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Abstract

This paper presents a new unified modeling and heuristic solution framework for
vehicle-routing problems (VRPs) with complex side constraints. The work is focused on
strong modeling capabilities as well as efficient solution procedures to be used in all kinds
of metaheuristics. From the modeling point of view, the framework covers a variety of
standard VRP types with classical constraints, such as capacity, distance, route length,
time window, pairing and precedence constraints, but also non-standard “rich” VRPs.
From the methodological point of view, local search (LS) is the key solver engine to be
used in heuristic solution procedures. First and foremost, the framework introduces two
generic techniques for the efficient exploration of edge and node exchange neighborhoods.
On the one hand, new preprocessing methods allow O (nk) neighborhoods to be searched
in time complexity O (n*), i.e., without an additional effort for feasibility testing. On the
other hand, Irnich et al. (2006) have introduced sequential search as a generic method for
accelerating LS in the average case. The computational tests on different types of VRPs
indicate that the proposed methods are highly efficient. Sequential search procedures out-
perform the currently most efficient search methods—which are based on lexicographic
search on large-scale instances and for nearly all types of neighborhoods by factors of
between 10 and 1 000.
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1. Introduction

The diversity of models and solution approaches in vehicle routing is enormous (see,
e.g., Golden and Assad, 1988; Toth and Vigo, 2002a; Laporte, 1992, 1997). This can be
estimated, for instance, by the fact that, in 2006 alone, a few hundred scientific papers
were published. Many of these publications meet the challenge of extending known models
and methods to cope with new or extended types of vehicle-routing problems (VRPs).
Under the name rich models, researchers summarize “non-idealized models that represent
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the application at hand in an adequate way by including all important optimization
criteria, constraints, and preferences” (Hasle et al., 2006). Plenty of contributions to “rich
VRPs” exist in the form of specialized algorithms that incorporate different types of
extensions into existing problems (see, e.g, Janssens et al., 2006, and several articles in
this special issue). However, many publications are mainly case studies, and it is not
clear whether their results are transferable to other cases. What is missing are unifying
modeling and solution approaches that are general (—generic) and flexible enough to be
used in a broad range of applications.

In many other publications, the focus is on enhancing the efficiency of existing meth-
ods or on devising alternative approaches that solve larger instances, compute solutions
faster, or provide solutions of better quality. In this context, much progress has been
made with regard to the design and analysis of metaheuristics, i.e., problem-independent
top-level general strategies which guide other heuristics to search for high-quality feasi-
ble solutions (Ribeiro and Hansen, 2002; Resende and de Sousa, 2004). The principles of
well-performing metaheuristics are now much better understood and metaheuristic imple-
mentations become reusable using software libraries (Vof and Woodruff, 2002). However,
what is missing are powerful lower-level VRP algorithms that are efficient and, at the
same time, general.

Research on unifying approaches for VRPs has been undertaken in different directions:
Formal schemes like those of Desrochers et al. (1990) are helpful to structure and classify
different types of VRPs. Integrated models, as presented by Desrosiers et al. (1995) and
Desaulniers et al. (1998), provide comprehensive mixed-integer programming formula-
tions. They can be used to devise powerful decomposition approaches, such as column
generation and Lagrangean relaxation integrated into branch-and-bound schemes (De-
saulniers et al., 2005). These methods are primarily intended to be used as exact solution
procedures, even if they can be redesigned into approximative algorithms (Desaulniers
et al., 2002).

In practice, VRPs can almost never be solved with exact methods, since instances are too
large and response times of decision support systems have to be short. Thus, heuristics
and metaheuristics have to be applied. Since the majority of metaheuristics in vehicle
routing use local-search (LS) components, the efficiency and effectiveness of LS is crucial.

One way to cope with non-standard side constraints and options in VRPs is to use
LS in combination with constraint programming, as suggested by Shaw (1998); Kilby
et al. (2000). Constraint programming-based methods appear attractive, since new side
constraints can easily be added to existing solvers by stating additional rules (typically
formulated in a high-level constraint programming language). The problem of identify-
ing feasible improving solutions is solved through a general-purpose search engine. A
known drawback of constraint programming-based (VRP) solution methods is however
that the additional flexibility in modeling is bought by the expense of loosing efficiency,
in particular, compared to traditional LS methods. It is worth mentioning that the large
neighborhood search (LNS) principle, which has been used in the context of constraint pro-
gramming, is very successful in finding least-cost solutions. However, LNS neighborhoods
can also be searched directly (Schrimpf et al., 2000; Ropke and Pisinger, 2006).

Research on efficient LS methods for VRPs and traditional (k-edge exchange) neighbor-
hoods has been undertaken by Kindervater and Savelsbergh (1997). It seems that these



techniques are not widely used, probably, since they seem to be intricate. In addition,
they were not explicitly presented in a way that allows a direct adaptation to different
LS operators and to new types of side constraints (cf. Shaw, 1998, p. 6).

This paper presents a new unified modeling and heuristic solution framework for VRPs
with complex side constraints. The work is focused on strong modeling capabilities and,
first and foremost, on efficient solution procedures. The contribution is threefold: First,
the aim of the framework is to help model different real-world VRPs in a generic way,
so that a broad class of standard problem types and also rich VRPs can be handled.
The modeling capabilities cover all standard types of VRPs, such as the capacitated and
distance-constrained VRP (CVRP, DCVRP), the VRP with multiple depots (MDVRP),
time windows (VRPTW), simultaneous delivery and pickup (VRPSDP), backhauling
(VRPB), pickup-and-delivery problems (PDP), the periodic VRP (PVRP), fleet mix
problems (FMP), VRPs with site dependencies, vehicle and request (in)compatibilities,
multiple-start option, limited waiting times and times on duty as well as mixtures and
extensions of these (Section 4 provides a more detailed overview of types of VRPs that
can and cannot be modeled and solved with the framework). The framework is mainly
based on the giant-tour representation (Christofides and Eilon, 1969) and the concept
of resource-constrained paths (Desaulniers et al., 1998; Irnich and Desaulniers, 2005). It
provides a flexible and generic but well-defined representation of feasible and infeasible
route plans.

Second, the framework is intended to support efficient solution procedures that are based
on LS. The importance of LS lies in the fact that it is the key component for finding
improving solutions within nearly all metaheuristics for VRPs. Because of its generic
representation, the unified framework helps to separate the modeling phase of a specific
problem at hand from the development of efficient solution methods that use LS as a
major building block. The key idea of any LS-based procedure is to iteratively build
a neighbor solution first and check its feasibility and gain afterwards. If implemented
in a straightforward way, this feasibility check causes an extra effort bounded by the
length of a longest tour. This length is in general only bounded by O (n) for instances
of size n, where n is the number of nodes in the problem. Techniques that avoid the
additional factor in the worst-case for cost computations and feasibility checks are already
known, but they are intrinsically tied to the lexicographic tree search paradigm (see
(Kindervater and Savelsbergh, 1997) and Section 3.3.1). Here, we present new techniques
for searching neighborhoods of size O (n*) in O (n*) time. We give sufficient conditions on
the update of resources that guarantee O (1) feasibility tests. The new techniques are more
generic and compatible with any kind of neighborhood exploration strategy and, thus,
enable accelerated search methods. Examples of neighborhoods to which the methods
apply are the k-opt and k-opt* neighborhoods, the relocation and Or-opt neighborhoods,
different node and string swap/exchange neighborhoods, and others (recent surveys on
VRP neighborhoods and search techniques are (Briysy and Gendreau, 2005a; Funke et al.,
2005a)).

Third, the goal of all efficient LS procedures is to find a best or first improving neighbor
solution as fast as possible, i.e., not only from a worst-case but from an average-case
point of view. An analysis of the structure of the classical exchange procedures in the
routing context yields that any neighbor solution of a (giant) tour can be generated by
removing ¢ edges and replacing them by ¢ others (even if it is a node exchange procedure).



The choice of these edges is typically made by taking k < /¢ independent decisions.
Hence, the associated local search procedure can be considered a tree search method
where the search tree has depth k. The two main criteria for a reduction of the search
space, i.e., for terminating the search or “pruning the search tree”, are cost and feasibility
considerations. It has been discussed in (Funke et al., 2005a; Irnich et al., 2006) that one
can distinguish between two efficient approaches. Sequential search is based on the idea of
cost-based reductions, i.e., one tries to prove at an early stage ¢ < k that no improvement
can be found which includes the nodes or edges of the stages 1,...,%. Lexicographic
search is driven by feasibility reductions, i.e., one tries to prove at an early stage i < k
that no feasible exchange exists which includes the nodes or edges of the stages 1,... 1.
This paper presents concepts for applying sequential search procedures to the generic
modeling framework in order to further reduce the effort of evaluating a neighborhood
of size O (n*). The goal is to perform less than O (n*) operations in the average case.
The acceleration methods can be applied in the context of best improvement as well
as first improvement pivoting strategies. Computational results indicate the superiority
of sequential search-based approaches for a variety of VRPs with side constraints over
straightforward and also lexicographic implementations (Kindervater and Savelsbergh,
1997). Note that lexicographic search approaches already ensure the O (n*) worst-case
time bound for neighborhoods of size O (n*).

Finally, we would like to stress that the paper does not present a specific metaheuristic.
The presented research is a contribution to the foundations of efficient search techniques.
These efficient search techniques can be seen as basic building blocks that can easily be
integrated into different metaheuristics (see Section 6).

The paper is structured as follows: Section 2 presents the unified framework from a
modeling point of view, introducing concepts for representing VRP solutions generically.
Section 3 points out the major tasks that have to be performed in an efficient LS pro-
cedure. These tasks include efficient cost computations and feasibility testings as well
as setting up well-suited search strategies that match with these computational tasks.
Section 4 presents real-world constraints fitting into the framework and also discusses
limitations of the approach. The computational tests of Section 5 show the effectiveness
of the new solution framework. Final conclusions are given in Section 6.

2. Modeling Framework

The proposed unified modeling and solution framework for vehicle routing and LS-based
metaheuristics can be seen as a counterpart to the framework of Desaulniers et al. (1998).
Both frameworks follow the idea that resource-constrained paths capture which routes
or schedules are feasible. While the unified framework of Desaulniers et al. (1998) is
intended to be used with an exact column-generation or Lagrangean-relaxation method,
the framework presented here focuses on heuristic procedures based on enumerative LS
algorithms. Moreover, in (Desaulniers et al., 1998) only the feasibility of individual routes
and schedules is encoded in the definition of resource-feasible paths. Constraints that
couple together different routes form the constraints of the master program, see (Liibbecke
and Desrosiers, 2005). Here, the feasibility of individual routes as well as several types
of inter-tour constraints is defined by resource-constrained paths. The building blocks of
the representation are the routing graph, the giant-tour representation, a compatibility
relation between route-start and route-end nodes, and the consideration of the entire



giant route as a single resource-feasible path. The following subsections explain the above
building blocks in more detail.

2.1.  Routing Graph

In order to describe neighborhoods and solution procedures formally, a concise represen-
tation of VRP solutions, i.e., route plans, is needed. This representation has to be flexible
to model a wide range of rich VRPs and has to cover typical node-exchange and edge-
exchange neighborhoods, but must still allow efficient algorithmic procedures to explore
neighborhoods. The basis for such a representation is a directed routing graph G = (V, A).
Any solution of the rich VRP is represented by a single cycle in G, the so-called giant
tour. For those VRPs for which transportation tasks are uniquely represented by nodes,
solutions coincide with Hamiltonian cycles of the routing graph.

The more general case is that alternative service or delivery options exist, e.g., in (Car-
deneo, 2005) goods have to be delivered to alternative delivery points. In general, a set
of tasks Q has to be covered. Subsets Q, and Q. of tasks (possibly empty) are as-
sociated with each node v € V and arc e € A of the routing graph (see also Irnich
and Desaulniers, 2005, p. 40) and (Irnich and Villeneuve, 2006, §7.3). Feasible VRP
solutions are cycles (vo, e1,v1,€2,v2,...,€p—1,Vp—1,€p, Vo) (not necessarily Hamiltonian)
where | J_;(Qu, , U Q,) is a partitioning or covering of the tasks Q. In classical node-
routing applications, all customers/requests require a single visit and, hence, different
tasks are associated with the customer/request nodes. If there is a delivery option, e.g.,
to deliver something (- task ¢) to location v; between 8:00 and 11:00 or to deliver it
to location vy between 10:00 and 18:00, one can model this option with a network con-
taining nodes v; and vy (with different time windows) that have the same associated
task Q,, = Qu, = {¢}. Moreover, more that one task might be performed when visiting
a particular location v, i.e., @, can contain more than one element. In all these cases,
tasks are associated with nodes and there are no tasks on arcs. Conversely, in arc-routing
applications, the tasks are associated with arcs.

We call any cycle task-feasible if it implies a partitioning or covering of the tasks. For
the entire paper we assume that testing whether (i,j) € A (for any i,j € V) and the
determination of tasks associated with nodes and arcs is possible in O (1) time.

Solutions of VRP involving more than a single vehicle can be represented as a collection of
routes. Hence, the node set V.= RUOUD of the routing graph consists of request nodes R
and route-start O and route-end nodes D. A route is a path (vg,v1,...,vp) in G, starting
with a route-start node v9p = o € O, continuing with request nodes v1,...,v,1 € R,
and ending with a route-end node v, = d € D. The interpretation of the request nodes
depends on the problem at hand. In the case of the VRP, request nodes correspond to
customers that have to be visited. For the PDP, a request node is either a pickup or a
delivery. In more complex routing applications, a request may even consist of more than
a pair of nodes.

2.2.  Compatibility Relation between Route-Start and Route-End Nodes

The aim of route-start and route-end nodes is to introduce vehicle and depot character-
istics into the problem. First and foremost, these nodes represent spatial points where
vehicles start and end their trips. In order to ensure that route-start and route-end nodes



are compatible, we define a relation ~ on O x D. Again, the compatibility of pairs (o, d)
of route-start and route-end nodes depends on the problem at hand: For single-depot
problems with a homogeneous fleet, all 0 € O and d € D are compatible, since all
nodes represent the same physical location independent of the vehicle. In multi-depot
problems, the sets O and D are partitioned according to the np depots or garages, e.g.,
O=0'U---uO0™, D =D'U-..UD". Pairs 0 € O, d € D' are compatible if and
only if k = 1. Sets OF x D* consisting of a single pair, can be used to model VRPs with
individual vehicles departing from and going to different locations. In general, we assume
that O and D have the same cardinality, |O| = |D|. The easiest way to implicitly encode
the compatibility relation into the routing graph is to define an arc (o,d) € A if and only
if 0 ~ d holds.

2.8.  Giant Route and Giant Tour

A solution to a VRP is called a route plan. A route plan can be written as x = (p',p?, ..., p)
with an H-tuple of disjoint routes in G. Note that this definition implies that every route-
start and route-end node occurs in exactly one route. We will denote the (maximum)
number of nodes in a route plan by n = |V].

The giant route is the path (p*, p?,...,p") in which each route-end node d’ is connected to
the next route-start node o'*! (fori = 1,2,..., H—1). Similarly, the giant tour is the cycle
in which, additionally, d! is connected to o'. In the following, P(p*,p?,...,p") denotes
the giant route and C(p',p?,...,p) the giant tour. The giant-tour representation of a
route plan is a generalization of the MTSP representation of the VRP (Christofides and
Eilon, 1969) to more general VRPs. It has the advantage of allowing single and multiple
route problems to be handled in a very similar way. Figure 1 depicts such a representation
for the case of four routes, departing from two depots.

Fig. 1. Giant—
Tour Represen-
tation

2.4. Resource-Constrained Paths

Resource-Constrained Paths (RCPs) and associated shortest-path problems have been
very successfully used in the context of column generation methods, not only applicable
to VRP but also to vehicle- and crew-scheduling problems, see (Desaulniers et al., 1998;
Irnich and Desaulniers, 2005). The success of RCPs is based on the fact that the resource
concept constitutes a very flexible tool for modeling complex cost structures for routes
and schedules as well as a wide variety of rules that define their feasibility. In the context
of VRPs, column generation and branch-and-price-and-cut give rise to exact solution pro-
cedures that are restricted to small and medium-sized instances of up to about 100 nodes,
see e.g. (Fukasawa et al., 2004; Desaulniers et al., 2006; Jepsen et al., 2006). Here, we
propose to transfer the concept of RCPs from exact to heuristic solution methods. The
goal is to provide LS components for metaheuristics, which are flexible and at the same
time powerful, so that they can be applied to large-scale rich VRP instances in order to
produce high quality solutions.



Resource-constrained paths (RCP) are defined over a so-called routing (di)graph G =
(V, A). For the sake of convenience, we assume that G is simple, so that a path can be
written as P = (vp,v1,...,vp) with the understanding that (v,_1,v¢) € A holds for all
¢ € {1,...,p}. Resource constraints can be formulated by means of (minimal) resource
consumptions and resource intervals, e.g., the travel times ¢;; along arcs (i,7) € A and
time windows [a;, b;] at nodes ¢ € V for the time resource. Let R be the number of
resources (such as time, load, cost etc.). A vector T = (T',..., T®)T € RE is called a
resource vector and its components resource variables. For two resource vectors a and b
the interval [a, b] is defined as the set {T' € R®:a < T < b} (componentwise).

Resource intervals, also called resource windows, are associated with nodes ¢ € V and
are denoted by [a;, b;] with a;,b; € RE, a; < b;. (In the following, a} refers to a resource
vector of node ¢ and its component for the resource r.) The changes in the resource
consumptions associated with an arc (7,j) € A are given by a vector fi; = ( [j)le of
so-called resource extension functions (REFs). An REF for resource r, i.e., i RE —
R, depends on a resource vector T; € RE. The vector T; corresponds to the resource
consumption accumulated along a path from a given start node s to a node ¢, i.e., up to
the tail node 7 of arc (7, 7). Hence, the result f;;(T;) € R% can be interpreted as a resource
consumption accumulated along the path (s,...,i,7). Classical REFs are of the form

1:(T;) = max{a}, T] +t];}, where t]; are constants associated with the arc (7, j) and a7, the
lower bound of the resources r at node j. Classical REFs are separable by resources, i.e.,
no interdependencies exists between different resources. More general definitions of REFs
provide powerful instruments for modeling practically relevant constraints over resources
that are interdependent (see Irnich and Desaulniers (2005), Irnich (2006), and Section 4).
A path P = (vg,v1,...,vp) is resource-feasible if resource vectors T; € [ay,, by,] exist for
all positions i = 0,1,...,p such that f,, .., (T;) < Tt holds for all i = 0,...,p — 1. We
denote by F the set of all resource-feasible paths.

Concluding, a route plan (p',p?,...,p!) is feasible if and only if all of the following four
conditions hold: (1) p*,p?,...,p" are node-disjoint routes, (2) C(p',p?,...,p") is a task-
feasible cycle in the routing graph G, (3) all route-start and route-end nodes of routes p’ =
(o%,...,d") are compatible, i.e., o' ~ d' for all i € {1,...,H}, and (4) P(p',p?,...,p")
is a resource-feasible path. The novelty in this definition is that the entire giant route
P(p',p?,...,pM) is considered as one RCP. This implies that particular REFs are needed
to connect consecutive routes in the giant tour. Whenever a route-end node d* € D is
connected to a route-start oft! € O, all intra-tour resources r have to be reset. This
fits in nicely with the definition of classical REFs, since a reset function is given by the
REF fgk,ok+1(T) = max{al,,,,T" — M} (with an appropriate large number M). Note
that inter-tour resources r (such as cost) should not be reset but kept, i.e., fgkﬁkH(T) =
max{—M,T"} =1T".

3. Efficient Local Search

Local search is the most frequently used heuristic technique for solving combinatorial
optimization problems. It provides the basis for modern metaheuristics, such as Tabu
Search, GRASP, and variable neighborhood search (VNS), see (Hoos and Stiitzle, 2005).
Most of the effort spent within an enumerative LS algorithm is used for scanning the
neighborhood (for a classification of LS algorithms the reader is referred to (Funke et al.,
2005a)). It is, therefore, desirable to use efficient algorithms within LS to speed up the



procedure that performs this scan. In this section, we first clarify the relationship between
neighborhoods, moves, the order in which the search tree is explored, and in detail
algorithms that compute costs and test the feasibility of neighbor solutions.

3.1.  Local Search, Neighborhoods, and Moves

An instance (X, ¢) of a combinatorial optimization problem can be stated as minge x ¢(z),
where X is the set of feasible solutions and ¢ the cost function. The heart of an LS
procedure is the definition of a neighborhood N, which is a mapping N' : X — 2¥X.
Each element 2/ € N (z) is called neighbor of x. Neighbors 2’ with cost ¢(z') < ¢(z) are
improving neighbors. LS starts with an initial feasible solution 2° € X. In each iteration ¢
it replaces the current solution z! by an improving neighbor z!*' € A(2!), if such an
improving neighbor exists. The LS procedure terminates with a local optimum, ie., a
solution ! for which the neighborhood A (z!) contains no improving solution.

Algorithm 1 Generic Local Search

: Input: A feasible solution z° € X.
LET ¢t =0.
REPEAT
SEARCH for an improving neighbor z’ in the neighborhood N (zt!) of the current solution zt.
IF there exists an improving neighbor solution 2’ € A(zt) THEN
LET o!tl =2’ and t =t + 1.
UNTIL no more improvements can be found.

Output: A local optimum zt.

0N O WN

For further details of local search, we refer the reader to the books by Rayward-Smith et al.
(1996), Aarts and Lenstra (1997), and Hoos and Stiitzle (2005). The naming of specific
VRP moves and neighborhoods used in the following is also taken from the survey (Funke
et al., 2005a).

Note that there are several options for choosing improving neighbor solutions in Step 4. If
the search method is enumerative (i.e., neighbor solutions 2’ € A/(z?) and their costs c(z)
are evaluated one by one), taking the first improving solution or taking a best improving
solution are two extreme strategies known as first improvement and best improvement.
Another well-known strategy, referred to as d-best improvement, terminates the search
when d improving neighbor solutions have been found and returns a best of them. From
the worst-case point of view, all search strategies are equivalent, since showing that z? is
a local optimal solution requires the entire neighborhood A (z) to be scanned. However,
from an average case point of view, these strategies might significantly differ in their
efficiency (we expect from best improvement that it will perform less iterations with larger
steps that take longer compared to first improvement). It is, in general, not clear which
strategy works better, but the problem, the neighborhoods, and the characteristics of the
instances can have an impact. Note that all of these pivoting strategies may determine
different paths through the search space and end up in different local optima.

Typically, neighborhoods and neighbor solutions are neither constructed by the func-
tion A/ : X — 2% nor given by subsets A'(xz) C X. Instead, they are defined implicitly by
a set of moves M. A move m € M transforms a solution into a neighbor solution. Some
of the moves m € M might transform a feasible solution x into an object m(z), which has
a structure similar to a feasible solution, but does not necessarily satisfy all constraints
that define feasible solutions. In the following, we will refer to such an object as a solu-
tion. Examples in the case of VRPs are the removal of a customer node and its insertion



into another position or the swapping of two customers between two tours. These moves
might violate a constraint. Let Z O X be the set of all solutions. In general, we denote
by M the set of moves, where a move m € M maps from Z to Z, i.e., m: Z — Z. For
a given x € Z, the extended neighborhood N contains all neighbors of z, either feasible
or infeasible, i.e., N'(z) D N(z). Every move m € M with m(z) € X is called a feasible
move w.r.t. x. Concluding, finding a feasible move consists of two parts: the manipulation
of a current solution and the test of feasibility.

3.2.  Major Tasks in a Local Search Procedure for Vehicle Routing

The focus of this paper is on the efficient implementation of Step 4 of Algorithm 1.
The major tasks that have to be performed are the implicit or explicit construction of
neighbor solutions 2/ € N(z), for each of them the computation of the cost ¢(a’) or
gain g(z') = c¢(x) — ¢(2") compared to the current solution x, and the test of whether the
newly constructed neighbor is feasible or not (separating candidates 2’ € X from those

in Z\ X).

The problem of checking the feasibility of a neighbor solution is best explained by an ex-
ample: A swap move chooses two nodes w; and w; of the giant route and exchanges them.
Hence, the four arcs (w;—1,w;), (wi, wit1), (wj—1,w;), (w;, w;4+1) are deleted and the four
arcs (wi—1,w;), (Wj, wit+1), (Wj—1,w;), (w;, w;q1) are added to the current solution z, see
Figure 2. The extended swap neighborhood N (z) of giant route z consists of all other gi-

d"o? Q Q O d%o3
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ant routes that can be generated by choosing different nodes w; and wj, so that the swap
neighborhood is of size O (n?). A newly constructed neighbor solution z’ € N(:E) can be
rejected if it is non-improving or infeasible. Moreover, we see that a neighbor solution x’
is uniquely determined after making & = 2 independent decisions (the decisions about
the two nodes/positions to swap).

In general, all enumerative search procedures for O (n*) neighborhoods work on a search
tree with (at least) k-levels. They differ in two aspects:

(1) In the order, in which objects, i.e., nodes or arcs defining the move, are determined
(nodes w; and w; for the swap move). Enumeration rules for nodes can consider nodes
by increasing (decreasing) index, position in the giant tour, or ordered by an auxiliary
attribute (e.g., lower or upper limit of an associated resource interval). Alternative enu-
meration rules choose nodes one after another—sequentially—such that distance, cost,
or any other resource consumption of an associated arc is increasing. Lexicographic and
sequential search approaches described in (Irnich et al., 2006) differ exactly with respect
to these orderings. Different orderings allow tailored

(2) Criteria for pruning the search tree. If some branch of the search tree does not contain
any feasible or improving neighbor solution, it can be pruned. It means that we do not have
to build and evaluate the corresponding solutions x’ but can take a shortcut. This is the



key idea for accelerating enumerative search approaches for O (n*)-sized neighborhoods to
be searched in less that n* operations. In contrast to heuristic techniques like those used
in (Toth and Vigo, 2003), we can be sure to find a best (improving) neighbor solution.

Note that gain-based criteria try to show that there is no improving (or less strictly, no
acceptable) solution relative to the quality of the current solution z and, possibly, relative
to another improving neighbor solution x” € N (z) already computed. Computing the
gain of a move is trivial as long as it can be expressed as the difference of the costs of all
arcs changed replacing = by 2/, e.g., (2, 2") = Cu;_y w; + Cwswisr T Cwjo1w; T Cowjiwjir —
Cw; 1 w; — Cwjwipr — Cwj_yw; — Cwiw;yy for the swapping of w; and w;. However, this is
not the case if cost depends on other resources, such as load-dependent transport tariffs,
wages for drivers depending on the time on duty etc. Then, the preprocessing and search
techniques presented in Section 3.3 still allow constant time cost computations provided
that REFs are generalizable to segments. Sequential search techniques, however, are not
directly applicable then (cf. Section 3.4).

Feasibility-based arguments try to identify branches of the search tree that do not contain
any feasible solution at all. Both types of arguments need tailored search strategies in
the sense that the sequence in which decisions are taken must allow the argument that
all remaining solutions of the branch under consideration are either more costly or “less”
feasible. It is, therefore, hardly possible to directly mix both approaches. Considering
feasibility of a swap, note first that one or two routes are affected, depending on whether
w; and w; are in the same route or different routes. Testing a constructed route in a
straightforward way means looping over the nodes of the route in order to compute
minimum resource consumptions which are then checked against upper bounds. This is
at least possible if all REFs f;; are non-decreasing, see (Irnich, 2006). The loop over the
nodes of a single route causes an effort of O (n) if the length of a tour is not limited by a
fixed number, independent of n. Even if there is a maximum length of a tour, the presence
of inter-tour constraints can require that resource consumptions have to be propagated
along the entire giant route.

3.3.  Feasibility Checks and Cost Computations in Constant Time

If cost is one of the resources (this is no restriction, but the standard case in Irnich and
Desaulniers (2005)), feasibility checking and cost computation can be seen as identical
algorithmic procedures. Computing the cost of a giant tour C(p!,...,p) is equivalent
with finding a least cost resource vector at the destination node of P(p', ... ,pH). Improv-
ing solutions w.r.t. = are exactly those giant routes that respect an upper bound c¢(z) — ¢
for the cost resource (with e > 0 small). In the following (if not stated otherwise), we
speak of “constant time feasibility tests” for both cost computations and for checking the
remaining resource variables.

Before we introduce our new approach, an alternative method proposed by Kindervater
and Savelsbergh (1997) is explained along with its capabilities and limitations.

3.3.1.  Global Variables Approach of Kindervater € Savelsbergh

According to Kindervater and Savelsbergh (1997), “the basic idea is to use a specific search
strategy in combination with a set of global variables such that testing the feasibility of
a single exchange and maintaining the set [of| global variables requires no more than
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constant time”. The specific search strategy they use is lezicographic search. Note that
the traditional node and edge exchange procedures are characterized by the fact that
a given tour (or two or several affected tours) are split into paths (from now on called
segments). These segments are permuted, some may be inverted, and finally concatenated
together again to form a new tour. Lexicographic search is characterized by the fact
that, in the innermost loop of the search algorithm, from one iteration to the next, an
inner segment grows by exactly one node. In this way, global variables for a segment
(wj, Wit1, ..., wj—1,w;) are computed by either concatenating (w;, wiyt1,...,w;—1) with
(wj—1,wj) or (Wi, wiy1) with (wit1, ..., wj—1,w;). Contrary, in an initialization phase and
in outer loops of the search algorithm, global variables for starting and ending segments,
ie., (wi,ws,...,wi—1) and (wjq1,...,wy), are computed and stored. Together, these
global variables of the segments allow constant time feasibility checks. For instance, time
window constraints require the computation of a total travel time, earliest departure time,
and a latest arrival time. This is based on certain forward and backward computations
along segments. Kindervater and Savelsbergh (1997) clarify these procedures for 2-opt
and Or-opt moves in connection with time windows and precedence constraints as well
as for problems with simultaneous deliveries and pickups.

Their approach is intrinsically tied to the lexicographic order in which moves are con-
sidered, because a constant time update of the global variables from one iteration to
the next requires that only a fixed number of nodes (typically one node) is added to a
segment. In the case of a swap move (see Figure 2), an outer loop considers nodes w; (at
position 7 in the giant tour) in any order, e.g., in the order in which they appear in the
tour. Contrary, the inner loop must choose the second customer nodes w;, one by one,

at positions i + 2,7+ 3,...,n — 1. The constant time computation of global variables is
possible for the segments P» = (w;), P3 = (Wit1,...,wj—1,wj—1), and Py = (w;), since
these global variables are either computed from scratch (for segments of length 1) or from
global variables of the previous segment P; = (wj41, ..., w;j—2). The initial phase has to
provide global variables for all segments P; = (wy,...,w;—1) for i = 1,2,...,n — 3 and
Ps = (wjy1,...,wy) for j=3,...,n— 1.

Kindervater and Savelsbergh (1997, p. 350) point out that their global variables approach,
combined with lexicographic search, can be used for multiple constraints and all k-edge
exchange neighborhoods. However, a unifying theory explaining which types of constraints
can and which cannot be dealt with is missing. For instance, resource constraints with
resources that depend on each other (such as load-dependent travel times etc.) are not
considered. On the other hand, resource extension functions, as introduced by Desaulniers
et al. (1998), provide a well defined, flexible, and generic formalism for the description of
side constraints relevant for rich VRPs.

3.3.2.  Segment REFs

The following subsection explains how REFs can be inverted and generalized to segments,
so that extensions of the ideas of Kindervater and Savelsbergh can be used (1) for more
general VRPs defined by non-standard REFs, (2) in the context of giant tours, i.e., when
segments can also contain nodes from more than just a single tour, and (3) within different
search strategies allowing more flexibility than the lexicographic search approach.

The key idea is to separate the search strategy from the computation of global variables (or
any similar information, e.g., given by segment REFs). Note that all the classical moves
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can be considered as k-edge exchanges, even if their intention is to exchange nodes.
The swap move, for instance, is a specialized 4-opt move (except for the case where
w; and w; are adjacent yielding a 2-opt move; cf. legitimacy conditions, explained in
(Glover, 1996) and (Irnich et al., 2006)). Therefore, moves decompose the giant route
into a small fixed number of segments. The swap move depicted in Figure 2 implies the
segmentation Py = (o',...,w;_1), P» = (w;), Py = (Wig1,...,wj—1), P4 = (w;), and
Ps = (wjt1,...,d°). The paths P, ..., Ps depend on the giant tour (wy,ws, ..., wy,w)
currently under consideration (the incumbent giant tour) and the choice of the nodes
w; and wj (or, equivalently, their positions ¢ and j). These five segments are permuted
and constitute the new giant route P = P(Py, Py, P3, Py, P5) (cf. notation introduced
in Section 2.3). The move is feasible if and only if P is resource-feasible and C(P) is a
task-feasible cycle in which route-start and route-end nodes are compatible. Testing the
last two conditions, i.e., task-feasibility and that all route-start and route-end nodes are
compatible, is straightforward and possible in O (1). The following analysis, therefore,
focuses on resource-feasibility.

Our goal is now to determine attributes for each of the possible segments such that
one can decide in O (R) time whether the concatenation of two segments also forms a
feasible or infeasible segment. Furthermore, we want to compute the attributes of the
concatenated segment in O (R), so that, in summary, testing the feasibility of P can be
performed in constant time O (R), too. Irnich (2006) provides the theoretical background
for accomplishing this task. The attributes which have to be computed are the defining
coefficients of the segment REFs as well as inverse segment REFs for some of the segments
underlying the incumbent giant tour. For the sake of clarity, we start by pointing out the
basic assumptions to hold for the rest of the paper:

(al) All REFs have a finite representation and allow function evaluations in O (R) time.
This is true for several types of non-decreasing REFs presented in Section 4.

(a2) All inverse REFs exist. The inverse of a non-decreasing REF f;; : R® — [a;,00) is
a function ZJ’“’ : Rf — (=00, b;]. It has to be non-decreasing and its defining property
is

[ij(T)<T' < T < ZJ’-W(T') for all T € (—o0,b;] and all T' € [a;, 00).

(a3) All inverse REFs have a finite representation and allow function evaluations in
O (R) time.

(a4) All REFs and inverse REFs can be generalized to segments. Segment REFs also
allow function evaluations in O (R) time.

(ab) The concatenation of any two segments has a REF that can be computed in O (R)
time from the REFs of the two segments.

Obviously, if the number R of resources is fixed, i.e., independent of the size n of the
giant tour, all the above mentioned operations can be performed in constant time O (1).

We refrain from giving a formal presentation of all the details concerning REFs and
required properties, derivations, and proofs concerning finite representation, inversion,
generalization to segments, function evaluation and concatenation. These details can be
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found in (Irnich, 2006). However, some remarks for explaining and interpreting the newly
introduced segment REFs and inverse REFs seem appropriate: We consider an arbitrary
path P. The segment REF fp : R — RE gives for each initial minimum resource con-
sumption 1" at the start node the minimum resource consumption at the final node of P.
Note first, that this is exactly the idea of arc REFs, i.e., for P = (4,7) the value f;;(7T')
is the minimum resource consumption at j given the resource consumption 7" at node .
Note further, that the term “the minimum resource consumption” is only well-defined if
the REFs are nondecreasing. While ordinary REFs for arcs and segments propagate mini-
mum resource consumptions forwards, inverse REFs propagate upper bounds for resource
consumptions backwards. The inverse REF ;]”” : R — R takes any upper bound 7"’
for the resource consumption at node j and computes the value ff}“”(T’) which is an
upper bound for the resource consumption on node ¢. Similarly, for the inverse segment
REF f};”” : RE — R the resource vector f;)””(T’) is the upper bound for the resource
consumption at the start node of P under the condition that one propagates resources
along P and that T” is an upper bound for the resource consumption at the final node.
The importance of segment REFs and their inverses is due to the following result:

Proposition 1 (Irnich (2006), Theorem 3) Given resource-feasible paths Py, Ps, ..., P, €
F, where the ith path P; starts with a node w;_1 and ends with a node w;, such that the
end-node of P; coincides with the start-node of Piy1 for all i € {1,...,q — 1}. Their
concatenation Py + Py + - -+ + Py is resource-feasible if and only if all inequalities

fPl (awo) < f}igv(bwz)
fP1 ° fpz(awo) < f]z'%v(bwa)

1 (1)

friofro--o fp, (au) < R (bu,)

hold. (Note: f o g(x) is defined as f(g(x)).)

A direct consequence of Proposition 1 is that the problem of efficiently testing the feasi-
bility and computing gains is at least partially solved. A prerequisite is, however, that
segment REFs must be available.

Theorem 2 Let x be a feasible giant tour and let all segment REFs as well as inverse
segment REFs w.r.t. x be already computed for all possible segments. Then, any neighbor
solution ' = m(x) of a l-edge exchange move m can be tested for feasibility in O (¢R)
time.

Since for all node-exchange and edge-exchange neighborhoods that are explored with tree
search methods (cf. Funke et al., 2005a) the number ¢ of segments is constant (and small),
Theorem 2 implies O (R) time feasibility checks.

3.3.3.  Preprocessing

What remains to be done is to find efficient procedures to provide REFs and inverse
REFs for all or (at least) a suitable subset of segments. Computing segment REFs and
upper bounds for a given giant tour can be undertaken with a straightforward proce-
dure requiring O (Rn?) time and space. The reason is that there are 2n? segments and
inverted segments spanned between the n? pairs of nodes (note that moves might invert
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some of the segments, so that inverted segments have to be considered, too). Segment
REFs fp for a segment P = (vj,...,vj_1,v;) are generated from the segment REF fp/
of the segment P’ = (v;,...,vj—1) and the REF f, _, . Similarly, for the segment

Q = (vi,Vig1,...,v5), j > @ the inverse segment REF fé?”“ is computed from the in-
verse REF 5%”1 and the inverse segment REF fZ1¥ of Q" = (vit1,...,v;). With the

general assumptions (al)-(a5) on REF operations, each step requires O (R) time leading
to the desired result.

Proposition 3 Segment REFs and inverse segment REFs for all 2n® segments and in-
verted segments of a giant tour of length n can be computed by a straightforward procedure
in O (Rn?) time and space.

From a worst case point of view, a quadratic preprocessing is satisfactory if neighborhoods
N of size O (n¥) with k > 2 are inspected. However, we would like to accelerate the average
case and corresponding search strategies that scan less than O (n?) neighbors. Moreover,
it has been shown by Funke (2003) that restricting the length of some segments can lead
to interesting neighborhoods that can be searched quickly. For instance, restricting the
length of inverted segments to a fixed value K for 2-opt moves yields a O (Kn)-sized
neighborhood. Using first-improvement pivoting strategies in LS also requires accelerated
methods for the preprocessing phase. Our aim is, therefore, to reduce the number of
segments that have to be considered in feasibility testing procedures.

A solution to this problem is the definition of seed points dividing the nodes of the giant
tour uniformly into sections. A 1-level hierarchy with parameter § < 1 uses equidistant
sections of length nf, so that n/nﬁ sections result, see Figure 3. The idea of a hierarchy of

section of n®nodes seed point Fig. 3. 1-Level Hierarchy

REFs is that, instead of computing all 2n? REFs for all segments, only segments within
a section (i.e., between two consecutive seed points) and between all pairs of seed points
need to be considered. In order to compute a REF ranging from position ¢ to position j,
one has to consider three cases: (1) If positions ¢ and j fall into the same section, the
REFs are already available. (2) If ¢ and j are in two different but consecutive sections
surrounding the unique seed point s, the REF between ¢ and j can be computed as the
concatenation of the REF from i to s and the REF from s to j. (3) Otherwise, there are
at least two seed points between ¢ and j with s; the first seed point following ¢, and so the
last seed point preceding j. The REF from i to j can be computed as the concatenation
of three REFs, i.e., from ¢ to s, from s; to so, and from so to j. In all three cases,
the segment REF from ¢ to j is available in, at the utmost, O (3R) = O (R) steps. The
number of segment REFs to compute is
o) (2%7125 19 <%>2> _ 0 (nmax{1+ﬁ,2—2ﬁ}> 7

n n
where factor 2 is for forward or inverted segments, the first term is the computation of all
REF inside sections, and the second term for the REFs between seed points. The effort
is minimal for §* = 1/3 resulting in O (n*?3) computations.

14



Proposition 4 Segment REFs and inverse segment REFs for a 1-level hierarchy of seed
points for a giant tour of length n can be computed in O (Rn4/3) time and space.

Generalizations to hierarchies with two and more levels can be found in the Online Sup-
plement.

3.53.4. Generic Search Procedure

The following pseudo-code formalizes a generic search procedure for searching an O (n*)
neighborhood N (x) of a current feasible solution z to determine a best neighbor solu-
tion 2/ with a gain g(z,2') > Gpn. The parameter Gy, is chosen as Guin = 0 for
classical local search, G,,;; = oo if any non-improving neighbor could be accepted, and
Gmin > 0 for more selective procedures that consider only substantial improvements. In-
dependent of Gy, the procedure guarantees a worst-case running time of O (nmax{k’h})
and needs O (n?) space, with h € {2, %, %} depending on the type of hierarchy used.
Algorithm 2 Generic Local Search (=Step 4 of Algorithm 1)

1: Input: A feasible solution (giant route) = = (wo,...,wn) € X;
Gmin € R minimum gain.
(Phase 1 — Preprocessing)
2: LET H be the ¢-level hierarchy of segment REFs fp, f}ig”” describing the current solution x.
3: STORE positions i, and positions n;,[; of last/first route-start and route-end nodes (see remarks below).
(Phase 2 — Tree Search)
4: LET G* := Gmin-

5: LOOP decision di
6: LOOP decision do
7: :
8: LOOP decision d,
9: (Implicit construction of move and neighbor solution)
10: LET m := mg be the move implied by decisions (d1,d2,...,dg).
11: LET &’ = (P, Po, ..., P;) the permutation of the segments of (wo,...,ws,) implied by m.
(Feasible and Improving?)
12: LET P := (Pll,...,Pfl,le,...,P2Z27 ...... ,qu,...,P(fq) be the segmentation
13: implied by (P, P2, ..., Py) and H.
14: LET feasible:=Formula (1) is fulfilled for P
15: AND C(z’) task-feasible
16: AND P(z') feasible w.r.t. route-start and route-end nodes.
17: LET G :=g(z,2') := ;;?Sto"'ofpfl OfP21 Ovv~OfP2g2 --vo~~oqul o--vofP:q(awo).
18: IF (feasible and G > G*) THEN
19: (Update of best neighbor solution found)
LET G* := G.
20: LET d* := (du,...,dg).

21: Output: Gain G* and for G* > Gy,in optimal decisions d* and best neighbor =’ = mg« (z).

Remarks:

(1) The preprocessing phase has to build REFs fp and inverse REFs f};”” for some seg-
ments P and some inverted segments P (if the neighborhood also inverts one or several
segments). The description of the preceding Section 3.3.3 and the corresponding exten-
sions presented in the Online Supplement make clear which segments have to be com-
puted. The results guarantee a worst-case effort of @ (Rn?), O (Rn*3), and O (Rn%/7)
for the feasibility test in Step 14 if one uses no hierarchy, a 1-level, or a 2-level hierarchy
respectively. Note that this first preprocessing phase is identical for any type of neigh-
borhood. By contrast, the second phase, the actual (tree) search, must be tailored to the

neighborhood.
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(2) With an O (n) preprocessing (Step 3), we store for each position i € {1,...,n} of the
giant tour the node w; and, conversely, for each node w of the giant tour its position i,.

(3) The loops in Steps 5-8 exactly determine the order in which moves and neighbor
solutions are constructed. Section 3.2 has already explained that this order is crucial to
the development of rules for (exactly) pruning the search tree.

(4) Some parts of the construction of the neighbor solution of steps 10 and 11 might
already be performed in some of the outer loops in Steps 5-7. This can be useful for
seeing that the resulting moves are infeasible neighbor solutions, so that the search can
be terminated, i.e., only a part of the search tree has to be scanned.

Additionally, if outer loops can estimate the gain of the moves that are under construction,
a pruning of the search based on gain consideration becomes possible. The next section on
sequential search will explain a specialized criterion that often also takes the symmetry
into account.

(5) The tasks exchanged by a move (if any) are typically determined by the nodes and
edges that are removed and added. Hence, Step 14 can be performed in O (1) if appropriate
data-structures are used.

(6) In Step 12, the segmentation P results from z’ and the hierarchy H. For instance,
let n = 1000 and H be the 1-level hierarchy introduced in Section 3.3.3. Then, the
n?/3 +1 = 101 seed points are located at positions 0,10, 20,30, ...,1000. Let m be the
swap move that exchanges the nodes at the positions 17 and 322. Then, £k = 5 and
' = (P, Py, P3, Py, P5) with P; the segment from position 0 to 16, P, the segment
consisting of the node located at position 322, P53 the segment from 18 to 321, P, the
single-node segment at position 17, and P5 the segment from position 323 to 1000. Now,
the hierarchy H implies a split of Py into P} from position 0 to 10, and P? from 10 to 16.
Pj is split into three segments P31,P32,P§’ from position 18 to 20, 20 to 320, and 320 to
321, respectively. Finally, Ps is split into P51 from position 323 to 330 and P52 from 330 to
1000, while P, and Py are not split. Hence, P consists of 24+1+3+1+2=9 < 3:-5 = O (k)
segments.

(7) In order to check feasibility w.r.t. route-start and route-end nodes in Step 16, one has
to a priori record, for each position 4 of the giant tour, the next position n; of a route-
start node and the last position [; of a route-end node. Along P, consider pairs (P, P’) of
(consecutive) segments in P. Let the first segment P contain the route-start node op as
the last route-start node. If P’ does not contain a route-end node (i.e., its last position j
is smaller than its next route-start position n; for the start position i) replace P’ by
its successor segment in P. Repeat, until P’ contains some route-start node and let dp
be the first route-start node in P’. Now that one knows route-start node op and dp:
are linked (by request nodes or directly), one can check their compatibility. To iterate,
replace P by P’ and choose P’ as the successor segment.

3.4. Sequential Search

Sequential search is a technique that allows neighborhoods within local-search algorithms
to be scanned in a highly efficient way. It was discovered independently in the 1970s
by Christofides and Eilon (1972) and Lin and Kernighan (1973) in algorithms for the
traveling-salesman problem (TSP) and the graph-partitioning problem (Kernighan and
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Lin, 1970). Apparently, the idea has since been forgotten and has not been tested for any
type of constrained problem. Irnich et al. (2006) have introduced sequential search as a
general method for accelerating LS procedures. It is based on the idea of decomposing
moves into so-called partial moves, so that partial moves are cost-independent and imply
partial gains whose sum is the overall gain of the move. Lin and Kernighan (1973) proved
that if the sum of a sequence of numbers (gains) is positive, then there exists a cyclic
permutation of these numbers such that every partial sum is positive. This can be gener-
alized to restrict a k-decision search procedure to consider only those branches where the
sum of the gains of the first p < k partial moves has to be greater than pG*/k, where G*
is a lower bound the overall gain. Details and pseudo-code of the application to several
node and edge-exchange neighborhoods for CVRP can be found in (Irnich et al., 2006).

Note that sequential search is directly applicable only to those routing problems where
the REFs are separable w.r.t. the cost resource, i.e., where the cost is given by the sum
of the costs of all arcs in the giant tour. For more complicated cost functions that are not
separable (see Section 3.2), the gain criterion might remain applicable if upper bounds for
the resulting gain can be deduced from removed arcs and lower bounds of the resulting
loss can be determined for added arcs. As far as we know, these ideas have not been
tested thus far.

We present the main idea of sequential search for the case of a swap move, depicted in
Figure 2. We decompose the swap move into two parts: The first part is the removal
of the arcs (w;—1,w;), (w;, w;11) and the addition of (w;_1,w;), (w;, w;j11). The second
part consists of removing (w;_1,w;), (wj,w;+1) and adding (w;—1,w;), (w;,wit1). For
the entire move to be improving, the sum of the costs of the added arcs has to be smaller
than the sum of the costs of the deleted arcs. Hence, either the first or the second part
has to be improving. In the first case, starting the search at node w;, the cost of the
removed arcs is given by B := ¢y, w; + Cw; w1 1t follows that either ¢y, w, < B/2 or
Cw;_1,w; < B/2 must hold. By scanning the in-arcs (w,w;) € A and out-arcs (w;,w) € A
of node w; € V by increasing length, the search can be terminated whenever an arc longer
than B/2 is found. Because of the symmetry, identical arguments cover the second case
for starting the search with node j.

A prerequisite of this bounding procedure is that all in-arcs and out-arcs of a given node w;
are explored in an order, where they are sorted by increasing cost. Since in-arcs and out-
arcs of w; are fully determined by the other endpoint w of the arc, one can retrieve the
required information from so-called neighbor lists Nt (w;) and N~ (w;). NT(w;) is the
list of head nodes of out-arcs (w;, w) of w; sorted by increasing cost. Analogous to this,
N~ (w;) is the sorted list of tail nodes of in-arcs (w,w;).

(Irnich et al., 2006) contains more detailed explanations of the theoretical background,
such as the gain criterion and its application to routing and non-routing problems. The
sequential search algorithm for the swap neighborhood can be formulated as follows.

Algorithm 3 Sequential Search for Swap (Phase 2, Tree Search)

1: Input: A feasible solution (giant route) x = (w1,...,ws) € X;
Gmin € R minimum gain.
It is assumed that Phase 1 (=preprocessing) is already performed.
LET G* := Gmin.
(Outer Loop)
LOOP i€ {1,...,n}
LET B := (Cw;_;,w; + Cw; w1 )/2 — G*/2.

o W N
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6: (Inner Loop, Case 1: Arc (w;, w;4+1) € A must be short)

7: LOOP w; € NT(w;) AS LONG AS cy;,w < B

8: LET j:=i(w) — 1.

9: IF i>j THEN LET t =4, i:=7, j =t

10: (Implicit construction of move and neighbor solution)

11: LET Py := (w1,...,wi—1), P2 := (wj), P3:= (Wit1,...,wj—1), P1:= (w;), P5 := (Wjq1,...,Wn).
12: LET 2 := (Pl,P27P37P4,P5).

13: LET G := Cw;_1,w; + Cw;,wiqq + Cw;_1,w; + Cwj,wipy — Cwi 1wy — Cwjwipr T Cwyiog,ws T Cwiwggg -
14: LET feasible:=Formula (1) is fulfilled for (P, P2, P3, P4, Ps)

15: AND C(z’) task-feasible

16: AND P(z') feasible w.r.t. route-start and route-end nodes.
17: IF (G > G* and feasible and j # ¢ + 1) THEN

18: (Update of best neighbor solution found)

19: LET G*:=G.

20: LET (i*,§*) i= (i, 7).

21: (Inner Loop, Case 2: Arc (w;j_1,w;) € A must be short)

22: LOOP w; € N~ (w;) AS LONG AS cy,w; < B

23: LET j:=i(w) + 1.

24: :

25: /* Steps 9-20 */

26:

swap
)

27: Outpui;: Gain G* and for G* > G,,pn optimal decisions (¢*,j*) and best neighbor z’ = m
The most important part of the above algorithm is the computation of the bound B
in Step 5 used to limit the iterations of the inner loops that have to be performed.
This bound limits the length of the out-arc (w;,w) € A,w € NT(w;) in Step 7 or the
in-arc (w,w;) € A,w € N~ (w;) in Step 22 for any improving move. The sorting of the
neighbor lists allows the termination of the inner loop whenever an arc not smaller than B
comes up. Complete neighbor lists require O (n?) space (for dense routing graphs) which
can be computationally prohibitive when VRP instances with several thousands of nodes
and millions of arcs are considered. Note that the neighbor list computation has to be
performed only once in an initial preprocessing. Its time complexity is O (n?logn) but,
anyway, this time complexity is always dominated by the total running time of LS in
practice. In order to reduce the required space, one can replace full neighbor lists by
reduced neighbor lists, also called candidate lists (Glover, 1996), that contain only a
subset of arcs (hopefully, the relevant ones!). A standard approach is to build candidate
lists NI'E,NI; that contain a fixed number K of request nodes while all route-start and
route-end-nodes (depot nodes) are inserted into the candidate lists by default. Clearly,
when using proper candidate lists, there is a tradeoff between the accuracy of the search
and the computational burden. Irnich et al. (2006) have compared this tradeoff for the
standard CVRP.

It should be pointed out that all infeasible arcs, i.e., arcs that cannot be part of any
feasible giant tour, can be omitted from the neighbor lists. Using specialized probing
techniques, as in (Desrochers et al., 1992; Ascheuer, 1995), one might substantially reduce
the number of possible arcs. The combination of both the static and a priori determination
of relevant arcs and the dynamic pruning of the search tree based on partial gains, is as
far as we know—the first approach to effectively combine feasibility-based and gain-based
reductions. This technique is not limited to the swap neighborhood but can be applied
to all enumerate search procedures for edge and node-exchange VRP neighborhoods. For
a systematic explanation of move decomposition and, especially, of the gain criterion
in sequential search procedures for different VRP neighborhoods, we refer the reader to
(Funke et al., 2005a,b; Irnich et al., 2006).
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4. Modeling Issues

This section summarizes which types of VRPs can be handled with the unified framework.
Before we discuss particular types of constraints, we briefly repeat the basic assumptions:

(1) All feasible solutions of the given VRP can be modeled as giant tours. A giant tour
is defined over a routing graph G = (V, A). The length of a giant-tour is bounded by
n = O (|V]), see Section 2.1.

(2) It must be possible to formulate the VRP as a discrete tasks-partitioning or task-
covering problem, where tasks are associated with nodes and arcs or the routing graph,
see also Section 2.1.

(3) The compatibility relation between route-start and route-end nodes must be given,
see Section 2.2.

(4) All intra-tour and inter-tour constraints have to be modeled as resource constraints
on paths, see Section 2.3. The resulting REFs must fulfill the assumptions (al)-(a5) of
Section 3.3.2. These assumption are in depth discussed and exemplified in (Irnich, 2006).
Inter-tour constraints are the subject of Section 4.8* and (Hempsch and Irnich, 2007).

(5) All moves m € M of the neighborhood A under consideration decomposes a giant-
route into £ segments. Any neighbor solution result from the permutation, (partial) in-
version, and concatenation of the segments, see (Irnich et al., 2006).

The complexity of the segment REF representation, evaluation, and concatenation deter-
mines the effort for the preprocessing and the feasibility check in the tree search. If all
these operations can be performed in O (R) time, then any O (n*) neighborhood can be
fully explored in O (¢Rn*) time and O (Rn*/?) space. These worst-case results are fully
independent from the search tree exploration strategy. If REF manipulations require more
than O (R) time, additional factors result in the above worst-case complexities (e.g., for
multiple time windows, see below).

For the sequential search strategy, the only additional assumption needed is that the
gain of a move is directly associated with the exchanged arcs. Thus, for any move m
transforming z into 2’ (i.e., 2’ € N(x)), the gain G = g(x,2’) is given by the cost
difference of the deleted and added arcs. In the case of more complex cost functions, e.g.,
if the overall cost of a tour depends on several resource consumptions (traveled distance,
time on duty, ton-kilometers etc.), the gain criterion and the resulting sequential search
principle are not applicable. However, if a lower bound for the cost of a neighbor solution
can be estimated on the basis of exchanged arcs, the gain criterion remains applicable and
gain-based tree search methods can be used to accelerate the tree search in the average
case.

Table 3 provides a detailed overview of the modeling and solution capabilities of the
unified framework: The modeling of capacity, distance, and time window constraints by
REFs is straightforward. Section 4.1 show how to model capacity constraints in the con-
text of combined collection and distribution. Different ways of modeling precedence con-
straints are presented in Section 4.2, and the consideration of lower and bound on the
number of vehicles is discussed in Section 4.3. Several other examples of resources and
their proper representation by REFs and resource intervals can be found in (Irnich and
Desaulniers, 2005; Irnich, 2006; Hempsch and Irnich, 2007). Additional material can be
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found in the Online Supplement. Topics discussed there are VRPs with compatibility
constraints (Section 4.4%), interdependent resources (Section 4.5%), heterogeneous fleet
VRPs (Section 4.6%), periodic VRPs (Section 4.7*), and inter-tour resources and con-
straints (Section 4.8%).

The column Number of Resources explains how many resources are needed to model the
particular constraint. For instance, the constraint of not exceeding the vehicle capacity
requires only one resource (which is reset to 0 on arcs that connect a route-end with a
route-start node of the giant tour). A parenthesis (dep.) indicates dependent resources.
The next to columns Compatible with Lex. and Seq. Search shows whether or not the
constraints are compatible with the lexicographic or sequential search paradigm. Finally,
column Complexity of Feas. Check states the time complexity of feasibility checking. The
non-trivial complexity results (when REFs cannot be represented or evaluated in O (R)
time) are taken from (Irnich, 2006).

4.1.  VRPs with Collection and Distribution

Several types of VRPs exist where delivery and pickup (distribution to and collection
from customers) are performed on the same tour. In backhauling applications (VRPB,
e.g., Toth and Vigo (2002b); Regpke and Pisinger (2006)) all linehaul customers must be
serviced before the backhaul customers of the same tour. The modeling framework can
capture this constraint easily by a routing graph with one node for each customer by not
allowing arcs that connect backhaul with linehaul customers.

When the visit of a customer implies that delivery and pickup at this location are
performed simultaneously (VRPSDP, e.g., Min (1989); Halse (1992); Dell’Amico et al.
(2006)), two dependent resources (pickup quantity and maximum load on partial path)
are coupled by a non-classical REF. This technique with two dependent resources has
been used by several authors, cf. (Desaulniers et al., 1998). Irnich (2006) shows that
these REFs can be used in the context of efficient local search as explained in Section 3.

A mixture of VRPB and VRPSDP occurs if one allows the model to decide whether
delivery and pickup at each specific customer are to be performed simultaneously or not
(cf. Gribkovskaia et al. (2006)). The results are, e.g., so-called lasso tours where some
customers are first supplied only, then a round trip along customers with simultaneous
delivery and pickup is performed, and finally pickups at the first customers are performed
(visited in reverse order). The saving in such an approach lies in a better utilization
of the vehicle capacity, since performing deliveries at the beginning yields additional
space for the collection in the second combined delivery and pickup phase. The paper by
Gribkovskaia et al. (2006) shows that such a mixed approach has the potential for notable
cost savings. The unified framework can handle the option of separate or simultaneous
deliveries and pickups in the following way: Each customer is modeled by two nodes, one
for the delivery and one for the pickup, with an additional pairing constraint guaranteeing
that both nodes are served on the same tour (if required). Since the modeling of pairing
constraints is very similar to the techniques applied for the PDP, we refer the reader to
the next paragraph.
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4.2.  Precedence Constraints

For any two nodes u,v € V, the relation u — v states that node v must precede node v
in any feasible (giant tour) solution. In pickup and delivery applications, requests (i%,77)
impose unique pairs of precedences i™ — ™. In order to cover these and alternative
applications, we allow precedences given by a relation — on V' x V. For notational con-
venience, we define P — P’ if and only if for two segments P, P’ nodes u € P and
v € P’ exist with u — v. It is assumed that the sets of predecessors and successors,
ie, pred(v) = {u : v — v} and succ(u) = {v : u — v} are of size O (1), such that
the relocation of single nodes can always be checked for feasibility w.r.t. precedences in
constant time.

The efficient handling of precedence constraints dates back to papers by Psaraftis (1983)
and Savelsbergh (1990) and is also differently discussed by Kindervater and Savelsbergh
(1997). Their idea is, again, that any move permutes and possibly inverts the segments
(Py,..., Pg) of the current (giant) tour according to (P;T((ll)), e ,P;T((:))) with 7 a permu-
tation of {1,2,...,k} and o(i) € {—1,1} (indicating inversion by -1). Hence, feasibility
tests require constant time procedures to check

(A) whether an inverted segment P; ! is feasible w.r.t. precedences and
(B) whether or not P; — P; holds for two segments with j > ¢ and 7(j) < m(¢).

For the task (A) and a given giant tour (vq,...,vy,) let first, := min{p : v — v,} be
the first position of a destination of a precedence starting at node u. Moreover, for each
position p € {1,2,...,n} let firstdest, := min{first,, : £ > p} be the position of the
first destination of a precedence pair beyond position p. The computation of first, for all
nodes u and of firstdest, for all positions p can be undertaken in O (n) steps. Since the
inversion of a segment P = (vp, Up41,...,vr) is feasible w.r.t. precedences if and only if
¢ < firstdest,, the result is a constant time feasibility test for all moves that only invert
segments. The 2-opt move is the most prominent example. Since the relocation of a fixed
number of nodes requires an O (1) feasibility test only, all classical moves of quadratic
neighborhoods can be checked in O (1), too. These neighborhoods include node relocation,
node swap, Or-opt (with or without inversion of the short segment), and string-exchange
moves. Similar straightforward procedure can be applied to the 2-opt* neighborhood.

However, larger neighborhoods, such as 3-opt and 3-opt* neighborhoods, can be applied
to the giant tour and require efficient procedure to perform task (B). Here, the methods
of Kindervater and Savelsbergh are applicable only if lexicographic search is used. In
order to handle more powerful neighborhoods inspected by sequential search, we describe
another technique for the PDP which uses one binary resource for each pickup/delivery
pair ¢ = (i*,i7). The corresponding resource has a resource interval [0, 1] at all nodes
except the pickup node i and end-tour nodes where the interval is [0, 0]. Entering into
node i increases the resource by one unit, entering i~ decreases the resource by one
unit. All other REFs do not change the resource value. It is easy to see that these simple
rules guarantee that no tour contains a delivery without a corresponding pickup node at
an earlier position. Since the number of resources coincides with the number of requests,
constant time feasibility checks are no longer guaranteed. However, an encoding with
binary resources leads to a compact representation, since 32 or 64 resource can be encoded
in one integer resource on a computer with 32 or 64 bit arithmetic.
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4.3.  Limaiting the Number of Vehicles

The giant-tour representation implies that the number of routes is N := |O| = |D|. If
arcs (0,d) € O x D with costs ¢,q = 0 are present in the routing graph, routes p = (o, d)
can be part of the giant tour and, therefore, the possibility of using less than N proper
tours is taken into account. Moreover, the constraint of using between Ny, and N proper
tours can be modeled by partitioning O and D into O = O; UO, and D = D; U D,, with
|O1| = |D;| = N — Npin and |Oy| = |Dy| = Npin. Nodes pairs from O; x Dy and Oy x D,
are incompatible. Let ¢,q = 0 for (0,d) € O; x D; and ¢,q = M for (0,d) € Oy x D, and
let M be a sufficiently large number. If existent, a cost-minimal route plan with between
Npin and N proper tours can be found in the routing graph as a feasible Hamiltonian
cycle which does not use arcs (o,d) € O, x D,.

An additional complication arises if a construction heuristic provides a route plan with
more than N routes. This solution cannot be represented directly as a Hamiltonian cy-
cle in G. The following technique solves the task of finding a feasible initial solution by
means of additional dummy route-start and route-end nodes together with a single addi-
tional resource for counting the lengths of tours. Dummy route-start and route-end nodes
(o, cf) € O x D are introduced in order to hold a single request node 4 that is (currently)
not assigned to a feasible route. More precisely, a dummy route is either of the form
(0,1, J) or (0, ci) (i.e., occupied or empty). In order to stipulate the movement of a request
node from a dummy (6,2’,62) to a feasible route, costs are defined as c5; = Cid = M,
and Cod = 0. Furthermore, the upper bound on the length of a route is set to 2 at all
dummy route-end nodes but unbounded at all other nodes. The bound of 2 guarantees
that no nodes are shifted from a feasible into a dummy tour that is already occupied.
Using a sufficiently large number of dummy nodes, one can transform any start solution
with more than IV routes into a formally feasible solution with only N regular routes but
several dummy routes.

The same technique can be used in different contexts. First, if the objective is to minimize
the number of routes, one can resolve one route (which contains only a few nodes) and
put these into dummy routes. Applying different LS operators, e.g., relocation and swap
in combination with edge exchanges, one systematically tries to reduce the number of
unassigned nodes from dummy routes. Second, the implementation of large neighborhood
search (LNS) operators, as suggested by Shaw (1998); Schrimpf et al. (2000); Rgpke and
Pisinger (2006), is straightforward. Tailored removal operators determine a subset of
nodes which are removed from their current positions of the giant tour. These nodes
are relocated into empty dummy routes. Different insertion strategies (the order in which
removed nodes are inserted into feasible tours again) can be controlled by putting different
values M onto the arcs (6,7) and (i,d). Third, VRPs in which tasks can be covered
by alternative nodes (see Section 2.1) need mechanisms to select one or several nodes
from given subsets to be serviced. Unselected nodes can be kept in dummy routes while
algorithmic procedures in the feasibility test have to ensure that moves do only produce
solutions where a task is covered the right number of times.

5. Computational Results

The previous sections were mainly focused on modeling and the theoretic aspects of
efficient LS algorithms for rich VRPs. In contrast, this section is intended to present
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empirical results that show the effectiveness of the preprocessing and the sequential search
procedures in practice.

5.1. Preliminaries

Before analyzing the proposed new techniques based on benchmark problems and in-
stances from the literature, we have to explain and clarify the following aspects: Which
neighborhoods N and sequential search procedures are used? How are different neighbor-
hoods combined to form a well-structured metaheuristic? How are sequential search and
lexicographic search procedures compared, in particular, how is the speedup measured?
Finally, at least two significantly different implementation concepts exist that constitute
two extreme points w.r.t the tradeoff between fast runtime and economical use of memory.

5.1.1.  Neighborhoods, Moves, and Sequential Search Procedures

We have implemented lexicographic and sequential search procedures for the neighbor-
hoods listed in Table 1: For a detailed description of the neighborhoods and for pointers

Neighborhood Size |N(x)| Priority
swap, 2-opt, (special) 2-opt*, node relocation O (n?) 1
string exchange, Or-opt with and w/o inversion O (n?) 2
acb-opt, request relocation O (n?) 3

Table 1
Neighborhoods, Sizes, and Priorities in VND

to the (original) literature, we refer the reader to the surveys (Funke et al., 2005a; Briysy
and Gendreau, 2005a) while the corresponding sequential search procedures with pseudo-
code are explained in (Irnich et al., 2006; Bellscheidt, 2005). In order to be self-contained,
we briefly recall basic properties of these neighborhoods.

Figure 4(a) depicts the principle of a swap move which was already used for explanation
in the preceding sections. Figure 4(b) shows a (special) 2-opt* move. Its interpretation is
that two routes are cut into two pieces and the resulting end-pieces are exchanged. A 2-opt
move takes a segment of the giant tour and inverts it as depicted in Figure 4(c). Sequential
search is applicable directly only to cost-symmetric instances and we have restricted the
generic search procedure to invert only segments which do not contain route-start nodes
and route-end nodes. In these cases, the 2-opt neighborhood is an intra-tour neighborhood
although our implementation does not make use of this fact. However, Funke et al. (2005a)
have suggested inversion principles for segments that also contain route-start nodes and
route-end nodes. The Or-opt neighborhood relocates a string to another position in the
giant tour, and the string-exchange neighborhood swaps to strings. Both types of moves
are depicted in Figure 4(e) and (g), respectively. Because of the giant-tour representation,
they are at the same time intra-tour and inter-tour neighborhoods. We have chosen to
limit the length of the swapped/relocated strings to a length of £ < 3. A variant of the
Or-opt move, here called inverted Or-opt, relocates a string and inverts it, see Figure 4(f).
A special case of the Or-opt move is the relocation move that relocates a single node, i.e.,
a string of length 1. It is depicted in Figure 4(d).

The only cubic neighborhoods considered here are the acb-neighborhood and request-
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Fig. 4. Moves and
their Decomposition,
(a) Swap, (b) (Spe-
cial) 2-opt*, (c) 2-opt,
(d) Node Relocation,
(e) Or-opt, (f) Or-opt
with String Inversion,
(g) String-Exchange,
(h) Request Reloca-
tion with 4 Subcases

relocation neighborhood. An acb-move cuts the giant tour into three segments a,b,c and
rearranges them to a,c,b (a classification of k-opt™ neighborhoods and moves based on this
notation was introduced by Funke et al. (2005b)). This neighborhood constitutes a proper
extension of the Or-opt neighborhood because a string of unlimited length is relocated.
If all three strings contain route-start and route-end nodes, the ach-move permits the
cutting of three routes into two pieces and the re-connecting of three end-pieces with the
three start-pieces.

5.1.2.  General Setup for Local Search

Our comparisons of sequential search and lexicographic search procedures are always
performed using the following setup that combines VND (Hansen and Mladenovi¢, 2001,
2002) with LNS (Shaw, 1998; Ropke and Pisinger, 2006) strategies to escape local optima.
An initial solution is computed by a problem-specific start heuristic. Starting from this
solution, a local optimum w.r.t. all neighborhoods is computed. In order to apply compu-
tationally costly operators not too often, we have associated priorities (see Table 1) to all
neighborhoods. Neighborhoods with priority 1 are searched exhaustively first. More pre-
cisely, we alternate between the swap, 2-opt, 2-opt*, and relocation neighborhoods on the
first search level. Here, sequential and lexicographic search procedures are both applied to
the same current solution z. If an improving solution 2’ € NV (x) is found, the correspond-
ing move is performed and a new search step continues with the next neighborhood of
level 1. Since we are using a best-improvement pivoting strategy for both sequential and
lexicographic search, the corresponding two procedures return improving solutions with
identical gain (note however, that, due to degeneracy, we cannot assure that identical
solutions are computed; the improving solution found by sequential search is taken for
the next search step). If none of the search procedures finds a move with positive gain, the
search is continued with neighborhoods of priority 2 following the same cyclic alternating
strategy as for level 1. The only difference is that, when improving solutions are found by
a neighborhood of priority p > 1, then faster neighborhoods of priority level 1 are tested
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again. This strategy is a minor modification of Hansen and Mladenovic’s VND meta-
heuristic which makes the search more balanced for equally-sized neighborhoods with
(empirically) identical search effort.

For small-sized instances, VND with prioritized neighborhoods can result in only a few
calls of search procedures of priority 3. Therefore, three iterations of LNS with a random
removal of 20 nodes (implemented as suggested in Section 4.3) and a simple cheapest-
insertion procedure are used to perturb the current solution such that one can iteratively
apply the above VND procedure. Hence, the VND procedure is called for four (in general)
different start solutions. This setup guarantees that a mix of solutions with poor as well
as already good quality are presented to the LS procedures.

5.1.3.  Relative Speedup of Sequential Search vs. Lexicographical Search

The main part of the computational study compares the running times of lexicographic
search and sequential search procedures for the neighborhoods given above. Recall that
both approaches guarantee constant time feasibility checks. We will not compare our
approach with a trivial implementation using straightforward node-by-node feasibility
tests, since these techniques are obviously inferior.

A fair comparison of the running times by means of a relative speedup factor is rather
delicate to compute for the following reasons. First, the preprocessing for the sequential
search procedure (cf. Section 3.3.3) has to be executed only if the giant tour has changed,
i.e., a preceding search (of the same or another neighborhood) has found an improving
solution that has now become the incumbent solution. Hence, there is no intrinsic con-
nection between the current search procedure and the preprocessing. Second, the ratio
between successful and unsuccessful searches strongly depends on the general setup in
which LS is performed, i.e., the start solutions, the mix of neighborhoods and the priori-
ties for mixing them in VND/VNS. Third, the most frequently called procedures in the
search algorithm are the test of whether or not an arc exists, and the computation of the
arc costs. The following section will distinguish between two implementation principles
that also have an impact on the speedup factors.

The most optimistic acceleration factor does not consider the additional effort of the
necessary preprocessing for sequential search at all. Let tﬁ\cfc and tj\f-q be the running times
of lexicographic and sequential search procedure (without time for preprocessing) for a
neighborhood N. Then f** = tﬁ\c}x/tj\f-q is the mazimum speedup or mazimum acceler-
ation factor. Note that running times might significantly vary depending on the current
giant tour x and whether a good bound B = B(G*) (see Step 5 of Algorithm 3) is avail-
able early in the sequential search procedure. Therefore, only average values for tj\?q and
tﬁ\cfc are considered here. A very pessimistic and conservative factor is based on the as-
sumption that every sequential search procedure is preceded by a preprocessing. Defining
tP"¢ as the (average) time of the preprocessing procedure (Steps 2-3 of Algorithm 1), the
factor fRpm = tle? /(#P7¢ + ¢357) denotes the minimum speedup or minimum acceleration
factor. This factor applies to pure local search procedures in which only a single neighbor-
hood N is incorporated such that the number of preprocessing and search steps coincide.
From our point of view, the most fair definition of the speedup factor takes into account
that only a fraction of search steps is preceded by a preprocessing. Let rP™¢ € (0,1] be
the (instance and setup specific) ratio of the number of improvement steps performed to
the overall number of search procedure calls. We define fyr = i /(rPretPre 4+ ¢557) as the
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speedup or acceleration factor. Note that f]\q}’m < fa < fA** holds, but that all values
still depend on the initial solution, the choice of neighborhoods, the VND/LNS strategy
as well as on several implementation issues.

5.1.4. Implementation Issues

An instance with O (n) request nodes and a giant tour of length n can have up to n(n—1)
arcs in the routing graph and, therefore, a quadratic number of REFs. In the case of large-
scale instances (with more than about 2500 nodes), the representation of the routing
graph and the associated REFs becomes an issue. We propose two alternative techniques
for implementing the unified framework.

The first option is to a priori compute all arcs and associated REFs and to then store
them in a matrix. This matrix needs to have n x n entries, with entry ij undefined if
the arc (i, 7) is infeasible. For classical REFs of the form f;;(T") = max{a;;, T + t;;} with
inverse REF fZ’]"“(T) = min{b;;, T — t;;}, it is natural to store the defining coefficients
aij, bij, ti; € R together at entry ij of the matrix in order to have a direct constant
time access to the REFs. Since the memory requirement for the REF matrix is already
quadratic, one can combine this representation of the routing graph with full neighbor
lists N*(v), N~ (v) for all nodes v € V as explained in Section 3.4. The computational
results will show that this straightforward representation is the fastest but obviously
consumes a lot of memory.

The second option is to use (heuristically) reduced candidate lists N (v), N (v) for the
in-arcs and out-arcs together with a procedure that computes REFs on-the-fly. For any
pair (4,7) of nodes, a first procedure checks whether (i, ) is a feasible arc of the routing
graph (V, A). In the case where (i, j) is feasible, a second procedure returns the REFs f;;
and f;f” (as an object containing a;j;, b;;, t;; or implicitly, e.g., by computing f;;(T) for T
given). If the entire VRP instance can be represented in O (n) memory, e.g., when times
and costs are computed using coordinates and distances in the 2-dimensional Euclidean
plane, the on-the-fly computation reduces the memory requirement for the framework.
Since the techniques of Section 3.3.3 enable us to store segment REFs in O (n4/3) space,
the overall memory requirement typically results from storing neighbor or candidate lists.
As a result, we are able to handle VRPs with more than 10000 nodes at the cost of not
being fully accurate (since candidate lists must heuristically exclude some parts of the
neighborhood to be scanned). Moreover, computing (complicated) REFs on-the-fly takes
more time than a direct access to REFs stored in main memory and, therefore, this second
option is, in general, slower. However, the computational results of the next sections
indicate that, for on-the-fly REF computations, the speedup of sequential search over
lexicographical search increases. At the same time, speedup factors increase when on-the-
fly computation is performed. The reason for this is that the computational overhead in
sequential search procedures (caused by the handling of neighbor lists, computing partial
gains etc.) becomes less important.

The unified framework was coded in C++, different resource concepts and types of REFs
were integrated as template parameters. The algorithms were compiled in release mode
(using MS-Visual C++ .NET 2003 version 7.1), and all runs were performed on a standard
PC (Intel x86 family 15 model 2, 2.4 GHz, 1GB main memory, on MS-Win 2000). Times
were recorded using the time.h library. In order to be more precise, especially for times
smaller than 10ms, we performed multiple identical runs of the same procedure. We made
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sure that running times of multiple runs exceeded 100ms such that the average run time
is a rather accurate estimate for a single run.

5.2.  Vehicle Routing Problems with Time Windows

The VRPTW is certainly the most studied variant of VRPs and can be considered the
prototype of “rich” VRPs, since time window constraints already require sophisticated
techniques for constant time feasibility tests. Early work on VRPTW dates back to the
1960s and, since then, hundreds of scientific articles have addressed modeling as well
as methodological aspects of developing exact and heuristic solution algorithms. For an
overview, we refer the reader to the comprehensive surveys (Cordeau et al., 2002; Kalle-
hauge et al., 2005; Briysy and Gendreau, 2005a,b).

The Solomon (1987) and Homberger (see Homberger and Gehring, 1999) VRPTW in-
stances have been used as benchmark problems in numerous empirical studies. While
Solomon’s instances have a fixed number of 100 customers, the Homberger instances
range from 200 to 1,000 customers. We therefore use the latter because we are mainly
interested in analyzing the behavior of the search procedures w.r.t. the number of tasks
and the (average) number of nodes in a route. Initial solutions were computed using
Solomon’s I1-heuristic (Solomon, 1987) and REFs were a priori computed according to
the first implementation concept sketched in the previous section.

swap 2-opt 2-opt* string-exch node reloc Or-opt inv Or-opt acb-opt

‘ W n=200, short routes @n=400, short routes C1n=600 , short routes CIn=800 , short routes M n=1000 , short routes ‘

Fig. 5. Speedup of Sequential Search vs. Lexicographic Search for Homberger VRPTW
Instances with Short Routes

The main results for the Homberger instances are depicted in the Figures 5 and 6 for
instances with short (C1, R1, RC1) and long (C2, R2, RC2) routes respectively. Each
column shows the speedup factors for 30 VRPTW instances, reflecting different problem
characteristics (10 clustered, 10 randomly distributed, 10 mixed). The speedup factor far
is depicted as a bar, while f}\?m and f{?* are shown as error indicators. Both diagrams
indicate that there is always a speedup when a lexicographic search approach is replaced
by a sequential search procedure. In the first group, capacities and time windows are
chosen in such a way that the average number of customers in a route is about 10. Here,
the acceleration factors vary from 2.4 to 4.5 for swap, from 5.9 to 12.2 for 2-opt, from 3.4
to 5.8 for 2-opt*, from 8.4 to 9.5 for string exchange, from 5.0 to 8.3 for node relocation,
from 3.9 to 5.2 for Or-opt, from 3.7 to 5.0 for Or-opt with segment inversion, from 8.6 to
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swap 2-opt 2-opt* string-exch node reloc Or-opt inv Or-opt acb-opt

‘ En=200, long routes M n=400, long routes C1n=600 , long routes [1n=800 , long routes M n=1000, long routes ‘

Fig. 6. Speedup of Sequential Search vs. Lexicographic Search for Homberger VRPTW
Instances with Long Routes

13.9 for acb-opt. For all neighborhoods, except for acb-opt, there is a positive correlation
between the size of the instance and the speedup. This contrasts with the results for the
CVRP in (Irnich et al., 2006) where a clear negative correlation was only observed for the
string-exchange neighborhood. It remains unclear to us which characteristics of instances
or properties of neighborhoods imply such negative correlations.

The second group, depicted in Figure 6, contains instances with long routes, i.e., between
20 and 40 customers per route. Similar to the results reported for the CVRP in (Irnich
et al., 2006), the speedup grows when problems are less constrained. Here, the acceleration
factors vary from 3.5 to 9.7 for swap, from 5.9 to 17.8 for 2-opt, from 4.5 to 12.3 for 2-
opt*, from 15.4 to 32.1 for string exchange, from 7.0 to 17.0 for node relocation, from
7.3 to 17.9 for Or-opt, from 6.9 to 17.3 for Or-opt with segment inversion, from 60.5 to
144.8 for acb-opt. These are substantial speedups! The superiority of sequential search
over lexicographic search for less constrained instances can be explained as follows: In
more constrained problems (especially with tight time windows), optimal feasible routes
can differ significantly from cost-minimal TSP tours (and geometric intuition). Hence, a
larger fraction of moves seems improving (when looking at costs/gains only) but is in fact
infeasible. Consequently, gain-based arguments to terminate the search apply less often.

The absolute running times of the sequential search procedures applied to the Homberger
instances are shown in Table 2. Each entry ¢/d shows the absolute average running time ¢
(ten groups, each with 30 instances) and standard deviation d for the preprocessing and
the actual sequential (tree) search. The preprocessing times (computation of the segment
REFs, see Section 3.3.3) are growing with the size of the instances. The standard deviation
is small, and the absolute values and deviations for instances with short and long routes
are similar. It seems that the values primarily depend on the size of the instances, since
the time complexity of the preprocessing does not depend on the number of arcs/REFs
of the instance. By contrast, the running times of the tree searches very much depend
on characteristics of the instances: First, the running times of the instances with short
tours are significantly larger than those for the instances with long routes. We think
that the reason for this difference is again that for more constrained problems gain-
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Instances Prepro- Swap 2- 2- string- node Or- inv Or- acb-

cessing opt opt™ exch reloc opt opt opt

(Phase 1) ot (Phase 2) ..o e
200.short 0.6/0.02 1.0/0.4 0.9/0.1 1.4/0.5 2.8/1.7 1.3/0.5 5/2 5/2 31/23
400.short 1.9/0.1 3.6/1.6 2.9/0.3 4.9/2.6 12.1/7.9 5.0/2.1 21/10  21/10 264/221
600.short 3.7/0.2 7.5/3.6 6.2/0.6 10.9/7.1 27.8/19.1 11.5/5.3 49/26 50/26 1014/945
800.short 5.3/0.3 12.1/6.3 10.1/1.4 19.4/13.9 49.2/35.5 20.4/10.1 88/51 90/53 2435/2363
1000.short 7.2/0.4 19.3/10.8 15.5/2.6  32.8/24.9 81.8/62.9 34.6/18.8 151/94 156/97  5528/5690
200.long 0.5/0.02 0.7/0.3 0.5/0.1 0.8/0.2 1.3/0.6 0.9/0.3 2/1 2/1 5/3
400.long 1.7/0.1 2.5/0.8 1.8/0.2 2/0.8 4.4/2.2 3.0/0.9 7/3 7/3 29/32
600.long 3.2/0.2 4.4/1.6 3.2/0.4 3.6/1.9 8.3/5.0 5.7/2.1 14/7 14/7 90/134
800.long 4.9/0.2 6.6/2.7 4.9/0.6 5.5/3.6 13.3/8.8 8.9/3.6 21/12 21/12 182/293

1000.long 6.7/0.3 9.9/4.2 7.0/1.0 8.6/6.4  20.5/14.6  14.0/6.8  34/22  34/22 385/676
Table 2

Avg. Running Times of a Preprocessing (Phase 1) and Sequential Search (Phase 2), Values
in Milliseconds |ms|, Absolute Value and Standard Deviation

based arguments for terminating the tree search are less effective. Second, one can see
that the standard deviations of the running times are enormous. The explanation for
this is that instances within the same group are still very much different: The time
window constraints imply routing graphs that have arc sets of completely different sizes.
Consequently, instances have neighbor lists of different magnitude, which directly imposes
heavily varying running times. Finally, it is worth mentioning that due to the techniques
presented in Section 3.3.3 (1-level hierarchy of REFs and O (n*/3) time complexity for
its update), the time required for preprocessing is always smaller that the time for the
sequential tree search.

Very large-scale VRPTW instances are—as far as we know—mnot available. Hence, we
created a small test set of 10 instances ranging from n = 1000 to 10000 customer nodes.
The instances allow an average number of about 45 customers per route. Results for
these instances are visualized in Figure 7. Note that we have considered only quadratic
neighborhoods because the running times of the lexicographic search procedure for the
acb-opt neighborhood of size O (n?®) were unacceptably long (more than 5 minutes for the
largest instance and a single call of the search procedure). In contrast to the first tests,
we have used on-the-fly computations of REFs and candidate list N> (v) and N (v). K
is chosen such that each candidate list contains the 1000 closest customer nodes and
all possible route-start and route-end nodes, i.e., K < 1000 + |O|. The most important
insight for the large-scale problem instances is that the speedup grows even further. This
is partly caused by the fact that we use on-the-fly computation of costs and REFs and
also because average route lengths increase. We have also computed acceleration factors
with the a priori computed REFs for the instances with n = 1000 and n = 2000 and
compared them with those results obtained for the on-the-fly implementation: The on-the-
fly computation gives a contribution to the speedups by an average factor of between 1.5
and 1.7 (but varying more strongly for different move types).

5.3.  Capacitated VRPs and VRPs with Globally Constrained Resources

Simple versions of VRPs, such as the CVRP or the distance-constrained VRP, have pure
additive REFs along the routes and globally fixed upper bounds (a maximum load or
travelled distance). Therefore, they do not need the O (n4/3) preprocessing as presented
in Section 3.3.3. Instead, a linear time and space preprocessing already allows constant
time feasibility tests, see (Irnich et al., 2006). Very similar methods can be used for the
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swap 2-opt 2-opt* string-exch node reloc Or-opt inv Or-opt

‘I n=1000 On=2000 On=3000 Mn=4000 @n=5000 @n=6000 @ n=7000 Mn=8000 M@ n=9000 Cn=10000 ‘

Fig. 7. Speedup of Sequential Search vs. Lexicographic Search for Large-Scale VRPTW
Instances with between n = 1000 and 10 000

“pure” multi-depot VRP with capacity and distance constraints. Thus, these types of
VRPs are beyond the scope of this article and we refer the reader to (Irnich et al., 2006)
for results on the CVRP.

5.4. Multi-Depot VRPs with Time Windows

The Solomon (1987) benchmark set for VRPTW can be easily extended to generate multi-
depot VRPTW (MDVRPTW) instances. Since locations for depots and customers are
given as pairs (x,y) in the Euclidean plane, these locations can be copied and shifted in
space. Given that the locations of a VRPTW instance are in a rectangle of size Ay x Ay,
we have chosen to shift these locations by multiples of 0.9 - A, horizontally and by
multiples of 0.9 - A, vertically. For example, in order to create a 20 = 5 x 4 depot,
instance, we generate 19 copies and shift them by (0.9m;A;,0.9m,A,) for (mg,,my) €
{0,1,2,3,4} x {0,1,2,3}, (mgz, my) # (0,0). Initial solutions for the separate VRPTW
instances belonging to one depot are created with the VND approach of Section 5.2 (we
do not report the corresponding running times and speedup factors for those runs, since
VRPTW instances are small). Multiple copies of these separate VRPTW solutions are
taken as initial solutions for the MDVRPTWs. Because of the overlap created by the test
generator (factor 0.9), the subsequent VND and LNS procedures have the potential to
create improving solutions. These improvements primarily result from exchanges between
tours of different depots. In turn, modified partial solutions belonging to a single depot
might be improved by node and edge exchange, too. The result is a mix of intra-depot and
inter-depot exchanges, which are all uniformly handled by the giant-tour representation.

The Figure 8 depicts results for MDVRPTW instances with n between 100 and 2450. All
instances were created from 12 selected 50 customer VRPTW instances (¢103, ¢109, r103,
r112, rc101, rc106, c205, c208, 1204, r208, rc202, rc207). The criterion for selecting these
instances was to yield a mix of clustered and unclustered instances, instances with tight
and wide time windows, and with short and long routes. We used both implementation
concepts, on-the-fly computation of REFs for instances with n > 1250 and full REF
representation for smaller instances. Neighbor and candidate lists N (i) and Ny (i) were
restricted to contain a maximum of 1000 request nodes but all route-start and route-end

30



©
oow
o)

200

180
160 -
140 -

120 || |

100 - ‘

80 | |‘|
| |

<
N
5 352
A

40 -

W
| .: h
/]
20 | i3 il ol o ]
i 1 I i I ’ I = T
|zl A | o= il | i i i

swap 2-opt 2-opt* string-exch node reloc Or-opt inv Or-opt acb-opt

‘In=100 0200 0300 mM450 @600 m800 [@1000 M 1250 M 1500 [11800 @2100 @2450 ‘

Fig. 8. Speedup of Sequential Search vs. Lexicographic Search for Multi-Depot VRPTW
Instances

nodes.

The smallest speedup was found as was to be expected for the smallest instances with
n = 100 and for the swap move. Here the factors fswap = 2.3, fiyu, = 2.7, and ;?jgp =1.3
mean that there is still an acceleration. For medium-sized instances with n = 800 all
speedup factors are already above 10.0. The largest speedups were again observed for the
cubic acb-neighborhood with values f,., = 29 for n = 100 and f, ~ 1350 for n = 800.
Again, because of the high running times of the lexicographic search implementation, we
skipped the comparison for the acb-neighborhood for n > 800. The conducted experi-
ments also gave remarkable speedups for the string-exchange neighborhood with factors
of between fgir_exen = 15.4 and for_epen & 575. This is, again, similar to the results for
CVRP and VRPTW.

The results depicted in Figure 8 also indicate that the on-the-fly implementation con-
cept (for n > 1250) benefits more from the sequential search approach than the full
representation (for n < 1000) does. The factor caused by the on-the-fly computation is
approximately factor 2.0.

Additional Results

Additional results for pickup-and-delivery problems and periodic VRPs can be found in
the Online Supplement in the Sections 5.6* and 5.7*.

6. Conclusions

The paper has presented a new modeling framework and corresponding efficient LS meth-
ods for VRPs with classical and also non-standard side constraints. One of the most im-
portant advantages of the framework is that it is generic and, therefore, allows various
types of VRPs to be handled in a similar and concise way. The giant-tour representation
is intuitive and enables a unified view on moves, which can either be intra-tour moves or
moves between different tours of the same or different depots, periods, vehicle types etc.
The unified framework also has advantages from a software development point of view;
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once the search procedures of the framework are implemented, additional constraints
can easily be integrated, since feasibility is generically encoded by the routing-graph,
start-route node and end-route node compatibilities and—most important—resource-
constrained paths. Consequently, the framework separates the modeling (with instance-
specific data and constraint formulation) from the actual search methods. The addition
or change of standard constraints becomes “simply” a question of gathering input data
and declaring constraints; it has no implications for the search procedures.

Besides the powerful modeling capabilities of this framework, its main contribution is
the incorporation of highly-efficient LS techniques. They allow constant time feasibility
tests as well as exact search-tree pruning based on sequential search (Irnich et al., 2006).
The extensive computational tests clearly show that sequential search procedures out-
perform the lexicographic search methods. On large-scale instances and for nearly all
types of neighborhoods, the speedup factors are between 10 and 1 000. We observed that
the potential of large speedups grows with the size of neighborhoods. Hence, sequential
search procedures might become the only efficient technique for implicitly scanning even
larger neighborhoods than those traditionally applied to VRPs thus far. We expect that
neighborhoods of size O (n*) for k > 3 will be used more often.

One key property of sequential search algorithms for rich VRPs is the separation of the LS
procedure into two phases, namely, a preprocessing phase to compute O (n4/3) segment
REFs and the actual enumerative search phase. This separation also allows alternative
heuristic and exact search-tree pruning techniques for the second phase including, e.g.,
granular edge selection procedures, as proposed by Toth and Vigo (2003), and methods
to terminate the search on the basis of feasibility arguments.

Obviously, the proposed LS techniques can be easily integrated into different metaheuris-
tics, which are substantial for producing high-quality solutions. It was beyond the scope
of this paper to also analyze and compare different metaheuristics based on the unified
framework. However, different meta-strategies can benefit from the new techniques in
the following way: First, methods, such as multi-start and iterated local search, VND,
GRASP, directly use LS procedures, see (Hoos and Stiitzle, 2005). Second, metaheuris-
tics, such as tabu search (Glover and Laguna, 1997), also scan neighborhoods, but ask
for best non-tabu neighbors. It is straightforward to integrate tabu-constraints into the
framework. They will cause no additional worst-case effort for testing neighbor solu-
tions as long as “simple” tabu-criteria and tabu-lists of limited length are used. All of
the above metaheuristics will therefore directly benefit from accelerations of LS. Third,
some metaheuristics sample from neighborhoods (such as simulated annealing, threshold
accepting, and related strategies). For these metaheuristics, our methods do not apply
directly. However, extensions of these sampling methods, such as the large-step Markov
chain metaheuristic of Martin et al. (1992), aim at finding better quality solutions in each
major iteration. Only local optimal solutions are presented to the acceptance algorithm
and, hence, efficient LS procedures can speed up the metaheuristic. Other metaheuris-
tics, such as genetic algorithms, evolutionary strategies, or ant systems do not even use
neighborhood-based search procedures, at least not in their “pure” versions. However,
hybrid versions of these mostly use LS post-processing improvement procedures, which
is often the decisive device for designing a highly-effective metaheuristic. Numerous ex-
amples are given in the survey of Braysy and Gendreau (2005b).

For the future, one challenge will be to model new real-world constraints or options and
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to integrate them by means of REFs that possess all the properties required for the
unified framework. A first formal analysis of conditions for REFs to be invertible and ex-
tendable to segments has been given in (Irnich, 2006). Nevertheless, numerous real-world
applications, not only those sketched in Section 4, need to be examined in depth. Tailored
neighborhoods for special routing applications not considered here (e.g., arc-routing, rout-
ing with choice of requests) need to be analyzed and suitable search procedures have to be
implemented. A better understanding of the interplay between different start heuristics,
neighborhoods, improvement and diversification phases of metaheuristics, considered in
various scientific and real-world applications will certainly offer an interesting field for
more theoretical and empirical research. Finally, we hope that the unified framework will
help researchers and practitioners get a more unified view on modeling and efficient search
methods for VRPs.
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LE

Type of See Number Compatible with Complexity
Constraint /Option Ref./Section of Lex. Seq. of
Resources Search Feas. Check
Capacity constraints; CVRP [REF, §3.2] 1 v v O(1)
Distance constraints; DCVRP [REF, §3.2] 1 v v o (1)
Collection and delivery
backhauls; VRPB 4.1, |REF, §2.4.3] 1 (with reset) v v O(1)
mixed backhauls; VRPMB [REF, §2.4.3] 2 (dep.) v v 0 (2)
VRPSDP 4.1, [REF, §2.4.3] 2 (dep.) v v 0(2)
VRP with lasso tours [REF, §2.4.3] 2 (dep.) v v 0 (2)
Time window constraints
single TW IREF §2.3] 1 v v 0 (1)
TW; no waiting [REF,§2.3| 2 v v 0(2)
multiple TW ~ |REF,§2.4.5| 1 v v O(L-T)
soft TW
with linear penalty /positive slope [REF, §2.4.2,84.4] 2 v no O(1)
(—with linear waiting costs)
with general soft TWs |REF, §2.4.2,84.4] 2 no no > 0O (n)
limited waiting times [REF,§2.4.4] 3 (2 dep.) v v O (3)
limited times on duty [REF,§2.4.4] 3 (2 dep.) v v O (3)
Precedence and pairing
PDP 4.2 (altern. model) v v O (1) for some neighborhoods
or: PDP 4.2 P v v O (P) for arbitrary neighborhoods
and general precedences
only (anti-)pairing [SPPRC,§3] P v v O(P)
only precedence [SPPRC,§3] P v v O (P)
Multiple depots
MDVRP 2.2 - v v O (1), check of ~-relation
tours with individual start and end 2.2 - v v O (1), check of ~-relation
Multiple use of vehicles [REF,§2.3| - v v O(1)
Multiple compartments C v v 0 (C0)

(continued on next page)
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Type of See Number Compatible with Complexity
Constraint /Option Ref./Section of Lex. Seq. of
Resources Search Feas. Check
Heterogeneous fleet
different capacities 4.6* 1 v v o(1)
site dependencies 4.4* min{G, H} v v O (min{G, H})
different travel times 4.6* 2+ H v v O(H)
different fixed costs 4.6* 1 v v O(1)
different costs for vehicles 4.6* 2+ H v no O(H)
Periodic; PVRP 4.7 - v v o (1)
Load incompatibilities 4.4* G v v 0 ()
Inter-tour constraints
assign limited fleet to depots [Inter§2.4.2] 1 v v O(1)
ramp assignment [Inter,§2.4.2] 1+D-T v v O(D-T)
staggered arrival /sorting [Inter| 24+D-T v v O(D-T)
limit no. tours with certain property [Inter,§2.4.2] 2 v v 0 (2)
Additional costs
time-dependent travel times |REF,§2.4.6,§4.3.3] 1 no no ?
time-dependent travel costs 2 no no ?
linear waiting costs ~ |REF,§2.4.2,84 4] 2 v no o (1)
load-dependent costs
with polynomial cost fuct. |[REF,§2.4.1,84.3.1] 2 v no 0(1)
general /piecew. linear cost fnct. |[REF,§2.4.1,84.3.1| 2 no no ?
REFs with decreasing components
VRP with synchronization [REF,§3.1,§3.2] T no no ?
VRP comb. with inventory mgmt. [REF,§3.1,§3.2] 1-T no no ?
VRP with split delivery |[REF,83.1,83.2] 1 no no 0(1)

[SPPRC| - (Irnich and Desaulniers, 2005), [REFs| — (Irnich, 2006), [Inter| — (Hempsch and Irnich, 2007)
(dep.)—dependent, (indep.)—independent, C—no. compartments, D—no. depots, G—no. customer groups, H—no. vehicle types,
I-—no. inventories, L—max. length of a tour, P—no. precedences/pairing constraints, T—num time windows/slices

Table 3: Overview: Types of VRP, Compatibility with the Lexicographic and Sequential
Search Approach of the Unified Model, and Complexity of Feasibility Checks



