservies ould also be taken into aount in a pre-proessing by heuristiallydeiding on separate servies or zigzag servie. However, the simpliity of thetransformation proposed in this note suggests that the deision on separateor zigzag servies should be integrated into models and the orrespondingsolution algorithms.ReferenesApplegate, D., Bixby, R., Chvátal, V., and Cook, W. (1999). CONCORDE.Available at http://www.math.prineton.edu/tsp/onorde.html.Assad, A. and Golden, B. (1995). Ar routing methods and appliations. InM. Ball, T. Magnanti, C. Monma, and G. Nemhauser, editors, Handbooks7



in Operations Researh and Management Siene, Vol. 8, Network Routing,hapter 5, pages 375�483. Elsevier, Amsterdam.Baldai, R. and Maniezzo, V. (2004). Exat methods based on node routingformulations for ar routing problems. Tehnial Report UBLCS-2004-10,Department of Computer Siene, University of Bologna, Italy.Blais, M. and Laporte, G. (2003). Exat solutions of the generalized rout-ing problem through graph transformations. Journal of the OperationalResearh Soiety, 54, 906�910.Bodin, L., Fagin, G., Welebny, R., and Greenberg, J. (1989). The design of aomputerized sanitation vehile routing and sheduling system for the townof Oyster Bay, New York. Computers & Operations Researh, 16, 45�54.Corberán, A., Marti, R., and Romero, A. (2000). Heuristis for the mixedrural postman problem. Computers & Operations Researh, 27, 183�203.Dror, M., editor (2000). Ar Routing: Theory, Solutions and Appliations.Kluwer, Boston.Eiselt, H., Gendreau, M., and Laporte, G. (1995a). Ar routing problems,Part II: The rural postman problem. Operations Researh, 43(3), 399�414.Eiselt, H., Gendreau, M., and Laporte, G. (1995b). Ar routing problems,Part I: The hinese postman problem. Operations Researh, 43(2), 231�242.Gendreau, M. (2004). Personal ommuniation, TRISTAN V onferene,Guadeloupe, June 13-18, 2004: M. Gendreau mentioned that zigzag serviehas been onsidered in postal appliations. No reports available.Grötshel, M. and Win, Z. (1992). A utting plane algorithm for the windypostman problem. Mathematial Programming, 55, 339�358.Gutin, G. and Punnen, A., editors (2002). The Traveling Salesman Prob-lem and Its Variations, volume 12 of Combinatorial Optimization. Kluwer,Dordreht.Jonker, R. and Volgenant, T. (1983). Transforming asymmetri into symmetritraveling salesman problems. Operations Researh Letters, 2, 161�163.Laporte, G. (1997). Modeling and solving several lasses of ar routing prob-lems as traveling salesman problems. Computers & Operations Researh,24(11), 1057�1061.Pearn, W., Assad, A., and Golden, B. (1987). Transforming ar routing intonode routing problem. Computers & Operations Researh, 14(4), 285�288.Sniezek, J., Bodin, L., Levy, L., and Ball, M. (2002). Capaitated ar routingproblem with Vehile-Site dependenies: The Philadelphia experiene. InP. Toth and D. Vigo, editors, The Vehile Routing Problem, hapter 11,pages 287�308. Siam, Philadelphia.Voÿ, S. (2004). Personal ommuniation, TRISTAN V onferene, Guade-loupe, June 13-18, 2004: S. Voÿ mentioned that zigzag servie has beenonsidered in waste-olletion. No reports available.
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Distribution p (p0, p1, p2, p3) =of the edges 1

10
(2, 2, 3, 3) 1

10
(3, 1, 4, 2) 1

10
(4, 1, 4, 1) 1

10
(5, 1, 2, 2) 1

10
(5, 3, 1, 1) 1

10
(5, 1, 1, 3) 1

10
(5, 2, 2, 1) 1

10
(5, 2, 1, 2) 1

10
(6, 2, 1, 1) 1

10
(6, 1, 2, 1) OverallSize

H = 4, |V | = 16,|E| = 24%dev avg/min/max 1,9/0/4,8 0,1/0/1,3 0,6/0/2,1 0,7/0/3,4 2,3/0/6,3 1/0/5 0,6/0/2,9 3/0/7 1,4/0/7,5 1/0/3,7 1,3/0/7,5#omp avg 1,1 1,3 1,8 1,4 1,7 1,8 1,8 1,9 2,3 2,7 1,8#nodes TSP avg 52,8 43,6 38,0 31,2 28,4 26,0 25,4 26,4 21,0 21,6 31,4

H = 5, |V | = 25,|E| = 40 2,3/0,5/3,7 0,4/0/1,6 0,1/0/1 1/0/4,7 1,4/0/3,9 2/0/4,3 1,5/0/4,6 2,3/0,1/4,8 3,4/0/6,5 1,5/0/4,6 1,6/0/6,51,0 1,4 1,7 2,5 3,3 2,4 2,5 2,6 4,0 4,1 2,682,2 82,6 70,6 60,4 41,8 56,0 47,0 48,4 34,4 38,0 56,1

H = 6, |V | = 36,|E| = 60 2,2/0,9/3,7 0,4/0/1,6 0,5/0/1,2 1,9/0,5/4,6 2,2/0/3,4 2,2/0/4,9 1,5/0,8/2,1 3,3/0,8/4,9 1,9/0/4,7 1,1/0/3,6 1,7/0/4,91,0 1,2 1,7 3,1 3,8 3,5 4,2 4,4 5,6 4,6 3,3143,8 132,0 108,8 93,2 73,4 93,2 72,2 76,0 60,2 63,2 91,6

H = 7, |V | = 49,|E| = 84 2,3/1,5/3,8 0,6/0/2,5 0,5/0/1,8 1,6/0/3,3 2/0/4,3 3,4/2,7/5,4 1,4/0/2,6 3,2/1/5,6 2,5/0,2/4,9 1,3/0/2,8 1,9/0/5,61,1 1,4 2,5 4,1 5,6 4,8 4,8 4,7 7,0 6,9 4,3203,2 186,2 153,6 134,8 91,4 122,8 115,2 110,0 80,8 99,2 129,7

H = 8, |V | = 64,|E| = 112 2,3/1,1/3,2 0,5/0/1,2 0,6/0/1,4 1,9/0,6/3,4 1,7/0,1/3,2 2,4/1,3/3,4 1,5/0,6/2,4 3,1/1,5/4,4 2,2/0,9/3,4 1,7/0,3/2,5 1,8/0/4,41,2 1,7 3,1 6,5 6,1 4,5 5,9 4,6 8,5 9,1 5,1271,8 251,2 221,2 171,4 126,8 178,6 151,2 160,6 119,6 130,6 178,3Overall%dev avg/min/max 2,2/0/4,8 0,4/0/2,5 0,5/0/2,1 1,4/0/4,7 1,9/0/6,3 2,2/0/5,4 1,3/0/4,6 3/0/7 2,3/0/7,5 1,3/0/4,6 1,7/0/7,5#omp avg 1,1 1,4 2,2 3,5 4,1 3,4 3,8 3,6 5,5 5,5 3,4

Table1DeviationbetweenWRPPZandWRPPSolutions,NumberofConnetedCompo-
nentsoftheWRPP(Z),andNumberofNodesintheresultingTSP
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