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tThis note presents a generalization of postman problems with more �exibility ofservi
ing street segments. Street segments requiring a servi
e on both sides of thestreet 
an be 
overed either by two separate servi
es or by a single zigzag servi
e.A mixed integer formulation and a transformation of these postman problems intoa symmetri
 traveling salesman problem are presented. Even if the 
ost for zigzagservi
e is not smaller than the 
ost of two separate servi
es, there is still a potentialof improving solutions of the 
orresponding ar
 routing problem.Key words: postman problems, ar
 routing, transformation
1 Introdu
tionThis note presents a new 
lass of postman problems whi
h 
an be de�ned asfollows. A postman has to deliver mail to the street segments of his distri
t.Street segments 
an be divided into four 
lasses: First, street segments withhouses on one side of the street only. These require a single servi
e. Se
ond,street segments with houses on both sides, whi
h have to be servi
ed sep-arately. Third, street segments with houses on both sides whi
h provide theoption to servi
e both sides with a single zigzag walk (going through the streetsegment on
e) or to servi
e the two sides separately. In all 
ases, additionaltraversals of a segment are allowed, but a traversal and di�erent modes of ser-vi
e imply di�erent 
osts. Fourth, so-
alled non-required street segments maybe used to get from one point to another. The problem is to �nd a least 
ostpostman tour whi
h provides appropriate servi
e for all street segments of the
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given distri
t. Literatur on ar
 routing, in whi
h zigzag servi
e has been men-tioned, is s
ar
e (Bodin et al. 1989, p. 49�51; Assad and Golden 1995, p. 436;Sniezek et al. 2002; zigzag servi
e is 
alled �meander� there). However, it seemsthat in this paper street segments are simply de
lared as �zigzag streets� sothat zigzag servi
e options are not 
onsidered in a model or 
orrespondingalgorithm.One of the most general postman problems studied in the literature is thewindy rural postman problem (WRPP, see Corberán et al. 2000), whi
h 
oversthe undire
ted, dire
ted and mixed 
ases as well as the Chinese and rural 
ases.The windy 
ase is important for several real-world appli
ations that 
onsiderpartially dire
ted street networks with either symmetri
 or asymmetri
 
osts.For a general introdu
tion to postman problems and ar
 routing we refer toEiselt et al. (1995b,a) and Dror (2000).We de�ne the windy rural postman problem with zigzag servi
e (WRPPZ) asa generalization of the WRPP. An instan
e of the WRPPZ is de�ned on anundire
ted graph G = (V,E) with node set V and edge set E. Without loss ofgenerality one 
an assume that G is simple, i.e., G does not 
ontain paralleledges or loops. Edges are partitioned into E = E0 ∪ E1 ∪ E2 ∪ E3 where E0are the non-required edges, E1 and E2 the edges requiring single resp. doubleservi
e (but zigzag servi
e is not allowed), and E3 edges that provide thezigzag servi
e option. Up to eight di�erent 
osts ck
ij, c

k
ji with k ∈ {0, 1, 2, 3}are asso
iated with an edge {i, j} ∈ E. Herein, k = 0 stands for traversal,

k = 1 for servi
ing the �rst side, k = 2 the opposite side of the street segment,and k = 3 for zigzag servi
e, while ij and ji des
ribe the orientation of theservi
e/traversal. Obviously, for the edges e ∈ E \ E3 only some of the 
ostsare relevant, i.e., edges e ∈ E2 have six, edges e ∈ E1 have four, and edges
e ∈ E0 have two di�erent 
osts.Example 1 Consider the symmetri
 
ost 
ase and a graph with V = {i, j, k}and E = E1 ∪ E3 with E1 = {{i, j}} and E3 = {{j, k}}. Independent of 
ostfor di�erent modes of servi
e, the 
ost minimal postman tour is (i, j, k, j, i).Its 
ost is c1

ij + c0
ij + min{c0

jk + c3
jk, c

1
jk + c2

jk}. Normally, one would expe
tthat traversal and zigzag servi
e together are more 
ostly than two separateservi
es. Hen
e, this is an example where zigzagging is not advantageous.Example 2 For a graph with nodes V = {i, j, k} and edges E = E1 ∪ E3with E1 = {{i, j}, {i, k}} and E3 = {{j, k}} and symmetri
 
osts, di�erentpostman tours may be optimal depending on the 
hoi
e of the 
osts. First, thetour T1 = (i, j, k, i) servi
es edge {j, k} ∈ E3 with zigzag servi
e and its 
ostis c1
ij + c3

jk + c1
ik. Se
ond, the tour T2 = (i, j, k, j, k, j, i) 
overs edge {j, k} ∈

E3 by two separate servi
es and performs an additional traversal trough theedge {j, k} so that its 
ost is c1
ij +c0

jk +c1
jk +c2

jk +c1
ik. For real-world situations,one would expe
t c0

jk + c1
jk + c2

jk > c3
jk and, therefore, T1 is less 
ostly than T2.2



Third, the tour T3 = (i, j, k, j, i, k, i) only makes sense when the edge {j, k} ∈
E3 is 
overed by two separate servi
es. It is more 
ostly than T1 if c0

ij + c1
jk +

c2
jk + c0

ik > c3
jk (one would expe
t this inequality to hold). Consequently, thisis an example where zigzagging is advantageous.2 Integer Programming ModelAn intuitive formulation of the WRPPZ uses de
ision variables a

ording tothe di�erent possibilities of servi
e and traversal for ea
h edge. Hen
e, forea
h edge {i, j} ∈ EK , K ∈ {0, 1, 2, 3}, we de�ne 2K de
ision variables

xk
ij, x

k
ji ∈ N0 for k ∈ {0, . . . , K}. The xk

ij model how often the 
orrespond-ing edge is servi
ed/traversed in the parti
ular manner. In order to abbrevi-ate the formulation of an integer programming model, we de�ne the ve
tor
xij = (x0

ij, . . . , x
K
ij )

T for edges e = {i, j} ∈ EK . The asso
iated 
osts are
cij = (c0

ij, . . . , c
K
ij )

T and, a

ordingly, 11T xij =
∑K

k=0 xk
ij. Moreover, let (S, T )be the set of edges in E with one endpoint in S ⊆ V and one in T ⊆ V .

zWRPPZ = min
∑

{i,j}∈E

(cT
ijxij + cT

jixji) (1)subje
t to
x1

ij + x1
ji = 1 for all {i, j} ∈ E1 ∪ E2 (2)

x2
ij + x2

ji = 1 for all {i, j} ∈ E2 (3)
x1

ij + x1
ji + x3

ij + x3
ji = 1 for all {i, j} ∈ E3 (4)

x2
ij + x2

ji + x3
ij + x3

ji = 1 for all {i, j} ∈ E3 (5)
∑

{i,j}∈({i},V )

11T xij −
∑

{j,i}∈(V,{i})

11T xji = 0 for all i ∈ V (6)
∑

{i,j}∈(S,V \S)

11T (xij + xji) ≥ 2 for all ∅ 6= S ( V (7)
x0

ij, x
0
ji ∈ N0 for all {i, j} ∈ E0 (8)

x1
ij, x

1
ji ∈ {0, 1} for all {i, j} ∈ E1 ∪ E2 ∪ E3 (9)

x2
ij, x

2
ji ∈ {0, 1} for all {i, j} ∈ E2 ∪ E3 (10)

x3
ij, x

3
ji ∈ {0, 1} for all {i, j} ∈ E3 (11)The obje
tive (1) is to �nd a postman tour with minimum 
ost. Constraints (2)and (3) state that ea
h edge {i, j} ∈ E1 ∪ E2 has to be servi
ed on
e resp.twi
e, in either dire
tion. Zigzag servi
e or separate servi
es in either dire
tionare guaranteed by (4) and (5) for all edges in E3. Flow 
onservation 
onstraintsare given by (6) and, in a rural 
ontext, the 
onne
tivity of the postman touris enfor
ed by 
onstraints (7). It is well-known that in (7) one 
an restri
t the3



sets S to be the union of one or several 
onne
ted 
omponents of (V,E1∪E2∪
E3) (see, e.g., Eiselt et al. 1995a).Note that for the spe
ial 
ase of a windy Chinese postman problem (i.e., alledges are of type E1 and 
osts ful�ll c0

ij = c1
ij) the formulation redu
es tothe one given by Gröts
hel and Win (1992) when variables are substituted by

x′
ij = x0

ij + x1
ij ∈ N0 so that equation (2) be
omes x′

ij + x′
ji ≥ 1.3 Transformation into TSPWe propose a transformation that �rst maps the WRPPZ to an asymmetri
TSP (ATSP). In 
ase the WRPPZ is not symmetri
, the transformation ofJonker and Volgenant (1983) is then used to transform the resulting ATSPinto a symmetri
 TSP (STSP). This se
tion fo
uses on the �rst transformationonly. The key idea of the transformation is to model all required edges e ∈ E1∪

E2 ∪E3 of the WRPPZ by two or four ATSP nodes. We des
ribe the internal
onne
tions between nodes modeling a single WRPPZ edge e ∈ E1 ∪E2 ∪E3�rst and present the 
onne
tion between di�erent edges afterwards. Let M > 0be a suitable large number. Edges e = {i, j} ∈ E1 are modeled by two nodes
ie, je with distan
es a

ording to the distan
e matrix







− −M + c1
ij

−M + c1
ji −





 . (12)Edges e ∈ E2∪E3 are modeled by four nodes i1e, j
1
e , i

2
e, j

2
e with distan
e matrix





















− −M + c1
ij 0 M

−M + c1
ji − ∆ij 0

0 ∆ji − −M + c2
ij

M 0 −M + c2
ji −





















, (13)
where ∆ij is de�ned as ∆ij = M for edges e ∈ E2 and ∆ij = c3

ij − c1
ij − c2

ij foredges e ∈ E3. Hen
e, the 
orresponding ATSP-digraph has m = 2|E1|+4|E2∪
E3| nodes. Let C ′ = (c′ij) be the shortest path distan
e a

ording to the 
ost oftraversal, i.e., in the digraph (V,A0, c0), where A0 is the ar
 set that 
ontainstwo ar
s (i, j) and (j, i) for ea
h edge {i, j} ∈ E. Finally, nodes ie, ke′ in thetransformed graph that belong to di�erent edges e = {i, j}, e′ = {k, ℓ} ∈ E are
onne
ted by ar
s (ie, ke′) and (ke′ , ie) with 
ost c′ik, resp., c′ki. The prin
ipleof the transformation is visualized in Figure 1.4
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3Fig. 1. Prin
iple of the Transformation of WRPPZ into ATSPThe 
orre
tness of the transformation 
an be seen as follows. Any ATSP tour
an only 
ontain up to |E1|+2|E2∪E3| = m/2 times a 
oe�
ient −M . Hen
e,if M is large enough, an optimal ATSP tour 
onne
ts all pairs (ie, je), (i1e, j

1
e ),resp., (i2e, j

2
e ) of nodes belonging to the same required edge of the WRPPZ.Note further that any path (i1e, j

1
e , i

2
e, j

2
e ) for e ∈ E3 
orresponds with the zigzagservi
e (in dire
tion from i to j) and that its 
ost is c1

ij + ∆ij + c2
ij − 2M =

c3
ij − 2M .The transformation presented here is similar to the transformations of ar
routing problems into node routing problems given by Balda

i and Maniezzo(2004) for the 
apa
itated ar
 routing problem (CARP), ex
ept that they donot 
onsider zigzag servi
es. Di�erent transformations have been proposed byLaporte (1997) for postman problems into generalized ATSP (using one/twonodes for ea
h dire
ted/undire
ted required ar
/edge) and Pearn et al. (1987)for CARP into 
apa
itated VRP (using three nodes for ea
h required edge).4 Computational ResultsLaporte (1997) and Blais and Laporte (2003) have shown that transformationsof postman problems into TSP are not only appealing from a formal andmodeling point of view, but that they work quite well even for large-s
aleproblem instan
es. On the one hand, introdu
ing big-M distan
es into the
ost matrix 
ertainly produ
es degenerate TSP instan
es. On the other hand,ex
ellent heuristi
 and exa
t solution methods are available for the TSP, seee.g. Gutin and Punnen (2002).The fo
us of the 
omputational tests presented here is, therefore, not to dis-
uss the quality of ar
-into-node routing transformations in general. Instead,we will show that in
orporating zigzag options into a model/algorithm hasthe potential of providing better solutions. An empiri
al 
omputational test
ompares WRPPZ with WRPP. In order to make a fair 
omparison, we only5




onsider WRPPZ instan
es where the 
ost of zigzag servi
e is identi
al tothe 
ost of the separate servi
es, i.e., c3
ij = c1

ij + c2
ij for all e = {i, j} ∈ E3.By 
hanging all edges e ∈ E3 into edges e ∈ E2 a WRPP instan
e with thesame 
osts but without zigzag option is 
reated. Optimal solutions are 
om-puted using CONCORDE, a bran
h-and-
ut STSP implementation providedby Applegate et al. (1999).The random WRPPZ and WRPP instan
es were generated as follows. Asequen
e x1, . . . , xH of integers is generated by x1 := 0, xp+1 := xp +

U(30, 70), p = 2, . . . , H, where U(30, 70) is a sample from the uniform dis-tribution on {30, 31, . . . , 70}. A se
ond sequen
e y1, . . . , yH is generated in thesame way. Ea
h node v ∈ V is lo
ated at one of the positions (xp, yq), p, q ∈
{1, . . . , H} in the Eu
lidean plane. In order to simulate a street network,only horizontal and verti
al 
onne
tions to the �neighboring� nodes de�ne theedges e ∈ E, i.e., ea
h node v ∈ V is adja
ent to up to four other nodes.A probability distribution p = (p0, p1, p2, p3) 
ontrols the type of ea
h edge
e ∈ E0 ∪ E1 ∪ E2 ∪ E3. Finally, all 
osts are symmetri
 and 
omputed bythe following rules. c0

ij is the Eu
lidean distan
e between i and j. A singleservi
e is twi
e and zigzag servi
e is four times as 
ostly as a traversal, i.e.,
c0
ij = c1

ij/2 = c2
ij/2 = c3

ij/4.Table 1 shows the results for ten di�erent distributions p and sizes H ∈
{4, 5, . . . , 9} of re
tangular street networks with H2 nodes. Ea
h entry in thetable shows the aggregated 
omputational results of 10 di�erent randomlygenerated instan
es. The entry %dev is the deviation of the optimal obje
tivebetween WRPPZ and the 
orresponding WRPP, i.e., 100 · zWRPP−zWRPPZ

zWRPPZ
. Wepresent the average (avg), minimum (min), and maximum (max) deviationamong the 10 instan
es of ea
h blo
k. Additionally, # 
omp is the number of
onne
ted 
omponents of the graph (V,E1 ∪ E2 ∪ E3)) and #nodes TSP thenumber of nodes in the resulting TSP.We interpret the results as follows. The deviation between WRPPZ andWRPPoptimal solutions is 
orrelated to the distribution p = (p0, p1, p2, p3) of theedges. It does not signi�
antly depend on the average portion of zigzag edges,i.e., p3 or p3/(1 − p0). For example, in distribution p = (5, 1, 1, 3)/10 the por-tion of zigzag edges is 3

10
, resp., 3

5
, while in distribution p = (6, 2, 1, 1)/10the portion is 1

10
, resp., 1

4
, whi
h is mu
h smaller. Both distributions showa similar average deviation of about 2.25%. Similarly, the 
omputational re-sults show no 
orrelation between the deviation and the number of 
onne
ted
omponents or between the deviation and the size of the resulting TSP.It seems that the additional �exibility of zigzag servi
e is most useful whenonly a small number of edges have to be servi
ed twi
e. The two distributionswith a maximum value of p2 = 0.4 give the smallest deviation, meaning thatthere is only a small potential for improvements when additional zigzagging6



is allowed. In addition, the �ve distributions with the highest improvement(average deviation) are those where the ratio of single and zigzag servi
e edges
ompared to the double servi
e edges, i.e. the quotient (p1 + p3)/p2, is thehighest. The more it is possible to servi
e big parts of the network by a singlewalk through the edges, the higher is the gain of the additional �exibility to
hoose zigzag servi
es.5 Con
lusionsThe note has presented the WRPPZ as a generalization of postman prob-lems with real-world appli
ations in, e.g., waste-
olle
tion and postal servi
es(Sniezek et al. 2002; Gendreau 2004; Voÿ 2004). The WRPPZ takes the optionof a single zigzag servi
e and two separate servi
es into a

ount. A transfor-mation into an ATSP/STSP was given. It is straightforward to apply the samekind of transformation to any kind of 
apa
itated ar
-routing problems. Froma theoreti
al point of view it is 
lear that the additional �exibility to buildfeasible postman tours (when zigzagging is an additional option) o�ers thepotential of building better solutions. The 
omputational tests indi
ate thatimprovements of some per
ent are possible. The size of the improvement de-pends on the 
ost of servi
es but also on the distribution of the types of servi
eedges.Nowadays, the best metaheuristi
s for postman problems and CARP 
ompeteto 
lose a small gap of a very few per
ent. In this 
ontext, improvements
aused by the additional zigzag option, even below 1%, 
an be signi�
antin some ar
-routing appli
ations. Obviously, one 
an expe
t more signi�
antimprovements when the 
ost of a zigzag servi
e is smaller than the 
ost oftwo separate servi
es. The additional �exibility of 
hoosing between types ofservi
es 
ould also be taken into a

ount in a pre-pro
essing by heuristi
allyde
iding on separate servi
es or zigzag servi
e. However, the simpli
ity of thetransformation proposed in this note suggests that the de
ision on separateor zigzag servi
es should be integrated into models and the 
orrespondingsolution algorithms.Referen
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Distribution p (p0, p1, p2, p3) =of the edges 1

10
(2, 2, 3, 3) 1

10
(3, 1, 4, 2) 1

10
(4, 1, 4, 1) 1

10
(5, 1, 2, 2) 1

10
(5, 3, 1, 1) 1

10
(5, 1, 1, 3) 1

10
(5, 2, 2, 1) 1

10
(5, 2, 1, 2) 1

10
(6, 2, 1, 1) 1

10
(6, 1, 2, 1) OverallSize

H = 4, |V | = 16,|E| = 24%dev avg/min/max 1,9/0/4,8 0,1/0/1,3 0,6/0/2,1 0,7/0/3,4 2,3/0/6,3 1/0/5 0,6/0/2,9 3/0/7 1,4/0/7,5 1/0/3,7 1,3/0/7,5#
omp avg 1,1 1,3 1,8 1,4 1,7 1,8 1,8 1,9 2,3 2,7 1,8#nodes TSP avg 52,8 43,6 38,0 31,2 28,4 26,0 25,4 26,4 21,0 21,6 31,4

H = 5, |V | = 25,|E| = 40 2,3/0,5/3,7 0,4/0/1,6 0,1/0/1 1/0/4,7 1,4/0/3,9 2/0/4,3 1,5/0/4,6 2,3/0,1/4,8 3,4/0/6,5 1,5/0/4,6 1,6/0/6,51,0 1,4 1,7 2,5 3,3 2,4 2,5 2,6 4,0 4,1 2,682,2 82,6 70,6 60,4 41,8 56,0 47,0 48,4 34,4 38,0 56,1

H = 6, |V | = 36,|E| = 60 2,2/0,9/3,7 0,4/0/1,6 0,5/0/1,2 1,9/0,5/4,6 2,2/0/3,4 2,2/0/4,9 1,5/0,8/2,1 3,3/0,8/4,9 1,9/0/4,7 1,1/0/3,6 1,7/0/4,91,0 1,2 1,7 3,1 3,8 3,5 4,2 4,4 5,6 4,6 3,3143,8 132,0 108,8 93,2 73,4 93,2 72,2 76,0 60,2 63,2 91,6

H = 7, |V | = 49,|E| = 84 2,3/1,5/3,8 0,6/0/2,5 0,5/0/1,8 1,6/0/3,3 2/0/4,3 3,4/2,7/5,4 1,4/0/2,6 3,2/1/5,6 2,5/0,2/4,9 1,3/0/2,8 1,9/0/5,61,1 1,4 2,5 4,1 5,6 4,8 4,8 4,7 7,0 6,9 4,3203,2 186,2 153,6 134,8 91,4 122,8 115,2 110,0 80,8 99,2 129,7

H = 8, |V | = 64,|E| = 112 2,3/1,1/3,2 0,5/0/1,2 0,6/0/1,4 1,9/0,6/3,4 1,7/0,1/3,2 2,4/1,3/3,4 1,5/0,6/2,4 3,1/1,5/4,4 2,2/0,9/3,4 1,7/0,3/2,5 1,8/0/4,41,2 1,7 3,1 6,5 6,1 4,5 5,9 4,6 8,5 9,1 5,1271,8 251,2 221,2 171,4 126,8 178,6 151,2 160,6 119,6 130,6 178,3Overall%dev avg/min/max 2,2/0/4,8 0,4/0/2,5 0,5/0/2,1 1,4/0/4,7 1,9/0/6,3 2,2/0/5,4 1,3/0/4,6 3/0/7 2,3/0/7,5 1,3/0/4,6 1,7/0/7,5#
omp avg 1,1 1,4 2,2 3,5 4,1 3,4 3,8 3,6 5,5 5,5 3,4

Table1DeviationbetweenWRPPZandWRPPSolutions,NumberofConne
tedCompo-
nentsoftheWRPP(Z),andNumberofNodesintheresultingTSP
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