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tThe paper devises a new model and asso
iated 
utting-plane and bran
h-and-
ut ap-proa
hes for a variant of the undire
ted Chinese and Rural postman problem where someof the edges o�er the �exibility of either being servi
ed twi
e by two separate traversalsor by a single zigzag traversal. The kernel of the proposed 
utting-plane algorithm is aseparation pro
edure for generalized blossom inequalities. We show that the 
urrentlybest known separation pro
edure of Let
hford et al. (2004) is appli
able and leads to ahighly e�
ient solution approa
h whi
h 
an handle large-s
ale problem instan
es.Key words: postman problems, zigzagging, polyhedral theory1 Introdu
tionThe paper by Irni
h (2005) introdu
ed postman problems with zigzagging optionthat 
an be des
ribed as follows: A postman has to deliver mail to the streetsegments of his distri
t. Street segments 
an be divided into four 
lasses: The �rst
lass 
onsists of street segments with houses on one side of the street only. Theserequire a single servi
e, i.e., at least one traversal of the street segment. Se
ond,there are street segments with houses on both sides, whi
h have to be servi
edseparately. Third, some street segments with houses on both sides provide theoption of either servi
ing them both with a single zigzag traversal or servi
ing thetwo sides separately. In all 
ases, additional traversals (so-
alled deadheadings) ofa segment are allowed, but deadheadings and di�erent modes of servi
e 
an 
ausedi�erent 
osts. Fourth, so-
alled non-required street segments may be used by thepostman to get from one point to another. The problem is to �nd a least-
ostpostman tour for a given distri
t, providing an appropriate servi
e for all streetsegments.
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While the windy rural variant of this problem has been solved by its transformationinto an ATSP (
f. Irni
h, 2005), this paper 
onsiders the undire
ted version of theproblem and a solution approa
h based on a new model. If the subgraph indu
edby edges whi
h require servi
ing is 
onne
ted, the problem is 
alled the undire
tedChinese postman problem with zigzagging option (UCPPZ). An instan
e of theUCPPZ is de�ned on an undire
ted 
onne
ted graph G = (V, E) with node set Vand edge set E. Edges are partitioned into E = E0 ∪ E1 ∪ E2 ∪ E3 where E0 isthe set of non-required edges, E1 and E2 are the sets of edges that require singleand double servi
e respe
tively (but zigzag servi
e is not allowed), and E3 is theset of edges that provide the zigzagging option. Re
all that in Chinese postmanproblems the set R = E \E0 of required edges spans a 
onne
ted subgraph of G. If
R spans more than one 
omponent, the resulting problem is 
alled the undire
tedrural postman problem with zigzagging option (URPPZ). Four di�erent 
osts ck

e ∈
Q+ with k ∈ {0, 1, 2, 3} are asso
iated with an edge e ∈ E. k = 0 stands fordeadheading, k = 1 for servi
ing the �rst side, k = 2 the opposite side of the streetsegment, and k = 3 for zigzag servi
e. Obviously, for the edges e ∈ E \ E3 onlysome of the 
osts are relevant, i.e., edges e ∈ E2 need three and edges e ∈ E1 two
ost 
oe�
ients, while edges e ∈ E0 only need the 
ost 
oe�
ient c0

e.The 
ontribution of this paper is twofold: First, we show that the UCPPZ 
anbe interpreted as a T -join problem (S
hrijver, 2003, p. 485f) and, therefore be-ing solved by shortest path and mat
hing algorithms. This approa
h e�
ientlysolves the UCPPZ but is not appli
able to extensions of the problem, su
h asthe URPPZ or mixed, windy, and hierar
hi
al postman problems with zigzaggingoption. Therefore, a mixed-integer linear programming formulation is needed toprovide a basis for e�
ient 
utting-plane and bran
h-and-
ut solution algorithms.The se
ond and main 
ontribution is, therefore, the devising of a new model forthe UCPPZ and URPPZ and the development of an asso
iated bran
h-and-
utalgorithm. The kernel of su
h a 
utting-plane algorithm is a separation pro
edurefor generalized blossom inequalities (blossom inequalities, also referred to as odd-
ut inequalities, are well-known in the 
ontext of b-mat
hings as well as di�erenttypes of postman problems). We show that the 
urrently best known separationpro
edure of Let
hford et al. (2004) is appli
able and leads to a highly e�
ientsolution approa
h whi
h 
an handle large-s
ale problem instan
es.The paper is stru
tured as follows: We start in Se
tion 2 with the solution of theUCPPZ as a T -join problem. Se
tion 3 brie�y reviews models for the undire
tedChinese postman problem (UCPP). A new model for the UCPPZ is introdu
ed inSe
tion 4 and its validity is proven. An extension to the rural 
ase is dis
ussed inSe
tion 5. Se
tion 6 reviews and analyzes separation pro
edures for the blossominequalities. Se
tion 7 gives 
omputational results, starting with a 
omparison ofthe T -join solution approa
h and the 
utting-plane algorithm for the UCPPZ.Moreover, it shows the e�e
tiveness of the bran
h-and-
ut algorithm when appliedto large-s
ale URPPZ instan
es. Final 
on
lusions are given in Se
tion 8.2



2 T -joins and the Solution of the UCPPZWe refer to (S
hrijver, 2003, Se
toin 29.1) for notations and solution methods for
T -join problems. First re
all that in a graph G = (V, E) and for a subset T ⊆ V anysubset J ⊆ E is a T -join if T is the set of odd degree nodes in the subgraph spannedby J . Any T -join is the edge-disjoint union of 
ir
uits and |T |/2 paths 
onne
tingdisjoint pairs of nodes of T . A shortest T -join in the weighted graph G = (V, E, c)is a T -join J∗ with c(J∗) = minJ :J is a T -join c(J). For non-negative edge weights
c ∈ Q

|E|
+ , a shortest T -join 
an be found by the following pro
edure: Compute theshortest-path lengths dij in (V, E, c) for all i, j ∈ T . The 
orresponding shortestpaths are referred to as pij. Compute a minimum weight perfe
t mat
hing M inthe 
omplete weighted graph KT = (T, ET , d) over the node set T . The symmetri
di�eren
e of the edges of pij for {i, j} ∈ M is a shortest T -join in the weightedgraph (V, E, c).A solution to the undire
ted Chinese postman problem (UCPP) 
an be found as ashortest T -join in G with edge weights c0, i.e., edge weights 
orresponding to the
osts of deadheadings. This is essentially the pro
edure �rst proposed by Edmonds(1965). Note that the edges of paths indu
ed by the perfe
t mat
hing do notprodu
e 
ir
uits or multiple 
opies of edges as long as all edge weights are positive.Thus, the symmetri
 di�eren
e of edges implied by the mat
hing is identi
al tothe union of the edges. Moreover, the same pro
edure 
an be applied to UCPPswith additional edges for deadheading and edges requiring two servi
es, i.e., with

E = E0 ∪ E1 ∪ E2. Here edges e ∈ E0 ∪ E2 simply do not 
ontribute to the edgedegrees (or their parities).The UCPPZ with E3 6= ∅ requires a di�erent solution pro
edure: Let T be theset of odd nodes in (V, E1 ∪E3), i.e., nodes in
ident to an odd number of edges in
E1 ∪ E3. De�ne a new graph G′ = (V, E ′, c′), in whi
h E ′ = E ∪ p(E3). All edges
e ∈ E are weighted with the deadheading 
osts c′e = c0

e and additional edges p(e)parallel to e ∈ E3 are weighted with c′p(e) = c1
e + c2

e − c3
e. A shortest T -join J ′ of G′dire
tly implies an optimal solution to the UCPPZ: Note �rst that the de�nitionof odd nodes T re�e
ts the assumption that initially all edges e ∈ E3 are servi
edby zigzagging, i.e., the edges e ∈ E3 
ontribute with de = 1 to the node degrees.Hen
e, the interpretation of a solution to the T -join problem is the following: Thepresen
e of an edge p(e) ∈ J ′ in the T -join means that the initial assumptionis dis
arded, i.e., instead of a single zigzag traversal, the edge e is servi
ed bytwo separate traversals implying a 
hange of the 
osts given by c′p(e). Edges with

p(e) /∈ J ′ 
orrespond to those street segments e ∈ E3 servi
ed by zigzagging. Allother edges e ∈ E ⊂ E ′ in the T -join imply deadheadings.A subtle 
ompli
ation arise from the fa
t that c′p(e) = c1
e + c2

e − c3
e may be negative,so that the above pro
edure 
annot be applied dire
tly. However, a T -join problemwith positive and negative edge weights 
an be transformed into an equivalent

T ′′-join problem with positive weights only (
f. S
hrijver, 2003, p. 485): Let N =
{e ∈ E ′ : c′e < 0}. The T -join problem in G′ with weights c′ 
an be solved as a
T ′′-join problem, where T ′′ is the symmetri
 di�eren
e of T and the odd nodes3



in (V, N). Moreover, new edge weights are de�ned as the absolute values of theoriginal weights, i.e., c′′e = |c′e|. A shortest T -join w.r.t. c′ 
an then be 
omputed asthe symmetri
 di�eren
e of J ′′ and N , where J ′′ is a shortest T ′′-join w.r.t. c′′.Con
luding, a UCPPZ instan
e with n = |V | nodes and m = |E| edges 
an besolved in O (n(m + n log n)) time: First, the transformation into a T -join prob-lem without negative edge weights takes O (m) time. Se
ond, the solution of theall-pairs shortest path problem takes O (n(m + n log n)) time (Fredman and Tar-jan, 1984). Third, the solution of the weighted perfe
t mat
hing problem 
an bea
hieved in O (n(m + n log n)) time (Gabow, 1990).3 Models for the UCPPAlthough the UCPP(Z) 
an be solved e�
iently as T -join problem, there is stilla need for appropriate integer-programming formulations of the problem. First,knowing more about the stru
ture of the asso
iated polyhedra is of theoreti
alinterest in itself. Se
ond, extensions of the UCPP(Z) 
annot be solved as T -joinproblems and, thus, 
utting-plane or bran
h-and-
ut algorithms are among thereasonable and promising solution approa
hes.The basi
 analysis of UCPP models and their polyhedra goes ba
k to the work ofEdmonds and Johnson (1973). They assume that the underlying graph G = (V, E)is 
onne
ted. Variables x′
e indi
ate the number of deadheadings through ea
h edge

e ∈ E. A solution to the UCPP requires the sele
tion of edges for deadheadingsu
h that the augmented graph has nodes of even degree only. As usual, we usethe following 
ompa
t notation: Given ve
tors α ∈ R|V | and β ∈ R|E|, α(W ) refersto the sum ∑

i∈W αi and β(F ) to the sum ∑

e∈F βe (for W ⊆ V, F ⊆ E). For anysubset S ⊆ V , the 
ut set δ(S) is {e ∈ E : e ∈ (S : V \S)}. Edmonds and Johnson(1973) formulated the UCPP with so-
alled blossom (or odd-
ut) inequalities ofthe form x′(S) ≥ 1 for S ⊆ V with |δ(S)| odd. De�ning d(S) = |δ(S)|, the blossommodel is
min c0⊤x′s.t. x′(S) ≥ 1 for all S ⊆ V : d(S) odd (1a)

x′ ≥ 0. (1b)Let P UCPP be the set of feasible solutions to (1). It is one of the main results ofEdmonds and Johnson (1973) that all extreme points of P UCPP are integral andrepresent feasible solutions to the UCPP. In order to solve the UCPP, one 
an usemodel (1), whi
h requires the solution of a 1-mat
hing problem (
f. Edmonds andJohnson, 1973). Note, however, that the P UCPP 
ontains (interior) integer solu-tions x′ that do not imply feasible solutions to the UCPP, sin
e the 
orrespondingaugmented graph is not even.An important remark is that both models remain valid if we demand for multipleservi
es along the edges. From now on, let de ∈ Z+ denote the minimum numberof traversals of edge e ∈ E. We also rede�ne the node degree to be di = d({i})4



and d(S) =
∑

e∈δ(S) de, so that the model (1) is still well-de�ned. By substituting
G by a non-simple graph that 
ontains de `parallel' 
opies of edge e, the validityof the models follows with straightforward arguments if de ≥ 1 holds for all e ∈ E.Moreover, the 
ase de = 0 for some e ∈ E is identi
al to the 
ase de = 2 w.r.t.the node degree 
ongruen
es modulo 2; the only di�eren
e is an o�set of 2c0

e in theobje
tive. As long as R = {e ∈ E : de > 0} spans a 
onne
ted graph, model (1)solve this generalized UCPP.Finally, it will be more 
onvenient for the analysis undertaken in the followingse
tion to 
onsider the number of traversals instead of the number of deadheadings.This is the substitution of x′ by variables x whi
h ful�ll x′
e = xe − de for all e ∈ E.The resulting UCPP model, also valid for d ∈ Z

|E|
+ , is

min c0⊤x
(

−c0⊤d 
onst)s.t. x(δ(S)) ≥ d(S) + 1 for all S ⊆ V : d(S) odd (2a)
x ≥ d. (2b)4 A Model for the UCPPZWe propose a model for the UCPPZ that uses traversal variables xe for all e ∈ Eand indi
ator variables ye ∈ {0, 1} for all edges e ∈ E3. ye = 1 indi
ates thatboth sides of the street are servi
ed separately and ye = 0 that they are servi
edsimultaneously by zigzagging. On
e all zigzagging de
isions have been taken, theUCPPZ redu
es to a simple UCPP. Re
all that de ∈ Z+ has been de�ned as theminimum number of traversals of edge e ∈ E. For the UCPPZ it means, de = 0 for

e ∈ E0, de = 1 for e ∈ E1 ∪ E3, and de = 2 for e ∈ E2. For a given ȳ ∈ {0, 1}|E
3|,the ve
tor dȳ ∈ Z

|E|
+ de�ned by dȳ

e = de for e ∈ E \E3 and dȳ
e = de + ȳe = 1+ ȳe for

e ∈ E3 quali�es the number of servi
e traversals for ea
h edge. Thus, let UCPP(ȳ)be the undire
ted Chinese postman problem implied by dȳ. The new model for theUCPPZ is
min c0⊤x +

∑

e∈E3

(c1
e + c2

e − c0
e − c3

e)ye (+
onstant term) (3a)s.t. x(δ(S)) − 2y(F ) ≥ d(S) − |F | + 1 for all S ⊆ V , F ⊆ δ(S) ∩ E3:
d(S) + |F | odd (3b)

xe ≥ de for all e ∈ E \ E3 (3c)
xe ≥ 1 + ye for all e ∈ E3 (3d)
y ∈ {0, 1}|E

3|. (3e)We refer to inequalities (3b) as generalized blossom inequalities and we will provethe validity of the above model by the following propositions.Proposition 1 For any y = ȳ ∈ {0, 1}|E
3|, the generalized blossom inequali-ties (3b) are valid for UCPP(ȳ).Proof: Choose any pair (S, F ) with d(S)+|F | odd. By de�ning I = I(ȳ) =

{e ∈ E3 : ȳe = 1}, one gets dȳ(S) = d(S) + |I ∩ δ(S)| and |I ∩ F | = ȳ(F ).5



Case 1: dȳ(S) is odd. Inequality (2a) for UCPP(ȳ) imposes
x(δ(S))≥ dȳ(S) + 1 = d(S) + |I ∩ δ(S)| + 1

= d(S) + |I ∩ δ(S)| + |F | − |F | + 1

≥ d(S) + 2|I ∩ F | − |F | + 1 = d(S) + 2ȳ(F ) − |F | + 1Case 2: dȳ(S) is even. Summing up the lower bounds (2b) for all e ∈ δ(S)of the UCPP(ȳ) model implies
x(δ(S))≥ dȳ(S) = d(S) + |I ∩ δ(S)| + |F | − |F |

= d(S) + (|I ∩ F | + |(I ∩ δ(S)) \ F |) + (|I ∩ F | + |F \ I|) − |F |

= d(S) + 2|I ∩ F | − |F | + (|(I ∩ δ(S)) \ F | + |F \ I|)

≥ d(S) + 2ȳ(F ) − |F | + 1The last inequality follows from the fa
t that d(S)+ |I ∩ δ(S)| is even, while
d(S)+|F | is odd, and, therefore, I∩δ(S) 6= F . This implies (I∩δ(S))\F 6= ∅or F \ (I ∩ δ(S)) = F \ I 6= ∅, so that (|(I ∩ δ(S))\F |+ |F \ I|) is at least 1.Con
luding, in both 
ases inequality (3b) holds. ⋄Proposition 2 For any y = ȳ ∈ {0, 1}|E

3|, (3) is a valid model for UCPP(ȳ).Proof: We show that model (3) for given ȳ redu
es to model (2) with
d = dȳ. First, variables x and the non-�xed part of the obje
tive are identi
al.Se
ond, the lower bounds (2b), i.e., x ≥ dȳ, are equivalent to (3c) and (3d).Third, all 
onstraints (3b) are shown to be valid for UCPP(ȳ) by Propo-sition 1. What remains to show is that all blossom inequalities (2a), i.e.,
x(δ(S)) ≥ dȳ(S) + 1 for an arbitrary S ⊆ V with dȳ(S) odd, are 
ontainedin model (3). For any inequalities (2a), i.e., an S ⊆ V with dȳ(S) odd, thereexists an equivalent inequality (3b). By de�ning F as {e ∈ δ(S) : ȳe = 1},the result follows dire
tly from |F | = ȳ(F ) and dȳ(S) = d(S) + |F |. ⋄Theorem 1 Model (3) is valid for UCPPZ.Proof: Be
ause of Proposition 2, the only aspe
t left to prove is that theobje
tive (3a) is 
orre
t. Given any ȳ ∈ {0, 1}|E

3|, the number of deadhead-ings is determined by x′
e = xe − dȳ

e . Therefore, the 
ontribution of an edge
e ∈ E3 to the 
ost of the postman tour is

c0
ex

′
e + (c1

e + c2
e)ye + c3

e(1 − ye)

= c0
e(xe − de − ye) + (c1

e + c2
e)ye + c3

e − c3
eye

= c0
exe + (c1

e + c2
e − c0

e − c3
e)ye + (c3

e − c0
ede),where the last term in bra
kets is 
onstant and the other terms are in
ludedin (3a). Those terms in the obje
tive (3a) whi
h belong to edges e ∈ E \E36



are identi
al to the ones in the UCPP model. Hen
e, the obje
tive (3a) 
on-tains all 
ost-relevant 
omponents. ⋄Sin
e the number of generalized blossom inequalities (3b) is, in general, exponentialin |V |, the new model (3) 
annot be solved dire
tly with integer linear programmingte
hniques ex
ept for tiny and trivial instan
es. Hen
e, we propose to apply a
utting-plane pro
edure: Start with the relaxed model (3a), (3c), (3d), and 0 ≤
ye ≤ 1 for all e ∈ E3, and dynami
ally add violated inequalities (3b) until nomore violated inequalities exist. Se
tion 6 will dis
uss separation pro
edures whi
hsolve the subproblem of identifying violated inequalities (3b) in polynomial time.As a 
onsequen
e of the ellipsoid method, solving the LP-relaxation 
an also beperformed in polynomial time (see Gröts
hel et al., 1981).Let P LP be the polyhedron of the linear-programming relaxation of (3). As in theUCPP 
ase, P LP is a polyhedron that 
ontains integer solutions (x̄, ȳ) that areinfeasible to our postman problem. However, infeasible integer solutions are neverresults of the 
utting-plane algorithm if LPs are solved with the simplex algorithm(solutions are extreme points). This follows from Proposition 2 and the propertiesof the UCPP models (1) and (2).Finally, we denote by P I the 
onvex hull of feasible integer solutions to (3). Clearly,
P I ⊆ P LP . For the moment, it is an open question as to whether equality holdsor not. If P I = P LP , the dire
t 
onsequen
e would be that the 
utting-planepro
edure 
ould always solve the UCPPZ to optimality. If P I ( P LP , a bran
h-and-
ut pro
edure (Padberg and Rinaldi, 1991) 
an be applied to solve UCPPZ:Whenever the 
utting-plane approa
h terminates with a fra
tional solution (x∗, y∗),one 
an sele
t a fra
tional variable for bran
hing. Be
ause of Proposition 2, one
an restri
t oneself to bran
hing on fra
tional variables ȳe, so that the depth of thebran
h-and-bound tree 
an never ex
eed |E3|.5 The Undire
ted Rural Postman Problem with Zigzagging OptionIf the required edges R = E \ E0 span more than one 
omponent in G, i.e.,the spanning subgraph G(R) = (VR, R) is not 
onne
ted, the resulting problemis an undire
ted rural postman problem (URPP). Pre-pro
essing te
hniques allowthe simpli�
ation of any problem instan
e to the 
ase that VR = V holds (
f.Christo�des et al., 1981; Eiselt et al., 1995); we assume V = VR in the following. Amodel for the URPP extends the UCPP formulation (1) by 
onne
tivity 
onstraints
x′(S) ≥ 2 for all S ⊂ V with ∅ 6= S ( V = VR and d(S) = 0, as shown by Corberánand San
his (1994). Obviously, this translates into

x(δ(S)) ≥ 2 for all S ( V, S 6= ∅ with d(S) = 0 (4)for model (2), be
ause d(S) = 0 is equivalent to δ(S) ⊆ E0 implying xe = x′
e for all

e ∈ δ(S). The separation of violated 
onne
tivity 
onstraints 
an be performed ona graph in whi
h all edges e ∈ R are shrunk. Nodes of the shrunk graph 
orrespond7



to 
omponents of G(R) and edge weights are the �ows between the 
omponents.The algorithm of Gomory and Hu (1961) 
an be used to e�
iently �nd 
ut sets SRwith 
apa
ity less than 2 in the shrunk graph. These impose sets S ⊂ V of violated
onne
tivity 
onstraints (4).Extending model (3) by (4) yields a model for the URPPZ. This follows with thesame arguments as those used in Se
tion 4. Sin
e the resulting model extendsthe URPP model, the solution of the LP-relaxation 
an be fra
tional, so that abran
h-and-
ut pro
edure has to be applied. Additional 
utting planes, referredto as R-odd 
uts, have been used by Corberán and San
his (1994) and Ghianiand Laporte (2000). These have exa
tly the form of blossom inequalities (1a) (ortheir reformulation (2a)) if d is appropriately de�ned. The generalized blossominequalities (3b) already in
lude the R-odd 
uts for F = ∅ and, therefore, they
an be separated with any method used in the following se
tion.6 Split Graph and Separation Pro
eduresThe heart of our solution method, the separation pro
edure for generalized blossominequalities, is inspired by the work of Padberg and Rao (1982). In 1982, Padbergand Rao developed a 
utting-plane algorithm to solve the separation sub-problemfor b-mat
hing problems. In the b-mat
hing 
ase, blossom inequalities are of theform x(δ(S))−2x(F ) ≥ 1−|F | for all S ⊆ V, F ⊆ δ(S) with b(S)+ |F | odd. Noti
ethe similarity between these and our generalized blossom inequalities (3b), wherethe essential di�eren
e is that x(F ) is repla
ed by the term y(F ) in new variables
ye for the edges e ∈ E3 from a (proper) subset of E.We will use the terminology of (Let
hford et al., 2004) to des
ribe the basi
 solutionpro
edure, originally proposed by Padberg and Rao, as well as several improve-ments that lead to enhan
ed separation pro
edures with better worst-
ase runningtime. Given a point (x∗, y∗) outside the polyhedron P LP , the separation pro
eduresolves the problem of �nding a generalized blossom inequality (3b), i.e, determinessets S ⊆ V and F ⊆ δ(S) with d(S) + |F | odd, separating (x∗, y∗) from P LP . Inorder to solve the separation problem, 
onstru
t a so-
alled split graph Ĝ = (V̂ , Ê)from G = (V, E) by the following rules. All of the original edges e ∈ E \ E3 arealso in Ê and weights of κe := x∗

e − de are assigned to them. Contrary, the edges
e = {i, j} ∈ E3 are divided into two halves by adding an extra node ke. One half(the so-
alled normal half ) is {i, ke} ∈ Ê with a weight of κe := x∗

e − de, and these
ond half (the so-
alled �ipped half ) is fe = {ke, j} with a weight of κe + µe,where µe := 1 − 2y∗
e . Be
ause of the obvious 
orresponden
e, nodes 
orrespondingto nodes of the original graph are denoted by V ⊂ V̂ . All nodes ke, e ∈ E3 of thesplit edges 
onstitute the subset K ⊂ V̂ . The split graph Ĝ has |V | + |E3| nodesand |E| + |E3| edges. Nodes i ∈ K ∪ V are labeled odd if d({i}) plus the numberof �ipped edges in
ident to i is odd; otherwise they are labeled even. Note that all

i ∈ K are odd.It is straightforward to prove that there exists a violated generalized blossom in-equality (3b) if and only if Ĝ 
ontains an odd minimum 
ut δ(Ŝ) with 
apa
ity less8



than 1. First, the weighted graph Ĝ is well-de�ned sin
e all weights κe = x∗
e − deand κe + µe are non-negative as long as 
onstraints (3c) and (3d) hold. Se
ond,any odd minimum 
ut set Ŝ with 
apa
ity less than 1 must in
lude at least oneoriginal node from V ⊆ V̂ . This follows from the observation, that the sum of the
apa
ities of a �ipped edge and its 
orresponding normal edge are always greateror equal to one (κe + (κe + µe) = 2(x∗

e − y∗
e) − 2 + 1 ≥ 1). Consequently, any
ut with 
apa
ity less than 1 
annot 
ontain both edges, i.e., the 
ut set 
annot
ontain ke without at least one of the 
orresponding endpoint from V . Finally, onegets the violated generalized blossom inequality by de�ning S := Ŝ ∩ V 6= ∅ and

F := {e ∈ δ(S) : fe ∈ δ(Ŝ)}. Herein, Ŝ is odd in Ĝ if and only if d(S) + |F | is odd.We next derive results about the worst-
ase running time of separation pro
eduresthat are based on the split graph. Note �rst, that the split graph has p := |V | +
|E3| nodes and |E| + |E3| = O (m) edges. The odd-min-
ut algorithm of Padbergand Rao (1982) requires a maximum of O (p) max-�ow 
omputations, ea
h ofwhi
h 
an be performed inO (pm log(p2/m)) time using the pre�ow-push algorithmof Goldberg and Tarjan (1986). The result is an O (p2m log(p2/m)) separationpro
edure. For UCPPZ instan
es with |E3| = Θ(|E|) zigzag edges, i.e., p = O (m),the resulting 
omplexity of the separation pro
edure is O (m3 log m). Gröts
hel andHolland (1987) redu
ed the e�ort by shrinking �ipped and normal edges of the splitgraph in the underlying max-�ow 
omputations. The result for the UCPPZ is thatin the worst-
ase time for the separation redu
es to O (pnm log(n2/m)). Hen
e, forUCPPZ instan
es on dense graphs, i.e., m = Θ(n2), with |E3| = Θ(|E|) zigzagedges, the time bound is O (n5).An even faster separation pro
edure with worst-
ase bound O (n2m log(n2/m))has been developed by Let
hford et al. (2004). Again, their pro
edure remainsappli
able to our UCPPZ separation problem yielding an O (n4) algorithm in thedense graph 
ase. The adaptation of the pro
edure proposed by Let
hford et al.(2004) to the UCPPZ works as follows: Consider the original graph G = (V, E)but with edge weights we = κe for e ∈ E \ E3 and we = min{κe, κe + µe} for
e ∈ E3. This graph is 
alled support graph in the following. Constru
t a 
ut tree ofthe support graph with terminal nodes V by any 
ut-tree algorithm (the 
lassi
alGomory and Hu (1961) algorithm in 
ombination with a pre-�ow push algorithm(e.g., Goldberg and Tarjan, 1986) guarantees the O (n2m log(n2/m)) worst-
asebound). For ea
h 
ut set S ⊂ V stored in the 
ut tree, 
ompute the best set
F ⊆ δ(S) minimizing x(δ(S)) − 2y(F ) − |F |. Sets S are potential handles ofa blossom inequality. Finding a best set F = F (S) (of so-
alled teeth) 
an be
omputed with a linear algorithm in O (|δ(S) ∩ E3|) steps. We refer the reader to(Let
hford et al., 2004) and (Let
hford et al., 2006) for more detailed explanationson their and alternative blossom separation pro
edures.7 Computational ResultsIn order to empiri
ally test the proposed UCPPZ model and 
utting-plane algo-rithm, we have randomly generated a set of 160 instan
es. All instan
es are de�ned9



on graphs G = (V, E) in whi
h the node set V is lo
ated on a re
tangular grid,whi
h mimi
s street networks. Ea
h inner node of the grid is 
onne
ted to at leastfour neighboring nodes. Some additional `diagonal' 
onne
tions 
an exist. A typi
alinstan
e is depi
ted in Fig. 1. Di�erent instan
es of the same size are 
onstru
tedby randomly 
hoosing the type of ea
h edge e ∈ Ek, k ∈ {0, 1, 2, 3}, varying the
osts and sele
ting di�erent diagonal 
onne
tions. The setup guarantees for theUCPPZ instan
es that the required edges form a 
onne
ted subgraph.
Fig. 1. Example of a UCPPZ Instan
e on a 4 × 3 Grid;Edges e ∈ E0 are depi
ted dotted, e ∈ E1 ∪ E2 withsingle/double Lines, e ∈ E3 with Zigzag LinesInstan
es of the URPPZ are generated by merging several UCPPZ instan
es to-gether using additional edges e ∈ E0 su
h that ea
h UCPPZ instan
e forms asingle 
onne
ted 
omponent. The 450 URPPZ instan
es are grouped a

ording tosize and number of 
onne
ted 
omponents and ea
h group 
onsists of 10 instan
es.All instan
es are online available at www.dpor.rwth-aa
hen.de/uppz-instan
es.7.1 Solution of the UCPPZThe UCPPZ 
an be solved either as a T -join problem requiring the solutionof shortest-path and minimum weight perfe
t mat
hing problems, or by usingmodel (3) and a 
utting-plane algorithm using one of the separation pro
eduresof Se
tions 6. For the �rst approa
h we implemented the Dijkstra algorithmwith Fibona

i heaps (we used the C++ implementation by Dietmar Kuehl,http://www.dietmar-kuehl.de/
xxrt/heaps.tar.gz, yielding an O (n(m +

n log n)) all-pairs shortest path algorithm). The minimum weight perfe
t mat
hingproblems are solved with an O (n3) implementation 
oded in C (by Edward Roth-berg http://elib.zib.de/pub/Pa
kages/mathprog/mat
hing/weighted/). Werefer to the dire
t T -join approa
h as (spp+mat
h) and to the 
utting-plane al-gorithm as (lp+
ut). Our 
utting-plane and the bran
h-and-
ut approa
h for theUCPPZ and URPPZ uses ILOG/CPLEX (version 9.1 and the 
on
ert library)(CPLEX, 2005) for LP solution and bran
h-and-bound. All problem-spe
i�
 algo-rithms have been 
oded in C and C++, 
ompiled in release mode with MS-VisualC++ .NET 2003 version 7.1; all runs were performed on a standard PC (Intel x86family 15 model 2) with 2.8 GHz, 1GB main memory, on MS-Win 2000.The ability to solve large-s
ale UCPPZ instan
es with the 
utting-plane approa
hmostly depends on the e�
ien
y of the separation pro
edures. Our setup uses the
O (|V |2|E| log(|V |2/|E|)) exa
t separation pro
edure of Let
hford et al. (2004),adapted to the UCPPZ. In order to a

elerate the separation pro
edure from anaverage-
ase point of view, 
onne
ted 
omponents C of the support graph are
omputed �rst. For ea
h 
omponent C and its 
ut tree, the 
ut sets S ⊂ C as well10



as the 
omponent C are tested as handles of a violated blossom inequality. Notethat for an optimal sele
tion of edges F ⊆ δ(S) ∩ E3 one must not only 
onsideredges inside C but also the edges of δ(C). The 
omputation of 
ut trees takessubstantially less time if it is performed for ea
h 
omponent separately 
ontraryto 
omputing 
ut trees in the entire support graph. This 
an be explained by theobservation that the support graph typi
ally de
omposes into many 
omponentswith only very few nodes in ea
h 
omponent.It is worth mentioning that we also tested heuristi
 separation pro
edures based onideas proposed by Gröts
hel and Holland (1985) (i.e., the 
onsideration of potentialhandles S that are 
omponents of the graph indu
ed by edges with �ow of atleast ε, for a parameter ε ∈ [0, 1)). However, these heuristi
s did not 
onsistentlya

elerate the 
utting-plane approa
h. The reason for their failure is that the exa
tpro
edure�applied to 
omponents of the support graph�is already very fast anda signi�
ant part of the 
omputing time is spent on solving the LP. Heuristi
separation pro
edures tend to 
ause more LP iterations, so that the overall time forthese multiple runs ex
eeds the running times of the exa
t separation pro
edures,even if single heuristi
 runs are faster.The results of our 
omputational test for the UCPPZ are summarized in the Ta-bles 1 and 2. The �rst table shows the 
hara
teristi
s of the test instan
es and a
omparison of the running times of (spp+mat
h) and (lp+
ut). The sizes of theinstan
es are given in the �rst two 
olumns. Sin
e diagonal 
onne
tions are gener-ated randomly with a �xed probability of between 0 and 1, the number of edges
an vary between (approximately) 2|V |(|V | − 1) and 3|V |2. The se
ond 
olumn in-di
ates the minimum and maximum number of edges over 10 instan
es per group.The third 
olumn refers to the per
entage of required edges, i.e., |E \ E0|/|E|.Sin
e the running times t1 of (spp+mat
h) and t2 of (lp+
ut) vary substantiallywithin the groups, we report the minimum, the average, and the maximum runningtimes in the 
olumns four and six. Moreover, we show the fa
tor t2/t1 to indi
atehow mu
h the 
utting plane approa
h is slower 
ompared to the T -join solutionapproa
h.We interpret the results in the following way: As 
ould be expe
ted, the dire
t(spp+mat
h) approa
h is superior to the 
utting-plane approa
h (lp+
ut) w.r.t.the absolute running time: UCPPZ instan
es with up to 1,000 edges 
an be solvedby (spp+mat
h) in less than a se
ond, while the 
utting plane approa
h needsup to 1 minute. All larger instan
es with up to 10,000 edges 
an be solved by(spp+mat
h) in less than 5 minutes. Here, the 
utting-plane approa
h failed tosolve three of the largest instan
es within the limit of 2 hours 
omputing time.Interestingly, the 
omparison of the relative running times using the fa
tor t2/t1shows no 
lear trend when 
onsidering instan
es of in
reasing size. The minimumvalues of the fa
tor t2/t1 indi
ate that there is always at least one larger-sizedinstan
e for whi
h the 
utting-plane and (spp+mat
h) approa
h require nearly thesame amount of time.For the (spp+mat
h) approa
h, the per
entage of the running time spent on solv-11



|V | |E|
|E\E

0|
|E|

Time t1 [s℄ %Time spp Time t2 [s℄ Fa
torin % (spp+mat
h) of t1 (lp+
ut) t2/t1min/max min/max min/avg/max min/max min/avg/max min/avg/max
10 × 10 199/255 76/84 0.008/0.009/0.011 72/84 0.06/0.11/0.14 6.7/12.4/17.9
12 × 12 297/378 77/83 0.017/0.023/0.03 59/75 0.09/0.32/0.83 4.2/14.4/38
14 × 14 371/527 77/84 0.036/0.042/0.047 61/76 0.19/0.38/1.05 4/9.1/24
16 × 16 525/683 78/82 0.072/0.083/0.092 58/67 0.3/1.33/3.31 4/16/40.8
18 × 18 696/897 79/82 0.125/0.142/0.158 56/61 1.34/2.55/4.91 9.2/17.8/32.1

20 × 20 784/1100 78/82 0.2/0.3/0.4 40/54 1.2/2.8/4.3 4.8/10.1/16.7
22 × 22 932/1270 78/82 0.5/0.5/0.6 34/40 2/9.9/58.1 3.9/19.2/112.7
24 × 24 1234/1621 79/82 0.7/0.8/1.3 32/43 4.7/12.8/23.9 4.7/16/29.4
26 × 26 1319/1890 78/81 1.3/3.3/10.4 28/89 3.5/13/47 0.9/5.7/12.2
28 × 28 1594/2191 78/81 2.5/4.6/14.7 20/88 4.3/21.6/52.6 0.9/6.1/12.4

30 × 30 1952/2531 79/81 3.3/7.8/24.5 19/85 8.9/82/418 1.1/18.5/125.5
35 × 35 2395/3328 78/81 9.2/12.6/28.7 13/67 50/316.7/2350.6 2.7/26.9/198.5
40 × 40 3469/4436 78/81 24/29.8/41.1 7/20 119/217.6/591 4/7.5/20.8
45 × 45 4277/5621 78/81 62/72.1/86.1 6/14 78.2/559.3/1478.7 1.2/7.5/19
50 × 50 4994/6724 77/81 141.3/160.5/183.7 4/7 216.3/1234.8/5120.9 1.3/8.1/36.2
60 × 60 7272/10278 78/81 633.2/703/805 2/6 732.5/3691.3/TL+ 1.1/5.2/10.9Table 1Randomly generated UCPPZ Instan
e and Comparison of (spp+mat
h) and (lp+
ut)Solution Approa
hes; Ea
h Group 
onsists of 10 Instan
es; + Failed to solve 3 Instan
eswithin the Time Limit TL =7,200sing shortest path problems (
olumn %Time spp of t1) de
reases with the size ofthe instan
es. The main part of the workload is the solution of the mat
hing prob-lem. Probably, a better implementation for solving the minimum weight perfe
tmat
hing problems (we did not have a O (n(m+n log n)) implementation at hand)
ould lead to a better balan
e between the two algorithmi
 
omponents and a evenfaster (spp+mat
h) solution pro
edure.Details of the behavior of the 
utting-plane algorithm (lp+
ut) are presented inTable 2. The three 
olumns #Calls sep, #Cuts, and #LP iter show the number of
alls of the separation pro
edure, the number of 
uts separated, and the numberof simplex iterations respe
tively. Again, we report the minimum, the average, andthe maximum. The two last 
olumns give the time (in se
onds) for solving theUCPPZ to optimality (
olumn Time) and the per
entage of the time spent onseparation (%Time sep).There are signi�
ant di�eren
es in the 
omputation times of the randomly gen-erated instan
es: The longest 
omputation time for a 35 × 35-node instan
e wasmore than 2000 se
onds, while all 40 × 40-node and 45 × 45-node instan
es weresolved faster. The values #Calls sep, #Cuts, and #LP iter 
an di�er by more thanfa
tor 10 within one group (but there is no signi�
ant 
orrelation between |E| andthese numbers). In all 
ases, the separation pro
edure worked e�
iently, be
ause,on average, more than 5 
uts are generated per se
ond; for small instan
es the ratiois signi�
antly better. Moreover, for many instan
es the part of the overall run-ning time spent on the separation routine was below 80%. Typi
ally, 
utting-planealgorithms spend more time on separation (as a rule of thumb, more than 90%of the time). This is, therefore, another indi
ator that the separation algorithm is12



|V | |E| #Calls sep #Cuts #LP iter %Time sep Time [s℄min/max min/avg/max min/avg/max min/avg/max min/max min/avg/max
10 × 10 199/255 6/12.4/18 44/57/69 86/104/117 11/75 0.06/0.11/0.14
12 × 12 297/378 5/20/46 66/103/201 136/175/275 50/85 0.09/0.32/0.83
14 × 14 371/527 8/14.8/35 88/128/247 189/257/358 55/76 0.19/0.38/1.05
16 × 16 525/683 8/31.1/65 116/204/313 285/414/622 54/76 0.3/1.33/3.31
18 × 18 696/897 17/37.5/56 204/298/602 482/589/950 72/81 1.34/2.55/4.91

20 × 20 784/1100 16/29.8/40 203/284/406 498/628/786 74/83 1.2/2.8/4.3
22 × 22 932/1270 21/48.5/170 244/479/1668 534/1155/4770 74/87 2/9.9/58.1
24 × 24 1234/1621 23/56.1/85 380/538/886 890/1096/1495 84/91 4.7/12.8/23.9
26 × 26 1319/1890 16/49.2/156 402/618/1247 847/1345/3339 83/93 3.5/13/47
28 × 28 1594/2191 15/53.3/94 437/704/1212 1084/1434/2222 85/92 4.3/21.6/52.6

30 × 30 1952/2531 21/80.3/260 525/1276/4575 1276/3835/15289 69/93 8.9/82/418
35 × 35 2395/3328 57/126.1/460 944/2166/8260 2231/8292/58317 41/95 50/316.7/2350.6
40 × 40 3469/4436 53/104.8/200 1218/1869/4225 2781/3864/8618 89/96 119/217.6/591
45 × 45 4277/5621 32/148.1/264 1327/3932/8439 3161/9842/24995 78/96 78.2/708.9/1662.3
50 × 50 4994/6724 60/164.7/369 1628/5381/14599 3669/12825/54052 80/97 216.3/1234.8/5120.9
60 × 60 7272/10278 56/194.3/363 2492/9207/21258 6260/34418/102111 65/97 732.5/3691.3/TL+Table 2Details of the UCPPZ Cutting-Plane Algorithm; Ea
h Group 
onsists of 10 Instan
es;

+ Failed to solve 3 Instan
es within the Time Limit TL =7,200ssu�
iently fast and works e�
iently.Con
erning integrality, our 
omputational test did not �nd any UCPPZ instan
e forwhi
h the 
utting-plane pro
edure ended with a fra
tional solution. Hen
e, bran
h-ing was never ne
essary. Generalized blossom inequalities were always su�
ient toprodu
e integer solution to the UCPPZ. Based on this empiri
al observation, we
onje
ture that P LP = P I holds, i.e., the polyhedron P LP of the LP-relaxation ofmodel (3) may be integral. It was beyond the s
ope of this paper to undertake adetailed polyhedral analysis (results on the dimension of the polyhedron P I , itsfa
ets et
.). Probably, some extreme point preserving transformation from P I tosome mat
hing polyhedron 
ould yield the desired integrality result.7.2 Solution of the URPPZFor the URPPZ the T -join approa
h is not appli
able and we have to rely ona bran
h-and-
ut algorithm. Computational results are given in Tables 3 and 4.Column #Comp shows the number of 
onne
ted 
omponents, whi
h is the mainindi
ator for the di�
ulty of an instan
e. The next 
olumn #Opt/#Int shows howmany instan
es of a group are solved to optimality and how often integer feasiblesolutions were found within the time limit of TL =1,800s (no entry means that all10 instan
es are solved). The integrality gap %Gap is de�ned as (z∗− lb)/lb ·100%,where lb is the lower bound at the root node of the bran
h-and-bound tree and
z∗ the 
ost of an optimal solution (min/avg/max are taken w.r.t. instan
es solvedto optimality). The 
olumn #BaB Nodes gives the number of bran
h-and-boundnodes explored by the bran
h-and-
ut algorithm. Here, 0 means that an instan
ewas solved to optimality solely by applying generalized blossom 
uts. If the 
utting-plane pro
edure yields a fra
tional solution, CPLEX �rst tries to round variablesin order to �nd a feasible integer solution. Sin
e all 
oe�
ients of our test instan
es13



are integer, this rounding heuristi
 sometimes �nds optimal solutions and 
an provetheir optimality if the integrality gap is smaller than 1.0. Thus, #BaB Nodes is 1in order to indi
ate that the solution is 
omputed by the rounding heuristi
. Valuesgreater than 1 indi
ate that bran
hing was performed. Finally, 
olumn Time givesthe overall running time in se
onds.The bran
h-and-
ut algorithm 
an 
onsistently solve large-s
ale URPPZ instan
eswith up to 10 
omponents and about 2,000 edges. The smallest instan
es that
ould not be solved within 1,800s have 16 × 16 nodes and 49 and 64 
omponentsrespe
tively. The bran
h-and-
ut algorithm failed to inspe
t all bran
h-and-boundnodes but integer solutions were always found. Another small 18×18-node instan
ewith 828 edges and 16 
omponents 
ould not be solved, be
ause the 
utting-planealgorithm was not able to solve the root node. Here, already 8,551 generalizedblossom inequalities and 5 
onne
tivity 
onstraints were separated (in addition tothe 16 a priori added 
onne
tivity 
onstraints). Nevertheless, the majority (>90%)of the instan
es with up to 1,000 edges 
ould be solved to optimality and for morethan 97% an integer solution was 
omputed (with a remaining gap of about 0.7%on average and less than 2.5% in the worst 
ase).In general, if the number #Comp of 
omponents in
reases, instan
es be
ome moredi�
ult to solve. For instan
es of the same size (number of node), it means thatintegrality gaps, numbers of bran
h-and-bound nodes, and 
omputing times growrapidly, while less instan
es 
an be solved within the given time limit. If we 
ompareinstan
es with an identi
al number of 
omponents but with in
reasing size, we 
anobserve a property one would not expe
t: The larger the instan
es, the smaller theintegrality gaps and, therefore, the lower the number of bran
h-and-bound nodes.One 
an interpret this behavior as follows: Solving an URPPZ instan
e 
onsists oftwo interdependent subproblems, i.e, making the resulting graph even (
onne
tingodd nodes) and 
onne
ting the 
omponents spanned by required edges. Some of theinter-
omponent edges may at the same time be favorable to eliminate odd degreesand to 
onne
t 
omponents. Hen
e, if 
omponents 
onsist of more nodes, there is abetter 
han
e that su
h favorable edges exist. The result is that by solving the �rstsubproblem, already more 
omponents get 
onne
ted and, therefore, the se
ondsubproblem be
omes easier to solve.Finally, there is still room for improvement: Several 
lasses of URPP-spe
i�
 validinequalities are known, e.g., inequalities from the graphi
al TSP and K-C-inequa-lities, see (Corberán and San
his, 1998; Eglese and Let
hford, 2000). These addi-tional 
utting planes and 
orresponding (heuristi
) separation pro
edures mighthelp to further redu
e the integrality gap and, thus, allow larger problem instan
esto be solved.8 Con
lusionsUp to now, undire
ted and dire
ted Chinese postman problems are the only post-man problems belonging to the 
omplexity 
lass P. With the results of Se
tion 2we have added the UCPPZ to the 
omplexity 
lass P. Any (minor) extension of14



these problems studied thus far makes the resulting problems hard to solve, i.e.,belong to NP . Well-know examples are rural, mixed, and windy postman prob-lems. For these, bran
h-and-
ut is one of the most promising solution approa
hes,requiring a mixed-integer linear programming model for the problem. The paperhas introdu
ed a basi
 formulation for the UCPPZ in whi
h generalized blossominequalities 
onstitute the heart of the model. The new model is e�
iently solv-able with a 
utting-plane algorithm. This results from the presented adaptation ofthe 
urrently fastest separation pro
edure of Let
hford et al. (2004) for blossominequalities.The proposed model for the UCPPZ is easily extendible to more general postmanproblems, whi
h has been exempli�ed for the URPPZ. The 
omputational tests
learly indi
ate that large-s
ale instan
es of the URPPZ with a few thousand edges
an be solved with bran
h-and-
ut in reasonable time.A
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|V | |E| #Comp #Opt/#Int %Gap #BaB Nodes Time [s℄min/max min/avg/max min/avg/max min/avg/max
10 × 10 184/246 4 0/0.01/0.09 0/0.3/2 0.1/0.2/0.6

184/257 9 0/0.03/0.33 0/1.3/12 0.1/0.3/0.7
187/256 16 0/0.17/0.5 0/6.9/25 0.1/1.3/4.1
205/257 25 0.06/0.49/1.09 1/144.9/958 0.7/41.1/314

12 × 12 267/369 4 0/0.01/0.06 0/0.5/4 0.1/0.4/1
266/378 9 0/0.03/0.23 0/1.6/11 0.1/0.5/1.8
274/358 16 0/0.1/0.42 0/7.7/35 0.1/9.9/58.2
285/376 25 0/0.18/0.45 0/28.5/120 0.8/18.8/81.8
272/343 36 0.09/0.31/0.79 3/72.2/475 0.4/38.6/207.6

14 × 14 390/507 4 0/0/0 0/0/0 0.2/1.4/10.3
384/531 9 0/0.01/0.05 0/1.1/5 0.2/2.4/15.6
388/523 16 0/0.03/0.11 0/5.6/47 0.4/3/13.6
365/502 25 0.03/0.13/0.26 2/19.7/61 1.7/17.9/73.7
366/524 36 0/0.19/0.39 0/63.4/262 1.7/74.8/361.4
395/529 49 0.17/0.34/0.58 12/195.4/677 4.7/459.3/1720.6

16 × 16 493/687 4 0/0/0.01 0/0.2/2 0.6/4.9/38.6
485/703 9 0/0/0.02 0/0.6/3 0.4/12.1/105.4
497/678 16 0/0.03/0.1 0/2.2/7 0.8/11.9/36.6
496/705 25 0/0.07/0.27 0/15.5/113 0.5/26.4/146.3
482/700 36 0/0.16/0.29 0/78.4/264 0.5/386.4/1390.2
546/685 49 8/10 0.05/0.23/0.41 16/167.2/480 95.2/753.5/TL
484/688 64 3/10 0.25/0.27/0.3 36/216.1/612 499.3/1562.4/TL

18 × 18 698/900 4 0/0/0 0/0/0 0.8/2/3.8
612/894 9 0/0/0.01 0/0.3/2 0.8/9/56
628/879 16 9/9 0/0.01/0.03 0/0.8/4 0.8/186.8/TL
638/885 25 0/0.03/0.07 0/4.3/12 2.1/24.6/109.6
621/854 36 9/10 0/0.03/0.09 0/22.1/129 1.4/203.9/TL
652/883 49 8/9 0/0.07/0.18 0/38.3/92 1.3/444.4/TL
626/901 64 6/10 0.03/0.12/0.19 1/50.1/173 5.5/881.5/TL
669/830 81 3/6 0.04/0.14/0.2 1/72.1/187 335.6/1508.2/TL

20 × 20 761/1111 4 0/0/0.03 0/1/10 1.2/3.9/13.8
781/1025 9 0/0/0.02 0/0.3/3 0.9/5.5/17.4
760/1118 16 0/0.01/0.06 0/5/49 1.6/33.2/270.5
796/1017 25 0/0.01/0.04 0/3.1/16 2.4/61.6/288.7
808/1023 36 9/9 0/0.05/0.13 0/11.3/53 1.9/379.3/TL
768/1041 49 8/9 0/0.03/0.06 0/6.2/28 4.2/463.3/TL
831/1105 64 6/10 0.04/0.09/0.18 10/143.3/410 62.1/1177/TL
775/1114 81 2/4 0.11/0.13/0.15 6/38.2/137 29.4/1563.5/TL

22 × 22 934/1362 4 0/0/0 0/0/0 2.4/5.8/11.3
936/1365 9 0/0/0 0/0.1/1 1.2/8.4/26.9
978/1358 16 0/0/0.03 0/2.2/18 2.2/41.6/327.8
950/1263 25 0/0.01/0.03 0/2.5/14 1.4/36.7/77.4
1045/1357 36 9/9 0/0.01/0.06 0/2.8/19 2.5/211.7/TL
1091/1350 49 7/7 0/0.03/0.09 0/13.1/41 3/827/TL
933/1295 64 4/7 0.01/0.08/0.18 1/41.2/95 3.3/1312.2/TL

24 × 24 1139/1625 4 0/0/0 0/0/0 3.5/11.5/22.1
1124/1612 9 0/0/0 0/0.2/2 1.9/13.8/35.5
1161/1624 16 0/0/0.01 0/0.3/2 4.1/10.1/23.4
1120/1624 25 8/8 0/0.01/0.02 0/4.1/22 1.6/388.1/TL
1130/1527 36 9/10 0/0.02/0.04 0/18.8/112 4.4/379.2/TL
1144/1567 49 6/6 0/0.01/0.04 0/11.3/50 5.9/875.3/TL
1151/1567 64 3/4 0/0.05/0.1 0/24.6/130 6.4/1337.8/TLTable 3Details of the URPPZ Bran
h-and-Cut Algorithm for Smaller Instan
es; Ea
h Group
onsists of 10 Instan
es; Time limit TL =1,800s17



|V | |E| #Comp #Opt/#Int %Gap #BaB Nodes Time [s℄min/max min/avg/max min/avg/max min/avg/max
24 × 24 1139/1625 4 0/0/0 0/0/0 3.5/11.5/22.1

1124/1612 9 0/0/0 0/0.2/2 1.9/13.8/35.5
1161/1624 16 0/0/0.01 0/0.3/2 4.1/10.1/23.4
1120/1624 25 8/8 0/0.01/0.02 0/4.1/22 1.6/388.1/TL
1130/1527 36 9/10 0/0.02/0.04 0/18.8/112 4.4/379.2/TL
1144/1567 49 6/6 0/0.01/0.04 0/11.3/50 5.9/875.3/TL
1151/1567 64 3/4 0/0.05/0.1 0/24.6/130 6.4/1337.8/TL

26 × 26 1354/1759 4 0/0/0.01 0/0.1/1 4.5/53.3/257.8
1332/1898 9 0/0/0 0/0/0 4/159.7/1260.2
1323/1788 16 9/9 0/0/0 0/0.3/2 3.6/249.1/TL
1328/1890 25 0/0/0.03 0/0.4/4 4.2/21.1/117.7
1303/1904 36 7/7 0/0.01/0.04 0/4.5/17 13.3/677.7/TL
1390/1918 49 8/8 0/0.02/0.04 0/7.3/35 33.2/568.3/TL

28 × 28 1623/2213 4 0/0/0 0/0/0 8.2/18.2/43.1
1568/2122 9 0/0/0 0/0/0 6.1/29.2/97.9
1538/2201 16 9/9 0/0/0.01 0/0.3/3 10.3/236.5/TL
1670/2225 25 0/0/0.02 0/0.9/4 7.4/112/561.4
1516/2139 36 8/8 0/0.01/0.01 0/1.5/3 40/551.5/TL

30 × 30 1782/2439 4 0/0/0 0/0/0 10.5/189.5/1479.8
1775/2556 9 9/9 0/0/0 0/0/0 17/214.5/TL
1741/2563 16 9/9 0/0/0 0/0.1/1 9.7/249.8/TL
1786/2577 25 9/9 0/0/0.02 0/1.3/9 30.4/265/TL
1760/2544 36 8/8 0/0/0.02 0/3.4/19 20.1/615.2/TL

35 × 35 2574/3507 4 0/0/0 0/0/0 30.2/210/774.7
2467/3460 9 0/0/0 0/0/0 22.8/131.3/573.6
2476/3421 16 9/9 0/0/0 0/0.1/1 25.9/262.3/TL
2867/3519 25 9/9 0/0/0 0/0.2/1 55.3/347/TL
2446/3509 36 6/6 0/0/0.01 0/4.2/31 75.1/1047/TL

40 × 40 3282/4027 4 0/0/0 0/0/0 100.2/280.4/727.9
3125/4361 9 0/0/0 0/0/0 50.8/204.6/638.1
3453/4401 16 0/0/0 0/0/0 52.6/226.8/868.9
3142/4568 25 9/9 0/0/0 0/0.1/1 47.9/505.9/TL

45 × 45 4168/5466 4 9/9 0/0/0 0/0/0 73.8/579.9/TL
4483/5861 9 8/8 0/0/0 0/0/0 162.5/710/TL
3988/5751 16 6/6 0/0/0 0/0.5/4 153.6/956.1/TL
4061/5733 25 8/8 0/0/0 0/0/0 135.2/714.1/TL

50 × 50 5258/6438 4 7/7 0/0/0 0/0/0 222.5/1062.1/TL
4938/7135 9 8/8 0/0/0 0/0/0 148.4/924.1/TL
5332/7113 16 7/7 0/0/0 0/0/0 303.9/891.9/TL
5076/6903 25 8/8 0/0/0 0/0/0 268.3/1054.3/TL

60 × 60 8110/10367 4 6/6 0/0/0 0/0/0 667.8/1506.2/TL
7176/10425 9 4/4 0/0/0 0/0/0 938.1/1617.1/TL
7517/10216 16 3/3 0/0/0 0/0/0 947/1653.7/TL
7255/10541 25 5/5 0/0/0 0/0/0 885.4/1578.9/TLTable 4Details of the URPPZ Bran
h-and-Cut Algorithm for Larger Instan
es; Ea
h Group 
on-sists of 10 Instan
es; Time limit TL =1,800s
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