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tThis paper presents a new uni�ed modeling and heuristi
 solution framework forvehi
le-routing problems (VRPs) with 
omplex side 
onstraints. The work is fo
used onstrong modeling 
apabilities as well as e�
ient solution pro
edures to be used in all kindsof metaheuristi
s. From the modeling point of view, the framework 
overs a variety ofstandard VRP types with 
lassi
al 
onstraints, su
h as 
apa
ity, distan
e, route length,time window, pairing and pre
eden
e 
onstraints, but also non-standard �ri
h� VRPs.From the methodologi
al point of view, lo
al sear
h (LS) is the key solver engine to beused in heuristi
 solution pro
edures. First and foremost, the framework introdu
es twogeneri
 te
hniques for the e�
ient exploration of edge and node ex
hange neighborhoods.On the one hand, new prepro
essing methods allow O (nk) neighborhoods to be sear
hedin time 
omplexity O (nk), i.e., without an additional e�ort for feasibility testing. On theother hand, Irni
h et al. (2006) have introdu
ed sequential sear
h as a generi
 method fora

elerating LS in the average 
ase. The 
omputational tests on di�erent types of VRPsindi
ate that the proposed methods are highly e�
ient. Sequential sear
h pro
edures out-perform the 
urrently most e�
ient sear
h methods�whi
h are based on lexi
ographi
sear
h�on large-s
ale instan
es and for nearly all types of neighborhoods by fa
tors ofbetween 10 and 1 000.Key words: lo
al sear
h, vehi
le routing, ri
h VRPs, resour
e-
onstrained paths1. Introdu
tionThe diversity of models and solution approa
hes in vehi
le routing is enormous (see,e.g., Golden and Assad, 1988; Toth and Vigo, 2002a; Laporte, 1992, 1997). This 
an beestimated, for instan
e, by the fa
t that, in 2006 alone, a few hundred s
ienti�
 paperswere published. Many of these publi
ations meet the 
hallenge of extending known modelsand methods to 
ope with new or extended types of vehi
le-routing problems (VRPs).Under the name ri
h models, resear
hers summarize �non-idealized models that represent
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the appli
ation at hand in an adequate way by in
luding all important optimization
riteria, 
onstraints, and preferen
es� (Hasle et al., 2006). Plenty of 
ontributions to �ri
hVRPs� exist in the form of spe
ialized algorithms that in
orporate di�erent types ofextensions into existing problems (see, e.g, Janssens et al., 2006, and several arti
les inthis spe
ial issue). However, many publi
ations are mainly 
ase studies, and it is not
lear whether their results are transferable to other 
ases. What is missing are unifyingmodeling and solution approa
hes that are general (=generi
) and �exible enough to beused in a broad range of appli
ations.In many other publi
ations, the fo
us is on enhan
ing the e�
ien
y of existing meth-ods or on devising alternative approa
hes that solve larger instan
es, 
ompute solutionsfaster, or provide solutions of better quality. In this 
ontext, mu
h progress has beenmade with regard to the design and analysis of metaheuristi
s, i.e., problem-independenttop-level general strategies whi
h guide other heuristi
s to sear
h for high-quality feasi-ble solutions (Ribeiro and Hansen, 2002; Resende and de Sousa, 2004). The prin
iples ofwell-performing metaheuristi
s are now mu
h better understood and metaheuristi
 imple-mentations be
ome reusable using software libraries (Voÿ and Woodru�, 2002). However,what is missing are powerful lower-level VRP algorithms that are e�
ient and, at thesame time, general.Resear
h on unifying approa
hes for VRPs has been undertaken in di�erent dire
tions:Formal s
hemes like those of Desro
hers et al. (1990) are helpful to stru
ture and 
lassifydi�erent types of VRPs. Integrated models, as presented by Desrosiers et al. (1995) andDesaulniers et al. (1998), provide 
omprehensive mixed-integer programming formula-tions. They 
an be used to devise powerful de
omposition approa
hes, su
h as 
olumngeneration and Lagrangean relaxation integrated into bran
h-and-bound s
hemes (De-saulniers et al., 2005). These methods are primarily intended to be used as exa
t solutionpro
edures, even if they 
an be redesigned into approximative algorithms (Desaulnierset al., 2002).In pra
ti
e, VRPs 
an almost never be solved with exa
t methods, sin
e instan
es are toolarge and response times of de
ision support systems have to be short. Thus, heuristi
sand metaheuristi
s have to be applied. Sin
e the majority of metaheuristi
s in vehi
lerouting use lo
al-sear
h (LS) 
omponents, the e�
ien
y and e�e
tiveness of LS is 
ru
ial.One way to 
ope with non-standard side 
onstraints and options in VRPs is to useLS in 
ombination with 
onstraint programming, as suggested by Shaw (1998); Kilbyet al. (2000). Constraint programming-based methods appear attra
tive, sin
e new side
onstraints 
an easily be added to existing solvers by stating additional rules (typi
allyformulated in a high-level 
onstraint programming language). The problem of identify-ing feasible improving solutions is solved through a general-purpose sear
h engine. Aknown drawba
k of 
onstraint programming-based (VRP) solution methods is howeverthat the additional �exibility in modeling is bought by the expense of loosing e�
ien
y,in parti
ular, 
ompared to traditional LS methods. It is worth mentioning that the largeneighborhood sear
h (LNS) prin
iple, whi
h has been used in the 
ontext of 
onstraint pro-gramming, is very su

essful in �nding least-
ost solutions. However, LNS neighborhoods
an also be sear
hed dire
tly (S
hrimpf et al., 2000; Røpke and Pisinger, 2006).Resear
h on e�
ient LS methods for VRPs and traditional (k-edge ex
hange) neighbor-hoods has been undertaken by Kindervater and Savelsbergh (1997). It seems that these2



te
hniques are not widely used, probably, sin
e they seem to be intri
ate. In addition,they were not expli
itly presented in a way that allows a dire
t adaptation to di�erentLS operators and to new types of side 
onstraints (
f. Shaw, 1998, p. 6).This paper presents a new uni�ed modeling and heuristi
 solution framework for VRPswith 
omplex side 
onstraints. The work is fo
used on strong modeling 
apabilities and,�rst and foremost, on e�
ient solution pro
edures. The 
ontribution is threefold: First,the aim of the framework is to help model di�erent real-world VRPs in a generi
 way,so that a broad 
lass of standard problem types and also ri
h VRPs 
an be handled.The modeling 
apabilities 
over all standard types of VRPs, su
h as the 
apa
itated anddistan
e-
onstrained VRP (CVRP, DCVRP), the VRP with multiple depots (MDVRP),time windows (VRPTW), simultaneous delivery and pi
kup (VRPSDP), ba
khauling(VRPB), pi
kup-and-delivery problems (PDP), the periodi
 VRP (PVRP), �eet mixproblems (FMP), VRPs with site dependen
ies, vehi
le and request (in)
ompatibilities,multiple-start option, limited waiting times and times on duty as well as mixtures andextensions of these (Se
tion 4 provides a more detailed overview of types of VRPs that
an and 
annot be modeled and solved with the framework). The framework is mainlybased on the giant-tour representation (Christo�des and Eilon, 1969) and the 
on
eptof resour
e-
onstrained paths (Desaulniers et al., 1998; Irni
h and Desaulniers, 2005). Itprovides a �exible and generi
 but well-de�ned representation of feasible and infeasibleroute plans.Se
ond, the framework is intended to support e�
ient solution pro
edures that are basedon LS. The importan
e of LS lies in the fa
t that it is the key 
omponent for �ndingimproving solutions within nearly all metaheuristi
s for VRPs. Be
ause of its generi
representation, the uni�ed framework helps to separate the modeling phase of a spe
i�
problem at hand from the development of e�
ient solution methods that use LS as amajor building blo
k. The key idea of any LS-based pro
edure is to iteratively builda neighbor solution �rst and 
he
k its feasibility and gain afterwards. If implementedin a straightforward way, this feasibility 
he
k 
auses an extra e�ort bounded by thelength of a longest tour. This length is in general only bounded by O (n) for instan
esof size n, where n is the number of nodes in the problem. Te
hniques that avoid theadditional fa
tor in the worst-
ase for 
ost 
omputations and feasibility 
he
ks are alreadyknown, but they are intrinsi
ally tied to the lexi
ographi
 tree sear
h paradigm (see(Kindervater and Savelsbergh, 1997) and Se
tion 3.3.1). Here, we present new te
hniquesfor sear
hing neighborhoods of size O (nk) in O (nk) time. We give su�
ient 
onditions onthe update of resour
es that guarantee O (1) feasibility tests. The new te
hniques are moregeneri
 and 
ompatible with any kind of neighborhood exploration strategy and, thus,enable a

elerated sear
h methods. Examples of neighborhoods to whi
h the methodsapply are the k-opt and k-opt* neighborhoods, the relo
ation and Or-opt neighborhoods,di�erent node and string swap/ex
hange neighborhoods, and others (re
ent surveys onVRP neighborhoods and sear
h te
hniques are (Bräysy and Gendreau, 2005a; Funke et al.,2005a)).Third, the goal of all e�
ient LS pro
edures is to �nd a best or �rst improving neighborsolution as fast as possible, i.e., not only from a worst-
ase but from an average-
asepoint of view. An analysis of the stru
ture of the 
lassi
al ex
hange pro
edures in therouting 
ontext yields that any neighbor solution of a (giant) tour 
an be generated byremoving ℓ edges and repla
ing them by ℓ others (even if it is a node ex
hange pro
edure).3



The 
hoi
e of these edges is typi
ally made by taking k ≤ ℓ independent de
isions.Hen
e, the asso
iated lo
al sear
h pro
edure 
an be 
onsidered a tree sear
h methodwhere the sear
h tree has depth k. The two main 
riteria for a redu
tion of the sear
hspa
e, i.e., for terminating the sear
h or �pruning the sear
h tree�, are 
ost and feasibility
onsiderations. It has been dis
ussed in (Funke et al., 2005a; Irni
h et al., 2006) that one
an distinguish between two e�
ient approa
hes. Sequential sear
h is based on the idea of
ost-based redu
tions, i.e., one tries to prove at an early stage i < k that no improvement
an be found whi
h in
ludes the nodes or edges of the stages 1, . . . , i. Lexi
ographi
sear
h is driven by feasibility redu
tions, i.e., one tries to prove at an early stage i < kthat no feasible ex
hange exists whi
h in
ludes the nodes or edges of the stages 1, . . . , i.This paper presents 
on
epts for applying sequential sear
h pro
edures to the generi
modeling framework in order to further redu
e the e�ort of evaluating a neighborhoodof size O (nk). The goal is to perform less than O (nk) operations in the average 
ase.The a

eleration methods 
an be applied in the 
ontext of best improvement as wellas �rst improvement pivoting strategies. Computational results indi
ate the superiorityof sequential sear
h-based approa
hes for a variety of VRPs with side 
onstraints overstraightforward and also lexi
ographi
 implementations (Kindervater and Savelsbergh,1997). Note that lexi
ographi
 sear
h approa
hes already ensure the O (nk) worst-
asetime bound for neighborhoods of size O (nk).Finally, we would like to stress that the paper does not present a spe
i�
 metaheuristi
.The presented resear
h is a 
ontribution to the foundations of e�
ient sear
h te
hniques.These e�
ient sear
h te
hniques 
an be seen as basi
 building blo
ks that 
an easily beintegrated into di�erent metaheuristi
s (see Se
tion 6).The paper is stru
tured as follows: Se
tion 2 presents the uni�ed framework from amodeling point of view, introdu
ing 
on
epts for representing VRP solutions generi
ally.Se
tion 3 points out the major tasks that have to be performed in an e�
ient LS pro-
edure. These tasks in
lude e�
ient 
ost 
omputations and feasibility testings as wellas setting up well-suited sear
h strategies that mat
h with these 
omputational tasks.Se
tion 4 presents real-world 
onstraints �tting into the framework and also dis
usseslimitations of the approa
h. The 
omputational tests of Se
tion 5 show the e�e
tivenessof the new solution framework. Final 
on
lusions are given in Se
tion 6.2. Modeling FrameworkThe proposed uni�ed modeling and solution framework for vehi
le routing and LS-basedmetaheuristi
s 
an be seen as a 
ounterpart to the framework of Desaulniers et al. (1998).Both frameworks follow the idea that resour
e-
onstrained paths 
apture whi
h routesor s
hedules are feasible. While the uni�ed framework of Desaulniers et al. (1998) isintended to be used with an exa
t 
olumn-generation or Lagrangean-relaxation method,the framework presented here fo
uses on heuristi
 pro
edures based on enumerative LSalgorithms. Moreover, in (Desaulniers et al., 1998) only the feasibility of individual routesand s
hedules is en
oded in the de�nition of resour
e-feasible paths. Constraints that
ouple together di�erent routes form the 
onstraints of the master program, see (Lübbe
keand Desrosiers, 2005). Here, the feasibility of individual routes as well as several typesof inter-tour 
onstraints is de�ned by resour
e-
onstrained paths. The building blo
ks ofthe representation are the routing graph, the giant-tour representation, a 
ompatibilityrelation between route-start and route-end nodes, and the 
onsideration of the entire4



giant route as a single resour
e-feasible path. The following subse
tions explain the abovebuilding blo
ks in more detail.2.1. Routing GraphIn order to des
ribe neighborhoods and solution pro
edures formally, a 
on
ise represen-tation of VRP solutions, i.e., route plans, is needed. This representation has to be �exibleto model a wide range of ri
h VRPs and has to 
over typi
al node-ex
hange and edge-ex
hange neighborhoods, but must still allow e�
ient algorithmi
 pro
edures to exploreneighborhoods. The basis for su
h a representation is a dire
ted routing graph G = (V,A).Any solution of the ri
h VRP is represented by a single 
y
le in G, the so-
alled gianttour. For those VRPs for whi
h transportation tasks are uniquely represented by nodes,solutions 
oin
ide with Hamiltonian 
y
les of the routing graph.The more general 
ase is that alternative servi
e or delivery options exist, e.g., in (Car-deneo, 2005) goods have to be delivered to alternative delivery points. In general, a setof tasks Q has to be 
overed. Subsets Qv and Qe of tasks (possibly empty) are as-so
iated with ea
h node v ∈ V and ar
 e ∈ A of the routing graph (see also Irni
hand Desaulniers, 2005, p. 40) and (Irni
h and Villeneuve, 2006, �7.3). Feasible VRPsolutions are 
y
les (v0, e1, v1, e2, v2, . . . , ep−1, vp−1, ep, v0) (not ne
essarily Hamiltonian)where ⋃p
i=1(Qvi−1

∪ Qei
) is a partitioning or 
overing of the tasks Q. In 
lassi
al node-routing appli
ations, all 
ustomers/requests require a single visit and, hen
e, di�erenttasks are asso
iated with the 
ustomer/request nodes. If there is a delivery option, e.g.,to deliver something (=task q) to lo
ation v1 between 8:00 and 11:00 or to deliver itto lo
ation v2 between 10:00 and 18:00, one 
an model this option with a network 
on-taining nodes v1 and v2 (with di�erent time windows) that have the same asso
iatedtask Qv1

= Qv2
= {q}. Moreover, more that one task might be performed when visitinga parti
ular lo
ation v, i.e., Qv 
an 
ontain more than one element. In all these 
ases,tasks are asso
iated with nodes and there are no tasks on ar
s. Conversely, in ar
-routingappli
ations, the tasks are asso
iated with ar
s.We 
all any 
y
le task-feasible if it implies a partitioning or 
overing of the tasks. Forthe entire paper we assume that testing whether (i, j) ∈ A (for any i, j ∈ V ) and thedetermination of tasks asso
iated with nodes and ar
s is possible in O (1) time.Solutions of VRP involving more than a single vehi
le 
an be represented as a 
olle
tion ofroutes. Hen
e, the node set V = R∪O∪D of the routing graph 
onsists of request nodes Rand route-start O and route-end nodes D. A route is a path (v0, v1, . . . , vp) in G, startingwith a route-start node v0 = o ∈ O, 
ontinuing with request nodes v1, . . . , vp−1 ∈ R,and ending with a route-end node vp = d ∈ D. The interpretation of the request nodesdepends on the problem at hand. In the 
ase of the VRP, request nodes 
orrespond to
ustomers that have to be visited. For the PDP, a request node is either a pi
kup or adelivery. In more 
omplex routing appli
ations, a request may even 
onsist of more thana pair of nodes.2.2. Compatibility Relation between Route-Start and Route-End NodesThe aim of route-start and route-end nodes is to introdu
e vehi
le and depot 
hara
ter-isti
s into the problem. First and foremost, these nodes represent spatial points wherevehi
les start and end their trips. In order to ensure that route-start and route-end nodes5



are 
ompatible, we de�ne a relation ∼ on O ×D. Again, the 
ompatibility of pairs (o, d)of route-start and route-end nodes depends on the problem at hand: For single-depotproblems with a homogeneous �eet, all o ∈ O and d ∈ D are 
ompatible, sin
e allnodes represent the same physi
al lo
ation independent of the vehi
le. In multi-depotproblems, the sets O and D are partitioned a

ording to the nD depots or garages, e.g.,
O = O1 ∪ · · · ∪ OnD , D = D1 ∪ · · · ∪ DnD . Pairs o ∈ Ok, d ∈ Dl are 
ompatible if andonly if k = l. Sets Ok × Dk, 
onsisting of a single pair, 
an be used to model VRPs withindividual vehi
les departing from and going to di�erent lo
ations. In general, we assumethat O and D have the same 
ardinality, |O| = |D|. The easiest way to impli
itly en
odethe 
ompatibility relation into the routing graph is to de�ne an ar
 (o, d) ∈ A if and onlyif o ∼ d holds.2.3. Giant Route and Giant TourA solution to a VRP is 
alled a route plan. A route plan 
an be written as x = (p1, p2, . . . , pH)with an H-tuple of disjoint routes in G. Note that this de�nition implies that every route-start and route-end node o

urs in exa
tly one route. We will denote the (maximum)number of nodes in a route plan by n = |V |.The giant route is the path (p1, p2, . . . , pH) in whi
h ea
h route-end node di is 
onne
ted tothe next route-start node oi+1 (for i = 1, 2, . . . ,H−1). Similarly, the giant tour is the 
y
lein whi
h, additionally, dH is 
onne
ted to o1. In the following, P (p1, p2, . . . , pH) denotesthe giant route and C(p1, p2, . . . , pH) the giant tour. The giant-tour representation of aroute plan is a generalization of the MTSP representation of the VRP (Christo�des andEilon, 1969) to more general VRPs. It has the advantage of allowing single and multipleroute problems to be handled in a very similar way. Figure 1 depi
ts su
h a representationfor the 
ase of four routes, departing from two depots.

o1 o2 o3 o4 d4d3d1 d2 Fig. 1. Giant�Tour Represen-tation2.4. Resour
e-Constrained PathsResour
e-Constrained Paths (RCPs) and asso
iated shortest-path problems have beenvery su

essfully used in the 
ontext of 
olumn generation methods, not only appli
ableto VRP but also to vehi
le- and 
rew-s
heduling problems, see (Desaulniers et al., 1998;Irni
h and Desaulniers, 2005). The su

ess of RCPs is based on the fa
t that the resour
e
on
ept 
onstitutes a very �exible tool for modeling 
omplex 
ost stru
tures for routesand s
hedules as well as a wide variety of rules that de�ne their feasibility. In the 
ontextof VRPs, 
olumn generation and bran
h-and-pri
e-and-
ut give rise to exa
t solution pro-
edures that are restri
ted to small and medium-sized instan
es of up to about 100 nodes,see e.g. (Fukasawa et al., 2004; Desaulniers et al., 2006; Jepsen et al., 2006). Here, wepropose to transfer the 
on
ept of RCPs from exa
t to heuristi
 solution methods. Thegoal is to provide LS 
omponents for metaheuristi
s, whi
h are �exible and at the sametime powerful, so that they 
an be applied to large-s
ale ri
h VRP instan
es in order toprodu
e high quality solutions. 6



Resour
e-
onstrained paths (RCP) are de�ned over a so-
alled routing (di)graph G =
(V,A). For the sake of 
onvenien
e, we assume that G is simple, so that a path 
an bewritten as P = (v0, v1, . . . , vp) with the understanding that (vℓ−1, vℓ) ∈ A holds for all
ℓ ∈ {1, . . . , p}. Resour
e 
onstraints 
an be formulated by means of (minimal) resour
e
onsumptions and resour
e intervals, e.g., the travel times tij along ar
s (i, j) ∈ A andtime windows [ai, bi] at nodes i ∈ V for the time resour
e. Let R be the number ofresour
es (su
h as time, load, 
ost et
.). A ve
tor T = (T 1, . . . , TR)⊤ ∈ R

R is 
alled aresour
e ve
tor and its 
omponents resour
e variables. For two resour
e ve
tors a and bthe interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b} (
omponentwise).Resour
e intervals, also 
alled resour
e windows, are asso
iated with nodes i ∈ V andare denoted by [ai, bi] with ai, bi ∈ R

R, ai ≤ bi. (In the following, ar
i refers to a resour
eve
tor of node i and its 
omponent for the resour
e r.) The 
hanges in the resour
e
onsumptions asso
iated with an ar
 (i, j) ∈ A are given by a ve
tor fij = (f r

ij)
R
r=1 ofso-
alled resour
e extension fun
tions (REFs). An REF for resour
e r, i.e., f r

ij : R
R →

R, depends on a resour
e ve
tor Ti ∈ R
R. The ve
tor Ti 
orresponds to the resour
e
onsumption a

umulated along a path from a given start node s to a node i, i.e., up tothe tail node i of ar
 (i, j). Hen
e, the result fij(Ti) ∈ R

R 
an be interpreted as a resour
e
onsumption a

umulated along the path (s, . . . , i, j). Classi
al REFs are of the form
f r

ij(Ti) = max{ar
j , T

r
i +trij}, where trij are 
onstants asso
iated with the ar
 (i, j) and ar

j thelower bound of the resour
es r at node j. Classi
al REFs are separable by resour
es, i.e.,no interdependen
ies exists between di�erent resour
es. More general de�nitions of REFsprovide powerful instruments for modeling pra
ti
ally relevant 
onstraints over resour
esthat are interdependent (see Irni
h and Desaulniers (2005), Irni
h (2006), and Se
tion 4).A path P = (v0, v1, . . . , vp) is resour
e-feasible if resour
e ve
tors Ti ∈ [avi
, bvi

] exist forall positions i = 0, 1, . . . , p su
h that fvi,vi+1
(Ti) ≤ Ti+1 holds for all i = 0, . . . , p − 1. Wedenote by F the set of all resour
e-feasible paths.Con
luding, a route plan (p1, p2, . . . , pH) is feasible if and only if all of the following four
onditions hold: (1) p1, p2, . . . , pH are node-disjoint routes, (2) C(p1, p2, . . . , pH) is a task-feasible 
y
le in the routing graph G, (3) all route-start and route-end nodes of routes pi =

(oi, . . . , di) are 
ompatible, i.e., oi ∼ di for all i ∈ {1, . . . ,H}, and (4) P (p1, p2, . . . , pH)is a resour
e-feasible path. The novelty in this de�nition is that the entire giant route
P (p1, p2, . . . , pH) is 
onsidered as one RCP. This implies that parti
ular REFs are neededto 
onne
t 
onse
utive routes in the giant tour. Whenever a route-end node dk ∈ D is
onne
ted to a route-start ok+1 ∈ O, all intra-tour resour
es r have to be reset. This�ts in ni
ely with the de�nition of 
lassi
al REFs, sin
e a reset fun
tion is given by theREF f r

dk,ok+1(T ) = max{ar
ok+1 , T

r − M} (with an appropriate large number M). Notethat inter-tour resour
es r (su
h as 
ost) should not be reset but kept, i.e., f r
dk,ok+1(T ) =

max{−M,T r} = T r.3. E�
ient Lo
al Sear
hLo
al sear
h is the most frequently used heuristi
 te
hnique for solving 
ombinatorialoptimization problems. It provides the basis for modern metaheuristi
s, su
h as TabuSear
h, GRASP, and variable neighborhood sear
h (VNS), see (Hoos and Stützle, 2005).Most of the e�ort spent within an enumerative LS algorithm is used for s
anning theneighborhood (for a 
lassi�
ation of LS algorithms the reader is referred to (Funke et al.,2005a)). It is, therefore, desirable to use e�
ient algorithms within LS to speed up the7



pro
edure that performs this s
an. In this se
tion, we �rst 
larify the relationship betweenneighborhoods, moves, the order in whi
h the sear
h tree is explored, and�in detail�algorithms that 
ompute 
osts and test the feasibility of neighbor solutions.3.1. Lo
al Sear
h, Neighborhoods, and MovesAn instan
e (X, c) of a 
ombinatorial optimization problem 
an be stated as minx∈X c(x),where X is the set of feasible solutions and c the 
ost fun
tion. The heart of an LSpro
edure is the de�nition of a neighborhood N , whi
h is a mapping N : X → 2X .Ea
h element x′ ∈ N (x) is 
alled neighbor of x. Neighbors x′ with 
ost c(x′) < c(x) areimproving neighbors. LS starts with an initial feasible solution x0 ∈ X. In ea
h iteration tit repla
es the 
urrent solution xt by an improving neighbor xt+1 ∈ N (xt), if su
h animproving neighbor exists. The LS pro
edure terminates with a lo
al optimum, i.e., asolution xt for whi
h the neighborhood N (xt) 
ontains no improving solution.Algorithm 1 Generi
 Lo
al Sear
h1: Input: A feasible solution x0 ∈ X.2: LET t = 0.3: REPEAT4: SEARCH for an improving neighbor x′ in the neighborhood N (xt) of the 
urrent solution xt.5: IF there exists an improving neighbor solution x′ ∈ N (xt) THEN6: LET xt+1 = x′ and t = t + 1.7: UNTIL no more improvements 
an be found.8: Output: A lo
al optimum xt.For further details of lo
al sear
h, we refer the reader to the books by Rayward-Smith et al.(1996), Aarts and Lenstra (1997), and Hoos and Stützle (2005). The naming of spe
i�
VRP moves and neighborhoods used in the following is also taken from the survey (Funkeet al., 2005a).Note that there are several options for 
hoosing improving neighbor solutions in Step 4. Ifthe sear
h method is enumerative (i.e., neighbor solutions x′ ∈ N (xt) and their 
osts c(x′)are evaluated one by one), taking the �rst improving solution or taking a best improvingsolution are two extreme strategies known as �rst improvement and best improvement.Another well-known strategy, referred to as d-best improvement, terminates the sear
hwhen d improving neighbor solutions have been found and returns a best of them. Fromthe worst-
ase point of view, all sear
h strategies are equivalent, sin
e showing that xt isa lo
al optimal solution requires the entire neighborhood N (xt) to be s
anned. However,from an average 
ase point of view, these strategies might signi�
antly di�er in theire�
ien
y (we expe
t from best improvement that it will perform less iterations with largersteps that take longer 
ompared to �rst improvement). It is, in general, not 
lear whi
hstrategy works better, but the problem, the neighborhoods, and the 
hara
teristi
s of theinstan
es 
an have an impa
t. Note that all of these pivoting strategies may determinedi�erent paths through the sear
h spa
e and end up in di�erent lo
al optima.Typi
ally, neighborhoods and neighbor solutions are neither 
onstru
ted by the fun
-tion N : X → 2X nor given by subsets N (x) ⊂ X. Instead, they are de�ned impli
itly bya set of moves M . A move m ∈ M transforms a solution into a neighbor solution. Someof the moves m ∈ M might transform a feasible solution x into an obje
t m(x), whi
h hasa stru
ture similar to a feasible solution, but does not ne
essarily satisfy all 
onstraintsthat de�ne feasible solutions. In the following, we will refer to su
h an obje
t as a solu-tion. Examples in the 
ase of VRPs are the removal of a 
ustomer node and its insertion8



into another position or the swapping of two 
ustomers between two tours. These movesmight violate a 
onstraint. Let Z ⊇ X be the set of all solutions. In general, we denoteby M the set of moves, where a move m ∈ M maps from Z to Z, i.e., m : Z → Z. Fora given x ∈ Z, the extended neighborhood N̂ 
ontains all neighbors of x, either feasibleor infeasible, i.e., N̂ (x) ⊇ N (x). Every move m ∈ M with m(x) ∈ X is 
alled a feasiblemove w.r.t. x. Con
luding, �nding a feasible move 
onsists of two parts: the manipulationof a 
urrent solution and the test of feasibility.3.2. Major Tasks in a Lo
al Sear
h Pro
edure for Vehi
le RoutingThe fo
us of this paper is on the e�
ient implementation of Step 4 of Algorithm 1.The major tasks that have to be performed are the impli
it or expli
it 
onstru
tion ofneighbor solutions x′ ∈ N̂ (x), for ea
h of them the 
omputation of the 
ost c(x′) orgain g(x′) = c(x)− c(x′) 
ompared to the 
urrent solution x, and the test of whether thenewly 
onstru
ted neighbor is feasible or not (separating 
andidates x′ ∈ X from thosein Z \ X).The problem of 
he
king the feasibility of a neighbor solution is best explained by an ex-ample: A swap move 
hooses two nodes wi and wj of the giant route and ex
hanges them.Hen
e, the four ar
s (wi−1, wi), (wi, wi+1), (wj−1, wj), (wj , wj+1) are deleted and the fourar
s (wi−1, wj), (wj , wi+1), (wj−1, wi), (wi, wj+1) are added to the 
urrent solution x, seeFigure 2. The extended swap neighborhood N̂ (x) of giant route x 
onsists of all other gi-
wi-1 wi wi+1

wj+1 wj wj-1

o1

d1 o2

d5

d4 d3

d2 o3

o4o5

=w1
=wn

Fig. 2. Prin
ipleof a Swap Move,Giant Tour with5 Routesant routes that 
an be generated by 
hoosing di�erent nodes wi and wj, so that the swapneighborhood is of size O (n2). A newly 
onstru
ted neighbor solution x′ ∈ N̂ (x) 
an bereje
ted if it is non-improving or infeasible. Moreover, we see that a neighbor solution x′is uniquely determined after making k = 2 independent de
isions (the de
isions aboutthe two nodes/positions to swap).In general, all enumerative sear
h pro
edures for O (nk) neighborhoods work on a sear
htree with (at least) k-levels. They di�er in two aspe
ts:(1) In the order, in whi
h obje
ts, i.e., nodes or ar
s de�ning the move, are determined(nodes wi and wj for the swap move). Enumeration rules for nodes 
an 
onsider nodesby in
reasing (de
reasing) index, position in the giant tour, or ordered by an auxiliaryattribute (e.g., lower or upper limit of an asso
iated resour
e interval). Alternative enu-meration rules 
hoose nodes one after another�sequentially�su
h that distan
e, 
ost,or any other resour
e 
onsumption of an asso
iated ar
 is in
reasing. Lexi
ographi
 andsequential sear
h approa
hes des
ribed in (Irni
h et al., 2006) di�er exa
tly with respe
tto these orderings. Di�erent orderings allow tailored(2) Criteria for pruning the sear
h tree. If some bran
h of the sear
h tree does not 
ontainany feasible or improving neighbor solution, it 
an be pruned. It means that we do not haveto build and evaluate the 
orresponding solutions x′ but 
an take a short
ut. This is the9



key idea for a

elerating enumerative sear
h approa
hes forO (nk)-sized neighborhoods tobe sear
hed in less that nk operations. In 
ontrast to heuristi
 te
hniques like those usedin (Toth and Vigo, 2003), we 
an be sure to �nd a best (improving) neighbor solution.Note that gain-based 
riteria try to show that there is no improving (or less stri
tly, noa

eptable) solution relative to the quality of the 
urrent solution x and, possibly, relativeto another improving neighbor solution x′′ ∈ N (x) already 
omputed. Computing thegain of a move is trivial as long as it 
an be expressed as the di�eren
e of the 
osts of allar
s 
hanged repla
ing x by x′, e.g., g(x, x′) = cwi−1,wi
+ cwi,wi+1

+ cwj−1,wj
+ cwj ,wj+1

−
cwi−1,wj

− cwj ,wi+1
− cwj−1,wi

− cwi,wj+1
for the swapping of wi and wj . However, this isnot the 
ase if 
ost depends on other resour
es, su
h as load-dependent transport tari�s,wages for drivers depending on the time on duty et
. Then, the prepro
essing and sear
hte
hniques presented in Se
tion 3.3 still allow 
onstant time 
ost 
omputations providedthat REFs are generalizable to segments. Sequential sear
h te
hniques, however, are notdire
tly appli
able then (
f. Se
tion 3.4).Feasibility-based arguments try to identify bran
hes of the sear
h tree that do not 
ontainany feasible solution at all. Both types of arguments need tailored sear
h strategies inthe sense that the sequen
e in whi
h de
isions are taken must allow the argument thatall remaining solutions of the bran
h under 
onsideration are either more 
ostly or �less�feasible. It is, therefore, hardly possible to dire
tly mix both approa
hes. Consideringfeasibility of a swap, note �rst that one or two routes are a�e
ted, depending on whether

wi and wj are in the same route or di�erent routes. Testing a 
onstru
ted route in astraightforward way means looping over the nodes of the route in order to 
omputeminimum resour
e 
onsumptions whi
h are then 
he
ked against upper bounds. This isat least possible if all REFs fij are non-de
reasing, see (Irni
h, 2006). The loop over thenodes of a single route 
auses an e�ort of O (n) if the length of a tour is not limited by a�xed number, independent of n. Even if there is a maximum length of a tour, the presen
eof inter-tour 
onstraints 
an require that resour
e 
onsumptions have to be propagatedalong the entire giant route.3.3. Feasibility Che
ks and Cost Computations in Constant TimeIf 
ost is one of the resour
es (this is no restri
tion, but the standard 
ase in Irni
h andDesaulniers (2005)), feasibility 
he
king and 
ost 
omputation 
an be seen as identi
alalgorithmi
 pro
edures. Computing the 
ost of a giant tour C(p1, . . . , pH) is equivalentwith �nding a least 
ost resour
e ve
tor at the destination node of P (p1, . . . , pH). Improv-ing solutions w.r.t. x are exa
tly those giant routes that respe
t an upper bound c(x)− εfor the 
ost resour
e (with ε > 0 small). In the following (if not stated otherwise), wespeak of �
onstant time feasibility tests� for both 
ost 
omputations and for 
he
king theremaining resour
e variables.Before we introdu
e our new approa
h, an alternative method proposed by Kindervaterand Savelsbergh (1997) is explained along with its 
apabilities and limitations.3.3.1. Global Variables Approa
h of Kindervater & SavelsberghA

ording to Kindervater and Savelsbergh (1997), �the basi
 idea is to use a spe
i�
 sear
hstrategy in 
ombination with a set of global variables su
h that testing the feasibility ofa single ex
hange and maintaining the set [of℄ global variables requires no more than10




onstant time�. The spe
i�
 sear
h strategy they use is lexi
ographi
 sear
h. Note thatthe traditional node and edge ex
hange pro
edures are 
hara
terized by the fa
t thata given tour (or two or several a�e
ted tours) are split into paths (from now on 
alledsegments). These segments are permuted, some may be inverted, and �nally 
on
atenatedtogether again to form a new tour. Lexi
ographi
 sear
h is 
hara
terized by the fa
tthat, in the innermost loop of the sear
h algorithm, from one iteration to the next, aninner segment grows by exa
tly one node. In this way, global variables for a segment
(wi, wi+1, . . . , wj−1, wj) are 
omputed by either 
on
atenating (wi, wi+1, . . . , wj−1) with
(wj−1, wj) or (wi, wi+1) with (wi+1, . . . , wj−1, wj). Contrary, in an initialization phase andin outer loops of the sear
h algorithm, global variables for starting and ending segments,i.e., (w1, w2, . . . , wi−1) and (wj+1, . . . , wn), are 
omputed and stored. Together, theseglobal variables of the segments allow 
onstant time feasibility 
he
ks. For instan
e, timewindow 
onstraints require the 
omputation of a total travel time, earliest departure time,and a latest arrival time. This is based on 
ertain forward and ba
kward 
omputationsalong segments. Kindervater and Savelsbergh (1997) 
larify these pro
edures for 2-optand Or-opt moves in 
onne
tion with time windows and pre
eden
e 
onstraints as wellas for problems with simultaneous deliveries and pi
kups.Their approa
h is intrinsi
ally tied to the lexi
ographi
 order in whi
h moves are 
on-sidered, be
ause a 
onstant time update of the global variables from one iteration tothe next requires that only a �xed number of nodes (typi
ally one node) is added to asegment. In the 
ase of a swap move (see Figure 2), an outer loop 
onsiders nodes wi (atposition i in the giant tour) in any order, e.g., in the order in whi
h they appear in thetour. Contrary, the inner loop must 
hoose the se
ond 
ustomer nodes wj, one by one,at positions i + 2, i + 3, . . . , n − 1. The 
onstant time 
omputation of global variables ispossible for the segments P2 = (wi), P3 = (wi+1, . . . , wj−1, wj−1), and P4 = (wj), sin
ethese global variables are either 
omputed from s
rat
h (for segments of length 1) or fromglobal variables of the previous segment P ′

3 = (wi+1, . . . , wj−2). The initial phase has toprovide global variables for all segments P1 = (w1, . . . , wi−1) for i = 1, 2, . . . , n − 3 and
P5 = (wj+1, . . . , wn) for j = 3, . . . , n − 1.Kindervater and Savelsbergh (1997, p. 350) point out that their global variables approa
h,
ombined with lexi
ographi
 sear
h, 
an be used for multiple 
onstraints and all k-edgeex
hange neighborhoods. However, a unifying theory explaining whi
h types of 
onstraints
an and whi
h 
annot be dealt with is missing. For instan
e, resour
e 
onstraints withresour
es that depend on ea
h other (su
h as load-dependent travel times et
.) are not
onsidered. On the other hand, resour
e extension fun
tions, as introdu
ed by Desaulnierset al. (1998), provide a well de�ned, �exible, and generi
 formalism for the des
ription ofside 
onstraints relevant for ri
h VRPs.3.3.2. Segment REFsThe following subse
tion explains how REFs 
an be inverted and generalized to segments,so that extensions of the ideas of Kindervater and Savelsbergh 
an be used (1) for moregeneral VRPs de�ned by non-standard REFs, (2) in the 
ontext of giant tours, i.e., whensegments 
an also 
ontain nodes from more than just a single tour, and (3) within di�erentsear
h strategies allowing more �exibility than the lexi
ographi
 sear
h approa
h.The key idea is to separate the sear
h strategy from the 
omputation of global variables (orany similar information, e.g., given by segment REFs). Note that all the 
lassi
al moves11




an be 
onsidered as k-edge ex
hanges, even if their intention is to ex
hange nodes.The swap move, for instan
e, is a spe
ialized 4-opt move (ex
ept for the 
ase where
wi and wj are adja
ent yielding a 2-opt move; 
f. legitima
y 
onditions, explained in(Glover, 1996) and (Irni
h et al., 2006)). Therefore, moves de
ompose the giant routeinto a small �xed number of segments. The swap move depi
ted in Figure 2 implies thesegmentation P1 = (o1, . . . , wi−1), P2 = (wi), P3 = (wi+1, . . . , wj−1), P4 = (wj), and
P5 = (wj+1, . . . , d

5). The paths P1, . . . , P5 depend on the giant tour (w1, w2, . . . , wn, w1)
urrently under 
onsideration (the in
umbent giant tour) and the 
hoi
e of the nodes
wi and wj (or, equivalently, their positions i and j). These �ve segments are permutedand 
onstitute the new giant route P = P (P1, P4, P3, P2, P5) (
f. notation introdu
edin Se
tion 2.3). The move is feasible if and only if P is resour
e-feasible and C(P ) is atask-feasible 
y
le in whi
h route-start and route-end nodes are 
ompatible. Testing thelast two 
onditions, i.e., task-feasibility and that all route-start and route-end nodes are
ompatible, is straightforward and possible in O (1). The following analysis, therefore,fo
uses on resour
e-feasibility.Our goal is now to determine attributes for ea
h of the possible segments su
h thatone 
an de
ide in O (R) time whether the 
on
atenation of two segments also forms afeasible or infeasible segment. Furthermore, we want to 
ompute the attributes of the
on
atenated segment in O (R), so that, in summary, testing the feasibility of P 
an beperformed in 
onstant time O (R), too. Irni
h (2006) provides the theoreti
al ba
kgroundfor a

omplishing this task. The attributes whi
h have to be 
omputed are the de�ning
oe�
ients of the segment REFs as well as inverse segment REFs for some of the segmentsunderlying the in
umbent giant tour. For the sake of 
larity, we start by pointing out thebasi
 assumptions to hold for the rest of the paper:(a1) All REFs have a �nite representation and allow fun
tion evaluations in O (R) time.This is true for several types of non-de
reasing REFs presented in Se
tion 4.(a2) All inverse REFs exist. The inverse of a non-de
reasing REF fij : R

R → [aj,∞) isa fun
tion f inv
ij : R

R → (−∞, bi]. It has to be non-de
reasing and its de�ning propertyis
fij(T ) ≤ T ′ ⇐⇒ T ≤ f inv

ij (T ′) for all T ∈ (−∞, bi] and all T ′ ∈ [ai,∞).(a3) All inverse REFs have a �nite representation and allow fun
tion evaluations in
O (R) time.(a4) All REFs and inverse REFs 
an be generalized to segments. Segment REFs alsoallow fun
tion evaluations in O (R) time.(a5) The 
on
atenation of any two segments has a REF that 
an be 
omputed in O (R)time from the REFs of the two segments.Obviously, if the number R of resour
es is �xed, i.e., independent of the size n of thegiant tour, all the above mentioned operations 
an be performed in 
onstant time O (1).We refrain from giving a formal presentation of all the details 
on
erning REFs andrequired properties, derivations, and proofs 
on
erning �nite representation, inversion,generalization to segments, fun
tion evaluation and 
on
atenation. These details 
an be12



found in (Irni
h, 2006). However, some remarks for explaining and interpreting the newlyintrodu
ed segment REFs and inverse REFs seem appropriate: We 
onsider an arbitrarypath P . The segment REF fP : R
R → R

R gives for ea
h initial minimum resour
e 
on-sumption T at the start node the minimum resour
e 
onsumption at the �nal node of P .Note �rst, that this is exa
tly the idea of ar
 REFs, i.e., for P = (i, j) the value fij(T )is the minimum resour
e 
onsumption at j given the resour
e 
onsumption T at node i.Note further, that the term �the minimum resour
e 
onsumption� is only well-de�ned ifthe REFs are nonde
reasing. While ordinary REFs for ar
s and segments propagate mini-mum resour
e 
onsumptions forwards, inverse REFs propagate upper bounds for resour
e
onsumptions ba
kwards. The inverse REF f inv
ij : R

R → R
R takes any upper bound T ′for the resour
e 
onsumption at node j and 
omputes the value f inv

ij (T ′) whi
h is anupper bound for the resour
e 
onsumption on node i. Similarly, for the inverse segmentREF f inv
P : R

R → R
R, the resour
e ve
tor f inv

P (T ′) is the upper bound for the resour
e
onsumption at the start node of P under the 
ondition that one propagates resour
esalong P and that T ′ is an upper bound for the resour
e 
onsumption at the �nal node.The importan
e of segment REFs and their inverses is due to the following result:Proposition 1 (Irni
h (2006), Theorem 3) Given resour
e-feasible paths P1, P2, . . . , Pq ∈
F , where the ith path Pi starts with a node wi−1 and ends with a node wi, su
h that theend-node of Pi 
oin
ides with the start-node of Pi+1 for all i ∈ {1, . . . , q − 1}. Their
on
atenation P1 + P2 + · · · + Pq is resour
e-feasible if and only if all inequalities

fP1
(aw0

)≤ f inv
P2

(bw2
)

fP1
◦ fP2

(aw0
)≤ f inv

P3
(bw3

)... (1)
fP1

◦ fP2
◦ · · · ◦ fPq−1

(aw0
)≤ f inv

Pq
(bwq)hold. (Note: f ◦ g(x) is de�ned as f(g(x)).)A dire
t 
onsequen
e of Proposition 1 is that the problem of e�
iently testing the feasi-bility and 
omputing gains is�at least partially�solved. A prerequisite is, however, thatsegment REFs must be available.Theorem 2 Let x be a feasible giant tour and let all segment REFs as well as inversesegment REFs w.r.t. x be already 
omputed for all possible segments. Then, any neighborsolution x′ = m(x) of a ℓ-edge ex
hange move m 
an be tested for feasibility in O (ℓR)time.Sin
e for all node-ex
hange and edge-ex
hange neighborhoods that are explored with treesear
h methods (
f. Funke et al., 2005a) the number ℓ of segments is 
onstant (and small),Theorem 2 implies O (R) time feasibility 
he
ks.3.3.3. Prepro
essingWhat remains to be done is to �nd e�
ient pro
edures to provide REFs and inverseREFs for all or (at least) a suitable subset of segments. Computing segment REFs andupper bounds for a given giant tour 
an be undertaken with a straightforward pro
e-dure requiring O (Rn2) time and spa
e. The reason is that there are 2n2 segments andinverted segments spanned between the n2 pairs of nodes (note that moves might invert13



some of the segments, so that inverted segments have to be 
onsidered, too). SegmentREFs fP for a segment P = (vi, . . . , vj−1, vj) are generated from the segment REF fP ′of the segment P ′ = (vi, . . . , vj−1) and the REF fvj−1,vj
. Similarly, for the segment

Q = (vi, vi+1, . . . , vj), j > i the inverse segment REF f inv
Q is 
omputed from the in-verse REF f inv

vi,vi+1
and the inverse segment REF f inv

Q′ of Q′ = (vi+1, . . . , vj). With thegeneral assumptions (a1)-(a5) on REF operations, ea
h step requires O (R) time leadingto the desired result.Proposition 3 Segment REFs and inverse segment REFs for all 2n2 segments and in-verted segments of a giant tour of length n 
an be 
omputed by a straightforward pro
edurein O (Rn2) time and spa
e.From a worst 
ase point of view, a quadrati
 prepro
essing is satisfa
tory if neighborhoods
N of sizeO (nk) with k ≥ 2 are inspe
ted. However, we would like to a

elerate the average
ase and 
orresponding sear
h strategies that s
an less than O (n2) neighbors. Moreover,it has been shown by Funke (2003) that restri
ting the length of some segments 
an leadto interesting neighborhoods that 
an be sear
hed qui
kly. For instan
e, restri
ting thelength of inverted segments to a �xed value K for 2-opt moves yields a O (Kn)-sizedneighborhood. Using �rst-improvement pivoting strategies in LS also requires a

eleratedmethods for the prepro
essing phase. Our aim is, therefore, to redu
e the number ofsegments that have to be 
onsidered in feasibility testing pro
edures.A solution to this problem is the de�nition of seed points dividing the nodes of the gianttour uniformly into se
tions. A 1-level hierar
hy with parameter β ≤ 1 uses equidistantse
tions of length nβ, so that n/nβ se
tions result, see Figure 3. The idea of a hierar
hy of

section of      nodesn¯ seed point Fig. 3. 1-Level Hierar
hyREFs is that, instead of 
omputing all 2n2 REFs for all segments, only segments withina se
tion (i.e., between two 
onse
utive seed points) and between all pairs of seed pointsneed to be 
onsidered. In order to 
ompute a REF ranging from position i to position j,one has to 
onsider three 
ases: (1) If positions i and j fall into the same se
tion, theREFs are already available. (2) If i and j are in two di�erent but 
onse
utive se
tionssurrounding the unique seed point s, the REF between i and j 
an be 
omputed as the
on
atenation of the REF from i to s and the REF from s to j. (3) Otherwise, there areat least two seed points between i and j with s1 the �rst seed point following i, and s2 thelast seed point pre
eding j. The REF from i to j 
an be 
omputed as the 
on
atenationof three REFs, i.e., from i to s1, from s1 to s2, and from s2 to j. In all three 
ases,the segment REF from i to j is available in, at the utmost, O (3R) = O (R) steps. Thenumber of segment REFs to 
ompute is
O

(

2
n

nβ
n2β + 2

( n

nβ

)2
)

= O
(

nmax{1+β,2−2β}
)

,where fa
tor 2 is for forward or inverted segments, the �rst term is the 
omputation of allREF inside se
tions, and the se
ond term for the REFs between seed points. The e�ortis minimal for β∗ = 1/3 resulting in O (n4/3) 
omputations.14



Proposition 4 Segment REFs and inverse segment REFs for a 1-level hierar
hy of seedpoints for a giant tour of length n 
an be 
omputed in O (Rn4/3) time and spa
e.Generalizations to hierar
hies with two and more levels 
an be found in the Online Sup-plement.3.3.4. Generi
 Sear
h Pro
edureThe following pseudo-
ode formalizes a generi
 sear
h pro
edure for sear
hing an O (nk)neighborhood N (x) of a 
urrent feasible solution x to determine a best neighbor solu-tion x′ with a gain g(x, x′) > Gmin. The parameter Gmin is 
hosen as Gmin = 0 for
lassi
al lo
al sear
h, Gmin = ∞ if any non-improving neighbor 
ould be a

epted, and
Gmin > 0 for more sele
tive pro
edures that 
onsider only substantial improvements. In-dependent of Gmin, the pro
edure guarantees a worst-
ase running time of O (nmax{k,h})and needs O (nh) spa
e, with h ∈ {2, 4

3 , 8
7} depending on the type of hierar
hy used.Algorithm 2 Generi
 Lo
al Sear
h (=Step 4 of Algorithm 1)1: Input: A feasible solution (giant route) x = (w0, . . . , wn) ∈ X;

Gmin ∈ R minimum gain.(Phase 1 � Prepro
essing)2: LET H be the ℓ-level hierar
hy of segment REFs fP , f inv
P

des
ribing the 
urrent solution x.3: STORE positions iw, and positions ni, li of last/�rst route-start and route-end nodes (see remarks below).(Phase 2 � Tree Sear
h)4: LET G∗ := Gmin.5: LOOP de
ision d16: LOOP de
ision d27: ...8: LOOP de
ision dk9: (Impli
it 
onstru
tion of move and neighbor solution)10: LET m := md be the move implied by de
isions (d1, d2, . . . , dk).11: LET x′ = (P1, P2, . . . , Pq) the permutation of the segments of (w0, . . . , wn) implied by m.(Feasible and Improving?)12: LET P := (P 1
1

, . . . , P ℓ1
1

, P 1
2
, . . . , P ℓ2

2
, . . . . . . , P 1

q , . . . , P
ℓq
q ) be the segmentation13: implied by (P1, P2, . . . , Pq) and H.14: LET feasible:=Formula (1) is ful�lled for P15: AND C(x′) task-feasible16: AND P (x′) feasible w.r.t. route-start and route-end nodes.17: LET G := g(x, x′) := fcost

P1
1

◦ · · · ◦ f
P

ℓ1
1

◦ fP1
2

◦ · · · ◦ f
P

ℓ2
2

· · · ◦ · · · ◦ fP1
q
◦ · · · ◦ f

P
ℓq
q

(aw0
).18: IF (feasible and G > G∗) THEN19: (Update of best neighbor solution found)LET G∗ := G.20: LET d∗ := (d1, . . . , dk).21: Output: Gain G∗ and for G∗ > Gmin optimal de
isions d∗ and best neighbor x′ = md∗ (x).Remarks:(1) The prepro
essing phase has to build REFs fP and inverse REFs f inv

P for some seg-ments P and some inverted segments P (if the neighborhood also inverts one or severalsegments). The des
ription of the pre
eding Se
tion 3.3.3 and the 
orresponding exten-sions presented in the Online Supplement make 
lear whi
h segments have to be 
om-puted. The results guarantee a worst-
ase e�ort of O (Rn2), O (Rn4/3), and O (Rn8/7)for the feasibility test in Step 14 if one uses no hierar
hy, a 1-level, or a 2-level hierar
hyrespe
tively. Note that this �rst prepro
essing phase is identi
al for any type of neigh-borhood. By 
ontrast, the se
ond phase, the a
tual (tree) sear
h, must be tailored to theneighborhood. 15



(2) With an O (n) prepro
essing (Step 3), we store for ea
h position i ∈ {1, . . . , n} of thegiant tour the node wi and, 
onversely, for ea
h node w of the giant tour its position iw.(3) The loops in Steps 5-8 exa
tly determine the order in whi
h moves and neighborsolutions are 
onstru
ted. Se
tion 3.2 has already explained that this order is 
ru
ial tothe development of rules for (exa
tly) pruning the sear
h tree.(4) Some parts of the 
onstru
tion of the neighbor solution of steps 10 and 11 mightalready be performed in some of the outer loops in Steps 5-7. This 
an be useful forseeing that the resulting moves are infeasible neighbor solutions, so that the sear
h 
anbe terminated, i.e., only a part of the sear
h tree has to be s
anned.Additionally, if outer loops 
an estimate the gain of the moves that are under 
onstru
tion,a pruning of the sear
h based on gain 
onsideration be
omes possible. The next se
tion onsequential sear
h will explain a spe
ialized 
riterion that often also takes the symmetryinto a

ount.(5) The tasks ex
hanged by a move (if any) are typi
ally determined by the nodes andedges that are removed and added. Hen
e, Step 14 
an be performed inO (1) if appropriatedata-stru
tures are used.(6) In Step 12, the segmentation P results from x′ and the hierar
hy H. For instan
e,let n = 1000 and H be the 1-level hierar
hy introdu
ed in Se
tion 3.3.3. Then, the
n2/3 + 1 = 101 seed points are lo
ated at positions 0, 10, 20, 30, . . . , 1 000. Let m be theswap move that ex
hanges the nodes at the positions 17 and 322. Then, k = 5 and
x′ = (P1, P2, P3, P4, P5) with P1 the segment from position 0 to 16, P2 the segment
onsisting of the node lo
ated at position 322, P3 the segment from 18 to 321, P4 thesingle-node segment at position 17, and P5 the segment from position 323 to 1 000. Now,the hierar
hy H implies a split of P1 into P 1

1 from position 0 to 10, and P 2
1 from 10 to 16.

P3 is split into three segments P 1
3 , P 2

3 , P 3
3 from position 18 to 20, 20 to 320, and 320 to321, respe
tively. Finally, P5 is split into P 1

5 from position 323 to 330 and P 2
5 from 330 to1 000, while P2 and P4 are not split. Hen
e, P 
onsists of 2+1+3+1+2 = 9 ≤ 3·5 = O (k)segments.(7) In order to 
he
k feasibility w.r.t. route-start and route-end nodes in Step 16, one hasto a priori re
ord, for ea
h position i of the giant tour, the next position ni of a route-start node and the last position li of a route-end node. Along P, 
onsider pairs (P,P ′) of(
onse
utive) segments in P. Let the �rst segment P 
ontain the route-start node oP asthe last route-start node. If P ′ does not 
ontain a route-end node (i.e., its last position jis smaller than its next route-start position ni for the start position i) repla
e P ′ byits su

essor segment in P. Repeat, until P ′ 
ontains some route-start node and let dP ′be the �rst route-start node in P ′. Now that one knows route-start node oP and dP ′are linked (by request nodes or dire
tly), one 
an 
he
k their 
ompatibility. To iterate,repla
e P by P ′ and 
hoose P ′ as the su

essor segment.3.4. Sequential Sear
hSequential sear
h is a te
hnique that allows neighborhoods within lo
al-sear
h algorithmsto be s
anned in a highly e�
ient way. It was dis
overed independently in the 1970sby Christo�des and Eilon (1972) and Lin and Kernighan (1973) in algorithms for thetraveling-salesman problem (TSP) and the graph-partitioning problem (Kernighan and16



Lin, 1970). Apparently, the idea has sin
e been forgotten and has not been tested for anytype of 
onstrained problem. Irni
h et al. (2006) have introdu
ed sequential sear
h as ageneral method for a

elerating LS pro
edures. It is based on the idea of de
omposingmoves into so-
alled partial moves, so that partial moves are 
ost-independent and implypartial gains whose sum is the overall gain of the move. Lin and Kernighan (1973) provedthat if the sum of a sequen
e of numbers (gains) is positive, then there exists a 
y
li
permutation of these numbers su
h that every partial sum is positive. This 
an be gener-alized to restri
t a k-de
ision sear
h pro
edure to 
onsider only those bran
hes where thesum of the gains of the �rst p ≤ k partial moves has to be greater than pG∗/k, where G∗is a lower bound the overall gain. Details and pseudo-
ode of the appli
ation to severalnode and edge-ex
hange neighborhoods for CVRP 
an be found in (Irni
h et al., 2006).Note that sequential sear
h is dire
tly appli
able only to those routing problems wherethe REFs are separable w.r.t. the 
ost resour
e, i.e., where the 
ost is given by the sumof the 
osts of all ar
s in the giant tour. For more 
ompli
ated 
ost fun
tions that are notseparable (see Se
tion 3.2), the gain 
riterion might remain appli
able if upper bounds forthe resulting gain 
an be dedu
ed from removed ar
s and lower bounds of the resultingloss 
an be determined for added ar
s. As far as we know, these ideas have not beentested thus far.We present the main idea of sequential sear
h for the 
ase of a swap move, depi
ted inFigure 2. We de
ompose the swap move into two parts: The �rst part is the removalof the ar
s (wi−1, wi), (wi, wi+1) and the addition of (wj−1, wi), (wi, wj+1). The se
ondpart 
onsists of removing (wj−1, wj), (wj , wj+1) and adding (wi−1, wj), (wj, wi+1). Forthe entire move to be improving, the sum of the 
osts of the added ar
s has to be smallerthan the sum of the 
osts of the deleted ar
s. Hen
e, either the �rst or the se
ond parthas to be improving. In the �rst 
ase, starting the sear
h at node wi, the 
ost of theremoved ar
s is given by B := cwi−1,wi
+ cwi,wi+1

. It follows that either cwj−1,wi
< B/2 or

cwj−1,wi
< B/2 must hold. By s
anning the in-ar
s (w,wi) ∈ A and out-ar
s (wi, w) ∈ Aof node wi ∈ V by in
reasing length, the sear
h 
an be terminated whenever an ar
 longerthan B/2 is found. Be
ause of the symmetry, identi
al arguments 
over the se
ond 
asefor starting the sear
h with node j.A prerequisite of this bounding pro
edure is that all in-ar
s and out-ar
s of a given node wiare explored in an order, where they are sorted by in
reasing 
ost. Sin
e in-ar
s and out-ar
s of wi are fully determined by the other endpoint w of the ar
, one 
an retrieve therequired information from so-
alled neighbor lists N+(wi) and N−(wi). N+(wi) is thelist of head nodes of out-ar
s (wi, w) of wi sorted by in
reasing 
ost. Analogous to this,

N−(wi) is the sorted list of tail nodes of in-ar
s (w,wi).(Irni
h et al., 2006) 
ontains more detailed explanations of the theoreti
al ba
kground,su
h as the gain 
riterion and its appli
ation to routing and non-routing problems. Thesequential sear
h algorithm for the swap neighborhood 
an be formulated as follows.Algorithm 3 Sequential Sear
h for Swap (Phase 2, Tree Sear
h)1: Input: A feasible solution (giant route) x = (w1, . . . , wn) ∈ X;
Gmin ∈ R minimum gain.It is assumed that Phase 1 (=prepro
essing) is already performed.2: LET G∗ := Gmin.3: (Outer Loop)4: LOOP i ∈ {1, . . . , n}5: LET B := (cwi−1,wi

+ cwi,wi+1
)/2 − G∗/2. 17



6: (Inner Loop, Case 1: Ar
 (wi, wj+1) ∈ A must be short)7: LOOP wi ∈ N+(wi) AS LONG AS cwi,w < B8: LET j := i(w) − 1.9: IF i > j THEN LET t := i, i := j, j := t10: (Impli
it 
onstru
tion of move and neighbor solution)11: LET P1 := (w1, . . . , wi−1), P2 := (wj), P3 := (wi+1, . . . , wj−1), P4 := (wi), P5 := (wj+1, . . . , wn).12: LET x′ := (P1, P2, P3, P4, P5).13: LET G := cwi−1,wi
+ cwi,wi+1

+ cwj−1 ,wj
+ cwj ,wj+1

− cwi−1,wj
− cwj ,wi+1

− cwj−1,wi
− cwi,wj+1

.14: LET feasible:=Formula (1) is ful�lled for (P1, P2, P3, P4, P5)15: AND C(x′) task-feasible16: AND P (x′) feasible w.r.t. route-start and route-end nodes.17: IF (G > G∗ and feasible and j 6= i + 1) THEN18: (Update of best neighbor solution found)19: LET G*:=G.20: LET (i∗, j∗) := (i, j).21: (Inner Loop, Case 2: Ar
 (wj−1, wi) ∈ A must be short)22: LOOP wi ∈ N−(wi) AS LONG AS cw,wi
< B23: LET j := i(w) + 1.24: ...25: /* Steps 9-20 */26: ...27: Output: Gain G∗ and for G∗ > Gmin optimal de
isions (i∗, j∗) and best neighbor x′ = mswap

i∗,j∗
(x).The most important part of the above algorithm is the 
omputation of the bound Bin Step 5 used to limit the iterations of the inner loops that have to be performed.This bound limits the length of the out-ar
 (wi, w) ∈ A,w ∈ N+(wi) in Step 7 or thein-ar
 (w,wi) ∈ A,w ∈ N−(wi) in Step 22 for any improving move. The sorting of theneighbor lists allows the termination of the inner loop whenever an ar
 not smaller than B
omes up. Complete neighbor lists require O (n2) spa
e (for dense routing graphs) whi
h
an be 
omputationally prohibitive when VRP instan
es with several thousands of nodesand millions of ar
s are 
onsidered. Note that the neighbor list 
omputation has to beperformed only on
e in an initial prepro
essing. Its time 
omplexity is O (n2 log n) but,anyway, this time 
omplexity is always dominated by the total running time of LS inpra
ti
e. In order to redu
e the required spa
e, one 
an repla
e full neighbor lists byredu
ed neighbor lists, also 
alled 
andidate lists (Glover, 1996), that 
ontain only asubset of ar
s (hopefully, the relevant ones!). A standard approa
h is to build 
andidatelists N+

K , N−
K that 
ontain a �xed number K of request nodes while all route-start androute-end-nodes (depot nodes) are inserted into the 
andidate lists by default. Clearly,when using proper 
andidate lists, there is a tradeo� between the a

ura
y of the sear
hand the 
omputational burden. Irni
h et al. (2006) have 
ompared this tradeo� for thestandard CVRP.It should be pointed out that all infeasible ar
s, i.e., ar
s that 
annot be part of anyfeasible giant tour, 
an be omitted from the neighbor lists. Using spe
ialized probingte
hniques, as in (Desro
hers et al., 1992; As
heuer, 1995), one might substantially redu
ethe number of possible ar
s. The 
ombination of both the stati
 and a priori determinationof relevant ar
s and the dynami
 pruning of the sear
h tree based on partial gains, is�asfar as we know�the �rst approa
h to e�e
tively 
ombine feasibility-based and gain-basedredu
tions. This te
hnique is not limited to the swap neighborhood but 
an be appliedto all enumerate sear
h pro
edures for edge and node-ex
hange VRP neighborhoods. Fora systemati
 explanation of move de
omposition and, espe
ially, of the gain 
riterionin sequential sear
h pro
edures for di�erent VRP neighborhoods, we refer the reader to(Funke et al., 2005a,b; Irni
h et al., 2006).18



4. Modeling IssuesThis se
tion summarizes whi
h types of VRPs 
an be handled with the uni�ed framework.Before we dis
uss parti
ular types of 
onstraints, we brie�y repeat the basi
 assumptions:(1) All feasible solutions of the given VRP 
an be modeled as giant tours. A giant touris de�ned over a routing graph G = (V,A). The length of a giant-tour is bounded by
n = O (|V |), see Se
tion 2.1.(2) It must be possible to formulate the VRP as a dis
rete tasks-partitioning or task-
overing problem, where tasks are asso
iated with nodes and ar
s or the routing graph,see also Se
tion 2.1.(3) The 
ompatibility relation between route-start and route-end nodes must be given,see Se
tion 2.2.(4) All intra-tour and inter-tour 
onstraints have to be modeled as resour
e 
onstraintson paths, see Se
tion 2.3. The resulting REFs must ful�ll the assumptions (a1)-(a5) ofSe
tion 3.3.2. These assumption are in depth dis
ussed and exempli�ed in (Irni
h, 2006).Inter-tour 
onstraints are the subje
t of Se
tion 4.8∗ and (Hemps
h and Irni
h, 2007).(5) All moves m ∈ M of the neighborhood N under 
onsideration de
omposes a giant-route into ℓ segments. Any neighbor solution result from the permutation, (partial) in-version, and 
on
atenation of the segments, see (Irni
h et al., 2006).The 
omplexity of the segment REF representation, evaluation, and 
on
atenation deter-mines the e�ort for the prepro
essing and the feasibility 
he
k in the tree sear
h. If allthese operations 
an be performed in O (R) time, then any O (nk) neighborhood 
an befully explored in O (ℓRnk) time and O (Rn4/3) spa
e. These worst-
ase results are fullyindependent from the sear
h tree exploration strategy. If REF manipulations require morethan O (R) time, additional fa
tors result in the above worst-
ase 
omplexities (e.g., formultiple time windows, see below).For the sequential sear
h strategy, the only additional assumption needed is that thegain of a move is dire
tly asso
iated with the ex
hanged ar
s. Thus, for any move mtransforming x into x′ (i.e., x′ ∈ N (x)), the gain G = g(x, x′) is given by the 
ostdi�eren
e of the deleted and added ar
s. In the 
ase of more 
omplex 
ost fun
tions, e.g.,if the overall 
ost of a tour depends on several resour
e 
onsumptions (traveled distan
e,time on duty, ton-kilometers et
.), the gain 
riterion and the resulting sequential sear
hprin
iple are not appli
able. However, if a lower bound for the 
ost of a neighbor solution
an be estimated on the basis of ex
hanged ar
s, the gain 
riterion remains appli
able andgain-based tree sear
h methods 
an be used to a

elerate the tree sear
h in the average
ase.Table 3 provides a detailed overview of the modeling and solution 
apabilities of theuni�ed framework: The modeling of 
apa
ity, distan
e, and time window 
onstraints byREFs is straightforward. Se
tion 4.1 show how to model 
apa
ity 
onstraints in the 
on-text of 
ombined 
olle
tion and distribution. Di�erent ways of modeling pre
eden
e 
on-straints are presented in Se
tion 4.2, and the 
onsideration of lower and bound on thenumber of vehi
les is dis
ussed in Se
tion 4.3. Several other examples of resour
es andtheir proper representation by REFs and resour
e intervals 
an be found in (Irni
h andDesaulniers, 2005; Irni
h, 2006; Hemps
h and Irni
h, 2007). Additional material 
an be19



found in the Online Supplement. Topi
s dis
ussed there are VRPs with 
ompatibility
onstraints (Se
tion 4.4∗), interdependent resour
es (Se
tion 4.5∗), heterogeneous �eetVRPs (Se
tion 4.6∗), periodi
 VRPs (Se
tion 4.7∗), and inter-tour resour
es and 
on-straints (Se
tion 4.8∗).The 
olumn Number of Resour
es explains how many resour
es are needed to model theparti
ular 
onstraint. For instan
e, the 
onstraint of not ex
eeding the vehi
le 
apa
ityrequires only one resour
e (whi
h is reset to 0 on ar
s that 
onne
t a route-end with aroute-start node of the giant tour). A parenthesis (dep.) indi
ates dependent resour
es.The next to 
olumns Compatible with Lex. and Seq. Sear
h shows whether or not the
onstraints are 
ompatible with the lexi
ographi
 or sequential sear
h paradigm. Finally,
olumn Complexity of Feas. Che
k states the time 
omplexity of feasibility 
he
king. Thenon-trivial 
omplexity results (when REFs 
annot be represented or evaluated in O (R)time) are taken from (Irni
h, 2006).4.1. VRPs with Colle
tion and DistributionSeveral types of VRPs exist where delivery and pi
kup (distribution to and 
olle
tionfrom 
ustomers) are performed on the same tour. In ba
khauling appli
ations (VRPB,e.g., Toth and Vigo (2002b); Røpke and Pisinger (2006)) all linehaul 
ustomers must beservi
ed before the ba
khaul 
ustomers of the same tour. The modeling framework 
an
apture this 
onstraint easily by a routing graph with one node for ea
h 
ustomer by notallowing ar
s that 
onne
t ba
khaul with linehaul 
ustomers.When the visit of a 
ustomer implies that delivery and pi
kup at this lo
ation areperformed simultaneously (VRPSDP, e.g., Min (1989); Halse (1992); Dell'Ami
o et al.(2006)), two dependent resour
es (pi
kup quantity and maximum load on partial path)are 
oupled by a non-
lassi
al REF. This te
hnique with two dependent resour
es hasbeen used by several authors, 
f. (Desaulniers et al., 1998). Irni
h (2006) shows thatthese REFs 
an be used in the 
ontext of e�
ient lo
al sear
h as explained in Se
tion 3.A mixture of VRPB and VRPSDP o

urs if one allows the model to de
ide whetherdelivery and pi
kup at ea
h spe
i�
 
ustomer are to be performed simultaneously or not(
f. Gribkovskaia et al. (2006)). The results are, e.g., so-
alled lasso tours where some
ustomers are �rst supplied only, then a round trip along 
ustomers with simultaneousdelivery and pi
kup is performed, and �nally pi
kups at the �rst 
ustomers are performed(visited in reverse order). The saving in su
h an approa
h lies in a better utilizationof the vehi
le 
apa
ity, sin
e performing deliveries at the beginning yields additionalspa
e for the 
olle
tion in the se
ond 
ombined delivery and pi
kup phase. The paper byGribkovskaia et al. (2006) shows that su
h a mixed approa
h has the potential for notable
ost savings. The uni�ed framework 
an handle the option of separate or simultaneousdeliveries and pi
kups in the following way: Ea
h 
ustomer is modeled by two nodes, onefor the delivery and one for the pi
kup, with an additional pairing 
onstraint guaranteeingthat both nodes are served on the same tour (if required). Sin
e the modeling of pairing
onstraints is very similar to the te
hniques applied for the PDP, we refer the reader tothe next paragraph. 20



4.2. Pre
eden
e ConstraintsFor any two nodes u, v ∈ V , the relation u → v states that node u must pre
ede node vin any feasible (giant tour) solution. In pi
kup and delivery appli
ations, requests (i+, i−)impose unique pairs of pre
eden
es i+ → i−. In order to 
over these and alternativeappli
ations, we allow pre
eden
es given by a relation → on V × V . For notational 
on-venien
e, we de�ne P → P ′ if and only if for two segments P,P ′ nodes u ∈ P and
v ∈ P ′ exist with u → v. It is assumed that the sets of prede
essors and su

essors,i.e., pred(v) = {u : u → v} and succ(u) = {v : u → v} are of size O (1), su
h thatthe relo
ation of single nodes 
an always be 
he
ked for feasibility w.r.t. pre
eden
es in
onstant time.The e�
ient handling of pre
eden
e 
onstraints dates ba
k to papers by Psaraftis (1983)and Savelsbergh (1990) and is also di�erently dis
ussed by Kindervater and Savelsbergh(1997). Their idea is, again, that any move permutes and possibly inverts the segments
(P1, . . . , Pk) of the 
urrent (giant) tour a

ording to (P

σ(1)
π(1) , . . . , P

σ(k)
π(k) ) with π a permu-tation of {1, 2, . . . , k} and σ(i) ∈ {−1, 1} (indi
ating inversion by -1). Hen
e, feasibilitytests require 
onstant time pro
edures to 
he
k(A) whether an inverted segment P−1

i is feasible w.r.t. pre
eden
es and(B) whether or not Pi → Pj holds for two segments with j > i and π(j) < π(i).For the task (A) and a given giant tour (v1, . . . , vn) let firstu := min{p : u → vp} bethe �rst position of a destination of a pre
eden
e starting at node u. Moreover, for ea
hposition p ∈ {1, 2, . . . , n} let firstdestp := min{firstvℓ
: ℓ ≥ p} be the position of the�rst destination of a pre
eden
e pair beyond position p. The 
omputation of firstu for allnodes u and of firstdestp for all positions p 
an be undertaken in O (n) steps. Sin
e theinversion of a segment P = (vp, vp+1, . . . , vℓ) is feasible w.r.t. pre
eden
es if and only if

ℓ < firstdestp, the result is a 
onstant time feasibility test for all moves that only invertsegments. The 2-opt move is the most prominent example. Sin
e the relo
ation of a �xednumber of nodes requires an O (1) feasibility test only, all 
lassi
al moves of quadrati
neighborhoods 
an be 
he
ked inO (1), too. These neighborhoods in
lude node relo
ation,node swap, Or-opt (with or without inversion of the short segment), and string-ex
hangemoves. Similar straightforward pro
edure 
an be applied to the 2-opt∗ neighborhood.However, larger neighborhoods, su
h as 3-opt and 3-opt* neighborhoods, 
an be appliedto the giant tour and require e�
ient pro
edure to perform task (B). Here, the methodsof Kindervater and Savelsbergh are appli
able only if lexi
ographi
 sear
h is used. Inorder to handle more powerful neighborhoods inspe
ted by sequential sear
h, we des
ribeanother te
hnique for the PDP whi
h uses one binary resour
e for ea
h pi
kup/deliverypair i = (i+, i−). The 
orresponding resour
e has a resour
e interval [0, 1] at all nodesex
ept the pi
kup node i+ and end-tour nodes where the interval is [0, 0]. Entering intonode i+ in
reases the resour
e by one unit, entering i− de
reases the resour
e by oneunit. All other REFs do not 
hange the resour
e value. It is easy to see that these simplerules guarantee that no tour 
ontains a delivery without a 
orresponding pi
kup node atan earlier position. Sin
e the number of resour
es 
oin
ides with the number of requests,
onstant time feasibility 
he
ks are no longer guaranteed. However, an en
oding withbinary resour
es leads to a 
ompa
t representation, sin
e 32 or 64 resour
e 
an be en
odedin one integer resour
e on a 
omputer with 32 or 64 bit arithmeti
.21



4.3. Limiting the Number of Vehi
lesThe giant-tour representation implies that the number of routes is N := |O| = |D|. Ifar
s (o, d) ∈ O ×D with 
osts cod = 0 are present in the routing graph, routes p = (o, d)
an be part of the giant tour and, therefore, the possibility of using less than N propertours is taken into a

ount. Moreover, the 
onstraint of using between Nmin and N propertours 
an be modeled by partitioning O and D into O = O1 ∪O2 and D = D1 ∪D2 with
|O1| = |D1| = N −Nmin and |O2| = |D2| = Nmin. Nodes pairs from O1×D2 and O2 ×D1are in
ompatible. Let cod = 0 for (o, d) ∈ O1 ×D1 and cod = M for (o, d) ∈ O2 ×D2 andlet M be a su�
iently large number. If existent, a 
ost-minimal route plan with between
Nmin and N proper tours 
an be found in the routing graph as a feasible Hamiltonian
y
le whi
h does not use ar
s (o, d) ∈ O2 × D2.An additional 
ompli
ation arises if a 
onstru
tion heuristi
 provides a route plan withmore than N routes. This solution 
annot be represented dire
tly as a Hamiltonian 
y-
le in G. The following te
hnique solves the task of �nding a feasible initial solution bymeans of additional dummy route-start and route-end nodes together with a single addi-tional resour
e for 
ounting the lengths of tours. Dummy route-start and route-end nodes
(ô, d̂) ∈ Ô × D̂ are introdu
ed in order to hold a single request node i that is (
urrently)not assigned to a feasible route. More pre
isely, a dummy route is either of the form
(ô, i, d̂) or (ô, d̂) (i.e., o

upied or empty). In order to stipulate the movement of a requestnode from a dummy (ô, i, d̂) to a feasible route, 
osts are de�ned as cô,i = ci,d̂ = M ,and cô,d̂ = 0. Furthermore, the upper bound on the length of a route is set to 2 at alldummy route-end nodes but unbounded at all other nodes. The bound of 2 guaranteesthat no nodes are shifted from a feasible into a dummy tour that is already o

upied.Using a su�
iently large number of dummy nodes, one 
an transform any start solutionwith more than N routes into a formally feasible solution with only N regular routes butseveral dummy routes.The same te
hnique 
an be used in di�erent 
ontexts. First, if the obje
tive is to minimizethe number of routes, one 
an resolve one route (whi
h 
ontains only a few nodes) andput these into dummy routes. Applying di�erent LS operators, e.g., relo
ation and swapin 
ombination with edge ex
hanges, one systemati
ally tries to redu
e the number ofunassigned nodes from dummy routes. Se
ond, the implementation of large neighborhoodsear
h (LNS) operators, as suggested by Shaw (1998); S
hrimpf et al. (2000); Røpke andPisinger (2006), is straightforward. Tailored removal operators determine a subset ofnodes whi
h are removed from their 
urrent positions of the giant tour. These nodesare relo
ated into empty dummy routes. Di�erent insertion strategies (the order in whi
hremoved nodes are inserted into feasible tours again) 
an be 
ontrolled by putting di�erentvalues M onto the ar
s (ô, i) and (i, d̂). Third, VRPs in whi
h tasks 
an be 
overedby alternative nodes (see Se
tion 2.1) need me
hanisms to sele
t one or several nodesfrom given subsets to be servi
ed. Unsele
ted nodes 
an be kept in dummy routes whilealgorithmi
 pro
edures in the feasibility test have to ensure that moves do only produ
esolutions where a task is 
overed the right number of times.5. Computational ResultsThe previous se
tions were mainly fo
used on modeling and the theoreti
 aspe
ts ofe�
ient LS algorithms for ri
h VRPs. In 
ontrast, this se
tion is intended to present22



empiri
al results that show the e�e
tiveness of the prepro
essing and the sequential sear
hpro
edures in pra
ti
e.5.1. PreliminariesBefore analyzing the proposed new te
hniques based on ben
hmark problems and in-stan
es from the literature, we have to explain and 
larify the following aspe
ts: Whi
hneighborhoods N and sequential sear
h pro
edures are used? How are di�erent neighbor-hoods 
ombined to form a well-stru
tured metaheuristi
? How are sequential sear
h andlexi
ographi
 sear
h pro
edures 
ompared, in parti
ular, how is the speedup measured?Finally, at least two signi�
antly di�erent implementation 
on
epts exist that 
onstitutetwo extreme points w.r.t the tradeo� between fast runtime and e
onomi
al use of memory.5.1.1. Neighborhoods, Moves, and Sequential Sear
h Pro
eduresWe have implemented lexi
ographi
 and sequential sear
h pro
edures for the neighbor-hoods listed in Table 1: For a detailed des
ription of the neighborhoods and for pointersNeighborhood Size |N̂ (x)| Priorityswap, 2-opt, (spe
ial) 2-opt∗, node relo
ation O (n2) 1string ex
hange, Or-opt with and w/o inversion O (n2) 2a
b-opt, request relo
ation O (n3) 3Table 1Neighborhoods, Sizes, and Priorities in VNDto the (original) literature, we refer the reader to the surveys (Funke et al., 2005a; Bräysyand Gendreau, 2005a) while the 
orresponding sequential sear
h pro
edures with pseudo-
ode are explained in (Irni
h et al., 2006; Bells
heidt, 2005). In order to be self-
ontained,we brie�y re
all basi
 properties of these neighborhoods.Figure 4(a) depi
ts the prin
iple of a swap move whi
h was already used for explanationin the pre
eding se
tions. Figure 4(b) shows a (spe
ial) 2-opt∗ move. Its interpretation isthat two routes are 
ut into two pie
es and the resulting end-pie
es are ex
hanged. A 2-optmove takes a segment of the giant tour and inverts it as depi
ted in Figure 4(
). Sequentialsear
h is appli
able dire
tly only to 
ost-symmetri
 instan
es and we have restri
ted thegeneri
 sear
h pro
edure to invert only segments whi
h do not 
ontain route-start nodesand route-end nodes. In these 
ases, the 2-opt neighborhood is an intra-tour neighborhoodalthough our implementation does not make use of this fa
t. However, Funke et al. (2005a)have suggested inversion prin
iples for segments that also 
ontain route-start nodes androute-end nodes. The Or-opt neighborhood relo
ates a string to another position in thegiant tour, and the string-ex
hange neighborhood swaps to strings. Both types of movesare depi
ted in Figure 4(e) and (g), respe
tively. Be
ause of the giant-tour representation,they are at the same time intra-tour and inter-tour neighborhoods. We have 
hosen tolimit the length of the swapped/relo
ated strings to a length of ℓ ≤ 3. A variant of theOr-opt move, here 
alled inverted Or-opt, relo
ates a string and inverts it, see Figure 4(f).A spe
ial 
ase of the Or-opt move is the relo
ation move that relo
ates a single node, i.e.,a string of length 1. It is depi
ted in Figure 4(d).The only 
ubi
 neighborhoods 
onsidered here are the a
b-neighborhood and request-23
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Fig. 4. Moves andtheir De
omposition,(a) Swap, (b) (Spe-
ial) 2-opt∗, (
) 2-opt,(d) Node Relo
ation,(e) Or-opt, (f) Or-optwith String Inversion,(g) String-Ex
hange,(h) Request Relo
a-tion with 4 Sub
asesrelo
ation neighborhood. An a
b-move 
uts the giant tour into three segments a,b,
 andrearranges them to a,
,b (a 
lassi�
ation of k-opt∗ neighborhoods and moves based on thisnotation was introdu
ed by Funke et al. (2005b)). This neighborhood 
onstitutes a properextension of the Or-opt neighborhood be
ause a string of unlimited length is relo
ated.If all three strings 
ontain route-start and route-end nodes, the a
b-move permits the
utting of three routes into two pie
es and the re-
onne
ting of three end-pie
es with thethree start-pie
es.5.1.2. General Setup for Lo
al Sear
hOur 
omparisons of sequential sear
h and lexi
ographi
 sear
h pro
edures are alwaysperformed using the following setup that 
ombines VND (Hansen and Mladenovi¢, 2001,2002) with LNS (Shaw, 1998; Røpke and Pisinger, 2006) strategies to es
ape lo
al optima.An initial solution is 
omputed by a problem-spe
i�
 start heuristi
. Starting from thissolution, a lo
al optimum w.r.t. all neighborhoods is 
omputed. In order to apply 
ompu-tationally 
ostly operators not too often, we have asso
iated priorities (see Table 1) to allneighborhoods. Neighborhoods with priority 1 are sear
hed exhaustively �rst. More pre-
isely, we alternate between the swap, 2-opt, 2-opt∗, and relo
ation neighborhoods on the�rst sear
h level. Here, sequential and lexi
ographi
 sear
h pro
edures are both applied tothe same 
urrent solution x. If an improving solution x′ ∈ N (x) is found, the 
orrespond-ing move is performed and a new sear
h step 
ontinues with the next neighborhood oflevel 1. Sin
e we are using a best-improvement pivoting strategy for both sequential andlexi
ographi
 sear
h, the 
orresponding two pro
edures return improving solutions withidenti
al gain (note however, that, due to degenera
y, we 
annot assure that identi
alsolutions are 
omputed; the improving solution found by sequential sear
h is taken forthe next sear
h step). If none of the sear
h pro
edures �nds a move with positive gain, thesear
h is 
ontinued with neighborhoods of priority 2 following the same 
y
li
 alternatingstrategy as for level 1. The only di�eren
e is that, when improving solutions are found bya neighborhood of priority p > 1, then faster neighborhoods of priority level 1 are tested24



again. This strategy is a minor modi�
ation of Hansen and Mladenovi
's VND meta-heuristi
 whi
h makes the sear
h more balan
ed for equally-sized neighborhoods with(empiri
ally) identi
al sear
h e�ort.For small-sized instan
es, VND with prioritized neighborhoods 
an result in only a few
alls of sear
h pro
edures of priority 3. Therefore, three iterations of LNS with a randomremoval of 20 nodes (implemented as suggested in Se
tion 4.3) and a simple 
heapest-insertion pro
edure are used to perturb the 
urrent solution su
h that one 
an iterativelyapply the above VND pro
edure. Hen
e, the VND pro
edure is 
alled for four (in general)di�erent start solutions. This setup guarantees that a mix of solutions with poor as wellas already good quality are presented to the LS pro
edures.5.1.3. Relative Speedup of Sequential Sear
h vs. Lexi
ographi
al Sear
hThe main part of the 
omputational study 
ompares the running times of lexi
ographi
sear
h and sequential sear
h pro
edures for the neighborhoods given above. Re
all thatboth approa
hes guarantee 
onstant time feasibility 
he
ks. We will not 
ompare ourapproa
h with a trivial implementation using straightforward node-by-node feasibilitytests, sin
e these te
hniques are obviously inferior.A fair 
omparison of the running times by means of a relative speedup fa
tor is ratherdeli
ate to 
ompute for the following reasons. First, the prepro
essing for the sequentialsear
h pro
edure (
f. Se
tion 3.3.3) has to be exe
uted only if the giant tour has 
hanged,i.e., a pre
eding sear
h (of the same or another neighborhood) has found an improvingsolution that has now be
ome the in
umbent solution. Hen
e, there is no intrinsi
 
on-ne
tion between the 
urrent sear
h pro
edure and the prepro
essing. Se
ond, the ratiobetween su

essful and unsu

essful sear
hes strongly depends on the general setup inwhi
h LS is performed, i.e., the start solutions, the mix of neighborhoods and the priori-ties for mixing them in VND/VNS. Third, the most frequently 
alled pro
edures in thesear
h algorithm are the test of whether or not an ar
 exists, and the 
omputation of thear
 
osts. The following se
tion will distinguish between two implementation prin
iplesthat also have an impa
t on the speedup fa
tors.The most optimisti
 a

eleration fa
tor does not 
onsider the additional e�ort of thene
essary prepro
essing for sequential sear
h at all. Let tlexN and tseqN be the running timesof lexi
ographi
 and sequential sear
h pro
edure (without time for prepro
essing) for aneighborhood N . Then fmax
N = tlexN /tseqN is the maximum speedup or maximum a

eler-ation fa
tor. Note that running times might signi�
antly vary depending on the 
urrentgiant tour x and whether a good bound B = B(G∗) (see Step 5 of Algorithm 3) is avail-able early in the sequential sear
h pro
edure. Therefore, only average values for tseqN and

tlexN are 
onsidered here. A very pessimisti
 and 
onservative fa
tor is based on the as-sumption that every sequential sear
h pro
edure is pre
eded by a prepro
essing. De�ning
tpre as the (average) time of the prepro
essing pro
edure (Steps 2�3 of Algorithm 1), thefa
tor fmin

N = tlexN /(tpre + tseqN ) denotes the minimum speedup or minimum a

elerationfa
tor. This fa
tor applies to pure lo
al sear
h pro
edures in whi
h only a single neighbor-hood N is in
orporated su
h that the number of prepro
essing and sear
h steps 
oin
ide.From our point of view, the most fair de�nition of the speedup fa
tor takes into a

ountthat only a fra
tion of sear
h steps is pre
eded by a prepro
essing. Let rpre ∈ (0, 1] bethe (instan
e and setup spe
i�
) ratio of the number of improvement steps performed tothe overall number of sear
h pro
edure 
alls. We de�ne fN = tlexN /(rpretpre + tseqN ) as the25



speedup or a

eleration fa
tor. Note that fmin
N ≤ fN < fmax

N holds, but that all valuesstill depend on the initial solution, the 
hoi
e of neighborhoods, the VND/LNS strategyas well as on several implementation issues.5.1.4. Implementation IssuesAn instan
e with O (n) request nodes and a giant tour of length n 
an have up to n(n−1)ar
s in the routing graph and, therefore, a quadrati
 number of REFs. In the 
ase of large-s
ale instan
es (with more than about 2 500 nodes), the representation of the routinggraph and the asso
iated REFs be
omes an issue. We propose two alternative te
hniquesfor implementing the uni�ed framework.The �rst option is to a priori 
ompute all ar
s and asso
iated REFs and to then storethem in a matrix. This matrix needs to have n × n entries, with entry ij unde�ned ifthe ar
 (i, j) is infeasible. For 
lassi
al REFs of the form fij(T ) = max{aij , T + tij} withinverse REF f inv
ij (T ) = min{bij , T − tij}, it is natural to store the de�ning 
oe�
ients

aij , bij , tij ∈ R
R together at entry ij of the matrix in order to have a dire
t 
onstanttime a

ess to the REFs. Sin
e the memory requirement for the REF matrix is alreadyquadrati
, one 
an 
ombine this representation of the routing graph with full neighborlists N+(v), N−(v) for all nodes v ∈ V as explained in Se
tion 3.4. The 
omputationalresults will show that this straightforward representation is the fastest but obviously
onsumes a lot of memory.The se
ond option is to use (heuristi
ally) redu
ed 
andidate lists N+

K(v),N−
K(v) for thein-ar
s and out-ar
s together with a pro
edure that 
omputes REFs on-the-�y. For anypair (i, j) of nodes, a �rst pro
edure 
he
ks whether (i, j) is a feasible ar
 of the routinggraph (V,A). In the 
ase where (i, j) is feasible, a se
ond pro
edure returns the REFs fijand f inv

ij (as an obje
t 
ontaining aij, bij , tij or impli
itly, e.g., by 
omputing fij(T ) for Tgiven). If the entire VRP instan
e 
an be represented in O (n) memory, e.g., when timesand 
osts are 
omputed using 
oordinates and distan
es in the 2-dimensional Eu
lideanplane, the on-the-�y 
omputation redu
es the memory requirement for the framework.Sin
e the te
hniques of Se
tion 3.3.3 enable us to store segment REFs in O (n4/3) spa
e,the overall memory requirement typi
ally results from storing neighbor or 
andidate lists.As a result, we are able to handle VRPs with more than 10 000 nodes at the 
ost of notbeing fully a

urate (sin
e 
andidate lists must heuristi
ally ex
lude some parts of theneighborhood to be s
anned). Moreover, 
omputing (
ompli
ated) REFs on-the-�y takesmore time than a dire
t a

ess to REFs stored in main memory and, therefore, this se
ondoption is, in general, slower. However, the 
omputational results of the next se
tionsindi
ate that, for on-the-�y REF 
omputations, the speedup of sequential sear
h overlexi
ographi
al sear
h in
reases. At the same time, speedup fa
tors in
rease when on-the-�y 
omputation is performed. The reason for this is that the 
omputational overhead insequential sear
h pro
edures (
aused by the handling of neighbor lists, 
omputing partialgains et
.) be
omes less important.The uni�ed framework was 
oded in C++, di�erent resour
e 
on
epts and types of REFswere integrated as template parameters. The algorithms were 
ompiled in release mode(using MS-Visual C++ .NET 2003 version 7.1), and all runs were performed on a standardPC (Intel x86 family 15 model 2, 2.4 GHz, 1GB main memory, on MS-Win 2000). Timeswere re
orded using the time.h library. In order to be more pre
ise, espe
ially for timessmaller than 10ms, we performed multiple identi
al runs of the same pro
edure. We made26



sure that running times of multiple runs ex
eeded 100ms su
h that the average run timeis a rather a

urate estimate for a single run.5.2. Vehi
le Routing Problems with Time WindowsThe VRPTW is 
ertainly the most studied variant of VRPs and 
an be 
onsidered theprototype of �ri
h� VRPs, sin
e time window 
onstraints already require sophisti
atedte
hniques for 
onstant time feasibility tests. Early work on VRPTW dates ba
k to the1960s and, sin
e then, hundreds of s
ienti�
 arti
les have addressed modeling as wellas methodologi
al aspe
ts of developing exa
t and heuristi
 solution algorithms. For anoverview, we refer the reader to the 
omprehensive surveys (Cordeau et al., 2002; Kalle-hauge et al., 2005; Bräysy and Gendreau, 2005a,b).The Solomon (1987) and Homberger (see Homberger and Gehring, 1999) VRPTW in-stan
es have been used as ben
hmark problems in numerous empiri
al studies. WhileSolomon's instan
es have a �xed number of 100 
ustomers, the Homberger instan
esrange from 200 to 1, 000 
ustomers. We therefore use the latter be
ause we are mainlyinterested in analyzing the behavior of the sear
h pro
edures w.r.t. the number of tasksand the (average) number of nodes in a route. Initial solutions were 
omputed usingSolomon's I1-heuristi
 (Solomon, 1987) and REFs were a priori 
omputed a

ording tothe �rst implementation 
on
ept sket
hed in the previous se
tion.
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h vs. Lexi
ographi
 Sear
h for Homberger VRPTWInstan
es with Short RoutesThe main results for the Homberger instan
es are depi
ted in the Figures 5 and 6 forinstan
es with short (C1, R1, RC1) and long (C2, R2, RC2) routes respe
tively. Ea
h
olumn shows the speedup fa
tors for 30 VRPTW instan
es, re�e
ting di�erent problem
hara
teristi
s (10 
lustered, 10 randomly distributed, 10 mixed). The speedup fa
tor fNis depi
ted as a bar, while fmin
N and fmax

N are shown as error indi
ators. Both diagramsindi
ate that there is always a speedup when a lexi
ographi
 sear
h approa
h is repla
edby a sequential sear
h pro
edure. In the �rst group, 
apa
ities and time windows are
hosen in su
h a way that the average number of 
ustomers in a route is about 10. Here,the a

eleration fa
tors vary from 2.4 to 4.5 for swap, from 5.9 to 12.2 for 2-opt, from 3.4to 5.8 for 2-opt∗, from 8.4 to 9.5 for string ex
hange, from 5.0 to 8.3 for node relo
ation,from 3.9 to 5.2 for Or-opt, from 3.7 to 5.0 for Or-opt with segment inversion, from 8.6 to27
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Fig. 6. Speedup of Sequential Sear
h vs. Lexi
ographi
 Sear
h for Homberger VRPTWInstan
es with Long Routes13.9 for a
b-opt. For all neighborhoods, ex
ept for a
b-opt, there is a positive 
orrelationbetween the size of the instan
e and the speedup. This 
ontrasts with the results for theCVRP in (Irni
h et al., 2006) where a 
lear negative 
orrelation was only observed for thestring-ex
hange neighborhood. It remains un
lear to us whi
h 
hara
teristi
s of instan
esor properties of neighborhoods imply su
h negative 
orrelations.The se
ond group, depi
ted in Figure 6, 
ontains instan
es with long routes, i.e., between20 and 40 
ustomers per route. Similar to the results reported for the CVRP in (Irni
het al., 2006), the speedup grows when problems are less 
onstrained. Here, the a

elerationfa
tors vary from 3.5 to 9.7 for swap, from 5.9 to 17.8 for 2-opt, from 4.5 to 12.3 for 2-opt∗, from 15.4 to 32.1 for string ex
hange, from 7.0 to 17.0 for node relo
ation, from7.3 to 17.9 for Or-opt, from 6.9 to 17.3 for Or-opt with segment inversion, from 60.5 to144.8 for a
b-opt. These are substantial speedups! The superiority of sequential sear
hover lexi
ographi
 sear
h for less 
onstrained instan
es 
an be explained as follows: Inmore 
onstrained problems (espe
ially with tight time windows), optimal feasible routes
an di�er signi�
antly from 
ost-minimal TSP tours (and geometri
 intuition). Hen
e, alarger fra
tion of moves seems improving (when looking at 
osts/gains only) but is in fa
tinfeasible. Consequently, gain-based arguments to terminate the sear
h apply less often.The absolute running times of the sequential sear
h pro
edures applied to the Hombergerinstan
es are shown in Table 2. Ea
h entry t/d shows the absolute average running time t(ten groups, ea
h with 30 instan
es) and standard deviation d for the prepro
essing andthe a
tual sequential (tree) sear
h. The prepro
essing times (
omputation of the segmentREFs, see Se
tion 3.3.3) are growing with the size of the instan
es. The standard deviationis small, and the absolute values and deviations for instan
es with short and long routesare similar. It seems that the values primarily depend on the size of the instan
es, sin
ethe time 
omplexity of the prepro
essing does not depend on the number of ar
s/REFsof the instan
e. By 
ontrast, the running times of the tree sear
hes very mu
h dependon 
hara
teristi
s of the instan
es: First, the running times of the instan
es with shorttours are signi�
antly larger than those for the instan
es with long routes. We thinkthat the reason for this di�eren
e is again that for more 
onstrained problems gain-28



Instan
es Prepro- Swap 2- 2- string- node Or- inv Or- a
b-
essing opt opt∗ ex
h relo
 opt opt opt(Phase 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Phase 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200.short 0.6/0.02 1.0/0.4 0.9/0.1 1.4/0.5 2.8/1.7 1.3/0.5 5/2 5/2 31/23400.short 1.9/0.1 3.6/1.6 2.9/0.3 4.9/2.6 12.1/7.9 5.0/2.1 21/10 21/10 264/221600.short 3.7/0.2 7.5/3.6 6.2/0.6 10.9/7.1 27.8/19.1 11.5/5.3 49/26 50/26 1014/945800.short 5.3/0.3 12.1/6.3 10.1/1.4 19.4/13.9 49.2/35.5 20.4/10.1 88/51 90/53 2435/23631000.short 7.2/0.4 19.3/10.8 15.5/2.6 32.8/24.9 81.8/62.9 34.6/18.8 151/94 156/97 5528/5690200.long 0.5/0.02 0.7/0.3 0.5/0.1 0.8/0.2 1.3/0.6 0.9/0.3 2/1 2/1 5/3400.long 1.7/0.1 2.5/0.8 1.8/0.2 2/0.8 4.4/2.2 3.0/0.9 7/3 7/3 29/32600.long 3.2/0.2 4.4/1.6 3.2/0.4 3.6/1.9 8.3/5.0 5.7/2.1 14/7 14/7 90/134800.long 4.9/0.2 6.6/2.7 4.9/0.6 5.5/3.6 13.3/8.8 8.9/3.6 21/12 21/12 182/2931000.long 6.7/0.3 9.9/4.2 7.0/1.0 8.6/6.4 20.5/14.6 14.0/6.8 34/22 34/22 385/676Table 2Avg. Running Times of a Prepro
essing (Phase 1) and Sequential Sear
h (Phase 2), Valuesin Millise
onds [ms℄, Absolute Value and Standard Deviationbased arguments for terminating the tree sear
h are less e�e
tive. Se
ond, one 
an seethat the standard deviations of the running times are enormous. The explanation forthis is that instan
es within the same group are still very mu
h di�erent: The timewindow 
onstraints imply routing graphs that have ar
 sets of 
ompletely di�erent sizes.Consequently, instan
es have neighbor lists of di�erent magnitude, whi
h dire
tly imposesheavily varying running times. Finally, it is worth mentioning that due to the te
hniquespresented in Se
tion 3.3.3 (1-level hierar
hy of REFs and O (n4/3) time 
omplexity forits update), the time required for prepro
essing is always smaller that the time for thesequential tree sear
h.Very large-s
ale VRPTW instan
es are�as far as we know�not available. Hen
e, we
reated a small test set of 10 instan
es ranging from n = 1000 to 10 000 
ustomer nodes.The instan
es allow an average number of about 45 
ustomers per route. Results forthese instan
es are visualized in Figure 7. Note that we have 
onsidered only quadrati
neighborhoods be
ause the running times of the lexi
ographi
 sear
h pro
edure for thea
b-opt neighborhood of size O (n3) were una

eptably long (more than 5 minutes for thelargest instan
e and a single 
all of the sear
h pro
edure). In 
ontrast to the �rst tests,we have used on-the-�y 
omputations of REFs and 
andidate list N+
K(v) and N−

K(v). Kis 
hosen su
h that ea
h 
andidate list 
ontains the 1 000 
losest 
ustomer nodes andall possible route-start and route-end nodes, i.e., K ≤ 1 000 + |O|. The most importantinsight for the large-s
ale problem instan
es is that the speedup grows even further. Thisis partly 
aused by the fa
t that we use on-the-�y 
omputation of 
osts and REFs andalso be
ause average route lengths in
rease. We have also 
omputed a

eleration fa
torswith the a priori 
omputed REFs for the instan
es with n = 1000 and n = 2000 and
ompared them with those results obtained for the on-the-�y implementation: The on-the-�y 
omputation gives a 
ontribution to the speedups by an average fa
tor of between 1.5and 1.7 (but varying more strongly for di�erent move types).5.3. Capa
itated VRPs and VRPs with Globally Constrained Resour
esSimple versions of VRPs, su
h as the CVRP or the distan
e-
onstrained VRP, have pureadditive REFs along the routes and globally �xed upper bounds (a maximum load ortravelled distan
e). Therefore, they do not need the O (n4/3) prepro
essing as presentedin Se
tion 3.3.3. Instead, a linear time and spa
e prepro
essing already allows 
onstanttime feasibility tests, see (Irni
h et al., 2006). Very similar methods 
an be used for the29
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Fig. 7. Speedup of Sequential Sear
h vs. Lexi
ographi
 Sear
h for Large-S
ale VRPTWInstan
es with between n = 1000 and 10 000�pure� multi-depot VRP with 
apa
ity and distan
e 
onstraints. Thus, these types ofVRPs are beyond the s
ope of this arti
le and we refer the reader to (Irni
h et al., 2006)for results on the CVRP.5.4. Multi-Depot VRPs with Time WindowsThe Solomon (1987) ben
hmark set for VRPTW 
an be easily extended to generate multi-depot VRPTW (MDVRPTW) instan
es. Sin
e lo
ations for depots and 
ustomers aregiven as pairs (x, y) in the Eu
lidean plane, these lo
ations 
an be 
opied and shifted inspa
e. Given that the lo
ations of a VRPTW instan
e are in a re
tangle of size ∆x ×∆y,we have 
hosen to shift these lo
ations by multiples of 0.9 · ∆x horizontally and bymultiples of 0.9 · ∆y verti
ally. For example, in order to 
reate a 20 = 5 × 4 depotinstan
e, we generate 19 
opies and shift them by (0.9mx∆x, 0.9my∆y) for (mx,my) ∈
{0, 1, 2, 3, 4} × {0, 1, 2, 3}, (mx ,my) 6= (0, 0). Initial solutions for the separate VRPTWinstan
es belonging to one depot are 
reated with the VND approa
h of Se
tion 5.2 (wedo not report the 
orresponding running times and speedup fa
tors for those runs, sin
eVRPTW instan
es are small). Multiple 
opies of these separate VRPTW solutions aretaken as initial solutions for the MDVRPTWs. Be
ause of the overlap 
reated by the testgenerator (fa
tor 0.9), the subsequent VND and LNS pro
edures have the potential to
reate improving solutions. These improvements primarily result from ex
hanges betweentours of di�erent depots. In turn, modi�ed partial solutions belonging to a single depotmight be improved by node and edge ex
hange, too. The result is a mix of intra-depot andinter-depot ex
hanges, whi
h are all uniformly handled by the giant-tour representation.The Figure 8 depi
ts results for MDVRPTW instan
es with n between 100 and 2 450. Allinstan
es were 
reated from 12 sele
ted 50 
ustomer VRPTW instan
es (
103, 
109, r103,r112, r
101, r
106, 
205, 
208, r204, r208, r
202, r
207). The 
riterion for sele
ting theseinstan
es was to yield a mix of 
lustered and un
lustered instan
es, instan
es with tightand wide time windows, and with short and long routes. We used both implementation
on
epts, on-the-�y 
omputation of REFs for instan
es with n ≥ 1 250 and full REFrepresentation for smaller instan
es. Neighbor and 
andidate lists N+

K(i) and N−
K(i) wererestri
ted to 
ontain a maximum of 1 000 request nodes but all route-start and route-end30
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Fig. 8. Speedup of Sequential Sear
h vs. Lexi
ographi
 Sear
h for Multi-Depot VRPTWInstan
esnodes.The smallest speedup was found�as was to be expe
ted�for the smallest instan
es with
n = 100 and for the swap move. Here the fa
tors fswap = 2.3, fmax

swap = 2.7, and fmin
swap = 1.3mean that there is still an a

eleration. For medium-sized instan
es with n = 800 allspeedup fa
tors are already above 10.0. The largest speedups were again observed for the
ubi
 a
b-neighborhood with values facb = 29 for n = 100 and facb ≈ 1 350 for n = 800.Again, be
ause of the high running times of the lexi
ographi
 sear
h implementation, weskipped the 
omparison for the a
b-neighborhood for n > 800. The 
ondu
ted experi-ments also gave remarkable speedups for the string-ex
hange neighborhood with fa
torsof between fstr−exch = 15.4 and fstr−exch ≈ 575. This is, again, similar to the results forCVRP and VRPTW.The results depi
ted in Figure 8 also indi
ate that the on-the-�y implementation 
on-
ept (for n ≥ 1 250) bene�ts more from the sequential sear
h approa
h than the fullrepresentation (for n ≤ 1 000) does. The fa
tor 
aused by the on-the-�y 
omputation isapproximately fa
tor 2.0.Additional ResultsAdditional results for pi
kup-and-delivery problems and periodi
 VRPs 
an be found inthe Online Supplement in the Se
tions 5.6∗ and 5.7∗.6. Con
lusionsThe paper has presented a new modeling framework and 
orresponding e�
ient LS meth-ods for VRPs with 
lassi
al and also non-standard side 
onstraints. One of the most im-portant advantages of the framework is that it is generi
 and, therefore, allows varioustypes of VRPs to be handled in a similar and 
on
ise way. The giant-tour representationis intuitive and enables a uni�ed view on moves, whi
h 
an either be intra-tour moves ormoves between di�erent tours of the same or di�erent depots, periods, vehi
le types et
.The uni�ed framework also has advantages from a software development point of view;31



on
e the sear
h pro
edures of the framework are implemented, additional 
onstraints
an easily be integrated, sin
e feasibility is generi
ally en
oded by the routing-graph,start-route node and end-route node 
ompatibilities and�most important�resour
e-
onstrained paths. Consequently, the framework separates the modeling (with instan
e-spe
i�
 data and 
onstraint formulation) from the a
tual sear
h methods. The additionor 
hange of standard 
onstraints be
omes �simply� a question of gathering input dataand de
laring 
onstraints; it has no impli
ations for the sear
h pro
edures.Besides the powerful modeling 
apabilities of this framework, its main 
ontribution isthe in
orporation of highly-e�
ient LS te
hniques. They allow 
onstant time feasibilitytests as well as exa
t sear
h-tree pruning based on sequential sear
h (Irni
h et al., 2006).The extensive 
omputational tests 
learly show that sequential sear
h pro
edures out-perform the lexi
ographi
 sear
h methods. On large-s
ale instan
es and for nearly alltypes of neighborhoods, the speedup fa
tors are between 10 and 1 000. We observed thatthe potential of large speedups grows with the size of neighborhoods. Hen
e, sequentialsear
h pro
edures might be
ome the only e�
ient te
hnique for impli
itly s
anning evenlarger neighborhoods than those traditionally applied to VRPs thus far. We expe
t thatneighborhoods of size O (nk) for k ≥ 3 will be used more often.One key property of sequential sear
h algorithms for ri
h VRPs is the separation of the LSpro
edure into two phases, namely, a prepro
essing phase to 
ompute O (n4/3) segmentREFs and the a
tual enumerative sear
h phase. This separation also allows alternativeheuristi
 and exa
t sear
h-tree pruning te
hniques for the se
ond phase in
luding, e.g.,granular edge sele
tion pro
edures, as proposed by Toth and Vigo (2003), and methodsto terminate the sear
h on the basis of feasibility arguments.Obviously, the proposed LS te
hniques 
an be easily integrated into di�erent metaheuris-ti
s, whi
h are substantial for produ
ing high-quality solutions. It was beyond the s
opeof this paper to also analyze and 
ompare di�erent metaheuristi
s based on the uni�edframework. However, di�erent meta-strategies 
an bene�t from the new te
hniques inthe following way: First, methods, su
h as multi-start and iterated lo
al sear
h, VND,GRASP, dire
tly use LS pro
edures, see (Hoos and Stützle, 2005). Se
ond, metaheuris-ti
s, su
h as tabu sear
h (Glover and Laguna, 1997), also s
an neighborhoods, but askfor best non-tabu neighbors. It is straightforward to integrate tabu-
onstraints into theframework. They will 
ause no additional worst-
ase e�ort for testing neighbor solu-tions as long as �simple� tabu-
riteria and tabu-lists of limited length are used. All ofthe above metaheuristi
s will therefore dire
tly bene�t from a

elerations of LS. Third,some metaheuristi
s sample from neighborhoods (su
h as simulated annealing, thresholda

epting, and related strategies). For these metaheuristi
s, our methods do not applydire
tly. However, extensions of these sampling methods, su
h as the large-step Markov
hain metaheuristi
 of Martin et al. (1992), aim at �nding better quality solutions in ea
hmajor iteration. Only lo
al optimal solutions are presented to the a

eptan
e algorithmand, hen
e, e�
ient LS pro
edures 
an speed up the metaheuristi
. Other metaheuris-ti
s, su
h as geneti
 algorithms, evolutionary strategies, or ant systems do not even useneighborhood-based sear
h pro
edures, at least not in their �pure� versions. However,hybrid versions of these mostly use LS post-pro
essing improvement pro
edures, whi
his often the de
isive devi
e for designing a highly-e�e
tive metaheuristi
. Numerous ex-amples are given in the survey of Bräysy and Gendreau (2005b).For the future, one 
hallenge will be to model new real-world 
onstraints or options and32



to integrate them by means of REFs that possess all the properties required for theuni�ed framework. A �rst formal analysis of 
onditions for REFs to be invertible and ex-tendable to segments has been given in (Irni
h, 2006). Nevertheless, numerous real-worldappli
ations, not only those sket
hed in Se
tion 4, need to be examined in depth. Tailoredneighborhoods for spe
ial routing appli
ations not 
onsidered here (e.g., ar
-routing, rout-ing with 
hoi
e of requests) need to be analyzed and suitable sear
h pro
edures have to beimplemented. A better understanding of the interplay between di�erent start heuristi
s,neighborhoods, improvement and diversi�
ation phases of metaheuristi
s, 
onsidered invarious s
ienti�
 and real-world appli
ations will 
ertainly o�er an interesting �eld formore theoreti
al and empiri
al resear
h. Finally, we hope that the uni�ed framework willhelp resear
hers and pra
titioners get a more uni�ed view on modeling and e�
ient sear
hmethods for VRPs.Referen
esAarts, E., J.K. Lenstra. 1997. Lo
al Sear
h in Combinatorial Optimization. Wiley, Chi
h-ester.As
heuer, Norbert. 1995. Hamiltonian path problems in the on-line optimization of �ex-ible manufa
turing systems. Ph.D. thesis, Te
hnis
he Universität Berlin.Bells
heidt, L. 2005. Implementierung und Analyse von sequentiellen Su
hverfahren fürPi
kup- und Delivery Probleme. Magister thesis, Deuts
he Post Endowed Chair ofOptimization of Distribution Networks, RWTH Aa
hen University. (in German).Bräysy, O., M. Gendreau. 2005a. Vehi
le routing with time windows, Part I: Route
onstru
tion and lo
al sear
h algorithms. Transportation S
ien
e 39 104�118.Bräysy, O., M. Gendreau. 2005b. Vehi
le routing with time windows, Part II: Metaheuris-ti
s. Transportation S
ien
e 39 119�139.Cardeneo, A. 2005. Modellierung und Optimierung des B2C-Tourenplanungsproblemsmit alternativen Lieferorten und -zeiten. Dissertation, Fakultät für Mas
hinenbau,Universität Karlsruhe (TH), Karlsruhe, Germany. (in German).Christo�des, N., S. Eilon. 1969. An algorithm for the vehi
le-dispat
hing problem. Op-erational Resear
h Quarterly 20 309�318.Christo�des, N., S. Eilon. 1972. Algorithms for large-s
ale travelling salesman problems.Operational Resear
h Quarterly 23 511�518.Cordeau, J.-F., G. Desaulniers, J. Desrosiers, M.M. Solomon, F. Soumis. 2002. VRP withtime windows. Toth and Vigo (2002a), 
hap. 7, 155�194.Dell'Ami
o, M., G. Righini, M. Salani. 2006. A bran
h-and-pri
e approa
h to the vehi
lerouting problem with simultaneous distribution and 
olle
tion. Transportation S
ien
e40 235�247.Desaulniers, G., J. Desrosiers, I. Ioa
him, M.M. Solomon, F. Soumis, D. Villeneuve.1998. A uni�ed framework for deterministi
 time 
onstrained vehi
le routing and 
rews
heduling problems. T.G. Craini
, G. Laporte, eds., Fleet Management and Logisti
s,
hap. 3. Kluwer A
ademi
 Publisher, Boston, Dordre
ht, London, 57�93.Desaulniers, G., J. Desrosiers, M.M. Solomon. 2002. A

elerating strategies in 
olumngeneration for vehi
le routing and 
rew s
heduling problems. Ribeiro and Hansen(2002), 
hap. 14, 309�324.Desaulniers, G., J. Desrosiers, M.M. Solomon, eds. 2005. Column Generation. Springer.Desaulniers, G., F. Lessard, A. Hadjar. 2006. Tabu sear
h, generalized k-path inequalities,and partial elementarity for the vehi
le routing problem with time windows. Les Cahiers33



du GERAD G-2006-45, GERAD, É
ole des Hautes Études Commer
iales, Montréal,Canada.Desro
hers, M., J. Desrosiers, M. Solomon. 1992. A new optimization algorithm for thevehi
le routing problem with time windows. Operations Resear
h 40 342�354.Desro
hers, M., J.K. Lenstra, M.W.P. Savelsbergh. 1990. A 
lassi�
ation s
heme forvehi
le routing and s
heduling problems. European Journal of Operational Resear
h46 322�332.Desrosiers, J., Y. Dumas, M.M. Solomon, F. Soumis. 1995. Time 
onstrained routing ands
heduling. M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds., NetworkRouting , Handbooks in Operations Resear
h and Management S
ien
e, vol. 8, 
hap. 2.Elsevier, Amsterdam, 35�139.Fukasawa, Ri
ardo, J. Lysgaard, Mar
elo Reis Mar
us Poggi de Aragão, Eduardo U
hoa,R.F. Werne
k. 2004. Robust bran
h-and-
ut-and-pri
e for the 
apa
itated vehi
le rout-ing problem. Te
h. Rep. Vol.3, No.8, Departamento de Engenharia de Produção, Uni-versidade Federal Fluminense R. Passo da Pátria, Niterói, Brasil.Funke, B. 2003. E�ziente lokale su
he für vehi
le routing und s
heduling problememit ressour
enbes
hränkungen. Ph.D. thesis, Fakultät für Wirts
haftswissens
haften,RWTH Aa
hen, Templergraben 64, 52062 Aa
hen.Funke, B., T. Grünert, S. Irni
h. 2005a. Lo
al sear
h for vehi
le routing and s
hedulingproblems: Review and 
on
eptual integration. Journal of Heuristi
s 11 267�306.Funke, B., T. Grünert, S. Irni
h. 2005b. A note on single alternating 
y
le neighborhoodsfor the TSP. Journal of Heuristi
s 11 135�146.Glover, F. 1996. Eje
tion 
hains, referen
e stru
tures and alternating path stru
tures fortraveling salesman problems. Dis
rete Applied Mathemati
s 65 223�253.Glover, F., M. Laguna. 1997. Tabu Sear
h. Kluwer, Dortre
ht.Golden, B.L., A.A. Assad, eds. 1988. Vehi
le Routing: Methods and Studies. ElsevierS
ien
e, Amsterdam.Gribkovskaia, I., Ø. Halskau sr, G. Laporte, M. Vl�
ek. 2006. General solutions to thesingle vehi
le routing problem with pi
kups and deliveries. Te
hni
al report, MoldeUniversity College, Molde, Norway.Halse, K. 1992. Modelling and solving 
omplex vehi
le routing problems. PhD dissertationNo. 60, IMSOR, Te
hni
al University of Denmark, Lyngby, Denmark.Hansen, P., N. Mladenovi¢. 2001. Variable neighborhood sear
h: Prin
iples and appli
a-tions. European Journal of Operational Resear
h 130 449�467.Hansen, P., N. Mladenovi¢. 2002. Developments of variable neighborhood sear
h. Ribeiroand Hansen (2002), 
hap. 19, 415�439.Hasle, Geir, Arne Løkketangen, Silvano Martello. 2006. Ri
h models in dis
rete opti-mization: Formulation and resolution (ECCO XVI). European Journal of OperationalResear
h 175 1752�1753.Hemps
h, C., S. Irni
h. 2007. Vehi
le-routing problems with inter-tour resour
e 
on-straints. Te
hni
al Report 2007-01, Deuts
he Post Endowed Chair of Optimizationof Distribution Networks, RWTH Aa
hen University, Aa
hen, Germany. Available atwww.dpor.rwth-aa
hen.de.Homberger, J., H. Gehring. 1999. Two evolutionary metaheuristi
s for the vehi
le routingproblem with time windows. Information Systems and Operations Resear
h 37 297�318.Hoos, H.H., T. Stützle. 2005. Sto
hasti
 Lo
al Sear
h Foundations and Appli
ations.34



Morgan Kaufmann Publishers, Elsevier, San Fran
is
o, CA.Irni
h, S. 2006. Resour
e extension fun
tions: Properties, inversion, and generalization tosegments. Te
hni
al Report 2006-01, Deuts
he Post Endowed Chair of Optimizationof Distribution Networks, RWTH Aa
hen University, Aa
hen, Germany. Available atwww.dpor.rwth-aa
hen.de.Irni
h, S., G. Desaulniers. 2005. Shortest path problems with resour
e 
onstraints. De-saulniers et al. (2005), 
hap. 2, 33�65.Irni
h, S., B. Funke, T. Grünert. 2006. Sequential sear
h and its appli
ation to vehi
le-routing problems. Computers & Operations Resear
h 33 2405�2429.Irni
h, S., D. Villeneuve. 2006. The shortest path problem with resour
e 
onstraints and
k-
y
le elimination for k ≥ 3. INFORMS Journal on Computing 18 391�406.Janssens, G.K., R. Hartl, G. Hasle. 2006. Spe
ial issue on ri
h vehi
le routing problems.Central European Journal of Operations Resear
h 14 103�104.Jepsen, M., S. Spoorendonk, B. Petersen, David Pisinger. 2006. A non-robust bran
h-and-
ut-and-pri
e algorithm for the vehi
le routing problem with time windows. DIKUTe
hni
al Report no. 06/03, Dept. of Computer S
ien
e, University of Copenhagen,Copenhagen, Denmark.Kallehauge, B., J. Larsen, O.B.G Madsen, M.M. Solomon. 2005. Vehi
le routing problemwith time windows. Desaulniers et al. (2005), 
hap. 3, 67�98.Kernighan, B.W., S. Lin. 1970. An e�
ient heuristi
 pro
edure for partitioning graphs.Bell Syst. Te
h. J. 49 291�307.Kilby, P., P. Prosser, P. Shaw. 2000. A 
omparison of traditional and 
onstraint-basedheuristi
 methods on vehi
le routing problems with side 
onstraints. Constraints 5389�414.Kindervater, G.A.P., M.W.P. Savelsbergh. 1997. Vehi
le routing: Handling edge ex-
hanges. Aarts and Lenstra (1997), 
hap. 10, 337�360.Laporte, G. 1992. The vehi
le routing problem: An overview of exa
t and approximatealgorithms. European Journal of Operational Resear
h 59 345�358.Laporte, G. 1997. Vehi
le routing. M. Dell'Ami
o, F. Ma�oli, S. Martello, eds., AnnotatedBibliographi
s in Combinatorial Optimization. Wiley, Chi
hester, 223�240.Lin, S., B.W. Kernighan. 1973. An e�e
tive heuristi
 algorithm for the traveling-salesmanproblem. Operations Resear
h 21 498�516.Lübbe
ke, M., J. Desrosiers. 2005. Sele
ted topi
s in 
olumn generation. OperationsResear
h 53 1007�1023.Martin, O., S.W. Otto, E.W. Felten. 1992. Large-step Markov 
hains for the TSP in
or-porating lo
al sear
h heuristi
s. Operations Resear
h Letters 11 219�224.Min, H. 1989. The multiple vehi
le routing problem with simultaneous delivery andpi
k-up points. Transportation Resear
h 23 377�386.Psaraftis, H.N. 1983. k-Inter
hange pro
edures for lo
al sear
h in a pre
eden
e-
onstrained routing problem. European Journal of Operational Resear
h 13 391�402.Rayward-Smith, V.J., I.H. Osman, C.R. Reeves, G.D. Smith. 1996. Modern Heuristi
Sear
h Methods. Wiley, Ci
hester.Resende, M.G.C., J.P. de Sousa, eds. 2004. Metaheuristi
s Computer De
ision-Making .Kluwer A
ademi
 Publishers, Boston, Dordre
ht, London.Ribeiro, C.C., P. Hansen, eds. 2002. Essays and Surveys in Metaheuristi
s. OperationsResear
h/Computer S
ien
e Interfa
es Series, Kluwer, Boston.Røpke, S., D. Pisinger. 2006. A uni�ed heuristi
 for a large 
lass of vehi
le routing35



problems with ba
khauls. European Journal of Operational Resear
h 171 750�775.Savelsbergh, M.W.P. 1990. An e�
ient implementation of lo
al sear
h algorithms for
onstrained routing problems. European Journal of Operational Resear
h 47 75�85.S
hrimpf, G., J. S
hneider, H. Stamm-Wilbrandt, G. Due
k. 2000. Re
ord breakingoptimization results using the ruin and re
reate prin
iple. Journal of ComputationalPhysi
s 159 139�171.Shaw, P. 1998. Using 
onstraint programming and lo
al sear
h methods to solve ve-hi
le routing problems. Te
h. rep., Department of Computer S
ien
e, University ofStrath
lyde, Glasgow.Solomon, M.M. 1987. Algorithms for the vehi
le routing and s
heduling problem withtime window 
onstraints. Operations Resear
h 35 254�265.Toth, P., D. Vigo, eds. 2002a. The Vehi
le Routing Problem, SIAM Monographs on Dis-
rete Mathemati
s and Appli
ations. So
iety for Industrial and Applied Mathemati
s,Philadelphia.Toth, P., D. Vigo. 2002b. VRP with ba
khauls. Toth and Vigo (2002a), 
hap. 8, 195�224.Toth, P., D. Vigo. 2003. The granular tabu sear
h and its appli
ation to the vehi
le-routing problem. INFORMS Journal on Computing 15 333�346.Voÿ, S., D. Woodru�. 2002. Optimization Software Class Libraries. Kluwer A
ademi
,Boston.

36



Type of See Number Compatible with ComplexityConstraint/Option Ref./Se
tion of Lex. Seq. ofResour
es Sear
h Feas. Che
kCapa
ity 
onstraints; CVRP [REF, �3.2℄ 1 X X O (1)Distan
e 
onstraints; DCVRP [REF, �3.2℄ 1 X X O (1)Colle
tion and deliveryba
khauls; VRPB 4.1, [REF, �2.4.3℄ 1 (with reset) X X O (1)mixed ba
khauls; VRPMB [REF, �2.4.3℄ 2 (dep.) X X O (2)VRPSDP 4.1, [REF, �2.4.3℄ 2 (dep.) X X O (2)VRP with lasso tours [REF, �2.4.3℄ 2 (dep.) X X O (2)Time window 
onstraints single TW [REF,�2.3℄ 1 X X O (1)TW; no waiting [REF,�2.3℄ 2 X X O (2)multiple TW [REF,�2.4.5℄ 1 X X O (L · T )soft TWwith linear penalty/positive slope [REF, �2.4.2,�4.4℄ 2 X no O (1)(=with linear waiting 
osts)with general soft TWs [REF, �2.4.2,�4.4℄ 2 no no ≥ O (n)limited waiting times [REF,�2.4.4℄ 3 (2 dep.) X X O (3)limited times on duty [REF,�2.4.4℄ 3 (2 dep.) X X O (3)Pre
eden
e and pairing PDP 4.2 (altern. model) X X O (1) for some neighborhoodsor: PDP 4.2 P X X O (P ) for arbitrary neighborhoodsand general pre
eden
esonly (anti-)pairing [SPPRC,�3℄ P X X O (P )only pre
eden
e [SPPRC,�3℄ P X X O (P )Multiple depots MDVRP 2.2 � X X O (1), 
he
k of ∼-relationtours with individual start and end 2.2 � X X O (1), 
he
k of ∼-relationMultiple use of vehi
les [REF,�2.3℄ � X X O (1)Multiple 
ompartments � C X X O (C)(
ontinued on next page)

37



(
ontinued from previous page)Type of See Number Compatible with ComplexityConstraint/Option Ref./Se
tion of Lex. Seq. ofResour
es Sear
h Feas. Che
kHeterogeneous �eet di�erent 
apa
ities 4.6∗ 1 X X O (1)site dependen
ies 4.4∗ min{G,H} X X O (min{G,H})di�erent travel times 4.6∗ 2 + H X X O (H)di�erent �xed 
osts 4.6∗ 1 X X O (1)di�erent 
osts for vehi
les 4.6∗ 2 + H X no O (H)Periodi
; PVRP 4.7∗ - X X O (1)Load in
ompatibilities 4.4∗ G X X O (C)Inter-tour 
onstraintsassign limited �eet to depots [Inter�2.4.2℄ 1 X X O (1)ramp assignment [Inter,�2.4.2℄ 1 + D · T X X O (D · T )staggered arrival/sorting [Inter℄ 2 + D · T X X O (D · T )limit no. tours with 
ertain property [Inter,�2.4.2℄ 2 X X O (2)Additional 
oststime-dependent travel times [REF,�2.4.6,�4.3.3℄ 1 no no ?time-dependent travel 
osts � 2 no no ?linear waiting 
osts [REF,�2.4.2,�4.4℄ 2 X no O (1)load-dependent 
ostswith polynomial 
ost fn
t. [REF,�2.4.1,�4.3.1℄ 2 X no O (1)general/pie
ew. linear 
ost fn
t. [REF,�2.4.1,�4.3.1℄ 2 no no ?REFs with de
reasing 
omponentsVRP with syn
hronization [REF,�3.1,�3.2℄ T no no ?VRP 
omb. with inventory mgmt. [REF,�3.1,�3.2℄ I · T no no ?VRP with split delivery [REF,�3.1,�3.2℄ 1 no no O (1)[SPPRC℄ = (Irni
h and Desaulniers, 2005), [REFs℄ = (Irni
h, 2006), [Inter℄ = (Hemps
h and Irni
h, 2007)(dep.)=dependent, (indep.)=independent, C=no. 
ompartments, D=no. depots, G=no. 
ustomer groups, H=no. vehi
le types,

I=no. inventories, L=max. length of a tour, P=no. pre
eden
es/pairing 
onstraints, T=num time windows/sli
esTable 3: Overview: Types of VRP, Compatibility with the Lexi
ographi
 and SequentialSear
h Approa
h of the Uni�ed Model, and Complexity of Feasibility Che
ks
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