Solution of Real-World Postman Problems

Stefan Irnich ®* Michael Drex] ?

&Deutsche Post Endowed Chair of Optimization of Distribution Networks,
RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany.

Abstract

The paper presents the results of a study performed by the Deutsche Post Endowed Chair
of Optimization of Distribution Networks in collaboration with Deutsche Post World Net
with the aim of improving the planning of letter mail delivery. Modelling and solution
methods for real-world postman problems are presented which extend one of the most
general postman problems studied in the literature, the windy rural postman problem,
with regard to several aspects. The discussed extensions include turn and street crossing
restrictions, cluster constraints, the option to have alternative service modes (including
‘zigzag deliveries’), and the use of public transport to reach the postal district. The
solution method is based on a transformation to the asymmetric TSP and uses non-
standard neighbourhood search techniques. Extensive computational experiments show
that the solution method clearly and consistently outperforms standard TSP heuristics
on real-world instances.

Key words: postman problems, arc routing, transformation into TSP

1 Introduction

This paper describes the results of a study performed by the Deutsche Post En-
dowed Chair of Optimization of Distribution Networks in collaboration with Deut-
sche Post World Net with the aim of developing new models and solution algorithms
to improve the planning of letter mail delivery.

The letter mail distribution system of Deutsche Post World Net in Germany is a
multi-stage, multi-modal network comprising about 110,000 pickup points (letter
boxes), 12,000 post offices, 82 regional mail centres, 3,300 delivery depots, and, on
the ‘last mile’, 39 million households and commercial clients expecting more than
20 billion letters per year to be delivered within 24 hours after posting. To perform
the delivery, there are 72,000 postmen serving 54,000 districts six days a week on

* Corresponding author.
Email addresses: sirnich@or.rwth-aachen.de (Stefan Irnich),
michael@or.rwth-aachen.de (Michael Drexl).

Preprint available at www.dpor.rwth-aachen.de 25 September 2006

foot, by bicycle or by car. This last stage of letter mail transport incurs several
billion Euros of total annual cost. It is clear, therefore, that even a small relative
cost reduction amounts to tens of millions of Euros in absolute annual savings.
Not surprisingly, Deutsche Post World Net is constantly seeking to optimise the
routing of its postmen.

The contribution of the paper is twofold. First, it introduces a model of a very
general uncapacitated arc-routing problem capturing most of the practically rele-
vant side constraints encountered by Deutsche Post World Net. In particular, turn
and street crossing restrictions, cluster constraints, the option of alternative service
modes (including ‘zigzag deliveries’), and the use of public transport to reach the
postal district are considered. Second, it presents heuristic algorithms for the solu-
tion of this model, based on a transformation to the asymmetric travelling salesman
problem (ATSP), along with extensive computational results showing the practical
applicability of the algorithms.

The rest of the paper is structured as follows: In the next section, the new model
is presented and it is shown how the above-mentioned options and additional side
constraints can be incorporated. After that, the solution approach is presented:
In Section 3, a tailored transformation of the developed arc-routing model to the
ATSP is given; in Section 4, it is shown how the resulting ATSP is solved by means
of construction and non-standard neighbourhood search improvement procedures.
Section 5 presents and analyses the computational experiments demonstrating the
superiority of the new algorithmic approach over standard heuristics for the TSP.
At the end, Section 6 points to possible interesting extensions of the problem and
gives final conclusions.

2 An Extended WRPP Model

There are many models and algorithms for the solution of postman problems (e.g.,
Eiselt et al., 1995; Dror, 2000). One of the most general models for the uncapac-
itated case is the windy rural postman problem (WRPP). The WRPP is defined
on an undirected graph where some, but not necessarily all, edges require some
kind of service and must therefore be traversed at least once. All edges of the
graph may be traversed without performing a service an arbitrary number of times
in either direction. Traversing an edge incurs a certain cost, and the task is to
create a tour for the postman of minimal total cost, covering all required edges.
The cost of traversing an edge in one direction may differ from traversing it in
the other direction (with and against the wind). Although there are polynomially
solvable special cases, the WRPP is, in general, N'P-hard (Papadimitriou, 1976).
However, the problem is of great significance, as it generalizes many other arc-
routing problems. The case where all edges must be traversed, the windy Chinese
postman problem (WPP), has received considerable attention in the literature (cf.
Minieka, 1979; Guan, 1984; Win, 1987), and there are already some papers dealing
with the ‘rural’ version of this problem as described in the preceding paragraph
(Corberan et al., 2005a,b). The paper by Irnich (2005) considers a generalization

of the WRPP, the windy rural postman problem with zigzag service (WRPPZ).
In this problem, the streets (or rather street segments) can be divided into four
classes: First, street segments with houses on one side of the street only. These
segments must be serviced exactly once. Second, street segments with houses on
both sides, where the sides must be serviced separately and where, consequently,
the segments must be traversed at least twice. Third, street segments with houses
on both sides with the option of servicing both sides simultaneously by a single
‘zigzag’ traversal (passing through the street segment once) or of servicing the two
sides separately by two traversals. Fourth, so-called non-required street segments
may be used to get from one point to another. All street segments may be tra-
versed without servicing arbitrarily often in both directions. A traversal without
servicing is referred to as deadheading. Again, different directions of traversal of
a segment may incur different costs. Moreover, also the different traversal modes
(one-side service, zigzag service, deadheading) may incur different costs. Formally,
the WRPPZ is defined on an undirected graph G = (V, F) with vertex set V' and
edge set F/. Without loss of generality and for notational convenience, it is assumed
that G is simple, i.e., that G contains neither parallel edges nor loops. The edge
set is partitioned into four subsets, £ = E° U E' U E? U E3, where E° contains
the non-required edges, E' and E? contain the edges requiring single and double
service respectively (but where zigzag service is not allowed), and E® contains the
edges with zigzag service option. Up to eight different costs cfj, c;?i, k€ {0,1,2,3},
are associated with an edge {i,j} € E. k = 0 stands for deadheading, & = 1 for
servicing the first side, £ = 2 for servicing the opposite side of the street segment,
and k£ = 3 for zigzag service, while 75 and ji describe the direction of traversal.
Only one direction of traversal may be allowed for an edge for some or all traversal
modes. This is represented by setting the corresponding cost coefficient to infinity.
Such an edge is called an arc. Obviously, for the edges e € E'\ E3, only some of
the costs are relevant, i.e., edges e € E? have six, edges e € E! have four, and
edges e € E° have two different costs. Irnich (2005) gives an integer programming
formulation for the WRPPZ.

In this paper, an extended version of the WRPPZ, called EXT-WRPP, is presented.
No integer programming formulation for EXT-WRPP is given here; rather, a graph-
theoretic approach is taken. This is due to the fact that the study was intended
to develop a procedure able to consistently compute good solutions for real-world
instances in short time. The size of the instances is such that one cannot expect to
achieve this via an exact algorithm, and for the solution approach pursued here, it
is not necessary to devise an IP formulation.

In addition to the WRPPZ, EXT-WRPP considers the following aspects:

e Street segment sides: For delivery by foot or by bicycle, it may be necessary
to distinguish between a traversal on the left hand side (lhs) or right hand
side (rhs) of a street segment. In connection with turns and turn penalties, the
consideration of both street sides offers the possibility to favour tours that do
not cross main roads too often in order to make the tour faster and safer for the

postman. Hence, the deadheading costs are re-defined to reflect traversals from
i to 7 and from j to 4, either on the lhs or on rhs of the street: c?]’-lhs, c?fhs, c?;lhs,
c?;-rhs. W.lo.g., for edges e € E? U E3, the lhs always corresponds to service 1,
and the rhs corresponds to service 2.

e Turn restrictions: There is a considerable amount of literature on arc-routing
problems with turns, starting with the paper by Caldwell (1961). Other impor-
tant contributions are the ones by Benavent and Soler (1999); Clossey et al.
(2001); Corberan et al. (2002). Some authors consider the turns issue in their
solution algorithms, others use transformations to get equivalent graphs with-
out turns. In this paper, the latter approach is taken. In a simple graph, a
turn is unequivocally described by means of three vertices and an associated
turn cost/penalty. Forbidden turns are represented by setting the respective
penalty to infinity. Hence, when there is no distinction between traversal on
the left or the right hand side, the set of possible turns in G is defined as
T = {(i,5,k) - {i,7},{j,k} € E}. The turn cost/penalty is denoted by p;p.
In the case of a detailed model, the street segment side information must also be
taken into account. Here, we define 7 := {(i,s,7,5, k) : {i,5},{j, k} € E;s,8 €
{lhs,rhs}}. The turn cost is then denoted by pfj}i/ It is assumed that crossing
a street segment {i,j} where zigzag service is allowed incurs no (measurable)
cost. This means that the cost/penalty for the turns out of and into this street
segment {i,j} are always identical, i.e., pi?,‘:s = p;h,f’s and pi’iljhs = pi’;hs holds for
all s € {lhs,rhs} and for all edges {i,j} € E>.

e Clusters: Due to the grouping of street segments into intermediate organiza-
tional units (for early morning sorting activities and gathering statistical data),
there are clusters of street segments which must be serviced consecutively. More
precisely, this means that for two street segments e,e’ € E belonging to the
same cluster, if e is serviced before ¢/, there must not be any street segment e”
not belonging to this cluster that is serviced after e and before ¢’. Deadheading
through a street is always allowed. This issue is the arc-routing equivalent to the
clustered travelling salesman problem for node-routing problems (see Chisman,
1975). Formally, there is a set of ny clusters H := {1,...,ny}. The numbers
hs e H for {i,j} € E\ E° and h'* € H for {4, j} € E*U E? denote the cluster
index of the service. Note that zigzag service is only possible if both sides of the
street segment belong to the same cluster, i.e., we assume h%-w = h;fjhs to hold for
all {i,7} € E3. The delivery depot (post office) is represented by a single edge
{i4,74} € E'. This edge forms a separate cluster.

e Public transport: Sometimes it is not necessary for the postman to deadhead
through non-required edges in order to reach his district in the morning or to
return to the post office in the afternoon. Districts served on foot or by bicycle
can also be reached and left via public transport (buses, tramways, underground).
The existing lines are represented in the street distance graph by additional edges
connecting end points of otherwise non-adjacent street segments e € E°. More
details are given in Section 3.2.4.

e ‘Knock-off after last delivery’: A rather new approach in mail delivery operations

is the concept of ‘open tours’, i.e., the postman ends his workday immediately
after the last delivery and returns to the post office only on the next day.

A postman tour can be modelled as a triple P = (C,m, s), where C' = (ig,i1,...,15)
is a walk in G, m = (mq,...,m,) € {0,1,2,3}" indicates the traversal modes of
the edges in C, and s = (s1,...,s,) € {lhs,rhs}" indicates the street segment
sides being traversed. A postman tour P = (C,m, s) is feasible if and only if

(P1) (Closed walk) ig = iy,.

(P2) (Turn feasible) (ip—1, Sp, ip, Spr1,ipt1) € T forallp € {1,...,n} (with i,y =
i1 and S,y 1= $1).

(P3) (Service covering)

e For all {i,j} € E', there exists a p € {1,...,n} such that {i,_1,i,} = {7,7},
and m, = 1.

e For all {i,j} € E?, there exists a p € {1,...,n} such that {i,_1,i,} = {7,5},
and m, = 1.

e For all {i,j} € E?, there exists a p € {1,...,n} such that {i,_1,7,} = {i,7},
and m, = 2.

e For all {i,j} € E?, there exist pi,po € {1,...,n} such that {i, 1,7y} =
{ipy—1,1p,} = {i,7} and either (p; = py and m,, = 3) or (p; # pa2, My, = 1,
and m,, = 2).

(P4) (Cluster feasible) For all 1 < p < r < n, the conditions m, # 0, m, # 0, and
hi? i, = hir i = himply m, = 0 (deadheading) or h;* ; = h (same cluster)
forallp<g<r.

(P5) (Compatibility between m, and s,) Forall 1 <p <n, m, =1« s, = lhs
and m, = 2 & s, = rhs.

Note that (P5) does not impose any restriction about the side of the street if the
street is deadheaded or serviced in zigzag mode.

It is assumed that each solution fulfilling (P1-P5) is feasible with respect to the
postman’s carrying capacity and working time regulations. Let the set of all post-
man tours P fulfilling (P1-P5) be PJ/ees,

The cost of a postman tour P = (C,m, s) with C' = (ig, 41, ...,1,) is

n

C(P) C m, S = Z(Z] s f;,sljzl,“#)) (1)

J=1

where, again, 7,1 := 71 and s, := s;. With these definitions, EXT-WRPP can
be stated formally as

(EXT-WRPP) z* = min ¢(P). (2)

pepfeas

3 Problem Transformation

The model for EXT-WRPP presented in the preceding section is a descriptive one,
but it is well-defined in a graph-theoretical sense. To transform the problem into an

ATSP, three different graphs are considered: (a) the undirected graph G = (V, E)
for the representation of the problem instance; (b) a directed graph D’ = (V' A, /)
to model and compute shortest paths w.r.t. distance and turn penalties; (c¢) a
complete digraph D = (V, A,) on which the resulting ATSP is defined.

The basic idea of the transformation is that each service is represented by two
anti-parallel arcs, each of which indicates the direction of travel when performing
the service. Services of different street segments are connected by directed arcs
representing deadheadings from the end point of the first to the start point of the
second service. The associated costs are computed as shortest path distances in the
digraph D’ and take into account costs for deadheading and turns. Services of the
same street segments can be connected to either model consecutive but separate
services or—using a similar techniques as in (Irnich, 2005)—to model zigzagging.

3.1 Street Distance Digraph

The street distance digraph D' = (V’; A’,¢’) models the physical street network

including costs for deadheadings and turns. Any path in D’ is an alternating path

where arcs either represent deadheadings (on a specific side of the street and in a

given direction) or feasible turns. For each street segment e = {7, j} € E there are

two directions, ¢7 and j¢, and two sides, lhs and rhs. Hence, four arcs with eight
sside -side

distinct nodes 5% and ;5% with dir € {ij, ji} and side € {lhs,rhs} are necessary
to represent the possible deadheadings. The four nodes 5%, dir € {ij, ji}, side €

dir »
{lhs,rhs} are associated with the endpoint i, i.e., one end of the street segment,
sside

while the four nodes jj;°° represent the other end. Thus, the deadheadings of street

3 lhs lhs T‘hS rhs lhs lhs
segment {i,j} € E are given by the four arcs (i;;*,7:7°), (i7}°, ji;**), (4, 15°),
(j57,457) with costs o lhs, c?fhs, c?;lhs, and cO 71 respectively.

Let t = (i,s,7,8,k) € T be an arbitrary feasible turn. Since {3, j},{j, k} € E, the
nodes j;; and j;’,; are already given by the above definition. The turn ¢ is uniquely

represented in D’ by the arc (jfj,jj,;) e A’ with cost pf]‘,j Finally, we denote by
d},; the shortest path distance between an arbitrary pair of nodes k,l € V' in the
street distance digraph.

3.2 ATSP Digraph

The main tool to solve the postman problem defined in Section 2 is its transfor-
mation into an ATSP. Each feasible postman tour P = (C,m, s) corresponds to
a Hamiltonian cycle in the complete ATSP digraph D = (V, A, &) with the same
cost (except for multiples of a constant M, see below). Furthermore, a cost-minimal
Hamiltonian cycle C' in D encodes an optimal postman tour. The decoding, i.e.,
the transformation of the ATSP solution into the corresponding postman tour, can
be done in time proportional to the length of the tour. For the sake of brevity, any
Hamiltonian cycle in D is called (ATSP) tour.

Note that the proposed transformation does not provide a one-to-one correspon-
dence between feasible postman tours and ATSP tours. While feasible postman

tours have associated Hamiltonian cycles in D, most ATSP tours do not imply fea-
sible postman tours. The transformation, therefore, has to utilise a constant M, a
sufficiently big number, such that ATSP tours not representing a feasible postman
tour are more costly than feasible ones.

The transformation of the problem instance into an ATSP is explained in three
steps: First, we describe internal arcs connecting some of the pairs of nodes belong-
ing to the same edge e € E. The intention of an internal arc is to model a service
that is performed in a particular orientation. Consequently, costs of internal arcs
mainly consist of costs defined by the costs cfj, c?i, k € {1,2,3}. Second, external
arcs connect nodes belonging to different edges of E or nodes of the same edge but
for services on opposite sides of the street connected by deadheading. Their cost
is, therefore, defined as the length of a path in the street distance graph. Third,
we describe the transformation of a (feasible) ATSP solution into the associated
postman tour.

Note that the following transformations are similar to those presented in (Irnich,
2005) for the WRPPZ. However, turn restrictions and cluster constraints impose
several modifications regarding structure and cost of arcs. These modifications are
pointed out in the following.

3.2.1 Internal Arcs of the ATSP Digraph

First, for each edge e = {i,j} € E', there are two nodes k := " and ¢ := ;.

The two nodes are connected by anti-parallel arcs (k,£) = (it"*, /) and (¢, k) =
(515 iths) with costs c}j — M and le'i — M, respectively. The intention of adding — M
to both arcs is that a sufficiently large number M ensures that an optimal ATSP
tour contains either (i, jih$) or its anti-parallel counterpart (ji¢ 1), This first

e
case and the following two cases are depicted in Figure 1.

e={ijleE" e={i,jleE? e={i,jleE3

— — — ——

lhs:

rhs:

Fig. 1. Principle of Transformation in ATSP; External Arcs are Depicted Dotted/Greyed

Second, for each edge e = {i, j} € E?, there are two associated services and, hence,

four nodes k := i, ¢ := j!hs p =i and q := ;7. The four nodes are connected

by the following internal arcs. For the left hand side of the street, there are two
anti parallel arcs (k,¢) = (i", ji**) and (¢, k) = (ji", ") with costs ¢j; — M and
ﬂ — M, respectively. Similarly, for the right hand side, the arcs (p, q) = (i’"*, j7h*)
and (¢, p) = (ji"*,i*) have costs ¢f; — M and ¢3; — M. Tn the following, these arcs

are called service arcs. The eight remaining connections between these four nodes
are external arcs and will be described in the next subsection.

Third, for each edge e = {i, j} € E3, there are again four nodes k :=ilh*, ¢ := jlhs,
p = z”hs and ¢ := j". In addition to the four arcs for edges e € E?, we add four
other 1nternal arcs: The arc (¢, p) models two alternative options at the same time.
If (¢,p) is used in an optimal solution, the two arcs (k,£) and (p,q) for the two
associated services are also used, directly before and after arc (¢,p). On the one
hand, this is possible when the associated services are connected by deadheading.
On the other hand, the option of zigzagging through the street segment e = {i, j}

is also represented by the sub-path (k, ¢, p,q). Hence, the cost of (¢, p) is defined as

ks rhs} (3)

Alfzs,rhs !
JZJ ’ 'L]

— mind B Al
= min{c}, — ¢}, — &, d,

Note that the first term of the definition is defined such that the cost of zigzagging
is (¢}, —cly — ;) + (cl; — M)+ (c;; — M) = ¢}; —2M. If the minimum in (3) is given
by the second term, the cost of the sub- path (k,¢,p,q) is exactly the cost c}j + c?j
of the two services plus deadheading costs minus 2M . This definition is consistent
with the two options which had to be modelled. Similarly, the connections (g, k),

(k,q), and (p,{) are assigned costs Ams ths Alhs s and A;?S’lhs, respectively.

3.2.2 External Arcs of the ATSP Digraph

All remaining arcs (k, k') of D have costs given by shortest path distances d’ in the
street distance graph D" and additional penalties of M if the two sides of the street
belong to different clusters. Each node, k and £/, has a unique associated service.
Thus, let {i,j} € E be the street segment, s € {lhs,rhs} be the side of the street,
and hj; be the cluster of the service associated with k. Moreover, let ij be the
direction of travel such that k lies on endpoint j of the street segment. Similarly,
let {7,5'} = {j',i'}, s' € {lhs,rhs}, i'j’, and h$ 7 be the associated values for
node £/, but defined such that £ lies at the startpomt i" of the associated service.
Then, the arc (k, k') € A has cost

M, if b3 # hi,

7 !
dpr = dj's' as T
R 0, otherwise

3.2.8 Validity of the Transformation

In order to show the validity of the transformation, we have to make sure that an
optimal ATSP tour in D corresponds to a feasible, cost-minimal postman tour in
G. In the following, we first show how (optimal) ATSP tours can be transformed
back into postman tours P = (C,m,s). Second, we explain why optimal ATSP

tours necessarily create feasible postman tours. Third, the fact that the proposed
transformation is cost-preserving for feasible postman tours is easy to see, so that
the validity of the whole transformation follows.

The transformation from ATSP tours to postman tours constructs the walk C' =
(0,71, - - . ,in,lp) from several paths (jo,...,J,) imposed by the arcs or arc se-
quences of the ATSP tour. On the one hand, external arcs of D uniquely corre-
spond to deadheadings, i.e., node sequences (jo,...,Jj,) with edge traversal modes
(ma,...,my,) = (0,...,0), and specific street sides (s1,. .., S;). On the other hand,
we have to distinguish several cases for the internal arcs. Note first that there are
S := |E'Y + 2(|E?| + |E®|) services to cover, which are represented by 25 pairwise
anti-parallel service arcs in D. Thus, any ATSP tour can collect a profit of —S - M
at best. Moreover, there are ny clusters, and penalties of +M are put on all inter-
cluster external arcs. For sufficiently large M, therefore, any optimal ATSP tour
uses exactly S service arcs and exactly ny inter-cluster external arcs (this implies
property (P4), and, with the following arguments, also (P3)).

The use of exactly S service arcs also implies that arcs labelled with A (these
arcs exist only for edges {i,j} € E* and are named (k,q), (q,k), (p,£), (¢,p)) can
only be traversed in the sequences (k,?,p,q),(q,p, 0, k), ({,k,q,p), or (p,q,k,{).
Depending on whether the minimum in (3) is given by the first or second term, the
corresponding node sequences, services and traversal modes have to be computed
differently. As mentioned above, for the sequence (k,/,p,q) and dy, = cg’j — cilj — C?j
(minimum given by first term) the cost of the sequence (k, ¢, p, q) is cfj —2M. The
corresponding sequences in G are therefore (7, j), m = (3), and s arbitrarily defined
(recall the assumption stated in last sentence of paragraph on turn restrictions in
Section 2). Similar arguments apply to the three other sequences. If the minimum
in (3) results from the second term, the two associated services are performed
consecutively but not in zigzag mode. For the sequence (k, £, p, q) in D, the resulting
part of the postman tour is given by (i, j, ha, ..., hy—2,4,7), m = (1,0,...,0,2), and
s = (lhs,sa,...,Sp—1,7hs). The sub-path (7, he, ..., h,_s,1) corresponds to a cost-
minimal deadheading from the end-point of the first service of {i,j} (performed
in direction ij, located on the lhs) to the start-point of the second service of {7, j}
(performed in direction ij, located on the rhs). Again, similar arguments apply to
the three other sequences.

The transformation of service arcs corresponding to edges {7, 7} € E'UE? must be
performed separately for each pair of anti-parallel service arcs. The same holds for
service arcs corresponding to edges {4, j} € E? when the service arc is not incident
to an internal arc labelled with A. In all these cases, the service is on an edge {i,j},
and, depending on the associated direction, the part of the postman tour is either
(2,7) or (j,4) with service mode and traversal either m = (1) and s = (lhs), or
m = (2) and s = (rhs).

The above transformation ensures that consecutive arcs (k,k’) and (K',k") € A
impose node sequences that fit together, i.e., sequences where the last node im-
plied by (k, k) is also the first node implied by (£’, k). Summing up, these argu-

ments show that the resulting postman tour is closed (P1) and—because of the
use of turn-feasible paths from the street distance network—fulfills property (P2).
The compatibility (P5) is also guaranteed in all of the above cases. It is straight-
forward to check that all steps of the transformation are cost-preserving. Hence,
cost-minimal postman tours correspond to optimal ATSP tours.

3.2.4 Integration of Public Transport and Single Park-and-Loop Operations

There are two practical requirements that can also be handled with the above
transformation. First, postmen might use public transport to get from the delivery
depot to their postal district and vice versa. These additional options for deadhead-
ing can easily be integrated into the original graph G by using additional edges
e € EY and lead to additional arcs in the street distance network between those
points where a public transport connection exists. The resulting enlarged street dis-
tance network, denoted by D, can be used instead of D’. Mostly, the use of public
transport is only permitted between the delivery depot and the first/last point of
the district. In this case, only the deadheadings between the ‘service’ {iq, j;} € E*
and other services should be computed in Dj instead of D’. The ‘knock-off after
last delivery’ concept fits nicely into this model, since connections back to ¢4 can
be set to cost zero.

Furthermore, different means of transport might be used for reaching or leaving the
district and the delivery operations. For instance, the postman might use a car to
get to a remote district and use a trolley (on foot) to service households and corpo-
rate clients. This case can be solved iteratively with the proposed transformation.
One simply has to replace the delivery depot by potential parking places p, solve
the EXT-WRPP with ‘depot’ p, and add the cost for the deadheading between
the delivery depot and the parking place. The cost-minimal solution of these is
the solution to this single park-and-loop operations problem. The case that a car
is stopped multiple times to perform several loops in different parts of the district
has been considered in the work of (Bodin and Levy, 2000). However, these more
complicated routing problems are beyond the scope of this paper.

3.8 Transformation into an STSP

ATSP instances can be transformed into STSP instances using the transforma-
tion of Jonker and Volgenant (1983). Each ATSP node i is duplicated into two
STSP nodes i;, and i,,; which have to be visited consecutively, i.e., they are con-
nected with (negative) cost —M. ATSP arcs (i,5) with cost d;; are transformed
into edges {iout, jin} With the same cost and all remaining connections in the new
graph are infeasible, i.e., edges {ious, Jout} and {iin, jin} have cost +M. We use this
transformation mainly in order to compute lower bounds using branch-and-cut
techniques for STSP. Moreover, we will compare standard edge-exchange proce-
dures for the STSP to the transformed postman problem and compare these results
with our specialised ATSP and arc-routing improvement procedures presented in
the next section.

10

4 Solution Methods for ATSP

The book chapter (Johnson et al., 2002) covers the standard solution methodology
with constructive and improvement heuristics for the ATSP. For the sake of brevity,
we restrict ourselves to explain only the new aspects of our solution method.

4.1 Construction Heuristics

ATSP construction heuristics rely on the well-known nearest neighbour and greedy
(also called multiple fragment) principles or are based on solving assignment prob-
lems as relaxations of the ATSP, such as variants of the patching heuristic that
were studied by Glover et al. (2001). We implemented several of these heuris-
tics and found out that the nearest neighbour heuristic—despite its simplicity—is
the best one to compute ATSP tours corresponding to feasible postman tours.
The ‘pathological” instances, where nearest neighbour solutions imposed infeasible
postman tours, had cluster constraints, delivery by car, and a large fraction of
one-way streets. Thus, the nearest neighbour heuristic was used for the ATSP tour
construction.

4.2 Improvement Heuristics

We use a variant of an iterated or chained local search heuristic which consists of the
following components. First, edge-exchange neighbourhoods that can be searched
in O (n?) time, such as 2-opt, Or-opt, and string-exchange, are combined such that
a local optimum w.r.t. all these neighbourhoods is computed. Hansen and Mladen-
ovi¢ (2001) refer to this principle as variable neighbourhood descent (VND). Note
that these neighbourhoods together are able to eliminate all infeasibilities resulting
from using Ms in the transformations. Local optima always correspond to a fea-
sible postman tour. Second, an extension of the restricted dynamic programming
neighbourhood of Balas and Simonetti (2001) is then applied to the result. This
neighbourhood can change a large number of edges at the same time. It is lin-
ear in the tour length n, but exponential in a parameter k£ > 2, and thus is a very
large-scale neighbourhood. It was shown by Balas and Simonetti (2001) that it pro-
vides a reasonable complement to the classical ATSP edge-exchange procedures,
which only modify a few edges. If an improvement is found both neighbourhood
search procedures are repeated. Finally, a local minimum w.r.t. all neighbourhoods
results. Unbiased random double-bridge moves (called kick moves) perturb the
current tour and provide new iterated start solutions for the above described lo-
cal search descent heuristic. The following sections provide more details about the
basic components of the improvement procedures.

4.2.1 FEdge-Ezchange Procedures

A 2-opt move inverts a sub-string of the current tour, an Or-opt move relocates a
string, and a string-exchange move exchanges two strings (see, e.g., Funke et al.,
2005). As long as the relocated and exchanged strings are of limited length, se-
quential search methods (Irnich et al., 2006) based on the gain criterion (Lin and

11

Kernighan, 1973) allow the acceleration of local search such that best improving
moves can be identified faster than by scanning all ©(n?) possible moves. We use
this technique for the Or-opt neighbourhood. Instead, the dynamic programming
procedure of Glover (1996) is used for determining a best double-bridge move in
O (n?) time (i.e., a string-exchange move without limitations on the string length
resulting in a ©(n*)-sized neighbourhood).

In order to avoid that the edge-exchanges directly undo the double bridge kick
moves, the VND procedure first uses the 2-opt and Or-opt neighbourhoods and
applies double-bridge moves only to local optima w.r.t. 2-opt and Or-opt.

4.2.2 Very Large-Scale Neighbourhood Search

Very large-scale neighbourhood search (VLSNS) is a variant of local search in which
the search for a best neighbour solution of a large neighbourhood is transformed
into another optimization problem that can be solved in (pseudo-)polynomial time.
The term ‘large’ refers to neighbourhoods that cannot be inspected by enumeration
of neighbour solutions—one by one—in an ‘acceptable’ time. A family of large-scale
neighbourhoods, one for each integer £ > 2, has been proposed and analysed by
Balas and Simonetti (2001). Given an ATSP tour z = (z¢, x1, . . ., Tn, To) the neigh-
bourhood Nfg(x) consists of all routes @’ = (2(0), T(1), - - - » Tr(n)s Tr(0)) Where the
permutation m of {0, 1,...,n} fulfills the following conditions: For any two indices
i,j €40,1,...,n} with i + k < j the inequality 7 (i) < m(j) holds. The meaning of
this definition is that if node x; precedes node x; by k£ or more positions then z;
must also precede z; in the neighbour solution.

The search for a best neighbour solution 2/ € NEg(x) is performed by solving a
shortest-path problem in an auxiliary graph G* = G} (we will leave out the index
k in the following). The auxiliary graph G* is well-structured; it consists of n + 2
stages for a tour x of length n + 1. Each (typical) stage i consists of (k + 1)2F2
nodes V;. Only consecutive stages i and i+ 1 are linked, i.e., there are k(k+ 1)2%—2
arcs joining V; with V;,;. Stage 0 contains the start node o and stage n + 2 the
sink node d. Every o-d-path in G* is in one-to-one correspondence to a neighbour
solution /. The correspondence is implied by the fact that each node j refers to
a specific position in the tour x. One of the amazing properties of G* is that the
structure of all consecutive stages does not depend on ¢. The induced subgraphs
G*(V; U Vi) are all identical, they neither depend on i nor on n, but only on k.
This allows computing G*(V; U V;;1) beforehand in order to construct the entire
auxiliary graph G* quickly.

Figure 2 shows an example of G* for £ = 3 and a tour of length n + 1 = 6.
Every node j € V; refers to position i + «(j), i.e., every row in Figure 2 defines an
offset a(7) relative to the current position i. Those nodes that refer to positions i+
a(j) < 0or i+ a(j) > n+ 1 are nodes that cannot be reached on any o-d-path.
Stages ¢ with unreachable nodes are called untypical stages; corresponding nodes
and arcs are shown dotted in Figure 2. In order to ensure that any o-d-path in
G* has a cost identical to the cost of the implied neighbour solution z’, one has

12

a(j)=0
a()=1
a(j)=-1
a(j)=2
a(j)=1
a(j)=-1
a(j)=0

a())=-2

Fig. 2. Auxiliary Graph G* for k = 3 and n 4+ 2 = 7 Stages

to label arc (j,7) € V; x Viy1 with cost Ca () @it ol For instance, the first
bold arc in Figure 2 is labelled with cost ¢y, 21,0 = Cuozy, the second has cost
C1ya,304(_1) = Cagan €LC. This is perfectly in accordance with the fact that the bold
path represents the neighbour tour 2’ = (xg, x3, x1, 4, T2, x5, To).

It is obvious that we can apply VLSNS using the neighbourhood N%g to ATSP
tours resulting from the transformation described in Section 3. However, we further
adapted the idea to arc-routing problems which are transformed into node-routing
problems by replacing a service arc with two nodes. The main drawback of a direct
application to transformed postman tours is that individual nodes but not arcs
are permuted. If one wants to exchange arcs over k (arc) positions, one has to
move nodes over 2k positions. However, service arcs can be reversed and it is,
therefore, not sufficient to simply rearrange the sequence of the arcs. Here, we
consider inverted and non-inverted arcs as atoms for the neighbourhood search
procedure.

More precisely, we propose to construct a modified neighbourhood ./\7]];5 by dupli-
cating the nodes of G* such that j € V; stands for a non-inverted service arc and
j € V; refers to its inverted counterpart. For a fixed number k, the new auxil-
iary graph G* has twice the number of nodes per (typical) stage as the original
auxiliary graph G*. It has four times the number of arcs between stages. Given a
postman tour x = (0, a1, a9, ...,0y, d) with service arcs ay, as, ..., ap, start-node o
and end-node d, we build G* with n + 2 stages and (k + 1)2%! nodes V; U V:
for each stage. Each arc (j,j') € V; x Vj41 of the original auxiliary graph has
three fellow arcs (7,7') € Vi x Vigr, (7,5') € Vi x Vigq, and (5,7") € Vi x Vigy.
Hence, G* has (n + 1)k(k + 1)2* arcs. An example of a transformed postman
tour (o, a1, as,as,as,d) with n = 4 service arcs is depicted in Figure 3. From the
values a(j), we see that the bold path permutes the arcs ay,as,as, aq such that
the new ordering is as, a1, a4, a3. At the same time, the arcs a; and a4 are in-
verted, because the stages 2 and 3, which are referring to the arcs as;(—1) = a; and
azy1 = ay4, visit nodes of V, and Vi, respectively. Given that all arcs a; have tail
and head nodes p; and g;, the old tour z is (o, p1, ¢1, D2, G2, D3, 43, P4, @4, d), and the

13

Vix Vi for k=2

() nodesjof ¥}
(") nodes j of

Fig. 3. Construction of the Auxiliary Graph G* from G* for k = 2

new tour is &’ = (0, p2, ¢2, ¢1, P1, 4, P4, P3, G3, d). The advantage of the modification
proposed in this section is that for a repositioning of arcs over less than k positions,
we only need to use ./\755 on graph G* instead of NZE on graph G* for the ATSP.
Since the number of nodes and arcs grow exponentially with k, the factor 2 is cru-
cial. The example shows that all arcs are moved one position forward or backward
(which requires k = 2 for é*), while some nodes are moved up to three positions
(which requires k = 4 for G*).

5 Computational Results

The following computational analysis is based on real-world instances provided by
our project partner, Deutsche Post World Net. All postal districts considered here
were taken from the urban part of the city of Aachen (Germany), which is a mid-
sized city with about 250,000 inhabitants. Most of the postal districts allow delivery
on foot or by bicycle, only a smaller fraction requires delivery by car. EXT-WRPP
instances were created from these 56 postal districts by altering (1) the location
of the associated delivery depot; (2) the means of transport used for servicing the
district, depending on whether streets/roads of the district allow delivery on foot,
by bicycle, or by car; (3) weights for the importance of turn penalties w.r.t. service
and traversal costs; and by deciding (4) whether or not cluster constraints have to
be respected (operational vs. tactical planning). The objective was always to create
a time-minimal postman tour, i.e., traversal and service costs were measured in time
units. A validated model for estimating the time of servicing a street segment by
zigzagging was not available. Certainly, these service times depend on the distance
between consecutive entrances of houses on each side of the street, the width of the
street and pavement, the flow of traffic through the street, the means of transport
etc. A simulation model in combination with comprehensive collection of statistical
data could possibly help to identify the most important influencing variables, but
the effort for such an empirical study was beyond the scope of the actual project.
For the sake of simplicity, costs for zigzag deliveries were assumed to be identical
to the costs of separate services for delivery on foot and by bicycle. For delivery
by car, zigzagging is only possible on very sparsely populated road segments; we
assumed that the costs for zigzagging are 2.5 times higher than the cost for separate

14

deliveries. Similarly, we used estimates for the temporal effort to perform turns by
classifying the set of all allowed turns into left-turns, straight crossings, right-turns,
and u-turns, taking also the means of transport into account. Concluding, 1236 test
instances resulted from this setup, 672 with delivery on foot, 432 by bicycle, and
132 by car.

The majority of the edges defining the EXT-WRPP graph G = (V, E) are edges e €
E° because the entire street network of the city can in principle be used for dead-
heading from the end of one service to the beginning of the next service. The
number |E| of edges ranges from 4018 to 4499 (with avg. 4373), while the number
of edges of a particular type is between 6 and 71 (avg. 21.6) for |E!|, between 0
and 47 (avg. 14.2) for |E?|, between 0 and 39 (avg. 9.4) for |E3|, and between 19
and 100 (avg. 45.2) for required edges R = E \ E°. The resulting ATSP instances
had between 62 and 258 nodes with an average of 137.6 nodes.

All problem-specific algorithms were coded in C-++-, compiled in release mode with
MS-Visual C++ .NET 2003 version 7.1; all runs were performed on a standard PC
(Intel x86 family 15 model 2) with 2.0 GHz, 1GB main memory, on MS-Win 2000.
The free STSP solvers CONCORDE and LINKERN (version Dec 19, 2003) were run
under the Linux emulator Cygwin (version 1.5.10-3).

5.1 FExact and Heuristic Algorithms for STSP

With the final transformation of the EXT-WRPP instances into STSP instances
described in Section 3.3 we can apply well-known and freely available STSP solvers
to our problem. The CONCORDE branch-and-cut solver of Applegate et al. (1999)
is an exact algorithm which provides optimal solutions to our easy-to-solve problem
instances. For the others it gives lower bounds, so that heuristic approaches can
be analysed w.r.t. solution quality.

A first remarkable observation of the branch-and-cut code is that its running time
is highly unpredictable and can scatter between less than 1 second and more than
20 hours for our small-sized STSPs (on average 275 nodes). There is nearly no
correlation between the size of the STSP instance and the running time. As a
consequence, we skipped trying to compute exact solutions for all 1236 instances,
but CONCORDE was used to create a lower bound by solving the root node of the
branch-and-cut tree only. The lower bound results from solving the 2-matching
relaxation of the STSP and adding different types of cutting planes to it. Note
that the CONCORDE implementation is not able to handle instances with negative
costs on the edges (as resulting from our transformations). Hence, multiples of M
were added to all rows/columns of the STSP distance matrix so that the resulting
instance had no negative costs. However, we observed that the lower bounds some-
times differ if several calls of CONCORDE are performed on the same instance. We
suspect that CONCORDE uses some random components to heuristically identify
violated cuts. For our statistical analysis this means that parts of the results are
not fully and consistently reproducible.

Besides the exact solver, Applegate et al. (1999) freely distribute the heuristic solver

15

LINKERN for STSPs, which is based on a chained Lin-Kernighan edge-exchange
procedure (Lin and Kernighan, 1973; Martin et al, 1992). Applying LINKERN
to our STSP instances provides upper bounds ub and enables us to compute an
optimality gap (ub — Ib)/lb. The results can be summarised by the following key
facts: 40 out of 1236 instances were solved to proven optimality (LINKERN and
CONCORDE gave identical bounds). Contrary, 7 times LINKERN was not able to
compute a feasible postman tour, since the STSP tour still had some dispensable
edges with cost greater than M. The optimality gap provided by LINKERN and
CONCORDE (without branching) was 5.6% on average with a maximum of 35.0%
(over all feasible tours found by LINKERN). Unexpectedly, LINKERN was 2 times
(out of 1236 instances) able to beat all of our algorithms (see next section). In
those cases, the LINKERN result was 2.98% and 1.92% better than the best solution
computed by our algorithms. Nevertheless, the gap between LINKERN and our best
found solution was on average 4.2% worse than our solutions and 29.8% worse in
the maximum.

Concluding, the freely available STSP solution methods do not turn out satisfactory
in solving the STSP instances resulting from the EXT-WRPP transformations. The
large gaps and resulting long running times of the branch-and-cut algorithm are an
indication that these small-sized instances are very hard to solve from a practical
point of view. We suppose that this difficulty results from the high degeneracy of
the instances, where multiples of M dominate the objective. More tailored solution
approaches are needed, such as the combined edge-exchange and VLLSNS approach
empirically analysed in the following section.

5.2 Classical Edge-Fxchanges and the Balas € Simonetti Neighbourhood

There are two main parameters that influence the quality and speed of the proposed
iterated VND approach combining classical edge-exchange and VLSNS techniques:
First, kicks for the perturbation of local optima can be applied as long as one wants
to continue the search. One can in general expect that the overall time increases
linearly with the number of kicks and that better solutions are found if more kicks
are used. The tradeoff between solution quality and running time is recorded in
our setup in the following way: We keep track of the best solution computed so
far and report this best solution together with the running time at six points
in time: before the first kick (in the following denoted by kick = 0) and after
100, 200, 500, 1000, and 2000 kicks. Second, the Balas & Simonetti neighbourhood
and its modification /\7]55 proposed in Section 4.2.2 have a parameter k for the
distance over which nodes/arcs can be re-positioned. Although we expect that
larger values of k allow finding better solutions, results for an actual instance can
show a different behaviour: For k; < k5, the best solution finally found using
N} may be better than the one found with A%. Note that the combination of
the classical edge-exchange and the VLSNS procedures can create different local
optima depending on the interplay of these neighbourhoods. We therefore compare
the different combinations of the parameters kick and k statistically over a large
set of test instances.

16

First, we analyse the running time of the different algorithms. Figure 4 depicts
the average running times over all 1236 instances. Each of the curves shows the

© 2065
4

100 i a
-8 kick=2000

80 / % kick=1000
60

= kick=500
V
5 /\ // kick=200
40 ./ ~o A kick=
T - kick=100
20 — < -
—— kick=0
0 *> - -
k=0 k=4 k=6 k=8 k=9 k=10

Fig. 4. Average Running Times w.r.t. Parameters k and kick

running times for a fixed number of kicks and for increasing values of £ with
kE = 0 for a setup without the modified Balas & Simonetti neighbourhood and
~§s with k € {4,6,8,9,10}. Average running times range from less than 1 second
for kick = 0, to an average of 206 seconds for the most expensive combination
with kick = 2000 and k = 10. Amazingly, the overall running times show a non-
increasing behaviour w.r.t. k£, which one might not have expected: Solving the
ATSPs with the smaller neighbourhood ./\7;5 took longer than with the larger
neighbourhood NSg. The reason for this unexpected behaviour is that for k = 6
less iterations with the classical edge-exchange neighbourhoods were necessary to
reach a mutual local optimum. The larger running times for a single search step in
./\723 compared to /\Nfés were overcompensated by the better quality of the computed
neighbour solutions. Similar reasons can explain why the algorithms resulting from

/\7]%5 and ./\725 consume nearly the same amount of time (for an identical number
of kicks).

Next, we analyse the solution quality of the different algorithms. Since we do not
know optimal solutions for all instances, there exist two possible ways to measure
solution quality. A pessimistic viewpoint is that the proposed heuristics fail to
find good solutions, so that the lower bound [b computed by CONCORDE is the
only reasonable value to compare solutions with. Let ubsy be the best solution
found by algorithm A. Then gaps = (uba — Ib)/1b is the relative deviation from
the CONCORDE lower bound [b of algorithm A. Note that all these values are
defined for a fixed instance of the problem. Since we are interested in statistical
evaluations we only report average (—mean) and maximum values over the 1236
instances of our test set. The optimistic viewpoint is that at least one of our
algorithms gets (very close to) the optimal solution. Defining ubyes; = miny ubay,
the relative deviation (in percent) of algorithm A from the best solution found is
GapApest = (Uba — Ubpest) /ubpest. (In the following, we will leave out the index A.)
Figures 5 and 6 display the average gaps gap and gappes; over all 1236 instances.

17

5.0%

a

4.5% :\ £4p k=0
4.0% A

350, &\ - k=4
3.0% s
2.5%

- k\N‘ o
1.5% bz;?;\—;_ifj?}!g;\

1.0% e
0.5% e k=10
0.0%

kick=0 kick=100 kick=200 kick=500 kick=1000 kick=2000

Fig. 5. The Average Values of gap Computed by Different Algorithms for Parameters kick

and k

1.0% \

\\\ gapbeﬂ —— k=0
0.8% - k=4
0.6% k=6
0.4% k=8
0.2% B

- k=10

0.0%

kick=0 kick=100 kick=200 kick=500 kick=1000 kick=2000

Fig. 6. The Average Values of gappest Computed by Different Algorithms for Parame-
ters kick and k

In contrast to Figure 4, each curve in the Figures 5 and 6 shows the improvement
w.r.t. parameter kick but for a fixed value of k. Note the different scales of the
two diagrams. The deviation gap from the lower bounds provided by CONCORDE
is on average less than 2% when at least 100 kicks are performed. The deviation
goes down to less than 1.5% for kicks > 500. It seems that neither more kicks nor
greater values of k help to reduce the average deviation gap. At this point, it was
not clear to us whether the large gaps are caused by weak lower bounds provided by
CONCORDE or weak upper bounds computed by our algorithms. In order to analyse
the bounds in more detail, we considered instances where the deviation gap was
maximal. The maximal gap gap for the comparison with the CONCORDE lower
bound is large, i.e., gap = 28.4%. By applying the full branch-and-cut algorithm to
the worst-case instance (with 312 nodes in the STSP) we found out that the gap
of was caused by both the weak lower bound computed by CONCORDE and the
weak solution computed by LINKERN: The output was [b = 11,798, ubpes;s = 15,144.
The full branch-and-cut running time of CONCORDE was 47 seconds on 19 branch-

18

and-bound nodes with an optimal solution 2* = 12,243. All of our algorithms with
k > 4 delivered gappes; < 1.9% after 100 kicks and found this optimal solution after
200 kicks. Similar results were observed for other instances with a large gap. We
therefore think that gapy.s; provides a more realistic picture of the solution quality.

This average deviation gappes; from the best solution found is depicted in Figure 6.
It is very small and allows the following interpretations: If classical edge-exchange
neighbourhoods and the modified Balas & Simonetti neighbourhoods are applied
together in the VND approach, the resulting algorithm consistently finds better
solutions with the same number of kicks. On the one hand, even the smallest value
of k = 4 permits reducing the average gapys; by a factor of approx. 1.7 compared
to algorithms that do not use the modified Balas & Simonetti neighbourhood. For
k = 6 the reduction is by about factor 3, for k£ > 8 the reduction is by factors of
between 6 and 9. On the other hand, doubling the number of kick moves (or going
from 200 to 500 kicks) also consistently improves the quality of the solutions: The
reduction of the average deviation gapyes; is here by factors of between 1.4 and 2.9.

Another pessimistic viewpoint is the consideration of the maximum deviation
gappes; over all 1236 instances, referred to as max gapyes;- These values are shown
in the diagram in Figure 7 for all combinations of kick and k. All initial VND so-

20%

|\ max gap.., .

18%
16% \\ \ i kick =
e \ k= | 100 200 500 1000 2000
12% \ A k=6
0% I\ — 0 | 575 438 283 214 145
2, = - e k=8 4 | 482 349 208 136 84

o |) 6 | 384 270 144 86 42

00 — k=9 8 | 206 196 103 61 22

e e *_ * ° 9 | 211 182 84 48 16

2 S k=10 10 | 247 139 70 39 19

0%

kick=0

kick=100 kick=200 kick=500 kick=1000 kick=2000

Fig. 7. The Maximum Values of gappes: and Number of Instances where ubp.s; was Missed

lutions (i.e., kick = 0) have max gapyes; = 30.4%, independent of the parameter k.
After 100 kicks, for algorithms not using the Balas & Simonetti neighbourhood,
this value reduces to about 15%, while algorithms with the VLLSNS approach have
values of less than 9%. For k = 4, more kicks did not improve the result. Contrary,
for k > 6, additional kicks help to reduce max gappes; continuously. For £ = 6 the
gap is in the maximum smaller than 8% and for & > 8 less than 4% after 1000
kicks. Moreover, the small table in Figure 7 shows the number of times a specific
algorithm did not find the best known solution. For instance, numbers smaller than
62 mean that in more than 95% of the cases (out of 1236 instances) the best known
solution was computed. All this is a clear indication that the modified Balas & Si-
monetti neighbourhood with & > 6 in combination with an appropriate number
of kicks makes the algorithms behave robustly so that they consistently produce
high-quality solutions.

19

Finally, we present the results concerning the tradeoff between solution quality and
the time spent on searching. Each point (gappest, time) in Figure 8 shows the aver-
ages over all 1236 instances for a specific combination of kick and k. Additionally,
the area of dominated points is shaded in grey. For the sake of visibility, points with

* kick=2000/k=8
60 A
* kick=2000/k=4
* kick=500/k=10
50 4 * Kick=1000k=9
40 A
* kick=2000/k=6
~
<)
N + kick=2000/k=0
= 30 | *kick=1000k=8
]
%‘J * kick=1000/k=4
* kick=500/k=9
* kick=200/k=10
20 A)
* kick=1000/k=6
“ickosooieg ekT100040
* kick=500/k=4
+ kick=100/k=10
10 1 o+, * kick=200/k=9
kick=500/k=6 + lick=500/k=0
¢ Kek=200k8ookeo * kick=200/k—4
+ kick=200/k=6 + kick=200/k=0
* Kick=100/k=8 e o
ic| o kick=100k=6 kick=1007k=4 + kick=100/k=0
0 T T T T ' '
0,0% 0,1% 0.2% 0.3% 0.4% 0,5% 0,6%

avg 8ap pest

Fig. 8. Tradeoff between Quality and Computation Time

computation times larger than 65 seconds are not shown. These are the combina-
tions (kick, k) = (2000,9), (1000, 10), and (2000, 10) with values (0.008%, 206.5s),
(0.013%, 103.55s), and (0.005%, 100.9s). In essence, the best solutions were obtained
with these computationally most costly setups. Moreover, larger average gaps of
gappes: > 0.7% are also not displayed in Figure 8. These result from the initial
solutions of the VND component, i.e., from algorithms with kick = 0. The corre-
sponding running times are all very small, but the solution quality in the average
case and—in particular—in the worst case is unacceptably bad (as was already
discussed in the previous paragraphs). We interpret the remaining results in the
following way: Only combinations with £k = 6, k = 8, and less often, with £ = 9
are Pareto-optimal w.r.t. running time and average solution quality. Except for
high-quality and minimum-time combinations (not depicted), combinations with
k=0, k=4 and k = 10 lead to dominated algorithms: Apparently, large values of
k are too time consuming because of the exponential growth in & of the running
time for searching Ngs. Similarly, small values of k lead to fast algorithms, but
they lack robustness and quality of solutions. As a general recommendation (for

20

instances resulting from transformed postman problems), the values & = 6 and
k = 8 produce well-performing algorithms and the tradeoff between quality and
running time can be controlled by choosing an appropriate number of kicks.

6 Conclusions

This paper has considered the EXT-WRPP, a very general uncapacitated arc-
routing problem incorporating several practically relevant constraints and options
such as street segment sides, turn penalties, clustered street segments and the
possibility of servicing street segments in zigzag mode. The problem is of great
practical importance for letter mail delivery. In Germany alone, there are more
than 50,000 districts to be serviced every day, each district corresponding to an
EXT-WRPP instance. To formally describe the problem, a graph-theoretic model
has been presented. For solving this model, the paper has proposed a transforma-
tion to a standard node-routing problem without additional constraints, namely,
to an asymmetric or symmetric TSP. Computational experiments show that the
solution of the resulting TSP instances with standard algorithms does not work
satisfactorily. This is most probably due to the highly degenerate cost structure of
the instances stemming from the use of big M constants. Therefore, a new heuris-
tic solution method has been devised, based on VND with kicks, using classical
edge-exchange and VLSNS steps. By computational experiments Pareto-optimal
parameter settings have been identified yielding solutions clearly and consistently
outperforming standard TSP heuristics with respect to solution quality and com-
puting time. Moreover, the optimal settings also exhibited a very robust behaviour
in the average and worst case in tests on a large set of real-world instances.

Further interesting research directions include the consideration of time windows
and the extension to multiple vehicles/carriers. In the latter case, one has to take ve-
hicle and temporal carrier capacities into account. The resulting arc-routing prob-
lems require to simultaneously cluster street segments into districts and decide
on the routing and the mode of servicing. Particularly relevant for Deutsche Post
World Net is the clustering of the service areas according to a given ratio of full
time and part time postmen.

We think that this paper constitutes a contribution to more realistic models and
effective solution approaches in arc-routing. Certainly, more integrated network-
design, location, and routing models for postal applications will be developed in
the near future.

Acknowledgement

We would like to thank our project partners from Deutsche Post World Net, in
particular Ralf Losche, Ulrich Plosser, Dr. Uwe Prantz, and Dr. Norbert Will, and
also our supervisor, Prof. Hans-Jiirgen Sebastian from Deutsche Post Endowed
Chair of Optimization of Distribution Networks, for initiating this research project,
providing us with data and additional useful information and, last but not least,
for the kind collaboration.

21

References

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (1999). CONCORDE. Avail-
able at http://www.math.princeton.edu/tsp/concorde.html.

Balas, E. and Simonetti, N. (2001). Linear time dynamic-programming algorithms
for new classes of restricted TSPs: A computational study. INFORMS' Journal
on Computing, 13(1), 56-75.

Benavent, E. and Soler, D. (1999). The directed rural postman problem with turn
penalties. Transportation Science, 33(4), 408 418.

Bodin, L. and Levy, L. (2000). Scheduling of local delivery carrier routes for the
united states postal service. In Dror (2000), chapter 11, pages 419-442.

Caldwell, T. (1961). On finding minimum routes in a network with turn penalties.
Communications of the ACM, 4, 107 108.

Chisman, J. (1975). The clustered traveling salesman problem. Computers €&
Operations Research, 2, 115-119.

Clossey, J., Laporte, G., and Soriano, P. (2001). Solving arc routing problems with
turn penalties. Journal of the Operational Research Society, 52, 433—439.

Corberan, A., Marti, R., and Sanchis, J. (2002). A GRASP heuristic for the mixed
chinese postman problem. Furopean Journal of Operational Research, 142, 70
80.

Corberan, A., Plana, 1., and Sanchis, J. (2005a). A branch & cut algorithm for the
windy general routing problem. Technical report, Department of Statistics and
OR, University of Valencia, Spain.

Corberan, A.; Plana, 1., and Sanchis, J. (2005b). The windy general routing poly-
hedron: A global view of many known arc routing polyhedra. Technical report,
Department of Statistics and OR, University of Valencia, Spain.

Dror, M., editor (2000). Arc Routing: Theory, Solutions and Applications. Kluwer,
Boston.

Eiselt, H., Gendreau, M., and Laporte, G. (1995). Arc routing problems, Part I:
The chinese postman problem. Operations Research, 43(2), 231 242.

Funke, B., Griinert, T., and Irnich, S. (2005). Local search for vehicle routing and
scheduling problems: Review and conceptual integration. Journal of Heuristics,
11(4), 267-306.

Glover, F., Gutin, G., Yeo, A., and Zverovich, A. (2001). Construction heuristics for
the asymmetric TSP. Furopean Journal of Operational Research, 129, 555 568.

Glover, F. (1996). Finding a best traveling salesman 4-opt move in the same time
as a best 2-opt move. Journal of Heuristics, 2, 169-179.

Guan, M. (1984). On the windy postman problem. Discrete Applied Mathematics,
9, 41-46.

Hansen, P. and Mladenovi¢, N. (2001). Variable neighborhood search: Principles
and applications. European Journal of Operational Research, 130(1), 449-467.
Irnich, S., Funke, B., and Griinert, T. (2006). Sequential search and its application

to vehicle-routing problems. Computers € Operations Research, 33(8), 2405—
2429.
Irnich, S. (2005). A note on postman problems with zigzag service. INFOR, 43(1)

3

22

33-39.

Johnson, D., Gutin, G., McGeoch, L., Yeo, A., Zhang, W., and Zverovitch, A.
(2002). Experimental analysis of heuristics for the ATSP. In G. Gutin and
A. Punnen, editors, The Traveling Salesman Problem and Its Variations, vol-
ume 12 of Combinatorial Optimization, chapter 10, pages 445-487. Kluwer, Dor-
drecht.

Jonker, R. and Volgenant, T. (1983). Transforming asymmetric into symmetric
traveling salesman problems. Operations Research Letters, 2, 161 163.

Lin, S. and Kernighan, B. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21, 498-516.

Martin, O., Otto, S., and Felten, E. (1992). Large-step Markov chains for the
TSP incorporating local search heuristics. Operations Research Letters, 11(4),
219 224.

Minieka, E. (1979). The chinese postman problem for mixed networks. Management
Science, 25(7), 643-648.

Papadimitriou, C. (1976). On the complexity of edge traversing. Journal of the
ACM, 23, 544-554.

Win, Z. (1987). Contributions to routing problems. Ph.D. thesis, Universitit Augs-
burg, Augsburg.

23

