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aDeutshe Post Endowed Chair of Optimization of Distribution Networks,RWTH Aahen University, Templergraben 64, D-52056 Aahen, Germany.AbstratThis paper presents a new uni�ed modeling and heuristi solution framework forvehile-routing problems (VRPs) with omplex side onstraints. The work is foused onstrong modeling apabilities as well as e�ient solution proedures to be used in all kindsof metaheuristis. From the modeling point of view, the framework overs a variety ofstandard VRP types with lassial onstraints, suh as apaity, distane, route length,time window, pairing and preedene onstraints, but also non-standard �rih� VRPs.From the methodologial point of view, loal searh (LS) is the key solver engine to beused in heuristi solution proedures. First and foremost, the framework introdues twogeneri tehniques for the e�ient exploration of edge and node exhange neighborhoods.On the one hand, new preproessing methods allow O (nk) neighborhoods to be searhedin time omplexity O (nk), i.e., without an additional e�ort for feasibility testing. On theother hand, Irnih et al. (2006) have introdued sequential searh as a generi method foraelerating LS in the average ase. The omputational tests on di�erent types of VRPsindiate that the proposed methods are highly e�ient. Sequential searh proedures out-perform the urrently most e�ient searh methods�whih are based on lexiographisearh�on large-sale instanes and for nearly all types of neighborhoods by fators ofbetween 10 and 1 000.Key words: loal searh, vehile routing, rih VRPs, resoure-onstrained paths1. IntrodutionThe diversity of models and solution approahes in vehile routing is enormous (see,e.g., Golden and Assad, 1988; Toth and Vigo, 2002a; Laporte, 1992, 1997). This an beestimated, for instane, by the fat that, in 2006 alone, a few hundred sienti� paperswere published. Many of these publiations meet the hallenge of extending known modelsand methods to ope with new or extended types of vehile-routing problems (VRPs).Under the name rih models, researhers summarize �non-idealized models that represent
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the appliation at hand in an adequate way by inluding all important optimizationriteria, onstraints, and preferenes� (Hasle et al., 2006). Plenty of ontributions to �rihVRPs� exist in the form of speialized algorithms that inorporate di�erent types ofextensions into existing problems (see, e.g, Janssens et al., 2006, and several artiles inthis speial issue). However, many publiations are mainly ase studies, and it is notlear whether their results are transferable to other ases. What is missing are unifyingmodeling and solution approahes that are general (=generi) and �exible enough to beused in a broad range of appliations.In many other publiations, the fous is on enhaning the e�ieny of existing meth-ods or on devising alternative approahes that solve larger instanes, ompute solutionsfaster, or provide solutions of better quality. In this ontext, muh progress has beenmade with regard to the design and analysis of metaheuristis, i.e., problem-independenttop-level general strategies whih guide other heuristis to searh for high-quality feasi-ble solutions (Ribeiro and Hansen, 2002; Resende and de Sousa, 2004). The priniples ofwell-performing metaheuristis are now muh better understood and metaheuristi imple-mentations beome reusable using software libraries (Voÿ and Woodru�, 2002). However,what is missing are powerful lower-level VRP algorithms that are e�ient and, at thesame time, general.Researh on unifying approahes for VRPs has been undertaken in di�erent diretions:Formal shemes like those of Desrohers et al. (1990) are helpful to struture and lassifydi�erent types of VRPs. Integrated models, as presented by Desrosiers et al. (1995) andDesaulniers et al. (1998), provide omprehensive mixed-integer programming formula-tions. They an be used to devise powerful deomposition approahes, suh as olumngeneration and Lagrangean relaxation integrated into branh-and-bound shemes (De-saulniers et al., 2005). These methods are primarily intended to be used as exat solutionproedures, even if they an be redesigned into approximative algorithms (Desaulnierset al., 2002).In pratie, VRPs an almost never be solved with exat methods, sine instanes are toolarge and response times of deision support systems have to be short. Thus, heuristisand metaheuristis have to be applied. Sine the majority of metaheuristis in vehilerouting use loal-searh (LS) omponents, the e�ieny and e�etiveness of LS is ruial.One way to ope with non-standard side onstraints and options in VRPs is to useLS in ombination with onstraint programming, as suggested by Shaw (1998); Kilbyet al. (2000). Constraint programming-based methods appear attrative, sine new sideonstraints an easily be added to existing solvers by stating additional rules (typiallyformulated in a high-level onstraint programming language). The problem of identify-ing feasible improving solutions is solved through a general-purpose searh engine. Aknown drawbak of onstraint programming-based (VRP) solution methods is howeverthat the additional �exibility in modeling is bought by the expense of loosing e�ieny,in partiular, ompared to traditional LS methods. It is worth mentioning that the largeneighborhood searh (LNS) priniple, whih has been used in the ontext of onstraint pro-gramming, is very suessful in �nding least-ost solutions. However, LNS neighborhoodsan also be searhed diretly (Shrimpf et al., 2000; Røpke and Pisinger, 2006).Researh on e�ient LS methods for VRPs and traditional (k-edge exhange) neighbor-hoods has been undertaken by Kindervater and Savelsbergh (1997). It seems that these2



tehniques are not widely used, probably, sine they seem to be intriate. In addition,they were not expliitly presented in a way that allows a diret adaptation to di�erentLS operators and to new types of side onstraints (f. Shaw, 1998, p. 6).This paper presents a new uni�ed modeling and heuristi solution framework for VRPswith omplex side onstraints. The work is foused on strong modeling apabilities and,�rst and foremost, on e�ient solution proedures. The ontribution is threefold: First,the aim of the framework is to help model di�erent real-world VRPs in a generi way,so that a broad lass of standard problem types and also rih VRPs an be handled.The modeling apabilities over all standard types of VRPs, suh as the apaitated anddistane-onstrained VRP (CVRP, DCVRP), the VRP with multiple depots (MDVRP),time windows (VRPTW), simultaneous delivery and pikup (VRPSDP), bakhauling(VRPB), pikup-and-delivery problems (PDP), the periodi VRP (PVRP), �eet mixproblems (FMP), VRPs with site dependenies, vehile and request (in)ompatibilities,multiple-start option, limited waiting times and times on duty as well as mixtures andextensions of these (Setion 4 provides a more detailed overview of types of VRPs thatan and annot be modeled and solved with the framework). The framework is mainlybased on the giant-tour representation (Christo�des and Eilon, 1969) and the oneptof resoure-onstrained paths (Desaulniers et al., 1998; Irnih and Desaulniers, 2005). Itprovides a �exible and generi but well-de�ned representation of feasible and infeasibleroute plans.Seond, the framework is intended to support e�ient solution proedures that are basedon LS. The importane of LS lies in the fat that it is the key omponent for �ndingimproving solutions within nearly all metaheuristis for VRPs. Beause of its generirepresentation, the uni�ed framework helps to separate the modeling phase of a spei�problem at hand from the development of e�ient solution methods that use LS as amajor building blok. The key idea of any LS-based proedure is to iteratively builda neighbor solution �rst and hek its feasibility and gain afterwards. If implementedin a straightforward way, this feasibility hek auses an extra e�ort bounded by thelength of a longest tour. This length is in general only bounded by O (n) for instanesof size n, where n is the number of nodes in the problem. Tehniques that avoid theadditional fator in the worst-ase for ost omputations and feasibility heks are alreadyknown, but they are intrinsially tied to the lexiographi tree searh paradigm (see(Kindervater and Savelsbergh, 1997) and Setion 3.3.1). Here, we present new tehniquesfor searhing neighborhoods of size O (nk) in O (nk) time. We give su�ient onditions onthe update of resoures that guarantee O (1) feasibility tests. The new tehniques are moregeneri and ompatible with any kind of neighborhood exploration strategy and, thus,enable aelerated searh methods. Examples of neighborhoods to whih the methodsapply are the k-opt and k-opt* neighborhoods, the reloation and Or-opt neighborhoods,di�erent node and string swap/exhange neighborhoods, and others (reent surveys onVRP neighborhoods and searh tehniques are (Bräysy and Gendreau, 2005a; Funke et al.,2005a)).Third, the goal of all e�ient LS proedures is to �nd a best or �rst improving neighborsolution as fast as possible, i.e., not only from a worst-ase but from an average-asepoint of view. An analysis of the struture of the lassial exhange proedures in therouting ontext yields that any neighbor solution of a (giant) tour an be generated byremoving ℓ edges and replaing them by ℓ others (even if it is a node exhange proedure).3



The hoie of these edges is typially made by taking k ≤ ℓ independent deisions.Hene, the assoiated loal searh proedure an be onsidered a tree searh methodwhere the searh tree has depth k. The two main riteria for a redution of the searhspae, i.e., for terminating the searh or �pruning the searh tree�, are ost and feasibilityonsiderations. It has been disussed in (Funke et al., 2005a; Irnih et al., 2006) that onean distinguish between two e�ient approahes. Sequential searh is based on the idea ofost-based redutions, i.e., one tries to prove at an early stage i < k that no improvementan be found whih inludes the nodes or edges of the stages 1, . . . , i. Lexiographisearh is driven by feasibility redutions, i.e., one tries to prove at an early stage i < kthat no feasible exhange exists whih inludes the nodes or edges of the stages 1, . . . , i.This paper presents onepts for applying sequential searh proedures to the generimodeling framework in order to further redue the e�ort of evaluating a neighborhoodof size O (nk). The goal is to perform less than O (nk) operations in the average ase.The aeleration methods an be applied in the ontext of best improvement as wellas �rst improvement pivoting strategies. Computational results indiate the superiorityof sequential searh-based approahes for a variety of VRPs with side onstraints overstraightforward and also lexiographi implementations (Kindervater and Savelsbergh,1997). Note that lexiographi searh approahes already ensure the O (nk) worst-asetime bound for neighborhoods of size O (nk).Finally, we would like to stress that the paper does not present a spei� metaheuristi.The presented researh is a ontribution to the foundations of e�ient searh tehniques.These e�ient searh tehniques an be seen as basi building bloks that an easily beintegrated into di�erent metaheuristis (see Setion 6).The paper is strutured as follows: Setion 2 presents the uni�ed framework from amodeling point of view, introduing onepts for representing VRP solutions generially.Setion 3 points out the major tasks that have to be performed in an e�ient LS pro-edure. These tasks inlude e�ient ost omputations and feasibility testings as wellas setting up well-suited searh strategies that math with these omputational tasks.Setion 4 presents real-world onstraints �tting into the framework and also disusseslimitations of the approah. The omputational tests of Setion 5 show the e�etivenessof the new solution framework. Final onlusions are given in Setion 6.2. Modeling FrameworkThe proposed uni�ed modeling and solution framework for vehile routing and LS-basedmetaheuristis an be seen as a ounterpart to the framework of Desaulniers et al. (1998).Both frameworks follow the idea that resoure-onstrained paths apture whih routesor shedules are feasible. While the uni�ed framework of Desaulniers et al. (1998) isintended to be used with an exat olumn-generation or Lagrangean-relaxation method,the framework presented here fouses on heuristi proedures based on enumerative LSalgorithms. Moreover, in (Desaulniers et al., 1998) only the feasibility of individual routesand shedules is enoded in the de�nition of resoure-feasible paths. Constraints thatouple together di�erent routes form the onstraints of the master program, see (Lübbekeand Desrosiers, 2005). Here, the feasibility of individual routes as well as several typesof inter-tour onstraints is de�ned by resoure-onstrained paths. The building bloks ofthe representation are the routing graph, the giant-tour representation, a ompatibilityrelation between route-start and route-end nodes, and the onsideration of the entire4



giant route as a single resoure-feasible path. The following subsetions explain the abovebuilding bloks in more detail.2.1. Routing GraphIn order to desribe neighborhoods and solution proedures formally, a onise represen-tation of VRP solutions, i.e., route plans, is needed. This representation has to be �exibleto model a wide range of rih VRPs and has to over typial node-exhange and edge-exhange neighborhoods, but must still allow e�ient algorithmi proedures to exploreneighborhoods. The basis for suh a representation is a direted routing graph G = (V,A).Any solution of the rih VRP is represented by a single yle in G, the so-alled gianttour. For those VRPs for whih transportation tasks are uniquely represented by nodes,solutions oinide with Hamiltonian yles of the routing graph.The more general ase is that alternative servie or delivery options exist, e.g., in (Car-deneo, 2005) goods have to be delivered to alternative delivery points. In general, a setof tasks Q has to be overed. Subsets Qv and Qe of tasks (possibly empty) are as-soiated with eah node v ∈ V and ar e ∈ A of the routing graph (see also Irnihand Desaulniers, 2005, p. 40) and (Irnih and Villeneuve, 2006, �7.3). Feasible VRPsolutions are yles (v0, e1, v1, e2, v2, . . . , ep−1, vp−1, ep, v0) (not neessarily Hamiltonian)where ⋃p
i=1(Qvi−1

∪ Qei
) is a partitioning or overing of the tasks Q. In lassial node-routing appliations, all ustomers/requests require a single visit and, hene, di�erenttasks are assoiated with the ustomer/request nodes. If there is a delivery option, e.g.,to deliver something (=task q) to loation v1 between 8:00 and 11:00 or to deliver itto loation v2 between 10:00 and 18:00, one an model this option with a network on-taining nodes v1 and v2 (with di�erent time windows) that have the same assoiatedtask Qv1

= Qv2
= {q}. Moreover, more that one task might be performed when visitinga partiular loation v, i.e., Qv an ontain more than one element. In all these ases,tasks are assoiated with nodes and there are no tasks on ars. Conversely, in ar-routingappliations, the tasks are assoiated with ars.We all any yle task-feasible if it implies a partitioning or overing of the tasks. Forthe entire paper we assume that testing whether (i, j) ∈ A (for any i, j ∈ V ) and thedetermination of tasks assoiated with nodes and ars is possible in O (1) time.Solutions of VRP involving more than a single vehile an be represented as a olletion ofroutes. Hene, the node set V = R∪O∪D of the routing graph onsists of request nodes Rand route-start O and route-end nodes D. A route is a path (v0, v1, . . . , vp) in G, startingwith a route-start node v0 = o ∈ O, ontinuing with request nodes v1, . . . , vp−1 ∈ R,and ending with a route-end node vp = d ∈ D. The interpretation of the request nodesdepends on the problem at hand. In the ase of the VRP, request nodes orrespond toustomers that have to be visited. For the PDP, a request node is either a pikup or adelivery. In more omplex routing appliations, a request may even onsist of more thana pair of nodes.2.2. Compatibility Relation between Route-Start and Route-End NodesThe aim of route-start and route-end nodes is to introdue vehile and depot harater-istis into the problem. First and foremost, these nodes represent spatial points wherevehiles start and end their trips. In order to ensure that route-start and route-end nodes5



are ompatible, we de�ne a relation ∼ on O ×D. Again, the ompatibility of pairs (o, d)of route-start and route-end nodes depends on the problem at hand: For single-depotproblems with a homogeneous �eet, all o ∈ O and d ∈ D are ompatible, sine allnodes represent the same physial loation independent of the vehile. In multi-depotproblems, the sets O and D are partitioned aording to the nD depots or garages, e.g.,
O = O1 ∪ · · · ∪ OnD , D = D1 ∪ · · · ∪ DnD . Pairs o ∈ Ok, d ∈ Dl are ompatible if andonly if k = l. Sets Ok × Dk, onsisting of a single pair, an be used to model VRPs withindividual vehiles departing from and going to di�erent loations. In general, we assumethat O and D have the same ardinality, |O| = |D|. The easiest way to impliitly enodethe ompatibility relation into the routing graph is to de�ne an ar (o, d) ∈ A if and onlyif o ∼ d holds.2.3. Giant Route and Giant TourA solution to a VRP is alled a route plan. A route plan an be written as x = (p1, p2, . . . , pH)with an H-tuple of disjoint routes in G. Note that this de�nition implies that every route-start and route-end node ours in exatly one route. We will denote the (maximum)number of nodes in a route plan by n = |V |.The giant route is the path (p1, p2, . . . , pH) in whih eah route-end node di is onneted tothe next route-start node oi+1 (for i = 1, 2, . . . ,H−1). Similarly, the giant tour is the ylein whih, additionally, dH is onneted to o1. In the following, P (p1, p2, . . . , pH) denotesthe giant route and C(p1, p2, . . . , pH) the giant tour. The giant-tour representation of aroute plan is a generalization of the MTSP representation of the VRP (Christo�des andEilon, 1969) to more general VRPs. It has the advantage of allowing single and multipleroute problems to be handled in a very similar way. Figure 1 depits suh a representationfor the ase of four routes, departing from two depots.

o1 o2 o3 o4 d4d3d1 d2 Fig. 1. Giant�Tour Represen-tation2.4. Resoure-Constrained PathsResoure-Constrained Paths (RCPs) and assoiated shortest-path problems have beenvery suessfully used in the ontext of olumn generation methods, not only appliableto VRP but also to vehile- and rew-sheduling problems, see (Desaulniers et al., 1998;Irnih and Desaulniers, 2005). The suess of RCPs is based on the fat that the resoureonept onstitutes a very �exible tool for modeling omplex ost strutures for routesand shedules as well as a wide variety of rules that de�ne their feasibility. In the ontextof VRPs, olumn generation and branh-and-prie-and-ut give rise to exat solution pro-edures that are restrited to small and medium-sized instanes of up to about 100 nodes,see e.g. (Fukasawa et al., 2004; Desaulniers et al., 2006; Jepsen et al., 2006). Here, wepropose to transfer the onept of RCPs from exat to heuristi solution methods. Thegoal is to provide LS omponents for metaheuristis, whih are �exible and at the sametime powerful, so that they an be applied to large-sale rih VRP instanes in order toprodue high quality solutions. 6



Resoure-onstrained paths (RCP) are de�ned over a so-alled routing (di)graph G =
(V,A). For the sake of onveniene, we assume that G is simple, so that a path an bewritten as P = (v0, v1, . . . , vp) with the understanding that (vℓ−1, vℓ) ∈ A holds for all
ℓ ∈ {1, . . . , p}. Resoure onstraints an be formulated by means of (minimal) resoureonsumptions and resoure intervals, e.g., the travel times tij along ars (i, j) ∈ A andtime windows [ai, bi] at nodes i ∈ V for the time resoure. Let R be the number ofresoures (suh as time, load, ost et.). A vetor T = (T 1, . . . , TR)⊤ ∈ R

R is alled aresoure vetor and its omponents resoure variables. For two resoure vetors a and bthe interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b} (omponentwise).Resoure intervals, also alled resoure windows, are assoiated with nodes i ∈ V andare denoted by [ai, bi] with ai, bi ∈ R

R, ai ≤ bi. (In the following, ar
i refers to a resourevetor of node i and its omponent for the resoure r.) The hanges in the resoureonsumptions assoiated with an ar (i, j) ∈ A are given by a vetor fij = (f r

ij)
R
r=1 ofso-alled resoure extension funtions (REFs). An REF for resoure r, i.e., f r

ij : R
R →

R, depends on a resoure vetor Ti ∈ R
R. The vetor Ti orresponds to the resoureonsumption aumulated along a path from a given start node s to a node i, i.e., up tothe tail node i of ar (i, j). Hene, the result fij(Ti) ∈ R

R an be interpreted as a resoureonsumption aumulated along the path (s, . . . , i, j). Classial REFs are of the form
f r

ij(Ti) = max{ar
j , T

r
i +trij}, where trij are onstants assoiated with the ar (i, j) and ar

j thelower bound of the resoures r at node j. Classial REFs are separable by resoures, i.e.,no interdependenies exists between di�erent resoures. More general de�nitions of REFsprovide powerful instruments for modeling pratially relevant onstraints over resouresthat are interdependent (see Irnih and Desaulniers (2005), Irnih (2006), and Setion 4).A path P = (v0, v1, . . . , vp) is resoure-feasible if resoure vetors Ti ∈ [avi
, bvi

] exist forall positions i = 0, 1, . . . , p suh that fvi,vi+1
(Ti) ≤ Ti+1 holds for all i = 0, . . . , p − 1. Wedenote by F the set of all resoure-feasible paths.Conluding, a route plan (p1, p2, . . . , pH) is feasible if and only if all of the following fouronditions hold: (1) p1, p2, . . . , pH are node-disjoint routes, (2) C(p1, p2, . . . , pH) is a task-feasible yle in the routing graph G, (3) all route-start and route-end nodes of routes pi =

(oi, . . . , di) are ompatible, i.e., oi ∼ di for all i ∈ {1, . . . ,H}, and (4) P (p1, p2, . . . , pH)is a resoure-feasible path. The novelty in this de�nition is that the entire giant route
P (p1, p2, . . . , pH) is onsidered as one RCP. This implies that partiular REFs are neededto onnet onseutive routes in the giant tour. Whenever a route-end node dk ∈ D isonneted to a route-start ok+1 ∈ O, all intra-tour resoures r have to be reset. This�ts in niely with the de�nition of lassial REFs, sine a reset funtion is given by theREF f r

dk,ok+1(T ) = max{ar
ok+1 , T

r − M} (with an appropriate large number M). Notethat inter-tour resoures r (suh as ost) should not be reset but kept, i.e., f r
dk,ok+1(T ) =

max{−M,T r} = T r.3. E�ient Loal SearhLoal searh is the most frequently used heuristi tehnique for solving ombinatorialoptimization problems. It provides the basis for modern metaheuristis, suh as TabuSearh, GRASP, and variable neighborhood searh (VNS), see (Hoos and Stützle, 2005).Most of the e�ort spent within an enumerative LS algorithm is used for sanning theneighborhood (for a lassi�ation of LS algorithms the reader is referred to (Funke et al.,2005a)). It is, therefore, desirable to use e�ient algorithms within LS to speed up the7



proedure that performs this san. In this setion, we �rst larify the relationship betweenneighborhoods, moves, the order in whih the searh tree is explored, and�in detail�algorithms that ompute osts and test the feasibility of neighbor solutions.3.1. Loal Searh, Neighborhoods, and MovesAn instane (X, c) of a ombinatorial optimization problem an be stated as minx∈X c(x),where X is the set of feasible solutions and c the ost funtion. The heart of an LSproedure is the de�nition of a neighborhood N , whih is a mapping N : X → 2X .Eah element x′ ∈ N (x) is alled neighbor of x. Neighbors x′ with ost c(x′) < c(x) areimproving neighbors. LS starts with an initial feasible solution x0 ∈ X. In eah iteration tit replaes the urrent solution xt by an improving neighbor xt+1 ∈ N (xt), if suh animproving neighbor exists. The LS proedure terminates with a loal optimum, i.e., asolution xt for whih the neighborhood N (xt) ontains no improving solution.Algorithm 1 Generi Loal Searh1: Input: A feasible solution x0 ∈ X.2: LET t = 0.3: REPEAT4: SEARCH for an improving neighbor x′ in the neighborhood N (xt) of the urrent solution xt.5: IF there exists an improving neighbor solution x′ ∈ N (xt) THEN6: LET xt+1 = x′ and t = t + 1.7: UNTIL no more improvements an be found.8: Output: A loal optimum xt.For further details of loal searh, we refer the reader to the books by Rayward-Smith et al.(1996), Aarts and Lenstra (1997), and Hoos and Stützle (2005). The naming of spei�VRP moves and neighborhoods used in the following is also taken from the survey (Funkeet al., 2005a).Note that there are several options for hoosing improving neighbor solutions in Step 4. Ifthe searh method is enumerative (i.e., neighbor solutions x′ ∈ N (xt) and their osts c(x′)are evaluated one by one), taking the �rst improving solution or taking a best improvingsolution are two extreme strategies known as �rst improvement and best improvement.Another well-known strategy, referred to as d-best improvement, terminates the searhwhen d improving neighbor solutions have been found and returns a best of them. Fromthe worst-ase point of view, all searh strategies are equivalent, sine showing that xt isa loal optimal solution requires the entire neighborhood N (xt) to be sanned. However,from an average ase point of view, these strategies might signi�antly di�er in theire�ieny (we expet from best improvement that it will perform less iterations with largersteps that take longer ompared to �rst improvement). It is, in general, not lear whihstrategy works better, but the problem, the neighborhoods, and the harateristis of theinstanes an have an impat. Note that all of these pivoting strategies may determinedi�erent paths through the searh spae and end up in di�erent loal optima.Typially, neighborhoods and neighbor solutions are neither onstruted by the fun-tion N : X → 2X nor given by subsets N (x) ⊂ X. Instead, they are de�ned impliitly bya set of moves M . A move m ∈ M transforms a solution into a neighbor solution. Someof the moves m ∈ M might transform a feasible solution x into an objet m(x), whih hasa struture similar to a feasible solution, but does not neessarily satisfy all onstraintsthat de�ne feasible solutions. In the following, we will refer to suh an objet as a solu-tion. Examples in the ase of VRPs are the removal of a ustomer node and its insertion8



into another position or the swapping of two ustomers between two tours. These movesmight violate a onstraint. Let Z ⊇ X be the set of all solutions. In general, we denoteby M the set of moves, where a move m ∈ M maps from Z to Z, i.e., m : Z → Z. Fora given x ∈ Z, the extended neighborhood N̂ ontains all neighbors of x, either feasibleor infeasible, i.e., N̂ (x) ⊇ N (x). Every move m ∈ M with m(x) ∈ X is alled a feasiblemove w.r.t. x. Conluding, �nding a feasible move onsists of two parts: the manipulationof a urrent solution and the test of feasibility.3.2. Major Tasks in a Loal Searh Proedure for Vehile RoutingThe fous of this paper is on the e�ient implementation of Step 4 of Algorithm 1.The major tasks that have to be performed are the impliit or expliit onstrution ofneighbor solutions x′ ∈ N̂ (x), for eah of them the omputation of the ost c(x′) orgain g(x′) = c(x)− c(x′) ompared to the urrent solution x, and the test of whether thenewly onstruted neighbor is feasible or not (separating andidates x′ ∈ X from thosein Z \ X).The problem of heking the feasibility of a neighbor solution is best explained by an ex-ample: A swap move hooses two nodes wi and wj of the giant route and exhanges them.Hene, the four ars (wi−1, wi), (wi, wi+1), (wj−1, wj), (wj , wj+1) are deleted and the fourars (wi−1, wj), (wj , wi+1), (wj−1, wi), (wi, wj+1) are added to the urrent solution x, seeFigure 2. The extended swap neighborhood N̂ (x) of giant route x onsists of all other gi-
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Fig. 2. Prinipleof a Swap Move,Giant Tour with5 Routesant routes that an be generated by hoosing di�erent nodes wi and wj, so that the swapneighborhood is of size O (n2). A newly onstruted neighbor solution x′ ∈ N̂ (x) an berejeted if it is non-improving or infeasible. Moreover, we see that a neighbor solution x′is uniquely determined after making k = 2 independent deisions (the deisions aboutthe two nodes/positions to swap).In general, all enumerative searh proedures for O (nk) neighborhoods work on a searhtree with (at least) k-levels. They di�er in two aspets:(1) In the order, in whih objets, i.e., nodes or ars de�ning the move, are determined(nodes wi and wj for the swap move). Enumeration rules for nodes an onsider nodesby inreasing (dereasing) index, position in the giant tour, or ordered by an auxiliaryattribute (e.g., lower or upper limit of an assoiated resoure interval). Alternative enu-meration rules hoose nodes one after another�sequentially�suh that distane, ost,or any other resoure onsumption of an assoiated ar is inreasing. Lexiographi andsequential searh approahes desribed in (Irnih et al., 2006) di�er exatly with respetto these orderings. Di�erent orderings allow tailored(2) Criteria for pruning the searh tree. If some branh of the searh tree does not ontainany feasible or improving neighbor solution, it an be pruned. It means that we do not haveto build and evaluate the orresponding solutions x′ but an take a shortut. This is the9



key idea for aelerating enumerative searh approahes forO (nk)-sized neighborhoods tobe searhed in less that nk operations. In ontrast to heuristi tehniques like those usedin (Toth and Vigo, 2003), we an be sure to �nd a best (improving) neighbor solution.Note that gain-based riteria try to show that there is no improving (or less stritly, noaeptable) solution relative to the quality of the urrent solution x and, possibly, relativeto another improving neighbor solution x′′ ∈ N (x) already omputed. Computing thegain of a move is trivial as long as it an be expressed as the di�erene of the osts of allars hanged replaing x by x′, e.g., g(x, x′) = cwi−1,wi
+ cwi,wi+1

+ cwj−1,wj
+ cwj ,wj+1

−
cwi−1,wj

− cwj ,wi+1
− cwj−1,wi

− cwi,wj+1
for the swapping of wi and wj . However, this isnot the ase if ost depends on other resoures, suh as load-dependent transport tari�s,wages for drivers depending on the time on duty et. Then, the preproessing and searhtehniques presented in Setion 3.3 still allow onstant time ost omputations providedthat REFs are generalizable to segments. Sequential searh tehniques, however, are notdiretly appliable then (f. Setion 3.4).Feasibility-based arguments try to identify branhes of the searh tree that do not ontainany feasible solution at all. Both types of arguments need tailored searh strategies inthe sense that the sequene in whih deisions are taken must allow the argument thatall remaining solutions of the branh under onsideration are either more ostly or �less�feasible. It is, therefore, hardly possible to diretly mix both approahes. Consideringfeasibility of a swap, note �rst that one or two routes are a�eted, depending on whether

wi and wj are in the same route or di�erent routes. Testing a onstruted route in astraightforward way means looping over the nodes of the route in order to omputeminimum resoure onsumptions whih are then heked against upper bounds. This isat least possible if all REFs fij are non-dereasing, see (Irnih, 2006). The loop over thenodes of a single route auses an e�ort of O (n) if the length of a tour is not limited by a�xed number, independent of n. Even if there is a maximum length of a tour, the preseneof inter-tour onstraints an require that resoure onsumptions have to be propagatedalong the entire giant route.3.3. Feasibility Cheks and Cost Computations in Constant TimeIf ost is one of the resoures (this is no restrition, but the standard ase in Irnih andDesaulniers (2005)), feasibility heking and ost omputation an be seen as identialalgorithmi proedures. Computing the ost of a giant tour C(p1, . . . , pH) is equivalentwith �nding a least ost resoure vetor at the destination node of P (p1, . . . , pH). Improv-ing solutions w.r.t. x are exatly those giant routes that respet an upper bound c(x)− εfor the ost resoure (with ε > 0 small). In the following (if not stated otherwise), wespeak of �onstant time feasibility tests� for both ost omputations and for heking theremaining resoure variables.Before we introdue our new approah, an alternative method proposed by Kindervaterand Savelsbergh (1997) is explained along with its apabilities and limitations.3.3.1. Global Variables Approah of Kindervater & SavelsberghAording to Kindervater and Savelsbergh (1997), �the basi idea is to use a spei� searhstrategy in ombination with a set of global variables suh that testing the feasibility ofa single exhange and maintaining the set [of℄ global variables requires no more than10



onstant time�. The spei� searh strategy they use is lexiographi searh. Note thatthe traditional node and edge exhange proedures are haraterized by the fat thata given tour (or two or several a�eted tours) are split into paths (from now on alledsegments). These segments are permuted, some may be inverted, and �nally onatenatedtogether again to form a new tour. Lexiographi searh is haraterized by the fatthat, in the innermost loop of the searh algorithm, from one iteration to the next, aninner segment grows by exatly one node. In this way, global variables for a segment
(wi, wi+1, . . . , wj−1, wj) are omputed by either onatenating (wi, wi+1, . . . , wj−1) with
(wj−1, wj) or (wi, wi+1) with (wi+1, . . . , wj−1, wj). Contrary, in an initialization phase andin outer loops of the searh algorithm, global variables for starting and ending segments,i.e., (w1, w2, . . . , wi−1) and (wj+1, . . . , wn), are omputed and stored. Together, theseglobal variables of the segments allow onstant time feasibility heks. For instane, timewindow onstraints require the omputation of a total travel time, earliest departure time,and a latest arrival time. This is based on ertain forward and bakward omputationsalong segments. Kindervater and Savelsbergh (1997) larify these proedures for 2-optand Or-opt moves in onnetion with time windows and preedene onstraints as wellas for problems with simultaneous deliveries and pikups.Their approah is intrinsially tied to the lexiographi order in whih moves are on-sidered, beause a onstant time update of the global variables from one iteration tothe next requires that only a �xed number of nodes (typially one node) is added to asegment. In the ase of a swap move (see Figure 2), an outer loop onsiders nodes wi (atposition i in the giant tour) in any order, e.g., in the order in whih they appear in thetour. Contrary, the inner loop must hoose the seond ustomer nodes wj, one by one,at positions i + 2, i + 3, . . . , n − 1. The onstant time omputation of global variables ispossible for the segments P2 = (wi), P3 = (wi+1, . . . , wj−1, wj−1), and P4 = (wj), sinethese global variables are either omputed from srath (for segments of length 1) or fromglobal variables of the previous segment P ′

3 = (wi+1, . . . , wj−2). The initial phase has toprovide global variables for all segments P1 = (w1, . . . , wi−1) for i = 1, 2, . . . , n − 3 and
P5 = (wj+1, . . . , wn) for j = 3, . . . , n − 1.Kindervater and Savelsbergh (1997, p. 350) point out that their global variables approah,ombined with lexiographi searh, an be used for multiple onstraints and all k-edgeexhange neighborhoods. However, a unifying theory explaining whih types of onstraintsan and whih annot be dealt with is missing. For instane, resoure onstraints withresoures that depend on eah other (suh as load-dependent travel times et.) are notonsidered. On the other hand, resoure extension funtions, as introdued by Desaulnierset al. (1998), provide a well de�ned, �exible, and generi formalism for the desription ofside onstraints relevant for rih VRPs.3.3.2. Segment REFsThe following subsetion explains how REFs an be inverted and generalized to segments,so that extensions of the ideas of Kindervater and Savelsbergh an be used (1) for moregeneral VRPs de�ned by non-standard REFs, (2) in the ontext of giant tours, i.e., whensegments an also ontain nodes from more than just a single tour, and (3) within di�erentsearh strategies allowing more �exibility than the lexiographi searh approah.The key idea is to separate the searh strategy from the omputation of global variables (orany similar information, e.g., given by segment REFs). Note that all the lassial moves11



an be onsidered as k-edge exhanges, even if their intention is to exhange nodes.The swap move, for instane, is a speialized 4-opt move (exept for the ase where
wi and wj are adjaent yielding a 2-opt move; f. legitimay onditions, explained in(Glover, 1996) and (Irnih et al., 2006)). Therefore, moves deompose the giant routeinto a small �xed number of segments. The swap move depited in Figure 2 implies thesegmentation P1 = (o1, . . . , wi−1), P2 = (wi), P3 = (wi+1, . . . , wj−1), P4 = (wj), and
P5 = (wj+1, . . . , d

5). The paths P1, . . . , P5 depend on the giant tour (w1, w2, . . . , wn, w1)urrently under onsideration (the inumbent giant tour) and the hoie of the nodes
wi and wj (or, equivalently, their positions i and j). These �ve segments are permutedand onstitute the new giant route P = P (P1, P4, P3, P2, P5) (f. notation introduedin Setion 2.3). The move is feasible if and only if P is resoure-feasible and C(P ) is atask-feasible yle in whih route-start and route-end nodes are ompatible. Testing thelast two onditions, i.e., task-feasibility and that all route-start and route-end nodes areompatible, is straightforward and possible in O (1). The following analysis, therefore,fouses on resoure-feasibility.Our goal is now to determine attributes for eah of the possible segments suh thatone an deide in O (R) time whether the onatenation of two segments also forms afeasible or infeasible segment. Furthermore, we want to ompute the attributes of theonatenated segment in O (R), so that, in summary, testing the feasibility of P an beperformed in onstant time O (R), too. Irnih (2006) provides the theoretial bakgroundfor aomplishing this task. The attributes whih have to be omputed are the de�ningoe�ients of the segment REFs as well as inverse segment REFs for some of the segmentsunderlying the inumbent giant tour. For the sake of larity, we start by pointing out thebasi assumptions to hold for the rest of the paper:(a1) All REFs have a �nite representation and allow funtion evaluations in O (R) time.This is true for several types of non-dereasing REFs presented in Setion 4.(a2) All inverse REFs exist. The inverse of a non-dereasing REF fij : R

R → [aj,∞) isa funtion f inv
ij : R

R → (−∞, bi]. It has to be non-dereasing and its de�ning propertyis
fij(T ) ≤ T ′ ⇐⇒ T ≤ f inv

ij (T ′) for all T ∈ (−∞, bi] and all T ′ ∈ [ai,∞).(a3) All inverse REFs have a �nite representation and allow funtion evaluations in
O (R) time.(a4) All REFs and inverse REFs an be generalized to segments. Segment REFs alsoallow funtion evaluations in O (R) time.(a5) The onatenation of any two segments has a REF that an be omputed in O (R)time from the REFs of the two segments.Obviously, if the number R of resoures is �xed, i.e., independent of the size n of thegiant tour, all the above mentioned operations an be performed in onstant time O (1).We refrain from giving a formal presentation of all the details onerning REFs andrequired properties, derivations, and proofs onerning �nite representation, inversion,generalization to segments, funtion evaluation and onatenation. These details an be12



found in (Irnih, 2006). However, some remarks for explaining and interpreting the newlyintrodued segment REFs and inverse REFs seem appropriate: We onsider an arbitrarypath P . The segment REF fP : R
R → R

R gives for eah initial minimum resoure on-sumption T at the start node the minimum resoure onsumption at the �nal node of P .Note �rst, that this is exatly the idea of ar REFs, i.e., for P = (i, j) the value fij(T )is the minimum resoure onsumption at j given the resoure onsumption T at node i.Note further, that the term �the minimum resoure onsumption� is only well-de�ned ifthe REFs are nondereasing. While ordinary REFs for ars and segments propagate mini-mum resoure onsumptions forwards, inverse REFs propagate upper bounds for resoureonsumptions bakwards. The inverse REF f inv
ij : R

R → R
R takes any upper bound T ′for the resoure onsumption at node j and omputes the value f inv

ij (T ′) whih is anupper bound for the resoure onsumption on node i. Similarly, for the inverse segmentREF f inv
P : R

R → R
R, the resoure vetor f inv

P (T ′) is the upper bound for the resoureonsumption at the start node of P under the ondition that one propagates resouresalong P and that T ′ is an upper bound for the resoure onsumption at the �nal node.The importane of segment REFs and their inverses is due to the following result:Proposition 1 (Irnih (2006), Theorem 3) Given resoure-feasible paths P1, P2, . . . , Pq ∈
F , where the ith path Pi starts with a node wi−1 and ends with a node wi, suh that theend-node of Pi oinides with the start-node of Pi+1 for all i ∈ {1, . . . , q − 1}. Theironatenation P1 + P2 + · · · + Pq is resoure-feasible if and only if all inequalities
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)... (1)
fP1

◦ fP2
◦ · · · ◦ fPq−1

(aw0
)≤ f inv

Pq
(bwq)hold. (Note: f ◦ g(x) is de�ned as f(g(x)).)A diret onsequene of Proposition 1 is that the problem of e�iently testing the feasi-bility and omputing gains is�at least partially�solved. A prerequisite is, however, thatsegment REFs must be available.Theorem 2 Let x be a feasible giant tour and let all segment REFs as well as inversesegment REFs w.r.t. x be already omputed for all possible segments. Then, any neighborsolution x′ = m(x) of a ℓ-edge exhange move m an be tested for feasibility in O (ℓR)time.Sine for all node-exhange and edge-exhange neighborhoods that are explored with treesearh methods (f. Funke et al., 2005a) the number ℓ of segments is onstant (and small),Theorem 2 implies O (R) time feasibility heks.3.3.3. PreproessingWhat remains to be done is to �nd e�ient proedures to provide REFs and inverseREFs for all or (at least) a suitable subset of segments. Computing segment REFs andupper bounds for a given giant tour an be undertaken with a straightforward proe-dure requiring O (Rn2) time and spae. The reason is that there are 2n2 segments andinverted segments spanned between the n2 pairs of nodes (note that moves might invert13



some of the segments, so that inverted segments have to be onsidered, too). SegmentREFs fP for a segment P = (vi, . . . , vj−1, vj) are generated from the segment REF fP ′of the segment P ′ = (vi, . . . , vj−1) and the REF fvj−1,vj
. Similarly, for the segment

Q = (vi, vi+1, . . . , vj), j > i the inverse segment REF f inv
Q is omputed from the in-verse REF f inv

vi,vi+1
and the inverse segment REF f inv

Q′ of Q′ = (vi+1, . . . , vj). With thegeneral assumptions (a1)-(a5) on REF operations, eah step requires O (R) time leadingto the desired result.Proposition 3 Segment REFs and inverse segment REFs for all 2n2 segments and in-verted segments of a giant tour of length n an be omputed by a straightforward proedurein O (Rn2) time and spae.From a worst ase point of view, a quadrati preproessing is satisfatory if neighborhoods
N of sizeO (nk) with k ≥ 2 are inspeted. However, we would like to aelerate the averagease and orresponding searh strategies that san less than O (n2) neighbors. Moreover,it has been shown by Funke (2003) that restriting the length of some segments an leadto interesting neighborhoods that an be searhed quikly. For instane, restriting thelength of inverted segments to a �xed value K for 2-opt moves yields a O (Kn)-sizedneighborhood. Using �rst-improvement pivoting strategies in LS also requires aeleratedmethods for the preproessing phase. Our aim is, therefore, to redue the number ofsegments that have to be onsidered in feasibility testing proedures.A solution to this problem is the de�nition of seed points dividing the nodes of the gianttour uniformly into setions. A 1-level hierarhy with parameter β ≤ 1 uses equidistantsetions of length nβ, so that n/nβ setions result, see Figure 3. The idea of a hierarhy of

section of      nodesn¯ seed point Fig. 3. 1-Level HierarhyREFs is that, instead of omputing all 2n2 REFs for all segments, only segments withina setion (i.e., between two onseutive seed points) and between all pairs of seed pointsneed to be onsidered. In order to ompute a REF ranging from position i to position j,one has to onsider three ases: (1) If positions i and j fall into the same setion, theREFs are already available. (2) If i and j are in two di�erent but onseutive setionssurrounding the unique seed point s, the REF between i and j an be omputed as theonatenation of the REF from i to s and the REF from s to j. (3) Otherwise, there areat least two seed points between i and j with s1 the �rst seed point following i, and s2 thelast seed point preeding j. The REF from i to j an be omputed as the onatenationof three REFs, i.e., from i to s1, from s1 to s2, and from s2 to j. In all three ases,the segment REF from i to j is available in, at the utmost, O (3R) = O (R) steps. Thenumber of segment REFs to ompute is
O
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= O
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)

,where fator 2 is for forward or inverted segments, the �rst term is the omputation of allREF inside setions, and the seond term for the REFs between seed points. The e�ortis minimal for β∗ = 1/3 resulting in O (n4/3) omputations.14



Proposition 4 Segment REFs and inverse segment REFs for a 1-level hierarhy of seedpoints for a giant tour of length n an be omputed in O (Rn4/3) time and spae.Generalizations to hierarhies with two and more levels an be found in the Online Sup-plement.3.3.4. Generi Searh ProedureThe following pseudo-ode formalizes a generi searh proedure for searhing an O (nk)neighborhood N (x) of a urrent feasible solution x to determine a best neighbor solu-tion x′ with a gain g(x, x′) > Gmin. The parameter Gmin is hosen as Gmin = 0 forlassial loal searh, Gmin = ∞ if any non-improving neighbor ould be aepted, and
Gmin > 0 for more seletive proedures that onsider only substantial improvements. In-dependent of Gmin, the proedure guarantees a worst-ase running time of O (nmax{k,h})and needs O (nh) spae, with h ∈ {2, 4

3 , 8
7} depending on the type of hierarhy used.Algorithm 2 Generi Loal Searh (=Step 4 of Algorithm 1)1: Input: A feasible solution (giant route) x = (w0, . . . , wn) ∈ X;

Gmin ∈ R minimum gain.(Phase 1 � Preproessing)2: LET H be the ℓ-level hierarhy of segment REFs fP , f inv
P

desribing the urrent solution x.3: STORE positions iw, and positions ni, li of last/�rst route-start and route-end nodes (see remarks below).(Phase 2 � Tree Searh)4: LET G∗ := Gmin.5: LOOP deision d16: LOOP deision d27: ...8: LOOP deision dk9: (Impliit onstrution of move and neighbor solution)10: LET m := md be the move implied by deisions (d1, d2, . . . , dk).11: LET x′ = (P1, P2, . . . , Pq) the permutation of the segments of (w0, . . . , wn) implied by m.(Feasible and Improving?)12: LET P := (P 1
1

, . . . , P ℓ1
1

, P 1
2
, . . . , P ℓ2

2
, . . . . . . , P 1

q , . . . , P
ℓq
q ) be the segmentation13: implied by (P1, P2, . . . , Pq) and H.14: LET feasible:=Formula (1) is ful�lled for P15: AND C(x′) task-feasible16: AND P (x′) feasible w.r.t. route-start and route-end nodes.17: LET G := g(x, x′) := fcost
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(aw0
).18: IF (feasible and G > G∗) THEN19: (Update of best neighbor solution found)LET G∗ := G.20: LET d∗ := (d1, . . . , dk).21: Output: Gain G∗ and for G∗ > Gmin optimal deisions d∗ and best neighbor x′ = md∗ (x).Remarks:(1) The preproessing phase has to build REFs fP and inverse REFs f inv

P for some seg-ments P and some inverted segments P (if the neighborhood also inverts one or severalsegments). The desription of the preeding Setion 3.3.3 and the orresponding exten-sions presented in the Online Supplement make lear whih segments have to be om-puted. The results guarantee a worst-ase e�ort of O (Rn2), O (Rn4/3), and O (Rn8/7)for the feasibility test in Step 14 if one uses no hierarhy, a 1-level, or a 2-level hierarhyrespetively. Note that this �rst preproessing phase is idential for any type of neigh-borhood. By ontrast, the seond phase, the atual (tree) searh, must be tailored to theneighborhood. 15



(2) With an O (n) preproessing (Step 3), we store for eah position i ∈ {1, . . . , n} of thegiant tour the node wi and, onversely, for eah node w of the giant tour its position iw.(3) The loops in Steps 5-8 exatly determine the order in whih moves and neighborsolutions are onstruted. Setion 3.2 has already explained that this order is ruial tothe development of rules for (exatly) pruning the searh tree.(4) Some parts of the onstrution of the neighbor solution of steps 10 and 11 mightalready be performed in some of the outer loops in Steps 5-7. This an be useful forseeing that the resulting moves are infeasible neighbor solutions, so that the searh anbe terminated, i.e., only a part of the searh tree has to be sanned.Additionally, if outer loops an estimate the gain of the moves that are under onstrution,a pruning of the searh based on gain onsideration beomes possible. The next setion onsequential searh will explain a speialized riterion that often also takes the symmetryinto aount.(5) The tasks exhanged by a move (if any) are typially determined by the nodes andedges that are removed and added. Hene, Step 14 an be performed inO (1) if appropriatedata-strutures are used.(6) In Step 12, the segmentation P results from x′ and the hierarhy H. For instane,let n = 1000 and H be the 1-level hierarhy introdued in Setion 3.3.3. Then, the
n2/3 + 1 = 101 seed points are loated at positions 0, 10, 20, 30, . . . , 1 000. Let m be theswap move that exhanges the nodes at the positions 17 and 322. Then, k = 5 and
x′ = (P1, P2, P3, P4, P5) with P1 the segment from position 0 to 16, P2 the segmentonsisting of the node loated at position 322, P3 the segment from 18 to 321, P4 thesingle-node segment at position 17, and P5 the segment from position 323 to 1 000. Now,the hierarhy H implies a split of P1 into P 1

1 from position 0 to 10, and P 2
1 from 10 to 16.

P3 is split into three segments P 1
3 , P 2

3 , P 3
3 from position 18 to 20, 20 to 320, and 320 to321, respetively. Finally, P5 is split into P 1

5 from position 323 to 330 and P 2
5 from 330 to1 000, while P2 and P4 are not split. Hene, P onsists of 2+1+3+1+2 = 9 ≤ 3·5 = O (k)segments.(7) In order to hek feasibility w.r.t. route-start and route-end nodes in Step 16, one hasto a priori reord, for eah position i of the giant tour, the next position ni of a route-start node and the last position li of a route-end node. Along P, onsider pairs (P,P ′) of(onseutive) segments in P. Let the �rst segment P ontain the route-start node oP asthe last route-start node. If P ′ does not ontain a route-end node (i.e., its last position jis smaller than its next route-start position ni for the start position i) replae P ′ byits suessor segment in P. Repeat, until P ′ ontains some route-start node and let dP ′be the �rst route-start node in P ′. Now that one knows route-start node oP and dP ′are linked (by request nodes or diretly), one an hek their ompatibility. To iterate,replae P by P ′ and hoose P ′ as the suessor segment.3.4. Sequential SearhSequential searh is a tehnique that allows neighborhoods within loal-searh algorithmsto be sanned in a highly e�ient way. It was disovered independently in the 1970sby Christo�des and Eilon (1972) and Lin and Kernighan (1973) in algorithms for thetraveling-salesman problem (TSP) and the graph-partitioning problem (Kernighan and16



Lin, 1970). Apparently, the idea has sine been forgotten and has not been tested for anytype of onstrained problem. Irnih et al. (2006) have introdued sequential searh as ageneral method for aelerating LS proedures. It is based on the idea of deomposingmoves into so-alled partial moves, so that partial moves are ost-independent and implypartial gains whose sum is the overall gain of the move. Lin and Kernighan (1973) provedthat if the sum of a sequene of numbers (gains) is positive, then there exists a ylipermutation of these numbers suh that every partial sum is positive. This an be gener-alized to restrit a k-deision searh proedure to onsider only those branhes where thesum of the gains of the �rst p ≤ k partial moves has to be greater than pG∗/k, where G∗is a lower bound the overall gain. Details and pseudo-ode of the appliation to severalnode and edge-exhange neighborhoods for CVRP an be found in (Irnih et al., 2006).Note that sequential searh is diretly appliable only to those routing problems wherethe REFs are separable w.r.t. the ost resoure, i.e., where the ost is given by the sumof the osts of all ars in the giant tour. For more ompliated ost funtions that are notseparable (see Setion 3.2), the gain riterion might remain appliable if upper bounds forthe resulting gain an be dedued from removed ars and lower bounds of the resultingloss an be determined for added ars. As far as we know, these ideas have not beentested thus far.We present the main idea of sequential searh for the ase of a swap move, depited inFigure 2. We deompose the swap move into two parts: The �rst part is the removalof the ars (wi−1, wi), (wi, wi+1) and the addition of (wj−1, wi), (wi, wj+1). The seondpart onsists of removing (wj−1, wj), (wj , wj+1) and adding (wi−1, wj), (wj, wi+1). Forthe entire move to be improving, the sum of the osts of the added ars has to be smallerthan the sum of the osts of the deleted ars. Hene, either the �rst or the seond parthas to be improving. In the �rst ase, starting the searh at node wi, the ost of theremoved ars is given by B := cwi−1,wi
+ cwi,wi+1

. It follows that either cwj−1,wi
< B/2 or

cwj−1,wi
< B/2 must hold. By sanning the in-ars (w,wi) ∈ A and out-ars (wi, w) ∈ Aof node wi ∈ V by inreasing length, the searh an be terminated whenever an ar longerthan B/2 is found. Beause of the symmetry, idential arguments over the seond asefor starting the searh with node j.A prerequisite of this bounding proedure is that all in-ars and out-ars of a given node wiare explored in an order, where they are sorted by inreasing ost. Sine in-ars and out-ars of wi are fully determined by the other endpoint w of the ar, one an retrieve therequired information from so-alled neighbor lists N+(wi) and N−(wi). N+(wi) is thelist of head nodes of out-ars (wi, w) of wi sorted by inreasing ost. Analogous to this,

N−(wi) is the sorted list of tail nodes of in-ars (w,wi).(Irnih et al., 2006) ontains more detailed explanations of the theoretial bakground,suh as the gain riterion and its appliation to routing and non-routing problems. Thesequential searh algorithm for the swap neighborhood an be formulated as follows.Algorithm 3 Sequential Searh for Swap (Phase 2, Tree Searh)1: Input: A feasible solution (giant route) x = (w1, . . . , wn) ∈ X;
Gmin ∈ R minimum gain.It is assumed that Phase 1 (=preproessing) is already performed.2: LET G∗ := Gmin.3: (Outer Loop)4: LOOP i ∈ {1, . . . , n}5: LET B := (cwi−1,wi

+ cwi,wi+1
)/2 − G∗/2. 17



6: (Inner Loop, Case 1: Ar (wi, wj+1) ∈ A must be short)7: LOOP wi ∈ N+(wi) AS LONG AS cwi,w < B8: LET j := i(w) − 1.9: IF i > j THEN LET t := i, i := j, j := t10: (Impliit onstrution of move and neighbor solution)11: LET P1 := (w1, . . . , wi−1), P2 := (wj), P3 := (wi+1, . . . , wj−1), P4 := (wi), P5 := (wj+1, . . . , wn).12: LET x′ := (P1, P2, P3, P4, P5).13: LET G := cwi−1,wi
+ cwi,wi+1

+ cwj−1 ,wj
+ cwj ,wj+1

− cwi−1,wj
− cwj ,wi+1

− cwj−1,wi
− cwi,wj+1

.14: LET feasible:=Formula (1) is ful�lled for (P1, P2, P3, P4, P5)15: AND C(x′) task-feasible16: AND P (x′) feasible w.r.t. route-start and route-end nodes.17: IF (G > G∗ and feasible and j 6= i + 1) THEN18: (Update of best neighbor solution found)19: LET G*:=G.20: LET (i∗, j∗) := (i, j).21: (Inner Loop, Case 2: Ar (wj−1, wi) ∈ A must be short)22: LOOP wi ∈ N−(wi) AS LONG AS cw,wi
< B23: LET j := i(w) + 1.24: ...25: /* Steps 9-20 */26: ...27: Output: Gain G∗ and for G∗ > Gmin optimal deisions (i∗, j∗) and best neighbor x′ = mswap

i∗,j∗
(x).The most important part of the above algorithm is the omputation of the bound Bin Step 5 used to limit the iterations of the inner loops that have to be performed.This bound limits the length of the out-ar (wi, w) ∈ A,w ∈ N+(wi) in Step 7 or thein-ar (w,wi) ∈ A,w ∈ N−(wi) in Step 22 for any improving move. The sorting of theneighbor lists allows the termination of the inner loop whenever an ar not smaller than Bomes up. Complete neighbor lists require O (n2) spae (for dense routing graphs) whihan be omputationally prohibitive when VRP instanes with several thousands of nodesand millions of ars are onsidered. Note that the neighbor list omputation has to beperformed only one in an initial preproessing. Its time omplexity is O (n2 log n) but,anyway, this time omplexity is always dominated by the total running time of LS inpratie. In order to redue the required spae, one an replae full neighbor lists byredued neighbor lists, also alled andidate lists (Glover, 1996), that ontain only asubset of ars (hopefully, the relevant ones!). A standard approah is to build andidatelists N+

K , N−
K that ontain a �xed number K of request nodes while all route-start androute-end-nodes (depot nodes) are inserted into the andidate lists by default. Clearly,when using proper andidate lists, there is a tradeo� between the auray of the searhand the omputational burden. Irnih et al. (2006) have ompared this tradeo� for thestandard CVRP.It should be pointed out that all infeasible ars, i.e., ars that annot be part of anyfeasible giant tour, an be omitted from the neighbor lists. Using speialized probingtehniques, as in (Desrohers et al., 1992; Asheuer, 1995), one might substantially reduethe number of possible ars. The ombination of both the stati and a priori determinationof relevant ars and the dynami pruning of the searh tree based on partial gains, is�asfar as we know�the �rst approah to e�etively ombine feasibility-based and gain-basedredutions. This tehnique is not limited to the swap neighborhood but an be appliedto all enumerate searh proedures for edge and node-exhange VRP neighborhoods. Fora systemati explanation of move deomposition and, espeially, of the gain riterionin sequential searh proedures for di�erent VRP neighborhoods, we refer the reader to(Funke et al., 2005a,b; Irnih et al., 2006).18



4. Modeling IssuesThis setion summarizes whih types of VRPs an be handled with the uni�ed framework.Before we disuss partiular types of onstraints, we brie�y repeat the basi assumptions:(1) All feasible solutions of the given VRP an be modeled as giant tours. A giant touris de�ned over a routing graph G = (V,A). The length of a giant-tour is bounded by
n = O (|V |), see Setion 2.1.(2) It must be possible to formulate the VRP as a disrete tasks-partitioning or task-overing problem, where tasks are assoiated with nodes and ars or the routing graph,see also Setion 2.1.(3) The ompatibility relation between route-start and route-end nodes must be given,see Setion 2.2.(4) All intra-tour and inter-tour onstraints have to be modeled as resoure onstraintson paths, see Setion 2.3. The resulting REFs must ful�ll the assumptions (a1)-(a5) ofSetion 3.3.2. These assumption are in depth disussed and exempli�ed in (Irnih, 2006).Inter-tour onstraints are the subjet of Setion 4.8∗ and (Hempsh and Irnih, 2007).(5) All moves m ∈ M of the neighborhood N under onsideration deomposes a giant-route into ℓ segments. Any neighbor solution result from the permutation, (partial) in-version, and onatenation of the segments, see (Irnih et al., 2006).The omplexity of the segment REF representation, evaluation, and onatenation deter-mines the e�ort for the preproessing and the feasibility hek in the tree searh. If allthese operations an be performed in O (R) time, then any O (nk) neighborhood an befully explored in O (ℓRnk) time and O (Rn4/3) spae. These worst-ase results are fullyindependent from the searh tree exploration strategy. If REF manipulations require morethan O (R) time, additional fators result in the above worst-ase omplexities (e.g., formultiple time windows, see below).For the sequential searh strategy, the only additional assumption needed is that thegain of a move is diretly assoiated with the exhanged ars. Thus, for any move mtransforming x into x′ (i.e., x′ ∈ N (x)), the gain G = g(x, x′) is given by the ostdi�erene of the deleted and added ars. In the ase of more omplex ost funtions, e.g.,if the overall ost of a tour depends on several resoure onsumptions (traveled distane,time on duty, ton-kilometers et.), the gain riterion and the resulting sequential searhpriniple are not appliable. However, if a lower bound for the ost of a neighbor solutionan be estimated on the basis of exhanged ars, the gain riterion remains appliable andgain-based tree searh methods an be used to aelerate the tree searh in the averagease.Table 3 provides a detailed overview of the modeling and solution apabilities of theuni�ed framework: The modeling of apaity, distane, and time window onstraints byREFs is straightforward. Setion 4.1 show how to model apaity onstraints in the on-text of ombined olletion and distribution. Di�erent ways of modeling preedene on-straints are presented in Setion 4.2, and the onsideration of lower and bound on thenumber of vehiles is disussed in Setion 4.3. Several other examples of resoures andtheir proper representation by REFs and resoure intervals an be found in (Irnih andDesaulniers, 2005; Irnih, 2006; Hempsh and Irnih, 2007). Additional material an be19



found in the Online Supplement. Topis disussed there are VRPs with ompatibilityonstraints (Setion 4.4∗), interdependent resoures (Setion 4.5∗), heterogeneous �eetVRPs (Setion 4.6∗), periodi VRPs (Setion 4.7∗), and inter-tour resoures and on-straints (Setion 4.8∗).The olumn Number of Resoures explains how many resoures are needed to model thepartiular onstraint. For instane, the onstraint of not exeeding the vehile apaityrequires only one resoure (whih is reset to 0 on ars that onnet a route-end with aroute-start node of the giant tour). A parenthesis (dep.) indiates dependent resoures.The next to olumns Compatible with Lex. and Seq. Searh shows whether or not theonstraints are ompatible with the lexiographi or sequential searh paradigm. Finally,olumn Complexity of Feas. Chek states the time omplexity of feasibility heking. Thenon-trivial omplexity results (when REFs annot be represented or evaluated in O (R)time) are taken from (Irnih, 2006).4.1. VRPs with Colletion and DistributionSeveral types of VRPs exist where delivery and pikup (distribution to and olletionfrom ustomers) are performed on the same tour. In bakhauling appliations (VRPB,e.g., Toth and Vigo (2002b); Røpke and Pisinger (2006)) all linehaul ustomers must beservied before the bakhaul ustomers of the same tour. The modeling framework anapture this onstraint easily by a routing graph with one node for eah ustomer by notallowing ars that onnet bakhaul with linehaul ustomers.When the visit of a ustomer implies that delivery and pikup at this loation areperformed simultaneously (VRPSDP, e.g., Min (1989); Halse (1992); Dell'Amio et al.(2006)), two dependent resoures (pikup quantity and maximum load on partial path)are oupled by a non-lassial REF. This tehnique with two dependent resoures hasbeen used by several authors, f. (Desaulniers et al., 1998). Irnih (2006) shows thatthese REFs an be used in the ontext of e�ient loal searh as explained in Setion 3.A mixture of VRPB and VRPSDP ours if one allows the model to deide whetherdelivery and pikup at eah spei� ustomer are to be performed simultaneously or not(f. Gribkovskaia et al. (2006)). The results are, e.g., so-alled lasso tours where someustomers are �rst supplied only, then a round trip along ustomers with simultaneousdelivery and pikup is performed, and �nally pikups at the �rst ustomers are performed(visited in reverse order). The saving in suh an approah lies in a better utilizationof the vehile apaity, sine performing deliveries at the beginning yields additionalspae for the olletion in the seond ombined delivery and pikup phase. The paper byGribkovskaia et al. (2006) shows that suh a mixed approah has the potential for notableost savings. The uni�ed framework an handle the option of separate or simultaneousdeliveries and pikups in the following way: Eah ustomer is modeled by two nodes, onefor the delivery and one for the pikup, with an additional pairing onstraint guaranteeingthat both nodes are served on the same tour (if required). Sine the modeling of pairingonstraints is very similar to the tehniques applied for the PDP, we refer the reader tothe next paragraph. 20



4.2. Preedene ConstraintsFor any two nodes u, v ∈ V , the relation u → v states that node u must preede node vin any feasible (giant tour) solution. In pikup and delivery appliations, requests (i+, i−)impose unique pairs of preedenes i+ → i−. In order to over these and alternativeappliations, we allow preedenes given by a relation → on V × V . For notational on-veniene, we de�ne P → P ′ if and only if for two segments P,P ′ nodes u ∈ P and
v ∈ P ′ exist with u → v. It is assumed that the sets of predeessors and suessors,i.e., pred(v) = {u : u → v} and succ(u) = {v : u → v} are of size O (1), suh thatthe reloation of single nodes an always be heked for feasibility w.r.t. preedenes inonstant time.The e�ient handling of preedene onstraints dates bak to papers by Psaraftis (1983)and Savelsbergh (1990) and is also di�erently disussed by Kindervater and Savelsbergh(1997). Their idea is, again, that any move permutes and possibly inverts the segments
(P1, . . . , Pk) of the urrent (giant) tour aording to (P

σ(1)
π(1) , . . . , P

σ(k)
π(k) ) with π a permu-tation of {1, 2, . . . , k} and σ(i) ∈ {−1, 1} (indiating inversion by -1). Hene, feasibilitytests require onstant time proedures to hek(A) whether an inverted segment P−1

i is feasible w.r.t. preedenes and(B) whether or not Pi → Pj holds for two segments with j > i and π(j) < π(i).For the task (A) and a given giant tour (v1, . . . , vn) let firstu := min{p : u → vp} bethe �rst position of a destination of a preedene starting at node u. Moreover, for eahposition p ∈ {1, 2, . . . , n} let firstdestp := min{firstvℓ
: ℓ ≥ p} be the position of the�rst destination of a preedene pair beyond position p. The omputation of firstu for allnodes u and of firstdestp for all positions p an be undertaken in O (n) steps. Sine theinversion of a segment P = (vp, vp+1, . . . , vℓ) is feasible w.r.t. preedenes if and only if

ℓ < firstdestp, the result is a onstant time feasibility test for all moves that only invertsegments. The 2-opt move is the most prominent example. Sine the reloation of a �xednumber of nodes requires an O (1) feasibility test only, all lassial moves of quadratineighborhoods an be heked inO (1), too. These neighborhoods inlude node reloation,node swap, Or-opt (with or without inversion of the short segment), and string-exhangemoves. Similar straightforward proedure an be applied to the 2-opt∗ neighborhood.However, larger neighborhoods, suh as 3-opt and 3-opt* neighborhoods, an be appliedto the giant tour and require e�ient proedure to perform task (B). Here, the methodsof Kindervater and Savelsbergh are appliable only if lexiographi searh is used. Inorder to handle more powerful neighborhoods inspeted by sequential searh, we desribeanother tehnique for the PDP whih uses one binary resoure for eah pikup/deliverypair i = (i+, i−). The orresponding resoure has a resoure interval [0, 1] at all nodesexept the pikup node i+ and end-tour nodes where the interval is [0, 0]. Entering intonode i+ inreases the resoure by one unit, entering i− dereases the resoure by oneunit. All other REFs do not hange the resoure value. It is easy to see that these simplerules guarantee that no tour ontains a delivery without a orresponding pikup node atan earlier position. Sine the number of resoures oinides with the number of requests,onstant time feasibility heks are no longer guaranteed. However, an enoding withbinary resoures leads to a ompat representation, sine 32 or 64 resoure an be enodedin one integer resoure on a omputer with 32 or 64 bit arithmeti.21



4.3. Limiting the Number of VehilesThe giant-tour representation implies that the number of routes is N := |O| = |D|. Ifars (o, d) ∈ O ×D with osts cod = 0 are present in the routing graph, routes p = (o, d)an be part of the giant tour and, therefore, the possibility of using less than N propertours is taken into aount. Moreover, the onstraint of using between Nmin and N propertours an be modeled by partitioning O and D into O = O1 ∪O2 and D = D1 ∪D2 with
|O1| = |D1| = N −Nmin and |O2| = |D2| = Nmin. Nodes pairs from O1×D2 and O2 ×D1are inompatible. Let cod = 0 for (o, d) ∈ O1 ×D1 and cod = M for (o, d) ∈ O2 ×D2 andlet M be a su�iently large number. If existent, a ost-minimal route plan with between
Nmin and N proper tours an be found in the routing graph as a feasible Hamiltonianyle whih does not use ars (o, d) ∈ O2 × D2.An additional ompliation arises if a onstrution heuristi provides a route plan withmore than N routes. This solution annot be represented diretly as a Hamiltonian y-le in G. The following tehnique solves the task of �nding a feasible initial solution bymeans of additional dummy route-start and route-end nodes together with a single addi-tional resoure for ounting the lengths of tours. Dummy route-start and route-end nodes
(ô, d̂) ∈ Ô × D̂ are introdued in order to hold a single request node i that is (urrently)not assigned to a feasible route. More preisely, a dummy route is either of the form
(ô, i, d̂) or (ô, d̂) (i.e., oupied or empty). In order to stipulate the movement of a requestnode from a dummy (ô, i, d̂) to a feasible route, osts are de�ned as cô,i = ci,d̂ = M ,and cô,d̂ = 0. Furthermore, the upper bound on the length of a route is set to 2 at alldummy route-end nodes but unbounded at all other nodes. The bound of 2 guaranteesthat no nodes are shifted from a feasible into a dummy tour that is already oupied.Using a su�iently large number of dummy nodes, one an transform any start solutionwith more than N routes into a formally feasible solution with only N regular routes butseveral dummy routes.The same tehnique an be used in di�erent ontexts. First, if the objetive is to minimizethe number of routes, one an resolve one route (whih ontains only a few nodes) andput these into dummy routes. Applying di�erent LS operators, e.g., reloation and swapin ombination with edge exhanges, one systematially tries to redue the number ofunassigned nodes from dummy routes. Seond, the implementation of large neighborhoodsearh (LNS) operators, as suggested by Shaw (1998); Shrimpf et al. (2000); Røpke andPisinger (2006), is straightforward. Tailored removal operators determine a subset ofnodes whih are removed from their urrent positions of the giant tour. These nodesare reloated into empty dummy routes. Di�erent insertion strategies (the order in whihremoved nodes are inserted into feasible tours again) an be ontrolled by putting di�erentvalues M onto the ars (ô, i) and (i, d̂). Third, VRPs in whih tasks an be overedby alternative nodes (see Setion 2.1) need mehanisms to selet one or several nodesfrom given subsets to be servied. Unseleted nodes an be kept in dummy routes whilealgorithmi proedures in the feasibility test have to ensure that moves do only produesolutions where a task is overed the right number of times.5. Computational ResultsThe previous setions were mainly foused on modeling and the theoreti aspets ofe�ient LS algorithms for rih VRPs. In ontrast, this setion is intended to present22



empirial results that show the e�etiveness of the preproessing and the sequential searhproedures in pratie.5.1. PreliminariesBefore analyzing the proposed new tehniques based on benhmark problems and in-stanes from the literature, we have to explain and larify the following aspets: Whihneighborhoods N and sequential searh proedures are used? How are di�erent neighbor-hoods ombined to form a well-strutured metaheuristi? How are sequential searh andlexiographi searh proedures ompared, in partiular, how is the speedup measured?Finally, at least two signi�antly di�erent implementation onepts exist that onstitutetwo extreme points w.r.t the tradeo� between fast runtime and eonomial use of memory.5.1.1. Neighborhoods, Moves, and Sequential Searh ProeduresWe have implemented lexiographi and sequential searh proedures for the neighbor-hoods listed in Table 1: For a detailed desription of the neighborhoods and for pointersNeighborhood Size |N̂ (x)| Priorityswap, 2-opt, (speial) 2-opt∗, node reloation O (n2) 1string exhange, Or-opt with and w/o inversion O (n2) 2ab-opt, request reloation O (n3) 3Table 1Neighborhoods, Sizes, and Priorities in VNDto the (original) literature, we refer the reader to the surveys (Funke et al., 2005a; Bräysyand Gendreau, 2005a) while the orresponding sequential searh proedures with pseudo-ode are explained in (Irnih et al., 2006; Bellsheidt, 2005). In order to be self-ontained,we brie�y reall basi properties of these neighborhoods.Figure 4(a) depits the priniple of a swap move whih was already used for explanationin the preeding setions. Figure 4(b) shows a (speial) 2-opt∗ move. Its interpretation isthat two routes are ut into two piees and the resulting end-piees are exhanged. A 2-optmove takes a segment of the giant tour and inverts it as depited in Figure 4(). Sequentialsearh is appliable diretly only to ost-symmetri instanes and we have restrited thegeneri searh proedure to invert only segments whih do not ontain route-start nodesand route-end nodes. In these ases, the 2-opt neighborhood is an intra-tour neighborhoodalthough our implementation does not make use of this fat. However, Funke et al. (2005a)have suggested inversion priniples for segments that also ontain route-start nodes androute-end nodes. The Or-opt neighborhood reloates a string to another position in thegiant tour, and the string-exhange neighborhood swaps to strings. Both types of movesare depited in Figure 4(e) and (g), respetively. Beause of the giant-tour representation,they are at the same time intra-tour and inter-tour neighborhoods. We have hosen tolimit the length of the swapped/reloated strings to a length of ℓ ≤ 3. A variant of theOr-opt move, here alled inverted Or-opt, reloates a string and inverts it, see Figure 4(f).A speial ase of the Or-opt move is the reloation move that reloates a single node, i.e.,a string of length 1. It is depited in Figure 4(d).The only ubi neighborhoods onsidered here are the ab-neighborhood and request-23
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Fig. 4. Moves andtheir Deomposition,(a) Swap, (b) (Spe-ial) 2-opt∗, () 2-opt,(d) Node Reloation,(e) Or-opt, (f) Or-optwith String Inversion,(g) String-Exhange,(h) Request Reloa-tion with 4 Subasesreloation neighborhood. An ab-move uts the giant tour into three segments a,b, andrearranges them to a,,b (a lassi�ation of k-opt∗ neighborhoods and moves based on thisnotation was introdued by Funke et al. (2005b)). This neighborhood onstitutes a properextension of the Or-opt neighborhood beause a string of unlimited length is reloated.If all three strings ontain route-start and route-end nodes, the ab-move permits theutting of three routes into two piees and the re-onneting of three end-piees with thethree start-piees.5.1.2. General Setup for Loal SearhOur omparisons of sequential searh and lexiographi searh proedures are alwaysperformed using the following setup that ombines VND (Hansen and Mladenovi¢, 2001,2002) with LNS (Shaw, 1998; Røpke and Pisinger, 2006) strategies to esape loal optima.An initial solution is omputed by a problem-spei� start heuristi. Starting from thissolution, a loal optimum w.r.t. all neighborhoods is omputed. In order to apply ompu-tationally ostly operators not too often, we have assoiated priorities (see Table 1) to allneighborhoods. Neighborhoods with priority 1 are searhed exhaustively �rst. More pre-isely, we alternate between the swap, 2-opt, 2-opt∗, and reloation neighborhoods on the�rst searh level. Here, sequential and lexiographi searh proedures are both applied tothe same urrent solution x. If an improving solution x′ ∈ N (x) is found, the orrespond-ing move is performed and a new searh step ontinues with the next neighborhood oflevel 1. Sine we are using a best-improvement pivoting strategy for both sequential andlexiographi searh, the orresponding two proedures return improving solutions withidential gain (note however, that, due to degeneray, we annot assure that identialsolutions are omputed; the improving solution found by sequential searh is taken forthe next searh step). If none of the searh proedures �nds a move with positive gain, thesearh is ontinued with neighborhoods of priority 2 following the same yli alternatingstrategy as for level 1. The only di�erene is that, when improving solutions are found bya neighborhood of priority p > 1, then faster neighborhoods of priority level 1 are tested24



again. This strategy is a minor modi�ation of Hansen and Mladenovi's VND meta-heuristi whih makes the searh more balaned for equally-sized neighborhoods with(empirially) idential searh e�ort.For small-sized instanes, VND with prioritized neighborhoods an result in only a fewalls of searh proedures of priority 3. Therefore, three iterations of LNS with a randomremoval of 20 nodes (implemented as suggested in Setion 4.3) and a simple heapest-insertion proedure are used to perturb the urrent solution suh that one an iterativelyapply the above VND proedure. Hene, the VND proedure is alled for four (in general)di�erent start solutions. This setup guarantees that a mix of solutions with poor as wellas already good quality are presented to the LS proedures.5.1.3. Relative Speedup of Sequential Searh vs. Lexiographial SearhThe main part of the omputational study ompares the running times of lexiographisearh and sequential searh proedures for the neighborhoods given above. Reall thatboth approahes guarantee onstant time feasibility heks. We will not ompare ourapproah with a trivial implementation using straightforward node-by-node feasibilitytests, sine these tehniques are obviously inferior.A fair omparison of the running times by means of a relative speedup fator is ratherdeliate to ompute for the following reasons. First, the preproessing for the sequentialsearh proedure (f. Setion 3.3.3) has to be exeuted only if the giant tour has hanged,i.e., a preeding searh (of the same or another neighborhood) has found an improvingsolution that has now beome the inumbent solution. Hene, there is no intrinsi on-netion between the urrent searh proedure and the preproessing. Seond, the ratiobetween suessful and unsuessful searhes strongly depends on the general setup inwhih LS is performed, i.e., the start solutions, the mix of neighborhoods and the priori-ties for mixing them in VND/VNS. Third, the most frequently alled proedures in thesearh algorithm are the test of whether or not an ar exists, and the omputation of thear osts. The following setion will distinguish between two implementation priniplesthat also have an impat on the speedup fators.The most optimisti aeleration fator does not onsider the additional e�ort of theneessary preproessing for sequential searh at all. Let tlexN and tseqN be the running timesof lexiographi and sequential searh proedure (without time for preproessing) for aneighborhood N . Then fmax
N = tlexN /tseqN is the maximum speedup or maximum aeler-ation fator. Note that running times might signi�antly vary depending on the urrentgiant tour x and whether a good bound B = B(G∗) (see Step 5 of Algorithm 3) is avail-able early in the sequential searh proedure. Therefore, only average values for tseqN and

tlexN are onsidered here. A very pessimisti and onservative fator is based on the as-sumption that every sequential searh proedure is preeded by a preproessing. De�ning
tpre as the (average) time of the preproessing proedure (Steps 2�3 of Algorithm 1), thefator fmin

N = tlexN /(tpre + tseqN ) denotes the minimum speedup or minimum aelerationfator. This fator applies to pure loal searh proedures in whih only a single neighbor-hood N is inorporated suh that the number of preproessing and searh steps oinide.From our point of view, the most fair de�nition of the speedup fator takes into aountthat only a fration of searh steps is preeded by a preproessing. Let rpre ∈ (0, 1] bethe (instane and setup spei�) ratio of the number of improvement steps performed tothe overall number of searh proedure alls. We de�ne fN = tlexN /(rpretpre + tseqN ) as the25



speedup or aeleration fator. Note that fmin
N ≤ fN < fmax

N holds, but that all valuesstill depend on the initial solution, the hoie of neighborhoods, the VND/LNS strategyas well as on several implementation issues.5.1.4. Implementation IssuesAn instane with O (n) request nodes and a giant tour of length n an have up to n(n−1)ars in the routing graph and, therefore, a quadrati number of REFs. In the ase of large-sale instanes (with more than about 2 500 nodes), the representation of the routinggraph and the assoiated REFs beomes an issue. We propose two alternative tehniquesfor implementing the uni�ed framework.The �rst option is to a priori ompute all ars and assoiated REFs and to then storethem in a matrix. This matrix needs to have n × n entries, with entry ij unde�ned ifthe ar (i, j) is infeasible. For lassial REFs of the form fij(T ) = max{aij , T + tij} withinverse REF f inv
ij (T ) = min{bij , T − tij}, it is natural to store the de�ning oe�ients

aij , bij , tij ∈ R
R together at entry ij of the matrix in order to have a diret onstanttime aess to the REFs. Sine the memory requirement for the REF matrix is alreadyquadrati, one an ombine this representation of the routing graph with full neighborlists N+(v), N−(v) for all nodes v ∈ V as explained in Setion 3.4. The omputationalresults will show that this straightforward representation is the fastest but obviouslyonsumes a lot of memory.The seond option is to use (heuristially) redued andidate lists N+

K(v),N−
K(v) for thein-ars and out-ars together with a proedure that omputes REFs on-the-�y. For anypair (i, j) of nodes, a �rst proedure heks whether (i, j) is a feasible ar of the routinggraph (V,A). In the ase where (i, j) is feasible, a seond proedure returns the REFs fijand f inv

ij (as an objet ontaining aij, bij , tij or impliitly, e.g., by omputing fij(T ) for Tgiven). If the entire VRP instane an be represented in O (n) memory, e.g., when timesand osts are omputed using oordinates and distanes in the 2-dimensional Eulideanplane, the on-the-�y omputation redues the memory requirement for the framework.Sine the tehniques of Setion 3.3.3 enable us to store segment REFs in O (n4/3) spae,the overall memory requirement typially results from storing neighbor or andidate lists.As a result, we are able to handle VRPs with more than 10 000 nodes at the ost of notbeing fully aurate (sine andidate lists must heuristially exlude some parts of theneighborhood to be sanned). Moreover, omputing (ompliated) REFs on-the-�y takesmore time than a diret aess to REFs stored in main memory and, therefore, this seondoption is, in general, slower. However, the omputational results of the next setionsindiate that, for on-the-�y REF omputations, the speedup of sequential searh overlexiographial searh inreases. At the same time, speedup fators inrease when on-the-�y omputation is performed. The reason for this is that the omputational overhead insequential searh proedures (aused by the handling of neighbor lists, omputing partialgains et.) beomes less important.The uni�ed framework was oded in C++, di�erent resoure onepts and types of REFswere integrated as template parameters. The algorithms were ompiled in release mode(using MS-Visual C++ .NET 2003 version 7.1), and all runs were performed on a standardPC (Intel x86 family 15 model 2, 2.4 GHz, 1GB main memory, on MS-Win 2000). Timeswere reorded using the time.h library. In order to be more preise, espeially for timessmaller than 10ms, we performed multiple idential runs of the same proedure. We made26



sure that running times of multiple runs exeeded 100ms suh that the average run timeis a rather aurate estimate for a single run.5.2. Vehile Routing Problems with Time WindowsThe VRPTW is ertainly the most studied variant of VRPs and an be onsidered theprototype of �rih� VRPs, sine time window onstraints already require sophistiatedtehniques for onstant time feasibility tests. Early work on VRPTW dates bak to the1960s and, sine then, hundreds of sienti� artiles have addressed modeling as wellas methodologial aspets of developing exat and heuristi solution algorithms. For anoverview, we refer the reader to the omprehensive surveys (Cordeau et al., 2002; Kalle-hauge et al., 2005; Bräysy and Gendreau, 2005a,b).The Solomon (1987) and Homberger (see Homberger and Gehring, 1999) VRPTW in-stanes have been used as benhmark problems in numerous empirial studies. WhileSolomon's instanes have a �xed number of 100 ustomers, the Homberger instanesrange from 200 to 1, 000 ustomers. We therefore use the latter beause we are mainlyinterested in analyzing the behavior of the searh proedures w.r.t. the number of tasksand the (average) number of nodes in a route. Initial solutions were omputed usingSolomon's I1-heuristi (Solomon, 1987) and REFs were a priori omputed aording tothe �rst implementation onept skethed in the previous setion.
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Instanes Prepro- Swap 2- 2- string- node Or- inv Or- ab-essing opt opt∗ exh relo opt opt opt(Phase 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(Phase 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200.short 0.6/0.02 1.0/0.4 0.9/0.1 1.4/0.5 2.8/1.7 1.3/0.5 5/2 5/2 31/23400.short 1.9/0.1 3.6/1.6 2.9/0.3 4.9/2.6 12.1/7.9 5.0/2.1 21/10 21/10 264/221600.short 3.7/0.2 7.5/3.6 6.2/0.6 10.9/7.1 27.8/19.1 11.5/5.3 49/26 50/26 1014/945800.short 5.3/0.3 12.1/6.3 10.1/1.4 19.4/13.9 49.2/35.5 20.4/10.1 88/51 90/53 2435/23631000.short 7.2/0.4 19.3/10.8 15.5/2.6 32.8/24.9 81.8/62.9 34.6/18.8 151/94 156/97 5528/5690200.long 0.5/0.02 0.7/0.3 0.5/0.1 0.8/0.2 1.3/0.6 0.9/0.3 2/1 2/1 5/3400.long 1.7/0.1 2.5/0.8 1.8/0.2 2/0.8 4.4/2.2 3.0/0.9 7/3 7/3 29/32600.long 3.2/0.2 4.4/1.6 3.2/0.4 3.6/1.9 8.3/5.0 5.7/2.1 14/7 14/7 90/134800.long 4.9/0.2 6.6/2.7 4.9/0.6 5.5/3.6 13.3/8.8 8.9/3.6 21/12 21/12 182/2931000.long 6.7/0.3 9.9/4.2 7.0/1.0 8.6/6.4 20.5/14.6 14.0/6.8 34/22 34/22 385/676Table 2Avg. Running Times of a Preproessing (Phase 1) and Sequential Searh (Phase 2), Valuesin Milliseonds [ms℄, Absolute Value and Standard Deviationbased arguments for terminating the tree searh are less e�etive. Seond, one an seethat the standard deviations of the running times are enormous. The explanation forthis is that instanes within the same group are still very muh di�erent: The timewindow onstraints imply routing graphs that have ar sets of ompletely di�erent sizes.Consequently, instanes have neighbor lists of di�erent magnitude, whih diretly imposesheavily varying running times. Finally, it is worth mentioning that due to the tehniquespresented in Setion 3.3.3 (1-level hierarhy of REFs and O (n4/3) time omplexity forits update), the time required for preproessing is always smaller that the time for thesequential tree searh.Very large-sale VRPTW instanes are�as far as we know�not available. Hene, wereated a small test set of 10 instanes ranging from n = 1000 to 10 000 ustomer nodes.The instanes allow an average number of about 45 ustomers per route. Results forthese instanes are visualized in Figure 7. Note that we have onsidered only quadratineighborhoods beause the running times of the lexiographi searh proedure for theab-opt neighborhood of size O (n3) were unaeptably long (more than 5 minutes for thelargest instane and a single all of the searh proedure). In ontrast to the �rst tests,we have used on-the-�y omputations of REFs and andidate list N+
K(v) and N−

K(v). Kis hosen suh that eah andidate list ontains the 1 000 losest ustomer nodes andall possible route-start and route-end nodes, i.e., K ≤ 1 000 + |O|. The most importantinsight for the large-sale problem instanes is that the speedup grows even further. Thisis partly aused by the fat that we use on-the-�y omputation of osts and REFs andalso beause average route lengths inrease. We have also omputed aeleration fatorswith the a priori omputed REFs for the instanes with n = 1000 and n = 2000 andompared them with those results obtained for the on-the-�y implementation: The on-the-�y omputation gives a ontribution to the speedups by an average fator of between 1.5and 1.7 (but varying more strongly for di�erent move types).5.3. Capaitated VRPs and VRPs with Globally Constrained ResouresSimple versions of VRPs, suh as the CVRP or the distane-onstrained VRP, have pureadditive REFs along the routes and globally �xed upper bounds (a maximum load ortravelled distane). Therefore, they do not need the O (n4/3) preproessing as presentedin Setion 3.3.3. Instead, a linear time and spae preproessing already allows onstanttime feasibility tests, see (Irnih et al., 2006). Very similar methods an be used for the29
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K(i) and N−
K(i) wererestrited to ontain a maximum of 1 000 request nodes but all route-start and route-end30
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Fig. 8. Speedup of Sequential Searh vs. Lexiographi Searh for Multi-Depot VRPTWInstanesnodes.The smallest speedup was found�as was to be expeted�for the smallest instanes with
n = 100 and for the swap move. Here the fators fswap = 2.3, fmax

swap = 2.7, and fmin
swap = 1.3mean that there is still an aeleration. For medium-sized instanes with n = 800 allspeedup fators are already above 10.0. The largest speedups were again observed for theubi ab-neighborhood with values facb = 29 for n = 100 and facb ≈ 1 350 for n = 800.Again, beause of the high running times of the lexiographi searh implementation, weskipped the omparison for the ab-neighborhood for n > 800. The onduted experi-ments also gave remarkable speedups for the string-exhange neighborhood with fatorsof between fstr−exch = 15.4 and fstr−exch ≈ 575. This is, again, similar to the results forCVRP and VRPTW.The results depited in Figure 8 also indiate that the on-the-�y implementation on-ept (for n ≥ 1 250) bene�ts more from the sequential searh approah than the fullrepresentation (for n ≤ 1 000) does. The fator aused by the on-the-�y omputation isapproximately fator 2.0.Additional ResultsAdditional results for pikup-and-delivery problems and periodi VRPs an be found inthe Online Supplement in the Setions 5.6∗ and 5.7∗.6. ConlusionsThe paper has presented a new modeling framework and orresponding e�ient LS meth-ods for VRPs with lassial and also non-standard side onstraints. One of the most im-portant advantages of the framework is that it is generi and, therefore, allows varioustypes of VRPs to be handled in a similar and onise way. The giant-tour representationis intuitive and enables a uni�ed view on moves, whih an either be intra-tour moves ormoves between di�erent tours of the same or di�erent depots, periods, vehile types et.The uni�ed framework also has advantages from a software development point of view;31



one the searh proedures of the framework are implemented, additional onstraintsan easily be integrated, sine feasibility is generially enoded by the routing-graph,start-route node and end-route node ompatibilities and�most important�resoure-onstrained paths. Consequently, the framework separates the modeling (with instane-spei� data and onstraint formulation) from the atual searh methods. The additionor hange of standard onstraints beomes �simply� a question of gathering input dataand delaring onstraints; it has no impliations for the searh proedures.Besides the powerful modeling apabilities of this framework, its main ontribution isthe inorporation of highly-e�ient LS tehniques. They allow onstant time feasibilitytests as well as exat searh-tree pruning based on sequential searh (Irnih et al., 2006).The extensive omputational tests learly show that sequential searh proedures out-perform the lexiographi searh methods. On large-sale instanes and for nearly alltypes of neighborhoods, the speedup fators are between 10 and 1 000. We observed thatthe potential of large speedups grows with the size of neighborhoods. Hene, sequentialsearh proedures might beome the only e�ient tehnique for impliitly sanning evenlarger neighborhoods than those traditionally applied to VRPs thus far. We expet thatneighborhoods of size O (nk) for k ≥ 3 will be used more often.One key property of sequential searh algorithms for rih VRPs is the separation of the LSproedure into two phases, namely, a preproessing phase to ompute O (n4/3) segmentREFs and the atual enumerative searh phase. This separation also allows alternativeheuristi and exat searh-tree pruning tehniques for the seond phase inluding, e.g.,granular edge seletion proedures, as proposed by Toth and Vigo (2003), and methodsto terminate the searh on the basis of feasibility arguments.Obviously, the proposed LS tehniques an be easily integrated into di�erent metaheuris-tis, whih are substantial for produing high-quality solutions. It was beyond the sopeof this paper to also analyze and ompare di�erent metaheuristis based on the uni�edframework. However, di�erent meta-strategies an bene�t from the new tehniques inthe following way: First, methods, suh as multi-start and iterated loal searh, VND,GRASP, diretly use LS proedures, see (Hoos and Stützle, 2005). Seond, metaheuris-tis, suh as tabu searh (Glover and Laguna, 1997), also san neighborhoods, but askfor best non-tabu neighbors. It is straightforward to integrate tabu-onstraints into theframework. They will ause no additional worst-ase e�ort for testing neighbor solu-tions as long as �simple� tabu-riteria and tabu-lists of limited length are used. All ofthe above metaheuristis will therefore diretly bene�t from aelerations of LS. Third,some metaheuristis sample from neighborhoods (suh as simulated annealing, thresholdaepting, and related strategies). For these metaheuristis, our methods do not applydiretly. However, extensions of these sampling methods, suh as the large-step Markovhain metaheuristi of Martin et al. (1992), aim at �nding better quality solutions in eahmajor iteration. Only loal optimal solutions are presented to the aeptane algorithmand, hene, e�ient LS proedures an speed up the metaheuristi. Other metaheuris-tis, suh as geneti algorithms, evolutionary strategies, or ant systems do not even useneighborhood-based searh proedures, at least not in their �pure� versions. However,hybrid versions of these mostly use LS post-proessing improvement proedures, whihis often the deisive devie for designing a highly-e�etive metaheuristi. Numerous ex-amples are given in the survey of Bräysy and Gendreau (2005b).For the future, one hallenge will be to model new real-world onstraints or options and32



to integrate them by means of REFs that possess all the properties required for theuni�ed framework. A �rst formal analysis of onditions for REFs to be invertible and ex-tendable to segments has been given in (Irnih, 2006). Nevertheless, numerous real-worldappliations, not only those skethed in Setion 4, need to be examined in depth. Tailoredneighborhoods for speial routing appliations not onsidered here (e.g., ar-routing, rout-ing with hoie of requests) need to be analyzed and suitable searh proedures have to beimplemented. A better understanding of the interplay between di�erent start heuristis,neighborhoods, improvement and diversi�ation phases of metaheuristis, onsidered invarious sienti� and real-world appliations will ertainly o�er an interesting �eld formore theoretial and empirial researh. Finally, we hope that the uni�ed framework willhelp researhers and pratitioners get a more uni�ed view on modeling and e�ient searhmethods for VRPs.ReferenesAarts, E., J.K. Lenstra. 1997. Loal Searh in Combinatorial Optimization. Wiley, Chih-ester.Asheuer, Norbert. 1995. Hamiltonian path problems in the on-line optimization of �ex-ible manufaturing systems. Ph.D. thesis, Tehnishe Universität Berlin.Bellsheidt, L. 2005. Implementierung und Analyse von sequentiellen Suhverfahren fürPikup- und Delivery Probleme. Magister thesis, Deutshe Post Endowed Chair ofOptimization of Distribution Networks, RWTH Aahen University. (in German).Bräysy, O., M. Gendreau. 2005a. Vehile routing with time windows, Part I: Routeonstrution and loal searh algorithms. Transportation Siene 39 104�118.Bräysy, O., M. Gendreau. 2005b. Vehile routing with time windows, Part II: Metaheuris-tis. Transportation Siene 39 119�139.Cardeneo, A. 2005. Modellierung und Optimierung des B2C-Tourenplanungsproblemsmit alternativen Lieferorten und -zeiten. Dissertation, Fakultät für Mashinenbau,Universität Karlsruhe (TH), Karlsruhe, Germany. (in German).Christo�des, N., S. Eilon. 1969. An algorithm for the vehile-dispathing problem. Op-erational Researh Quarterly 20 309�318.Christo�des, N., S. Eilon. 1972. Algorithms for large-sale travelling salesman problems.Operational Researh Quarterly 23 511�518.Cordeau, J.-F., G. Desaulniers, J. Desrosiers, M.M. Solomon, F. Soumis. 2002. VRP withtime windows. Toth and Vigo (2002a), hap. 7, 155�194.Dell'Amio, M., G. Righini, M. Salani. 2006. A branh-and-prie approah to the vehilerouting problem with simultaneous distribution and olletion. Transportation Siene40 235�247.Desaulniers, G., J. Desrosiers, I. Ioahim, M.M. Solomon, F. Soumis, D. Villeneuve.1998. A uni�ed framework for deterministi time onstrained vehile routing and rewsheduling problems. T.G. Craini, G. Laporte, eds., Fleet Management and Logistis,hap. 3. Kluwer Aademi Publisher, Boston, Dordreht, London, 57�93.Desaulniers, G., J. Desrosiers, M.M. Solomon. 2002. Aelerating strategies in olumngeneration for vehile routing and rew sheduling problems. Ribeiro and Hansen(2002), hap. 14, 309�324.Desaulniers, G., J. Desrosiers, M.M. Solomon, eds. 2005. Column Generation. Springer.Desaulniers, G., F. Lessard, A. Hadjar. 2006. Tabu searh, generalized k-path inequalities,and partial elementarity for the vehile routing problem with time windows. Les Cahiers33



du GERAD G-2006-45, GERAD, Éole des Hautes Études Commeriales, Montréal,Canada.Desrohers, M., J. Desrosiers, M. Solomon. 1992. A new optimization algorithm for thevehile routing problem with time windows. Operations Researh 40 342�354.Desrohers, M., J.K. Lenstra, M.W.P. Savelsbergh. 1990. A lassi�ation sheme forvehile routing and sheduling problems. European Journal of Operational Researh46 322�332.Desrosiers, J., Y. Dumas, M.M. Solomon, F. Soumis. 1995. Time onstrained routing andsheduling. M.O. Ball, T.L. Magnanti, C.L. Monma, G.L. Nemhauser, eds., NetworkRouting , Handbooks in Operations Researh and Management Siene, vol. 8, hap. 2.Elsevier, Amsterdam, 35�139.Fukasawa, Riardo, J. Lysgaard, Marelo Reis Marus Poggi de Aragão, Eduardo Uhoa,R.F. Wernek. 2004. Robust branh-and-ut-and-prie for the apaitated vehile rout-ing problem. Teh. Rep. Vol.3, No.8, Departamento de Engenharia de Produção, Uni-versidade Federal Fluminense R. Passo da Pátria, Niterói, Brasil.Funke, B. 2003. E�ziente lokale suhe für vehile routing und sheduling problememit ressourenbeshränkungen. Ph.D. thesis, Fakultät für Wirtshaftswissenshaften,RWTH Aahen, Templergraben 64, 52062 Aahen.Funke, B., T. Grünert, S. Irnih. 2005a. Loal searh for vehile routing and shedulingproblems: Review and oneptual integration. Journal of Heuristis 11 267�306.Funke, B., T. Grünert, S. Irnih. 2005b. A note on single alternating yle neighborhoodsfor the TSP. Journal of Heuristis 11 135�146.Glover, F. 1996. Ejetion hains, referene strutures and alternating path strutures fortraveling salesman problems. Disrete Applied Mathematis 65 223�253.Glover, F., M. Laguna. 1997. Tabu Searh. Kluwer, Dortreht.Golden, B.L., A.A. Assad, eds. 1988. Vehile Routing: Methods and Studies. ElsevierSiene, Amsterdam.Gribkovskaia, I., Ø. Halskau sr, G. Laporte, M. Vl�ek. 2006. General solutions to thesingle vehile routing problem with pikups and deliveries. Tehnial report, MoldeUniversity College, Molde, Norway.Halse, K. 1992. Modelling and solving omplex vehile routing problems. PhD dissertationNo. 60, IMSOR, Tehnial University of Denmark, Lyngby, Denmark.Hansen, P., N. Mladenovi¢. 2001. Variable neighborhood searh: Priniples and applia-tions. European Journal of Operational Researh 130 449�467.Hansen, P., N. Mladenovi¢. 2002. Developments of variable neighborhood searh. Ribeiroand Hansen (2002), hap. 19, 415�439.Hasle, Geir, Arne Løkketangen, Silvano Martello. 2006. Rih models in disrete opti-mization: Formulation and resolution (ECCO XVI). European Journal of OperationalResearh 175 1752�1753.Hempsh, C., S. Irnih. 2007. Vehile-routing problems with inter-tour resoure on-straints. Tehnial Report 2007-01, Deutshe Post Endowed Chair of Optimizationof Distribution Networks, RWTH Aahen University, Aahen, Germany. Available atwww.dpor.rwth-aahen.de.Homberger, J., H. Gehring. 1999. Two evolutionary metaheuristis for the vehile routingproblem with time windows. Information Systems and Operations Researh 37 297�318.Hoos, H.H., T. Stützle. 2005. Stohasti Loal Searh Foundations and Appliations.34



Morgan Kaufmann Publishers, Elsevier, San Franiso, CA.Irnih, S. 2006. Resoure extension funtions: Properties, inversion, and generalization tosegments. Tehnial Report 2006-01, Deutshe Post Endowed Chair of Optimizationof Distribution Networks, RWTH Aahen University, Aahen, Germany. Available atwww.dpor.rwth-aahen.de.Irnih, S., G. Desaulniers. 2005. Shortest path problems with resoure onstraints. De-saulniers et al. (2005), hap. 2, 33�65.Irnih, S., B. Funke, T. Grünert. 2006. Sequential searh and its appliation to vehile-routing problems. Computers & Operations Researh 33 2405�2429.Irnih, S., D. Villeneuve. 2006. The shortest path problem with resoure onstraints and
k-yle elimination for k ≥ 3. INFORMS Journal on Computing 18 391�406.Janssens, G.K., R. Hartl, G. Hasle. 2006. Speial issue on rih vehile routing problems.Central European Journal of Operations Researh 14 103�104.Jepsen, M., S. Spoorendonk, B. Petersen, David Pisinger. 2006. A non-robust branh-and-ut-and-prie algorithm for the vehile routing problem with time windows. DIKUTehnial Report no. 06/03, Dept. of Computer Siene, University of Copenhagen,Copenhagen, Denmark.Kallehauge, B., J. Larsen, O.B.G Madsen, M.M. Solomon. 2005. Vehile routing problemwith time windows. Desaulniers et al. (2005), hap. 3, 67�98.Kernighan, B.W., S. Lin. 1970. An e�ient heuristi proedure for partitioning graphs.Bell Syst. Teh. J. 49 291�307.Kilby, P., P. Prosser, P. Shaw. 2000. A omparison of traditional and onstraint-basedheuristi methods on vehile routing problems with side onstraints. Constraints 5389�414.Kindervater, G.A.P., M.W.P. Savelsbergh. 1997. Vehile routing: Handling edge ex-hanges. Aarts and Lenstra (1997), hap. 10, 337�360.Laporte, G. 1992. The vehile routing problem: An overview of exat and approximatealgorithms. European Journal of Operational Researh 59 345�358.Laporte, G. 1997. Vehile routing. M. Dell'Amio, F. Ma�oli, S. Martello, eds., AnnotatedBibliographis in Combinatorial Optimization. Wiley, Chihester, 223�240.Lin, S., B.W. Kernighan. 1973. An e�etive heuristi algorithm for the traveling-salesmanproblem. Operations Researh 21 498�516.Lübbeke, M., J. Desrosiers. 2005. Seleted topis in olumn generation. OperationsResearh 53 1007�1023.Martin, O., S.W. Otto, E.W. Felten. 1992. Large-step Markov hains for the TSP inor-porating loal searh heuristis. Operations Researh Letters 11 219�224.Min, H. 1989. The multiple vehile routing problem with simultaneous delivery andpik-up points. Transportation Researh 23 377�386.Psaraftis, H.N. 1983. k-Interhange proedures for loal searh in a preedene-onstrained routing problem. European Journal of Operational Researh 13 391�402.Rayward-Smith, V.J., I.H. Osman, C.R. Reeves, G.D. Smith. 1996. Modern HeuristiSearh Methods. Wiley, Cihester.Resende, M.G.C., J.P. de Sousa, eds. 2004. Metaheuristis Computer Deision-Making .Kluwer Aademi Publishers, Boston, Dordreht, London.Ribeiro, C.C., P. Hansen, eds. 2002. Essays and Surveys in Metaheuristis. OperationsResearh/Computer Siene Interfaes Series, Kluwer, Boston.Røpke, S., D. Pisinger. 2006. A uni�ed heuristi for a large lass of vehile routing35



problems with bakhauls. European Journal of Operational Researh 171 750�775.Savelsbergh, M.W.P. 1990. An e�ient implementation of loal searh algorithms foronstrained routing problems. European Journal of Operational Researh 47 75�85.Shrimpf, G., J. Shneider, H. Stamm-Wilbrandt, G. Duek. 2000. Reord breakingoptimization results using the ruin and rereate priniple. Journal of ComputationalPhysis 159 139�171.Shaw, P. 1998. Using onstraint programming and loal searh methods to solve ve-hile routing problems. Teh. rep., Department of Computer Siene, University ofStrathlyde, Glasgow.Solomon, M.M. 1987. Algorithms for the vehile routing and sheduling problem withtime window onstraints. Operations Researh 35 254�265.Toth, P., D. Vigo, eds. 2002a. The Vehile Routing Problem, SIAM Monographs on Dis-rete Mathematis and Appliations. Soiety for Industrial and Applied Mathematis,Philadelphia.Toth, P., D. Vigo. 2002b. VRP with bakhauls. Toth and Vigo (2002a), hap. 8, 195�224.Toth, P., D. Vigo. 2003. The granular tabu searh and its appliation to the vehile-routing problem. INFORMS Journal on Computing 15 333�346.Voÿ, S., D. Woodru�. 2002. Optimization Software Class Libraries. Kluwer Aademi,Boston.

36



Type of See Number Compatible with ComplexityConstraint/Option Ref./Setion of Lex. Seq. ofResoures Searh Feas. ChekCapaity onstraints; CVRP [REF, �3.2℄ 1 X X O (1)Distane onstraints; DCVRP [REF, �3.2℄ 1 X X O (1)Colletion and deliverybakhauls; VRPB 4.1, [REF, �2.4.3℄ 1 (with reset) X X O (1)mixed bakhauls; VRPMB [REF, �2.4.3℄ 2 (dep.) X X O (2)VRPSDP 4.1, [REF, �2.4.3℄ 2 (dep.) X X O (2)VRP with lasso tours [REF, �2.4.3℄ 2 (dep.) X X O (2)Time window onstraints single TW [REF,�2.3℄ 1 X X O (1)TW; no waiting [REF,�2.3℄ 2 X X O (2)multiple TW [REF,�2.4.5℄ 1 X X O (L · T )soft TWwith linear penalty/positive slope [REF, �2.4.2,�4.4℄ 2 X no O (1)(=with linear waiting osts)with general soft TWs [REF, �2.4.2,�4.4℄ 2 no no ≥ O (n)limited waiting times [REF,�2.4.4℄ 3 (2 dep.) X X O (3)limited times on duty [REF,�2.4.4℄ 3 (2 dep.) X X O (3)Preedene and pairing PDP 4.2 (altern. model) X X O (1) for some neighborhoodsor: PDP 4.2 P X X O (P ) for arbitrary neighborhoodsand general preedenesonly (anti-)pairing [SPPRC,�3℄ P X X O (P )only preedene [SPPRC,�3℄ P X X O (P )Multiple depots MDVRP 2.2 � X X O (1), hek of ∼-relationtours with individual start and end 2.2 � X X O (1), hek of ∼-relationMultiple use of vehiles [REF,�2.3℄ � X X O (1)Multiple ompartments � C X X O (C)(ontinued on next page)
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(ontinued from previous page)Type of See Number Compatible with ComplexityConstraint/Option Ref./Setion of Lex. Seq. ofResoures Searh Feas. ChekHeterogeneous �eet di�erent apaities 4.6∗ 1 X X O (1)site dependenies 4.4∗ min{G,H} X X O (min{G,H})di�erent travel times 4.6∗ 2 + H X X O (H)di�erent �xed osts 4.6∗ 1 X X O (1)di�erent osts for vehiles 4.6∗ 2 + H X no O (H)Periodi; PVRP 4.7∗ - X X O (1)Load inompatibilities 4.4∗ G X X O (C)Inter-tour onstraintsassign limited �eet to depots [Inter�2.4.2℄ 1 X X O (1)ramp assignment [Inter,�2.4.2℄ 1 + D · T X X O (D · T )staggered arrival/sorting [Inter℄ 2 + D · T X X O (D · T )limit no. tours with ertain property [Inter,�2.4.2℄ 2 X X O (2)Additional oststime-dependent travel times [REF,�2.4.6,�4.3.3℄ 1 no no ?time-dependent travel osts � 2 no no ?linear waiting osts [REF,�2.4.2,�4.4℄ 2 X no O (1)load-dependent ostswith polynomial ost fnt. [REF,�2.4.1,�4.3.1℄ 2 X no O (1)general/pieew. linear ost fnt. [REF,�2.4.1,�4.3.1℄ 2 no no ?REFs with dereasing omponentsVRP with synhronization [REF,�3.1,�3.2℄ T no no ?VRP omb. with inventory mgmt. [REF,�3.1,�3.2℄ I · T no no ?VRP with split delivery [REF,�3.1,�3.2℄ 1 no no O (1)[SPPRC℄ = (Irnih and Desaulniers, 2005), [REFs℄ = (Irnih, 2006), [Inter℄ = (Hempsh and Irnih, 2007)(dep.)=dependent, (indep.)=independent, C=no. ompartments, D=no. depots, G=no. ustomer groups, H=no. vehile types,

I=no. inventories, L=max. length of a tour, P=no. preedenes/pairing onstraints, T=num time windows/sliesTable 3: Overview: Types of VRP, Compatibility with the Lexiographi and SequentialSearh Approah of the Uni�ed Model, and Complexity of Feasibility Cheks
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