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tThe uni�ed modeling and solution framework, presented by Desaulniers et al. (1998), isappli
able to nearly all types of vehi
le-routing and 
rew-s
heduling problems found inthe literature thus far. The framework utilizes resour
e extension fun
tions (REFs) asits main tool for handling 
omplex side 
onstraints that relate to a single vehi
le routeor 
rew s
hedule. The intention of this paper is to 
larify whi
h properties of REFs al-low important algorithmi
 pro
edures, su
h as e�
ient representation of (partial) paths,e�
ient 
ost 
omputations, and 
onstant time feasibility 
he
king for partial paths (=seg-ments) and their 
on
atenations. The theoreti
al results provided by the paper are usefulfor developing highly-e�
ient solution methods for both exa
t and heuristi
 approa
hes.A

eleration te
hniques for solving resour
e-
onstrained shortest-path subproblems are akey su

ess fa
tor for those exa
t algorithms whi
h are based on 
olumn generation orLagrangean relaxation. Similarly, those heuristi
 algorithms whi
h are based on resour
e-
onstrained paths 
an bene�t from e�
ient operations needed to 
onstru
t or manipulatesegments. Fast operations are indispensable for e�
ient lo
al-sear
h algorithms that ex-plore edge-ex
hange or node-ex
hange neighborhoods. E�
ien
y is 
ru
ial, sin
e theseoperations are repeatedly performed in many types of metaheuristi
s.Key words: resour
e-
onstrained path, resour
e extension fun
tion, 
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elerated lo
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h, vehi
le routing and s
heduling1 Introdu
tionThe uni�ed modeling and solution framework, presented by Desaulniers et al. (1998), isappli
able to nearly all types of vehi
le-routing problems (VRPs) and s
heduling problemsfor vehi
les and 
rews (SPVCs) presented in the literature thus far. Resour
e extensionfun
tions (REFs) are its main tool for handling 
omplex side 
onstraints that relate to
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a single vehi
le route or 
rew s
hedule. Essentially, an REF is asso
iated with an ar
of the underlying network and des
ribes the update of resour
es along that ar
. Exam-ples of resour
es are a

umulated 
ost, time, load, distan
e, and, in general, attributesthat des
ribe the state of a vehi
le when operating its tour or of a 
rew member whenperforming his or her s
hedule. If VRPs and SPVCs are solved by 
olumn generationor Lagrangean relaxation, the subproblem is a so-
alled shortest-path problem with re-sour
e 
onstraints (SPPRC), see (Desro
hers and Soumis, 1988; Irni
h and Desaulniers,2005). SPPRCs are extensions of 
lassi
al shortest-path problems where 
osts are repla
edby multi-dimensional resour
e ve
tors. These are updated via REFs along the path and
onstrained at intermediate nodes.The intention of this paper is to 
larify whi
h properties of REFs allow important algo-rithmi
 pro
edures, su
h as e�
ient representation of (partial) paths, e�
ient 
ost 
om-putations, and 
onstant time feasibility 
he
king for partial paths (=segments) and their
on
atenations. In parti
ular, for handling 
on
atenations of segments, the generalizationof REFs to segments and the inversion of REFs will turn out to be 
omputationally advan-tageous. At least four areas of appli
ation exist for inverse REFs and the generalizationof REFs to segments:First, bidire
tional shortest-path algorithms have been used primarily for un
onstrainedshortest-path algorithms and have proven to be highly e�e
tive for speeding up 
om-putations in the average 
ase (Ahuja et al., 1993; Helgason et al., 1993). The 
on
eptof inverse REFs is mandatory for extending bidire
tional shortest-path algorithms toSPPRCs with non-additive resour
e updates. Column-generation subproblems with non-additive resour
e updates arise in real-world routing and s
heduling appli
ations (De-saulniers et al., 1998). For a huge 
olle
tion of su

essfully solved real-world problems,we refer to the book by Desaulniers et al. (2005) and the referen
es given there. Su
-
essful 
omputational tests of bidire
tional SPPRC algorithms used in bran
h-and-pri
emethods for solving several types of VRPs with side 
onstraints were 
ondu
ted by Salani(2005). Without doubt, these new ideas were rigorous in solving some of the remainingopen instan
es of the (Solomon, 1987) ben
hmark (see Jepsen et al., 2006; Desaulnierset al., 2006).Se
ond, Irni
h (2007) shows that bran
h-and-pri
e algorithms, where subproblems requirethe solution of (o, d)-shortest-path problems (from sour
e o to sink d), 
an be a

eleratedby eliminating ar
s from the network of the subproblem. The ar
-elimination pro
edureproposed there is exa
t in the sense that redu
ed 
osts of o-d-paths allow the identi�
ationof those ar
s that 
annot be part of an optimal solution. Su
h ar
s are removed from thesubproblem network. An e�
ient implementation of the pro
edure 
ombines forward andba
kward shortest-path labels, i.e., the solution of o-to-all and inverse d-to-all SPPRCs.The ba
kward labels 
an only be 
omputed if an inverse of ea
h REF is de�ned.Third, the dynami
 aggregation method of Elhallaoui et al. (2005) is an a

elerationte
hnique for large-s
ale 
olumn-generation algorithms. As usual, the master program
ontains variables 
orresponding to paths (routes or s
hedules). One assumption of themethod is that 
onstraints are mainly of the set-partitioning type. Ea
h set-partitioning
onstraint models the 
overing of a task w ∈ W (a �ight segment, a trip segment, aduty et
.), where W is the set of all tasks to be 
overed. The dynami
 aggregationmethod repla
es all tasks w ∈ W with representatives wℓ, ℓ ∈ L taken from a partitioning
W =

⋃

ℓ∈L Wℓ. A sequen
e of aggregated restri
ted master programs (ARMP), where2



only the representative tasks are present in the LP, is then solved instead of the fullrestri
ted master programm (RMP). The speedup reported by Elhallaoui et al. (2005)results from the fa
t that an ARMP has fewer 
onstraints than the original restri
tedmaster and, therefore, tends to be less degenerate. Note that degenera
y typi
ally slowsdown the 
onvergen
e of 
olumn-generation algorithms (tailing-o� e�e
t). In order toensure the 
onvergen
e towards the non-aggregated original optimal solution, a dynami
update pro
edures modi�es the partitioning (major iterations). During minor iterationsteps (when the partitioning is kept �xed), the subproblem is basi
ally solved in order togenerate 
ompatible negative redu
ed 
ost paths. Compatible paths respe
t the 
urrentpartitioning, i.e., paths 
overing ea
h partition Wℓ either fully or not at all. This is wherethe generalization of REFs to segments be
omes important. Instead of solving the originalsubproblem over a large-s
ale network and �ltering out 
ompatible paths, one 
an repla
eevery sequen
e of nodes 
orresponding to a partition Wℓ by a single node. An e�
ientimplementation makes it ne
essary to generalize REFs from ar
s to segments, i.e., torepla
e a sequen
e of REFs by a single REF. We expe
t that this shrinking pro
edurewill notably a

elerate the solution pro
ess of the subproblem. However, the dynami
aggregation method, as proposed by Elhallaoui et al. (2005), needs solutions from theoriginal non-aggregated network, for instan
e, to de
ide when to modify the partitioning,to provide an exa
t stopping rule, and to disaggregate dual variables of the ARMP.Therefore, the solution of aggregated subproblems should be treated similarly to the ideaof partial pri
ing (Gama
he et al., 1999).Fourth and �nally, the last appli
ation uses REFs in a heuristi
 or metaheuristi
 
ontext.E�
ient primal heuristi
s for ri
h VRPs (Hasle et al., 2003) 
an be 
omputed using themodeling and solution framework by Irni
h (2006). The framework is based on the giant-tour representation and resour
e-
onstrained paths. Nearly all metaheuristi
s for VRPsrely on the de�nition of neighbor solutions, e.g., k-Opt, k-Opt* as well as node and stringex
hanges. Standard lo
al-sear
h pro
edures iteratively build a neighbor solution �rstand 
he
k its feasibility afterwards. Typi
ally, the feasibility 
he
k 
auses an extra e�ortbounded by O (n) for instan
es of size n. The new sear
h te
hniques proposed by Irni
h(2006) allow sear
hing neighborhoods of size O (nk) in O (nk) time in the worst 
ase.The fundamental idea is that a move de
omposes the giant tour into a small (
onstant)number of segments, rearranges them, and 
on
atenates the possibly inverted segments.The result is a neighboring giant tour. If a prepro
essing pro
edure for 
omputing segmentREFs is performed a priori, the 
he
king of the feasibility of the 
on
atenated segments(=the new giant tour) 
an be a

omplished in 
onstant time. Furthermore, for several
lasses of VRPs, the sequential sear
h method (Irni
h et al., 2006) is appli
able and allowssubstantial speedups in the average 
ase. Numeri
al results are reported in (Irni
h, 2006;Hemps
h and Irni
h, 2007).This paper is organized as follows: The next se
tion gives basi
 de�nitions of resour
e-
onstrained paths and REFs for the 
lassi
al 
ase and extensions. Several examples andreferen
es show how real-world side 
onstraints 
an be modeled using REFs. In Se
tion 3,we analyze important properties of REFs, su
h as smoothness and linearity, and REFsfor the 
lassi
al and more general non-de
reasing 
ase. The 
omputation of an aggregatedREF for a segment is 
onsidered in Se
tion 4. Se
tion 5 dis
usses inverse REFs and theirde�ning properties. Se
tion 6 explains the most important �ndings with a small example.Final 
on
lusions are given in Se
tion 7. 3



2 Resour
e-Constrained PathsLet G = (V,A) be a digraph where V is the set of nodes and A the set of ar
s. A path
P = (e1, . . . , ep) is a �nite sequen
e of ar
s (some ar
s may o

ur more than on
e) wherethe head node of ei ∈ A is identi
al to the tail node of ei+1 ∈ A for all i ∈ {1, . . . , p− 1}.For the sake of 
onvenien
e, we assume that G is simple, so that a path 
an be writtenas P = (v0, v1, . . . , vp) with the understanding that ei = (vi−1, vi) ∈ A holds for all
i ∈ {1, . . . , p}.2.1 Resour
e-Feasible PathsResour
e 
onstraints 
an be modeled by means of (minimal) resour
e 
onsumptions andresour
e intervals (e.g., the travel times tij and time windows [ai, bi]). Let R be thenumber of resour
es. A ve
tor T = (T 1, . . . , TR)

⊤

∈ R
R is 
alled a resour
e ve
tor and its
omponents resour
e variables (remark: x⊤ denotes the transposed ve
tor to the ve
tor x).

T is said to be not greater than S if the inequality T i ≤ Si holds for all 
omponents
i ∈ {1, . . . , R}. We denote this by T ≤ S. For two resour
e ve
tors a and b, the interval
[a, b] is de�ned as the set {T ∈ R

R : a ≤ T ≤ b}.Resour
e intervals, also 
alled resour
e windows, asso
iated with a node i ∈ V are denotedby [ai, bi] with ai, bi ∈ R
R, ai ≤ bi. The 
hanges in the resour
e 
onsumptions asso
iatedwith an ar
 (i, j) ∈ A are given by a ve
tor fij = (f r

ij)
R
r=1 of REFs. An REF f r

ij : R
R → Rdepends on a resour
e ve
tor Ti ∈ R

R, whi
h 
orresponds to the resour
e 
onsumptiona

umulated along a path (s, . . . , i) from s to i, i.e., up to the tail node i of ar
 (i, j).The result fij(Ti) ∈ R
R 
an be interpreted as a resour
e 
onsumption a

umulated alongthe path (s, . . . , i, j).Let P be any path in G. In order to simplify the notation, the nodes are numbered from 0to p, i.e., P = (0, 1, . . . , p−1, p). Path P is resour
e-feasible if resour
e ve
tors Ti ∈ [ai, bi]exist for all i ∈ {0, 1, . . . , p} su
h that fi,i+1(Ti) ≤ Ti+1 holds for all i ∈ {0, . . . , p−1}. Forany resour
e 
onsumption T ′

0 ∈ [a0, b0] at the start node 0, the set of all feasible resour
eve
tors at the last node p is given by
T (P, T ′

0) = {Tp ∈ [ap, bp] : ∃ Ti ∈ [ai, bi] with T0 ≥ T ′
0 and fi,i+1(Ti) ≤ Ti+1for all i ∈ {0, 1, . . . , p − 1}} . (1)Additionally, we de�ne T (P ) = T (P, a0) and F(u, v) to be the set of all resour
e-feasiblepaths from a node u to a node v. Note that P ∈ F(u, v) holds if and only if T (P ) 6= ∅.2.2 Cost and Pareto-OptimalityAll the appli
ations mentioned in the introdu
tion 
onsider paths within optimizationproblems. The easiest way of modeling 
ost is to use a resour
e r ∈ {1, . . . , R} for thispurpose. Two types of optimization problems are asso
iated with REFs: First, a path

P = (0, 1, . . . , p) is given and the task is to �nd an `optimal s
hedule' for this path,i.e., to solve minT∈T (P ) T cost. The se
ond type of problem is to �nd an `optimal path'(the node sequen
e and the optimal s
hedule), i.e., minP ∈ F(s, t)(minT∈T (P ) T cost). It isbeyond the s
ope of this paper to present and 
lassify the di�erent types of problems andasso
iated solution approa
hes. Details and further referen
es 
an be found in (Irni
h andDesaulniers, 2005). 4



However, in order to analyze properties of REFs and their impa
t on di�erent 
ompu-tational pro
edures, we must stress that there are good reasons for extending the aboveoptimization problems from the one-dimensional `
ost' 
ase to a multi-dimensional set-ting (see de�nition of the generi
 SPPRC in (Irni
h and Desaulniers, 2005, p. 41)). If 
ostis a non-negative linear 
ombination of several other resour
es (su
h as distan
e, timeet
.), a 
ost-minimal path 
an be found among all Pareto-optimal paths w.r.t. the givenresour
es. Several standard algorithms for solving the two problems `optimal s
hedule'and `optimal path' require the 
onsideration of at least all Pareto-optimal points in T (P ′)for all pre�x paths P ′ of P at intermediate nodes. In parti
ular, this is the 
ase if solu-tion approa
hes, su
h as dynami
 programming algorithms, are used and if all REFs arenon-de
reasing (see de�nition below).2.3 Classi
al REFsClassi
al SPPRCs 
onsider REFs of the form
fij(Ti) = Ti + tij (2)(see Desaulniers et al., 1998) or

fij(Ti) = max{aj , Ti + tij} (3)(see Irni
h and Desaulniers, 2005), where aj and tij ∈ R
R are 
onstants asso
iated withnode j and ar
 (i, j), respe
tively. These 
lassi
al REFs are separable by resour
es, i.e.,no interdependen
ies exist between the di�erent resour
es. Note that de�nitions (2) and(3) are equivalent w.r.t. the de�nition (1) of T (P, T0), sin
e Tj ≥ aj is satis�ed.Note further that (2) and (3) are spe
ial 
ases of an REF where the lower bound dependson the ar
 (i, j), i.e.,

fij(Ti) = max{aij , Ti + tij} (4)(with aij = −∞ one gets (2) and with aij = aj one gets (3)). De�ning 
lassi
al REFsby (4) o�ers more �exibility for modeling. We will see that using (4) also provides more
onsistent results w.r.t. the generalization of REFs to segments. Additionally, when anar
 (i, j) is used and Tj ≥ fij(Ti) is the resour
e 
onsumption at node j, it is possible to
he
k Tj against an ar
-spe
i�
 upper bound bij (instead of bj). For the sake of simpli
ity,we do not use this extension in the paper. However, all results 
an be easily adapted tothis 
ase of ar
-spe
i�
 lower and upper bounds.Well-known examples of real-world 
onstraints that 
an be modeled with 
lassi
al REFsare:(1) Globally 
onstrained resour
es a

umulated along nodes: Here, all resour
eintervals are equal to [ai, bi] = [0, U ] with a global upper bound U > 0 and REFsare of the form fij(Ti) = Ti + tj for values tj ∈ R+ and j ∈ V . Limited 
apa
ities
U and demands tj are the most prominent examples that o

ur with the 
lassi
alVRP and its extensions.(2) Globally 
onstrained resour
es a

umulated along ar
s: If the resour
e 
on-sumption is on ar
s, the only di�eren
e is that REFs are of the form fij(Ti) = Ti+tij.Examples are path-length 
onstraints, where length is measured in distan
e, travel5



time, fuel 
onsumption, pay toll et
. Note that spe
ialized models and algorithmsexist for shortest-path problems that have solely this type of 
onstraint (Beasleyand Christo�des, 1989; Borndörfer et al., 2001).(3) Resour
es 
onstrained by individual intervals a

umulated along ar
s andnodes: The de�nition (1) of feasible paths is dire
tly motivated by situations wherevalid servi
e times are given by time windows [atime
i , btime

i ], and servi
e and traveltimes by ttime
ij . It is possible to wait so that the start of a servi
e may be later thanthe arrival at the node.Another example is the 
ost resour
e. Costs are typi
ally 
onstrained only at theinitial node 0 with [a0, b0] = [0, 0], and [ai, bi] = (−∞,∞) at all other nodes i ∈

V, i 6= 0. In the 
ontext of 
olumn generation, tcost
ij is 
omposed of ar
 
osts cijand pro�ts for all 
onstraints 
ontaining ar
 (i, j). For instan
e, if node 
overing
onstraints are present, node pro�ts λi (dual pri
es of the 
overing 
onstraints)yield 
lassi
al REFs with a redu
ed 
ost 
omponent de�ned by tcost

ij = cij − λi.The modeling 
apabilities of 
lassi
al REFs also enable the 
omputation of non-trivialattributes of paths. Several examples are given by Avella et al. (2004): They 
lassifyresour
es as numeri
al and totalizable (e.g., length, travel time), numeri
al and non-totalizable (e.g., road width, number of lanes), and indexed (e.g., type of road, gradient,parking restri
tions). We assume that a path P is given and that the length of an ar
 (i, j)is lij . Avella et al. show how to formulate the following 
onstraints as globally 
onstrainedresour
es that are a

umulated along ar
s:
• The average value of a totalizable parameter pij ∈ R over all ar
s must not ex
eed U(or fall below L), i.e., ∑(i,j)∈P pij lij/

∑

(i,j)∈P lij ≤ U (≥ L, respe
tively).For instan
e, if lij is the length in kilometers [km℄ and pij is the average travel time[h/km℄ on an ar
 (i, j), the upper bound U allows the bounding of the average traveltime [h/km℄ along the path, e.g., guaranteeing a minimum speed of 1/U [km/h℄.
• The path has to 
ontain ar
s with 
ertain properties f (possibly non-totalizable orindexed) that sum up to a length of at most U (or least L), ∑(i,j)∈P :bij=1 lij ≤ U(≥ L, respe
tively), where 
oe�
ient bij ∈ {0, 1} determines whether (i, j) ∈ A hasproperty f or not.Here one 
an, for instan
e, bound the number of kilometers of one-lane roads.
• The path has to 
ontain at least (most) x per
ent of ar
s with a given property f , i.e.,
∑

(i,j)∈P :bij=1 lij ≥
x

100

∑

(i,j)∈P lij (with ≤ for `at most').Relevant 
onstraints of this type are a maximum of x% inner-
ity streets in a route.Moreover, 
lassi
al REFs are useful in the 
ontext of multiple use of vehi
les (Taillardet al., 1996). If a vehi
le is used more than on
e in a planning period, it goes ba
k to thedepot for loading/unloading and possibly maintenan
e. The impli
ation for some of theresour
es is that they have to be reset to their 
orresponding lower bound: For instan
e, aresour
e for the 
olle
ted load is reset to zero. This �ts in ni
ely with the above de�nitions
fij(Ti) = Ti + tj and fij(Ti) = Ti + tij of REFs. In order to reset resour
e r, one hasto set the 
orresponding 
omponent of tj or tij to −∞ (any number not greater than6



ar
j − br

i ). Other resour
es, su
h as time and 
ost, are updated in the standard way. Hen
e,restri
ting the length of the entire route or the arrival times is fully 
ompatible withthe reset of the �rst resour
es. The same te
hnique is used in (Irni
h, 2006; Hemps
hand Irni
h, 2007) for modeling a giant tour (Christo�des and Eilon, 1969) as a singleresour
e-
onstrained path.It has been pointed out by Irni
h and Desaulniers (2005) that de�nition (1) 
apturesthe 
ase of minimal resour
e 
onsumptions. If one wants to model exa
t resour
e 
on-sumptions instead, the inequalities in (1) have to be repla
ed by T r
i+1 = f r

i,i+1(Ti) forthe parti
ular resour
es r. For the time window 
ase and the resour
e time, the equalitymeans that waiting is not allowed: The arrival time at ea
h node has to be identi
al to thestart time of the servi
e. Let R= (R≤) be the resour
es that for
e an equality (inequality)in (1). Gama
he et al. (1998) note that a resour
e r ∈ R= might equivalently be repla
edby two resour
es r1, r2 ∈ R≤. In this 
ase, there are R + 1 resour
es and REFs f̃ij arefun
tions mapping from R
R+1 to R

R+1 (the ˜ symbol refers to the 
ase with the newresour
es r1 and r2). The resour
e intervals and REFs for r1 are identi
al to those for r,while resour
e intervals for r2 are [ar2

i , br2

i ] = [−br
i ,−ar

i ]. For r2, the REFs are de�ned by
f̃ r2

ij (T̃i) = −f r
ij(T̃

1
i , . . . , T̃ r−1

i ,−T̃ r2

i , T̃ r+1
i , . . . , T̃R

i ). The new resour
e windows and REFsdo not guarantee that T r1 = −T r2 holds and that the resour
e variables ful�ll (1) withequality. However, any path P that is resour
e-feasible w.r.t. the resour
es r1 and r2 isalso feasible w.r.t. r ∈ R=, and vi
e versa. The resour
e variables T r
p at the last node ofthe path 
an be feasibly 
hosen from [−T̃ r2

p , T̃ r1
p ]. It is ensured that feasible values for theother resour
e variables T r

i exist su
h that equality holds. The following example of stri
ttime windows demonstrates the relationship between r, r1, and r2: Let P = (0, 1, 2, 3)be a path, [0, 10], [11, 12], [8, 24], [15, 35] be the time windows at the four nodes, and letthe travel times be 10 between all pairs of nodes. Trivially, the minimum resour
e 
on-sumptions of resour
e r1 along the path P is (0, 11, 21, 31). The resour
e r2 uses the lowerbounds intervals [ar2

i , br2

i ] given by [−10, 0], [−12,−11], [−24,−8], and [−35,−15], and
f̃ij(Ti)

r2 = max{ar2

i , T r2 −10}. The result is the feasible minimum resour
e 
onsumptions
−10, −12, −22, and −32. For the original resour
e r ∈ R=, this result means that anyvalue between 31 and 32 is a feasible servi
e time at node 3. In turn, feasible start timesat node 0 are between 1 and 2.Finally, the modeling of path-stru
tural 
onstraints, su
h as pairing and anti-pairing,pre
eden
e, follower and non-follower 
onstraints as well as elementarity of the path by
lassi
al REFs, 
an be found in (Irni
h and Desaulniers, 2005, Se
tion 3).2.4 General REFsMore general de�nitions of REFs with non-linear fun
tions and interdependent resour
esprovide a powerful instrument for modeling pra
ti
ally-relevant side 
onstraints.2.4.1 Load-Dependent CostsIn this paragraph, we 
onsider REFs for routing problems where the 
ost of traveling alongan ar
 (i, j) depends on the load transported over this ar
. An example is the pi
kup-and-delivery problem presented in (Dumas et al., 1991) where the 
ost of an ar
 (i, j)is given by a non-de
reasing fun
tion cij : R+ → R depending on the 
urrent load. Forthe sake of 
on
iseness, we restri
t ourselves to the two resour
es R = {cost, load}. Ea
h
ustomer node has a demand dj with dj > 0 for pi
kups and dj < 0 for deliveries. Load7



is a restri
ted resour
e with resour
e intervals [aload
i , bload

i ] = [0, Q] for a given vehi
le
apa
ity Q, while 
ost is unrestri
ted. Formally, the REF for an ar
 (i, j) is given by
fij(T

cost
i , T load

i ) = (T cost
i + cij(T

load
i ), T load

i + dj). (5)The properties of fij mainly depend on the 
ost fun
tion cij . In Se
tions 4 and 5, we willanalyze a�ne 
ost fun
tions, polynomial 
ost fun
tions and pie
ewise linear 
ost fun
tionsto see whether these 
an be generalized to segments or be inverted.2.4.2 Soft Time Windows and In
onvenien
e CostsSoft time windows model the fa
t that some servi
e/visiting times within a given timewindow [atime
i , btime

i ] are more desirable than others. The in
onvenien
e is expressed by a
ost or penalty fun
tion πi : [atime
i , btime

i ] → R+ whi
h gives, for ea
h feasible point t intime, the 
orresponding in
onvenien
e 
ost. Soft time windows have been 
onsidered, e.g.,by Sexton and Bodin (1985a,b); Ibaraki et al. (2005). Dumas et al. (1990) have shownthat, for a given path P = (0, 1, . . . , p) and 
onvex in
onvenien
e 
ost fun
tions πi, the`optimal s
hedule' problem, i.e.,
min

p
∑

i=0

πi(Ti)s.t. Ti−1 + ti−1,i ≤ Ti for all i = 1, . . . , p

ai ≤ Ti ≤ bi for all i = 0, . . . , pwith ai, bi, Ti ∈ R for i ∈ {0, 1, . . . , p}, 
an be solved by an algorithm that takes atmost O (p) uni-dimensional minimizations over 
onvex fun
tions. Details, in
luding thepseudo-
ode of the algorithm, 
an be found in (Dumas et al., 1990).Ibaraki et al. (2005) use arbitrary, possibly non-
onvex pie
ewise linear in
onvenien
e
ost fun
tions πi. These fun
tions also 
over the 
ase of multiple time windows (see alsoSe
tion 2.4.5), sin
e high in
onvenien
e 
osts model infeasible servi
e-start times between
onse
utive time windows at the same lo
ation. Among other results, Ibaraki et al. (2005)provide a dynami
 programming pro
edure for optimizing the overall 
ost. This pro
eduretakes O (pδ) time if p is the length of the route and δ the total number of pie
es of theasso
iated penalty fun
tions.In a more general setting with several resour
es, the resour
e r = cost is updated de-pending on both resour
es r = cost and r = time, i.e., the 
ost 
omponent of the REFis
f cost

ij (Ti) = T cost
i + cij + πi(T

time
i ), (6)where cij ∈ R is a �xed 
ost asso
iated with the ar
 (i, j). The de�nition (6) adds thepenalty when leaving a node and does, therefore, not add an in
onvenien
e 
ost at the�nal node. In s-t-shortest-path problems, an alternative de�nition of the REFs for all ar
sending at the destination node t 
an solve this defe
t. Desaulniers et al. (1998) also suggestREFs of the form fij(Ti, Tj) that depend on both resour
e variables, at node i and node j.Thus, REFs f cost

ij (Ti, Tj) = T cost
i + cij + πj(T

time
j ) would be possible. However, as notedin (Desaulniers et al., 1998, p. 82), su
h a de�nition of an REF does, in general, impedethe e�e
tive 
omputation of intermediate resour
e 
onsumptions. Computing T (P ) 
anbe
ome (pra
ti
ally) untra
table. 8



2.4.3 VRPSDPThe next example we present is the VRP with simultaneous deliveries and pi
kups (Min,1989). Ea
h 
ustomer i has to be visited on
e, and the servi
ing vehi
le has to performa delivery of demand di and a pi
kup of quantity pi. An s-t-path P = (0, 1, . . . , p) is afeasible route if the maximum load on the vehi
le does not ex
eed the vehi
le 
apa
ity Qat any point in the route. In order to 
he
k the feasibility of a route w.r.t. 
apa
ity, atleast two interdependent resour
es with non-linear REF are ne
essary (see Halse, 1992):A �rst resour
e r = pick models the amount pi
ked up when leaving a node, i.e.,
T pick

i ∈ [pi, Q] and fpick
ij (Ti) = T pick

i + pj, (7a)while a se
ond resour
e r = mL models the maximum load o

urring along the path
P = (s, . . . , i, j), i.e.,

TmL
i ∈ [max{pi, di}, Q] and fmL

ij (Ti) = max{T pick
i + pj, T

mL
i + dj}. (7b)The REF fmL

ij depends on both resour
es r = pick and r = mL in a non-linear way. Theinterpretation of fmL
ij is the following: The maximum load on a path P = (o, . . . , i, j) 
aneither o

ur at the very end when leaving node j, and is then given by the entire pi
kedup load T pick

i + pj . Or the maximum load 
an emerge on the pre�x path P ′ = (o, . . . , i).In this 
ase, the maximum load on P 
omprises the maximum load TmL
i on P ′ and theamount dj delivered to node j. This explains the formula (7b).Note that the VRPSDP generalizes several types of VRPs: The VRP with ba
khauls andmixed loads (VRPBM) has 
ustomers who either have a delivery or pi
kup demand, butnot both, i.e., djpj = 0 for all j. If all linehaul 
ustomers i (di > 0 and pi = 0) have topre
ede the ba
khaul 
ustomers j (dj = 0 and pj > 0), the resulting problem is the VRPwith ba
khauls (VRPB). All of these VRP types 
an be handled with the two resour
es

pick and mL, and REFs of the form (7). However, the VRPB is mu
h easier to modelthan the VRPSDP and VRPBM: It 
an also be modeled with two independent resour
esfor the pi
ked up and delivered quantities (or with only one resour
e that is reset to zeroat the transition from linehaul to ba
khaul 
ustomers). A more detailed 
lassi�
ation ofVRPs with deliveries and pi
kups 
an be found in (Dethlo�, 2002).The 
ase where some 
ustomers have positive delivery and pi
kup demand 
an 
reateanother interesting type of VRP: If it is an option to visit 
ustomers on
e or twi
e(but with the same vehi
le), so-
alled lasso tours 
an o

ur. Some 
ustomers are �rstsupplied only, then a round trip along 
ustomers with simultaneous delivery and pi
kupis performed, and �nally pi
kups at the �rst 
ustomers are made (visited in the reverseorder). The paper by Gribkovskaia et al. (2006) shows that su
h a mixed approa
h hasthe potential for notable 
ost savings. The savings result from better utilization of thevehi
le 
apa
ity, sin
e performing deliveries at the beginning yields additional spa
e forthe 
olle
tion in the se
ond 
ombined delivery and pi
kup phase. These VRPs 
an bemodeled as an extension of the VRPBM by splitting all 
ustomers j with djpj > 0 intotwo nodes j+ and j− with (dj+ , pj+) = (dj , 0) and (dj− , pj−) = (0, pj). In addition,pairing 
onstraints have to ensure that j+ and j− are visited on the same tour.2.4.4 Waiting Times and Times on DutyAnother important example of non-linear REFs is the modeling of (limited) waiting timesand times on duty. Consider the 
ase where the time of servi
e is given by a resour
e9



r = time with given travel and servi
e times ttime
ij and time windows [atime

i , btime
i ]. Anyfeasible s
hedule (T time

i )pi=0 for a path P = (0, 1, . . . , p) imposes the following values:The time on duty is d = d(P, (T time
i )pi=1) = T time

p − T time
0 , the (overall) waiting timeis w(P, (T time

i )i) = T time
p − T time

0 −
∑p

i=1 ttime
i−1,i, and time spent on travel and servi
e is

∑p
i=1 ttime

i−1,i. By bounding these durations by dmax, wmax and tmax, the determination ofan optimal s
hedule with minimum time on duty and minimum waiting time be
omesne
essary. Additionally, when waiting is penalized by a 
onstant (node independent) fa
tor
cwait, 
ost-optimal s
hedules are non-trivial to determine. Desaulniers and Villeneuve(2000) have shown that the 
omputation of 
ost-minimal (ar
 
osts plus waiting 
osts)s
hedules 
an be performed by means of three resour
es, two of them having non-linearREFs. Here, we generalize their results in the sense that we model limited waiting timesas well as limited times on duty.The REF fij(Ti) 
omputes the minimum resour
e 
onsumption along ar
 (i, j) with thefollowing resour
es: (1) r = time for the earliest start of servi
e, (2) r = wait thea

umulated (minimum) waiting time, (3) an additional resour
e r = hlp for 
omputing
r = wait, (4) the overall time on duty r = duty, and (5) a se
ond additional resour
e r =
hlp′ for 
omputing r = duty. The overall time on duty 
learly in
ludes travel and servi
etimes, but waiting times might be in
luded fully or partially. In order to 
over the general
ase, we introdu
e the fa
tor δ ∈ [0, 1] as the fra
tion of waiting times relevant for
omputing the time on duty, i.e., T duty = T travel + T service + δ Twait. Using the resultsgiven in (Desaulniers and Villeneuve, 2000), the 
omponents of fij(Ti) have to be de�nedas follows:

f time
ij (Ti) = T time

i + ttime
ij (8a)

fwait
ij (Ti) = max

{

Twait
i , T hlp

i − ttime
ij + atime

j

} (8b)
fhlp

ij (Ti) = max
{

Twait
i − btime

j , T hlp
i − ttime

ij

} (8c)
fduty

ij (Ti) = max
{

T duty
i + ttime

ij , T hlp′

i + (1 − δ)ttime
ij + δatime

j

} (8d)
fhlp′

ij (Ti) = max
{

T duty
i + (1 − δ)btime

j , T hlp′

i + (1 − δ)ttime
ij

} (8e)The feasible domains of these resour
e variables are given by the following intervals:
T time

i ∈ [atime
i , btime

i ] for all i ∈ V (9a)
Twait

i ∈ [0, wmax] for all i ∈ V (9b)
T hlp

i ∈ (−∞,∞) for all i ∈ V \ {0} and T hlp
0 ∈ [−btime

0 ,∞) (9c)
T duty

i ∈ [0, dmax] for all i ∈ V (9d)
T hlp′

i ∈ (−∞,∞) for all i ∈ V \ {0} and T hlp′

0 ∈ [−δbtime
0 ,∞) (9e)Note that resour
e r = time is independent from the other resour
es and its update is
lassi
al. The two pairs (wait, hlp) and (duty, hlp′) are pairwise interdependent resour
es
oupled with a max-term.As an example, we 
onsider a path P = (0, 1, 2, 3, 4) with time windows [atime

i , btime
i ] andtravel times ttime

i,i+1 given in 
olumns 2 to 4 of the following table. We further assume that75% of the waiting time is relevant for 
omputing the time on duty, i.e., δ = 0.75.10



Node Time Window Travel Time Resour
e Variables T r
i
, r =

i atime
i

btime
i

ttime
i,i+1

time wait hlp duty hlp′0 0 2 4 0 0 -2 0 -1.51 5 7 2 5 0 -6 4 -0.52 9 10 1 9 1 -8 6.75 03 11 11 3 11 2 -9 8.5 0.254 16 18 16 4 -12 13 1Total 10 4 10+0.75·4First, the path P1 = (0, 1) has no waiting time (travel time and time on duty 
oin
ide)be
ause any start time T time
0 ∈ [1, 2] ⊂ [atime

0 , btime
0 ] leads to no waiting at node 1. Se
ond,for the path P2 = (0, 1, 2), starting at the latest possible time T time

0 = 2 results in anarrival at time T time
1 + ttime

12 = 6 + 2 = 8 at node 2. The minimum waiting time for P2is, therefore, equal to 1. Third, path P = (0, 1, 2, 3, 4) has a minimum waiting time of4 be
ause one has to wait at least 1 unit of time at node 2, 1 unit of time at node 3,and 2 units of time at the destination node. The overall time on duty is 13 time units,sin
e traveling and servi
e takes 10 = 4 + 2 + 1 + 3 units of time and waiting 
ontributeswith 3 units (the minimum waiting time is 4 units of time and is 
onsidered partially by
3 = 0.75 · 4).We will study this type of REF with a pairwise max-term in detail in Se
tions 4.2 and 5.2.2.4.5 Multiple Time WindowsMultiple time windows are relevant if the servi
e at a lo
ation j has to fall into one outof several di�erent time slots, i.e., into the union of mj disjoint intervals

Ij = [atime
j1 , btime

j1 ] ∪ [atime
j2 , btime

j2 ] ∪ · · · ∪ [atime
j,mj

, btime
j,mj

].At least two substantially di�erent ways of modeling multiple time windows exist: Onepossibility is representing the mj time intervals by mj di�erent nodes. Instead of visitinglo
ation j, one has to visit one of these, i.e., all mj nodes represent the same task. These
ond possibility is to have a single node i only, but to use a non-linear REF with a time
omponent of the form
f time

ij (Ti) =







atime
j1 if T time

i + ttime
ij < atime

j1

atime
jk if T time

i + ttime
ij ∈ (btime

j,k−1, a
time
jk ) for some k > 1

T time
i + ttime

ij otherwise . (10)The REF is non-smooth, but pie
ewise linear and non-de
reasing. Note that it is notassured that T time
j ∈ Ij holds, sin
e inequality (1) just requires T time

j ≥ f time
ij (Ti) (
f.Se
tion 2.3). However, by using (10), the existen
e of feasible values T time

j ∈ Ij is guar-anteed. Thus, feasibility w.r.t. multiple time windows is ensured. Minimum resour
e 
on-sumptions T time
j ful�ll T time

j ∈ Ij.2.4.6 Time-Dependent Travel TimesSeveral authors (e.g., Ahn and Shin, 1991; Malandraki and Daskin, 1992; Hill and Benton,1992) have examined time-dependent travel times. For ea
h ar
 (i, j) in the network, a11



fun
tion ttime
ij : [atime

i , btime
i ] → R+ provides the travel time ttime

ij (T time) for travelingfrom i to j depending on the time of day T time, i.e., the 
onstant ttime
ij ∈ R+ in the
lassi
al 
ase is repla
ed by a fun
tion. The time 
omponent of the REF be
omes

f time
ij (Ti) = T time

i + ttime
ij (T time

i ). (11)A 
onsistent de�nition of travel times ttime
ij (T ) requires that all fun
tions have the so-
alled non-overtaking property

Stime
i ≤ T time

i =⇒ f time
ij (Stime

i ) ≤ f time
ij (T time

i )for all Stime
i , T time

i ∈ [atime
i , btime

i ] (in (Ahn and Shin, 1991) the inequalities are statedas stri
t `<'-relations, whi
h is not ne
essary). This is exa
tly the de�nition of a one-dimensional non-de
reasing fun
tion (see below). If ttime
ij : [atime

i , btime
i ] → R is smoothand di�erentiable, the non-overtaking property is equivalent to that ttime

ij

′
(T time) ≥ −1holds for the derivative and any T time ∈ [atime

i , btime
i ].2.4.7 Complex Cost Fun
tionsComplex 
ost fun
tions often o

ur in 
rew s
heduling appli
ations when modeling 
om-plex 
rew wages. Examples 
an be found in (Van
e et al., 1997; Gama
he et al., 1999;Desaulniers et al., 1999). Their modeling by REFs is straightforward.3 Resour
e Extension Fun
tions and their PropertiesFor a �xed path P = (0, 1, . . . , p) and 
orresponding REFs fi,i+1 for i ∈ {0, 1, . . . , p− 1},the stru
ture of the sets T (P ) and T (P, T0) with T0 ∈ R

R 
an be 
omplex. This has severalimportant 
onsequen
es. First, 
he
king whether P is resour
e-feasible (T (P, T0) 6= ∅) ornot, 
an be di�
ult. Se
ond, as 
ost is modeled either as a separate resour
e or as a linear
ombination of resour
es, the stru
ture of T (P, T0) has impli
ations on 
ost 
omputations.Third, for algorithmi
 purposes, a `simple' representation of T (P, T0), e.g., with O (R)
oe�
ients, is desirable. The next four subse
tion analyze REFs in terms of these aspe
ts.3.1 Stru
ture of T (P, T0)For any ve
tor x ∈ R
R, the set xx is de�ned as xx = {y ∈ R

R : y ≥ x}. It is a 
onewith the unique extreme point x and the unit ve
tors of R
R as extreme rays. For a set

X ⊆ R
R, we de�ne f(X) = {f(x) : x ∈ X} and Xx =

⋃

x∈X xx.In the following, let P = (0, 1, . . . , p) be an arbitrary path and T0 ∈ [a0, b0]. For p ≥ 1,we denote by P− = (0, 1, . . . , p − 1) the pre�x path.It follows dire
tly from de�nition (1) that T ∈ T (P, T0) implies T x ∩ [ap, bp] ⊂ T (P, T0)holds. This has the following impli
ation for the sets of feasible resour
e values:Proposition 1 Let P = (0, 1, . . . , p − 1, p) be a path with p ≥ 1. The following relationholds for the sets T (P, T0) and T (P−, T0):
T (P, T0) = fp−1,p(T (P−, T0))

x ∩ [ap, bp] for all T0 ∈ [a0, b0] (12)Proofs for the above and all other propositions and theorems 
an be found in the appendix.In the following, we will study smooth, linear and non-de
reasing REFs and their impa
ton the sets T (P, T0). 12



Proposition 2 Let P = (0, 1, . . . , p) be a path with smooth REFs fi,i+1 for all i ∈
{0, 1, . . . , p − 1}. Then T (P, T0) is 
ompa
t for all T0 ∈ R

R.The 
ompa
tness of T (P, T0) implies that the minima in the `optimal s
hedule' and `opti-mal path' problems exist (as long as P is feasible or a feasible path P exists). Otherwise,only an in�mum surely exists (T (P, T0) ⊂ [ap, bp] is bounded).Next, we 
onsider the important 
ase where all REFs are non-de
reasing fun
tions. Afun
tion f : R
R → R

R is non-de
reasing, if, for any pair S, T ∈ R
R with S ≤ T ,the inequality f(S) ≤ f(T ) holds. Non-de
reasing REF arise `naturally' if an REF isinterpreted as the update fun
tion for 
omputing minimum resour
e 
onsumptions. Ifthe resour
e 
onsumption S at node i is not greater (in any 
omponent) than T , weexpe
t that a minimum resour
e 
onsumption after traveling from i to j, i.e., fij(S) and

fij(T ), will also ful�ll this relation.Proposition 3 Let P = (0, 1, . . . , p) be a path with non-de
reasing REFs fi,i+1 for
i = 0, 1, . . . , p − 1. Then T (P, T0) is a possibly empty interval I ⊂ R

R for all T0 ∈ R
R.If I 6= ∅, the interval I is given by I = [âp(T0), bp] and âp(T0) ∈ R

R 
an be 
omputedstep-by-step using
â0(T0) = max{a0, T0} and âi(T0) = max{ai, fi−1,i(âi−1(T0))} (13)for all i ∈ {1, . . . , p}.Note that the se
ond part of the above Proposition 3 requires that the path is feasible,i.e., T (P, T0) is non-empty. Otherwise, [âp(T0), bp] 6= T (P, T0) = ∅. This 
an happenif âi(T0) 6≤ bi holds for some intermediate node i ∈ {0, 1, . . . , p − 1}. An example isthe segment P = (0, 1, 2) with [a0, b0] = [0, 2], [a1, b1] = [1, 1], [a2, b2] = [4, 6], and

t01 = t12 = 2. Formula (13) yields [â2(T0), b2] = [4 + T0, 6] 6= ∅ but P is infeasible forany initial resour
e 
onsumption T0 ∈ [0, 2].Sin
e 
lassi
al REFs are non-de
reasing, the results of Proposition 3 hold, i.e., the entireinformation about the stru
ture of T (P, T0) is given by the point âp(T0) ∈ R
R andthe upper bound bp at node p. In order to simplify the notation, we assume from nowon that all REFs fij already satisfy fij(Ti) ≥ aj for all Ti ∈ R

R, (i, j) ∈ A. For the
lassi
al 
ase, this means that the REF fij in
ludes the max-term with aj , i.e., fij(Ti) =
max{aj , Ti+tij} (as, e.g., in de�nition (3)). A dire
t 
onsequen
e is that the values âi(T0)
an be represented dire
tly as

âi(T0) = fi−1,i ◦ fi−2,i−1 ◦ · · · ◦ f12 ◦ f01(T0) (14)for all T0 ≥ a0 (note the 
ommon 
onvention that g ◦ h(T ) is de�ned as g(h(T )), i.e., these
ond fun
tion is applied �rst). For i = 0, the formula is 
onsistent be
ause the empty
on
atenation of fun
tions is the identity, so that a0(T0) = T0 holds. Note further that,for values T0 6≥ a0, the max-term with a0 is missing, so that Formula (13) 
an produ
e adi�erent result.Surprisingly, even if non-de
reasingness seems natural, several examples of pra
ti
allyrelevant `optimal s
hedule' or `optimal path' problems exist whi
h have REFs with somede
reasing 
omponent(s). The simplest 
ase are linear REFs whi
h may not be non-de
reasing. A fun
tion f : R
R → R

R is a�ne linear if a matrix P ∈ R
R×R and ave
tor q ∈ R

R exist, su
h that f(x) = Px + q holds for all x ∈ R
R. In the 
ase of13



q = 0, f is linear. It has been pointed out that linear node 
osts `naturally' arise in
olumn generation subproblems if resour
e variables appear with non-zero 
oe�
ients inthe master problem formulation (see Desaulniers et al., 1998). Examples of this type aresyn
hronization of departure or arrival times in vehi
le or airline s
heduling (Ioa
himet al., 1994), 
ombined inventory management and (ship) routing (Christiansen, 1996),and VRP with split delivery (Gendreau et al., 2005).Proposition 4 Let P = (0, 1, . . . , p) be a path with (a�ne) linear REFs fi−1,i for i ∈
{1, . . . , p}. Then T (P, T0) is the empty set or a polytope for all T0 ∈ R

R.We end this paragraph with a small example of linear REFs for modeling time (i.e., startof servi
e) and linear 
ost and in
onvenien
e fun
tions. Consider the path P = (0, 1, 2),two resour
es r = time and r = cost with resour
e intervals [a0, b0] = [0, 2] × [0, 4],
[a1, b1] = [2, 5] × [0, 5], and [a2, b2] = [5, 10] × [0, 15]. Travel times are t01 = 1 and
t12 = 3, 
osts are c01 = 4 and c12 = 6 and in
onvenien
e 
ost fa
tors are π0(T

time
0 ) =

−2T time
0 and π1(T

time
1 ) = −T time

1 , see Formula (6). The REFs are, therefore, de�nedby f01(T
time
0 , T cost

0 ) = (max{2, T time
0 + 1}, T cost

0 + 4 − 2T time
0 ) and f12(T

time
1 , T cost

1 ) =
(max{5, T time

1 + 3}, T cost
1 + 6 − T time

1 ) with a partially de
reasing se
ond 
omponent.Figure 1 shows the two-dimensional polytopes T (0, T0),T ((0, 1), T0), and T (P, T0) for
T0 = a0 = (0, 0)

⊤ . Note that for di�erent values of T0 the polytope T (P, T0) 
an 
hangew.r.t. the number of fa
es and extreme points.
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Fig. 1. Example of a Linear REF with a De
reasing Component3.2 E�
ient Representation of T (P, T0)Can we e�
iently represent T (P, T0) in a parametrized form, depending on T0 ∈ R
R(or ∈ [a0, b0])? Obviously, the pre
eding subse
tion has given a partial answer to thisquestion.Provided that all REFs fi−1,i are non-de
reasing, the set T (P, T0) is either empty orgiven by [âp(T0), bp] with âp(T0) = fp−1,p ◦ fp−2,p−1 ◦ · · · ◦ f12 ◦ f01(T0). If one wants to
ompute âp(T0) with an e�ort independent of the length of the path, one has to �nd ane�
ient representation of the 
omposition fp−1,p ◦ fp−2,p−1 ◦ · · · ◦ f12 ◦ f01. This is simplythe generalization of p individual REFs for ea
h ar
 to a single REF for the segment

P = (0, 1, . . . , p). Therefore, an e�
ient representation of T (P, T0) 
an be gained fromany e�
ient representation of fP = fp−1,p ◦ fp−2,p−1 ◦ · · · ◦ f12 ◦ f01.Two 
ases have to be answered negatively: If an REF has at least one de
reasing 
ompo-nent, we 
annot expe
t the representation of T (P, T0) to be independent of the length p of14



the path. An example is linear waiting times (Ioa
him et al., 1998; Irni
h and Desaulniers,2005) where the polytope T (P, T0) 
an have O (p) = Ω(p) extreme points. For more gen-eral settings with R > 2 resour
es, the number of extreme points 
an grow even morerapidly. The se
ond 
ase is that all REFs fi−1,i are non-de
reasing but de�ned di�erentlyon mi ≥ 2 intervals. Examples are REFs for multiple time windows (see Formula (10)) orsoft time windows with mi ≥ 2 linear pie
es. Here, the number of linear pie
es ne
essaryto de�ne fP 
an grow in the order of Ω(
∑p

i=0 mi).3.3 Feasibility ProblemThe feasibility problem for a given path P = (0, 1, . . . , p) and T0 ∈ [a0, b0] is to answerthe question of whether T (P, T0) 6= ∅ holds or not. As shown in (Irni
h and Desaulniers,2005), the feasibility problem 
an be NP -hard if no additional assumptions about theREFs are given.Even for the `most desirable' 
ase where all REFs are non-de
reasing, the feasibilityproblem 
annot be solved by 
onsidering fP alone. If fP (T0) 6≤ bp, the path P is 
learlyinfeasible. However, fP (T0) ≤ bp provides no information about whether P is feasible ornot. For the moment, we 
an just state the following result:Proposition 5 Let P = (0, 1, . . . , p) be a path with non-de
reasing REFs fi−1,i for
i ∈ {1, . . . , p}. Then P is feasible, i.e., T (P, T0) 6= ∅, if and only if âi(T0) ≤ bi holds forall i ∈ {0, 1, . . . , p}.Proposition 5 means that we have to perform p + 1 
omparisons and apply p REF eval-uations (on ve
tors having R 
omponents) in order to 
he
k whether path P is feasible.We will see in Se
tion 5 that inversion of REFs allows the redu
tion of the 
omputationale�ort to a single 
omparison. However, additional assumptions on the REFs are ne
essaryfor ensuring that these 
an be inverted.3.4 Cost ComputationIn the simplest 
ase, 
ost is one of the resour
es, e.g., represented by r = 1. Otherwise,
ost is modeled impli
itly as a non-negative linear 
ombination of two or more of theresour
es {1, . . . , R}. Therefore, the (minimum) 
ost of a given path P = (0, 1, . . . , p)with initial resour
e 
onsumption T0 ∈ [a0, b0] is infT∈T (P,T0) α

⊤

T for some α ∈ R
R
+. Notethat, for non-smooth REFs, the set T (P ) may not be 
ompa
t so that a minimum maynot exist.The analysis of the stru
ture of T (P, T0) in the pre
eding se
tion dire
tly implies thefollowing two results: If all REFs are non-de
reasing, the minimum 
ost of the path

P = (0, 1, . . . , p) is given by α
⊤

âp(T0). If all REFs are linear (but with some de
reasing
omponents), the determination of the minimum 
ost requires the expli
it or impli
itsolution of an LP, sin
e T (P, T0) is a polytope. Impli
it methods for the des
ription ofthis polytope have been developed for spe
ialized 
ases with two resour
es by Ioa
himet al. (1998) and three resour
es by Gendreau et al. (2005). These methods also leadto e�e
tive dominan
e rules when the optimal path problem is solved by a dynami
programming (labeling) pro
edure. 15



4 Generalization of REFs to SegmentsIn the following, the term segment refers to an arbitrary path that is treated as aninde
omposable unit in a given digraph G. The distin
tion between segments and pathsis made for the sake of explanation only: A given path P , e.g., in an optimal s
heduleproblem, 
an be de
omposed into several segments P = P1+P2+· · ·+Pℓ. The modi�
ationof a giant tour by lo
al-sear
h moves is another example of segments arising. In an optimalpath problem, segments o

ur if some sequen
es of nodes or ar
s are for
ed to be visited ina given ordering. Examples are s-t-shortest-path problems in bran
h-and-pri
e approa
heswhen bran
hing rules �x �ows along some ar
s, and the solution of the partial pri
ingproblem in the dynami
 aggregation pro
edure (see the introdu
tion).For this se
tion, let P,P1 and P2 be segments in G. We denote by α(P ) the �rst node andby ω(P ) the last node of the segment P . In order to apply Proposition 3 and Formula (14)with a small 
omputational e�ort, the fo
us is on analyzing the following properties of asegment REF fP = fp−1,p ◦ fp−2,p−1 ◦ · · · ◦ f12 ◦ f01.(SCoF): fP is in the same 
lass of fun
tions as all the ar
 REFs fij are.(FNoC): For all paths P , the segment REFs fP 
an be represented with a f ixed numberof 
oe�
ients (independent of the length of P ) so that a fun
tion evaluation fP (T )
an be a

omplished in O (1) time and spa
e.(CJS): For any two segments P1, P2 with ω(P1) = α(P2), the 
omputation of the seg-ment REF fP1+P2
for the joined segment takes O (1) time and spa
e.4.1 Classi
al REFsThe following propositions show that the 
lassi
al 
ase 
an easily be generalized to seg-ments, sin
e REFs for segments and their 
on
atenations are of the same form as REFsfor ar
s. The 
oe�
ients de�ning the REF for a segment 
an be 
omputed from the
oe�
ients of the parts (ar
s or partial segments) the new segment is 
onstru
ted of.Proposition 6 Let f1 and f2 be given by f1(T ) = max{a1, T + t1} and f2(T ) =

max{a2, T + t2}. Then
f2 ◦ f1(T ) = max{a, T + t},with a = max{a2, a1 + t2} ∈ R
R and t = t1 + t2 ∈ R

R.Proposition 7 Let P = (0, 1, . . . , p) be a segment with 
lassi
al REFs for all ar
s, i.e.,
fi,i+1(T ) = max{ai+1, T + ti,i+1} for all i ∈ {0, 1, . . . , p − 1}. The segment REF is

fP (T ) = fp−1,p ◦ · · · ◦ f12 ◦ f01(T ) = max{aP , T + tP } (15a)with
aP = fp−1,p ◦ · · · ◦ f12 ◦ f01(a0) and tP =

p−1
∑

i=0

ti,i+1. (15b)Next, we 
onsider the 
on
atenation of two segments. For two segments P1 = (v0, v1, . . . , vp)and P2 = (w0, w1, . . . , wq) with vp = ω(P1) = α(P2) = w0, the segment P1⊕P2 is de�nedas (v0, v1, . . . , vp, w1, . . . , wp). Otherwise, if (vp, w0) = (ω(P1), α(P2)) ∈ A then P1 + P2denotes the segment (v0, v1, . . . , vp, w0, w1, . . . , wp).16



Proposition 8 Let P1, P2 be segments in G with REFs fP1
(T ) = max{aP1

, T + tP1
} and

fP2
(T ) = max{aP2

, T + tP2
}, respe
tively.(a) If ω(P1) = α(P2) then fP1⊕P2

(T ) = fP2
◦ fP1

(T ) = max{aP1⊕P2
, T + tP1⊕P2

}, with
aP1⊕P2

= max{aP2
, aP1

+ tP2
} ∈ R

R and tP1⊕P2
= tP1

+ tP2
∈ R

R.(b) If (i, j) := (ω(P1), α(P2)) ∈ A then fP1+P2
(T ) = fP2

◦fij ◦fP1
(T ) = max{aP1+P2

, T +
tP1+P2

}, with aP1+P2
= max{aP2

, aα(P2) + tP2
, aP1

+ tij + tP2
} ∈ R

R and tP1+P2
=

tP1
+ tij + tP2

∈ R
R.There is a subtle di�eren
e between Formula (2) 
on
erning REFs for ar
s and the resultof Proposition 8(b) when these are applied to the segments P1 = (i) and P2 = (j).The proposition yields fP (T ) = max{max{aj , ai + tij}, T + tij}. This di�ers from theREF fij(T ) = max{aj , T + tij} de�ned for the ar
 (i, j). Note that both fun
tions areidenti
al on the interval [ai,∞) but may di�er on (−∞, ai). With aij = max{aj , ai + tij}the better or more 
onsistent de�nition of a 
lassi
al REF is fij(T ) = max{aij , T + tij},see also Formula (4) and the 
omments there. Anyway, in all 
ases, fP is of the requiredform (15) as stated in Proposition 8.Summarizing the results, we 
an state the following theorem:Theorem 1 Classi
al REFs fij(T ) = max{aj , T +tij} for all (i, j) ∈ A 
an be generalizedto segments. The segment REFs have the properties (SCoF) and (FNoC), and their 
oef-�
ients 
an be 
omputed using Formulas (15). Con
atenations of segments with segmentREFs of the form fP (T ) = max{aP , T + tP } have the property (CJS) and the 
oe�
ientsof the 
on
atenated segments 
an be 
omputed by the formulas given in Proposition 8.4.2 REFs with a Pairwise Max-TermIn Se
tions 2.4.3 and 2.4.4, we have seen that REFs, where pairs of resour
e variablesare 
oupled together with a max-term, are useful for modeling simultaneous deliveriesand pi
kups as well as for 
omputing minimum waiting times, minimum times on duty,and travel and waiting 
osts a

umulated along the stops of a vehi
le path. For thisparagraph, let the number of resour
es R = 2U be even. All resour
e ve
tors are 
omposedof pairs (T, T ′), where T and T ′ are U -dimensional ve
tors. In the same way, REFs arewritten as f : R

U ×R
U → R

U × R
U , (T, T ′) 7→ (g(T, T ′), h(T, T ′)) with spe
i�
 fun
tions

g, h : R
U × R

U → R
U . The following proposition shows that REFs with a pairwise max-term have the same `ni
e' properties as 
lassi
al REFs.Proposition 9 Let f1 and f2 be given by f1(T, T ′) = (max{a1, T + t1, T

′ +
u1},max{a′1, T + t′1, T

′ + u′
1}) and f2(T, T ′) = (max{a2, T + t2, T

′ + u2},max{a′2, T +
t′2, T

′ + u′
2}). Then

f2 ◦ f1(T, T ′) = (max{a, T + t, T ′ + u},max{a′, T + t′, T ′ + u′}) (16)with a = max{a2, a1 + t2, a
′
1 + u2}, t = max{t1 + t2, t

′
1 + u2}, u = max{u1 + t2, u

′
1 + u2},

a′ = max{a′2, a1 + t′2, a
′
1 + u′

2}, t′ = max{t1 + t′2, t
′
1 + u′

2}, u′ = max{u1 + t′2, u
′
1 + u′

2}.The following theorem is a dire
t 
onsequen
e of the pre
eding proposition.Theorem 2 REFs of the form fij(T, T ′) = (max{aj , T+tij, T
′+uij},max{a′j , T+t′ij, T

′+
u′

ij}) for all ar
s (i, j) ∈ A 
an be generalized to segments. A segment P = (0, 1, . . . , p)has an REF of the form 17



fP (T, T ′) = fp−1,p ◦ · · · ◦ f12 ◦ f01(T, T ′)

= (max{a, T + t, T ′ + u},max{a′, T + t′, T ′ + u′}) (17)with (a, a′) = fp−1,p ◦ · · · ◦ f12 ◦ f01(a0, a
′
0), i.e., properties (SCoF) and (FNoC). Con-
atenations of segments with segment REFs of the form fP (T, T ′) = (max{a, T + t, T ′ +

u},max{a′, T + t′, T ′ + u′}) have the property (CJS) and the 
oe�
ients of the 
on
ate-nated segments 
an be 
omputed by the formulas given in Proposition 9.VRPSDP The VRP with simultaneous deliveries and pi
kups has REFs with pairwisemax-terms, where ai = pi, a′i = max{pi, di}, bi = b′i = Q, tij = t′ij = pj, uij = −∞, and
u′

ij = dj holds for all nodes i ∈ V . If we assume pi, di ≥ 0 for all i ∈ V as well as T ≥ piand T ′ ≥ max{pi, di} the values ai, a
′
i 
an be set to 0. This simpli�es Formula (17) in thefollowing way: The segment REF for P = (0, 1, . . . , p), T ≥ pi, and T ′ ≥ max{pi, di} is

fP (T, T ′) =

(

T +

p
∑

i=1

pi, max{T + mLP , T ′ +

p
∑

i=1

di}

)

, (18)where mLP is a 
onstant representing the maximum load that o

urs on segment P . Tobe more pre
ise, T is the load pi
ked up after leaving the �rst node 0 (i.e., T has toin
lude the pi
kup quantity p0 at node 0) and T ′ is the maximum load on the vehi
lethat o

urs before arriving at node 1. Also, mLP does not 
onsider what happens beforenode 1, i.e.,
mLP = max







k∑

i=1

pi +

p
∑

j=k+1

dj : k ∈ {1, . . . , p}






.4.3 Non-de
reasing REFsBesides 
lassi
al REFs and REFs with a pairwise max-term, we have seen three othertypes of non-de
reasing REFs in Se
tion 2.4: REFs for modeling load-dependent 
osts,multiple time windows, and time-dependent travel times.4.3.1 Load-Dependent CostsGiven P = (0, 1, . . . , p) and REFs fi−1,i of the form (5) for i ∈ {1, . . . , p}, it is straight-forward to see that

fP (T0) = fp−1,p ◦ · · · ◦ f12 ◦ f01(T0)

=



T cost
0 +

p
∑

i=1

ci−1,i



T load
0 +

i−1∑

j=0

dj



 , T load
0 +

p
∑

i=1

di



holds. If we want fP to be a fun
tion of the same form as the REF fi−1,i (property(SCoF)), we have to look for sets C of fun
tions c ∈ C, c : R → R whi
h are 
losed under(1) addition of fun
tions, and (2) the shift operation. For any d ∈ R, a 
orrespondingshift operation maps a fun
tion c ∈ C to the fun
tion de�ned by T 7→ c(T + d). In the
ase where (1) and (2) hold, the above term T cost
0 +

∑p
i=1 ci−1,i

(

T load
0 +

∑i−1
j=0 dj

) 
anbe repla
ed by T cost
0 + cP (T load

0 ). 18



First, the set H = Pm of polynomials of a degree not greater than m is 
losed underthe addition and shift operations. It follows that the 
ost fun
tions cij ∈ Pm for theload-dependent 
ost on ar
s (i, j) ∈ A imply REFs for a segment whi
h have a 
ostfun
tion cP de�ned by a polynomial in Pm (property (FNoC)). Sin
e the 
omputationof the 
orresponding polynomial takes O (m2) = O (1) time and spa
e, property (CJS)is ful�lled. As a spe
ial 
ase for m = 1 a�ne linear 
osts are possible (see Fig. 2(a)).Note that non-de
reasingness of the (segment) REFs is satis�ed if all 
ost fun
tions arenon-de
reasing.
load

cost

(a) load

cost

(b) load

cost

(
)Fig. 2. Load-dependent Costs. (a) A�ne Linear, (b) Pie
ewise Linear with MultiplePie
es, (
) Approximation by a PolynomialSe
ond, if the cij are de�ned pie
ewise using up to mij linear fun
tions (as depi
ted inFig. 2(b)), the 
ost fun
tion for the segment P = (0, 1, . . . , p) is also pie
ewise linear(property (SCoF)). However, the number of proper pie
es ne
essary for de�ning cP 
anbe
ome m01 ·m12 ·. . . ·mp−1,p ((FNoC) does not hold). Consequently, if one is interested in
ompa
t representations, one should not use fun
tions cij de�ned di�erently on di�erentintervals. Instead, pie
ewise de�ned tari�s should be approximated, e.g., by polynomialsleading to segment REFs with a �xed number of 
oe�
ients (independent of the lengthof the segment under 
onsideration). Figure 2(
) shows an approximation of the 
ost-fun
tion depi
ted in Figure 2(b) by a polynomial.4.3.2 Multiple Time WindowsFor multiple time windows, it is easy to see that the REF for a segment is of the sameform as the REF for an ar
, see Formula (10). Con
erning the e�ort of representing theREF, Gietz (1994, p. 65) has shown that one has to 
onsider up to m+(m−1)p intervalsif up to m time windows are given at ea
h node of a path of length p. Again, (SCoF)holds but (FNoC) does not. Anyway, in real-world problems, Gietz (1994, p. 65 f) 
ouldnot �nd instan
es in whi
h more than nine intervals had to be 
onsidered. Thus, for longroutes, the worst-
ase upper bound m + (m − 1)p was never rea
hed.4.3.3 Time-Dependent Travel TimesEven if the REF is non-de
reasing (has the non-overtaking property), the generalizationto segments is hardly possible. For the sake of simpli
ity, we assume that all time windowsare identi
al, i.e., [atime
i , btime

i ] = [0, τ ], and that all travel time fun
tions ttime
ij (T ) arenon-negative. The travel time on a segment P = (0, 1, . . . , p) is19



tP (T0) = T0 + t01(T0)

+ t12(T0 + t01(T0))

+ t23(T0 + t12(T0 + t01(T0)))

+ t34(T0 + t23(T0 + t12(T0 + t01(T0))))

+ . . .(we have omitted the supers
ript time). For the segment P to have a travel time fun
-tion tP that is of the same form as the individual travel time fun
tions on the ar
s(property (SCoF)), it is required that this 
lass of fun
tions H be 
losed under (1) addi-tion of fun
tions, (2) addition of a 
onstant, and (3) 
on
atenation of fun
tions. The setof all polynomials H = P satis�es (1)-(3) but the obvious drawba
k is that tP has in-
reasing degree (and, therefore, an in
reasing number of 
oe�
ients) when P gets longer.For a�ne linear fun
tions, i.e., H = {f(T ) = cT +d : d ∈ R+, c ∈ R, c ≥ −d/τ}, the 
lass
H also ful�lls (1)-(3). However, these fun
tions are not useful for modeling pra
ti
allyrelevant aspe
ts, su
h as peaks with in
reased travel time during rush-hours et
. De�ningpie
ewise linear fun
tions does not solve the problem, sin
e one ends up with numerouslinear pie
es de�ned on disjoint intervals (su
h as for load-dependent 
osts and weightbreaks).We are not aware of any 
lass H of fun
tions that ful�lls property (SCoF), 
an modelpra
ti
ally relevant aspe
ts, and has a 
ompa
t representation, i.e., property (FNoC).4.4 Soft Time Windows, In
onvenien
e Costs, and Linear Node CostsIn the following, we will dis
uss di�erent 
ases for the in
onvenien
e fun
tions πi :
[atime

i , btime
i ] → R+. First, if all πi are non-de
reasing, the segment REF fP is alsonon-de
reasing. Even for the simplest 
ase of linear non-de
reasing in
onvenien
e fun
-tions πi(T

time) = wi · T
time with wi ≥ 0 for all i ∈ V , it is di�
ult to �nd a 
ompa
trepresentation. The reason for this di�
ulty is that we end up with a pie
ewise de�nedREF, i.e.,

fP (T cost
0 , T time

0 ) =

(

T cost
0 +

p
∑

i=1

ci−1,i + πP (T0),max{atime
P , T0 +

p
∑

i=1

ti−1,i}

)with πP a pie
ewise linear in
onvenien
e fun
tion. A simple example is P = (0, 1),
[atime

0 , btime
0 ] = [0, 2], [atime

1 , btime
1 ] = [2, 4], t01 = 1. Here, πP : [0, 2] → R with πP (T0) =

w0T0 + 2w1 for T0 ∈ [0, 1] and πP (T0) = (w0 + w1)T0 + (w0 + 2w1) for T0 ∈ [1, 2]. It iseasy to see that the number of pie
es 
an be
ome p + 1 for a segment P = (0, 1, . . . , p)with p + 1 nodes ((FNoC) does not hold). Di�erent non-de
reasing fun
tions, su
h aspolynomials, imply that the same dis
rete 
ases must be distinguished.Se
ond, we assume that all in
onvenien
e fun
tions are linear but de
reasing, i.e., πi(T
time) =

wi · T
time with wi ≤ 0 for all i ∈ V . These in
onvenien
e fun
tions have been used bySexton and Bodin (1985a,b). As pointed out previosly, T (P, T0) is a polytope but notne
essarily a (multi-dimensional) interval. Consequently, we 
annot use Proposition 3,Formula (14) and the segment REF for representing T (P, T0). However, the 
omputa-tion of 
ost-minimal s
hedules 
an be a

omplished by repla
ing the REF (6) by a non-de
reasing REF, but at the 
ost of `inverting' the underlying digraph. In order to see this,note �rst that the 
ost-minimal s
hedule (Ti)

p
i=1 for P = (0, 1, . . . , p) and T0 ∈ [a0, b0]20



visits ea
h node i ∈ {1, . . . , p} as late as possible. The minimum in
onvenien
e 
ost ofthe segment w.r.t. T time
0 is given by πP (T0) = min{w0T0 + ρP , σP }, where ρP , σP ∈ Rare 
onstants depending on the segment P and w0 ≤ 0 is the slope of the in
onvenien
efun
tion at the start node 0 of the segment. Here, it is assumed that one arrives as late aspossible at the �nal node p, i.e., T time

p = btime
p . Otherwise, for any feasible T time

p ∈ [ap, bp],the minimum 
ost depends on Tp so that πP (T0) = min{w0T0 + ρP (Tp), σP (Tp)}. Thefun
tions ρP (Tp) and σP (Tp) are not non-de
reasing and depend on resour
e variables onthe �nal node of the segment. Consequently, we 
annot give `simple' update formulas forin
onvenien
e 
ost fun
tions when two or more segments are 
on
atenated ((CJS) doesnot hold). We suggest using the following `inverse approa
h' in order to handle linearin
onvenien
e fun
tions with negative slope. Instead of digraph (V,A), we use a new di-graph with the same set V of nodes and reverse ar
s (j, i) for all (i, j) ∈ A. The resour
e
r = time is repla
ed by a resour
e r = ntime. This new resour
e models `negative pointsin time' and is 
onstrained by [antime

i , bntime
i ] = [−btime

i ,−atime
i ]. The resour
e update is

gji(T
cost
j , T time

j )

=
(
T cost

j + cij − wjT
ntime
j , max{T ntime

j + ttime
ij ,−btime

i }
)It is easy to prove that any s
hedule (Ti)

p
i=0 for P = (0, 1, . . . , p) and the original REFs isresour
e-feasible if and only if the s
hedule (T cost

i ,−T time
i )0i=p is feasible for the segment

(p, p−1, . . . , 0) with resour
es cost and ntime and REFs gji. The advantage of new REFsis that they are non-de
reasing in both 
omponents (be
ause of −wj ≥ 0). They 
anbe handled like the 
ase of linear non-de
reasing in
onvenien
e 
osts (therefore, we haveproperty (SCoF) for pie
ewise linear 
osts, and not (FNoC)).Third, linear in
onvenien
e 
ost fun
tions with positive as well as negative slopes atdi�erent nodes ex
eed the 
omplexity of the two 
ases 
onsidered before. These problemsneed a spe
ial algorithmi
 treatment. Ioa
him et al. (1998) provide solution approa
hesfor optimal path problems with only two resour
es (shortest-path problems with timewindows and linear node 
osts) based on the pie
ewise representation of the lower envelopedes
ribing the two-dimensional polytope T (P ). Similarly, the above-mentioned study byIbaraki et al. (2005) 
onsiders exa
tly this 
ase, but the fo
us is not on analyzing REFs forsegments but on pro
edures for a

elerating lo
al sear
h for standard VRP neighborhoods.Fourth and �nally, 
onvex in
onvenien
e 
ost fun
tions with three or more linear pie
es,as suggested by Sexton and Choi (1986), lead to the same type of in
onvenien
e 
ostfun
tion for a segment but with multiple linear pie
es. Obviously, this adds anotherdegree of 
omplexity to the three 
ases 
onsidered above.5 Inversion of Resour
e Extension Fun
tionsThe main question to be answered in this se
tion is how to de�ne inverse REFs so thatthey are useful for the following two tasks:
• How 
an we 
he
k the feasibility of a segment without iteratively applying the REFsfor all ar
s of the segment and 
he
king intermediate resour
e 
onsumptions againstupper bounds? More pre
isely, given a segment P = (0, 1, . . . , p) and an initial resour
e
onsumption T0 ∈ [a0, b0], we want to �nd out e�
iently whether T (P, T0) 6= ∅ holds.21



• De�ne an inverse REF whi
h allows a reversal of the dire
tion in whi
h resour
e vari-ables are 
onsidered. Given any ar
 (i, j) ∈ A, is it possible to de�ne a fun
tion whi
hprovides the resour
e 
onsumption at the tail node i if this information is given for thehead node j?The analysis of T (P, T0) in Se
tion 3.3 has provided only one `simple' 
riterion for the�rst task, given in Proposition 5. A

ording to the pre
ondition of Proposition 5, weassume for the entire se
tion that all REFs are non-de
reasing. The following propositionsolves the �rst task, i.e., gives a 
riterion for the feasibility problem.Proposition 10 Let P = (0, 1, . . . , p) be a path with non-de
reasing REFs fi−1,i for
i ∈ {1, . . . , p}. If fun
tions f inv

i−1,i : R
R → R

R exist with properties(INV) fi−1,i(T ) ≤ T ′ ⇐⇒ T ≤ f inv
i−1,i(T

′) for all T ∈ (−∞, bi−1]and all T ′ ∈ [ai,∞)(UBB) f inv
i−1,i(T

′) ≤ bi−1 for all T ′ ∈ R
R(NDI) f inv

i−1,i is non-de
reasingfor all i ∈ {1, . . . , p}, then P is resour
e-feasible w.r.t. the initial resour
e 
onsumption
T0, i.e., T (P, T0) 6= ∅ if and only if T0 ≤ f inv

01 ◦ f inv
12 ◦ · · · ◦ f inv

p−1,p(bp) holds.We 
all any fun
tion f inv
ij whi
h satis�es (INV), (UBB), and (NDI) an inverse REF of

fij. Note that 
onditions (NDI) and (UBB) are symmetri
al to the 
onditions on fij,i.e., the REF has to be non-de
reasing and fij(T ) ≥ aj must hold for any T ∈ R
R.Condition (INV) is weaker than what is 
lassi
ally postulated for an inverse fun
tion.This weaker 
ondition makes sense, sin
e one 
annot expe
t fij or f inv

ij to be bije
tive.For instan
e, the preimage of aj under fij, i.e., f−1
ij ({aj}) ⊆ R

R typi
ally 
ontains morethan one point and, in that 
ase, fij is not inje
tive so that no 
lassi
al left inverse exists(in terms of set theory).A

ording to the idea of generalizing REFs to segments, it is straightforward to de�nethe inverse segment REF f inv
P of a path P = (0, 1, . . . , p) as f inv

01 ◦ f inv
12 ◦ · · · ◦ f inv

p−1,p.Note that f inv
P is (per de�nition) non-de
reasing and ful�lls fP (T ′) ≥ a0 for all T ′ ∈ R

R.Proposition 10 provides a 
riterion that 
an be 
he
ked in O (R) time (independent of thelength of the path) when f inv
P (bω(P )) is 
omputed a priori. The e�ort for the 
omputationof f inv

P (bω(P )) depends on the (inverse) REFs at hand.If 
onditions (NDI), (UBB), and (INV) are satis�ed for all REFs, we 
an easily invert theentire graph and asso
iated solution pro
esses for optimal s
hedule and optimal path prob-lems. In order to see this, de�ne G′ = (V,A′) with the same set of node and reversed ar
s
A′ = {(i, j) : (j, i) ∈ A}. With ea
h ar
 (i, j) ∈ A′ we asso
iate the REF f ′

ij := f inv
ji . Forall i ∈ V , let [a′i, b

′
i] := [ai, bi] be the resour
e intervals. Then any path P = (0, 1, . . . , p) isresour
e-feasible w.r.t. (G, fij , [ai, bi]) if and only if P ′ = (p, . . . , 1, 0) is resour
e-feasiblew.r.t. (G′, f ′

ij, [a
′
i, b

′
i]). Classi
al solution approa
hes for SPPRCs are mainly based on dy-nami
 programming (Irni
h and Desaulniers, 2005). The impli
ation for these approa
hesis that labels 
an be extended either forward along ar
s (the traditional way) or ba
kwardin the opposite dire
tion to the ar
s. Furthermore, 
orresponding forward and ba
kwardlabels 
an be 
ompared and provide a simple 
riterion for 
he
king the feasibility of theasso
iated 
ompound path. 22



Theorem 3 (Con
atenation Theorem)Let P1 and P2 be resour
e-feasible paths with ω(P1) = α(P2). If P1 has segment REF
fP1

and P2 has inverse segment REF f inv
P2

, then P = P1 ⊕ P2 is resour
e-feasible if andonly if fP1
(aα(P1)) ≤ f inv

P2
(bω(P2)).Our goal is now to develop an easy-to-prove su�
ient 
ondition for (INV) to hold. This
ondition will then be used to show that 
lassi
al REFs as well as REFs with a pairwisemax-term are invertible.Proposition 11 Let fij : R

R → R
R and f inv

ij : R
R → R

R be non-de
reasing fun
tions.A su�
ient 
ondition for property (INV) to hold is
(INV 1) Ti ≤ f inv

ij (fij(Ti)) for all Ti ∈ (−∞, bi]and (INV 2) Tj ≥ fij(f
inv
ij (Tj)) for all Tj ∈ [aj ,∞).We will use the above 
riterion for proving that 
lassi
al REFs and REFs with pairwisemax-term have inverse REFs for ar
s as well as for segments.5.1 Classi
al REFsNext, we show that 
lassi
al REFs have an inverse REF and that these 
an be generalizedto segments.Theorem 4 Classi
al REFs of the form fij(T ) = max{aj , T + tij} for all (i, j) ∈ A 
anbe inverted and the inverse 
an be generalized to segments su
h that properties (SCoF),(FNoC), and (CJS) hold.(a) The fun
tion f inv

ij (T ′) = min{bi, T
′ − tij} is an inverse REF of fij.(b) A segment P = (0, 1, . . . , p) has an REF as in Proposition 7 and an inverse REF ofthe form

f inv
P (T ′) = min{bP , T ′ − tP } (19)with bP = f inv

01 ◦ · · · ◦ f inv
p−2,p−1 ◦ f inv

p−1,p(bp) ∈ R
R and tP =

∑p−1
i=0 ti,i+1 ∈ R

R (properties(SCoF), (FNoC)).(
) Let P1, P2 be segments in G with inverse REFs fP1
(T ′) = min{bP1

, T ′ − tP1
} and

f inv
P2

(T ′) = min{bP2
, T ′ − tP2

}, respe
tively. If ω(P1) = α(P2), then
f inv

P1⊕P2
(T ′) = f inv

P1
◦ f inv

P2
(T ′) = min{bP1⊕P2

, T ′ − tP1⊕P2
}holds with bP1⊕P2

= min{bP1
, bP2

− tP1
} ∈ R

R and tP1⊕P2
= tP1

+ tP2
∈ R

R (this isproperty (CJS)).Note that, in general, inverse REFs are not unique, sin
e (INV), (UBB), and (NDI) donot impose strong restri
tions on the values of f inv
ij (T ′) for T ′ 6≥ aj . However, it is easy toshow that inverse REFs f inv

ij to 
lassi
al REFs fij are uniquely de�ned for T ′ ∈ [aj ,∞):
f inv

ij (Tj) = min{bi, Tj − tij}.5.2 REFs with a pairwise max-termSimilar results follow for REFs with a pairwise max-term (as introdu
ed in Se
tion 4.2).23



Theorem 5 REFs fij(T, T ′) = (max{aj , T + tij, T
′ +uij},max{a′j , T + t′ij , T

′ +u′
ij}) forall (i, j) ∈ A 
an be inverted and the inverse 
an be generalized to segments su
h thatproperties (SCoF), (FNoC), and (CJS) hold.(a) The fun
tion f inv

ij (S, S′) = (min{bi, S − tij, S
′ − t′ij},min{b′i, S − uij , S

′ − u′
ij}) is aninverse REF of fij .(b) A segment P = (0, 1, . . . , p) has an REF as in Theorem 2 and an inverse REF of theform

f inv
P (S, S′) = (min{b, S − tP , S′ − t′P },min{b′, S − uP , S′ − u′

P }).with (b, b′) = f inv
01 ◦ f inv

12 ◦ · · · ◦ f inv
p−1,p(bp, b

′
p) (properties (SCoF) and (FNoC)).(
) Let P1, P2 be segments in G with inverse REFs

f inv
P1

(S, S′) = (min{bP1
, S − tP1

, S′ − t′P1
},min{b′P1

, S − uP1
, S′ − u′

P1
}),

f inv
P2

(S, S′) = (min{bP2
, S − tP2

, S′ − t′P2
},min{b′P2

, S − uP2
, S′ − u′

P2
}),respe
tively. If ω(P1) = α(P2), then

f inv
P1⊕P2

(S, S′) = (min{bP1⊕P2
, S − tP1⊕P2

, S′ − t′P1⊕P2
},

min{b′P1⊕P2
, S − uP1⊕P2

, S′ − u′
P1⊕P2

}),holds with bP1⊕P2
= min{bP1

, bP2
− tP1

, b′P2
− t′P1

}, tP1⊕P2
= max{tP1

+ tP2
, uP2

+ t′P1
},

t′P1⊕P2
= max{tP1

+ t′P2
, t′P1

+ u′
P2
}, b′P1⊕P2

= min{b′P1
, bP2

− uP1
, b′P2

− u′
P1
}, uP1⊕P2

=
max{uP1

+ tP2
, u′

P1
+ uP2

}, u′
P1⊕P2

= max{uP1
+ t′P2

, u′
P1

+ u′
P2
} (this is property (CJS)).The spe
ial 
ases of VRPSDP and VRP with limited time on duty or limited waitingtime are analyzed in more detail.VRPSDP It follows from Theorem 5 that

f inv
ij = (min{Q,S − pj, S

′ − pj},min{Q,S′ − dj})is an inverse REF of (7) for all (i, j) ∈ A. If we assume S, S′ ≤ Q and that all pi
kupquantities pi and delivery quantities di are non-negative, the min-term with Q 
an beomitted (the assumption does not hold for appli
ations with multiple use of vehi
les).Formulas for segments P = (0, 1, . . . , p) 
an be simpli�ed and be
ome
f inv

P (S, S′) =

(

min{S −

p
∑

i=1

pi, S
′ − mLP }, S′ −

p
∑

i=1

di

) (20)where mLP is the same 
onstant representing the maximum load that o

urs in For-mula (18). The interpretation of the above formula for the inverse segment REF is thatthe resour
e r = pick (the quantity pi
ked up before leaving node 0) is 
onstrained bythe entire load pi
ked up on the segment as well as the maximum load that o

urs on P .The se
ond resour
e r = mL for the maximum load is 
onstrained only by the quantitythat has to be delivered along P . 24



Waiting Times and Times on Duty It has been shown in Se
tion 2.4.4 that wait-ing times, waiting 
osts, and times on duty 
an be modeled by means of non-de
reasingREFs. The resour
e r = time for earliest time of servi
e is a resour
e with a 
lassi
alupdate given by (3).The four resour
es, r = wait, r = hlp, r = duty, and r = hlp′ are two pairs of interde-pendent resour
es whi
h depend on ea
h other with REFs as stated in (17). Therefore,an REF with resour
es {time,wait, hlp, duty, hlp′} 
an be inverted. Hen
e, all aspe
ts oftime on duty and limited waiting times 
an be handled by REFs that are invertible and
an be generalized to segments.5.3 General REFsWith the 
ases dis
ussed in Se
tion 4.4, it is easy to see that REFs for modeling softtime windows either have REFs or inverse REFs with at least one de
reasing 
omponent.The soft time window 
ase never satis�es the 
onditions of Proposition 10. We thereforedis
uss the 
ase of load-dependent 
osts only.Load-Dependent Costs The only way of de�ning an inverse REF of (5) for load-dependent 
osts is
f inv

ij (T cost
j , T load

j ) =
(

T cost
j − cij(T

load
j − dj), T load

j − dj

)(for the sake of simpli
ity, we have omitted the min-term with the upper bounds bcost
i and

bload
i for both resour
es as they are not ne
essary if all demands and 
osts are non-negativeand Tj ≤ bj). As stated before, fij is non-de
reasing if and only if cij is non-de
reasing.The opposite holds for f inv

ij , i.e., f inv
ij is non-de
reasing if and only if cij is nonin
reasing.Hen
e, only 
onstant 
ost fun
tions cij lead to invertible REFs with property (INV). Itis not possible to invert the underlying graph as needed for bidire
tional shortest-pathalgorithms or the se
ond appli
ation mentioned in the introdu
tion.Nevertheless, a proper inversion is typi
ally not ne
essary for feasibility 
he
king be
ausethe resour
e r = cost is normally not bounded from above. To 
larify that point, 
onsiderPropositions 10 and 3. Here, the 
riterion is to 
he
k T0 against an upper bound f inv

P (bp)(or fP1
(T0) ≤ f inv

P2
(bp), resp.). If the 
ost 
omponent is un
onstrained, i.e., bcost

i = ∞for all i ∈ V , then f inv,cost
P (bp) = f inv,cost

P2
(bp) = ∞. Thus, it is possible to restri
tthe feasibility 
he
k to all resour
es ex
ept resour
e r = cost. Note further that a 
ost
omputation over several segments 
an be done using forward segment REFs, e.g., the
ost of P1 + P2 is (fP2

◦ fP1
(T0))

cost so that no inverse REFs are needed for this task.6 An Illustrative ExampleThe example is de�ned on the network (V,A) with time windows [ai, bi] and the pi
kup piand delivery di demands for i ∈ V = {1, 2, . . . , 8} depi
ted in Figure 3. The intentionis to model a VRP with time windows and simultaneous deliveries and pi
kups. For thesake of simpli
ity, we assume that all travel times are tij = 2 and that ea
h visit of anode implies a pro�t of one unit, i.e., cij = −1 for all (i, j) ∈ A. The vehi
le 
apa
ity is
Q = 20.The non-de
reasing REF on an ar
 (i, j) ∈ A is given by25
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Fig. 3. Example Graph for a VRP with Time Windows and Simultaneous Delivery andPi
kup
fij(T

cost
i , T time

i , T pick
i , TmL

i )

=
(

T cost
i + cij ,max{aj , T

time
i + tij}, T

pick
i + pj,max{T pick

i + dj, T
mL
i + pj}

)and resour
e windows are
(T cost

i , T time
i , T pick

i , TmL
i ) ∈ [0,∞) × [ai, bi] × [pi, Q] × [max{pi, di}, Q]We �rst 
onsider path P = (2, 3, 4, 5) as a (non-de
omposable) segment. The 
omputationof the segment REF fP 
an use the Formulas (15) and (18) yielding

fP (T cost
2 , T time

2 , T pick
2 , TmL

2 )

= (T cost
2 − 3,max{9, T time

2 + 6}, T pick
2 + 12,max{T pick

2 + 13, TmL
2 + 9})The interpretation of these values is as follows: Along path P , the a

umulated pro�tis 3 (
ost −3). The earliest arrival time at the destination node 5 of P is 9, while thea

umulated travel and servi
e time along P is 6. Con
erning the demands, along thepath P (ex
luding the �rst node 2) a demand of∑5

i=3 pi = 12 is pi
ked up and a demandof ∑5
i=3 di = 13 is delivered. The maximum load that o

urs along the path P dependson the initial 
onditions at (or more pre
isely when leaving) node 2. If the vehi
le isempty (nothing pi
ked up or delivered at node 2), the maximum load of 13 o

urs onthe ar
 (4,5), sin
e p3 + p4 = 9 is already pi
ked up and d5 = 4 has to be delivered tonode 5. Furthermore, if the initial 
onditions are su
h that TmL

2 ≤ T pick
2 + 4 holds, thenthe maximum load along P is T pick

2 + 13 and o

urs on the ar
 (4, 5) again. Otherwise,the maximum load is TmL
2 + 9 and o

urs on an ar
 pre
eding P . With a2 = (0, 2, 4, 5)

⊤ ,we see that fP (a2) = (−3, 9, 16, 17)
⊤ is the minimum resour
e 
onsumption at the �nalnode 5 of P .Using (19) and (20), the inverse segment REF for P = (2, 3, 4, 5) is

f inv
P (Scost

5 , Stime
5 , Spick

5 , SmL
5 )

= (T cost
5 + 3,min{4, T time

5 − 6},min{T pick
5 − 12, TmL

5 − 13}, TmL
5 − 9})With b5 = (∞, 10, 20, 20)

⊤ , one gets f inv
P (b5) = (∞, 4, 7, 11)

⊤

≥ a2. Therefore, Proposi-tion 3 guarantees that segment P is resour
e-feasible.26



The advantage of having the (inverse) segment REF for P is that multiple REF evalua-tions and 
he
ks against upper bounds 
an be avoided. A path O pre
eding P yields afeasible 
on
atenation O ⊕ P if the resour
e 
onsumption at the end of O is less than orequal to f inv
P (b5) (a single 
omparison). Additionally, REF and inverse REF for O ⊕ P
an be 
omputed in 
onstant time from the 
orresponding REFs of O and P .In order to 
ompute all resour
e-feasible paths in the network (V,A) 
ontaining P , onesimply has to 
onsider the �ve segments O = (1, 2), O′ = (1, 6, 2), P = (2, 3, 4, 5),

Q = (5, 8), and Q′ = (5, 7, 8). Sin
e f(1,6,2)(a1) = f62◦f12((0, 0, 0, 0)
⊤

) = (−2, 5, 9, 10)
⊤

6≤

f inv
P (b5) = (∞, 4, 7, 11)

⊤ , the 
on
atenation of O′ and P is infeasible. The same holds forthe 
on
atenation of P and Q′, be
ause of fP (a2) = (−3, 9, 16, 17)
⊤

6≤ f inv
(5,7,8)(b8) =

f inv
57 ◦ f inv

78 ((∞, 12, 20, 20)
⊤

) = f inv
57 ((∞, 7, 20, 20)

⊤

) = (∞, 5, 18, 18)
⊤ . Hen
e, the onlypath 
ontaining P left is O ⊕ P ⊕ Q = (1, 2, 3, 4, 5, 8). We 
an easily 
he
k that O and

Q are resour
e-feasible. The fa
t that f12(a1) = (−1, 2, 4, 5)
⊤

≤ f inv
P (b5) = (∞, 4, 7, 11)

⊤shows that O ⊕ P is resour
e-feasible. With Propositions 8(a) and 5(
) we 
an 
omputethe REF for the 
on
atenation O ⊕ P ,
fO⊕P (T cost

1 , T time
1 , T pick

1 , TmL
1 )

= (T cost
1 − 4,max{8, T time

1 + 8}, T pick
1 + 16,max{T pick

1 + 17, TmL
1 + 14}),so that fO⊕P (a1) = fO⊕P ((0, 0, 0, 0)

⊤

) = (−4, 8, 16, 17)
⊤ holds. Finally, f inv

Q (b8) =

f inv
58 ((∞, 12, 20, 20)

⊤

) = (∞, 10, 20, 20)
⊤

≥ fO⊕P (a1) implies that O⊕P ⊕Q is resour
e-feasible.7 Con
lusionsThis paper has provided a theoreti
al foundation for de�ning, analyzing, and manipu-lating resour
e-
onstrained paths. REFs are the main tool for mathemati
ally des
ribing
omplex interdependen
ies between resour
es. From a modeling point of view, the texthas surveyed di�erent types of real-world 
onstraints, mainly taken from the area of vehi-
le routing and 
rew s
heduling. The uni�ed model by Desaulniers et al. (1998) has shownthat nearly all types of deterministi
 VRPs and SPVCs 
onsidered in the literature are
overed by REF-based models.From an algorithmi
 point of view, e�
ient REF handling is desirable in exa
t as wellas in heuristi
 solution methods for these problems. Exa
t solutions pro
edures (
olumngeneration or Lagrangean relaxation integrated into bran
h-and-bound) require the 
om-putation of least 
ost resour
e-
onstrained paths. While e�
ient solution methods forSPPRC 
an be found in a separate survey (Irni
h and Desaulniers, 2005), the fo
us herehas been on methods that support several types of a

eleration pro
edures. Bidire
tionalshortest-path algorithms (Salani, 2005), redu
ed 
ost ar
-elimination pro
edures (Irni
h,2007) and the dynami
 aggregation method by Elhallaoui et al. (2005) need well-de�ned
on
epts for inverting the solution pro
ess and for simplifying the 
omputations whensegments are shrunk. Lo
al sear
h-based pro
edures are used in all kinds of traditionaland modern metaheuristi
s. Irni
h (2006) explains the usefulness of segment REFs forthe evaluation of neighbor solutions if represented by a giant tour and, espe
ially, fordeveloping e�
ient feasibility 
he
king pro
edures.27



Resour
e-
onstrained paths and REFs 
an be seen as the key 
on
ept for bridging thegap between exa
t and heuristi
 methods for ri
h VRPs (Hasle et al., 2003). The de-tailed analysis undertaken here 
lari�es whi
h types of REFs are well-suited for di�erentalgorithmi
 tasks. Non-de
reasing REFs are imperative for the appli
ation of easy-to-implement dominan
e rules, leading to well-performing dynami
 programming labelingpro
edures for solving the subproblem in exa
t approa
hes. These methods are appli
ableto VRPs with (multiple) time windows, path length 
onstraints, multiple use of vehi
les,time-dependent travel times, periodi
 and multiple depot versions of spe
i�
 VRPs et
.We have pointed out the additional assumptions whi
h guarantee 
onstant time feasibil-ity 
he
ks: REFs have to be invertible and segment REFs need to have representationswith a �xed number of 
oe�
ients (independent of their length, property (FNoC)). Inparti
ular, properties (FNoC) and (CJS) enable O (1) pro
edures for the determinationof whether the 
on
atenation of a priori given segments is a resour
e-feasible path. Thesame assumptions (invertible REF, (FNoC), (CJS)) are desirable for ar
 elimination andthe dynami
 aggregation method for the a

eleration of bran
h-and-pri
e algorithms.Classi
al REFs and REFs with pairwise max-term already have these `good' properties.Several examples of real-world 
onstraints fall into this s
heme, for instan
e, non-trivialtime/s
hedule 
hara
teristi
s (waiting times, times on duty) or simultaneous delivery andpi
kup requirements. Other REFs 
annot guarantee (FNoC), but their generalization tosegments imposes REFs of well-de�ned form (i.e., property (SCoF); for instan
e, REFsfor multiple time windows, 
ertain load-dependent 
ost fun
tions, and non-de
reasingin
onvenien
e 
osts). Even without guaranteed 
onstant time feasibility 
he
king, thesesegment REFs and their inverses 
an still be useful for speeding up exa
t and heuristi
algorithms.Referen
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ontains proofs for all propositions and theorems stated in the text.PROOF of Proposition 1. Immediately from de�nition (1). XPROOF of Proposition 2. The set T ((0), T0) is identi
al to [T0, b0] and, therefore,
ompa
t. Using identity (12), the fa
t that operator x maps 
ompa
t sets to 
losed sets,and that the interse
tion with an interval maps 
losed sets to 
ompa
t sets, yields that
T ((0, 1), T0) is 
ompa
t. Iterating the same 
hain of arguments for all pre�x paths P ′ =
(0, 1, . . . , p′), p′ ≤ p of P implies that ea
h set T (P ′, T0) is 
ompa
t, too. The propositionfollows with p′ = p. XPROOF of Proposition 3. It follows from de�nition (1) that the statement is truefor P = (0), i.e. for p = 0. By indu
tion, we 
an assume that the pre�x path
P− = (0, 1, . . . , p−1) ful�lls T (P−, T0) = [âp−1(T0), bp−1] with âp−1(T0) de�ned as statedabove. From Proposition 1 it follows that T (P, T0) = fp−1,p([âp−1(T0), bp−1])

x ∩ [ap, bp]holds. Sin
e fp−1,p is non-de
reasing, we have fp−1,p(âp−1(T0)) ≤ fp−1,p(T ) for all
T ∈ [âp−1(T0), bp−1]. Hen
e, fp−1,p([âp−1(T0), bp−1])

x = fp−1,p(âp−1(T0))
x (note that onthe LHS x is applied to a set and on the RHS it is applied to a ve
tor). The de�nition ofthe operator x implies xx ∩ [a, b] = [max{a, x}, b] for all ve
tors x, a, b ∈ R

R and, there-fore, fp−1,p(âp−1(T0))
x ∩ [ap, bp] = [max{ap, fp−1,p(âp−1(T0))}, bp]. The left bound of theinterval 
oin
ides with âp(T0) and the proposition is proven. XPROOF of Proposition 4. Indu
tion over the length p of P : Obviously, for P = (0)the set T (P, T0) is [T0, b0], whi
h is empty for T0 6≤ b0 and an R-dimensional interval,otherwise.For p ≥ 1, let P ′ be the pre�x path (0, 1, . . . , p − 1). The assumption of the indu
-tion is that T (P ′, T0) is the empty set or a polytope. In the latter 
ase, it followsthat fp−1,p map T (P ′, T0) to a polytope (be
ause ea
h lineare fun
tion maps a poly-tope conv({T 1, . . . , T q}) to a polytope conv({f(T 1), . . . , f(T q)})). Using identity (12)for the polytope f(T (P ′, T0)), the operator x transforms it to a polyhedron with the unitve
tors e1, e2, . . . , eR ∈ R

R as extreme rays. Finally, the interse
tion of fp−1,p(T (P ′, T0))
xwith [ap, bp] 
uts the polyhedron to a polytope again. XPROOF of Proposition 5. If âi(T0) ≤ bi holds for all i ∈ {0, 1, . . . , p} one 
anuse these ve
tors as resour
e ve
tors Ti in de�nition (1) to see that P is feasible, i.e.,

âi(T0) ∈ T (P, T0) 6= ∅ holds. In 
ontrast, if T (P, T0) 6= ∅, valid resour
e ve
tors Ti,
i ∈ {1, . . . , p} exist ful�lling de�nition (1). Starting with T1 ≥ max{a1, f0,1(T0)} =
max{a1, f0,1(â0(T0))} = â1(T0)), the same arguments and the non-de
reasing REF implythat Ti ≥ âi(T0) holds for all i ∈ {1, . . . , p}. Therefore, âi(T0) ≤ Ti ≤ bi holds for all
i ∈ {1, . . . , p}. XPROOF of Proposition 6. Dire
t 
al
ulus. X31



PROOF of Proposition 7. For a segment P = (0) 
onsisting of a single node, For-mula (15b) gives aP = a0 and tP = 0, i.e., fP (T ) = max{a0, T}. This is the 
orre
t REFfor the segment (0). A segment P = (0, 1) 
oin
ides with an ar
 and the 
orrespondingREF is of the required form. The statement for longer segments P follows by indu
tionfrom Proposition 6 with the REF for the segments P1 = (0, . . . , p−1) and P2 = (p−1, p).
XPROOF of Proposition 8. (a) follows dire
tly from Proposition 6.(b) follows from (a) with the three segments P1, (i, j), and P2. XPROOF of Theorem 1. Dire
t 
onsequen
e of Propositions 7 and 8. XPROOF of Proposition 9. Dire
t 
al
ulus. XPROOF of Theorem 2. Follows from Proposition 9. For the sake of brevity, we do notpresent 
losed formulas for the 
omputation of the 
oe�
ients t, u, t′, u′. Nevertheless,Proposition 9 shows that property (CJS) holds, too. XPROOF of Proposition 10. A

ording to Proposition 5 and equality (14) the seg-ment P is feasible w.r.t. T0 if and only if fi−1,i◦· · ·◦f01(T0) ≤ bi holds for all i ∈ {0, . . . , p}.Using property (INV) this is equivalent to T0 ≤ f inv

01 ◦ · · · ◦ f inv
i−1,i(bi) for all i ∈ {0, . . . , p}.Finally, using properties (UBB) and (NDI), we 
an establish the following inequality

f inv
01 ◦ f inv

12 ◦ · · · ◦ f inv
p−2,p−1 ◦ f inv

p−1,p(bp)
︸ ︷︷ ︸

≤bp−1

≤ f inv
01 ◦ f inv

12 ◦ · · · ◦ f inv
p−2,p−1(bp−1)
︸ ︷︷ ︸

≤bp−1

≤ . . .

≤ f inv
01 ◦ f inv

01 (b2)
︸ ︷︷ ︸

≤b1

≤ f inv
01 (b1)

≤ b0for all the values T0 is 
ompared with. Summing up, P is feasible w.r.t. T0 if and only
T0 ≤ f inv

01 ◦ · · · ◦ f inv
p−1,p(bp) holds. XPROOF of Theorem 3. Let for the sake of brevity, let 0 = alpha(P1) and p = ω(P2).The inequality fP1
(a0) ≤ f inv

P2
(bp) is equivalent to a0 ≤ f inv

P1
◦ f inv

P2
(bp) = f inv

P (bp). With
T0 = a0 this is the 
riterion given in Proposition 10. XPROOF of Proposition 11. We have to show property (INV), i.e., the equivalen
e
fij(Ti) ≤ Tj ⇐⇒ Ti ≤ f inv

ij (Tj).`=⇒': Ti

(INV 1)

≤ f inv
ij (fij(Ti))

(NDI),fij(Ti)≤Tj

≤ f inv
ij (Tj)`⇐=': fij(Ti)

fijn.d.,Ti≤f inv
ij

(Tj)

≤ fij(f
inv
ij (Tj))

(INV 2)

≤ Tj X32



PROOF of Theorem 4. (a) Any fun
tion of the form min{b, T − t} is non-de
reasingin T for arbitrary b, t ∈ R
R. It remains to show that the above de�nition of f inv hasproperties (INV1) and (INV2). Property (INV1) follows from

f inv(f(T )) = min{bi, f(T ) − tij} = min{bi,max{aj , T + tij} − tij}

= min{bi,max{aj − tij , T}} ≥ min{bi, T}

≥ T.Note that the last inequality holds be
ause of T ∈ (−∞, bi]. Property (INV2) followsfrom
f(f inv(T ′)) = max{aj , f

inv(T ′) + tij} = max{aj ,min{bi, T
′ − tij} + tij}

= max{aj ,min{bi + tij, T
′}} ≤ max{aj , T

′}

≤ T ′Again, the last inequality holds, sin
e T ′ ∈ [aj ,∞) is assumed.(b) Follows from arguments analogue to those used in Proposition 7.(
) Dire
t 
al
ulus. XPROOF of Theorem 5. (a) We show that properties (INV1) and (INV2) hold for
(T, T ′) ∈ (−∞, (bi, b

′
i)] and (S, S′) ∈ [(aj , a

′
j),∞). First,

f inv
ij (fij(T, T ′))

= (min{bi,max{aj , T + tij , T
′ + uij} − tij,max{a′j , T + t′ij, T

′ + u′
ij} − t′ij},

min{b′i,max{aj , T + tij, T
′ + uij} − uij,max{a′j , T + t′ij , T

′ + u′
ij} − u′

ij})

= (min{bi,max{aj − tij , T, T ′ + uij − tij},max{a′j − t′ij, T, T ′ + u′
ij − t′ij},

min{b′i,max{aj − uij , T + tij − uij, T
′},max{a′j − u′

ij}, T + t′ij − u′
ij}, T

′})

≥ (min{bi, T, T},min{b′i, T
′, T ′})

= (T, T ′),whi
h proves (INV1) and se
ond
fij(f

inv
ij (S, S′))

= (max{aj ,min{bi, S − tij, S
′ − t′ij} + tij,min{b′i, S − uij , S

′ − u′
ij} + uij},

max{a′j ,min{bi, S − tij, S
′ + t′ij} + t′ij,min{b′i, S − uij , S

′ + u′
ij} + u′

ij})

= (max{aj ,min{bi + tij , S, S′ − t′ij + tij},min{b′i + uij, S, S′ − u′
ij + uij}},

max{a′j ,min{bi + t′ij , S − tij + t′ij, S
′},min{b′i + u′

ij , S − uij + u′
ij, S

′}})

≤ (max{aj , S, S},max{a′j , S
′, S′})

= (S, S′),whi
h proves (INV2).(
) Dire
t 
al
ulus. Repeated appli
ation of (
) for all ar
s of the path P yields (b). X33


