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Abstract

The unified modeling and solution framework, presented by Desaulniers et al. (1998), is
applicable to nearly all types of vehicle-routing and crew-scheduling problems found in
the literature thus far. The framework utilizes resource extension functions (REFs) as
its main tool for handling complex side constraints that relate to a single vehicle route
or crew schedule. The intention of this paper is to clarify which properties of REFs al-
low important algorithmic procedures, such as efficient representation of (partial) paths,
efficient cost computations, and constant time feasibility checking for partial paths (=seg-
ments) and their concatenations. The theoretical results provided by the paper are useful
for developing highly-efficient solution methods for both exact and heuristic approaches.
Acceleration techniques for solving resource-constrained shortest-path subproblems are a
key success factor for those exact algorithms which are based on column generation or
Lagrangean relaxation. Similarly, those heuristic algorithms which are based on resource-
constrained paths can benefit from efficient operations needed to construct or manipulate
segments. Fast operations are indispensable for efficient local-search algorithms that ex-
plore edge-exchange or node-exchange neighborhoods. Efficiency is crucial, since these
operations are repeatedly performed in many types of metaheuristics.

Key words: resource-constrained path, resource extension function, column generation,
accelerated local search, vehicle routing and scheduling

1 Introduction

The unified modeling and solution framework, presented by Desaulniers et al. (1998), is
applicable to nearly all types of vehicle-routing problems (VRPs) and scheduling problems
for vehicles and crews (SPVCs) presented in the literature thus far. Resource extension
functions (REFs) are its main tool for handling complex side constraints that relate to
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a single vehicle route or crew schedule. Essentially, an REF is associated with an arc
of the underlying network and describes the update of resources along that arc. Exam-
ples of resources are accumulated cost, time, load, distance, and, in general, attributes
that describe the state of a vehicle when operating its tour or of a crew member when
performing his or her schedule. If VRPs and SPVCs are solved by column generation
or Lagrangean relaxation, the subproblem is a so-called shortest-path problem with re-
source constraints (SPPRC), see (Desrochers and Soumis, 1988; Irnich and Desaulniers,
2005). SPPRCs are extensions of classical shortest-path problems where costs are replaced
by multi-dimensional resource vectors. These are updated via REFs along the path and
constrained at intermediate nodes.

The intention of this paper is to clarify which properties of REFs allow important algo-
rithmic procedures, such as efficient representation of (partial) paths, efficient cost com-
putations, and constant time feasibility checking for partial paths (=segments) and their
concatenations. In particular, for handling concatenations of segments, the generalization
of REFs to segments and the inversion of REFs will turn out to be computationally advan-
tageous. At least four areas of application exist for inverse REFs and the generalization
of REFs to segments:

First, bidirectional shortest-path algorithms have been used primarily for unconstrained
shortest-path algorithms and have proven to be highly effective for speeding up com-
putations in the average case (Ahuja et al., 1993; Helgason et al., 1993). The concept
of inverse REFs is mandatory for extending bidirectional shortest-path algorithms to
SPPRCs with non-additive resource updates. Column-generation subproblems with non-
additive resource updates arise in real-world routing and scheduling applications (De-
saulniers et al., 1998). For a huge collection of successfully solved real-world problems,
we refer to the book by Desaulniers et al. (2005) and the references given there. Suc-
cessful computational tests of bidirectional SPPRC algorithms used in branch-and-price
methods for solving several types of VRPs with side constraints were conducted by Salani
(2005). Without doubt, these new ideas were rigorous in solving some of the remaining
open instances of the (Solomon, 1987) benchmark (see Jepsen et al., 2006; Desaulniers
et al., 2006).

Second, Irnich (2007) shows that branch-and-price algorithms, where subproblems require
the solution of (o, d)-shortest-path problems (from source o to sink d), can be accelerated
by eliminating arcs from the network of the subproblem. The arc-elimination procedure
proposed there is exact in the sense that reduced costs of o-d-paths allow the identification
of those arcs that cannot be part of an optimal solution. Such arcs are removed from the
subproblem network. An efficient implementation of the procedure combines forward and
backward shortest-path labels, i.e., the solution of o-to-all and inverse d-to-all SPPRCs.
The backward labels can only be computed if an inverse of each REF is defined.

Third, the dynamic aggregation method of Elhallaoui et al. (2005) is an acceleration
technique for large-scale column-generation algorithms. As usual, the master program
contains variables corresponding to paths (routes or schedules). One assumption of the
method is that constraints are mainly of the set-partitioning type. Each set-partitioning
constraint models the covering of a task w € W (a flight segment, a trip segment, a
duty etc.), where W is the set of all tasks to be covered. The dynamic aggregation
method replaces all tasks w € W with representatives wy, £ € L taken from a partitioning
W = Uer, We. A sequence of aggregated restricted master programs (ARMP), where



only the representative tasks are present in the LP, is then solved instead of the full
restricted master programm (RMP). The speedup reported by Elhallaoui et al. (2005)
results from the fact that an ARMP has fewer constraints than the original restricted
master and, therefore, tends to be less degenerate. Note that degeneracy typically slows
down the convergence of column-generation algorithms (tailing-off effect). In order to
ensure the convergence towards the non-aggregated original optimal solution, a dynamic
update procedures modifies the partitioning (major iterations). During minor iteration
steps (when the partitioning is kept fixed), the subproblem is basically solved in order to
generate compatible negative reduced cost paths. Compatible paths respect the current
partitioning, i.e., paths covering each partition W, either fully or not at all. This is where
the generalization of REFs to segments becomes important. Instead of solving the original
subproblem over a large-scale network and filtering out compatible paths, one can replace
every sequence of nodes corresponding to a partition Wy by a single node. An efficient
implementation makes it necessary to generalize REFs from arcs to segments, i.e., to
replace a sequence of REFs by a single REF. We expect that this shrinking procedure
will notably accelerate the solution process of the subproblem. However, the dynamic
aggregation method, as proposed by Elhallaoui et al. (2005), needs solutions from the
original non-aggregated network, for instance, to decide when to modify the partitioning,
to provide an exact stopping rule, and to disaggregate dual variables of the ARMP.
Therefore, the solution of aggregated subproblems should be treated similarly to the idea
of partial pricing (Gamache et al., 1999).

Fourth and finally, the last application uses REFs in a heuristic or metaheuristic context.
Efficient primal heuristics for rich VRPs (Hasle et al., 2003) can be computed using the
modeling and solution framework by Irnich (2006). The framework is based on the giant-
tour representation and resource-constrained paths. Nearly all metaheuristics for VRPs
rely on the definition of neighbor solutions, e.g., k-Opt, k-Opt* as well as node and string
exchanges. Standard local-search procedures iteratively build a neighbor solution first
and check its feasibility afterwards. Typically, the feasibility check causes an extra effort
bounded by O (n) for instances of size n. The new search techniques proposed by Irnich
(2006) allow searching neighborhoods of size O (n¥) in O (n*) time in the worst case.
The fundamental idea is that a move decomposes the giant tour into a small (constant)
number of segments, rearranges them, and concatenates the possibly inverted segments.
The result is a neighboring giant tour. If a preprocessing procedure for computing segment
REFs is performed a priori, the checking of the feasibility of the concatenated segments
(=the new giant tour) can be accomplished in constant time. Furthermore, for several
classes of VRPs, the sequential search method (Irnich et al., 2006) is applicable and allows
substantial speedups in the average case. Numerical results are reported in (Irnich, 2006;
Hempsch and Irnich, 2007).

This paper is organized as follows: The next section gives basic definitions of resource-
constrained paths and REFs for the classical case and extensions. Several examples and
references show how real-world side constraints can be modeled using REFs. In Section 3,
we analyze important properties of REFs, such as smoothness and linearity, and REFs
for the classical and more general non-decreasing case. The computation of an aggregated
REF for a segment is considered in Section 4. Section 5 discusses inverse REFs and their
defining properties. Section 6 explains the most important findings with a small example.
Final conclusions are given in Section 7.



2 Resource-Constrained Paths

Let G = (V, A) be a digraph where V is the set of nodes and A the set of arcs. A path
P = (e1,...,ep) is a finite sequence of arcs (some arcs may occur more than once) where
the head node of ¢; € A is identical to the tail node of ;11 € A foralli € {1,...,p—1}.
For the sake of convenience, we assume that G is simple, so that a path can be written
as P = (vo,v1,...,v,) with the understanding that e; = (v;—1,v;) € A holds for all

ie{l,...,p}.

2.1 Resource-Feasible Paths

Resource constraints can be modeled by means of (minimal) resource consumptions and
resource intervals (e.g., the travel times ¢;; and time windows [a;,b;]). Let R be the
number of resources. A vector T = (T*, ... ,TR)T € R is called a resource vector and its
components resource variables (remark: z' denotes the transposed vector to the vector x).
T is said to be not greater than S if the inequality 7% < S? holds for all components
i € {l,...,R}. We denote this by T' < S. For two resource vectors a and b, the interval
[a,b] is defined as the set {T'€ R :a < T < b}.

Resource intervals, also called resource windows, associated with a node ¢ € V are denoted
by [a;, b;] with a;,b; € R a; < b;. The changes in the resource consumptions associated
with an arc (i, j) € A are given by a vector f;; = (f[j)le of REFs. An REF f]. : RE SR
depends on a resource vector T; € R, which corresponds to the resource consumption
accumulated along a path (s,...,7) from s to 4, i.e., up to the tail node ¢ of arc (i, j).
The result f;;(T;) € R% can be interpreted as a resource consumption accumulated along
the path (s,...,1,7).

Let P be any path in G. In order to simplify the notation, the nodes are numbered from 0
top,ie, P=(0,1,...,p—1,p). Path P is resource-feasible if resource vectors T; € [a;, b;]
exist for all ¢ € {0,1,...,p} such that f;;4+1(7;) < T;4; holds for all ¢ € {0,...,p—1}. For
any resource consumption T{ € [ag, bo] at the start node 0, the set of all feasible resource
vectors at the last node p is given by

T(P, Té) = {Tp € [ap,bp] AT € [ai,bi] with T > TO, and fi,i+1(Tl’) < Tit1
foralli € {0,1,...,p—1}}. (1)

Additionally, we define 7 (P) = T'(P, ap) and F(u,v) to be the set of all resource-feasible
paths from a node u to a node v. Note that P € F(u,v) holds if and only if 7 (P) # @.

2.2 Cost and Pareto-Optimality

All the applications mentioned in the introduction consider paths within optimization
problems. The easiest way of modeling cost is to use a resource r € {1,..., R} for this
purpose. Two types of optimization problems are associated with REFs: First, a path
P = (0,1,...,p) is given and the task is to find an ‘optimal schedule’ for this path,
Le., to solve minper(p) T¢°st. The second type of problem is to find an ‘optimal path’
(the node sequence and the optimal schedule), i.e., minp ¢ £, ¢ (mingper(p) Teost). Tt is
beyond the scope of this paper to present and classify the different types of problems and
associated solution approaches. Details and further references can be found in (Irnich and
Desaulniers, 2005).



However, in order to analyze properties of REFs and their impact on different compu-
tational procedures, we must stress that there are good reasons for extending the above
optimization problems from the one-dimensional ‘cost’ case to a multi-dimensional set-
ting (see definition of the generic SPPRC in (Irnich and Desaulniers, 2005, p. 41)). If cost
is a non-negative linear combination of several other resources (such as distance, time
etc.), a cost-minimal path can be found among all Pareto-optimal paths w.r.t. the given
resources. Several standard algorithms for solving the two problems ‘optimal schedule’
and ‘optimal path’ require the consideration of at least all Pareto-optimal points in 7 (P’)
for all prefix paths P’ of P at intermediate nodes. In particular, this is the case if solu-
tion approaches, such as dynamic programming algorithms, are used and if all REFs are
non-decreasing (see definition below).

2.8 Classical REF's
Classical SPPRCs consider REFs of the form

[ii(Ti) = Ti + ti; (2)
(see Desaulniers et al., 1998) or
fi5(Ty) = max{a;, T; + ti;} (3)

(see Irnich and Desaulniers, 2005), where a; and ¢;; € R® are constants associated with
node j and arc (4, ), respectively. These classical REFs are separable by resources, i.e.,
no interdependencies exist between the different resources. Note that definitions (2) and
(3) are equivalent w.r.t. the definition (1) of 7 (P,Tj), since Tj > a; is satisfied.

Note further that (2) and (3) are special cases of an REF where the lower bound depends
on the arc (i,7), i.e.,
Jij(Ti) = max{ai;, Ti + tij} (4)

(with a;; = —oo one gets (2) and with a;; = a; one gets (3)). Defining classical REFs
by (4) offers more flexibility for modeling. We will see that using (4) also provides more
consistent results w.r.t. the generalization of REFs to segments. Additionally, when an
arc (4, 7) is used and T; > f;;(T;) is the resource consumption at node j, it is possible to
check T} against an arc-specific upper bound b;; (instead of b;). For the sake of simplicity,
we do not use this extension in the paper. However, all results can be easily adapted to
this case of arc-specific lower and upper bounds.

Well-known examples of real-world constraints that can be modeled with classical REFs
are:

(1) Globally constrained resources accumulated along nodes: Here, all resource
intervals are equal to [a;, b;] = [0, U] with a global upper bound U > 0 and REFs
are of the form f;;(T;) = T; + t; for values t; € Ry and j € V. Limited capacities
U and demands ¢; are the most prominent examples that occur with the classical
VRP and its extensions.

(2) Globally constrained resources accumulated along arcs: If the resource con-
sumption is on arcs, the only difference is that REFs are of the form f;;(T;) = T;+t;.
Examples are path-length constraints, where length is measured in distance, travel



time, fuel consumption, pay toll etc. Note that specialized models and algorithms
exist for shortest-path problems that have solely this type of constraint (Beasley
and Christofides, 1989; Borndorfer et al., 2001).

(3) Resources constrained by individual intervals accumulated along arcs and
nodes: The definition (1) of feasible paths is directly motivated by situations where
valid service times are given by time windows [af"™¢ bli™¢] and service and travel

times by t’;i;-me. It is possible to wait so that the start of a service may be later than

the arrival at the node.

Another example is the cost resource. Costs are typically constrained only at the
initial node 0 with [ag,bo] = [0,0], and [a;,b;] = (—00,00) at all other nodes i €
V,i # 0. In the context of column generation, tf]‘?St is composed of arc costs ¢;;
and profits for all constraints containing arc (7, 7). For instance, if node covering
constraints are present, node profits )\; (dual prices of the covering constraints)
yield classical REFs with a reduced cost component defined by tl‘?]‘?“’t =cij — A

The modeling capabilities of classical REFs also enable the computation of non-trivial
attributes of paths. Several examples are given by Avella et al. (2004): They classify
resources as numerical and totalizable (e.g., length, travel time), numerical and non-
totalizable (e.g., road width, number of lanes), and indezed (e.g., type of road, gradient,
parking restrictions). We assume that a path P is given and that the length of an arc (7, j)
is ;;. Avella et al. show how to formulate the following constraints as globally constrained
resources that are accumulated along arcs:

e The average value of a totalizable parameter p;; € R over all arcs must not exceed U
(or fall below L), i.e., 3 ; nepPijlij/ 2 jeplii < U (= L, respectively).
For instance, if [;; is the length in kilometers [km| and p;; is the average travel time

[h/km| on an arc (,7), the upper bound U allows the bounding of the average travel
time [h/km] along the path, e.g., guaranteeing a minimum speed of 1/U [km/h].

e The path has to contain arcs with certain properties f (possibly non-totalizable or
indexed) that sum up to a length of at most U (or least L), Z(i,j)eP:bijzl li <U
(> L, respectively), where coefficient b;; € {0,1} determines whether (i,j) € A has
property f or not.

Here one can, for instance, bound the number of kilometers of one-lane roads.

e The path has to contain at least (most) = percent of arcs with a given property f, i.e.,
Z(i,j)eP:bijzl lij > 169 Z(i,j)EP l;j (with < for ‘at most’).

Relevant constraints of this type are a maximum of x% inner-city streets in a route.

Moreover, classical REFs are useful in the context of multiple use of vehicles (Taillard
et al., 1996). If a vehicle is used more than once in a planning period, it goes back to the
depot for loading/unloading and possibly maintenance. The implication for some of the
resources is that they have to be reset to their corresponding lower bound: For instance, a
resource for the collected load is reset to zero. This fits in nicely with the above definitions
fi;(T;) = Ty + t; and f;;(T;) = T; + t;; of REFs. In order to reset resource r, one has
to set the corresponding component of ¢; or t;; to —oo (any number not greater than



ag —bl). Other resources, such as time and cost, are updated in the standard way. Hence,
restricting the length of the entire route or the arrival times is fully compatible with
the reset of the first resources. The same technique is used in (Irnich, 2006; Hempsch
and Irnich, 2007) for modeling a giant tour (Christofides and Eilon, 1969) as a single
resource-constrained path.

It has been pointed out by Irnich and Desaulniers (2005) that definition (1) captures
the case of minimal resource consumptions. If one wants to model ezact resource con-
sumptions instead, the inequalities in (1) have to be replaced by T/, = f/,1(T;) for
the particular resources r. For the time window case and the resource time, the equality
means that waiting is not allowed: The arrival time at each node has to be identical to the
start time of the service. Let R= (R=) be the resources that force an equality (inequality)
in (1). Gamache et al. (1998) note that a resource r € R~ might equivalently be replaced
by two resources r1,7o € RS. In this case, there are R + 1 resources and REFs fij are
functions mapping from R+ to RE+!L (the ~symbol refers to the case with the new
resources 71 and r3). The resource intervals and REFs for r; are identical to those for r,
while resource intervals for ry are [a;?,b;?] = [—b}, —al]. For ry, the REFs are defined by
f;;? (T;) = — ZZ(T}, . ,f}“l, —TZ?"Q,TZ-T“, . ,TZ-R). The new resource windows and REFs
do not guarantee that 7" = —T"2 holds and that the resource variables fulfill (1) with
equality. However, any path P that is resource-feasible w.r.t. the resources r; and ro is
also feasible w.r.t. 7 € R~, and vice versa. The resource variables T} at the last node of

the path can be feasibly chosen from [—T;;?, T;; 1]. It is ensured that feasible values for the
other resource variables T exist such that equality holds. The following example of strict
time windows demonstrates the relationship between r, r1, and ro: Let P = (0,1,2,3)
be a path, [0,10], [11,12], [8,24],[15,35] be the time windows at the four nodes, and let
the travel times be 10 between all pairs of nodes. Trivially, the minimum resource con-
sumptions of resource 7 along the path P is (0,11,21,31). The resource ry uses the lower
bounds intervals [a;*,b;*] given by [-10,0], [-12,—11], [-24, —8], and [-35,—15], and
fi;(T;)"™ = max{a;*, T —10}. The result is the feasible minimum resource consumptions
—10, —12, —22, and —32. For the original resource » € R~, this result means that any
value between 31 and 32 is a feasible service time at node 3. In turn, feasible start times
at node 0 are between 1 and 2.

Finally, the modeling of path-structural constraints, such as pairing and anti-pairing,
precedence, follower and non-follower constraints as well as elementarity of the path by
classical REFs, can be found in (Irnich and Desaulniers, 2005, Section 3).

2.4 General REFs

More general definitions of REFs with non-linear functions and interdependent resources
provide a powerful instrument for modeling practically-relevant side constraints.

2.4.1 Load-Dependent Costs

In this paragraph, we consider REFs for routing problems where the cost of traveling along
an arc (i,j) depends on the load transported over this arc. An example is the pickup-
and-delivery problem presented in (Dumas et al., 1991) where the cost of an arc (i, j)
is given by a non-decreasing function ¢;; : Ry — R depending on the current load. For
the sake of conciseness, we restrict ourselves to the two resources R = {cost,load}. Each
customer node has a demand d; with d; > 0 for pickups and d; < 0 for deliveries. Load



is a restricted resource with resource intervals [al®d bl°2] = [0, Q] for a given vehicle
capacity @, while cost is unrestricted. Formally, the REF for an arc (i, j) is given by

fij (T:icost’Tiload) — (Ticost 4+ Cij (T:iload),Tiload 4+ d_]) (5)

The properties of f;; mainly depend on the cost function ¢;;. In Sections 4 and 5, we will
analyze affine cost functions, polynomial cost functions and piecewise linear cost functions
to see whether these can be generalized to segments or be inverted.

2.4.2  Soft Time Windows and Inconvenience Costs

Soft time windows model the fact that some service/visiting times within a given time
time ptime] are more desirable than others. The inconvenience is expressed by a
cost or penalty function m; : [a?me, b?me] — R4 which gives, for each feasible point ¢ in
time, the corresponding inconvenience cost. Soft time windows have been considered, e.g.,
by Sexton and Bodin (1985a,b); Ibaraki et al. (2005). Dumas et al. (1990) have shown
that, for a given path P = (0,1,...,p) and convex inconvenience cost functions m;, the

‘optimal schedule’ problem, i.e.,

window [a

P

min Zﬂ'i(Ti)
=0

s.t. T,_1 + ti1: < T; foralli=1,...,p
a; <T; <b; foralli=0,...,p

with a;,b;,T; € R for i € {0,1,...,p}, can be solved by an algorithm that takes at
most O (p) uni-dimensional minimizations over convex functions. Details, including the
pseudo-code of the algorithm, can be found in (Dumas et al., 1990).

Ibaraki et al. (2005) use arbitrary, possibly non-convex piecewise linear inconvenience
cost functions 7;. These functions also cover the case of multiple time windows (see also
Section 2.4.5), since high inconvenience costs model infeasible service-start times between
consecutive time windows at the same location. Among other results, Ibaraki et al. (2005)
provide a dynamic programming procedure for optimizing the overall cost. This procedure
takes O (pd) time if p is the length of the route and ¢ the total number of pieces of the
associated penalty functions.

In a more general setting with several resources, the resource r = cost is updated de-
pending on both resources r = cost and r = time, i.e., the cost component of the REF
is

Z%ost(Ti) — TZ-COSt + Cij + ﬂi(Titime)’ (6)

where ¢;; € R is a fixed cost associated with the arc (¢,7). The definition (6) adds the
penalty when leaving a node and does, therefore, not add an inconvenience cost at the
final node. In s-t-shortest-path problems, an alternative definition of the REFs for all arcs
ending at the destination node ¢ can solve this defect. Desaulniers et al. (1998) also suggest
REFs of the form f;;(T;,T;) that depend on both resource variables, at node ¢ and node j.
Thus, REFs f{7°(T;, Ty) = T{°*" + cij + m;(T;"™) would be possible. However, as noted
in (Desaulniers et al., 1998, p. 82), such a definition of an REF does, in general, impede
the effective computation of intermediate resource consumptions. Computing 7 (P) can
become (practically) untractable.



2.4.3 VRPSDP

The next example we present is the VRP with simultaneous deliveries and pickups (Min,
1989). Each customer 7 has to be visited once, and the servicing vehicle has to perform
a delivery of demand d; and a pickup of quantity p;. An s-t-path P = (0,1,...,p) is a
feasible route if the maximum load on the vehicle does not exceed the vehicle capacity @
at any point in the route. In order to check the feasibility of a route w.r.t. capacity, at
least two interdependent resources with non-linear REF are necessary (see Halse, 1992):
A first resource r = pick models the amount picked up when leaving a node, i.e.,

T/ € [pi, Q) and  fHNT) =T + p, (7a)

while a second resource r = m/L models the maximum load occurring along the path
P=(s,...,i,7), ie.,

T € [max{pi,d;}, Q] and fH(T;) = max{TP'" + p;, T + d;}. (7b)

A i

The REF fi’}?L depends on both resources r = pick and r = mL in a non-linear way. The

interpretation of f[]”L is the following: The maximum load on a path P = (o,...,%,j) can
either occur at the very end when leaving node j, and is then given by the entire picked
up load Tipwk + pj. Or the maximum load can emerge on the prefix path P’ = (o,...,1).

In this case, the maximum load on P comprises the maximum load TimL on P’ and the
amount d; delivered to node j. This explains the formula (7b).

Note that the VRPSDP generalizes several types of VRPs: The VRP with backhauls and
mixed loads (VRPBM) has customers who either have a delivery or pickup demand, but
not both, i.e., d;p; = 0 for all j. If all linehaul customers i (d; > 0 and p; = 0) have to
precede the backhaul customers j (d; = 0 and p; > 0), the resulting problem is the VRP
with backhauls (VRPB). All of these VRP types can be handled with the two resources
pick and mL, and REFs of the form (7). However, the VRPB is much easier to model
than the VRPSDP and VRPBM: It can also be modeled with two independent resources
for the picked up and delivered quantities (or with only one resource that is reset to zero
at the transition from linehaul to backhaul customers). A more detailed classification of
VRPs with deliveries and pickups can be found in (Dethloff, 2002).

The case where some customers have positive delivery and pickup demand can create
another interesting type of VRP: If it is an option to visit customers once or twice
(but with the same vehicle), so-called lasso tours can occur. Some customers are first
supplied only, then a round trip along customers with simultaneous delivery and pickup
is performed, and finally pickups at the first customers are made (visited in the reverse
order). The paper by Gribkovskaia et al. (2006) shows that such a mixed approach has
the potential for notable cost savings. The savings result from better utilization of the
vehicle capacity, since performing deliveries at the beginning yields additional space for
the collection in the second combined delivery and pickup phase. These VRPs can be
modeled as an extension of the VRPBM by splitting all customers j with d;p; > 0 into
two nodes j* and j~ with (d;+,p;+) = (d;,0) and (d;-,p;-) = (0,p;). In addition,
pairing constraints have to ensure that j© and j~ are visited on the same tour.

2.4.4  Waiting Times and Times on Duty

Another important example of non-linear REFs is the modeling of (limited) waiting times
and times on duty. Consider the case where the time of service is given by a resource



r = time with given travel and service times t%me and time windows [a!"™¢ bli™¢]. Any

feasible schedule (T}")Y_  for a path P = (0,1,...,p) imposes the following values:
The time on duty is d = d(P, (T}"™¢)!_,) = T} — T§"™¢ the (overall) waiting time

1=

is w(P, (T}™e);) = Thme — Tgime — 30 | t4me  and time spent on travel and service is
b_, time. By bounding these durations by d™%, w™ and ¢™%* the determination of

an optimal schedule with minimum time on duty and minimum waiting time becomes
necessary. Additionally, when waiting is penalized by a constant (node independent) factor
@ cost-optimal schedules are non-trivial to determine. Desaulniers and Villeneuve
(2000) have shown that the computation of cost-minimal (arc costs plus waiting costs)
schedules can be performed by means of three resources, two of them having non-linear
REFs. Here, we generalize their results in the sense that we model limited waiting times

as well as limited times on duty.

The REF f;;(T;) computes the minimum resource consumption along arc (7,j) with the
following resources: (1) r = time for the earliest start of service, (2) r = wait the
accumulated (minimum) waiting time, (3) an additional resource r = hip for computing
r = wait, (4) the overall time on duty r = duty, and (5) a second additional resource r =
hip' for computing r = duty. The overall time on duty clearly includes travel and service
times, but waiting times might be included fully or partially. In order to cover the general
case, we introduce the factor § € [0,1] as the fraction of waiting times relevant for
computing the time on duty, i.e., T3t = Ttravel 4 pservice 4 sTwait {Jging the results
given in (Desaulniers and Villeneuve, 2000), the components of f;;(7;) have to be defined
as follows:

Gme(T) = T e (8a)
ot (1) = ma { TR0, T — glime 4 gtime (8h)
fl];lp(n ) = max {Tiwait B b;ime’ Tihlp _ tfﬁme} (8c)
F5T) = mas {0 1l T 4 (1= 8)157 + dafe | (8d)
FI(T7) = max {T;“‘ty + (1= oytime, T 4 (1~ 5)t§;‘.m€} (8e)

The feasible domains of these resource variables are given by the following intervals:

Time ¢ [af™e piime] for alli € V (9a)
Twait ¢ [0, ™) for all i € V (9b)
TP ¢ (—o0,00) forallie V\ {0} and T € [~bH™, 00) (9¢)
T € [0,d™] for all i € V (9d)
TP € (—00,00) forallic V\{0} and Ty € [-8b5™, c0) (9€)

Note that resource r = time is independent from the other resources and its update is
classical. The two pairs (wait, hip) and (duty, hlp’) are pairwise interdependent resources
coupled with a max-term.

As an example, we consider a path P = (0,1,2,3,4) with time windows [a}"™¢ bl"™¢] and
travel times t’;zl’?fl given in columns 2 to 4 of the following table. We further assume that
75% of the waiting time is relevant for computing the time on duty, i.e., 6 = 0.75.

10



Node | Time Window Travel Time Resource Variables T, r =
i alime bime ti’m_el time wait hlp duty hlp’
0 0 2 4 0 0 -2 0 -1.5
1 5 7 2 5 0 -6 4 -0.5
2 9 10 1 9 1 -8 6.75 0
3 11 11 3 11 2 -9 8.5 0.25
4 16 18 16 4 -12 13 1

Total 10 4 10+0.75-4

First, the path P, = (0,1) has no waiting time (travel time and time on duty coincide)
because any start time T¢™¢ € [1,2] C [af™¢, bE™¢] leads to no waiting at node 1. Second,
for the path P, = (0,1,2), starting at the latest possible time T{"¢ = 2 results in an
arrival at time 777 4 ¢4i"¢ = 6 + 2 = 8 at node 2. The minimum waiting time for P,
is, therefore, equal to 1. Third, path P = (0,1,2,3,4) has a minimum waiting time of
4 because one has to wait at least 1 unit of time at node 2, 1 unit of time at node 3,
and 2 units of time at the destination node. The overall time on duty is 13 time units,
since traveling and service takes 10 = 4 4+ 2 + 1 4 3 units of time and waiting contributes
with 3 units (the minimum waiting time is 4 units of time and is considered partially by
3=0.75-4).

We will study this type of REF with a pairwise max-term in detail in Sections 4.2 and 5.2.

2.4.5 Multiple Time Windows
Multiple time windows are relevant if the service at a location j has to fall into one out
of several different time slots, i.e., into the union of m; disjoint intervals

L

;= [ tlme’ btlme] [ tlme’ btzme] U [atlme tlme]

J,mg 0 7 g,my

At least two substantially different ways of modeling multiple time windows exist: One
possibility is representing the m; time intervals by m; different nodes. Instead of visiting
location j, one has to visit one of these, i.e., all m; nodes represent the same task. The
second possibility is to have a single node ¢ only, but to use a non-linear REF with a time
component of the form

afi"e if Tfme 4 glime < qtime
me(Ty) = aﬁme if Tfme 4 t“me € (bzz?el’ a”kme) for some k >1 .  (10)
Ttime 4 tzit;jme otherwise

The REF is non-smooth, but piecewise linear and non-decreasing. Note that it is not
assured that 77" € I; holds, since inequality (1) just requires T”me > f“me( T;) (cf.

Section 2.3). However, by using (10), the existence of feasible Values T]t””e € I; is guar-

anteed. Thus, feasibility w.r.t. multiple time windows is ensured. Minimum resource con-
sumptions Tf’me fulfill Tj“me P

2.4.6 Time-Dependent Travel Times

Several authors (e.g., Ahn and Shin, 1991; Malandraki and Daskin, 1992; Hill and Benton,
1992) have examined time-dependent travel times. For each arc (i,j) in the network, a
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function t%me : [alime ptime] — R, provides the travel time tﬁ;me(T time) for traveling
from i to j depending on the time of day T%™¢, i.e., the constant t’;;-me € R, in the
classical case is replaced by a function. The time component of the REF becomes

itj@'me (Tz) — Titime + t%me (Titime). (11)
A consistent definition of travel times t%me(T) requires that all functions have the so-
called non-overtaking property

Sfime < Iwitime — thlme(sflme) < l}‘,]z:me(]witime)

for all Stime Ttime ¢ [glime ptime] (in (Ahn and Shin, 1991) the inequalities are stated
as strict ‘<’-relations, which is not necessary). This is exactly the definition of a one-
dimensional non-decreasing function (see below). If t’;;-me : [alime ptime] — R is smooth
and differentiable, the non-overtaking property is equivalent to that tﬁ;mel(Ttime) > -1

holds for the derivative and any T%™¢ € [qfi™e plime].

2.4.7 Complex Cost Functions

Complex cost functions often occur in crew scheduling applications when modeling com-
plex crew wages. Examples can be found in (Vance et al., 1997; Gamache et al., 1999;
Desaulniers et al., 1999). Their modeling by REFs is straightforward.

3 Resource Extension Functions and their Properties

For a fixed path P = (0,1,...,p) and corresponding REFs f; ;41 fori € {0,1,...,p— 1},
the structure of the sets 7 (P) and 7 (P, Tp) with Ty € R can be complex. This has several
important consequences. First, checking whether P is resource-feasible (7 (P,Ty) # @) or
not, can be difficult. Second, as cost is modeled either as a separate resource or as a linear
combination of resources, the structure of 7 (P, Tp) has implications on cost computations.
Third, for algorithmic purposes, a ‘simple’ representation of 7 (P, Ty), e.g., with O (R)
coefficients, is desirable. The next four subsection analyze REFs in terms of these aspects.

3.1  Structure of T (P,Tp)

For any vector z € R¥, the set z- is defined as 2 = {y € R* : y > x}. It is a cone
with the unique extreme point x and the unit vectors of R as extreme rays. For a set
X CRE, we define f(X) ={f(z):2 € X} and X- ={J,cy 2"

In the following, let P = (0,1,...,p) be an arbitrary path and Ty € [ag, by]. For p > 1,
we denote by P~ = (0,1,...,p — 1) the prefix path.

It follows directly from definition (1) that T' € 7 (P, Tp) implies T N [ay, by] C T (P, Tp)
holds. This has the following implication for the sets of feasible resource values:

Proposition 1 Let P = (0,1,...,p — 1,p) be a path with p > 1. The following relation
holds for the sets 7 (P, Ty) and 7 (P~,Tp):

T(P, TO) = fp_l’p(T(P_,To))L N [ap, bp] for all Ty € [ao, bo] (12)

Proofs for the above and all other propositions and theorems can be found in the appendix.

In the following, we will study smooth, linear and non-decreasing REFs and their impact
on the sets 7 (P, Tp).
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Proposition 2 Let P = (0,1,...,p) be a path with smooth REFs f; ;1 for all i €
{0,1,...,p — 1}. Then T (P, Tp) is compact for all Ty € RF.

The compactness of 7 (P, Tp) implies that the minima in the ‘optimal schedule’ and ‘opti-
mal path’ problems exist (as long as P is feasible or a feasible path P exists). Otherwise,
only an infimum surely exists (7 (P,Ty) C [ap, by] is bounded).

Next, we consider the important case where all REFs are non-decreasing functions. A
function f : R® — RE is non-decreasing, if, for any pair S,7 € R with § < T,
the inequality f(S) < f(T) holds. Non-decreasing REF arise ‘naturally’ if an REF is
interpreted as the update function for computing minimum resource consumptions. If
the resource consumption S at node i is not greater (in any component) than T, we
expect that a minimum resource consumption after traveling from i to j, i.e., f;;(S) and
fi;(T), will also fulfill this relation.

Proposition 3 Let P = (0,1,...,p) be a path with non-decreasing REFs f; ;1 for
i=0,1,...,p— 1. Then T(P,Tp) is a possibly empty interval I C RF for all Ty € RE.
If I # @, the interval I is given by I = [a,(T0),b,] and a,(Tp) € RF can be computed
step-by-step using

&Q(To) = max{ao, T()} and &i(TO) = max{ai, fi—l,i(&i—l(TO))} (13)

forall i € {1,...,p}.

Note that the second part of the above Proposition 3 requires that the path is feasible,
ie., T(P,Tp) is non-empty. Otherwise, [a,(Tp),by] # T(P,Tp) = @. This can happen
if a;(To) £ b; holds for some intermediate node ¢ € {0,1,...,p — 1}. An example is
the segment P = (0,1,2) with [ag,bo] = [0,2], [a1,b1] = [1,1], [a2,b2] = [4,6], and
tor = t12 = 2. Formula (13) yields [a2(Tp), b2] = [4 4+ Tp,6] # @ but P is infeasible for
any initial resource consumption Tj € [0, 2].

Since classical REFs are non-decreasing, the results of Proposition 3 hold, i.e., the entire
information about the structure of 7(P,Tp) is given by the point a,(Tp) € R and
the upper bound b, at node p. In order to simplify the notation, we assume from now
on that all REFs fi; already satisfy f;;(T;) > a; for all T, € RE (i,j) € A. For the
classical case, this means that the REF f;; includes the max-term with a;, i.e., f;;(T;) =
max{a;, T; +t;;} (as, e.g., in definition (3)). A direct consequence is that the values a;(Tp)
can be represented directly as

a;(To) = fi—1,i 0 fi—2i—10--- 0 fia o fo1(To) (14)

for all Ty > ap (note the common convention that g o h(T) is defined as g(h(T)), i.e., the
second function is applied first). For ¢ = 0, the formula is consistent because the empty
concatenation of functions is the identity, so that ag(Zy) = Tp holds. Note further that,
for values Ty # ag, the max-term with ag is missing, so that Formula (13) can produce a
different result.

Surprisingly, even if non-decreasingness seems natural, several examples of practically
relevant ‘optimal schedule’ or ‘optimal path’ problems exist which have REFs with some
decreasing component(s). The simplest case are linear REFs which may not be non-
decreasing. A function f : RE — R is affine linear if a matrix P € R and a
vector ¢ € R exist, such that f(z) = Pz + ¢ holds for all € R¥. In the case of
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qg = 0, f is linear. It has been pointed out that linear node costs ‘naturally’ arise in
column generation subproblems if resource variables appear with non-zero coefficients in
the master problem formulation (see Desaulniers et al., 1998). Examples of this type are
synchronization of departure or arrival times in vehicle or airline scheduling (Ioachim
et al., 1994), combined inventory management and (ship) routing (Christiansen, 1996),
and VRP with split delivery (Gendreau et al., 2005).

Proposition 4 Let P = (0,1,...,p) be a path with (affine) linear REFs f;_1; for i €
{1,...,p}. Then T (P, Tp) is the empty set or a polytope for all Ty € R¥.

We end this paragraph with a small example of linear REFs for modeling time (i.e., start
of service) and linear cost and inconvenience functions. Consider the path P = (0, 1, 2),
two resources r = time and r = cost with resource intervals [ag,bp] = [0,2] x [0,4],
[a1,b1] = [2,5] x [0,5], and [ag,be] = [5,10] x [0,15]. Travel times are to; = 1 and
t1o = 3, costs are cg; = 4 and c¢12 = 6 and inconvenience cost factors are wo(Tgime) =
—2T¢me and 7y (TF™m¢) = —T¥™me see Formula (6). The REFs are, therefore, defined
by fOl(Tgime’TOcost) — (maX{Q’Tétime + 1},T0005t 14— 2Té&ime) and flg(Tfime,TfOSt) —
(max{5, T{me + 3}, Tfost + 6 — T1™¢) with a partially decreasing second component.
Figure 1 shows the two-dimensional polytopes 7(0,7),7 ((0,1),Ty), and 7 (P,Tp) for
To = ap = (0, O)T. Note that for different values of Ty the polytope 7 (P, Tp) can change
w.r.t. the number of faces and extreme points.

cost cost
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Fig. 1. Example of a Linear REF with a Decreasing Component

3.2 Efficient Representation of T (P, Ty)

Can we efficiently represent 7 (P,Tp) in a parametrized form, depending on T, € R
(or € [ag,bo])? Obviously, the preceding subsection has given a partial answer to this
question.

Provided that all REFs f;_1; are non-decreasing, the set 7 (P, Tp) is either empty or
given by [a,(T0), by] with a,(To) = fo—1p © fp—2p—10 -0 fi2 0 fo1(Tp). If one wants to
compute a,(Tp) with an effort independent of the length of the path, one has to find an
efficient representation of the composition f,_1 0 fp—2,—10---0 fiz o foi. This is simply
the generalization of p individual REFs for each arc to a single REF for the segment
P = (0,1,...,p). Therefore, an efficient representation of 7 (P,Tj) can be gained from
any efficient representation of fp = fy,—1p0 fp—2p—10---0 fi2 0 for.

Two cases have to be answered negatively: If an REF has at least one decreasing compo-
nent, we cannot expect the representation of 7 (P, Tp) to be independent of the length p of
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the path. An example is linear waiting times (Toachim et al., 1998; Irnich and Desaulniers,
2005) where the polytope 7 (P, Ty) can have O (p) = Q(p) extreme points. For more gen-
eral settings with R > 2 resources, the number of extreme points can grow even more
rapidly. The second case is that all REFs f;_1 ; are non-decreasing but defined differently
on m; > 2 intervals. Examples are REFs for multiple time windows (see Formula (10)) or
soft time windows with m; > 2 linear pieces. Here, the number of linear pieces necessary
to define fp can grow in the order of Q(3-7_ m;).

3.8  Feasibility Problem

The feasibility problem for a given path P = (0,1,...,p) and Ty € [ao, by is to answer
the question of whether 7 (P, Ty) # @ holds or not. As shown in (Irnich and Desaulniers,
2005), the feasibility problem can be A P-hard if no additional assumptions about the
REFs are given.

Even for the ‘most desirable’ case where all REFs are non-decreasing, the feasibility
problem cannot be solved by considering fp alone. If fp(Ty) £ b,, the path P is clearly
infeasible. However, fp(Tp) < b, provides no information about whether P is feasible or
not. For the moment, we can just state the following result:

Proposition 5 Let P = (0,1,...,p) be a path with non-decreasing REFs f;_;; for
i €{1,...,p}. Then P is feasible, i.e., 7(P,Ty) # &, if and only if a;(Tp) < b; holds for
all i € {0,1,....,p}.

Proposition 5 means that we have to perform p + 1 comparisons and apply p REF eval-
uations (on vectors having R components) in order to check whether path P is feasible.
We will see in Section 5 that inversion of REFs allows the reduction of the computational
effort to a single comparison. However, additional assumptions on the REFs are necessary
for ensuring that these can be inverted.

3.4 Cost Computation

In the simplest case, cost is one of the resources, e.g., represented by r = 1. Otherwise,
cost is modeled implicitly as a non-negative linear combination of two or more of the
resources {1,...,R}. Therefore, the (minimum) cost of a given path P = (0,1,...,p)
with initial resource consumption T € [ag, bo] is infrer(pm) o' T for some a € Rf. Note
that, for non-smooth REFs, the set 7(P) may not be compact so that a minimum may
not exist.

The analysis of the structure of 7 (P,Tp) in the preceding section directly implies the
following two results: If all REFs are non-decreasing, the minimum cost of the path
P =(0,1,...,p) is given by aT&p(TO). If all REFs are linear (but with some decreasing
components), the determination of the minimum cost requires the explicit or implicit
solution of an LP, since 7 (P,Tj) is a polytope. Implicit methods for the description of
this polytope have been developed for specialized cases with two resources by Ioachim
et al. (1998) and three resources by Gendreau et al. (2005). These methods also lead
to effective dominance rules when the optimal path problem is solved by a dynamic
programming (labeling) procedure.
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4 Generalization of REFs to Segments

In the following, the term segment refers to an arbitrary path that is treated as an
indecomposable unit in a given digraph G. The distinction between segments and paths
is made for the sake of explanation only: A given path P, e.g., in an optimal schedule
problem, can be decomposed into several segments P = P;+ P>+ - -+ P;. The modification
of a giant tour by local-search moves is another example of segments arising. In an optimal
path problem, segments occur if some sequences of nodes or arcs are forced to be visited in
a given ordering. Examples are s-t-shortest-path problems in branch-and-price approaches
when branching rules fix flows along some arcs, and the solution of the partial pricing
problem in the dynamic aggregation procedure (see the introduction).

For this section, let P, P; and P, be segments in G. We denote by «(P) the first node and
by w(P) the last node of the segment P. In order to apply Proposition 3 and Formula (14)
with a small computational effort, the focus is on analyzing the following properties of a
segment REF fp = fp,—1p0 fp—2p—10---0 fi20 fo1.

(SCoF): fp is in the same class of functions as all the arc REFs f;; are.

(FNoC): For all paths P, the segment REFs fp can be represented with a fixed number
of coefficients (independent of the length of P) so that a function evaluation fp(T")
can be accomplished in O (1) time and space.

a(Py), the computation of the seg-

(CJS): For any two segments P;, Py with w(P;) =
s O (1) time and space.

ment REF fp, 4 p, for the joined segment take

4.1 Classical REFs

The following propositions show that the classical case can easily be generalized to seg-
ments, since REFs for segments and their concatenations are of the same form as REFs
for arcs. The coefficients defining the REF for a segment can be computed from the
coefficients of the parts (arcs or partial segments) the new segment is constructed of.

Proposition 6 Let f; and fy be given by f1(T) = max{ai,T + t1} and fo(T) =
max{ag, T + t2}. Then
f20 1(T) = max{a, T + 1},

with a = max{ag, a1 + t2} € RE and t = t; + to € RE.

Proposition 7 Let P = (0,1,...,p) be a segment with classical REFs for all arcs, i.e.,
fiit1(T) = max{a;y1,T + 41} for all i € {0,1,...,p — 1}. The segment REF is

fP(T) = fp_Lp O--+0 f12 o} fOl(T) = max{ap, T + tP} (15&)
with
p—1
ap = fP—LP O---0 flg ¢} fol(ao) and tp = Z ti,i—f—l' (15b)
i=0
Next, we consider the concatenation of two segments. For two segments P, = (v, v1, ..., Up)

and P» = (wo, w1, ..., wy) with v, = w(Py) = a(P) = wp, the segment Py @ P» is defined
as (v, v1,...,0p, Wi, ..., wp). Otherwise, if (v,, wp) = (W(P1),a(P2)) € A then P, + P,
denotes the segment (vg,v1, ..., Up, Wo, W1, ..., Wp).
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Proposition 8 Let P, P, be segments in G with REFs fp, (T) = max{ap,,T +tp, } and
fr,(T) = max{ap,, T + tp,}, respectively.

(a) If w(P1) = a(P,) then fpap,(T) = fp, © fp(T) = max{apep, T + tpep,}, with
apep, = max{aPQ,apl + tp2} S RE and tpep, =tp, +1p, € RE.

(b) If (4, 5) == (w(P1),a(P2)) € Athen fp i p,(T) = fp, ofijofp (T') = max{ap,+p,, T+
tlerpQ}, with ap+p, = maX{aPQ,aa(pQ) +ip,,ap, + tij + tp2} € RE and tp+pP, =
tp, +tij +tp, € RE

There is a subtle difference between Formula (2) concerning REFs for arcs and the result
of Proposition 8(b) when these are applied to the segments P, = (i) and P, = (j).
The proposition yields fp(T) = max{max{a;,a; + t;j},T + t;;}. This differs from the
REF fi;(T) = max{aj,T + t;;} defined for the arc (i, 7). Note that both functions are
identical on the interval [a;, c0) but may differ on (—o0, a;). With a;; = max{a;,a; +t;;}
the better or more consistent definition of a classical REF is f;;(T) = max{a;;, T + ti;},
see also Formula (4) and the comments there. Anyway, in all cases, fp is of the required
form (15) as stated in Proposition 8.

Summarizing the results, we can state the following theorem:

Theorem 1 Classical REFs f;;(T") = max{a;, T+t;;} for all (i, j) € A can be generalized
to segments. The segment REFs have the properties (SCoF) and (FNoC), and their coef-
ficients can be computed using Formulas (15). Concatenations of segments with segment
REFs of the form fp(T') = max{ap,T +tp} have the property (CJS) and the coefficients
of the concatenated segments can be computed by the formulas given in Proposition 8.

4.2  REFs with a Pairwise Maz-Term

In Sections 2.4.3 and 2.4.4, we have seen that REFs, where pairs of resource variables
are coupled together with a max-term, are useful for modeling simultaneous deliveries
and pickups as well as for computing minimum waiting times, minimum times on duty,
and travel and waiting costs accumulated along the stops of a vehicle path. For this
paragraph, let the number of resources R = 2U be even. All resource vectors are composed
of pairs (T,T"), where T and T” are U-dimensional vectors. In the same way, REFs are
written as f : RV x RV — RY x RY (T, T") — (g(T,T"), h(T, T")) with specific functions
g,h: RY x RV — RY. The following proposition shows that REFs with a pairwise max-
term have the same ‘nice’ properties as classical REFs.

Proposition 9 Let f; and fy be given by f1(T,.7") = (max{a;,T + t;,7" +
up b, max{a), T + ¢}, T" + u}}) and fo(T,T") = (max{as, T + to,T" + us}, max{ah, T +
th,T" + ub}). Then

foo fi(T,T) = (max{a,T +t,T" +u},max{a’, T+ ¢, T" +u'}) (16)
with a = max{ag, a1 + t2,a) +us}, t = max{t; + to, t] + us}, u = max{uy + to,u} + ua},
a' = max{al,ay + th,a] +ub}, ¥ = max{t; + 4, t] +ub}, v = max{uy + th, u} + ub}.
The following theorem is a direct consequence of the preceding proposition.

Theorem 2 REFs of the form f;(7,7") = (max{a;, T+t;;, T'+u;; }, max{a}, T+t};, T'+

u;j ) for all arcs (i,7) € A can be generalized to segments. A segment P = (0,1,...,p)
has an REF of the form
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fp(T.T) = fpapo---0 frzo for(T, T")
= (max{a, T + ¢, 7" + u},max{a’, T + ', T" + u'}) (17)

with (a,a’) = fp—1p0 -+ 0 fi2 o foi(ao,ap), i-e., properties (SCoF) and (FNoC). Con-
catenations of segments with segment REFs of the form fp(7,7') = (max{a,T +t, T’ +
u},max{a’,T + ¢, T + u'}) have the property (CJS) and the coefficients of the concate-
nated segments can be computed by the formulas given in Proposition 9.

VRPSDP The VRP with simultaneous deliveries and pickups has REFs with pairwise
max-terms, where a; = p;, aj = max{p;,d;}, b; = b; = Q, t;j; = t;; = pj, u;; = —o0, and
u;j = d; holds for all nodes ¢ € V. If we assume p;,d; > 0 for all i € V as well as T' > p;
and 7" > max{p;,d;} the values a;, a, can be set to 0. This simplifies Formula (17) in the
following way: The segment REF for P = (0,1,...,p), T > p;, and T" > max{p;,d;} is

P P
fp(T, T = <T+Zpi, maX{T+mLP,T'+Zd¢}> ) (18)

i=1 =1

where mL" is a constant representing the maximum load that occurs on segment P. To
be more precise, T is the load picked up after leaving the first node 0 (i.e., T has to
include the pickup quantity py at node 0) and 7”7 is the maximum load on the vehicle
that occurs before arriving at node 1. Also, mL¥ does not consider what happens before
node 1, i.e.,

k p
mLY = max Zpi—f— Zdj:ké{l,...,p}
i=1 =1

4.3 Non-decreasing REF's

Besides classical REFs and REFs with a pairwise max-term, we have seen three other
types of non-decreasing REFs in Section 2.4: REFs for modeling load-dependent costs,
multiple time windows, and time-dependent travel times.

4.3.1 Load-Dependent Costs

Given P = (0,1,...,p) and REFs f;_;; of the form (5) for i € {1,...,p}, it is straight-
forward to see that

fr(To) = fp—1po o fizo for(To)

4 i—1 P
_ Tocost + Z Cioli Téoad + § :dj ’Téoad + § :dz
i=1 j=0 i=1

holds. If we want fp to be a function of the same form as the REF f;_;; (property
(SCoF)), we have to look for sets C of functions ¢ € C, ¢ : R — R which are closed under
(1) addition of functions, and (2) the shift operation. For any d € R, a corresponding
shift operation maps a function ¢ € C to the function defined by T — ¢(T + d). In the

case where (1) and (2) hold, the above term T + 3P | ¢; ¢ (T(l)oad + Z;_:%) dj> can
be replaced by T§°% + cp(TEo?).
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First, the set H = P™ of polynomials of a degree not greater than m is closed under
the addition and shift operations. It follows that the cost functions c;; € P™ for the
load-dependent cost on arcs (i,j) € A imply REFs for a segment which have a cost
function cp defined by a polynomial in P™ (property (FNoC)). Since the computation
of the corresponding polynomial takes O (m?) = O (1) time and space, property (CJS)
is fulfilled. As a special case for m = 1 affine linear costs are possible (see Fig. 2(a)).
Note that non-decreasingness of the (segment) REFs is satisfied if all cost functions are
non-decreasing.

cost cost cost

e
/ //

load load load

() (b) (c)

Fig. 2. Load-dependent Costs. (a) Affine Linear, (b) Piecewise Linear with Multiple
Pieces, (c) Approximation by a Polynomial

Second, if the ¢;; are defined piecewise using up to m;; linear functions (as depicted in
Fig. 2(b)), the cost function for the segment P = (0,1,...,p) is also piecewise linear
(property (SCoF)). However, the number of proper pieces necessary for defining c¢p can
become mo1-miz-...-mp—1, ((FNoC) does not hold). Consequently, if one is interested in
compact representations, one should not use functions ¢;; defined differently on different
intervals. Instead, piecewise defined tariffs should be approximated, e.g., by polynomials
leading to segment REFs with a fixed number of coefficients (independent of the length
of the segment under consideration). Figure 2(c) shows an approximation of the cost-
function depicted in Figure 2(b) by a polynomial.

4.3.2  Multiple Time Windows

For multiple time windows, it is easy to see that the REF for a segment is of the same
form as the REF for an arc, see Formula (10). Concerning the effort of representing the
REF, Gietz (1994, p. 65) has shown that one has to consider up to m+ (m — 1)p intervals
if up to m time windows are given at each node of a path of length p. Again, (SCoF)
holds but (FNoC) does not. Anyway, in real-world problems, Gietz (1994, p. 65f) could
not find instances in which more than nine intervals had to be considered. Thus, for long
routes, the worst-case upper bound m + (m — 1)p was never reached.

4.3.8  Time-Dependent Travel Times

Even if the REF is non-decreasing (has the non-overtaking property), the generalization
to segments is hardly possible. For the sake of simplicity, we assume that all time windows
are identical, i.e., [al™¢ bl™¢] = [0, 7], and that all travel time functions t%me(T) are
non-negative. The travel time on a segment P = (0,1,...,p) is
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tp(Ty) =T + to1(To)
+ t12(To + to1(To))
+ ta3(To + t12(To + t01(7o)))
+ t34(To + t23(To + t12(To + t01(T0))))
+...

(we have omitted the superscript time). For the segment P to have a travel time func-
tion tp that is of the same form as the individual travel time functions on the arcs
(property (SCoF)), it is required that this class of functions H be closed under (1) addi-
tion of functions, (2) addition of a constant, and (3) concatenation of functions. The set
of all polynomials H = P satisfies (1)-(3) but the obvious drawback is that ¢p has in-
creasing degree (and, therefore, an increasing number of coefficients) when P gets longer.
For affine linear functions, i.e., H ={f(T) =cT'+d:d € Ry,c € R,c > —d/7}, the class
H also fulfills (1)-(3). However, these functions are not useful for modeling practically
relevant aspects, such as peaks with increased travel time during rush-hours etc. Defining
piecewise linear functions does not solve the problem, since one ends up with numerous
linear pieces defined on disjoint intervals (such as for load-dependent costs and weight
breaks).

We are not aware of any class H of functions that fulfills property (SCoF), can model
practically relevant aspects, and has a compact representation, i.e., property (FNoC).

4.4 Soft Time Windows, Inconvenience Costs, and Linear Node Costs

In the following, we will discuss different cases for the inconvenience functions m; :
[a?me,b?me] — R,. First, if all m; are non-decreasing, the segment REF fp is also
non-decreasing. Even for the simplest case of linear non-decreasing inconvenience func-
tions m; (T"™¢) = w; - T with w; > 0 for all i € V, it is difficult to find a compact
representation. The reason for this difficulty is that we end up with a piecewise defined

REF, i.e.,

P P
fp(TEe, Ty™e) = (TOCOSt + Z ¢i—1, + mp(To), max{ap™®, Ty + ZEU})
i=1 i=1

with mp a piecewise linear inconvenience function. A simple example is P = (0,1),
[afime, blime] = [0,2], [alme, blime] = [2,4], to1 = 1. Here, 7p : [0,2] — R with 7p(Tp) =
woly + 2wy for Ty € [O, 1] and 7TP(T0) = (U}o + wl)To + (’LUO + 2w1) for Ty € [1,2] It is
easy to see that the number of pieces can become p + 1 for a segment P = (0,1,...,p)
with p + 1 nodes ((FNoC) does not hold). Different non-decreasing functions, such as
polynomials, imply that the same discrete cases must be distinguished.

Second, we assume that all inconvenience functions are linear but decreasing, i.e., m;(T*™¢) =
w; - TH™ with w; < 0 for all i € V. These inconvenience functions have been used by
Sexton and Bodin (1985a,b). As pointed out previosly, 7 (P,Tp) is a polytope but not
necessarily a (multi-dimensional) interval. Consequently, we cannot use Proposition 3,
Formula (14) and the segment REF for representing 7 (P,Tp). However, the computa-
tion of cost-minimal schedules can be accomplished by replacing the REF (6) by a non-
decreasing REF, but at the cost of ‘inverting’ the underlying digraph. In order to see this,
note first that the cost-minimal schedule (T;)?_; for P = (0,1,...,p) and Ty € [ao, bo]
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visits each node i € {1,...,p} as late as possible. The minimum inconvenience cost of
the segment w.r.t. Tgime is given by mp(Ty) = min{woTy + pp,op}, where pp,op € R
are constants depending on the segment P and wg < 0 is the slope of the inconvenience
function at the start node 0 of the segment. Here, it is assumed that one arrives as late as
possible at the final node p, i.e., T, Zﬁime = b;ime. Otherwise, for any feasible Tlfime € [ap, byl
the minimum cost depends on T}, so that 7wp(Tp) = min{woTy + pp(Tp),op(Tp)}. The
functions pp(T},) and op(T),) are not non-decreasing and depend on resource variables on
the final node of the segment. Consequently, we cannot give ‘simple’ update formulas for
inconvenience cost functions when two or more segments are concatenated ((CJS) does
not hold). We suggest using the following ‘inverse approach’ in order to handle linear
inconvenience functions with negative slope. Instead of digraph (V, A), we use a new di-
graph with the same set V' of nodes and reverse arcs (j,) for all (¢, j) € A. The resource
r = time is replaced by a resource r = ntime. This new resource models ‘negative points

in time’ and is constrained by [alme pptime] = [—plime _glime] The resource update is

gji (T:jcost’ T]z'time)

_ cost L. oy .gntime ntime time _ ptime
—(Tj + cij — wiT] , max{T] + 5", b }

It is easy to prove that any schedule (T;)?_, for P = (0,1,...,p) and the original REFs is
resource-feasible if and only if the schedule (T, —Tfime)?:p is feasible for the segment
(p,p—1,...,0) with resources cost and ntime and REFs g;;. The advantage of new REFs
is that they are non-decreasing in both components (because of —w; > 0). They can
be handled like the case of linear non-decreasing inconvenience costs (therefore, we have

property (SCoF) for piecewise linear costs, and not (FNoC)).

Third, linear inconvenience cost functions with positive as well as negative slopes at
different nodes exceed the complexity of the two cases considered before. These problems
need a special algorithmic treatment. Toachim et al. (1998) provide solution approaches
for optimal path problems with only two resources (shortest-path problems with time
windows and linear node costs) based on the piecewise representation of the lower envelope
describing the two-dimensional polytope 7 (P). Similarly, the above-mentioned study by
Ibaraki et al. (2005) considers exactly this case, but the focus is not on analyzing REFs for
segments but on procedures for accelerating local search for standard VRP neighborhoods.

Fourth and finally, convex inconvenience cost functions with three or more linear pieces,
as suggested by Sexton and Choi (1986), lead to the same type of inconvenience cost
function for a segment but with multiple linear pieces. Obviously, this adds another
degree of complexity to the three cases considered above.

5 Inversion of Resource Extension Functions

The main question to be answered in this section is how to define inverse REFs so that
they are useful for the following two tasks:

e How can we check the feasibility of a segment without iteratively applying the REFs
for all arcs of the segment and checking intermediate resource consumptions against
upper bounds? More precisely, given a segment P = (0, 1,...,p) and an initial resource
consumption Ty € [ag, bg], we want to find out efficiently whether 7 (P, Ty) # @ holds.
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e Define an inverse REF which allows a reversal of the direction in which resource vari-
ables are considered. Given any arc (i,j) € A, is it possible to define a function which
provides the resource consumption at the tail node ¢ if this information is given for the
head node 57

The analysis of 7(P,Tp) in Section 3.3 has provided only one ‘simple’ criterion for the
first task, given in Proposition 5. According to the precondition of Proposition 5, we
assume for the entire section that all REFs are non-decreasing. The following proposition
solves the first task, i.e., gives a criterion for the feasibility problem.

Proposition 10 Let P = (0,1,...,p) be a path with non-decreasing REFs f;_;; for
i€ {l,...,p}. If functions ffﬁ’l’yi : RE — R exist with properties

(INV)  fi1(T) <T < T < f™(T") forall T € (—oc0,b;_1]
and all T € [a;, 00)

(UBB)  f™(T") < b for all 7" € R

(NDI) Z’sz is non-decreasing
for all « € {1,...,p}, then P is resource-feasible w.r.t. the initial resource consumption
Ty, i-e., T(P,Tp) # @ if and only if Ty < fi¥ o fit¥ o - ;;T’Lp(bp) holds.

We call any function f;}-w which satisfies (INV), (UBB), and (NDI) an inverse REF of
fij- Note that conditions (NDI) and (UBB) are symmetrical to the conditions on f;;,
i.e., the REF has to be non-decreasing and f;;(T) > a; must hold for any T € RE.
Condition (INV) is weaker than what is classically postulated for an inverse function.
This weaker condition makes sense, since one cannot expect f;; or f;]m’ to be bijective.
For instance, the preimage of a; under f;;, i.e., l-;l({aj}) C R® typically contains more
than one point and, in that case, f;; is not injective so that no classical left inverse exists
(in terms of set theory).

According to the idea of generalizing REFs to segments, it is straightforward to define
the inverse segment REF f”“’ of a path P = (0,1,...,p) as 871“’ o finvo... ;””Lp
Note that f&" is (per definition) non-decreasing and fulfills fp(T”) > a for all 7" € RE.
Proposition 10 provides a criterion that can be checked in O (R) time (independent of the
length of the path) when f&(b,, (p)) is computed a priori. The effort for the computation

of f5"(by(p)) depends on the (1nverse) REFs at hand.

If cond1t1ons (NDI), (UBB), and (INV) are satisfied for all REFs, we can easily invert the
entire graph and associated solution processes for optimal schedule and optimal path prob-
lems. In order to see this, define G’ = (V, A’) with the same set of node and reversed arcs
A" ={(4,j) : (4, 1) € A}. With each arc (i,j) € A" we associate the REF f], := f”“’ For

alli € V, let [al, bl] := [ai, b;] be the resource intervals. Then any path P = (0, 1,...,p)is
resource- fea51ble w.r.t. (G, fij, [a;,bi]) if and only if P’ = (p,...,1,0) is resource- fea51ble
w.r.t. (G, fi;, laj, bi]). Classical solution approaches for SPPRCs are mainly based on dy-

namic programming (Irnich and Desaulniers, 2005). The implication for these approaches
is that labels can be extended either forward along arcs (the traditional way) or backward
in the opposite direction to the arcs. Furthermore, corresponding forward and backward
labels can be compared and provide a simple criterion for checking the feasibility of the
associated compound path.
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Theorem 3 (Concatenation Theorem)
Let P, and P, be resource-feasible paths with w(P;) = «a(FP2). If P; has segment REF
fp, and P» has inverse segment REF f”Q“’, then P = P; @ P, is resource-feasible if and

only if fpl (a’oz(P1)) < f]zjzv(bw(PQ))

Our goal is now to develop an easy-to-prove sufficient condition for (INV) to hold. This
condition will then be used to show that classical REFs as well as REFs with a pairwise
max-term are invertible.

Proposition 11 Let f;; : R — RE and ff}-w : Rf — R be non-decreasing functions.
A sufficient condition for property (INV) to hold is

(INV1) T < fi(fi;(T;)) for all Ty € (—o0, b

)

and (INV2) Tj > fi;( f}w(T])) for all Tj € [aj, o0).

We will use the above criterion for proving that classical REFs and REFs with pairwise
max-term have inverse REFs for arcs as well as for segments.

5.1 Classical REFs

Next, we show that classical REFs have an inverse REF and that these can be generalized
to segments.

Theorem 4 Classical REFs of the form f;;(T) = max{a;,T +t;;} for all (i,j) € A can
be inverted and the inverse can be generalized to segments such that properties (SCoF),
(FNoC), and (CJS) hold.

(a) The function f;7"*(7") = min{b;, T’ —t;;} is an inverse REF of f;;.

(b) A segment P = (0,1,...,p) has an REF as in Proposition 7 and an inverse REF of
the form

fio(T"y = min{bp, T' — tp} (19)
with bp = fg?” 0.0 ;;’1”24)71 o ;;Tip(bp) € R and tp = Zf;ol tii+v1 € R (properties

(SCoF), (FNo(C)).
(c) Let Py, P, be segments in G with inverse REFs fp (T) = min{bp,,T’ — tp,} and
fEP(T") = min{bp,, T" — tp, }, respectively. If w(Py) = a(Pz), then

f}':l“éPQ (T/) = }’71“) © fli:'zv(T/) = min{bP1€9P27 T — tP1EBP2}
holds with bpl@p2 = Inin{bpl,bp2 — tpl} < RR and tpl@PQ = tpl + tp2 S RR (this is
property (CJS)).

Note that, in general, inverse REFs are not unique, since (INV), (UBB), and (NDI) do
not impose strong restrictions on the values of f}f”(T’ ) for T" # a;. However, it is easy to

show that inverse REFs ff}-w to classical REFs f;; are uniquely defined for 7" € [a;, c0):

(1) = min{bi, T5 — 5},

5.2  REFs with a pairwise maz-term

Similar results follow for REFs with a pairwise max-term (as introduced in Section 4.2).
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Theorem 5 REFs f;;(T,7") = (max{a;, T +t;j, T’ +u;; }, max{a}, T +t;, T+ uj;}) for

all (,7) € A can be inverted and the inverse can be generalized to segments such that
properties (SCoF), (FNoC), and (CJS) hold.

(a) The function fi*(S,S") = (min{b;, S — tij, S — ti;}, min{b}, S — u;j, " —
inverse REF of f;;.

(b) A segment P = (0,1,...,p) has an REF as in Theorem 2 and an inverse REF of the
form

uj;}) is an

(S, S") = (min{b, S —tp, S —thp}, min{t/, S —up, S’ —up}).

with (b,0") = f§" o fi5" oo fi"y (by,b),) (properties (SCoF) and (FNoC)).

(c) Let P, P> be segments in G with inverse REFs

f”w( ,8") = (min{bp,, S — tp,, S — t};.l},min{b})l,s —up,,S — ujpl}),

f”w( ,8") = (min{bp,, S — tp,, S — t};.Q},min{b})Q, S —up,, S — ujDQ}),

respectively. If w(Py) = a(P,), then

f}’?gePg( ) = (min{bP1€9P27 S — tP1EBP27 S — t%ﬁ@Pg}v

. / / /
mln{bPl@Pga S — UP Py S — uP1€BP2})’

holds with bp,gp, = min{bpl,bp2 tPl,b,PQ — t;;.l}, tpap, = InaX{tp1 +tp,,up, + t;;l},
/ / : / / /

tPl@PQ = maX{tpl + tPQ’tpl + UPQ} bPI@PQ mllrl{bf)}?bPQ /_ ’U;Pl’l?PQ. - uP1}7 ’U'Pl@PQ =
max{up, +tp,,up, +up,}, Up gop, = max{up, +tp,,up +up,} (this is property (CJS)).

The special cases of VRPSDP and VRP with limited time on duty or limited waiting
time are analyzed in more detail.

VRPSDP It follows from Theorem 5 that

v = (min{Q, S — p;, §' — p;}, min{Q, S’ — d;})

is an inverse REF of (7) for all (i,j) € A. If we assume S,5" < @ and that all pickup
quantities p; and delivery quantities d; are non-negative, the min-term with ¢} can be
omitted (the assumption does not hold for applications with multiple use of vehicles).
Formulas for segments P = (0, 1,...,p) can be simplified and become

(g Gl = <min{s - ij pi, S —mLPY, S — ij dl-) (20)
=1

=1

where mL” is the same constant representing the maximum load that occurs in For-
mula (18). The interpretation of the above formula for the inverse segment REF is that
the resource r = pick (the quantity picked up before leaving node 0) is constrained by
the entire load picked up on the segment as well as the maximum load that occurs on P.
The second resource r = mL for the maximum load is constrained only by the quantity
that has to be delivered along P.
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Waiting Times and Times on Duty It has been shown in Section 2.4.4 that wait-
ing times, waiting costs, and times on duty can be modeled by means of non-decreasing
REFs. The resource r = time for earliest time of service is a resource with a classical
update given by (3).

The four resources, r = wait, r = hlp, r = duty, and r = hlp’ are two pairs of interde-
pendent resources which depend on each other with REFs as stated in (17). Therefore,
an REF with resources {time, wait, hlp, duty, hlp'} can be inverted. Hence, all aspects of
time on duty and limited waiting times can be handled by REFs that are invertible and
can be generalized to segments.

5.3 General REFs

With the cases discussed in Section 4.4, it is easy to see that REFs for modeling soft
time windows either have REFs or inverse REFs with at least one decreasing component.
The soft time window case never satisfies the conditions of Proposition 10. We therefore
discuss the case of load-dependent costs only.

Load-Dependent Costs The only way of defining an inverse REF of (5) for load-
dependent costs is

ll]m) (T:jcost’ T]l'oad) — (T:jcost — ¢ (Tnj{oad . dj)a T]l'oad . dj)

(for the sake of simplicity, we have omitted the min-term with the upper bounds b°%* and
bé"“d for both resources as they are not necessary if all demands and costs are non-negative
and T < b;). As stated before, f;; is non-decreasing if and only if ¢;; is non-decreasing.
The opposite holds for iij’.w, ie., szm; is non-decreasing if and only if ¢;; is nonincreasing.
Hence, only constant cost functions ¢;; lead to invertible REFs with property (INV). It
is not possible to invert the underlying graph as needed for bidirectional shortest-path

algorithms or the second application mentioned in the introduction.

Nevertheless, a proper inversion is typically not necessary for feasibility checking because
the resource r = cost is normally not bounded from above. To clarify that point, consider
Propositions 10 and 3. Here, the criterion is to check Ty against an upper bound & (b,)
(or fp(To) < fB"(bp), resp.). If the cost component is unconstrained, i.e., beost
for all i € V, then fp"*%(b,) = gv’w“(bp) = oo. Thus, it is possible to restrict
the feasibility check to all resources except resource r = cost. Note further that a cost
computation over several segments can be done using forward segment REFs, e.g., the
cost of Py + Py is (fp, o fp,(Tp))* so that no inverse REFs are needed for this task.

= o0

6 An Illustrative Example

The example is defined on the network (V, A) with time windows [a;, b;] and the pickup p;
and delivery d; demands for i € V = {1,2,...,8} depicted in Figure 3. The intention
is to model a VRP with time windows and simultaneous deliveries and pickups. For the
sake of simplicity, we assume that all travel times are t;; = 2 and that each visit of a
node implies a profit of one unit, i.e., ¢;; = —1 for all (¢,5) € A. The vehicle capacity is

Q = 20.
The non-decreasing REF on an arc (i,7) € A is given by
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Pe=5
dg=4

6
[3,06] [5.7]

Fig. 3. Example Graph for a VRP with Time Windows and Simultaneous Delivery and
Pickup

fij (Ticost’ T:itime’ Tipidﬁ’ T:ZmL)
= (Tfm + cijymax{a;, ™ + ti;}, TV + pj, max{TP'" + d;, T + Pj})

and resource windows are
(T;‘COSta Etime) TlpiCka TZmL) S [0) OO) X [a’i) bl] X [pia Q] X [max{pia dz}) Q]

We first consider path P = (2,3,4,5) as a (non-decomposable) segment. The computation
of the segment REF fp can use the Formulas (15) and (18) yielding

fP(T2cost’ TQtime’ TgiCk’ TQmL)

— (TQCOSt o 3’ max{g’ T2time + 6}, Tép’ick + 12’ max{Témk + 13’ T27nL + 9})

The interpretation of these values is as follows: Along path P, the accumulated profit
is 3 (cost —3). The earliest arrival time at the destination node 5 of P is 9, while the
accumulated travel and service time along P is 6. Concerning the demands, along the
path P (excluding the first node 2) a demand of 2?23 p; = 12 is picked up and a demand
of 25:3 d; = 13 is delivered. The maximum load that occurs along the path P depends
on the initial conditions at (or more precisely when leaving) node 2. If the vehicle is
empty (nothing picked up or delivered at node 2), the maximum load of 13 occurs on
the arc (4,5), since ps + py = 9 is already picked up and ds = 4 has to be delivered to
node 5. Furthermore, if the initial conditions are such that T5"L < T¥ ik 1 4 holds, then
the maximum load along P is T¥* + 13 and occurs on the arc (4,5) again. Otherwise,
the maximum load is T3"* + 9 and occurs on an arc preceding P. With as = (0,2, 4, 5)T,
we see that fp(az) = (—3,9,16,17)  is the minimum resource consumption at the final
node 5 of P.

Using (19) and (20), the inverse segment REF for P = (2,3,4,5) is

]ijnv(sgost’ Séime’ Sén'ck’ Sgn[,)
= (T£°% + 3, min{4, TE™° — 6}, min{TF"* — 12, T7"F — 13}, T"F — 9})
With b5 = (00,10,20,20) ", one gets f5(bs) = (00,4,7, 11)" > ay. Therefore, Proposi-

tion 3 guarantees that segment P is resource-feasible.

26



The advantage of having the (inverse) segment REF for P is that multiple REF evalua-
tions and checks against upper bounds can be avoided. A path O preceding P yields a
feasible concatenation O @ P if the resource consumption at the end of O is less than or
equal to f&(bs) (a single comparison). Additionally, REF and inverse REF for O & P
can be computed in constant time from the corresponding REFs of O and P.

In order to compute all resource-feasible paths in the network (V, A) containing P, one
simply has to consider the five segments O = (1,2), O’ = (1,6,2), P = (2,3,4,5),
Q = (5,8), and Q' = (5,7,8). Since f(1 6.9y(a1) = fe20f12((0,0,0,0)" ) = (~2,5,9,10)" £

0 (bs) = (00,4, 7, 11)", the concatenation of O’ and P is infeasible. The same holds for

the concatenation of P and @', because of fp(az) = (—3,9, 16, 17)T £ f(’gg 8)(b8) =

finv o finv((00,12,20,20) ) = fir?((c0,7,20,20) ) = (c0,5,18,18)" . Hence, the only
path containing P left is O @ P & Q = (1,2,3,4,5,8). We can easily check that O and
@ are resource-feasible. The fact that fia(a1) = (—1,2,4, 5)T < fiv(bg) = (00,4, 7, 11)T
shows that O @ P is resource-feasible. With Propositions 8(a) and 5(c) we can compute
the REF for the concatenation O & P,

t ti ick L
foap(TE, TV, TP, TT™)

= (T{%% — 4, max{8, T} + 8}, TP'* 1 16, max{TP"" + 17, T]"" + 14}),

so that fosp(a1) = fosp((0,0,0,0)") = (—4,8,16,17)" holds. Finally, f&"(bs) =
in((00,12,20,20) ) = (00,10,20,20) > foep(a1) implies that O & P & Q is resource-
feasible.

7 Conclusions

This paper has provided a theoretical foundation for defining, analyzing, and manipu-
lating resource-constrained paths. REFs are the main tool for mathematically describing
complex interdependencies between resources. From a modeling point of view, the text
has surveyed different types of real-world constraints, mainly taken from the area of vehi-
cle routing and crew scheduling. The unified model by Desaulniers et al. (1998) has shown
that nearly all types of deterministic VRPs and SPVCs considered in the literature are
covered by REF-based models.

From an algorithmic point of view, efficient REF handling is desirable in exact as well
as in heuristic solution methods for these problems. Exact solutions procedures (column
generation or Lagrangean relaxation integrated into branch-and-bound) require the com-
putation of least cost resource-constrained paths. While efficient solution methods for
SPPRC can be found in a separate survey (Irnich and Desaulniers, 2005), the focus here
has been on methods that support several types of acceleration procedures. Bidirectional
shortest-path algorithms (Salani, 2005), reduced cost arc-elimination procedures (Irnich,
2007) and the dynamic aggregation method by Elhallaoui et al. (2005) need well-defined
concepts for inverting the solution process and for simplifying the computations when
segments are shrunk. Local search-based procedures are used in all kinds of traditional
and modern metaheuristics. Irnich (2006) explains the usefulness of segment REFs for
the evaluation of neighbor solutions if represented by a giant tour and, especially, for
developing efficient feasibility checking procedures.
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Resource-constrained paths and REFs can be seen as the key concept for bridging the
gap between exact and heuristic methods for rich VRPs (Hasle et al., 2003). The de-
tailed analysis undertaken here clarifies which types of REFs are well-suited for different
algorithmic tasks. Non-decreasing REFs are imperative for the application of easy-to-
implement dominance rules, leading to well-performing dynamic programming labeling
procedures for solving the subproblem in exact approaches. These methods are applicable
to VRPs with (multiple) time windows, path length constraints, multiple use of vehicles,
time-dependent travel times, periodic and multiple depot versions of specific VRPs etc.
We have pointed out the additional assumptions which guarantee constant time feasibil-
ity checks: REFs have to be invertible and segment REFs need to have representations
with a fixed number of coefficients (independent of their length, property (FNoC)). In
particular, properties (FNoC) and (CJS) enable O (1) procedures for the determination
of whether the concatenation of a priori given segments is a resource-feasible path. The
same assumptions (invertible REF, (FNoC), (CJS)) are desirable for arc elimination and
the dynamic aggregation method for the acceleration of branch-and-price algorithms.
Classical REFs and REFs with pairwise max-term already have these ‘good’ properties.
Several examples of real-world constraints fall into this scheme, for instance, non-trivial
time/schedule characteristics (waiting times, times on duty) or simultaneous delivery and
pickup requirements. Other REFs cannot guarantee (FNoC), but their generalization to
segments imposes REFs of well-defined form (i.e., property (SCoF); for instance, REFs
for multiple time windows, certain load-dependent cost functions, and non-decreasing
inconvenience costs). Even without guaranteed constant time feasibility checking, these
segment REFs and their inverses can still be useful for speeding up exact and heuristic
algorithms.
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Appendix

The appendix contains proofs for all propositions and theorems stated in the text.
PROOF of Proposition 1. Immediately from definition (1). v

PROOF of Proposition 2. The set 7((0),Tp) is identical to [Ty, bo] and, therefore,
compact. Using identity (12), the fact that operator L maps compact sets to closed sets,
and that the intersection with an interval maps closed sets to compact sets, yields that
7((0,1),Tp) is compact. Iterating the same chain of arguments for all prefix paths P’ =
(0,1,...,p"), ' < pof P implies that each set 7 (P’,Tp) is compact, too. The proposition
follows with p’ = p. v

PROOF of Proposition 3. It follows from definition (1) that the statement is true
for P = (0), i.e. for p = 0. By induction, we can assume that the prefix path
P~ =(0,1,...,p—1) fulfills 7 (P~,Ty) = [ap—1(T0), bp—1] with a,_1(Tp) defined as stated
above. From Proposition 1 it follows that 7 (P, Ty) = fp—1,p([ap—1(T0), bp—1])- N [ap, by]
holds. Since f,—1, is non-decreasing, we have f,_1,(ap—1(T0)) < fp—1p(T) for all
T e [&pfl(To),bpfl]. Hence, fpflvp([dpfl(To),bpfl])L == fp,Lp(CALpfl(TO))L (note that on
the LHS L is applied to a set and on the RHS it is applied to a vector). The definition of
the operator L implies z- N [a,b] = [max{a,x},b] for all vectors x,a,b € R and, there-
fore, fp—1,p(ap—1(T0))- N [ap, bp] = [max{ay, fp—1p(ap—1(Th))}, bp]. The left bound of the
interval coincides with a,(7p) and the proposition is proven. v

PROOF of Proposition 4. Induction over the length p of P: Obviously, for P = (0)
the set 7 (P,Ty) is [Ty, bo], which is empty for Ty £ by and an R-dimensional interval,
otherwise.

For p > 1, let P' be the prefix path (0,1,...,p — 1). The assumption of the induc-
tion is that 7 (P’,Tp) is the empty set or a polytope. In the latter case, it follows
that f,—1, map 7 (P’,Tp) to a polytope (because each lineare function maps a poly-
tope conv({T',...,T}) to a polytope conv({f(T"),..., f(T9)})). Using identity (12)
for the polytope f(7 (P’,Tp)), the operator . transforms it to a polyhedron with the unit
vectors e, e, .. .,er € RE as extreme rays. Finally, the intersection of Jp—1p(T (P, Tp))"-
with [ap, by] cuts the polyhedron to a polytope again. v

PROOF of Proposition 5. If a;(7p) < b; holds for all i € {0,1,...,p} one can
use these vectors as resource vectors T; in definition (1) to see that P is feasible, i.e.,
a;(Ty) € T(P,Ty) # @ holds. In contrast, if 7(P,Tp) # o, valid resource vectors Tj,
i € {1,...,p} exist fulfilling definition (1). Starting with 73 > max{a1, fo1(T0)} =
max{a1, fo1(a0(To))} = a1(Tp)), the same arguments and the non-decreasing REF imply
that T; > a;(Tp) holds for all i € {1,...,p}. Therefore, a;(Tp) < T; < b; holds for all
ie{l,...,p}. v

PROOF of Proposition 6. Direct calculus. v
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PROOF of Proposition 7. For a segment P = (0) consisting of a single node, For-
mula (15b) gives ap = ap and tp =0, i.e., fp(T') = max{ag,T}. This is the correct REF
for the segment (0). A segment P = (0,1) coincides with an arc and the corresponding
REF is of the required form. The statement for longer segments P follows by induction
from Proposition 6 with the REF for the segments P, = (0,...,p—1) and P, = (p—1,p).
v

PROOF of Proposition 8. (a) follows directly from Proposition 6.

(b) follows from (a) with the three segments Py, (4, ), and Ps. v
PROOF of Theorem 1. Direct consequence of Propositions 7 and 8. v
PROOF of Proposition 9. Direct calculus. v

PROOF of Theorem 2. Follows from Proposition 9. For the sake of brevity, we do not
present closed formulas for the computation of the coefficients ¢, u,t’,u’. Nevertheless,
Proposition 9 shows that property (CJS) holds, too. v

PROOF of Proposition 10. According to Proposition 5 and equality (14) the seg-
ment P is feasible w.r.t. Tp if and only if f;_q ;0- -0 fo1 (TO) < b; holds for alli € {0,...,p}.
Using property (INV) this is equivalent to Ty < fi¥o- ofi”_“l’,i(bl-) for all i € {0,...,p}.
Finally, using properties (UBB) and (NDI), we can establish the following inequality

fi o Fig¥ o w0 Fi oy 0 Fi% 4 (bp)
~—_—————
pr,1
< i figo o fiM i (by1)
%,_/
pr,1

<..

< fmv mv (bg )

- H,_/
<b1

< onU(bl)
< by

for all the values Ty is compared with. Summing up, P is feasible w.r.t. Ty if and only

Ty < fi¥ o+~ o fin4 (b,) holds. v

PROOF of Theorem 3. Let for the sake of brevity, let 0 = alpha(P;) and p = w(F2).
The inequality fp, (ag) < f“w( p) 1s equivalent to ag < f”w };Z”(bp) = f&(b,). With
Ty = ag this is the criterion given in Proposition 10. v

PROOF of Proposition 11. We have to show property (INV), i.e., the equivalence
fij(T) < Ty = T, < fi7°(T)).

(INV1) (NDI),fi; (Ti)<T;
‘:>7: 1—17/ S va(fz]( )) S ll‘;nv(j—})
fiynd T fim (1) (INV2)
=" fz](Tz) < fu( mv( J)) < T] v
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PROOF of Theorem 4. (a) Any function of the form min{b, T — ¢} is non-decreasing
in T for arbitrary b,¢ € Rf. It remains to show that the above definition of f™* has
properties (INV1) and (INV2). Property (INV1) follows from

F(fF(T)) = min{b;, f(T) — t;;} = min{b;, max{a;, T + t;;} — t;;}
=min{b;, max{a; — t;;,T'}} > min{b;, T'}
>T.

Note that the last inequality holds because of T' € (—o0,b;]. Property (INV2) follows
from

FU(T")) = max{a;, f(T") + ti;} = max{aj, min{b;, T" — t;;} + ti;}
=max{a;, min{b; + t;;, T'}} < max{a;, T’}
<T

Again, the last inequality holds, since 17" € [a;, c0) is assumed.
(b) Follows from arguments analogue to those used in Proposition 7.

(c) Direct calculus. v

PROOF of Theorem 5. (a) We show that properties (INV1) and (INV2) hold for
(T, T") € (—o0, (b;, b})] and (S, S") € [(a;,4a]), 00). First,

i7" (i (T, T7)

= (min{b;, max{a;, T + tij, T' + uij} — tij, max{a}, T +t;;, T + ui;} — t;;},
min{b;, max{a;j, T + ti, T' 4 uij} — ugj, max{al, T + ti;, T' + ui;} — wi;})

= (min{b;, max{a; — ti;, T, T" + wij — tij}, max{a; — t;;, T, T + uj; — ti;},
min{b;, max{a; — wij, T + tij — uyj, T'}, max{al —u;}, T+ ti; — ui;}, T'})

> (min{b;, T, T}, min{b}, T', T'})

=(1.T"),

which proves (INV1) and second
Fii (F2(8,87)
= (max{aj, min{bi, S — tz‘j, S, — t;j} + tij, min{bg, S — ’U,Z‘j, Sl - u;]} + ’U,Z‘j},

maX{a;-, min{b;, S — t;, S+ t;j} + t;j, min{b}, S — Uij, S+ u;]} + uij})
= (max{aj, min{bi + ti5, S, S — t;j + tz‘j}, min{b; + U5, S, S — u;j + ’U,Z‘j}},

max{a;-, min{b; + tgj, S —tiy+ t;j, S"Y, min{b; + u;j, — Ui + ugj, S
< (max{aj, S, S}, max{a}, 5", 5'})
= (S’ S/)’

which proves (INV2).

(c) Direct calculus. Repeated application of (c) for all arcs of the path P yields (b). v
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