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Abstract

This note presents a generalization of postman problems with more flexibility of
servicing street segments. Street segments requiring a service on both sides of the
street can be covered either by two separate services or by a single zigzag service.
A mixed integer formulation and a transformation of these postman problems into
a symmetric traveling salesman problem are presented. Even if the cost for zigzag
service is not smaller than the cost of two separate services, there is still a potential
of improving solutions of the corresponding arc routing problem.
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1 Introduction

This note presents a new class of postman problems which can be defined as
follows. A postman has to deliver mail to the street segments of his district.
Street segments can be divided into four classes: First, street segments with
houses on one side of the street only. These require a single service. Second,
street segments with houses on both sides, which have to be serviced sep-
arately. Third, street segments with houses on both sides which provide the
option to service both sides with a single zigzag walk (going through the street
segment once) or to service the two sides separately. In all cases, additional
traversals of a segment are allowed, but a traversal and different modes of ser-
vice imply different costs. Fourth, so-called non-required street segments may
be used to get from one point to another. The problem is to find a least cost
postman tour which provides appropriate service for all street segments of the
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given district. Literatur on arc routing, in which zigzag service has been men-
tioned, is scarce (Bodin et al. 1989, p. 49 51; Assad and Golden 1995, p. 436;
Sniezek et al. 2002; zigzag service is called “meander” there). However, it seems
that in this paper street segments are simply declared as “zigzag streets” so
that zigzag service options are not considered in a model or corresponding
algorithm.

One of the most general postman problems studied in the literature is the
windy rural postman problem (WRPP, see Corberan et al. 2000), which covers
the undirected, directed and mixed cases as well as the Chinese and rural cases.
The windy case is important for several real-world applications that consider
partially directed street networks with either symmetric or asymmetric costs.
For a general introduction to postman problems and arc routing we refer to
Eiselt et al. (1995b,a) and Dror (2000).

We define the windy rural postman problem with zigzag service (WRPPZ) as
a generalization of the WRPP. An instance of the WRPPZ is defined on an
undirected graph G = (V, E) with node set V and edge set E. Without loss of
generality one can assume that G is simple, i.e., G does not contain parallel
edges or loops. Edges are partitioned into £ = E° U E' U E? U E® where E°
are the non-required edges, £ and E? the edges requiring single resp. double
service (but zigzag service is not allowed), and E3 edges that provide the
zigzag service option. Up to eight different costs cj, ﬂ with £ € {0,1,2,3}
are associated with an edge {i,j} € E. Herein, k = 0 stands for traversal,
k =1 for servicing the first side, kK = 2 the opposite side of the street segment,
and k = 3 for zigzag service, while 15 and j7 describe the orientation of the
service/traversal. Obviously, for the edges e € E'\ E® only some of the costs
are relevant, i.e., edges e € E? have six, edges e € E! have four, and edges
e € E° have two different costs.

Example 1 Consider the symmetric cost case and a graph with V' = {4, j, k}
and F = E'U E? with E' = {{4,j}} and E? = {{j,k}}. Independent of cost
for different modeq of service, the ('oqt minimal postman tour is (4,7, k, 7, 17).
Its cost is c + c + rmn{c L+ ko Jk, +c k} Normally, one would expect
that traversal and zigzag service together are more costly than two separate
services. Hence, this is an example where zigzagging is not advantageous.

Example 2 For a graph with nodes V' = {i,j,k} and edges F = E' U E3
with B! = {{i,j},{i,k}} and E* = {{j,k}} and symmetric costs, different
postman tours may be optimal depending on the choice of the costs. First, the
tour Ty = (i, J, k,1) services edge {j, k} € E® with zigzag service and its cost
is c; + ¢ + ¢ Second, the tour Ty = (4,5, k,j, k, j,7) covers edge {j,k} €
E? by two separate services and performs an additional traversal trough the
edge {j, k} so that its Cost is ¢} +c i +c} ik +c? ik +c}.. For real-world situations,
one would expect c]k +c k + c]k > ¢ ik and therefore T is less costly than T5.



Third, the tour T3 = (4, j, k, J, i, k, i) only makes sense when the edge {7, k:} €
E3 is covered by two separate services. It is more costly than 77 if c -+ ct ikt
¢y + c > ¢, (one would expect this inequality to hold). Consequently, this
is an example where zigzagging is advantageous.

2 Integer Programming Model

An intuitive formulation of the WRPPZ uses decision variables according to
the different possibilities of service and traversal for each edge. Hence, for
each edge {i,j7} € EX, K € {0,1,2,3}, we define 2K decision variables
;Efj,a:k € Ny for k € {0,...,K}. The xf] model how often the correspond-
ing edge is serviced/traversed in the particular manner. In order to abbrevi-
ate the formulation of an integer programming model, we define the vector

Tij = ($%,...,xw)T for edges e = {i,j} € EX. The associated costs are
cij = (..., cB)T and, accordingly, 17z;; = 4, #f;. Moreover, let (S, T)

be the set of edges in F with one endpoint in S C V and oneinT CV.

Zwrppz=mmin Y (¢ + ¢y) 1)
{i,j}cE
subject to

zj;+ a5, =1 forall {i,j} € E'UE? (2)
x4+ a5, =1 forall {i,j} € E? (3)
xy+al+al + a2l =1 forall {i,j} € E® (4)
w4+ +al +a), =1 forall {i,j} € E® (5)
oo 1Tay— > 1Tz =0 forallieV (6)
{igre{i},V) {sire(Vi{i})
> 1wy +au)>2 foralg £SCV (7)
{iJ}E(S VAS)
”, x); € Ng forall {i,j} € E° (8)
l], ]lE{O 1} forall {i,5} € E*UFE?UE? (9)
w’ ﬂ €{0,1} forall {i,j} € E*UE?® (10)
zy;, x5 € {0,1} for all {i,j} € E3 (11)

The objective (1) is to find a postman tour with minimum cost. Constraints (2)
and (3) state that each edge {i,j} € E' U E? has to be serviced once resp.
twice, in either direction. Zigzag service or separate services in either direction
are guaranteed by (4) and (5) for all edges in E3. Flow conservation constraints
are given by (6) and, in a rural context, the connectivity of the postman tour
is enforced by constraints (7). It is well-known that in (7) one can restrict the



sets S to be the union of one or several connected components of (V, E1UE?U
E3) (see, e.g., Eiselt et al. 1995a).

Note that for the special case of a windy Chinese postman problem (i.e., all
edges are of type E' and costs fulfill ¢f; = ¢j;) the formulation reduces to
the one given by Grotschel and Win (1992) when variables are substituted by

xj; = a9 + x;; € Ny so that equation (2) becomes xj; + 27; > 1.

3 Transformation into TSP

We propose a transformation that first maps the WRPPZ to an asymmetric
TSP (ATSP). In case the WRPPZ is not symmetric, the transformation of
Jonker and Volgenant (1983) is then used to transform the resulting ATSP
into a symmetric TSP (STSP). This section focuses on the first transformation
only. The key idea of the transformation is to model all required edges e € E*U
E?U E? of the WRPPZ by two or four ATSP nodes. We describe the internal
connections between nodes modeling a single WRPPZ edge e € E' U E? U E3
first and present the connection between different edges afterwards. Let M > 0
be a suitable large number. Edges e = {i,j} € E' are modeled by two nodes
le, Je With distances according to the distance matrix

— —M + cz-l-
’ (12)

Edges e € E?U E? are modeled by four nodes i}, j!, 42, j2 with distance matrix

T M

J J 2 (13)
0 Ay, - M+
M 0 —M + c?i —

where Aj; is defined as A;; = M for edges e € E? and Ay; = ¢; — ¢j; — ¢, for
edges e € E®. Hence, the corresponding ATSP-digraph has m = 2|E*|+4|E*U
E?| nodes. Let C" = (cj;) be the shortest path distance according to the cost of
traversal, i.e., in the digraph (V, A% "), where A° is the arc set that contains
two arcs (7,7) and (j,7) for each edge {i,j} € E. Finally, nodes i, ke in the
transformed graph that belong to different edges e = {4, j},¢’ = {k,{} € F are
connected by arcs (i, k) and (ke,i.) with cost ¢, resp., ¢,;. The principle
of the transformation is visualized in Figure 1.
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Fig. 1. Principle of the Transformation of WRPPZ into ATSP

The correctness of the transformation can be seen as follows. Any ATSP tour
can only contain up to |E'|+2|E?UE?| = m/2 times a coefficient —M. Hence,
if M is large enough, an optimal ATSP tour connects all pairs (i, j.), (il, 7)),
resp., (i2,72) of nodes belonging to the same required edge of the WRPPZ.
Note further that any path (i, 51,42, j2) for e € E? corresponds with the zigzag
service (in direction from i to j) and that its cost is ¢j; + Ay + ¢, — 2M =
3 — oM

ci; :

The transformation presented here is similar to the transformations of arc
routing problems into node routing problems given by Baldacci and Maniezzo
(2004) for the capacitated arc routing problem (CARP), except that they do
not consider zigzag services. Different transformations have been proposed by
Laporte (1997) for postman problems into generalized ATSP (using one/two
nodes for each directed /undirected required arc/edge) and Pearn et al. (1987)
for CARP into capacitated VRP (using three nodes for each required edge).

4 Computational Results

Laporte (1997) and Blais and Laporte (2003) have shown that transformations
of postman problems into TSP are not only appealing from a formal and
modeling point of view, but that they work quite well even for large-scale
problem instances. On the one hand, introducing big-M distances into the
cost matrix certainly produces degenerate TSP instances. On the other hand,
excellent heuristic and exact solution methods are available for the TSP, see
e.g. Gutin and Punnen (2002).

The focus of the computational tests presented here is, therefore, not to dis-
cuss the quality of arc-into-node routing transformations in general. Instead,
we will show that incorporating zigzag options into a model/algorithm has
the potential of providing better solutions. An empirical computational test
compares WRPPZ with WRPP. In order to make a fair comparison, we only



consider WRPPZ instances where the cost of zigzag service is identical to
the cost of the separate services, i.e., ¢f; = cj; + ¢; for all e = {i,j} € E°.
By changing all edges e € E? into edges e € E? a WRPP instance with the
same costs but without zigzag option is created. Optimal solutions are com-
puted using CONCORDE, a branch-and-cut STSP implementation provided

by Applegate et al. (1999).

The random WRPPZ and WRPP instances were generated as follows. A
sequence x1,...,xy of integers is gemerated by z; = 0, 2,41 = z, +
U(30,70),p = 2,...,H, where U(30,70) is a sample from the uniform dis-
tribution on {30, 31,...,70}. A second sequence yi, ..., yy is generated in the
same way. Each node v € V is located at one of the positions (x,,y,),p,q €
{1,...,H} in the Euclidean plane. In order to simulate a street network,
only horizontal and vertical connections to the “neighboring” nodes define the
edges e € FE, i.e., each node v € V is adjacent to up to four other nodes.
A probability distribution p = (p°, p*, p?, p*) controls the type of each edge
e € E°U E'U E? U E2. Finally, all costs are symmetric and computed by
0

the following rules. ¢;; is the Euclidean distance between i and j. A single

service is twice and zigzag service is four times as costly as a traversal, i.e.,
0 _ 1 /9 _ 2 /9 _ .3
cp = ¢i;/2 = ci; /2 = ci; /4.

Table 1 shows the results for ten different distributions p and sizes H €
{4,5,...,9} of rectangular street networks with H? nodes. Each entry in the
table shows the aggregated computational results of 10 different randomly
generated instances. The entry %dev is the deviation of the optimal objective
between WRPPZ and the corresponding WRPP, i.e., 100 - ZWEEE—2WEPPZ Ve

present the average (avg), minimum (min), and maximum (ng;P)Pfieviation
among the 10 instances of each block. Additionally, # comp is the number of
connected components of the graph (V, B U E? U E3)) and #nodes TSP the

number of nodes in the resulting TSP.

We interpret the results as follows. The deviation between WRPPZ and WRPP
optimal solutions is correlated to the distribution p = (p° p*, p? p3) of the
edges. It does not significantly depend on the average portion of zigzag edges,
i.e., p® or p3/(1 — p%). For example, in distribution p = (5,1,1,3)/10 the por-
tion of zigzag edges is 1%, resp., %, while in distribution p = (6,2,1,1)/10
the portion is %, resp., i, which is much smaller. Both distributions show
a similar average deviation of about 2.25%. Similarly, the computational re-
sults show no correlation between the deviation and the number of connected
components or between the deviation and the size of the resulting TSP.

It seems that the additional flexibility of zigzag service is most useful when
only a small number of edges have to be serviced twice. The two distributions
with a maximum value of p? = 0.4 give the smallest deviation, meaning that
there is only a small potential for improvements when additional zigzagging



is allowed. In addition, the five distributions with the highest improvement
(average deviation) are those where the ratio of single and zigzag service edges
compared to the double service edges, i.e. the quotient (p' + p®)/p?, is the
highest. The more it is possible to service big parts of the network by a single
walk through the edges, the higher is the gain of the additional flexibility to
choose zigzag services.

5 Conclusions

The note has presented the WRPPZ as a generalization of postman prob-
lems with real-world applications in, e.g., waste-collection and postal services
(Sniezek et al. 2002; Gendreau 2004; Vof 2004). The WRPPZ takes the option
of a single zigzag service and two separate services into account. A transfor-
mation into an ATSP/STSP was given. It is straightforward to apply the same
kind of transformation to any kind of capacitated arc-routing problems. From
a theoretical point of view it is clear that the additional flexibility to build
feasible postman tours (when zigzagging is an additional option) offers the
potential of building better solutions. The computational tests indicate that
improvements of some percent are possible. The size of the improvement de-
pends on the cost of services but also on the distribution of the types of service
edges.

Nowadays, the best metaheuristics for postman problems and CARP compete
to close a small gap of a very few percent. In this context, improvements
caused by the additional zigzag option, even below 1%, can be significant
in some arc-routing applications. Obviously, one can expect more significant
improvements when the cost of a zigzag service is smaller than the cost of
two separate services. The additional flexibility of choosing between types of
services could also be taken into account in a pre-processing by heuristically
deciding on separate services or zigzag service. However, the simplicity of the
transformation proposed in this note suggests that the decision on separate
or zigzag services should be integrated into models and the corresponding
solution algorithms.
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Distribution p

®°, p*, p%,p%) =

of the edges +(2,2,3,3) 5(3,1,4,2) 5(4,1,4,1) +(5,1,2,2) +(5,3,1,1) %(5,1,1,3) %(5,2,2,1) %(5,2,1,2) (6,2,1,1) +(6,1,2,1) Overall
Size
H =4, |V|=16,E| =24
%dev avg/min/max 1,9/0/4,8 0,1/0/1,3 0,6/0/2,1 0,7/0/3,4 2,3/0/6,3 1/0/5 0,6/0/2,9 3/0/7 1,4/0/7,5 1/0/3,7 | 1,3/0/7,5
#tcomp avg 1,1 1,3 1,8 1,4 1,7 1,8 1,8 1,9 2,3 2,7 1,8
#nodes TSP avg 52,8 43,6 38,0 31,2 28,4 26,0 25,4 26,4 21,0 21,6 31,4
H =5, |V|=25,E| =40
2,3/0,5/3,7 0,4/0/1,6 0,1/0/1 1/0/4,7 1,4/0/3,9 2/0/4,3 1,5/0/4,6 2,3/0,1/4,8 3,4/0/6,5 1,5/0/4,6 | 1,6/0/6,5
1,0 1,4 1,7 2,5 3.3 2.4 2,5 2.6 4,0 a1 2,6
82,2 82,6 70,6 60,4 41,8 56,0 47,0 48,4 34,4 38,0 56,1
H =6, |V|=36,lE| =60
2,2/0,9/3,7 0,4/0/1,6 0,5/0/1,2 1,9/0,5/4,6 2,2/0/3,4 2,2/0/4,9 1,5/0,8/2,1 3,3/0,8/4,9 1,9/0/4,7 1,1/0/3,6 | 1,7/0/4,9
1,0 1,2 1,7 3,1 3,8 3,5 4,2 4,4 5,6 4,6 3,3
143,8 132,0 108,8 93,2 73,4 93,2 72,2 76,0 60,2 63,2 91,6
H=17,|V|=49,|E| = 84
2,3/1,5/3,8 0,6/0/2,5 0,5/0/1,8 1,6/0/3,3 2/0/4,3 3,4/2,7/5,4 1,4/0/2,6 3,2/1/5,6 2,5/0,2/4,9 1,3/0/2,8 | 1,9/0/5,6
1,1 1,4 2,5 4,1 5.6 4,8 4,8 4,7 7,0 6,9 4,3
203,2 186,2 153,6 134,8 91,4 122,8 115,2 110,0 80,8 99,2 129,7
H =28, |V|=64,E| =112
2,3/1,1/3,2 0,5/0/1,2 0,6/0/1,4 1,9/0,6/3,4 1,7/0,1/3,2 2,4/1,3/3,4 1,5/0,6/2,4 3,1/1,5/4,4 2,2/0,9/3.,4 1,7/0,3/2,5 | 1,8/0/4,4
1,2 1,7 3,1 6,5 6,1 4,5 5,9 4,6 8,5 9,1 5,1
271,8 251,2 221,2 171,4 126,8 178,6 151,2 160,6 119,6 130,6 178,3
Overall
%dev avg/min/max 2,2/0/4,8 0,4/0/2,5 0,5/0/2,1 1,4/0/4,7 1,9/0/6,3 2,2/0/5,4 1,3/0/4,6 3/0/7 2,3/0/7,5 1,3/0/4,6 | 1,7/0/7,5
#comp avg 1,1 1,4 2,2 3,5 4,1 3,4 3,8 3,6 5,5 5,5 3,4




