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tThe paper presents the results of a study performed by the Deuts
he Post Endowed Chairof Optimization of Distribution Networks in 
ollaboration with Deuts
he Post World Netwith the aim of improving the planning of letter mail delivery. Modelling and solutionmethods for real-world postman problems are presented whi
h extend one of the mostgeneral postman problems studied in the literature, the windy rural postman problem,with regard to several aspe
ts. The dis
ussed extensions in
lude turn and street 
rossingrestri
tions, 
luster 
onstraints, the option to have alternative servi
e modes (in
luding`zigzag deliveries'), and the use of publi
 transport to rea
h the postal distri
t. Thesolution method is based on a transformation to the asymmetri
 TSP and uses non-standard neighbourhood sear
h te
hniques. Extensive 
omputational experiments showthat the solution method 
learly and 
onsistently outperforms standard TSP heuristi
son real-world instan
es.Key words: postman problems, ar
 routing, transformation into TSP1 Introdu
tionThis paper des
ribes the results of a study performed by the Deuts
he Post En-dowed Chair of Optimization of Distribution Networks in 
ollaboration with Deut-s
he Post World Net with the aim of developing new models and solution algorithmsto improve the planning of letter mail delivery.The letter mail distribution system of Deuts
he Post World Net in Germany is amulti-stage, multi-modal network 
omprising about 110,000 pi
kup points (letterboxes), 12,000 post o�
es, 82 regional mail 
entres, 3,300 delivery depots, and, onthe `last mile', 39 million households and 
ommer
ial 
lients expe
ting more than20 billion letters per year to be delivered within 24 hours after posting. To performthe delivery, there are 72,000 postmen serving 54,000 distri
ts six days a week on
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foot, by bi
y
le or by 
ar. This last stage of letter mail transport in
urs severalbillion Euros of total annual 
ost. It is 
lear, therefore, that even a small relative
ost redu
tion amounts to tens of millions of Euros in absolute annual savings.Not surprisingly, Deuts
he Post World Net is 
onstantly seeking to optimise therouting of its postmen.The 
ontribution of the paper is twofold. First, it introdu
es a model of a verygeneral un
apa
itated ar
-routing problem 
apturing most of the pra
ti
ally rele-vant side 
onstraints en
ountered by Deuts
he Post World Net. In parti
ular, turnand street 
rossing restri
tions, 
luster 
onstraints, the option of alternative servi
emodes (in
luding `zigzag deliveries'), and the use of publi
 transport to rea
h thepostal distri
t are 
onsidered. Se
ond, it presents heuristi
 algorithms for the solu-tion of this model, based on a transformation to the asymmetri
 travelling salesmanproblem (ATSP), along with extensive 
omputational results showing the pra
ti
alappli
ability of the algorithms.The rest of the paper is stru
tured as follows: In the next se
tion, the new modelis presented and it is shown how the above-mentioned options and additional side
onstraints 
an be in
orporated. After that, the solution approa
h is presented:In Se
tion 3, a tailored transformation of the developed ar
-routing model to theATSP is given; in Se
tion 4, it is shown how the resulting ATSP is solved by meansof 
onstru
tion and non-standard neighbourhood sear
h improvement pro
edures.Se
tion 5 presents and analyses the 
omputational experiments demonstrating thesuperiority of the new algorithmi
 approa
h over standard heuristi
s for the TSP.At the end, Se
tion 6 points to possible interesting extensions of the problem andgives �nal 
on
lusions.2 An Extended WRPP ModelThere are many models and algorithms for the solution of postman problems (e.g.,Eiselt et al., 1995; Dror, 2000). One of the most general models for the un
apa
-itated 
ase is the windy rural postman problem (WRPP). The WRPP is de�nedon an undire
ted graph where some, but not ne
essarily all, edges require somekind of servi
e and must therefore be traversed at least on
e. All edges of thegraph may be traversed without performing a servi
e an arbitrary number of timesin either dire
tion. Traversing an edge in
urs a 
ertain 
ost, and the task is to
reate a tour for the postman of minimal total 
ost, 
overing all required edges.The 
ost of traversing an edge in one dire
tion may di�er from traversing it inthe other dire
tion (with and against the wind). Although there are polynomiallysolvable spe
ial 
ases, the WRPP is, in general, NP-hard (Papadimitriou, 1976).However, the problem is of great signi�
an
e, as it generalizes many other ar
-routing problems. The 
ase where all edges must be traversed, the windy Chinesepostman problem (WPP), has re
eived 
onsiderable attention in the literature (
f.Minieka, 1979; Guan, 1984; Win, 1987), and there are already some papers dealingwith the `rural' version of this problem as des
ribed in the pre
eding paragraph(Corberán et al., 2005a,b). The paper by Irni
h (2005) 
onsiders a generalization2



of the WRPP, the windy rural postman problem with zigzag servi
e (WRPPZ).In this problem, the streets (or rather street segments) 
an be divided into four
lasses: First, street segments with houses on one side of the street only. Thesesegments must be servi
ed exa
tly on
e. Se
ond, street segments with houses onboth sides, where the sides must be servi
ed separately and where, 
onsequently,the segments must be traversed at least twi
e. Third, street segments with houseson both sides with the option of servi
ing both sides simultaneously by a single`zigzag' traversal (passing through the street segment on
e) or of servi
ing the twosides separately by two traversals. Fourth, so-
alled non-required street segmentsmay be used to get from one point to another. All street segments may be tra-versed without servi
ing arbitrarily often in both dire
tions. A traversal withoutservi
ing is referred to as deadheading. Again, di�erent dire
tions of traversal ofa segment may in
ur di�erent 
osts. Moreover, also the di�erent traversal modes(one-side servi
e, zigzag servi
e, deadheading) may in
ur di�erent 
osts. Formally,the WRPPZ is de�ned on an undire
ted graph G = (V,E) with vertex set V andedge set E. Without loss of generality and for notational 
onvenien
e, it is assumedthat G is simple, i.e., that G 
ontains neither parallel edges nor loops. The edgeset is partitioned into four subsets, E = E0 ∪ E1 ∪ E2 ∪ E3, where E0 
ontainsthe non-required edges, E1 and E2 
ontain the edges requiring single and doubleservi
e respe
tively (but where zigzag servi
e is not allowed), and E3 
ontains theedges with zigzag servi
e option. Up to eight di�erent 
osts ck
ij, c

k
ji, k ∈ {0, 1, 2, 3},are asso
iated with an edge {i, j} ∈ E. k = 0 stands for deadheading, k = 1 forservi
ing the �rst side, k = 2 for servi
ing the opposite side of the street segment,and k = 3 for zigzag servi
e, while ij and ji des
ribe the dire
tion of traversal.Only one dire
tion of traversal may be allowed for an edge for some or all traversalmodes. This is represented by setting the 
orresponding 
ost 
oe�
ient to in�nity.Su
h an edge is 
alled an ar
. Obviously, for the edges e ∈ E \ E3, only some ofthe 
osts are relevant, i.e., edges e ∈ E2 have six, edges e ∈ E1 have four, andedges e ∈ E0 have two di�erent 
osts. Irni
h (2005) gives an integer programmingformulation for the WRPPZ.In this paper, an extended version of the WRPPZ, 
alled EXT-WRPP, is presented.No integer programming formulation for EXT-WRPP is given here; rather, a graph-theoreti
 approa
h is taken. This is due to the fa
t that the study was intendedto develop a pro
edure able to 
onsistently 
ompute good solutions for real-worldinstan
es in short time. The size of the instan
es is su
h that one 
annot expe
t toa
hieve this via an exa
t algorithm, and for the solution approa
h pursued here, itis not ne
essary to devise an IP formulation.In addition to the WRPPZ, EXT-WRPP 
onsiders the following aspe
ts:

• Street segment sides: For delivery by foot or by bi
y
le, it may be ne
essaryto distinguish between a traversal on the left hand side (lhs) or right handside (rhs) of a street segment. In 
onne
tion with turns and turn penalties, the
onsideration of both street sides o�ers the possibility to favour tours that donot 
ross main roads too often in order to make the tour faster and safer for the3



postman. Hen
e, the deadheading 
osts are re-de�ned to re�e
t traversals from
i to j and from j to i, either on the lhs or on rhs of the street: c0,lhs

ij , c0,rhs
ij , c0,lhs

ji ,
c0,rhs
ji . W.l.o.g., for edges e ∈ E2 ∪ E3, the lhs always 
orresponds to servi
e 1,and the rhs 
orresponds to servi
e 2.

• Turn restri
tions: There is a 
onsiderable amount of literature on ar
-routingproblems with turns, starting with the paper by Caldwell (1961). Other impor-tant 
ontributions are the ones by Benavent and Soler (1999); Clossey et al.(2001); Corberán et al. (2002). Some authors 
onsider the turns issue in theirsolution algorithms, others use transformations to get equivalent graphs with-out turns. In this paper, the latter approa
h is taken. In a simple graph, aturn is unequivo
ally des
ribed by means of three verti
es and an asso
iatedturn 
ost/penalty. Forbidden turns are represented by setting the respe
tivepenalty to in�nity. Hen
e, when there is no distin
tion between traversal onthe left or the right hand side, the set of possible turns in G is de�ned as
T := {(i, j, k) : {i, j}, {j, k} ∈ E}. The turn 
ost/penalty is denoted by pijk.In the 
ase of a detailed model, the street segment side information must also betaken into a

ount. Here, we de�ne T := {(i, s, j, s′, k) : {i, j}, {j, k} ∈ E; s, s′ ∈

{lhs, rhs}}. The turn 
ost is then denoted by ps,s′

ijk . It is assumed that 
rossinga street segment {i, j} where zigzag servi
e is allowed in
urs no (measurable)
ost. This means that the 
ost/penalty for the turns out of and into this streetsegment {i, j} are always identi
al, i.e., plhs,s
ijk = prhs,s

ijk and ps,lhs
kij = ps,rhs

kij holds forall s ∈ {lhs, rhs} and for all edges {i, j} ∈ E3.
• Clusters: Due to the grouping of street segments into intermediate organiza-tional units (for early morning sorting a
tivities and gathering statisti
al data),there are 
lusters of street segments whi
h must be servi
ed 
onse
utively. Morepre
isely, this means that for two street segments e, e′ ∈ E belonging to thesame 
luster, if e is servi
ed before e′, there must not be any street segment e′′not belonging to this 
luster that is servi
ed after e and before e′. Deadheadingthrough a street is always allowed. This issue is the ar
-routing equivalent to the
lustered travelling salesman problem for node-routing problems (see Chisman,1975). Formally, there is a set of nH 
lusters H := {1, . . . , nH}. The numbers

hlhs
ij ∈ H for {i, j} ∈ E \E0 and hrhs

ij ∈ H for {i, j} ∈ E2 ∪E3 denote the 
lusterindex of the servi
e. Note that zigzag servi
e is only possible if both sides of thestreet segment belong to the same 
luster, i.e., we assume hlhs
ij = hrhs

ij to hold forall {i, j} ∈ E3. The delivery depot (post o�
e) is represented by a single edge
{id, jd} ∈ E1. This edge forms a separate 
luster.

• Publi
 transport: Sometimes it is not ne
essary for the postman to deadheadthrough non-required edges in order to rea
h his distri
t in the morning or toreturn to the post o�
e in the afternoon. Distri
ts served on foot or by bi
y
le
an also be rea
hed and left via publi
 transport (buses, tramways, underground).The existing lines are represented in the street distan
e graph by additional edges
onne
ting end points of otherwise non-adja
ent street segments e ∈ E0. Moredetails are given in Se
tion 3.2.4.
• `Kno
k-o� after last delivery': A rather new approa
h in mail delivery operations4



is the 
on
ept of `open tours', i.e., the postman ends his workday immediatelyafter the last delivery and returns to the post o�
e only on the next day.A postman tour 
an be modelled as a triple P = (C,m, s), where C = (i0, i1, . . . , in)is a walk in G, m = (m1, . . . ,mn) ∈ {0, 1, 2, 3}n indi
ates the traversal modes ofthe edges in C, and s = (s1, . . . , sn) ∈ {lhs, rhs}n indi
ates the street segmentsides being traversed. A postman tour P = (C,m, s) is feasible if and only if(P1) (Closed walk) i0 = in.(P2) (Turn feasible) (ip−1, sp, ip, sp+1, ip+1) ∈ T for all p ∈ {1, . . . , n} (with in+1 :=
i1 and sn+1 := s1).(P3) (Servi
e 
overing)
• For all {i, j} ∈ E1, there exists a p ∈ {1, . . . , n} su
h that {ip−1, ip} = {i, j},and mp = 1.
• For all {i, j} ∈ E2, there exists a p ∈ {1, . . . , n} su
h that {ip−1, ip} = {i, j},and mp = 1.
• For all {i, j} ∈ E2, there exists a p ∈ {1, . . . , n} su
h that {ip−1, ip} = {i, j},and mp = 2.
• For all {i, j} ∈ E3, there exist p1, p2 ∈ {1, . . . , n} su
h that {ip1−1, ip1} =
{ip2−1, ip2} = {i, j} and either (p1 = p2 and mp1 = 3) or (p1 6= p2, mp1 = 1,and mp2 = 2).(P4) (Cluster feasible) For all 1 ≤ p < r ≤ n, the 
onditions mp 6= 0, mr 6= 0, and

h
sp

ip−1,ip
= hsr

ir−1,ir
=: h imply mq = 0 (deadheading) or h

sq

iq−1,iq
= h (same 
luster)for all p < q < r.(P5) (Compatibility between mp and sp) For all 1 ≤ p ≤ n, mp = 1 ⇔ sp = lhsand mp = 2 ⇔ sp = rhs.Note that (P5) does not impose any restri
tion about the side of the street if thestreet is deadheaded or servi
ed in zigzag mode.It is assumed that ea
h solution ful�lling (P1�P5) is feasible with respe
t to thepostman's 
arrying 
apa
ity and working time regulations. Let the set of all post-man tours P ful�lling (P1�P5) be Pfeas.The 
ost of a postman tour P = (C,m, s) with C = (i0, i1, . . . , in) is

c(P ) = c(C,m, s) :=
n

∑

j=1

(

c
mj

ij−1ij
+ p

sj ,sj+1

ij−1,ij ,ij+1

)

, (1)where, again, in+1 := i1 and sn+1 := s1. With these de�nitions, EXT-WRPP 
anbe stated formally as(EXT-WRPP) z⋆ = min
P∈Pfeas

c(P ). (2)3 Problem TransformationThe model for EXT-WRPP presented in the pre
eding se
tion is a des
riptive one,but it is well-de�ned in a graph-theoreti
al sense. To transform the problem into an5



ATSP, three di�erent graphs are 
onsidered: (a) the undire
ted graph G = (V,E)for the representation of the problem instan
e; (b) a dire
ted graph D′ = (V ′, A′, c′)to model and 
ompute shortest paths w.r.t. distan
e and turn penalties; (
) a
omplete digraph D̄ = (V̄ , Ā, c̄) on whi
h the resulting ATSP is de�ned.The basi
 idea of the transformation is that ea
h servi
e is represented by twoanti-parallel ar
s, ea
h of whi
h indi
ates the dire
tion of travel when performingthe servi
e. Servi
es of di�erent street segments are 
onne
ted by dire
ted ar
srepresenting deadheadings from the end point of the �rst to the start point of these
ond servi
e. The asso
iated 
osts are 
omputed as shortest path distan
es in thedigraph D′ and take into a

ount 
osts for deadheading and turns. Servi
es of thesame street segments 
an be 
onne
ted to either model 
onse
utive but separateservi
es or�using a similar te
hniques as in (Irni
h, 2005)�to model zigzagging.3.1 Street Distan
e DigraphThe street distan
e digraph D′ = (V ′, A′, c′) models the physi
al street networkin
luding 
osts for deadheadings and turns. Any path in D′ is an alternating pathwhere ar
s either represent deadheadings (on a spe
i�
 side of the street and in agiven dire
tion) or feasible turns. For ea
h street segment e = {i, j} ∈ E there aretwo dire
tions, ij and ji, and two sides, lhs and rhs. Hen
e, four ar
s with eightdistin
t nodes iside
dir and jside

dir with dir ∈ {ij, ji} and side ∈ {lhs, rhs} are ne
essaryto represent the possible deadheadings. The four nodes iside
dir , dir ∈ {ij, ji}, side ∈

{lhs, rhs} are asso
iated with the endpoint i, i.e., one end of the street segment,while the four nodes jside
dir represent the other end. Thus, the deadheadings of streetsegment {i, j} ∈ E are given by the four ar
s (ilhs

ij , jlhs
ij ), (irhs

ij , jrhs
ij ), (jlhs

ji , ilhs
ji ),

(jrhs
ji , irhs

ji ) with 
osts c0,lhs
ij , c0,rhs

ij , c0,lhs
ji , and c0,rhs

ji , respe
tively.Let t = (i, s, j, s′, k) ∈ T be an arbitrary feasible turn. Sin
e {i, j}, {j, k} ∈ E, thenodes js
ij and js′

jk are already given by the above de�nition. The turn t is uniquelyrepresented in D′ by the ar
 (js
ij, j

s′

jk) ∈ A′ with 
ost ps,s′

ijk . Finally, we denote by
d′

kl the shortest path distan
e between an arbitrary pair of nodes k, l ∈ V ′ in thestreet distan
e digraph.3.2 ATSP DigraphThe main tool to solve the postman problem de�ned in Se
tion 2 is its transfor-mation into an ATSP. Ea
h feasible postman tour P = (C,m, s) 
orresponds toa Hamiltonian 
y
le in the 
omplete ATSP digraph D̄ = (V̄ , Ā, c̄) with the same
ost (ex
ept for multiples of a 
onstant M , see below). Furthermore, a 
ost-minimalHamiltonian 
y
le C̄ in D̄ en
odes an optimal postman tour. The de
oding, i.e.,the transformation of the ATSP solution into the 
orresponding postman tour, 
anbe done in time proportional to the length of the tour. For the sake of brevity, anyHamiltonian 
y
le in D̄ is 
alled (ATSP) tour.Note that the proposed transformation does not provide a one-to-one 
orrespon-den
e between feasible postman tours and ATSP tours. While feasible postman6



tours have asso
iated Hamiltonian 
y
les in D̄, most ATSP tours do not imply fea-sible postman tours. The transformation, therefore, has to utilise a 
onstant M , asu�
iently big number, su
h that ATSP tours not representing a feasible postmantour are more 
ostly than feasible ones.The transformation of the problem instan
e into an ATSP is explained in threesteps: First, we des
ribe internal ar
s 
onne
ting some of the pairs of nodes belong-ing to the same edge e ∈ E. The intention of an internal ar
 is to model a servi
ethat is performed in a parti
ular orientation. Consequently, 
osts of internal ar
smainly 
onsist of 
osts de�ned by the 
osts ck
ij, c

k
ji, k ∈ {1, 2, 3}. Se
ond, externalar
s 
onne
t nodes belonging to di�erent edges of E or nodes of the same edge butfor servi
es on opposite sides of the street 
onne
ted by deadheading. Their 
ostis, therefore, de�ned as the length of a path in the street distan
e graph. Third,we des
ribe the transformation of a (feasible) ATSP solution into the asso
iatedpostman tour.Note that the following transformations are similar to those presented in (Irni
h,2005) for the WRPPZ. However, turn restri
tions and 
luster 
onstraints imposeseveral modi�
ations regarding stru
ture and 
ost of ar
s. These modi�
ations arepointed out in the following.3.2.1 Internal Ar
s of the ATSP DigraphFirst, for ea
h edge e = {i, j} ∈ E1, there are two nodes k := ilhs

e and ℓ := jlhs
e .The two nodes are 
onne
ted by anti-parallel ar
s (k, ℓ) = (ilhs

e , jlhs
e ) and (ℓ, k) =

(jlhs
e , ilhs

e ) with 
osts c1
ij−M and c1

ji−M , respe
tively. The intention of adding −Mto both ar
s is that a su�
iently large number M ensures that an optimal ATSPtour 
ontains either (ilhs
e , jlhs

e ) or its anti-parallel 
ounterpart (jlhs
e , ilhs

e ). This �rst
ase and the following two 
ases are depi
ted in Figure 1.
ie

- +M cij
1

- +M cij
2

- +M cji
1

- +M cji
2

4ji

4ij

e i j E={ , }Î
1

e i j E={ , }Î
2

e i j E={ , }Î
3

k=
lhs je`=

lhs

ie

- +M cij
1

- +M cji
1k=

lhs je`=
lhs

ieq=
rhs jep=

rhs - +M cij
2

- +M cji
2

ie

- +M cij
1

- +M cji
1k=

lhs je`=
lhs

ieq=
rhs jep=

rhs

rhs lhs,rhs lhs,
4ij

lhs rhs, lhs rhs,
4ji

rhs:

lhs:

Fig. 1. Prin
iple of Transformation in ATSP; External Ar
s are Depi
ted Dotted/GreyedSe
ond, for ea
h edge e = {i, j} ∈ E2, there are two asso
iated servi
es and, hen
e,four nodes k := ilhs
e , ℓ := jlhs

e , p := irhs
e , and q := jrhs

e . The four nodes are 
onne
ted7



by the following internal ar
s. For the left hand side of the street, there are twoanti-parallel ar
s (k, ℓ) = (ilhs
e , jlhs

e ) and (ℓ, k) = (jlhs
e , ilhs

e ) with 
osts c1
ij − M and

c1
ji −M , respe
tively. Similarly, for the right hand side, the ar
s (p, q) = (irhs

e , jrhs
e )and (q, p) = (jlhs

e , ilhs
e ) have 
osts c2

ij −M and c2
ji −M . In the following, these ar
sare 
alled servi
e ar
s. The eight remaining 
onne
tions between these four nodesare external ar
s and will be des
ribed in the next subse
tion.Third, for ea
h edge e = {i, j} ∈ E3, there are again four nodes k := ilhs

e , ℓ := jlhs
e ,

p := irhs
e , and q := jrhs

e . In addition to the four ar
s for edges e ∈ E2, we add fourother internal ar
s: The ar
 (ℓ, p) models two alternative options at the same time.If (ℓ, p) is used in an optimal solution, the two ar
s (k, ℓ) and (p, q) for the twoasso
iated servi
es are also used, dire
tly before and after ar
 (ℓ, p). On the onehand, this is possible when the asso
iated servi
es are 
onne
ted by deadheading.On the other hand, the option of zigzagging through the street segment e = {i, j}is also represented by the sub-path (k, ℓ, p, q). Hen
e, the 
ost of (ℓ, p) is de�ned as
∆lhs,rhs

ij := min{c3
ij − c1

ij − c2
ij, d

′

jlhs
ij

,irhs
ij

}. (3)Note that the �rst term of the de�nition is de�ned su
h that the 
ost of zigzaggingis (c3
ij − c1

ij − c2
ij)+(c1

ij −M)+(c2
ij −M) = c3

ij −2M . If the minimum in (3) is givenby the se
ond term, the 
ost of the sub-path (k, ℓ, p, q) is exa
tly the 
ost c1
ij + c2

ijof the two servi
es plus deadheading 
osts minus 2M . This de�nition is 
onsistentwith the two options whi
h had to be modelled. Similarly, the 
onne
tions (q, k),
(k, q), and (p, ℓ) are assigned 
osts ∆rhs,lhs

ij , ∆lhs,rhs
ji , and ∆rhs,lhs

ji , respe
tively.3.2.2 External Ar
s of the ATSP DigraphAll remaining ar
s (k, k′) of D̄ have 
osts given by shortest path distan
es d′ in thestreet distan
e graph D′ and additional penalties of M if the two sides of the streetbelong to di�erent 
lusters. Ea
h node, k and k′, has a unique asso
iated servi
e.Thus, let {i, j} ∈ E be the street segment, s ∈ {lhs, rhs} be the side of the street,and hs
ij be the 
luster of the servi
e asso
iated with k. Moreover, let ij be thedire
tion of travel su
h that k lies on endpoint j of the street segment. Similarly,let {i′, j′} = {j′, i′}, s′ ∈ {lhs, rhs}, i′j′, and hs′

i′j′ be the asso
iated values fornode k′, but de�ned su
h that k′ lies at the startpoint i′ of the asso
iated servi
e.Then, the ar
 (k, k′) ∈ Ā has 
ost
d̄kk′ = d′

js
ij

,i′s
′

i′j′
+











M, if hs
ij 6= hs′

i′j′

0, otherwise .3.2.3 Validity of the TransformationIn order to show the validity of the transformation, we have to make sure that anoptimal ATSP tour in D̄ 
orresponds to a feasible, 
ost-minimal postman tour in
G. In the following, we �rst show how (optimal) ATSP tours 
an be transformedba
k into postman tours P = (C,m, s). Se
ond, we explain why optimal ATSP8



tours ne
essarily 
reate feasible postman tours. Third, the fa
t that the proposedtransformation is 
ost-preserving for feasible postman tours is easy to see, so thatthe validity of the whole transformation follows.The transformation from ATSP tours to postman tours 
onstru
ts the walk C =
(i0, i1, . . . , in, i0) from several paths (j0, . . . , jp) imposed by the ar
s or ar
 se-quen
es of the ATSP tour. On the one hand, external ar
s of D̄ uniquely 
orre-spond to deadheadings, i.e., node sequen
es (j0, . . . , jp) with edge traversal modes
(m1, . . . ,mp) = (0, . . . , 0), and spe
i�
 street sides (s1, . . . , sm). On the other hand,we have to distinguish several 
ases for the internal ar
s. Note �rst that there are
S := |E1| + 2(|E2| + |E3|) servi
es to 
over, whi
h are represented by 2S pairwiseanti-parallel servi
e ar
s in D̄. Thus, any ATSP tour 
an 
olle
t a pro�t of −S ·Mat best. Moreover, there are nH 
lusters, and penalties of +M are put on all inter-
luster external ar
s. For su�
iently large M , therefore, any optimal ATSP touruses exa
tly S servi
e ar
s and exa
tly nH inter-
luster external ar
s (this impliesproperty (P4), and, with the following arguments, also (P3)).The use of exa
tly S servi
e ar
s also implies that ar
s labelled with ∆ (thesear
s exist only for edges {i, j} ∈ E3 and are named (k, q), (q, k), (p, ℓ), (ℓ, p)) 
anonly be traversed in the sequen
es (k, ℓ, p, q), (q, p, ℓ, k), (ℓ, k, q, p), or (p, q, k, ℓ).Depending on whether the minimum in (3) is given by the �rst or se
ond term, the
orresponding node sequen
es, servi
es and traversal modes have to be 
omputeddi�erently. As mentioned above, for the sequen
e (k, ℓ, p, q) and d̄ℓ,p = c3

ij − c1
ij − c2

ij(minimum given by �rst term) the 
ost of the sequen
e (k, ℓ, p, q) is c3
ij − 2M . The
orresponding sequen
es in G are therefore (i, j), m = (3), and s arbitrarily de�ned(re
all the assumption stated in last senten
e of paragraph on turn restri
tions inSe
tion 2). Similar arguments apply to the three other sequen
es. If the minimumin (3) results from the se
ond term, the two asso
iated servi
es are performed
onse
utively but not in zigzag mode. For the sequen
e (k, ℓ, p, q) in D̄, the resultingpart of the postman tour is given by (i, j, h2, . . . , hp−2, i, j), m = (1, 0, . . . , 0, 2), and

s = (lhs, s2, . . . , sp−1, rhs). The sub-path (j, h2, . . . , hp−2, i) 
orresponds to a 
ost-minimal deadheading from the end-point of the �rst servi
e of {i, j} (performedin dire
tion ij, lo
ated on the lhs) to the start-point of the se
ond servi
e of {i, j}(performed in dire
tion ij, lo
ated on the rhs). Again, similar arguments apply tothe three other sequen
es.The transformation of servi
e ar
s 
orresponding to edges {i, j} ∈ E1∪E2 must beperformed separately for ea
h pair of anti-parallel servi
e ar
s. The same holds forservi
e ar
s 
orresponding to edges {i, j} ∈ E3 when the servi
e ar
 is not in
identto an internal ar
 labelled with ∆. In all these 
ases, the servi
e is on an edge {i, j},and, depending on the asso
iated dire
tion, the part of the postman tour is either
(i, j) or (j, i) with servi
e mode and traversal either m = (1) and s = (lhs), or
m = (2) and s = (rhs).The above transformation ensures that 
onse
utive ar
s (k, k′) and (k′, k′′) ∈ Āimpose node sequen
es that �t together, i.e., sequen
es where the last node im-plied by (k, k′) is also the �rst node implied by (k′, k′′). Summing up, these argu-9



ments show that the resulting postman tour is 
losed (P1) and�be
ause of theuse of turn-feasible paths from the street distan
e network�ful�lls property (P2).The 
ompatibility (P5) is also guaranteed in all of the above 
ases. It is straight-forward to 
he
k that all steps of the transformation are 
ost-preserving. Hen
e,
ost-minimal postman tours 
orrespond to optimal ATSP tours.3.2.4 Integration of Publi
 Transport and Single Park-and-Loop OperationsThere are two pra
ti
al requirements that 
an also be handled with the abovetransformation. First, postmen might use publi
 transport to get from the deliverydepot to their postal distri
t and vi
e versa. These additional options for deadhead-ing 
an easily be integrated into the original graph G by using additional edges
e ∈ E0 and lead to additional ar
s in the street distan
e network between thosepoints where a publi
 transport 
onne
tion exists. The resulting enlarged street dis-tan
e network, denoted by D′

0, 
an be used instead of D′. Mostly, the use of publi
transport is only permitted between the delivery depot and the �rst/last point ofthe distri
t. In this 
ase, only the deadheadings between the `servi
e' {id, jd} ∈ E1and other servi
es should be 
omputed in D′
0 instead of D′. The `kno
k-o� afterlast delivery' 
on
ept �ts ni
ely into this model, sin
e 
onne
tions ba
k to id 
anbe set to 
ost zero.Furthermore, di�erent means of transport might be used for rea
hing or leaving thedistri
t and the delivery operations. For instan
e, the postman might use a 
ar toget to a remote distri
t and use a trolley (on foot) to servi
e households and 
orpo-rate 
lients. This 
ase 
an be solved iteratively with the proposed transformation.One simply has to repla
e the delivery depot by potential parking pla
es p, solvethe EXT-WRPP with `depot' p, and add the 
ost for the deadheading betweenthe delivery depot and the parking pla
e. The 
ost-minimal solution of these isthe solution to this single park-and-loop operations problem. The 
ase that a 
aris stopped multiple times to perform several loops in di�erent parts of the distri
thas been 
onsidered in the work of (Bodin and Levy, 2000). However, these more
ompli
ated routing problems are beyond the s
ope of this paper.3.3 Transformation into an STSPATSP instan
es 
an be transformed into STSP instan
es using the transforma-tion of Jonker and Volgenant (1983). Ea
h ATSP node i is dupli
ated into twoSTSP nodes iin and iout whi
h have to be visited 
onse
utively, i.e., they are 
on-ne
ted with (negative) 
ost −M . ATSP ar
s (i, j) with 
ost d̄ij are transformedinto edges {iout, jin} with the same 
ost and all remaining 
onne
tions in the newgraph are infeasible, i.e., edges {iout, jout} and {iin, jin} have 
ost +M . We use thistransformation mainly in order to 
ompute lower bounds using bran
h-and-
utte
hniques for STSP. Moreover, we will 
ompare standard edge-ex
hange pro
e-dures for the STSP to the transformed postman problem and 
ompare these resultswith our spe
ialised ATSP and ar
-routing improvement pro
edures presented inthe next se
tion. 10



4 Solution Methods for ATSPThe book 
hapter (Johnson et al., 2002) 
overs the standard solution methodologywith 
onstru
tive and improvement heuristi
s for the ATSP. For the sake of brevity,we restri
t ourselves to explain only the new aspe
ts of our solution method.4.1 Constru
tion Heuristi
sATSP 
onstru
tion heuristi
s rely on the well-known nearest neighbour and greedy(also 
alled multiple fragment) prin
iples or are based on solving assignment prob-lems as relaxations of the ATSP, su
h as variants of the pat
hing heuristi
 thatwere studied by Glover et al. (2001). We implemented several of these heuris-ti
s and found out that the nearest neighbour heuristi
�despite its simpli
ity�isthe best one to 
ompute ATSP tours 
orresponding to feasible postman tours.The `pathologi
al' instan
es, where nearest neighbour solutions imposed infeasiblepostman tours, had 
luster 
onstraints, delivery by 
ar, and a large fra
tion ofone-way streets. Thus, the nearest neighbour heuristi
 was used for the ATSP tour
onstru
tion.4.2 Improvement Heuristi
sWe use a variant of an iterated or 
hained lo
al sear
h heuristi
 whi
h 
onsists of thefollowing 
omponents. First, edge-ex
hange neighbourhoods that 
an be sear
hedin O (n2) time, su
h as 2-opt, Or-opt, and string-ex
hange, are 
ombined su
h thata lo
al optimum w.r.t. all these neighbourhoods is 
omputed. Hansen and Mladen-ovi¢ (2001) refer to this prin
iple as variable neighbourhood des
ent (VND). Notethat these neighbourhoods together are able to eliminate all infeasibilities resultingfrom using Ms in the transformations. Lo
al optima always 
orrespond to a fea-sible postman tour. Se
ond, an extension of the restri
ted dynami
 programmingneighbourhood of Balas and Simonetti (2001) is then applied to the result. Thisneighbourhood 
an 
hange a large number of edges at the same time. It is lin-ear in the tour length n, but exponential in a parameter k ≥ 2, and thus is a verylarge-s
ale neighbourhood. It was shown by Balas and Simonetti (2001) that it pro-vides a reasonable 
omplement to the 
lassi
al ATSP edge-ex
hange pro
edures,whi
h only modify a few edges. If an improvement is found both neighbourhoodsear
h pro
edures are repeated. Finally, a lo
al minimum w.r.t. all neighbourhoodsresults. Unbiased random double-bridge moves (
alled ki
k moves) perturb the
urrent tour and provide new iterated start solutions for the above des
ribed lo-
al sear
h des
ent heuristi
. The following se
tions provide more details about thebasi
 
omponents of the improvement pro
edures.4.2.1 Edge-Ex
hange Pro
eduresA 2-opt move inverts a sub-string of the 
urrent tour, an Or-opt move relo
ates astring, and a string-ex
hange move ex
hanges two strings (see, e.g., Funke et al.,2005). As long as the relo
ated and ex
hanged strings are of limited length, se-quential sear
h methods (Irni
h et al., 2006) based on the gain 
riterion (Lin and11



Kernighan, 1973) allow the a

eleration of lo
al sear
h su
h that best improvingmoves 
an be identi�ed faster than by s
anning all Θ(n2) possible moves. We usethis te
hnique for the Or-opt neighbourhood. Instead, the dynami
 programmingpro
edure of Glover (1996) is used for determining a best double-bridge move in
O (n2) time (i.e., a string-ex
hange move without limitations on the string lengthresulting in a Θ(n4)-sized neighbourhood).In order to avoid that the edge-ex
hanges dire
tly undo the double bridge ki
kmoves, the VND pro
edure �rst uses the 2-opt and Or-opt neighbourhoods andapplies double-bridge moves only to lo
al optima w.r.t. 2-opt and Or-opt.4.2.2 Very Large-S
ale Neighbourhood Sear
hVery large-s
ale neighbourhood sear
h (VLSNS) is a variant of lo
al sear
h in whi
hthe sear
h for a best neighbour solution of a large neighbourhood is transformedinto another optimization problem that 
an be solved in (pseudo-)polynomial time.The term `large' refers to neighbourhoods that 
annot be inspe
ted by enumerationof neighbour solutions�one by one�in an `a

eptable' time. A family of large-s
aleneighbourhoods, one for ea
h integer k ≥ 2, has been proposed and analysed byBalas and Simonetti (2001). Given an ATSP tour x = (x0, x1, . . . , xn, x0) the neigh-bourhood N k

BS(x) 
onsists of all routes x′ = (xπ(0), xπ(1), . . . , xπ(n), xπ(0)) where thepermutation π of {0, 1, . . . , n} ful�lls the following 
onditions: For any two indi
es
i, j ∈ {0, 1, . . . , n} with i + k ≤ j the inequality π(i) ≤ π(j) holds. The meaning ofthis de�nition is that if node xi pre
edes node xj by k or more positions then ximust also pre
ede xj in the neighbour solution.The sear
h for a best neighbour solution x′ ∈ N k

BS(x) is performed by solving ashortest-path problem in an auxiliary graph G∗ = G∗
k (we will leave out the index

k in the following). The auxiliary graph G∗ is well-stru
tured; it 
onsists of n + 2stages for a tour x of length n + 1. Ea
h (typi
al) stage i 
onsists of (k + 1)2k−2nodes Vi. Only 
onse
utive stages i and i+1 are linked, i.e., there are k(k +1)2k−2ar
s joining Vi with Vi+1. Stage 0 
ontains the start node o and stage n + 2 thesink node d. Every o-d-path in G∗ is in one-to-one 
orresponden
e to a neighboursolution x′. The 
orresponden
e is implied by the fa
t that ea
h node j refers toa spe
i�
 position in the tour x. One of the amazing properties of G∗ is that thestru
ture of all 
onse
utive stages does not depend on i. The indu
ed subgraphs
G∗(Vi ∪ Vi+1) are all identi
al, they neither depend on i nor on n, but only on k.This allows 
omputing G∗(Vi ∪ Vi+1) beforehand in order to 
onstru
t the entireauxiliary graph G∗ qui
kly.Figure 2 shows an example of G∗ for k = 3 and a tour of length n + 1 = 6.Every node j ∈ Vi refers to position i + α(j), i.e., every row in Figure 2 de�nes ano�set α(j) relative to the 
urrent position i. Those nodes that refer to positions i+
α(j) < 0 or i + α(j) > n + 1 are nodes that 
annot be rea
hed on any o-d-path.Stages i with unrea
hable nodes are 
alled untypi
al stages ; 
orresponding nodesand ar
s are shown dotted in Figure 2. In order to ensure that any o-d-path in
G∗ has a 
ost identi
al to the 
ost of the implied neighbour solution x′, one has12
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®( ) = -2jFig. 2. Auxiliary Graph G∗ for k = 3 and n + 2 = 7 Stagesto label ar
 (j, j′) ∈ Vi × Vi+1 with 
ost cxi+α(j),xi+1+α(j′)
. For instan
e, the �rstbold ar
 in Figure 2 is labelled with 
ost cx0+0,x1+2 = cx0,x3 , the se
ond has 
ost

cx1+2,x2+(−1)
= cx3,x1 et
. This is perfe
tly in a

ordan
e with the fa
t that the boldpath represents the neighbour tour x′ = (x0, x3, x1, x4, x2, x5, x0).It is obvious that we 
an apply VLSNS using the neighbourhood N k

BS to ATSPtours resulting from the transformation des
ribed in Se
tion 3. However, we furtheradapted the idea to ar
-routing problems whi
h are transformed into node-routingproblems by repla
ing a servi
e ar
 with two nodes. The main drawba
k of a dire
tappli
ation to transformed postman tours is that individual nodes but not ar
sare permuted. If one wants to ex
hange ar
s over k (ar
) positions, one has tomove nodes over 2k positions. However, servi
e ar
s 
an be reversed and it is,therefore, not su�
ient to simply rearrange the sequen
e of the ar
s. Here, we
onsider inverted and non-inverted ar
s as atoms for the neighbourhood sear
hpro
edure.More pre
isely, we propose to 
onstru
t a modi�ed neighbourhood Ñ k
BS by dupli-
ating the nodes of G∗ su
h that j ∈ Vi stands for a non-inverted servi
e ar
 and

j′ ∈ Ṽi refers to its inverted 
ounterpart. For a �xed number k, the new auxil-iary graph G̃∗ has twi
e the number of nodes per (typi
al) stage as the originalauxiliary graph G∗. It has four times the number of ar
s between stages. Given apostman tour x = (o, a1, a2, . . . , an, d) with servi
e ar
s a1, a2, . . . , ap, start-node oand end-node d, we build G̃∗ with n + 2 stages and (k + 1)2k−1 nodes Vi ∪ Ṽifor ea
h stage. Ea
h ar
 (j, j′) ∈ Vi × Vi+1 of the original auxiliary graph hasthree fellow ar
s (j, j̃′) ∈ Vi × Ṽi+1, (j̃, j′) ∈ Ṽi × Vi+1, and (j̃, j̃′) ∈ Ṽi × Ṽi+1.Hen
e, G̃∗ has (n + 1)k(k + 1)2k ar
s. An example of a transformed postmantour (o, a1, a2, a3, a4, d) with n = 4 servi
e ar
s is depi
ted in Figure 3. From thevalues α(j), we see that the bold path permutes the ar
s a1, a2, a3, a4 su
h thatthe new ordering is a2, a1, a4, a3. At the same time, the ar
s a1 and a4 are in-verted, be
ause the stages 2 and 3, whi
h are referring to the ar
s a2+(−1) = a1 and
a3+1 = a4, visit nodes of Ṽ2 and Ṽ3, respe
tively. Given that all ar
s aj have tailand head nodes pj and qj, the old tour x is (o, p1, q1, p2, q2, p3, q3, p4, q4, d), and the13
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Fig. 3. Constru
tion of the Auxiliary Graph G̃∗ from G∗ for k = 2new tour is x′ = (o, p2, q2, q1, p1, q4, p4, p3, q3, d). The advantage of the modi�
ationproposed in this se
tion is that for a repositioning of ar
s over less than k positions,we only need to use Ñ k
BS on graph G̃∗ instead of N 2k

BS on graph G∗ for the ATSP.Sin
e the number of nodes and ar
s grow exponentially with k, the fa
tor 2 is 
ru-
ial. The example shows that all ar
s are moved one position forward or ba
kward(whi
h requires k = 2 for G̃∗), while some nodes are moved up to three positions(whi
h requires k = 4 for G∗).5 Computational ResultsThe following 
omputational analysis is based on real-world instan
es provided byour proje
t partner, Deuts
he Post World Net. All postal distri
ts 
onsidered herewere taken from the urban part of the 
ity of Aa
hen (Germany), whi
h is a mid-sized 
ity with about 250,000 inhabitants. Most of the postal distri
ts allow deliveryon foot or by bi
y
le, only a smaller fra
tion requires delivery by 
ar. EXT-WRPPinstan
es were 
reated from these 56 postal distri
ts by altering (1) the lo
ationof the asso
iated delivery depot; (2) the means of transport used for servi
ing thedistri
t, depending on whether streets/roads of the distri
t allow delivery on foot,by bi
y
le, or by 
ar; (3) weights for the importan
e of turn penalties w.r.t. servi
eand traversal 
osts; and by de
iding (4) whether or not 
luster 
onstraints have tobe respe
ted (operational vs. ta
ti
al planning). The obje
tive was always to 
reatea time-minimal postman tour, i.e., traversal and servi
e 
osts were measured in timeunits. A validated model for estimating the time of servi
ing a street segment byzigzagging was not available. Certainly, these servi
e times depend on the distan
ebetween 
onse
utive entran
es of houses on ea
h side of the street, the width of thestreet and pavement, the �ow of tra�
 through the street, the means of transportet
. A simulation model in 
ombination with 
omprehensive 
olle
tion of statisti
aldata 
ould possibly help to identify the most important in�uen
ing variables, butthe e�ort for su
h an empiri
al study was beyond the s
ope of the a
tual proje
t.For the sake of simpli
ity, 
osts for zigzag deliveries were assumed to be identi
alto the 
osts of separate servi
es for delivery on foot and by bi
y
le. For deliveryby 
ar, zigzagging is only possible on very sparsely populated road segments; weassumed that the 
osts for zigzagging are 2.5 times higher than the 
ost for separate14



deliveries. Similarly, we used estimates for the temporal e�ort to perform turns by
lassifying the set of all allowed turns into left-turns, straight 
rossings, right-turns,and u-turns, taking also the means of transport into a

ount. Con
luding, 1236 testinstan
es resulted from this setup, 672 with delivery on foot, 432 by bi
y
le, and132 by 
ar.The majority of the edges de�ning the EXT-WRPP graph G = (V,E) are edges e ∈
E0, be
ause the entire street network of the 
ity 
an in prin
iple be used for dead-heading from the end of one servi
e to the beginning of the next servi
e. Thenumber |E| of edges ranges from 4018 to 4499 (with avg. 4373), while the numberof edges of a parti
ular type is between 6 and 71 (avg. 21.6) for |E1|, between 0and 47 (avg. 14.2) for |E2|, between 0 and 39 (avg. 9.4) for |E3|, and between 19and 100 (avg. 45.2) for required edges R = E \ E0. The resulting ATSP instan
eshad between 62 and 258 nodes with an average of 137.6 nodes.All problem-spe
i�
 algorithms were 
oded in C++, 
ompiled in release mode withMS-Visual C++ .NET 2003 version 7.1; all runs were performed on a standard PC(Intel x86 family 15 model 2) with 2.0 GHz, 1GB main memory, on MS-Win 2000.The free STSP solvers Con
orde and Linkern (version De
 19, 2003) were rununder the Linux emulator Cygwin (version 1.5.10-3).5.1 Exa
t and Heuristi
 Algorithms for STSPWith the �nal transformation of the EXT-WRPP instan
es into STSP instan
esdes
ribed in Se
tion 3.3 we 
an apply well-known and freely available STSP solversto our problem. The Con
orde bran
h-and-
ut solver of Applegate et al. (1999)is an exa
t algorithm whi
h provides optimal solutions to our easy-to-solve probleminstan
es. For the others it gives lower bounds, so that heuristi
 approa
hes 
anbe analysed w.r.t. solution quality.A �rst remarkable observation of the bran
h-and-
ut 
ode is that its running timeis highly unpredi
table and 
an s
atter between less than 1 se
ond and more than20 hours for our small-sized STSPs (on average 275 nodes). There is nearly no
orrelation between the size of the STSP instan
e and the running time. As a
onsequen
e, we skipped trying to 
ompute exa
t solutions for all 1236 instan
es,but Con
orde was used to 
reate a lower bound by solving the root node of thebran
h-and-
ut tree only. The lower bound results from solving the 2-mat
hingrelaxation of the STSP and adding di�erent types of 
utting planes to it. Notethat the Con
orde implementation is not able to handle instan
es with negative
osts on the edges (as resulting from our transformations). Hen
e, multiples of Mwere added to all rows/
olumns of the STSP distan
e matrix so that the resultinginstan
e had no negative 
osts. However, we observed that the lower bounds some-times di�er if several 
alls of Con
orde are performed on the same instan
e. Wesuspe
t that Con
orde uses some random 
omponents to heuristi
ally identifyviolated 
uts. For our statisti
al analysis this means that parts of the results arenot fully and 
onsistently reprodu
ible.Besides the exa
t solver, Applegate et al. (1999) freely distribute the heuristi
 solver15



Linkern for STSPs, whi
h is based on a 
hained Lin-Kernighan edge-ex
hangepro
edure (Lin and Kernighan, 1973; Martin et al., 1992). Applying Linkernto our STSP instan
es provides upper bounds ub and enables us to 
ompute anoptimality gap (ub − lb)/lb. The results 
an be summarised by the following keyfa
ts: 40 out of 1236 instan
es were solved to proven optimality (Linkern andCon
orde gave identi
al bounds). Contrary, 7 times Linkern was not able to
ompute a feasible postman tour, sin
e the STSP tour still had some dispensableedges with 
ost greater than M . The optimality gap provided by Linkern andCon
orde (without bran
hing) was 5.6% on average with a maximum of 35.0%(over all feasible tours found by Linkern). Unexpe
tedly, Linkern was 2 times(out of 1236 instan
es) able to beat all of our algorithms (see next se
tion). Inthose 
ases, the Linkern result was 2.98% and 1.92% better than the best solution
omputed by our algorithms. Nevertheless, the gap between Linkern and our bestfound solution was on average 4.2% worse than our solutions and 29.8% worse inthe maximum.Con
luding, the freely available STSP solution methods do not turn out satisfa
toryin solving the STSP instan
es resulting from the EXT-WRPP transformations. Thelarge gaps and resulting long running times of the bran
h-and-
ut algorithm are anindi
ation that these small-sized instan
es are very hard to solve from a pra
ti
alpoint of view. We suppose that this di�
ulty results from the high degenera
y ofthe instan
es, where multiples of M dominate the obje
tive. More tailored solutionapproa
hes are needed, su
h as the 
ombined edge-ex
hange and VLSNS approa
hempiri
ally analysed in the following se
tion.5.2 Classi
al Edge-Ex
hanges and the Balas & Simonetti NeighbourhoodThere are two main parameters that in�uen
e the quality and speed of the proposediterated VND approa
h 
ombining 
lassi
al edge-ex
hange and VLSNS te
hniques:First, ki
ks for the perturbation of lo
al optima 
an be applied as long as one wantsto 
ontinue the sear
h. One 
an in general expe
t that the overall time in
reaseslinearly with the number of ki
ks and that better solutions are found if more ki
ksare used. The tradeo� between solution quality and running time is re
orded inour setup in the following way: We keep tra
k of the best solution 
omputed sofar and report this best solution together with the running time at six pointsin time: before the �rst ki
k (in the following denoted by kick = 0) and after
100, 200, 500, 1000, and 2000 ki
ks. Se
ond, the Balas & Simonetti neighbourhoodand its modi�
ation Ñ k

BS proposed in Se
tion 4.2.2 have a parameter k for thedistan
e over whi
h nodes/ar
s 
an be re-positioned. Although we expe
t thatlarger values of k allow �nding better solutions, results for an a
tual instan
e 
anshow a di�erent behaviour: For k1 < k2, the best solution �nally found using
Ñ k1

BS may be better than the one found with Ñ k2
BS. Note that the 
ombination ofthe 
lassi
al edge-ex
hange and the VLSNS pro
edures 
an 
reate di�erent lo
aloptima depending on the interplay of these neighbourhoods. We therefore 
omparethe di�erent 
ombinations of the parameters kick and k statisti
ally over a largeset of test instan
es. 16



First, we analyse the running time of the di�erent algorithms. Figure 4 depi
tsthe average running times over all 1236 instan
es. Ea
h of the 
urves shows the
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Fig. 4. Average Running Times w.r.t. Parameters k and kickrunning times for a �xed number of ki
ks and for in
reasing values of k with
k = 0 for a setup without the modi�ed Balas & Simonetti neighbourhood and
Ñ k

BS with k ∈ {4, 6, 8, 9, 10}. Average running times range from less than 1 se
ondfor kick = 0, to an average of 206 se
onds for the most expensive 
ombinationwith kick = 2000 and k = 10. Amazingly, the overall running times show a non-in
reasing behaviour w.r.t. k, whi
h one might not have expe
ted: Solving theATSPs with the smaller neighbourhood Ñ 4
BS took longer than with the largerneighbourhood Ñ 6

BS. The reason for this unexpe
ted behaviour is that for k = 6less iterations with the 
lassi
al edge-ex
hange neighbourhoods were ne
essary torea
h a mutual lo
al optimum. The larger running times for a single sear
h step in
Ñ 6

BS 
ompared to Ñ 4
BS were over
ompensated by the better quality of the 
omputedneighbour solutions. Similar reasons 
an explain why the algorithms resulting from

Ñ 4
BS and Ñ 8

BS 
onsume nearly the same amount of time (for an identi
al numberof ki
ks).Next, we analyse the solution quality of the di�erent algorithms. Sin
e we do notknow optimal solutions for all instan
es, there exist two possible ways to measuresolution quality. A pessimisti
 viewpoint is that the proposed heuristi
s fail to�nd good solutions, so that the lower bound lb 
omputed by Con
orde is theonly reasonable value to 
ompare solutions with. Let ubA be the best solutionfound by algorithm A. Then gapA = (ubA − lb)/lb is the relative deviation fromthe Con
orde lower bound lb of algorithm A. Note that all these values arede�ned for a �xed instan
e of the problem. Sin
e we are interested in statisti
alevaluations we only report average (=mean) and maximum values over the 1236instan
es of our test set. The optimisti
 viewpoint is that at least one of ouralgorithms gets (very 
lose to) the optimal solution. De�ning ubbest = minA ubA,the relative deviation (in per
ent) of algorithm A from the best solution found is
gapA,best = (ubA − ubbest)/ubbest. (In the following, we will leave out the index A.)Figures 5 and 6 display the average gaps gap and gapbest over all 1236 instan
es.17
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Fig. 6. The Average Values of gapbest Computed by Di�erent Algorithms for Parame-ters kick and kIn 
ontrast to Figure 4, ea
h 
urve in the Figures 5 and 6 shows the improvementw.r.t. parameter kick but for a �xed value of k. Note the di�erent s
ales of thetwo diagrams. The deviation gap from the lower bounds provided by Con
ordeis on average less than 2% when at least 100 ki
ks are performed. The deviationgoes down to less than 1.5% for kicks ≥ 500. It seems that neither more ki
ks norgreater values of k help to redu
e the average deviation gap. At this point, it wasnot 
lear to us whether the large gaps are 
aused by weak lower bounds provided byCon
orde or weak upper bounds 
omputed by our algorithms. In order to analysethe bounds in more detail, we 
onsidered instan
es where the deviation gap wasmaximal. The maximal gap gap for the 
omparison with the Con
orde lowerbound is large, i.e., gap = 28.4%. By applying the full bran
h-and-
ut algorithm tothe worst-
ase instan
e (with 312 nodes in the STSP) we found out that the gapof was 
aused by both the weak lower bound 
omputed by Con
orde and theweak solution 
omputed by Linkern: The output was lb = 11,798, ubbest = 15,144.The full bran
h-and-
ut running time of Con
orde was 47 se
onds on 19 bran
h-18



and-bound nodes with an optimal solution z⋆ = 12,243. All of our algorithms with
k ≥ 4 delivered gapbest ≤ 1.9% after 100 ki
ks and found this optimal solution after200 ki
ks. Similar results were observed for other instan
es with a large gap. Wetherefore think that gapbest provides a more realisti
 pi
ture of the solution quality.This average deviation gapbest from the best solution found is depi
ted in Figure 6.It is very small and allows the following interpretations: If 
lassi
al edge-ex
hangeneighbourhoods and the modi�ed Balas & Simonetti neighbourhoods are appliedtogether in the VND approa
h, the resulting algorithm 
onsistently �nds bettersolutions with the same number of ki
ks. On the one hand, even the smallest valueof k = 4 permits redu
ing the average gapbest by a fa
tor of approx. 1.7 
omparedto algorithms that do not use the modi�ed Balas & Simonetti neighbourhood. For
k = 6 the redu
tion is by about fa
tor 3, for k ≥ 8 the redu
tion is by fa
tors ofbetween 6 and 9. On the other hand, doubling the number of ki
k moves (or goingfrom 200 to 500 ki
ks) also 
onsistently improves the quality of the solutions: Theredu
tion of the average deviation gapbest is here by fa
tors of between 1.4 and 2.9.Another pessimisti
 viewpoint is the 
onsideration of the maximum deviation
gapbest over all 1236 instan
es, referred to as max gapbest. These values are shownin the diagram in Figure 7 for all 
ombinations of kick and k. All initial VND so-
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k = 100 200 500 1000 2000
0 575 438 283 214 145
4 482 349 208 136 84
6 384 270 144 86 42
8 296 196 103 61 22
9 271 182 84 48 16
10 247 139 70 39 19Fig. 7. The Maximum Values of gapbest and Number of Instan
es where ubbest was Missedlutions (i.e., kick = 0) have max gapbest = 30.4%, independent of the parameter k.After 100 ki
ks, for algorithms not using the Balas & Simonetti neighbourhood,this value redu
es to about 15%, while algorithms with the VLSNS approa
h havevalues of less than 9%. For k = 4, more ki
ks did not improve the result. Contrary,for k ≥ 6, additional ki
ks help to redu
e max gapbest 
ontinuously. For k = 6 thegap is in the maximum smaller than 8% and for k ≥ 8 less than 4% after 1000ki
ks. Moreover, the small table in Figure 7 shows the number of times a spe
i�
algorithm did not �nd the best known solution. For instan
e, numbers smaller than62 mean that in more than 95% of the 
ases (out of 1236 instan
es) the best knownsolution was 
omputed. All this is a 
lear indi
ation that the modi�ed Balas & Si-monetti neighbourhood with k ≥ 6 in 
ombination with an appropriate numberof ki
ks makes the algorithms behave robustly so that they 
onsistently produ
ehigh-quality solutions. 19



Finally, we present the results 
on
erning the tradeo� between solution quality andthe time spent on sear
hing. Ea
h point (gapbest, time) in Figure 8 shows the aver-ages over all 1236 instan
es for a spe
i�
 
ombination of kick and k. Additionally,the area of dominated points is shaded in grey. For the sake of visibility, points with
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Fig. 8. Tradeo� between Quality and Computation Time
omputation times larger than 65 se
onds are not shown. These are the 
ombina-tions (kick, k) = (2000, 9), (1000, 10), and (2000, 10) with values (0.008%, 206.5s),
(0.013%, 103.5s), and (0.005%, 100.9s). In essen
e, the best solutions were obtainedwith these 
omputationally most 
ostly setups. Moreover, larger average gaps of
gapbest > 0.7% are also not displayed in Figure 8. These result from the initialsolutions of the VND 
omponent, i.e., from algorithms with kick = 0. The 
orre-sponding running times are all very small, but the solution quality in the average
ase and�in parti
ular�in the worst 
ase is una

eptably bad (as was alreadydis
ussed in the previous paragraphs). We interpret the remaining results in thefollowing way: Only 
ombinations with k = 6, k = 8, and less often, with k = 9are Pareto-optimal w.r.t. running time and average solution quality. Ex
ept forhigh-quality and minimum-time 
ombinations (not depi
ted), 
ombinations with
k = 0, k = 4 and k = 10 lead to dominated algorithms: Apparently, large values of
k are too time 
onsuming be
ause of the exponential growth in k of the runningtime for sear
hing Ñ k

BS. Similarly, small values of k lead to fast algorithms, butthey la
k robustness and quality of solutions. As a general re
ommendation (for20



instan
es resulting from transformed postman problems), the values k = 6 and
k = 8 produ
e well-performing algorithms and the tradeo� between quality andrunning time 
an be 
ontrolled by 
hoosing an appropriate number of ki
ks.6 Con
lusionsThis paper has 
onsidered the EXT-WRPP, a very general un
apa
itated ar
-routing problem in
orporating several pra
ti
ally relevant 
onstraints and optionssu
h as street segment sides, turn penalties, 
lustered street segments and thepossibility of servi
ing street segments in zigzag mode. The problem is of greatpra
ti
al importan
e for letter mail delivery. In Germany alone, there are morethan 50,000 distri
ts to be servi
ed every day, ea
h distri
t 
orresponding to anEXT-WRPP instan
e. To formally des
ribe the problem, a graph-theoreti
 modelhas been presented. For solving this model, the paper has proposed a transforma-tion to a standard node-routing problem without additional 
onstraints, namely,to an asymmetri
 or symmetri
 TSP. Computational experiments show that thesolution of the resulting TSP instan
es with standard algorithms does not worksatisfa
torily. This is most probably due to the highly degenerate 
ost stru
ture ofthe instan
es stemming from the use of big M 
onstants. Therefore, a new heuris-ti
 solution method has been devised, based on VND with ki
ks, using 
lassi
aledge-ex
hange and VLSNS steps. By 
omputational experiments Pareto-optimalparameter settings have been identi�ed yielding solutions 
learly and 
onsistentlyoutperforming standard TSP heuristi
s with respe
t to solution quality and 
om-puting time. Moreover, the optimal settings also exhibited a very robust behaviourin the average and worst 
ase in tests on a large set of real-world instan
es.Further interesting resear
h dire
tions in
lude the 
onsideration of time windowsand the extension to multiple vehi
les/
arriers. In the latter 
ase, one has to take ve-hi
le and temporal 
arrier 
apa
ities into a

ount. The resulting ar
-routing prob-lems require to simultaneously 
luster street segments into distri
ts and de
ideon the routing and the mode of servi
ing. Parti
ularly relevant for Deuts
he PostWorld Net is the 
lustering of the servi
e areas a

ording to a given ratio of fulltime and part time postmen.We think that this paper 
onstitutes a 
ontribution to more realisti
 models ande�e
tive solution approa
hes in ar
-routing. Certainly, more integrated network-design, lo
ation, and routing models for postal appli
ations will be developed inthe near future.A
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