
Solution of Real-World Postman ProblemsStefan Irnih a,∗ Mihael Drexl a

aDeutshe Post Endowed Chair of Optimization of Distribution Networks,RWTH Aahen University, Templergraben 64, D-52056 Aahen, Germany.AbstratThe paper presents the results of a study performed by the Deutshe Post Endowed Chairof Optimization of Distribution Networks in ollaboration with Deutshe Post World Netwith the aim of improving the planning of letter mail delivery. Modelling and solutionmethods for real-world postman problems are presented whih extend one of the mostgeneral postman problems studied in the literature, the windy rural postman problem,with regard to several aspets. The disussed extensions inlude turn and street rossingrestritions, luster onstraints, the option to have alternative servie modes (inluding`zigzag deliveries'), and the use of publi transport to reah the postal distrit. Thesolution method is based on a transformation to the asymmetri TSP and uses non-standard neighbourhood searh tehniques. Extensive omputational experiments showthat the solution method learly and onsistently outperforms standard TSP heuristison real-world instanes.Key words: postman problems, ar routing, transformation into TSP1 IntrodutionThis paper desribes the results of a study performed by the Deutshe Post En-dowed Chair of Optimization of Distribution Networks in ollaboration with Deut-she Post World Net with the aim of developing new models and solution algorithmsto improve the planning of letter mail delivery.The letter mail distribution system of Deutshe Post World Net in Germany is amulti-stage, multi-modal network omprising about 110,000 pikup points (letterboxes), 12,000 post o�es, 82 regional mail entres, 3,300 delivery depots, and, onthe `last mile', 39 million households and ommerial lients expeting more than20 billion letters per year to be delivered within 24 hours after posting. To performthe delivery, there are 72,000 postmen serving 54,000 distrits six days a week on
∗ Corresponding author.Email addresses: sirnih�or.rwth-aahen.de (Stefan Irnih),mihael�or.rwth-aahen.de (Mihael Drexl).Preprint available at www.dpor.rwth-aahen.de 25 September 2006



foot, by biyle or by ar. This last stage of letter mail transport inurs severalbillion Euros of total annual ost. It is lear, therefore, that even a small relativeost redution amounts to tens of millions of Euros in absolute annual savings.Not surprisingly, Deutshe Post World Net is onstantly seeking to optimise therouting of its postmen.The ontribution of the paper is twofold. First, it introdues a model of a verygeneral unapaitated ar-routing problem apturing most of the pratially rele-vant side onstraints enountered by Deutshe Post World Net. In partiular, turnand street rossing restritions, luster onstraints, the option of alternative serviemodes (inluding `zigzag deliveries'), and the use of publi transport to reah thepostal distrit are onsidered. Seond, it presents heuristi algorithms for the solu-tion of this model, based on a transformation to the asymmetri travelling salesmanproblem (ATSP), along with extensive omputational results showing the pratialappliability of the algorithms.The rest of the paper is strutured as follows: In the next setion, the new modelis presented and it is shown how the above-mentioned options and additional sideonstraints an be inorporated. After that, the solution approah is presented:In Setion 3, a tailored transformation of the developed ar-routing model to theATSP is given; in Setion 4, it is shown how the resulting ATSP is solved by meansof onstrution and non-standard neighbourhood searh improvement proedures.Setion 5 presents and analyses the omputational experiments demonstrating thesuperiority of the new algorithmi approah over standard heuristis for the TSP.At the end, Setion 6 points to possible interesting extensions of the problem andgives �nal onlusions.2 An Extended WRPP ModelThere are many models and algorithms for the solution of postman problems (e.g.,Eiselt et al., 1995; Dror, 2000). One of the most general models for the unapa-itated ase is the windy rural postman problem (WRPP). The WRPP is de�nedon an undireted graph where some, but not neessarily all, edges require somekind of servie and must therefore be traversed at least one. All edges of thegraph may be traversed without performing a servie an arbitrary number of timesin either diretion. Traversing an edge inurs a ertain ost, and the task is toreate a tour for the postman of minimal total ost, overing all required edges.The ost of traversing an edge in one diretion may di�er from traversing it inthe other diretion (with and against the wind). Although there are polynomiallysolvable speial ases, the WRPP is, in general, NP-hard (Papadimitriou, 1976).However, the problem is of great signi�ane, as it generalizes many other ar-routing problems. The ase where all edges must be traversed, the windy Chinesepostman problem (WPP), has reeived onsiderable attention in the literature (f.Minieka, 1979; Guan, 1984; Win, 1987), and there are already some papers dealingwith the `rural' version of this problem as desribed in the preeding paragraph(Corberán et al., 2005a,b). The paper by Irnih (2005) onsiders a generalization2



of the WRPP, the windy rural postman problem with zigzag servie (WRPPZ).In this problem, the streets (or rather street segments) an be divided into fourlasses: First, street segments with houses on one side of the street only. Thesesegments must be servied exatly one. Seond, street segments with houses onboth sides, where the sides must be servied separately and where, onsequently,the segments must be traversed at least twie. Third, street segments with houseson both sides with the option of serviing both sides simultaneously by a single`zigzag' traversal (passing through the street segment one) or of serviing the twosides separately by two traversals. Fourth, so-alled non-required street segmentsmay be used to get from one point to another. All street segments may be tra-versed without serviing arbitrarily often in both diretions. A traversal withoutserviing is referred to as deadheading. Again, di�erent diretions of traversal ofa segment may inur di�erent osts. Moreover, also the di�erent traversal modes(one-side servie, zigzag servie, deadheading) may inur di�erent osts. Formally,the WRPPZ is de�ned on an undireted graph G = (V,E) with vertex set V andedge set E. Without loss of generality and for notational onveniene, it is assumedthat G is simple, i.e., that G ontains neither parallel edges nor loops. The edgeset is partitioned into four subsets, E = E0 ∪ E1 ∪ E2 ∪ E3, where E0 ontainsthe non-required edges, E1 and E2 ontain the edges requiring single and doubleservie respetively (but where zigzag servie is not allowed), and E3 ontains theedges with zigzag servie option. Up to eight di�erent osts ck
ij, c

k
ji, k ∈ {0, 1, 2, 3},are assoiated with an edge {i, j} ∈ E. k = 0 stands for deadheading, k = 1 forserviing the �rst side, k = 2 for serviing the opposite side of the street segment,and k = 3 for zigzag servie, while ij and ji desribe the diretion of traversal.Only one diretion of traversal may be allowed for an edge for some or all traversalmodes. This is represented by setting the orresponding ost oe�ient to in�nity.Suh an edge is alled an ar. Obviously, for the edges e ∈ E \ E3, only some ofthe osts are relevant, i.e., edges e ∈ E2 have six, edges e ∈ E1 have four, andedges e ∈ E0 have two di�erent osts. Irnih (2005) gives an integer programmingformulation for the WRPPZ.In this paper, an extended version of the WRPPZ, alled EXT-WRPP, is presented.No integer programming formulation for EXT-WRPP is given here; rather, a graph-theoreti approah is taken. This is due to the fat that the study was intendedto develop a proedure able to onsistently ompute good solutions for real-worldinstanes in short time. The size of the instanes is suh that one annot expet toahieve this via an exat algorithm, and for the solution approah pursued here, itis not neessary to devise an IP formulation.In addition to the WRPPZ, EXT-WRPP onsiders the following aspets:

• Street segment sides: For delivery by foot or by biyle, it may be neessaryto distinguish between a traversal on the left hand side (lhs) or right handside (rhs) of a street segment. In onnetion with turns and turn penalties, theonsideration of both street sides o�ers the possibility to favour tours that donot ross main roads too often in order to make the tour faster and safer for the3



postman. Hene, the deadheading osts are re-de�ned to re�et traversals from
i to j and from j to i, either on the lhs or on rhs of the street: c0,lhs

ij , c0,rhs
ij , c0,lhs

ji ,
c0,rhs
ji . W.l.o.g., for edges e ∈ E2 ∪ E3, the lhs always orresponds to servie 1,and the rhs orresponds to servie 2.

• Turn restritions: There is a onsiderable amount of literature on ar-routingproblems with turns, starting with the paper by Caldwell (1961). Other impor-tant ontributions are the ones by Benavent and Soler (1999); Clossey et al.(2001); Corberán et al. (2002). Some authors onsider the turns issue in theirsolution algorithms, others use transformations to get equivalent graphs with-out turns. In this paper, the latter approah is taken. In a simple graph, aturn is unequivoally desribed by means of three verties and an assoiatedturn ost/penalty. Forbidden turns are represented by setting the respetivepenalty to in�nity. Hene, when there is no distintion between traversal onthe left or the right hand side, the set of possible turns in G is de�ned as
T := {(i, j, k) : {i, j}, {j, k} ∈ E}. The turn ost/penalty is denoted by pijk.In the ase of a detailed model, the street segment side information must also betaken into aount. Here, we de�ne T := {(i, s, j, s′, k) : {i, j}, {j, k} ∈ E; s, s′ ∈

{lhs, rhs}}. The turn ost is then denoted by ps,s′

ijk . It is assumed that rossinga street segment {i, j} where zigzag servie is allowed inurs no (measurable)ost. This means that the ost/penalty for the turns out of and into this streetsegment {i, j} are always idential, i.e., plhs,s
ijk = prhs,s

ijk and ps,lhs
kij = ps,rhs

kij holds forall s ∈ {lhs, rhs} and for all edges {i, j} ∈ E3.
• Clusters: Due to the grouping of street segments into intermediate organiza-tional units (for early morning sorting ativities and gathering statistial data),there are lusters of street segments whih must be servied onseutively. Morepreisely, this means that for two street segments e, e′ ∈ E belonging to thesame luster, if e is servied before e′, there must not be any street segment e′′not belonging to this luster that is servied after e and before e′. Deadheadingthrough a street is always allowed. This issue is the ar-routing equivalent to thelustered travelling salesman problem for node-routing problems (see Chisman,1975). Formally, there is a set of nH lusters H := {1, . . . , nH}. The numbers

hlhs
ij ∈ H for {i, j} ∈ E \E0 and hrhs

ij ∈ H for {i, j} ∈ E2 ∪E3 denote the lusterindex of the servie. Note that zigzag servie is only possible if both sides of thestreet segment belong to the same luster, i.e., we assume hlhs
ij = hrhs

ij to hold forall {i, j} ∈ E3. The delivery depot (post o�e) is represented by a single edge
{id, jd} ∈ E1. This edge forms a separate luster.

• Publi transport: Sometimes it is not neessary for the postman to deadheadthrough non-required edges in order to reah his distrit in the morning or toreturn to the post o�e in the afternoon. Distrits served on foot or by biylean also be reahed and left via publi transport (buses, tramways, underground).The existing lines are represented in the street distane graph by additional edgesonneting end points of otherwise non-adjaent street segments e ∈ E0. Moredetails are given in Setion 3.2.4.
• `Knok-o� after last delivery': A rather new approah in mail delivery operations4



is the onept of `open tours', i.e., the postman ends his workday immediatelyafter the last delivery and returns to the post o�e only on the next day.A postman tour an be modelled as a triple P = (C,m, s), where C = (i0, i1, . . . , in)is a walk in G, m = (m1, . . . ,mn) ∈ {0, 1, 2, 3}n indiates the traversal modes ofthe edges in C, and s = (s1, . . . , sn) ∈ {lhs, rhs}n indiates the street segmentsides being traversed. A postman tour P = (C,m, s) is feasible if and only if(P1) (Closed walk) i0 = in.(P2) (Turn feasible) (ip−1, sp, ip, sp+1, ip+1) ∈ T for all p ∈ {1, . . . , n} (with in+1 :=
i1 and sn+1 := s1).(P3) (Servie overing)
• For all {i, j} ∈ E1, there exists a p ∈ {1, . . . , n} suh that {ip−1, ip} = {i, j},and mp = 1.
• For all {i, j} ∈ E2, there exists a p ∈ {1, . . . , n} suh that {ip−1, ip} = {i, j},and mp = 1.
• For all {i, j} ∈ E2, there exists a p ∈ {1, . . . , n} suh that {ip−1, ip} = {i, j},and mp = 2.
• For all {i, j} ∈ E3, there exist p1, p2 ∈ {1, . . . , n} suh that {ip1−1, ip1} =
{ip2−1, ip2} = {i, j} and either (p1 = p2 and mp1 = 3) or (p1 6= p2, mp1 = 1,and mp2 = 2).(P4) (Cluster feasible) For all 1 ≤ p < r ≤ n, the onditions mp 6= 0, mr 6= 0, and

h
sp

ip−1,ip
= hsr

ir−1,ir
=: h imply mq = 0 (deadheading) or h

sq

iq−1,iq
= h (same luster)for all p < q < r.(P5) (Compatibility between mp and sp) For all 1 ≤ p ≤ n, mp = 1 ⇔ sp = lhsand mp = 2 ⇔ sp = rhs.Note that (P5) does not impose any restrition about the side of the street if thestreet is deadheaded or servied in zigzag mode.It is assumed that eah solution ful�lling (P1�P5) is feasible with respet to thepostman's arrying apaity and working time regulations. Let the set of all post-man tours P ful�lling (P1�P5) be Pfeas.The ost of a postman tour P = (C,m, s) with C = (i0, i1, . . . , in) is

c(P ) = c(C,m, s) :=
n

∑

j=1

(

c
mj

ij−1ij
+ p

sj ,sj+1

ij−1,ij ,ij+1

)

, (1)where, again, in+1 := i1 and sn+1 := s1. With these de�nitions, EXT-WRPP anbe stated formally as(EXT-WRPP) z⋆ = min
P∈Pfeas

c(P ). (2)3 Problem TransformationThe model for EXT-WRPP presented in the preeding setion is a desriptive one,but it is well-de�ned in a graph-theoretial sense. To transform the problem into an5



ATSP, three di�erent graphs are onsidered: (a) the undireted graph G = (V,E)for the representation of the problem instane; (b) a direted graph D′ = (V ′, A′, c′)to model and ompute shortest paths w.r.t. distane and turn penalties; () aomplete digraph D̄ = (V̄ , Ā, c̄) on whih the resulting ATSP is de�ned.The basi idea of the transformation is that eah servie is represented by twoanti-parallel ars, eah of whih indiates the diretion of travel when performingthe servie. Servies of di�erent street segments are onneted by direted arsrepresenting deadheadings from the end point of the �rst to the start point of theseond servie. The assoiated osts are omputed as shortest path distanes in thedigraph D′ and take into aount osts for deadheading and turns. Servies of thesame street segments an be onneted to either model onseutive but separateservies or�using a similar tehniques as in (Irnih, 2005)�to model zigzagging.3.1 Street Distane DigraphThe street distane digraph D′ = (V ′, A′, c′) models the physial street networkinluding osts for deadheadings and turns. Any path in D′ is an alternating pathwhere ars either represent deadheadings (on a spei� side of the street and in agiven diretion) or feasible turns. For eah street segment e = {i, j} ∈ E there aretwo diretions, ij and ji, and two sides, lhs and rhs. Hene, four ars with eightdistint nodes iside
dir and jside

dir with dir ∈ {ij, ji} and side ∈ {lhs, rhs} are neessaryto represent the possible deadheadings. The four nodes iside
dir , dir ∈ {ij, ji}, side ∈

{lhs, rhs} are assoiated with the endpoint i, i.e., one end of the street segment,while the four nodes jside
dir represent the other end. Thus, the deadheadings of streetsegment {i, j} ∈ E are given by the four ars (ilhs

ij , jlhs
ij ), (irhs

ij , jrhs
ij ), (jlhs

ji , ilhs
ji ),

(jrhs
ji , irhs

ji ) with osts c0,lhs
ij , c0,rhs

ij , c0,lhs
ji , and c0,rhs

ji , respetively.Let t = (i, s, j, s′, k) ∈ T be an arbitrary feasible turn. Sine {i, j}, {j, k} ∈ E, thenodes js
ij and js′

jk are already given by the above de�nition. The turn t is uniquelyrepresented in D′ by the ar (js
ij, j

s′

jk) ∈ A′ with ost ps,s′

ijk . Finally, we denote by
d′

kl the shortest path distane between an arbitrary pair of nodes k, l ∈ V ′ in thestreet distane digraph.3.2 ATSP DigraphThe main tool to solve the postman problem de�ned in Setion 2 is its transfor-mation into an ATSP. Eah feasible postman tour P = (C,m, s) orresponds toa Hamiltonian yle in the omplete ATSP digraph D̄ = (V̄ , Ā, c̄) with the sameost (exept for multiples of a onstant M , see below). Furthermore, a ost-minimalHamiltonian yle C̄ in D̄ enodes an optimal postman tour. The deoding, i.e.,the transformation of the ATSP solution into the orresponding postman tour, anbe done in time proportional to the length of the tour. For the sake of brevity, anyHamiltonian yle in D̄ is alled (ATSP) tour.Note that the proposed transformation does not provide a one-to-one orrespon-dene between feasible postman tours and ATSP tours. While feasible postman6



tours have assoiated Hamiltonian yles in D̄, most ATSP tours do not imply fea-sible postman tours. The transformation, therefore, has to utilise a onstant M , asu�iently big number, suh that ATSP tours not representing a feasible postmantour are more ostly than feasible ones.The transformation of the problem instane into an ATSP is explained in threesteps: First, we desribe internal ars onneting some of the pairs of nodes belong-ing to the same edge e ∈ E. The intention of an internal ar is to model a serviethat is performed in a partiular orientation. Consequently, osts of internal arsmainly onsist of osts de�ned by the osts ck
ij, c

k
ji, k ∈ {1, 2, 3}. Seond, externalars onnet nodes belonging to di�erent edges of E or nodes of the same edge butfor servies on opposite sides of the street onneted by deadheading. Their ostis, therefore, de�ned as the length of a path in the street distane graph. Third,we desribe the transformation of a (feasible) ATSP solution into the assoiatedpostman tour.Note that the following transformations are similar to those presented in (Irnih,2005) for the WRPPZ. However, turn restritions and luster onstraints imposeseveral modi�ations regarding struture and ost of ars. These modi�ations arepointed out in the following.3.2.1 Internal Ars of the ATSP DigraphFirst, for eah edge e = {i, j} ∈ E1, there are two nodes k := ilhs

e and ℓ := jlhs
e .The two nodes are onneted by anti-parallel ars (k, ℓ) = (ilhs

e , jlhs
e ) and (ℓ, k) =

(jlhs
e , ilhs

e ) with osts c1
ij−M and c1

ji−M , respetively. The intention of adding −Mto both ars is that a su�iently large number M ensures that an optimal ATSPtour ontains either (ilhs
e , jlhs

e ) or its anti-parallel ounterpart (jlhs
e , ilhs

e ). This �rstase and the following two ases are depited in Figure 1.
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- +M cji
2

ie

- +M cij
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Fig. 1. Priniple of Transformation in ATSP; External Ars are Depited Dotted/GreyedSeond, for eah edge e = {i, j} ∈ E2, there are two assoiated servies and, hene,four nodes k := ilhs
e , ℓ := jlhs

e , p := irhs
e , and q := jrhs

e . The four nodes are onneted7



by the following internal ars. For the left hand side of the street, there are twoanti-parallel ars (k, ℓ) = (ilhs
e , jlhs

e ) and (ℓ, k) = (jlhs
e , ilhs

e ) with osts c1
ij − M and

c1
ji −M , respetively. Similarly, for the right hand side, the ars (p, q) = (irhs

e , jrhs
e )and (q, p) = (jlhs

e , ilhs
e ) have osts c2

ij −M and c2
ji −M . In the following, these arsare alled servie ars. The eight remaining onnetions between these four nodesare external ars and will be desribed in the next subsetion.Third, for eah edge e = {i, j} ∈ E3, there are again four nodes k := ilhs

e , ℓ := jlhs
e ,

p := irhs
e , and q := jrhs

e . In addition to the four ars for edges e ∈ E2, we add fourother internal ars: The ar (ℓ, p) models two alternative options at the same time.If (ℓ, p) is used in an optimal solution, the two ars (k, ℓ) and (p, q) for the twoassoiated servies are also used, diretly before and after ar (ℓ, p). On the onehand, this is possible when the assoiated servies are onneted by deadheading.On the other hand, the option of zigzagging through the street segment e = {i, j}is also represented by the sub-path (k, ℓ, p, q). Hene, the ost of (ℓ, p) is de�ned as
∆lhs,rhs

ij := min{c3
ij − c1

ij − c2
ij, d

′

jlhs
ij

,irhs
ij

}. (3)Note that the �rst term of the de�nition is de�ned suh that the ost of zigzaggingis (c3
ij − c1

ij − c2
ij)+(c1

ij −M)+(c2
ij −M) = c3

ij −2M . If the minimum in (3) is givenby the seond term, the ost of the sub-path (k, ℓ, p, q) is exatly the ost c1
ij + c2

ijof the two servies plus deadheading osts minus 2M . This de�nition is onsistentwith the two options whih had to be modelled. Similarly, the onnetions (q, k),
(k, q), and (p, ℓ) are assigned osts ∆rhs,lhs

ij , ∆lhs,rhs
ji , and ∆rhs,lhs

ji , respetively.3.2.2 External Ars of the ATSP DigraphAll remaining ars (k, k′) of D̄ have osts given by shortest path distanes d′ in thestreet distane graph D′ and additional penalties of M if the two sides of the streetbelong to di�erent lusters. Eah node, k and k′, has a unique assoiated servie.Thus, let {i, j} ∈ E be the street segment, s ∈ {lhs, rhs} be the side of the street,and hs
ij be the luster of the servie assoiated with k. Moreover, let ij be thediretion of travel suh that k lies on endpoint j of the street segment. Similarly,let {i′, j′} = {j′, i′}, s′ ∈ {lhs, rhs}, i′j′, and hs′

i′j′ be the assoiated values fornode k′, but de�ned suh that k′ lies at the startpoint i′ of the assoiated servie.Then, the ar (k, k′) ∈ Ā has ost
d̄kk′ = d′

js
ij

,i′s
′

i′j′
+











M, if hs
ij 6= hs′

i′j′

0, otherwise .3.2.3 Validity of the TransformationIn order to show the validity of the transformation, we have to make sure that anoptimal ATSP tour in D̄ orresponds to a feasible, ost-minimal postman tour in
G. In the following, we �rst show how (optimal) ATSP tours an be transformedbak into postman tours P = (C,m, s). Seond, we explain why optimal ATSP8



tours neessarily reate feasible postman tours. Third, the fat that the proposedtransformation is ost-preserving for feasible postman tours is easy to see, so thatthe validity of the whole transformation follows.The transformation from ATSP tours to postman tours onstruts the walk C =
(i0, i1, . . . , in, i0) from several paths (j0, . . . , jp) imposed by the ars or ar se-quenes of the ATSP tour. On the one hand, external ars of D̄ uniquely orre-spond to deadheadings, i.e., node sequenes (j0, . . . , jp) with edge traversal modes
(m1, . . . ,mp) = (0, . . . , 0), and spei� street sides (s1, . . . , sm). On the other hand,we have to distinguish several ases for the internal ars. Note �rst that there are
S := |E1| + 2(|E2| + |E3|) servies to over, whih are represented by 2S pairwiseanti-parallel servie ars in D̄. Thus, any ATSP tour an ollet a pro�t of −S ·Mat best. Moreover, there are nH lusters, and penalties of +M are put on all inter-luster external ars. For su�iently large M , therefore, any optimal ATSP touruses exatly S servie ars and exatly nH inter-luster external ars (this impliesproperty (P4), and, with the following arguments, also (P3)).The use of exatly S servie ars also implies that ars labelled with ∆ (thesears exist only for edges {i, j} ∈ E3 and are named (k, q), (q, k), (p, ℓ), (ℓ, p)) anonly be traversed in the sequenes (k, ℓ, p, q), (q, p, ℓ, k), (ℓ, k, q, p), or (p, q, k, ℓ).Depending on whether the minimum in (3) is given by the �rst or seond term, theorresponding node sequenes, servies and traversal modes have to be omputeddi�erently. As mentioned above, for the sequene (k, ℓ, p, q) and d̄ℓ,p = c3

ij − c1
ij − c2

ij(minimum given by �rst term) the ost of the sequene (k, ℓ, p, q) is c3
ij − 2M . Theorresponding sequenes in G are therefore (i, j), m = (3), and s arbitrarily de�ned(reall the assumption stated in last sentene of paragraph on turn restritions inSetion 2). Similar arguments apply to the three other sequenes. If the minimumin (3) results from the seond term, the two assoiated servies are performedonseutively but not in zigzag mode. For the sequene (k, ℓ, p, q) in D̄, the resultingpart of the postman tour is given by (i, j, h2, . . . , hp−2, i, j), m = (1, 0, . . . , 0, 2), and

s = (lhs, s2, . . . , sp−1, rhs). The sub-path (j, h2, . . . , hp−2, i) orresponds to a ost-minimal deadheading from the end-point of the �rst servie of {i, j} (performedin diretion ij, loated on the lhs) to the start-point of the seond servie of {i, j}(performed in diretion ij, loated on the rhs). Again, similar arguments apply tothe three other sequenes.The transformation of servie ars orresponding to edges {i, j} ∈ E1∪E2 must beperformed separately for eah pair of anti-parallel servie ars. The same holds forservie ars orresponding to edges {i, j} ∈ E3 when the servie ar is not inidentto an internal ar labelled with ∆. In all these ases, the servie is on an edge {i, j},and, depending on the assoiated diretion, the part of the postman tour is either
(i, j) or (j, i) with servie mode and traversal either m = (1) and s = (lhs), or
m = (2) and s = (rhs).The above transformation ensures that onseutive ars (k, k′) and (k′, k′′) ∈ Āimpose node sequenes that �t together, i.e., sequenes where the last node im-plied by (k, k′) is also the �rst node implied by (k′, k′′). Summing up, these argu-9



ments show that the resulting postman tour is losed (P1) and�beause of theuse of turn-feasible paths from the street distane network�ful�lls property (P2).The ompatibility (P5) is also guaranteed in all of the above ases. It is straight-forward to hek that all steps of the transformation are ost-preserving. Hene,ost-minimal postman tours orrespond to optimal ATSP tours.3.2.4 Integration of Publi Transport and Single Park-and-Loop OperationsThere are two pratial requirements that an also be handled with the abovetransformation. First, postmen might use publi transport to get from the deliverydepot to their postal distrit and vie versa. These additional options for deadhead-ing an easily be integrated into the original graph G by using additional edges
e ∈ E0 and lead to additional ars in the street distane network between thosepoints where a publi transport onnetion exists. The resulting enlarged street dis-tane network, denoted by D′

0, an be used instead of D′. Mostly, the use of publitransport is only permitted between the delivery depot and the �rst/last point ofthe distrit. In this ase, only the deadheadings between the `servie' {id, jd} ∈ E1and other servies should be omputed in D′
0 instead of D′. The `knok-o� afterlast delivery' onept �ts niely into this model, sine onnetions bak to id anbe set to ost zero.Furthermore, di�erent means of transport might be used for reahing or leaving thedistrit and the delivery operations. For instane, the postman might use a ar toget to a remote distrit and use a trolley (on foot) to servie households and orpo-rate lients. This ase an be solved iteratively with the proposed transformation.One simply has to replae the delivery depot by potential parking plaes p, solvethe EXT-WRPP with `depot' p, and add the ost for the deadheading betweenthe delivery depot and the parking plae. The ost-minimal solution of these isthe solution to this single park-and-loop operations problem. The ase that a aris stopped multiple times to perform several loops in di�erent parts of the distrithas been onsidered in the work of (Bodin and Levy, 2000). However, these moreompliated routing problems are beyond the sope of this paper.3.3 Transformation into an STSPATSP instanes an be transformed into STSP instanes using the transforma-tion of Jonker and Volgenant (1983). Eah ATSP node i is dupliated into twoSTSP nodes iin and iout whih have to be visited onseutively, i.e., they are on-neted with (negative) ost −M . ATSP ars (i, j) with ost d̄ij are transformedinto edges {iout, jin} with the same ost and all remaining onnetions in the newgraph are infeasible, i.e., edges {iout, jout} and {iin, jin} have ost +M . We use thistransformation mainly in order to ompute lower bounds using branh-and-uttehniques for STSP. Moreover, we will ompare standard edge-exhange proe-dures for the STSP to the transformed postman problem and ompare these resultswith our speialised ATSP and ar-routing improvement proedures presented inthe next setion. 10



4 Solution Methods for ATSPThe book hapter (Johnson et al., 2002) overs the standard solution methodologywith onstrutive and improvement heuristis for the ATSP. For the sake of brevity,we restrit ourselves to explain only the new aspets of our solution method.4.1 Constrution HeuristisATSP onstrution heuristis rely on the well-known nearest neighbour and greedy(also alled multiple fragment) priniples or are based on solving assignment prob-lems as relaxations of the ATSP, suh as variants of the pathing heuristi thatwere studied by Glover et al. (2001). We implemented several of these heuris-tis and found out that the nearest neighbour heuristi�despite its simpliity�isthe best one to ompute ATSP tours orresponding to feasible postman tours.The `pathologial' instanes, where nearest neighbour solutions imposed infeasiblepostman tours, had luster onstraints, delivery by ar, and a large fration ofone-way streets. Thus, the nearest neighbour heuristi was used for the ATSP touronstrution.4.2 Improvement HeuristisWe use a variant of an iterated or hained loal searh heuristi whih onsists of thefollowing omponents. First, edge-exhange neighbourhoods that an be searhedin O (n2) time, suh as 2-opt, Or-opt, and string-exhange, are ombined suh thata loal optimum w.r.t. all these neighbourhoods is omputed. Hansen and Mladen-ovi¢ (2001) refer to this priniple as variable neighbourhood desent (VND). Notethat these neighbourhoods together are able to eliminate all infeasibilities resultingfrom using Ms in the transformations. Loal optima always orrespond to a fea-sible postman tour. Seond, an extension of the restrited dynami programmingneighbourhood of Balas and Simonetti (2001) is then applied to the result. Thisneighbourhood an hange a large number of edges at the same time. It is lin-ear in the tour length n, but exponential in a parameter k ≥ 2, and thus is a verylarge-sale neighbourhood. It was shown by Balas and Simonetti (2001) that it pro-vides a reasonable omplement to the lassial ATSP edge-exhange proedures,whih only modify a few edges. If an improvement is found both neighbourhoodsearh proedures are repeated. Finally, a loal minimum w.r.t. all neighbourhoodsresults. Unbiased random double-bridge moves (alled kik moves) perturb theurrent tour and provide new iterated start solutions for the above desribed lo-al searh desent heuristi. The following setions provide more details about thebasi omponents of the improvement proedures.4.2.1 Edge-Exhange ProeduresA 2-opt move inverts a sub-string of the urrent tour, an Or-opt move reloates astring, and a string-exhange move exhanges two strings (see, e.g., Funke et al.,2005). As long as the reloated and exhanged strings are of limited length, se-quential searh methods (Irnih et al., 2006) based on the gain riterion (Lin and11



Kernighan, 1973) allow the aeleration of loal searh suh that best improvingmoves an be identi�ed faster than by sanning all Θ(n2) possible moves. We usethis tehnique for the Or-opt neighbourhood. Instead, the dynami programmingproedure of Glover (1996) is used for determining a best double-bridge move in
O (n2) time (i.e., a string-exhange move without limitations on the string lengthresulting in a Θ(n4)-sized neighbourhood).In order to avoid that the edge-exhanges diretly undo the double bridge kikmoves, the VND proedure �rst uses the 2-opt and Or-opt neighbourhoods andapplies double-bridge moves only to loal optima w.r.t. 2-opt and Or-opt.4.2.2 Very Large-Sale Neighbourhood SearhVery large-sale neighbourhood searh (VLSNS) is a variant of loal searh in whihthe searh for a best neighbour solution of a large neighbourhood is transformedinto another optimization problem that an be solved in (pseudo-)polynomial time.The term `large' refers to neighbourhoods that annot be inspeted by enumerationof neighbour solutions�one by one�in an `aeptable' time. A family of large-saleneighbourhoods, one for eah integer k ≥ 2, has been proposed and analysed byBalas and Simonetti (2001). Given an ATSP tour x = (x0, x1, . . . , xn, x0) the neigh-bourhood N k

BS(x) onsists of all routes x′ = (xπ(0), xπ(1), . . . , xπ(n), xπ(0)) where thepermutation π of {0, 1, . . . , n} ful�lls the following onditions: For any two indies
i, j ∈ {0, 1, . . . , n} with i + k ≤ j the inequality π(i) ≤ π(j) holds. The meaning ofthis de�nition is that if node xi preedes node xj by k or more positions then ximust also preede xj in the neighbour solution.The searh for a best neighbour solution x′ ∈ N k

BS(x) is performed by solving ashortest-path problem in an auxiliary graph G∗ = G∗
k (we will leave out the index

k in the following). The auxiliary graph G∗ is well-strutured; it onsists of n + 2stages for a tour x of length n + 1. Eah (typial) stage i onsists of (k + 1)2k−2nodes Vi. Only onseutive stages i and i+1 are linked, i.e., there are k(k +1)2k−2ars joining Vi with Vi+1. Stage 0 ontains the start node o and stage n + 2 thesink node d. Every o-d-path in G∗ is in one-to-one orrespondene to a neighboursolution x′. The orrespondene is implied by the fat that eah node j refers toa spei� position in the tour x. One of the amazing properties of G∗ is that thestruture of all onseutive stages does not depend on i. The indued subgraphs
G∗(Vi ∪ Vi+1) are all idential, they neither depend on i nor on n, but only on k.This allows omputing G∗(Vi ∪ Vi+1) beforehand in order to onstrut the entireauxiliary graph G∗ quikly.Figure 2 shows an example of G∗ for k = 3 and a tour of length n + 1 = 6.Every node j ∈ Vi refers to position i + α(j), i.e., every row in Figure 2 de�nes ano�set α(j) relative to the urrent position i. Those nodes that refer to positions i+
α(j) < 0 or i + α(j) > n + 1 are nodes that annot be reahed on any o-d-path.Stages i with unreahable nodes are alled untypial stages ; orresponding nodesand ars are shown dotted in Figure 2. In order to ensure that any o-d-path in
G∗ has a ost idential to the ost of the implied neighbour solution x′, one has12
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. For instane, the �rstbold ar in Figure 2 is labelled with ost cx0+0,x1+2 = cx0,x3 , the seond has ost

cx1+2,x2+(−1)
= cx3,x1 et. This is perfetly in aordane with the fat that the boldpath represents the neighbour tour x′ = (x0, x3, x1, x4, x2, x5, x0).It is obvious that we an apply VLSNS using the neighbourhood N k

BS to ATSPtours resulting from the transformation desribed in Setion 3. However, we furtheradapted the idea to ar-routing problems whih are transformed into node-routingproblems by replaing a servie ar with two nodes. The main drawbak of a diretappliation to transformed postman tours is that individual nodes but not arsare permuted. If one wants to exhange ars over k (ar) positions, one has tomove nodes over 2k positions. However, servie ars an be reversed and it is,therefore, not su�ient to simply rearrange the sequene of the ars. Here, weonsider inverted and non-inverted ars as atoms for the neighbourhood searhproedure.More preisely, we propose to onstrut a modi�ed neighbourhood Ñ k
BS by dupli-ating the nodes of G∗ suh that j ∈ Vi stands for a non-inverted servie ar and

j′ ∈ Ṽi refers to its inverted ounterpart. For a �xed number k, the new auxil-iary graph G̃∗ has twie the number of nodes per (typial) stage as the originalauxiliary graph G∗. It has four times the number of ars between stages. Given apostman tour x = (o, a1, a2, . . . , an, d) with servie ars a1, a2, . . . , ap, start-node oand end-node d, we build G̃∗ with n + 2 stages and (k + 1)2k−1 nodes Vi ∪ Ṽifor eah stage. Eah ar (j, j′) ∈ Vi × Vi+1 of the original auxiliary graph hasthree fellow ars (j, j̃′) ∈ Vi × Ṽi+1, (j̃, j′) ∈ Ṽi × Vi+1, and (j̃, j̃′) ∈ Ṽi × Ṽi+1.Hene, G̃∗ has (n + 1)k(k + 1)2k ars. An example of a transformed postmantour (o, a1, a2, a3, a4, d) with n = 4 servie ars is depited in Figure 3. From thevalues α(j), we see that the bold path permutes the ars a1, a2, a3, a4 suh thatthe new ordering is a2, a1, a4, a3. At the same time, the ars a1 and a4 are in-verted, beause the stages 2 and 3, whih are referring to the ars a2+(−1) = a1 and
a3+1 = a4, visit nodes of Ṽ2 and Ṽ3, respetively. Given that all ars aj have tailand head nodes pj and qj, the old tour x is (o, p1, q1, p2, q2, p3, q3, p4, q4, d), and the13
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Fig. 3. Constrution of the Auxiliary Graph G̃∗ from G∗ for k = 2new tour is x′ = (o, p2, q2, q1, p1, q4, p4, p3, q3, d). The advantage of the modi�ationproposed in this setion is that for a repositioning of ars over less than k positions,we only need to use Ñ k
BS on graph G̃∗ instead of N 2k

BS on graph G∗ for the ATSP.Sine the number of nodes and ars grow exponentially with k, the fator 2 is ru-ial. The example shows that all ars are moved one position forward or bakward(whih requires k = 2 for G̃∗), while some nodes are moved up to three positions(whih requires k = 4 for G∗).5 Computational ResultsThe following omputational analysis is based on real-world instanes provided byour projet partner, Deutshe Post World Net. All postal distrits onsidered herewere taken from the urban part of the ity of Aahen (Germany), whih is a mid-sized ity with about 250,000 inhabitants. Most of the postal distrits allow deliveryon foot or by biyle, only a smaller fration requires delivery by ar. EXT-WRPPinstanes were reated from these 56 postal distrits by altering (1) the loationof the assoiated delivery depot; (2) the means of transport used for serviing thedistrit, depending on whether streets/roads of the distrit allow delivery on foot,by biyle, or by ar; (3) weights for the importane of turn penalties w.r.t. servieand traversal osts; and by deiding (4) whether or not luster onstraints have tobe respeted (operational vs. tatial planning). The objetive was always to reatea time-minimal postman tour, i.e., traversal and servie osts were measured in timeunits. A validated model for estimating the time of serviing a street segment byzigzagging was not available. Certainly, these servie times depend on the distanebetween onseutive entranes of houses on eah side of the street, the width of thestreet and pavement, the �ow of tra� through the street, the means of transportet. A simulation model in ombination with omprehensive olletion of statistialdata ould possibly help to identify the most important in�uening variables, butthe e�ort for suh an empirial study was beyond the sope of the atual projet.For the sake of simpliity, osts for zigzag deliveries were assumed to be identialto the osts of separate servies for delivery on foot and by biyle. For deliveryby ar, zigzagging is only possible on very sparsely populated road segments; weassumed that the osts for zigzagging are 2.5 times higher than the ost for separate14



deliveries. Similarly, we used estimates for the temporal e�ort to perform turns bylassifying the set of all allowed turns into left-turns, straight rossings, right-turns,and u-turns, taking also the means of transport into aount. Conluding, 1236 testinstanes resulted from this setup, 672 with delivery on foot, 432 by biyle, and132 by ar.The majority of the edges de�ning the EXT-WRPP graph G = (V,E) are edges e ∈
E0, beause the entire street network of the ity an in priniple be used for dead-heading from the end of one servie to the beginning of the next servie. Thenumber |E| of edges ranges from 4018 to 4499 (with avg. 4373), while the numberof edges of a partiular type is between 6 and 71 (avg. 21.6) for |E1|, between 0and 47 (avg. 14.2) for |E2|, between 0 and 39 (avg. 9.4) for |E3|, and between 19and 100 (avg. 45.2) for required edges R = E \ E0. The resulting ATSP instaneshad between 62 and 258 nodes with an average of 137.6 nodes.All problem-spei� algorithms were oded in C++, ompiled in release mode withMS-Visual C++ .NET 2003 version 7.1; all runs were performed on a standard PC(Intel x86 family 15 model 2) with 2.0 GHz, 1GB main memory, on MS-Win 2000.The free STSP solvers Conorde and Linkern (version De 19, 2003) were rununder the Linux emulator Cygwin (version 1.5.10-3).5.1 Exat and Heuristi Algorithms for STSPWith the �nal transformation of the EXT-WRPP instanes into STSP instanesdesribed in Setion 3.3 we an apply well-known and freely available STSP solversto our problem. The Conorde branh-and-ut solver of Applegate et al. (1999)is an exat algorithm whih provides optimal solutions to our easy-to-solve probleminstanes. For the others it gives lower bounds, so that heuristi approahes anbe analysed w.r.t. solution quality.A �rst remarkable observation of the branh-and-ut ode is that its running timeis highly unpreditable and an satter between less than 1 seond and more than20 hours for our small-sized STSPs (on average 275 nodes). There is nearly noorrelation between the size of the STSP instane and the running time. As aonsequene, we skipped trying to ompute exat solutions for all 1236 instanes,but Conorde was used to reate a lower bound by solving the root node of thebranh-and-ut tree only. The lower bound results from solving the 2-mathingrelaxation of the STSP and adding di�erent types of utting planes to it. Notethat the Conorde implementation is not able to handle instanes with negativeosts on the edges (as resulting from our transformations). Hene, multiples of Mwere added to all rows/olumns of the STSP distane matrix so that the resultinginstane had no negative osts. However, we observed that the lower bounds some-times di�er if several alls of Conorde are performed on the same instane. Wesuspet that Conorde uses some random omponents to heuristially identifyviolated uts. For our statistial analysis this means that parts of the results arenot fully and onsistently reproduible.Besides the exat solver, Applegate et al. (1999) freely distribute the heuristi solver15



Linkern for STSPs, whih is based on a hained Lin-Kernighan edge-exhangeproedure (Lin and Kernighan, 1973; Martin et al., 1992). Applying Linkernto our STSP instanes provides upper bounds ub and enables us to ompute anoptimality gap (ub − lb)/lb. The results an be summarised by the following keyfats: 40 out of 1236 instanes were solved to proven optimality (Linkern andConorde gave idential bounds). Contrary, 7 times Linkern was not able toompute a feasible postman tour, sine the STSP tour still had some dispensableedges with ost greater than M . The optimality gap provided by Linkern andConorde (without branhing) was 5.6% on average with a maximum of 35.0%(over all feasible tours found by Linkern). Unexpetedly, Linkern was 2 times(out of 1236 instanes) able to beat all of our algorithms (see next setion). Inthose ases, the Linkern result was 2.98% and 1.92% better than the best solutionomputed by our algorithms. Nevertheless, the gap between Linkern and our bestfound solution was on average 4.2% worse than our solutions and 29.8% worse inthe maximum.Conluding, the freely available STSP solution methods do not turn out satisfatoryin solving the STSP instanes resulting from the EXT-WRPP transformations. Thelarge gaps and resulting long running times of the branh-and-ut algorithm are anindiation that these small-sized instanes are very hard to solve from a pratialpoint of view. We suppose that this di�ulty results from the high degeneray ofthe instanes, where multiples of M dominate the objetive. More tailored solutionapproahes are needed, suh as the ombined edge-exhange and VLSNS approahempirially analysed in the following setion.5.2 Classial Edge-Exhanges and the Balas & Simonetti NeighbourhoodThere are two main parameters that in�uene the quality and speed of the proposediterated VND approah ombining lassial edge-exhange and VLSNS tehniques:First, kiks for the perturbation of loal optima an be applied as long as one wantsto ontinue the searh. One an in general expet that the overall time inreaseslinearly with the number of kiks and that better solutions are found if more kiksare used. The tradeo� between solution quality and running time is reorded inour setup in the following way: We keep trak of the best solution omputed sofar and report this best solution together with the running time at six pointsin time: before the �rst kik (in the following denoted by kick = 0) and after
100, 200, 500, 1000, and 2000 kiks. Seond, the Balas & Simonetti neighbourhoodand its modi�ation Ñ k

BS proposed in Setion 4.2.2 have a parameter k for thedistane over whih nodes/ars an be re-positioned. Although we expet thatlarger values of k allow �nding better solutions, results for an atual instane anshow a di�erent behaviour: For k1 < k2, the best solution �nally found using
Ñ k1

BS may be better than the one found with Ñ k2
BS. Note that the ombination ofthe lassial edge-exhange and the VLSNS proedures an reate di�erent loaloptima depending on the interplay of these neighbourhoods. We therefore omparethe di�erent ombinations of the parameters kick and k statistially over a largeset of test instanes. 16



First, we analyse the running time of the di�erent algorithms. Figure 4 depitsthe average running times over all 1236 instanes. Eah of the urves shows the
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Fig. 4. Average Running Times w.r.t. Parameters k and kickrunning times for a �xed number of kiks and for inreasing values of k with
k = 0 for a setup without the modi�ed Balas & Simonetti neighbourhood and
Ñ k

BS with k ∈ {4, 6, 8, 9, 10}. Average running times range from less than 1 seondfor kick = 0, to an average of 206 seonds for the most expensive ombinationwith kick = 2000 and k = 10. Amazingly, the overall running times show a non-inreasing behaviour w.r.t. k, whih one might not have expeted: Solving theATSPs with the smaller neighbourhood Ñ 4
BS took longer than with the largerneighbourhood Ñ 6

BS. The reason for this unexpeted behaviour is that for k = 6less iterations with the lassial edge-exhange neighbourhoods were neessary toreah a mutual loal optimum. The larger running times for a single searh step in
Ñ 6

BS ompared to Ñ 4
BS were overompensated by the better quality of the omputedneighbour solutions. Similar reasons an explain why the algorithms resulting from

Ñ 4
BS and Ñ 8

BS onsume nearly the same amount of time (for an idential numberof kiks).Next, we analyse the solution quality of the di�erent algorithms. Sine we do notknow optimal solutions for all instanes, there exist two possible ways to measuresolution quality. A pessimisti viewpoint is that the proposed heuristis fail to�nd good solutions, so that the lower bound lb omputed by Conorde is theonly reasonable value to ompare solutions with. Let ubA be the best solutionfound by algorithm A. Then gapA = (ubA − lb)/lb is the relative deviation fromthe Conorde lower bound lb of algorithm A. Note that all these values arede�ned for a �xed instane of the problem. Sine we are interested in statistialevaluations we only report average (=mean) and maximum values over the 1236instanes of our test set. The optimisti viewpoint is that at least one of ouralgorithms gets (very lose to) the optimal solution. De�ning ubbest = minA ubA,the relative deviation (in perent) of algorithm A from the best solution found is
gapA,best = (ubA − ubbest)/ubbest. (In the following, we will leave out the index A.)Figures 5 and 6 display the average gaps gap and gapbest over all 1236 instanes.17
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and-bound nodes with an optimal solution z⋆ = 12,243. All of our algorithms with
k ≥ 4 delivered gapbest ≤ 1.9% after 100 kiks and found this optimal solution after200 kiks. Similar results were observed for other instanes with a large gap. Wetherefore think that gapbest provides a more realisti piture of the solution quality.This average deviation gapbest from the best solution found is depited in Figure 6.It is very small and allows the following interpretations: If lassial edge-exhangeneighbourhoods and the modi�ed Balas & Simonetti neighbourhoods are appliedtogether in the VND approah, the resulting algorithm onsistently �nds bettersolutions with the same number of kiks. On the one hand, even the smallest valueof k = 4 permits reduing the average gapbest by a fator of approx. 1.7 omparedto algorithms that do not use the modi�ed Balas & Simonetti neighbourhood. For
k = 6 the redution is by about fator 3, for k ≥ 8 the redution is by fators ofbetween 6 and 9. On the other hand, doubling the number of kik moves (or goingfrom 200 to 500 kiks) also onsistently improves the quality of the solutions: Theredution of the average deviation gapbest is here by fators of between 1.4 and 2.9.Another pessimisti viewpoint is the onsideration of the maximum deviation
gapbest over all 1236 instanes, referred to as max gapbest. These values are shownin the diagram in Figure 7 for all ombinations of kick and k. All initial VND so-
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Finally, we present the results onerning the tradeo� between solution quality andthe time spent on searhing. Eah point (gapbest, time) in Figure 8 shows the aver-ages over all 1236 instanes for a spei� ombination of kick and k. Additionally,the area of dominated points is shaded in grey. For the sake of visibility, points with
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Fig. 8. Tradeo� between Quality and Computation Timeomputation times larger than 65 seonds are not shown. These are the ombina-tions (kick, k) = (2000, 9), (1000, 10), and (2000, 10) with values (0.008%, 206.5s),
(0.013%, 103.5s), and (0.005%, 100.9s). In essene, the best solutions were obtainedwith these omputationally most ostly setups. Moreover, larger average gaps of
gapbest > 0.7% are also not displayed in Figure 8. These result from the initialsolutions of the VND omponent, i.e., from algorithms with kick = 0. The orre-sponding running times are all very small, but the solution quality in the averagease and�in partiular�in the worst ase is unaeptably bad (as was alreadydisussed in the previous paragraphs). We interpret the remaining results in thefollowing way: Only ombinations with k = 6, k = 8, and less often, with k = 9are Pareto-optimal w.r.t. running time and average solution quality. Exept forhigh-quality and minimum-time ombinations (not depited), ombinations with
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BS. Similarly, small values of k lead to fast algorithms, butthey lak robustness and quality of solutions. As a general reommendation (for20



instanes resulting from transformed postman problems), the values k = 6 and
k = 8 produe well-performing algorithms and the tradeo� between quality andrunning time an be ontrolled by hoosing an appropriate number of kiks.6 ConlusionsThis paper has onsidered the EXT-WRPP, a very general unapaitated ar-routing problem inorporating several pratially relevant onstraints and optionssuh as street segment sides, turn penalties, lustered street segments and thepossibility of serviing street segments in zigzag mode. The problem is of greatpratial importane for letter mail delivery. In Germany alone, there are morethan 50,000 distrits to be servied every day, eah distrit orresponding to anEXT-WRPP instane. To formally desribe the problem, a graph-theoreti modelhas been presented. For solving this model, the paper has proposed a transforma-tion to a standard node-routing problem without additional onstraints, namely,to an asymmetri or symmetri TSP. Computational experiments show that thesolution of the resulting TSP instanes with standard algorithms does not worksatisfatorily. This is most probably due to the highly degenerate ost struture ofthe instanes stemming from the use of big M onstants. Therefore, a new heuris-ti solution method has been devised, based on VND with kiks, using lassialedge-exhange and VLSNS steps. By omputational experiments Pareto-optimalparameter settings have been identi�ed yielding solutions learly and onsistentlyoutperforming standard TSP heuristis with respet to solution quality and om-puting time. Moreover, the optimal settings also exhibited a very robust behaviourin the average and worst ase in tests on a large set of real-world instanes.Further interesting researh diretions inlude the onsideration of time windowsand the extension to multiple vehiles/arriers. In the latter ase, one has to take ve-hile and temporal arrier apaities into aount. The resulting ar-routing prob-lems require to simultaneously luster street segments into distrits and deideon the routing and the mode of serviing. Partiularly relevant for Deutshe PostWorld Net is the lustering of the servie areas aording to a given ratio of fulltime and part time postmen.We think that this paper onstitutes a ontribution to more realisti models ande�etive solution approahes in ar-routing. Certainly, more integrated network-design, loation, and routing models for postal appliations will be developed inthe near future.AknowledgementWe would like to thank our projet partners from Deutshe Post World Net, inpartiular Ralf Löshe, Ulrih Plösser, Dr. Uwe Prantz, and Dr. Norbert Will, andalso our supervisor, Prof. Hans-Jürgen Sebastian from Deutshe Post EndowedChair of Optimization of Distribution Networks, for initiating this researh projet,providing us with data and additional useful information and, last but not least,for the kind ollaboration. 21
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