Undirected Postman Problems with Zigzagging
Option: A Cutting-Plane Approach

Stefan Irnich *

aDeutsche Post Endowed Chair of Optimization of Distribution Networks,
RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany.

Abstract

The paper devises a new model and associated cutting-plane and branch-and-cut ap-
proaches for a variant of the undirected Chinese and Rural postman problem where some
of the edges offer the flexibility of either being serviced twice by two separate traversals
or by a single zigzag traversal. The kernel of the proposed cutting-plane algorithm is a
separation procedure for generalized blossom inequalities. We show that the currently
best known separation procedure of Letchford et al. (2004) is applicable and leads to a
highly efficient solution approach which can handle large-scale problem instances.

Key words: postman problems, zigzagging, polyhedral theory

1 Introduction

The paper by Irnich (2005) introduced postman problems with zigzagging option
that can be described as follows: A postman has to deliver mail to the street
segments of his district. Street segments can be divided into four classes: The first
class consists of street segments with houses on one side of the street only. These
require a single service, i.e., at least one traversal of the street segment. Second,
there are street segments with houses on both sides, which have to be serviced
separately. Third, some street segments with houses on both sides provide the
option of either servicing them both with a single zigzag traversal or servicing the
two sides separately. In all cases, additional traversals (so-called deadheadings) of
a segment are allowed, but deadheadings and different modes of service can cause
different costs. Fourth, so-called non-required street segments may be used by the
postman to get from one point to another. The problem is to find a least-cost
postman tour for a given district, providing an appropriate service for all street
segments.

* Corresponding author.
Email address: sirnich@or.rwth-aachen.de (Stefan Irnich).

Preprint available at www.dpor.rwth-aachen.de 16 March 2007

While the windy rural variant of this problem has been solved by its transformation
into an ATSP (cf. Irnich, 2005), this paper considers the undirected version of the
problem and a solution approach based on a new model. If the subgraph induced
by edges which require servicing is connected, the problem is called the undirected
Chinese postman problem with zigzagging option (UCPPZ). An instance of the
UCPPZ is defined on an undirected connected graph G = (V, E) with node set V'
and edge set E. Edges are partitioned into £ = E° U E* U E? U E? where E° is
the set of non-required edges, E* and E? are the sets of edges that require single
and double service respectively (but zigzag service is not allowed), and E3 is the
set of edges that provide the zigzagging option. Recall that in Chinese postman
problems the set R = E \ E° of required edges spans a connected subgraph of G. If
R spans more than one component, the resulting problem is called the undirected
rural postman problem with zigzagging option (URPPZ). Four different costs c* €
Q4 with £ € {0,1,2,3} are associated with an edge e € E. k = 0 stands for
deadheading, £ = 1 for servicing the first side, £ = 2 the opposite side of the street
segment, and k = 3 for zigzag service. Obviously, for the edges e € E \ E3 only
some of the costs are relevant, i.e., edges e € E? need three and edges e € E* two
cost coefficients, while edges e € E° only need the cost coefficient °.

The contribution of this paper is twofold: First, we show that the UCPPZ can
be interpreted as a T-join problem (Schrijver, 2003, p. 485f) and, therefore be-
ing solved by shortest path and matching algorithms. This approach efficiently
solves the UCPPZ but is not applicable to extensions of the problem, such as
the URPPZ or mixed, windy, and hierarchical postman problems with zigzagging
option. Therefore, a mixed-integer linear programming formulation is needed to
provide a basis for efficient cutting-plane and branch-and-cut solution algorithms.
The second and main contribution is, therefore, the devising of a new model for
the UCPPZ and URPPZ and the development of an associated branch-and-cut
algorithm. The kernel of such a cutting-plane algorithm is a separation procedure
for generalized blossom inequalities (blossom inequalities, also referred to as odd-
cut inequalities, are well-known in the context of b-matchings as well as different
types of postman problems). We show that the currently best known separation
procedure of Letchford et al. (2004) is applicable and leads to a highly efficient
solution approach which can handle large-scale problem instances.

The paper is structured as follows: We start in Section 2 with the solution of the
UCPPZ as a T-join problem. Section 3 briefly reviews models for the undirected
Chinese postman problem (UCPP). A new model for the UCPPZ is introduced in
Section 4 and its validity is proven. An extension to the rural case is discussed in
Section 5. Section 6 reviews and analyzes separation procedures for the blossom
inequalities. Section 7 gives computational results, starting with a comparison of
the T-join solution approach and the cutting-plane algorithm for the UCPPZ.
Moreover, it shows the effectiveness of the branch-and-cut algorithm when applied
to large-scale URPPZ instances. Final conclusions are given in Section 8.

2 T-joins and the Solution of the UCPPZ

We refer to (Schrijver, 2003, Sectoin 29.1) for notations and solution methods for
T-join problems. First recall that in a graph G = (V, E) and for a subset 7" C V any
subset J C Eis aT-join if T is the set of odd degree nodes in the subgraph spanned
by J. Any T-join is the edge-disjoint union of circuits and |T'|/2 paths connecting
disjoint pairs of nodes of T'. A shortest T-join in the weighted graph G = (V| E, ¢)
is a T-join J* with ¢(J*) = ming.;isa 1-join ¢(J). For non-negative edge weights
cE @‘f‘, a shortest 7T-join can be found by the following procedure: Compute the
shortest-path lengths d;; in (V, E,c) for all ¢,j € T. The corresponding shortest
paths are referred to as p;;. Compute a minimum weight perfect matching M in
the complete weighted graph Kp = (T, E7,d) over the node set T'. The symmetric
difference of the edges of p;; for {i,j} € M is a shortest T-join in the weighted
graph (V, E, ¢).

A solution to the undirected Chinese postman problem (UCPP) can be found as a
shortest T-join in G with edge weights c°, i.e., edge weights corresponding to the
costs of deadheadings. This is essentially the procedure first proposed by Edmonds
(1965). Note that the edges of paths induced by the perfect matching do not
produce circuits or multiple copies of edges as long as all edge weights are positive.
Thus, the symmetric difference of edges implied by the matching is identical to
the union of the edges. Moreover, the same procedure can be applied to UCPPs
with additional edges for deadheading and edges requiring two services, i.e., with
E = E°U E' U E?. Here edges e € E° U E? simply do not contribute to the edge
degrees (or their parities).

The UCPPZ with E?® # @ requires a different solution procedure: Let T be the
set of odd nodes in (V, E' U E?), i.e., nodes incident to an odd number of edges in
E' U E3. Define a new graph G’ = (V, E’,), in which E' = F U p(E?). All edges
e € E are weighted with the deadheading costs ¢, = ¢? and additional edges p(e)
parallel to e € E? are weighted with ¢, = ¢ 42 —¢}. A shortest T-join J' of G’
directly implies an optimal solution to the UCPPZ: Note first that the definition
of odd nodes T reflects the assumption that initially all edges e € E? are serviced
by zigzagging, i.e., the edges e € E® contribute with d, = 1 to the node degrees.
Hence, the interpretation of a solution to the T-join problem is the following: The
presence of an edge p(e) € J' in the T-join means that the initial assumption
is discarded, i.e., instead of a single zigzag traversal, the edge e is serviced by
two separate traversals implying a change of the costs given by c;(e). Edges with
p(e) ¢ J' correspond to those street segments e € E3 serviced by zigzagging. All
other edges e € F C E’ in the T-join imply deadheadings.

A subtle complication arise from the fact that ¢, = cl + 2 — ¢ may be negative,

so that the above procedure cannot be applied directly. However, a T-join problem
with positive and negative edge weights can be transformed into an equivalent
T"-join problem with positive weights only (cf. Schrijver, 2003, p. 485): Let N =
{e € E' : ¢, < 0}. The T-join problem in G’ with weights ¢’ can be solved as a
T"-join problem, where T” is the symmetric difference of 7" and the odd nodes

in (V,N). Moreover, new edge weights are defined as the absolute values of the
original weights, i.e., ¢/ = |c.|. A shortest T-join w.r.t. ¢ can then be computed as
the symmetric difference of J” and N, where J” is a shortest T”-join w.r.t. ¢’.

Concluding, a UCPPZ instance with n = |[V| nodes and m = |F| edges can be
solved in O (n(m + nlogn)) time: First, the transformation into a T-join prob-
lem without negative edge weights takes O (m) time. Second, the solution of the
all-pairs shortest path problem takes O (n(m + nlogn)) time (Fredman and Tar-
jan, 1984). Third, the solution of the weighted perfect matching problem can be
achieved in O (n(m + nlogn)) time (Gabow, 1990).

3 Models for the UCPP

Although the UCPP(Z) can be solved efficiently as T-join problem, there is still
a need for appropriate integer-programming formulations of the problem. First,
knowing more about the structure of the associated polyhedra is of theoretical
interest in itself. Second, extensions of the UCPP(Z) cannot be solved as T-join
problems and, thus, cutting-plane or branch-and-cut algorithms are among the
reasonable and promising solution approaches.

The basic analysis of UCPP models and their polyhedra goes back to the work of
Edmonds and Johnson (1973). They assume that the underlying graph G = (V, E)
is connected. Variables 2, indicate the number of deadheadings through each edge
e € E. A solution to the UCPP requires the selection of edges for deadheading
such that the augmented graph has nodes of even degree only. As usual, we use
the following compact notation: Given vectors o € RIV! and 3 € RIEI| (W) refers
to the sum Y ;¢ ; and B(F) to the sum Y. cp B (for W C V. F C E). For any
subset S C V, the cut set §(S)is{e€ E:e € (S:V\Y5)}. Edmonds and Johnson
(1973) formulated the UCPP with so-called blossom (or odd-cut) inequalities of
the form 2/(S) > 1 for S C V with [6(5)| odd. Defining d(S) = |§(.5)], the blossom
model is

min ' 2/
s.t. 2/(S)>1 for all S C V: d(S) odd (la)
2 > 0. (1b)

Let PYCFF be the set of feasible solutions to (1). It is one of the main results of
Edmonds and Johnson (1973) that all extreme points of PY“PF are integral and
represent feasible solutions to the UCPP. In order to solve the UCPP, one can use
model (1), which requires the solution of a 1-matching problem (cf. Edmonds and
Johnson, 1973). Note, however, that the PUCFP contains (interior) integer solu-
tions 2’ that do not imply feasible solutions to the UCPP, since the corresponding
augmented graph is not even.

An important remark is that both models remain valid if we demand for multiple
services along the edges. From now on, let d. € Z, denote the minimum number
of traversals of edge e € E. We also redefine the node degree to be d; = d({i})

and d(S) = Y.es(s) de, so that the model (1) is still well-defined. By substituting
G by a non-simple graph that contains d. ‘parallel’ copies of edge e, the validity
of the models follows with straightforward arguments if d. > 1 holds for all e € E.
Moreover, the case d, = 0 for some e € FE is identical to the case d, = 2 w.r.t.
the node degree congruences modulo 2; the only difference is an offset of 2¢¥ in the
objective. As long as R = {e¢ € E : d. > 0} spans a connected graph, model (1)
solve this generalized UCPP.

Finally, it will be more convenient for the analysis undertaken in the following
section to consider the number of traversals instead of the number of deadheadings.
This is the substitution of 2’ by variables z which fulfill 2/, = z, — d, for all e € E.

The resulting UCPP model, also valid for d € Zlfl, is

min 'z (—COTd const)
s.t. x2(0(S)) > d(S) + 1 for all S C V: d(S) odd (2a)
x >d. (2b)

4 A Model for the UCPPZ

We propose a model for the UCPPZ that uses traversal variables z, for all e € F
and indicator variables y, € {0,1} for all edges e € E®. y. = 1 indicates that
both sides of the street are serviced separately and y. = 0 that they are serviced
simultaneously by zigzagging. Once all zigzagging decisions have been taken, the
UCPPZ reduces to a simple UCPP. Recall that d. € Z, has been defined as the
minimum number of traversals of edge e € E. For the UCPPZ it means, d. = 0 for
e€ E° d,=1foreec E'UE? and d. = 2 for e € E®. For a given §j € {0,1}/7°,
the vector d? € Z!F! defined by d? = d, for e € E\ E® and d? = d, +§, = 1+, for
e € E? qualifies the number of service traversals for each edge. Thus, let UCPP(y)
be the undirected Chinese postman problem implied by d?. The new model for the
UCPPZ is

min 'z + (et +c ==y (+constant term) (3a)
e€E3
st z(0(S)) —2y(F) >d(S) — |F|+ 1 for all S CV, F C4(S)N E3:
d(S) + | F| odd (3b)
r.>d, forallee E\ E? (3c)
Te > 14y, for all e € E3 (3d)
y € {0, 1}/, (3e)

We refer to inequalities (3b) as generalized blossom inequalities and we will prove
the validity of the above model by the following propositions.

Proposition 1 For any y = y € {0,1}|E3|, the generalized blossom inequali-
ties (3b) are valid for UCPP(y).

Proof: Choose any pair (S, F') with d(S)+]|F| odd. By defining I = I(j) =

{e € E5: y. = 1}, one gets d¥(S) = d(S) + [I Nd(S)| and |[I N F| = y(F).

Case 1: d¥(9) is odd. Inequality (2a) for UCPP(y) imposes

z(8(9))>d?(S)+1=d(S)+ TINS5 +1
d(S)+|INo(S)|+|F|—|F|+1
d(

S)+2[INF|—|F|+1=d(S)+2y(F)—|F|+1

AVAR BNV

S—

Case 2: d¥(S) is even. Summing up the lower bounds (2b) for all e € 6(.5)
of the UCPP(y) model implies

Y(S) = d(S) + [INo(S)| + [F| = |F]

() +(INF[+[I NS\ F) + ([N F|+ |[F\I]) = [F]|
(S) + 2L N F| = |F[+ (I N6(S)\ Fl+ [F\1])

(5) +29(F) = [F]+1

The last inequality follows from the fact that d(S)+ |IN§(S)]| is even, while
d(S)+|F|is odd, and, therefore, INd(S) # F. This implies (INJ(S))\ F # @
or F\(INJ§(S)) =F\I # @,so that (|(INd(S))\ F|+|F\I])is at least 1.
Concluding, in both cases inequality (3b) holds. o

Proposition 2 For any y =75 € {0,1}/%°!, (3) is a valid model for UCPP().
Proof: We show that model (3) for given y reduces to model (2) with
d = d¥. First, variables x and the non-fixed part of the objective are identical.
Second, the lower bounds (2b), i.e., x > d¥, are equivalent to (3c) and (3d).
Third, all constraints (3b) are shown to be valid for UCPP(y) by Propo-
sition 1. What remains to show is that all blossom inequalities (2a), i.e.,
z(0(S)) > d¥(S) + 1 for an arbitrary S C V with d¥(S) odd, are contained
in model (3). For any inequalities (2a), i.e., an S C V' with d¥(S) odd, there
exists an equivalent inequality (3b). By defining F' as {e € §(S) : g. = 1},
the result follows directly from |F| = §(F) and d¥(S) = d(S) + | F|. o

Theorem 1 Model (3) is valid for UCPPZ.

Proof: Because of Proposition 2, the only aspect left to prove is that the
objective (3a) is correct. Given any y € {0, 1}|E3|, the number of deadhead-
ings is determined by 2z, = x., — dY. Therefore, the contribution of an edge
e € E3 to the cost of the postman tour is

Cexe_'_(c +c)ye—|—C (1 _ye)
= (ze — de — ye) + (el + Aye + & — y,
=z, +(c+E -~ A+ (2 —Dd,),

where the last term in brackets is constant and the other terms are included
in (3a). Those terms in the objective (3a) which belong to edges e € E'\ E?

are identical to the ones in the UCPP model. Hence, the objective (3a) con-
tains all cost-relevant components. o

Since the number of generalized blossom inequalities (3b) is, in general, exponential
in |V, the new model (3) cannot be solved directly with integer linear programming
techniques except for tiny and trivial instances. Hence, we propose to apply a
cutting-plane procedure: Start with the relaxed model (3a), (3c), (3d), and 0 <
ye < 1 for all e € E3, and dynamically add violated inequalities (3b) until no
more violated inequalities exist. Section 6 will discuss separation procedures which
solve the subproblem of identifying violated inequalities (3b) in polynomial time.
As a consequence of the ellipsoid method, solving the LP-relaxation can also be
performed in polynomial time (see Grotschel et al., 1981).

Let PLY be the polyhedron of the linear-programming relaxation of (3). As in the
UCPP case, PLY is a polyhedron that contains integer solutions (Z,7) that are
infeasible to our postman problem. However, infeasible integer solutions are never
results of the cutting-plane algorithm if LLPs are solved with the simplex algorithm
(solutions are extreme points). This follows from Proposition 2 and the properties
of the UCPP models (1) and (2).

Finally, we denote by P! the convex hull of feasible integer solutions to (3). Clearly,
PT C PP For the moment, it is an open question as to whether equality holds
or not. If P = PLP the direct consequence would be that the cutting-plane
procedure could always solve the UCPPZ to optimality. If P1 C PL¥ a branch-
and-cut procedure (Padberg and Rinaldi, 1991) can be applied to solve UCPPZ:
Whenever the cutting-plane approach terminates with a fractional solution (z*, y*),
one can select a fractional variable for branching. Because of Proposition 2, one
can restrict oneself to branching on fractional variables 7., so that the depth of the
branch-and-bound tree can never exceed |E3|.

5 The Undirected Rural Postman Problem with Zigzagging Option

If the required edges R = E \ E° span more than one component in G, i.e.,
the spanning subgraph G(R) = (Vg, R) is not connected, the resulting problem
is an undirected rural postman problem (URPP). Pre-processing techniques allow
the simplification of any problem instance to the case that Vx = V holds (cf.
Christofides et al., 1981; Eiselt et al., 1995); we assume V' = Vj in the following. A
model for the URPP extends the UCPP formulation (1) by connectivity constraints
2'(S) >2forall S C Vwith@ #S CV =Vgand d(S) = 0, as shown by Corberan
and Sanchis (1994). Obviously, this translates into

z(6(S)>2 forall SCV,S # @ with d(S) =0 (4)

for model (2), because d(S) = 0 is equivalent to §(S) C E° implying z. = 2/, for all
e € 0(5). The separation of violated connectivity constraints can be performed on
a graph in which all edges e € R are shrunk. Nodes of the shrunk graph correspond

to components of G(R) and edge weights are the flows between the components.
The algorithm of Gomory and Hu (1961) can be used to efficiently find cut sets Sg
with capacity less than 2 in the shrunk graph. These impose sets S C V' of violated
connectivity constraints (4).

Extending model (3) by (4) yields a model for the URPPZ. This follows with the
same arguments as those used in Section 4. Since the resulting model extends
the URPP model, the solution of the LP-relaxation can be fractional, so that a
branch-and-cut procedure has to be applied. Additional cutting planes, referred
to as R-odd cuts, have been used by Corberan and Sanchis (1994) and Ghiani
and Laporte (2000). These have exactly the form of blossom inequalities (1a) (or
their reformulation (2a)) if d is appropriately defined. The generalized blossom
inequalities (3b) already include the R-odd cuts for F' = @ and, therefore, they
can be separated with any method used in the following section.

6 Split Graph and Separation Procedures

The heart of our solution method, the separation procedure for generalized blossom
inequalities, is inspired by the work of Padberg and Rao (1982). In 1982, Padberg
and Rao developed a cutting-plane algorithm to solve the separation sub-problem
for b-matching problems. In the b-matching case, blossom inequalities are of the
form z(6(5)) —2z(F) > 1—|F| forall S C V, F C §(S) with b(S)+ | F| odd. Notice
the similarity between these and our generalized blossom inequalities (3b), where
the essential difference is that xz(F") is replaced by the term y(F') in new variables
y. for the edges e € E? from a (proper) subset of E.

We will use the terminology of (Letchford et al., 2004) to describe the basic solution
procedure, originally proposed by Padberg and Rao, as well as several improve-
ments that lead to enhanced separation procedures with better worst-case running
time. Given a point (z*, y*) outside the polyhedron P the separation procedure
solves the problem of finding a generalized blossom inequality (3b), i.e, determines
sets S C V and F C §(S) with d(S) + |F| odd, separating (z*,y*) from P, In
order to solve the separation problem, construct a so-called split gmph G = (V E)
from G = (V, E) by the following rules. All of the original edges ¢ € E\ E? are
also in £ and weights of k. := =} — d. are assigned to them. Contrary, the edges
e = {i,j} € B3 are divided into two halves by adding an extra node k.. One half
(the so-called normal half) is {i,k.} € E with a weight of x, := 2* — d., and the
second half (the so-called flipped half) is fo = {ke, 7} with a weight of k. + pe,
where p. :=1— 2y;. Because of the obvious correspondence, nodes corresponding
to nodes of the original graph are denoted by V' C V. All nodes k., e € E? of the
split edges constitute the subset K C V. The split graph G has V| + |Es| nodes
and |E| + |Es| edges. Nodes i € K UV are labeled odd if d({i}) plus the number
of flipped edges incident to ¢ is odd; otherwise they are labeled even. Note that all
1 € K are odd.

It is straightforward to prove that there exists a violated generalized blossom in-
equality (3b) if and only if G contains an odd minimum cut 6(.5) with capacity less

than 1. First, the weighted graph G is well-defined since all weights k., = 2} — d,
and k. + p. are non-negative as long as constraints (3c) and (3d) hold. Second,
any odd minimum cut set S with capacity less than 1 must include at least one
original node from V' C V. This follows from the observation, that the sum of the
capacities of a flipped edge and its corresponding normal edge are always greater
or equal to one (k. + (ke + fte) = 2(zF — y}) —2 4+ 1 > 1). Consequently, any
cut with capacity less than 1 cannot contain both edges, i.e., the cut set cannot
contain k., without at least one of the corresponding endpoint from V. Finally, one
gets the violated generalized blossom inequality by defining S := Snv #+ & and
F:={eed(S): f. €8(S9)}. Herein, S is odd in G if and only if d(S) + | F| is odd.

We next derive results about the worst-case running time of separation procedures
that are based on the split graph. Note first, that the split graph has p := |V| +
|E3| nodes and |E| + |E?| = O (m) edges. The odd-min-cut algorithm of Padberg
and Rao (1982) requires a maximum of O (p) max-flow computations, each of
which can be performed in O (pm log(p®/m)) time using the preflow-push algorithm
of Goldberg and Tarjan (1986). The result is an O (p*mlog(p?/m)) separation
procedure. For UCPPZ instances with |E3| = ©(|E|) zigzag edges, i.e., p = O (m),
the resulting complexity of the separation procedure is O (m?log m). Grotschel and
Holland (1987) reduced the effort by shrinking flipped and normal edges of the split
graph in the underlying max-flow computations. The result for the UCPPZ is that
in the worst-case time for the separation reduces to O (pnmlog(n®/m)). Hence, for
UCPPZ instances on dense graphs, i.e., m = O(n?), with |E3| = O(|E|) zigzag
edges, the time bound is O (n®).

An even faster separation procedure with worst-case bound O (n?mlog(n?/m))
has been developed by Letchford et al. (2004). Again, their procedure remains
applicable to our UCPPZ separation problem yielding an O (n?) algorithm in the
dense graph case. The adaptation of the procedure proposed by Letchford et al.
(2004) to the UCPPZ works as follows: Consider the original graph G = (V, E)
but with edge weights w, = k. for e € £\ E? and w, = min{k,, ke + p.} for
e € E3. This graph is called support graph in the following. Construct a cut tree of
the support graph with terminal nodes V' by any cut-tree algorithm (the classical
Gomory and Hu (1961) algorithm in combination with a pre-flow push algorithm
(e.g., Goldberg and Tarjan, 1986) guarantees the O (n?mlog(n?/m)) worst-case
bound). For each cut set S C V stored in the cut tree, compute the best set
F C 6(S) minimizing z(6(S)) — 2y(F) — |F|. Sets S are potential handles of
a blossom inequality. Finding a best set F' = F(S) (of so-called teeth) can be
computed with a linear algorithm in O (|§(S) N E3|) steps. We refer the reader to
(Letchford et al., 2004) and (Letchford et al., 2006) for more detailed explanations
on their and alternative blossom separation procedures.

7 Computational Results

In order to empirically test the proposed UCPPZ model and cutting-plane algo-
rithm, we have randomly generated a set of 160 instances. All instances are defined

on graphs G = (V, E) in which the node set V is located on a rectangular grid,
which mimics street networks. Each inner node of the grid is connected to at least
four neighboring nodes. Some additional ‘diagonal’ connections can exist. A typical
instance is depicted in Fig. 1. Different instances of the same size are constructed
by randomly choosing the type of each edge e € E*, k € {0,1,2,3}, varying the
costs and selecting different diagonal connections. The setup guarantees for the
UCPPZ instances that the required edges form a connected subgraph.

Fig. 1. Example of a UCPPZ Instance on a 4 x 3 Grid;
Edges e € E° are depicted dotted, e € E' U E? with
single/double Lines, e € E3 with Zigzag Lines

Instances of the URPPZ are generated by merging several UCPPZ instances to-
gether using additional edges e € E° such that each UCPPZ instance forms a
single connected component. The 450 URPPZ instances are grouped according to
size and number of connected components and each group consists of 10 instances.
All instances are online available at www.dpor.rwth-aachen.de/uppz-instances.

7.1 Solution of the UCPPZ

The UCPPZ can be solved either as a T-join problem requiring the solution
of shortest-path and minimum weight perfect matching problems, or by using
model (3) and a cutting-plane algorithm using one of the separation procedures
of Sections 6. For the first approach we implemented the Dijkstra algorithm
with Fibonacci heaps (we used the C-+-+ implementation by Dietmar Kuehl,
http://www.dietmar-kuehl.de/cxxrt/heaps.tar.gz, yielding an O (n(m -+
nlogn)) all-pairs shortest path algorithm). The minimum weight perfect matching
problems are solved with an O (n?) implementation coded in C (by Edward Roth-
berg http://elib.zib.de/pub/Packages/mathprog/matching/weighted/). We
refer to the direct T-join approach as (spp+match) and to the cutting-plane al-
gorithm as (Ip+cut). Our cutting-plane and the branch-and-cut approach for the
UCPPZ and URPPZ uses ILOG/CPLEX (version 9.1 and the concert library)
(CPLEX, 2005) for LP solution and branch-and-bound. All problem-specific algo-
rithms have been coded in C and C-++, compiled in release mode with MS-Visual
C++ .NET 2003 version 7.1; all runs were performed on a standard PC (Intel x86
family 15 model 2) with 2.8 GHz, 1GB main memory, on MS-Win 2000.

The ability to solve large-scale UCPPZ instances with the cutting-plane approach
mostly depends on the efficiency of the separation procedures. Our setup uses the
O (|V]2|Ellog(|V|?/|E|)) exact separation procedure of Letchford et al. (2004),
adapted to the UCPPZ. In order to accelerate the separation procedure from an
average-case point of view, connected components C' of the support graph are
computed first. For each component C' and its cut tree, the cut sets S C C' as well

10

as the component C' are tested as handles of a violated blossom inequality. Note
that for an optimal selection of edges F' C 6(S) N E? one must not only consider
edges inside C' but also the edges of 6(C'). The computation of cut trees takes
substantially less time if it is performed for each component separately contrary
to computing cut trees in the entire support graph. This can be explained by the
observation that the support graph typically decomposes into many components
with only very few nodes in each component.

It is worth mentioning that we also tested heuristic separation procedures based on
ideas proposed by Grotschel and Holland (1985) (i.e., the consideration of potential
handles S that are components of the graph induced by edges with flow of at
least e, for a parameter € € [0,1)). However, these heuristics did not consistently
accelerate the cutting-plane approach. The reason for their failure is that the exact
procedure—applied to components of the support graph—is already very fast and
a significant part of the computing time is spent on solving the LP. Heuristic
separation procedures tend to cause more LLP iterations, so that the overall time for
these multiple runs exceeds the running times of the exact separation procedures,
even if single heuristic runs are faster.

The results of our computational test for the UCPPZ are summarized in the Ta-
bles 1 and 2. The first table shows the characteristics of the test instances and a
comparison of the running times of (spp-+match) and (Ip+cut). The sizes of the
instances are given in the first two columns. Since diagonal connections are gener-
ated randomly with a fixed probability of between 0 and 1, the number of edges
can vary between (approximately) 2|V|(|V|—1) and 3|V|?. The second column in-
dicates the minimum and maximum number of edges over 10 instances per group.
The third column refers to the percentage of required edges, i.e., |E \ E°|/|E|.
Since the running times ¢; of (spp+match) and ¢y of (Ip+cut) vary substantially
within the groups, we report the minimum, the average, and the maximum running
times in the columns four and six. Moreover, we show the factor ¢/t to indicate
how much the cutting plane approach is slower compared to the T-join solution
approach.

We interpret the results in the following way: As could be expected, the direct
(spp+match) approach is superior to the cutting-plane approach (Ip-+cut) w.r.t.
the absolute running time: UCPPZ instances with up to 1,000 edges can be solved
by (spp+match) in less than a second, while the cutting plane approach needs
up to 1 minute. All larger instances with up to 10,000 edges can be solved by
(spp+match) in less than 5 minutes. Here, the cutting-plane approach failed to
solve three of the largest instances within the limit of 2 hours computing time.
Interestingly, the comparison of the relative running times using the factor to/t;
shows no clear trend when considering instances of increasing size. The minimum
values of the factor t/t; indicate that there is always at least one larger-sized
instance for which the cutting-plane and (spp-+match) approach require nearly the
same amount of time.

For the (spp-+match) approach, the percentage of the running time spent on solv-

11

|E\E"|

4 |E|] Time ¢ [s] %Time spp Time to [s] Factor
in % (spp-+match) of ¢ (Ip+cut) ta/t1

min/max min/max min/avg/max min/max min/avg/max min/avg/max
10x 10 199/255 76/84 0.008/0.009/0.011 72/84 0.06/0.11,/0.14 6.7/12.4/17.9
12x12 297/378 77/83 0.017/0.023/0.03 59/75 0.09/0.32/0.83 4.2/14.4/38
14x14 371/527 77/84 0.036/0.042/0.047 61,76 0.19/0.38/1.05 4/9.1/24
16 x 16 525/683 78/82 0.072/0.083/0.092 58/67 0.3/1.33/3.31 4/16/40.8
18x 18 696/897 79/82 0.125/0.142/0.158 56/61 1.34/2.55/4.91 9.2/17.8/32.1
20% 20 784/1100 78/82 0.2/0.3/0.4 40/54 1.2/2.8/4.3 4.8/10.1/16.7
22 x 22 932/1270 78/82 0.5/0.5/0.6 34/40 2/9.9/58.1 3.9/19.2/112.7
24 x 24 1234/1621 79/82 0.7/0.8/1.3 32/43 4.7/12.8/23.9 4.7/16/29.4
26 x 26 1319/1890 78/81 1.3/3.3/10.4 28/89 3.5/13/47 0.9/5.7/12.2
28 x 28 1594/2191 78/81 2.5/4.6/14.7 20/88 4.3/21.6/52.6 0.9/6.1/12.4
30x 30 1952/2531 79/81 3.3/7.8/24.5 19/85 8.9/82/418 1.1/18.5/125.5
35 x 35 2395/3328 78/81 9.2/12.6/28.7 13/67 50/316.7/2350.6 2.7/26.9/198.5
40 x 40 3469/4436 78/81 24/29.8/41.1 7/20 119/217.6/591 4/7.5/20.8
45 x 45 4277/5621 78/81 62/72.1/86.1 6/14 78.2/559.3/1478.7 1.2/7.5/19
50 x 50 4994/6724 77/81 141.3/160.5/183.7 47 216.3/1234.8/5120.9 1.3/8.1/36.2
60 x 60 7272/10278 78/81 633.2/703/805 2/6 732.5/3691.3/T L+ 1.1/5.2/10.9

Table 1

Randomly generated UCPPZ Instance and Comparison of (spp-+match) and (Ip+-cut)
Solution Approaches; Each Group consists of 10 Instances; + Failed to solve 3 Instances
within the Time Limit T'L =7,200s

ing shortest path problems (column % Time spp of t1) decreases with the size of
the instances. The main part of the workload is the solution of the matching prob-
lem. Probably, a better implementation for solving the minimum weight perfect
matching problems (we did not have a O (n(m+nlogn)) implementation at hand)
could lead to a better balance between the two algorithmic components and a even
faster (spp-+match) solution procedure.

Details of the behavior of the cutting-plane algorithm (Ip-+cut) are presented in
Table 2. The three columns # Calls sep, # Cuts, and #LP iter show the number of
calls of the separation procedure, the number of cuts separated, and the number
of simplex iterations respectively. Again, we report the minimum, the average, and
the maximum. The two last columns give the time (in seconds) for solving the
UCPPZ to optimality (column Time) and the percentage of the time spent on
separation (% Time sep).

There are significant differences in the computation times of the randomly gen-
erated instances: The longest computation time for a 35 x 35-node instance was
more than 2000 seconds, while all 40 x 40-node and 45 x 45-node instances were
solved faster. The values #Calls sep, # Cuts, and #LP iter can differ by more than
factor 10 within one group (but there is no significant correlation between |E| and
these numbers). In all cases, the separation procedure worked efficiently, because,
on average, more than 5 cuts are generated per second; for small instances the ratio
is significantly better. Moreover, for many instances the part of the overall run-
ning time spent on the separation routine was below 80%. Typically, cutting-plane
algorithms spend more time on separation (as a rule of thumb, more than 90%
of the time). This is, therefore, another indicator that the separation algorithm is

12

4 |E| #Calls sep #Cuts #LP iter %Time sep Time [s]

min/max min/avg/max min/avg/max min/avg/max min/max min/avg/max

10 x 10 199/255 6/12.4/18 44/57/69 86/104/117 11/75 0.06/0.11/0.14

12 x 12 297/378 5/20/46 66,/103/201 136/175/275 50/85 0.09/0.32/0.83

14 x 14 371/527 8/14.8/35 88/128/247 189/257/358 55/76 0.19/0.38/1.05

16 x 16 525/683 8/31.1/65 116/204/313 285/414/622 54/76 0.3/1.33/3.31

18 x 18 696/897 17/37.5/56 204/298/602 482/589/950 72/81 1.34/2.55/4.91

20 x 20 784/1100 16/29.8/40 203/284/406 498/628/786 74/83 1.2/2.8/4.3

22 x 22 932/1270 21/48.5/170 244/479/1668 534/1155/4770 74/87 2/9.9/58.1

24 x 24 1234/1621 23/56.1/85 380/538/886 890/1096,/1495 84/91 4.7/12.8/23.9

26 x 26 1319/1890 16/49.2/156 402/618/1247 847/1345/3339 83/93 3.5/13/47

28 x 28 1594/2191 15/53.3/94 437/704/1212 1084/1434 /2222 85/92 4.3/21.6/52.6

30 x 30 1952/2531 21/80.3/260 525/1276/4575 1276/3835/15289 69/93 8.9/82/418

35 x 35 2395/3328 57/126.1/460 944/2166,/8260 2231/8292/58317 41/95 50/316.7/2350.6

40 x 40 3469/4436 53/104.8/200 1218/1869/4225 2781/3864/8618 89/96 119/217.6/591

45 x 45 4277/5621 32/148.1/264 1327/3932/8439 3161/9842/24995 78/96 78.2/708.9/1662.3

50 x 50 4994/6724 60/164.7/369 1628/5381/14599 3669/12825/54052 80/97 216.3/1234.8/5120.9

60 x 60 7272/10278 56/194.3/363 2492/9207/21258 6260,/34418/102111 65/97 732.5/3691.3/T L+

Table 2

Details of the UCPPZ Cutting-Plane Algorithm; Each Group consists of 10 Instances;
T Failed to solve 3 Instances within the Time Limit T'L =7,200s

sufficiently fast and works efficiently.

Concerning integrality, our computational test did not find any UCPPZ instance for
which the cutting-plane procedure ended with a fractional solution. Hence, branch-
ing was never necessary. Generalized blossom inequalities were always sufficient to
produce integer solution to the UCPPZ. Based on this empirical observation, we
conjecture that P“" = P! holds, i.e., the polyhedron P*? of the LP-relaxation of
model (3) may be integral. It was beyond the scope of this paper to undertake a
detailed polyhedral analysis (results on the dimension of the polyhedron PI, its
facets etc.). Probably, some extreme point preserving transformation from P’ to
some matching polyhedron could yield the desired integrality result.

7.2 Solution of the URPPZ

For the URPPZ the T-join approach is not applicable and we have to rely on
a branch-and-cut algorithm. Computational results are given in Tables 3 and 4.
Column #Comp shows the number of connected components, which is the main
indicator for the difficulty of an instance. The next column #Opt/#Int shows how
many instances of a group are solved to optimality and how often integer feasible
solutions were found within the time limit of 7L =1,800s (no entry means that all
10 instances are solved). The integrality gap %Gap is defined as (z*—1b)/1b- 100%,
where [b is the lower bound at the root node of the branch-and-bound tree and
z* the cost of an optimal solution (min/avg/max are taken w.r.t. instances solved
to optimality). The column #BaB Nodes gives the number of branch-and-bound
nodes explored by the branch-and-cut algorithm. Here, 0 means that an instance
was solved to optimality solely by applying generalized blossom cuts. If the cutting-
plane procedure yields a fractional solution, CPLEX first tries to round variables
in order to find a feasible integer solution. Since all coefficients of our test instances

13

are integer, this rounding heuristic sometimes finds optimal solutions and can prove
their optimality if the integrality gap is smaller than 1.0. Thus, #BaB Nodes is 1
in order to indicate that the solution is computed by the rounding heuristic. Values
greater than 1 indicate that branching was performed. Finally, column Time gives
the overall running time in seconds.

The branch-and-cut algorithm can consistently solve large-scale URPPZ instances
with up to 10 components and about 2,000 edges. The smallest instances that
could not be solved within 1,800s have 16 x 16 nodes and 49 and 64 components
respectively. The branch-and-cut algorithm failed to inspect all branch-and-bound
nodes but integer solutions were always found. Another small 18 x 18-node instance
with 828 edges and 16 components could not be solved, because the cutting-plane
algorithm was not able to solve the root node. Here, already 8,551 generalized
blossom inequalities and 5 connectivity constraints were separated (in addition to
the 16 a priori added connectivity constraints). Nevertheless, the majority (>90%)
of the instances with up to 1,000 edges could be solved to optimality and for more
than 97% an integer solution was computed (with a remaining gap of about 0.7%
on average and less than 2.5% in the worst case).

In general, if the number #Comp of components increases, instances become more
difficult to solve. For instances of the same size (number of node), it means that
integrality gaps, numbers of branch-and-bound nodes, and computing times grow
rapidly, while less instances can be solved within the given time limit. If we compare
instances with an identical number of components but with increasing size, we can
observe a property one would not expect: The larger the instances, the smaller the
integrality gaps and, therefore, the lower the number of branch-and-bound nodes.
One can interpret this behavior as follows: Solving an URPPZ instance consists of
two interdependent subproblems, i.e, making the resulting graph even (connecting
odd nodes) and connecting the components spanned by required edges. Some of the
inter-component edges may at the same time be favorable to eliminate odd degrees
and to connect components. Hence, if components consist of more nodes, there is a
better chance that such favorable edges exist. The result is that by solving the first
subproblem, already more components get connected and, therefore, the second
subproblem becomes easier to solve.

Finally, there is still room for improvement: Several classes of URPP-specific valid
inequalities are known, e.g., inequalities from the graphical TSP and K-C-inequa-
lities, see (Corberan and Sanchis, 1998; Eglese and Letchford, 2000). These addi-
tional cutting planes and corresponding (heuristic) separation procedures might
help to further reduce the integrality gap and, thus, allow larger problem instances
to be solved.

8 Conclusions

Up to now, undirected and directed Chinese postman problems are the only post-
man problems belonging to the complexity class P. With the results of Section 2
we have added the UCPPZ to the complexity class P. Any (minor) extension of

14

these problems studied thus far makes the resulting problems hard to solve, i.e.,
belong to N'P. Well-know examples are rural, mixed, and windy postman prob-
lems. For these, branch-and-cut is one of the most promising solution approaches,
requiring a mixed-integer linear programming model for the problem. The paper
has introduced a basic formulation for the UCPPZ in which generalized blossom
inequalities constitute the heart of the model. The new model is efficiently solv-
able with a cutting-plane algorithm. This results from the presented adaptation of
the currently fastest separation procedure of Letchford et al. (2004) for blossom
inequalities.

The proposed model for the UCPPZ is easily extendible to more general postman
problems, which has been exemplified for the URPPZ. The computational tests
clearly indicate that large-scale instances of the URPPZ with a few thousand edges
can be solved with branch-and-cut in reasonable time.

Acknowledgement

I would like to thank Adam Letchford (Department of Management Science at Lan-
caster University, England) for suggesting T-join-based approaches and for com-
ments on an earlier version of the paper.

References

Christofides, N., Campos, V., Corberan, A., and Mota, E. (1981). An algorithm
for the rural postman problem. Technical Report Report IC.O.R.81.5, Imperial
College, London.

Corberan, A. and Sanchis, J. (1994). A polyhedral approach to the rural postman
problem. Furopean Journal of Operational Research, 79, 95 114.

Corberan, A. and Sanchis, J. (1998). The general routing problem polyhedron:
Facets from the RPP and GTSP polyhedra. FEuropean Journal of Operational
Research, 108, 538-550.

CPLEX (2005). ILOG CPLEX and Concert C++, API 9.1, Reference Manual.
ILOG, France.

Edmonds, J. (1965). The Chinese postman’s problem. Bulletin of the Operations
Research Society of America, 13, B-73.

Edmonds, J. and Johnson, E. (1973). Matching, Euler tours and the Chinese
postman. Mathematical Programming, 5, 88-124.

Eglese, R. and Letchford, A. (2000). Polyhedral theory for arc routing problems.
In M. Dror, editor, Arc Routing: Theory, Solutions, and Applications, chapter 6,
pages 199-230. Kluwer, Boston.

Eiselt, H., Gendreau, M., and Laporte, G. (1995). Arc routing problems, Part II:
The rural postman problem. Operations Research, 43(3), 399-414.

Fredman, M. and Tarjan, R. (1984). Fibonacci heaps and their uses in improved
network optimization algorithms. In 25th Annual Symposium on Foundations
of Computer Science (25th FOCS, Singer Island, Florida, 1984), pages 338 346,
New York. IEEE.

15

Gabow, H. (1990). Data structures for weighted matching and nearest common
ancestors with linking. In Proceedings of the First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (San Francisco, California, 1990), pages 434-443,
Philadelphia, Pennsylvania. STAM.

Ghiani, G. and Laporte, G. (2000). A branch-and-cut algorithm for the undirected
rural postman problem. Mathematical Programming, 87(3), 467 482.

Goldberg, A. and Tarjan, R. (1986). A new approach to the maximum flow prob-
lem. In Proceedings of the Eight Annual ACM Symposium on the Theory of
Computing (Berkley, CA, 1986).

Gomory, R. and Hu, T. (1961). Multi-terminal network flows. SIAM Journal on
Applied Mathematics, 9, 551 570.

Grotschel, M. and Holland, O. (1985). Solving matching problems with linear
programming. Mathematical Programming, 33, 243-259.

Grotschel, M. and Holland, O. (1987). A cutting plane algorithm for minimum
perfect 2-matching. Computing, 39(4), 327-344.

Grotschel, M., Lovasz, L., and Schrijver, A. (1981). The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica, 1(2), 169 197.

Irnich, S. (2005). A note on postman problems with zigzag service. INFOR, 43(1),
33-39.

Letchford, A., Reinelt, G., and Theis, D. (2004). A faster exact separation al-
gorithm for blossom inequalities. In G. Nemhauser and D. Bienstock, editors,
Integer Programming and Combinatorial Optimization, volume 3064, chapter 10.
Springer, Berlin.

Letchford, A., Reinelt, G., and Theis, D. (2006). Odd minimum cut sets and
b-matchings revisited. Technical report, Department of Management Science,
Lancaster University, Lancaster, England.

Padberg, M. and Rao, M. (1982). Odd minimum cut-sets and b-matchings. Math-
ematics of Operations Research, 7, 67 80.

Padberg, M. and Rinaldi, G. (1991). A branch-and-cut algorithm for the resolution
of large-scale symmetric traveling salesman problems. SIAM Review, 33(1), 60—
100.

Schrijver, A. (2003). Combinatorial Optimization. Polyhedra and Efficiency. Num-
ber 24 in Algorithms and Combinatorics. Springer, Berlin Heidelberg New York.

16

V| |E| #Comp #Opt/#Int %Gap #BaB Nodes Time [s]
min/max min/avg/max min/avg/max min/avg/max
10x 10 184/246 4 0/0.01/0.09 0/0.3/2 0.1/0.2/0.6
184/257 9 0/0.03/0.33 0/1.3/12 0.1/0.3/0.7
187/256 16 0/0.17/0.5 0/6.9/25 0.1/1.3/4.1
205/257 25 0.06/0.49/1.09 1/144.9/958 0.7/41.1/314
12x 12 267/369 4 0/0.01/0.06 0/0.5/4 0.1/0.4/1
266/378 9 0/0.03/0.23 0/1.6/11 0.1/0.5/1.8
274/358 16 0/0.1/0.42 0/7.7/35 0.1/9.9/58.2
285/376 25 0/0.18/0.45 0/28.5/120 0.8/18.8/81.8
272/343 36 0.09/0.31/0.79 3/72.2/475 0.4/38.6/207.6
14x14 390/507 4 0/0/0 0/0/0 0.2/1.4/10.3
384/531 9 0/0.01/0.05 0/1.1/5 0.2/2.4/15.6
388,523 16 0/0.03/0.11 0/5.6/47 0.4/3/13.6
365,502 25 0.03/0.13/0.26 2/19.7/61 1.7/17.9/73.7
366,524 36 0/0.19/0.39 0/63.4/262 1.7/74.8/361.4
395/529 49 0.17/0.34/0.58 12/195.4/677 4.7/459.3/1720.6
16 x 16 493/687 4 0/0/0.01 0/0.2/2 0.6/4.9/38.6
485,703 9 0/0/0.02 0/0.6/3 0.4/12.1/105.4
497/678 16 0/0.03/0.1 0/2.2/7 0.8/11.9/36.6
496,705 25 0/0.07/0.27 0/15.5/113 0.5/26.4/146.3
482/700 36 0/0.16/0.29 0/78.4/264 0.5/386.4/1390.2
546/685 49 8/10 0.05/0.23/0.41 16/167.2/480 95.2/753.5/TL
484/688 64 3/10 0.25/0.27/0.3 36/216.1/612 499.3/1562.4/TL
18 x 18 698/900 4 0/0/0 0/0/0 0.8/2/3.8
612,894 9 0/0/0.01 0/0.3/2 0.8/9/56
628/879 16 9/9 0/0.01/0.03 0/0.8/4 0.8/186.8/TL
638,885 25 0/0.03/0.07 0/4.3/12 2.1/24.6/109.6
621,854 36 9/10 0,/0.03/0.09 0/22.1/129 1.4/203.9/TL
652/883 49 8/9 0/0.07/0.18 0/38.3/92 1.3/444.4/TL
626/901 64 6/10 0.03/0.12/0.19 1/50.1/173 5.5/881.5/TL
669,830 81 3/6 0.04/0.14/0.2 1/72.1/187 335.6/1508.2/TL
20%20 761/1111 4 0/0/0.03 0/1/10 1.2/3.9/13.8
781/1025 9 0/0/0.02 0/0.3/3 0.9/5.5/17.4
760/1118 16 0/0.01/0.06 0/5/49 1.6/33.2/270.5
796/1017 25 0/0.01/0.04 0/3.1/16 2.4/61.6/288.7
808/1023 36 9/9 0/0.05/0.13 0/11.3/53 1.9/379.3/TL
768/1041 49 8/9 0,/0.03/0.06 0/6.2/28 4.2/463.3/TL
831/1105 64 6/10 0.04/0.09/0.18 10/143.3/410 62.1/1177/TL
775/1114 81 2/4 0.11/0.13/0.15 6/38.2/137 29.4/1563.5/TL
22 %22 934/1362 4 0/0/0 0/0/0 2.4/5.8/11.3
936,/1365 9 0/0/0 0/0.1/1 1.2/8.4/26.9
978,/1358 16 0/0/0.03 0/2.2/18 2.2/41.6/327.8
950,/1263 25 0/0.01/0.03 0/2.5/14 1.4/36.7/77.4
1045/1357 36 9/9 0/0.01/0.06 0/2.8/19 2.5/211.7/TL
1091/1350 49 7/7 0,/0.03/0.09 0/13.1/41 3/827/TL
933,/1295 64 47 0.01/0.08/0.18 1/41.2/95 3.3/1312.2/TL
24 %24 1139/1625 4 0/0/0 0/0/0 3.5/11.5/22.1
1124/1612 9 0/0/0 0/0.2/2 1.9/13.8/35.5
1161/1624 16 0/0/0.01 0/0.3/2 4.1/10.1/23.4
1120/1624 25 8/8 0/0.01/0.02 0/4.1/22 1.6/388.1/TL
1130/1527 36 9/10 0/0.02/0.04 0/18.8/112 4.4/379.2/TL
1144/1567 49 6/6 0/0.01/0.04 0/11.3/50 5.9/875.3/TL
1151/1567 64 3/4 0/0.05/0.1 0/24.6/130 6.4/1337.8/TL
Table 3

Details of the URPPZ Branch-and-Cut Algorithm for Smaller Instances; Each Group

consists of 10 Instances; Time limit T'L =1,800s

17

V| |E| #Comp #Opt/#Int %Gap #BaB Nodes Time [s]

min/max min/avg/max min/avg/max min/avg/max
24 x 24 1139/1625 4 0/0/0 0/0/0 3.5/11.5/22.1
1124/1612 9 0/0/0 0/0.2/2 1.9/13.8/35.5
1161/1624 16 0/0/0.01 0/0.3/2 4.1/10.1/23.4
1120/1624 25 8/8 0/0.01,0.02 0/4.1/22 1.6/388.1/TL
1130/1527 36 9/10 0/0.02/0.04 0/18.8/112 4.4/379.2/TL
1144/1567 49 6/6 0/0.01/0.04 0/11.3/50 5.9/875.3/TL
1151/1567 64 3/4 0/0.05/0.1 0/24.6/130 6.4/1337.8/TL
26 x 26 1354/1759 4 0/0/0.01 0/0.1/1 4.5/53.3/257.8
1332/1898 9 0/0/0 0/0/0 4/159.7/1260.2
1323/1788 16 9/9 0/0/0 0/0.3/2 3.6/249.1/TL
1328/1890 25 0/0/0.03 0/0.4/4 4.2/21.1/117.7
1303/1904 36 /7 0/0.01/0.04 0/4.5/17 13.3/677.7/TL
1390/1918 49 8/8 0/0.02/0.04 0/7.3/35 33.2/568.3/TL
28 x 28 1623/2213 4 0/0/0 0/0/0 8.2/18.2/43.1
1568/2122 9 0/0/0 0/0/0 6.1/29.2/97.9
1538/2201 16 9/9 0/0/0.01 0/0.3/3 10.3/236.5/TL
1670/2225 25 0/0/0.02 0/0.9/4 7.4/112/561.4
1516/2139 36 8/8 0/0.01/0.01 0/1.5/3 40/551.5/TL
30 x 30 1782/2439 4 0/0/0 0/0/0 10.5/189.5/1479.8
1775/2556 9 9/9 0/0/0 0/0/0 17/214.5/TL
1741/2563 16 9/9 0/0/0 0/0.1/1 9.7/249.8/TL
1786/2577 25 9/9 0/0/0.02 0/1.3/9 30.4/265/TL
1760/2544 36 8/8 0/0/0.02 0/3.4/19 20.1/615.2/TL
35 x 35 2574/3507 4 0/0/0 0/0/0 30.2/210/774.7
2467/3460 9 0/0/0 0/0/0 22.8/131.3/573.6
2476/3421 16 9/9 0/0/0 0/0.1/1 25.9/262.3/TL
2867/3519 25 9/9 0/0/0 0/0.2/1 55.3/347/TL
2446/3509 36 6/6 0/0/0.01 0/4.2/31 75.1/1047/TL
40 x 40 3282/4027 4 0/0/0 0/0/0 100.2/280.4/727.9
3125/4361 9 0/0/0 0/0/0 50.8/204.6/638.1
3453/4401 16 0/0/0 0/0/0 52.6/226.8/868.9
3142/4568 25 9/9 0/0/0 0/0.1/1 47.9/505.9/TL
45 x 45 4168/5466 4 9/9 0/0/0 0/0/0 73.8/579.9/TL
4483/5861 9 8/8 0/0/0 0/0/0 162.5/710/TL
3988/5751 16 6/6 0/0/0 0/0.5/4 153.6/956.1/TL
4061/5733 25 8/8 0/0/0 0/0/0 135.2/714.1/TL
50 x 50 5258,/6438 4)7 0/0/0 0/0/0 222.5/1062.1/TL
4938/7135 9 8/8 0/0/0 0/0/0 148.4/924.1/TL
5332/7113 16 77 0/0/0 0/0/0 303.9/891.9/TL
5076,/6903 25 8/8 0/0/0 0/0/0 268.3/1054.3/TL
60 x 60 8110/10367 4 6/6 0/0/0 0/0/0 667.8/1506.2/TL
7176/10425 9 4/4 0/0/0 0/0/0 938.1/1617.1/TL
7517/10216 16 3/3 0/0/0 0/0/0 947/1653.7/TL
7255/10541 25 5/5 0/0/0 0/0/0 885.4/1578.9/TL

Table 4
Details of the URPPZ Branch-and-Cut Algorithm for Larger Instances; Each Group con-
sists of 10 Instances; Time limit T'L =1,800s

18

