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aDeutshe Post Endowed Chair of Optimization of Distribution Networks,RWTH Aahen University, Templergraben 64, D-52056 Aahen, Germany.Key words: vehile routing, global and inter-tour resoures, e�ient loal searh1 IntrodutionClassial vehile routing problems (VRPs) are impliitly or expliitly formulatedand are solved by onsidering resoures: The apaitated VRP (CVRP) has re-soures for limited vehile apaities and the VRP with time windows (VRPTW)has resoures for servie times. In the ase of a homogeneous �eet, the limitingresoure onstraints and resoure onsumptions are idential for eah vehile. Fora heterogeneous �eet, resoure onstraints and onsumptions an di�er betweenspei� groups of vehiles. In both ases, the feasibility of a tour depends solelyon vehile-spei� resoures. Here, we onsider onstraints for globally limited re-soures that di�erent vehiles ompete for. Examples are a restrited number ofdoking stations at depots, and a limited number of `long' tours, where long isde�ned w.r.t. the traveled distane, the number of stops, the arrival time at thedepot et. We devise a general model and solution method and, for the sake oflarity, explain the approah with the example of a VRP with time-varying pro-essing or sorting apaity onstraints. Suh VRPs arise, for instane, in routingappliations for letter mail olletion from postboxes or for the pikup of parelsfrom registered lients: Vehiles olleting mail or parels arrive at a spei� depotover time. The entire volume must be proessed (stamped, sorted, labeled with amahine-readable ode, ommissioned et.) before a given ut-o� time. Moreover,the proessing rate at the depot is limited. It may vary over time so that, foreah point in time, one an speify a maximum quantity that an be handled inthe remaining time interval, i.e., from that point in time until ut-o�. While eahindividual tour may be feasible w.r.t. given time window and vehile apaity on-straints, the feasibility w.r.t. proessing apaities is not automatially guaranteed,but requires a staggered arrival of olleted mail. Thus, the feasibility of a solutionEmail addresses: hempsh�or.rwth-aahen.de (Christoph Hempsh),sirnih�or.rwth-aahen.de (Stefan Irnih). 1 February 2007



depends on the arrival time and olleted mail volume of every single vehile at adepot.The ontribution of this hapter is threefold: First, the aim of the new model isto help represent di�erent real-world VRPs with inter-tour onstraints in a generiway. The model is mainly based on the uni�ed framework of Irnih (2006b) andutilizes the giant-tour representation (Christo�des and Eilon, 1969) and the on-ept of resoure-onstrained paths (Desaulniers et al., 1998; Irnih and Desaulniers,2005). Not only inner-tour but also inter-tour resoure onstraints are modeled us-ing resoure-extension funtions (REFs). REFs desribe the resoure update alonga path, i.e., when a vehile travels from one point to the next. The novelty ofthis approah is that not only are individual tours onsidered as resoure-feasiblepaths, but also the entire giant route. By using tailored reset REFs onneting theend node of one tour with the start node of the next tour, inner-tour resoures arereset, while inter-tour resoures are propagated along the entire giant route. Thispaper lari�es whih types of REFs lead to well-strutured models, for whih thefeasibility of a giant route an be e�iently heked.Seond, the new model is intended to support e�ient solution proedures that arebased on loal searh (LS). LS-based proedures iteratively build neighbor solutions�rst and hek the feasibility and gain of these afterwards. If straightforwardlyimplemented, this feasibility hek auses an extra e�ort bounded by the lengthof a longest tour, whih is in general only bounded by O(Rn) for instanes ofsize n with R resoures. The methods of (Irnih, 2006b) allow the searhing ofneighborhoods of size O(nk) in O(Rnk) time, thus avoiding an additional fator inthe worst-ase for ost omputations and feasibility heks. We provide su�ientonditions on the REFs that guarantee O(R) feasibility tests for VRPs with inter-tour resoure onstraints.Third, the paper presents onepts for applying sequential searh proedures tointer-tour onstrained VRPs in order to further redue the e�ort of evaluating aneighborhood of size O(nk). The goal here is to perform less than O(Rnk) oper-ations in the average ase. Sequential searh is a gain-based searh-tree pruningmethod whih was �rst applied to unonstrained problems, suh as graph partition-ing problems and the symmetri TSP (see Kernighan and Lin, 1970; Christo�desand Eilon, 1972). Irnih et al. (2006) desribe the sequential searh approah gener-ially and apply it suessfully to the CVRP. Good results have also been obtainedfor so-alled `rih' VRPs with di�erent kinds of side onstraints (see Irnih, 2006b).Here, we show that sequential searh enables the fast and e�ient solution of large-sale multi-depot VRPTW (MDVRPTW) instanes with time-varying proessingapaities and up to a few hundred olletion points. The integration of the LSproedures into a large neighborhood searh (LNS) method (Shaw, 1998; Pisingerand Røpke, 2006) leads to an e�etive metaheuristi, whih an easily be adaptedto other VRPs with inter-tour onstraints.The hapter is strutured as follows: The next setion fouses on modeling as-pets, starting with models for the MDVRPTW, ontinuing with the inorpora-2



tion of time-varying proessing apaity onstraints, and ending with the generiinter-tour model and its appliations. Setion 3 summarizes the tehniques used fore�ient loal searh and skethes the implemented LNS metaheuristi. Computa-tional results are presented in Setion 4. We show that the proposed modeling andsolution approah is helpful to perform new types of studies in whih the impatof inter-tour onstraints on the struture and ost of solutions is analyzed. Finalonlusions are drawn in Setion 5.2 Models for the VRP with Inter-Tour ConstraintsThe above-mentioned VRP with time-varying proessing-apaity onstraints servesas an example motivating the giant-tour model and heuristi solution approah.The VRP we are onsidering is an extension of the MDVRPTW. We start with anon-standard formulation utilizing REFs. This MDVRPTW model has similaritieswith the uni�ed model of Desaulniers et al. (1998). Our goal is to provide a formu-lation from whih we an easily derive a new model. This new model will representa solution as a single resoure-feasible path.2.1 The Multiple-Depot VRP with Time WindowsThe MDVRPTW is de�ned on a network N = (V,A) with node set V and ar set
A. As usual, at ustomer i ∈ C ⊂ V, a quantity of qi needs to be olleted by asingle visit of a vehile. Eah ustomer i allows the start of the servie (=olletion)within the time window [ei, li].Let K be the set of vehiles. Sine we assume that eah vehile performs exatly onetour during the planning horizon, K is also the set of tours. Eah tour k ∈ K startsat its origin o(k) ∈ V, ends at its destination d(k) ∈ V, and visits ustomers inbetween. Side-dependenies may restrit vehile k to visiting only ustomers C k ⊆
C . Hene, the subnetwork N k = (Vk,Ak) with nodes Vk = C k ∪ {o(k), d(k)}desribes feasible movements of vehile k in spae. For modeling purposes, it isadvantageous to formulate the problem with distint nodes, whih results in O =
{o(k) : k ∈ K} and D = {d(k) : k ∈ K} both having ardinality |K|.The vehiles k ∈ K are haraterized by the following data: The total quantityolleted by vehile k must not exeed the vehile apaity Qk. Time windows
[eo(k), lo(k)] and [ed(k), ld(k)] restrit the start time and end time of tour k. Traveltimes tij and osts cij for (i, j) ∈ A are assumed to be vehile-independent. Notethat additional servie times at a node i an always be inluded in tij withouthanging the interpretation of the time windows. The model for the MDVRPTWreads as follows:
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i ≤ li ∀k ∈ K, i ∈ Vk (2f)This non-linear mathematial programming formulation of the MDVRPTW on-tains two types of deision variables: First, �ow variables xk
ij for k ∈ K and (i, j) ∈

Ak are equal to 1 if ar (i, j) is used in tour k, and 0 otherwise. Seond, resourevariables T k,r
i represent the onsumption of resoure r ∈ R of tour k at node i. Forthe MDVRPTW, one has to onsider the resoures R = {cost, load, time}.Constraints (1b) ensure that eah ustomer i ∈ C is assigned to exatly onetour k ∈ K. A ontinuous �ow (=movement of vehile k) between origin o(k) anddestination d(k) in N k is guaranteed by (1c) and (1d). The non-negative resourevariables T k,cost
i reord the osts of the (partial) tour starting at o(k) and ending atthe respetive node i ∈ Vk. The orret update of the tour osts is ensured by (2a):If vehile k moves diretly from i to j, the partial ost T k,cost

j is at least the ost
T k,cost

i plus the ost cij along the ar (i, j). Note that T k,cost
i an always be set tozero if a node i is not visited by vehile k. Therefore, the objetive (1a) exatlydetermines the ost of all tours. Operational osts on the ars an be supplementedby �xed osts on ars (o(k), i) onneting the origin with a �rst ustomer. Also thear (o(k), d(k)) an exist in Ak to represent the empty tour k.The remaining limited resoures, time and load, are modeled by the resoure vari-ables T k,time

i and T k,load
i , whih are onstrained to feasible values by (2d) and (2f).Their update is given by (2c) and (2e). The load update (2c) is managed identiallyto the ost update (2a). The update of the times by (2e) guarantees together with(2f) that T k,time

j ≥ max{ej , T
k,time
i + tij} holds whenever vehile k uses ar (i, j).Vehiles arriving before the start of the time window have to wait.It is obvious that the objetive and the apaity onstraints an also be formu-lated in a more `lassial' way, e.g., minimize ∑
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k
ij ≤ Qk forall k ∈ K. There also exist straightforward linear reformulations of the time up-dates (2e) using the well-known big-M tehnique. The point is, however, that theabove formulation is more generi, sine it handles all three resoures identially:The onstraints (2a), (2c), and (2e) an be reformulated with REFs, whih is moreonvenient for a graph-theoreti desription of the problem. The formulation withREFs is also essential for the appliation of e�ient LS tehniques as presented in4



Setion 3.2.2 Formulation of Resoure Constraints by Classial REFsResoure onstraints for paths an be modeled by means of (minimal) resoureonsumptions and resoure intervals. Let R be the number of resoures. A vetor
T = (T 1, . . . , TR)⊤ ∈ R

R is alled a resoure vetor and its omponents resourevariables. T is said to be not greater than S if the inequality T i ≤ Si holds for allomponents i ∈ {1, . . . , R}, denoted by T ≤ S. For two resoure vetors a and b,the interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b}. Resoure intervals,also alled resoure windows, are assoiated with nodes i ∈ V and are denotedby [ai, bi] with ai, bi ∈ R

R. The hanges in the (minimum) resoure onsumptionsalong eah ar (i, j) ∈ A are given by a vetor fij = (f r
ij)

R
r=1 of resoure extensionfuntions (REFs). An REF f r

ij : R
R → R depends on a resoure vetor Ti ∈ R

R,whih orresponds to the resoure onsumption aumulated along a path (s, . . . , i)from s to i, i.e., up to the tail node i of ar (i, j). The result fij(Ti) ∈ R
R an beinterpreted as a resoure onsumption aumulated along the path (s, . . . , i, j). Fora omprehensive introdution to resoure-onstrained paths, we refer to (Irnih andDesaulniers, 2005; Irnih, 2006a).Let P = (v0, v1, . . . , vp) be any path in N . Path P is resoure-feasible if resourevetors Ti ∈ [avi

, bvi
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(Ti−1) ≤ Tiholds for all i ∈ {1, . . . , p}. We an now re-formulate (2a)�(2f) with resoure in-tervals and REFs: Let M be a su�iently large number. For eah node i ∈ V,let ai = (acost
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(tcost
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ij ) = (cij, qi, tij) for all ars (i, j) ∈ A and de�ne the REF fij by

fij(T ) = max{ai, T + tij}. (3)Then (2a)�(2f) is equivalent to
T k

i ∈ [ai, bi] ∀k ∈ K, i ∈ Vk (4a)
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ij(fij(T
k
i ) − T k

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak. (4b)These onstraints simply state that the paths P = P (xk), implied by the routingvariables xk, have to form resoure-feasible paths.2.3 Formulation of Time-Varying Proessing CapaitiesFor the MDVRPTW, we exemplify inter-tour onstraints by time-varying proess-ing apaities. First, the limited proessing apaities are added to the model (1)�(2) (or (1)+(4)) as non-linear onstraints. Seond, we show that the same on-straints an be formulated more easily with additional resoures as resoure-feasiblepath onstraints, when the de�nition of REFs is extended to the giant route.Tours k ∈ K deliver their olleted load to several depots. Therefore, those desti-nation loations d(k) that represent the same physial loation must be grouped:5



Let G = {g(k) : k ∈ K} be the set of all depots, where g(k) denotes the depot atwhih tour k ends. Let ng be the number of tours ending at depot g so that we anindex the tours by h ∈ {1, 2, . . . , ng}. Moreover, vehile k(g, h) is the hth vehileending its tour at depot g and K(g) = {k(g, h) : h = 1, . . . , ng} is the set of alltours ending at depot g. Reall that [ed(k), ld(k)] is the time interval in whih tours
k ∈ K(g) an deliver to depot g = g(k). Obviously, the amount to be deliveredto depot g after the ut-o� time ld(k), denoted by P g(ld(k)), is zero. In general,let P g(τ) be the maximum amount of load that an be delivered to depot g aftertime τ . For the earliest start of servie ed(k) at the depot g, P g(ed(k)) is the overallquantity that an be proessed at g in the given time horizon [ed(k), ld(k)].In the following, we assume that proessing apaities are disretized and that τℓ,
ℓ ∈ L are the points in time at whih proessing apaities are heked. Figure 1depits a typial proessing-apaity funtion and its disretization. (Note that�inpriniple�we ould make the disretization of time dependent on the depots g ∈ G,but we do not want to overload the notation.)

Fig. 1. Example of a Disretization ofa Time-Varying Proessing CapaityFuntionThe di�ulty in formulating the proessing apaity onstraints at time τℓ anddepot g is that we have to sum up the load of all vehiles k ∈ K(g), but only if
k arrives at g later than time τℓ. In a non-linear formulation, this dependeny anbe modeled by partial sums over the vehiles k(g, h), h ∈ {1, 2, . . . , ng}. We get

Sg
ℓ,h−1 ≤ Sg

ℓ,h ∀g ∈ G, ℓ ∈ L, h ∈ {2, . . . , ng} (5a)
(T k,time

d(k) − τ g
ℓ )(Sg

ℓ,h−1 + T k,load
d(k) − Sg

ℓ,h) ≤ 0

∀g ∈ G, ℓ ∈ L, h ∈ {2, . . . , ng}, k = k(g, h) (5b)
0 ≤ Sg

ℓ,h ≤ P g(τℓ) ∀g ∈ G, ∀ℓ ∈ L, h ∈ {2, . . . , ng} (5c)Herein, Sg
ℓ,h is the partial sum of all loads arriving at depot g later than time τℓ forthe �rst tours 1, 2, . . . , h. Inequalities (5a) guarantee that the sequene of partialsums is non-dereasing. The interdependeny between the arrival time and olletedload of tour k and the orresponding partial sum is modeled by (5b): If tour karrives late, i.e., T k,time

d(k) > τ g
ℓ , then the hth partial sum Sg

ℓ,h must exeed Sg
ℓ,h−1 bythe olleted load T k,load

d(k) . For early arrivals, i.e., T k,time
d(k) ≤ τ g

ℓ , the onstraints (5b)allow Sg
ℓ,h−1 = Sg

ℓ,h. The proessing-apaity restritions are stated by (5c).The giant-tour representation of a solution is depited in Figure 2. Here, giant toursare de�ned as Hamiltonian yles in the routing graph (V,A), the nodes of whihare ustomer nodes C as well as start nodes and end nodes of tours, O and D .6



Following the ideas presented in (Irnih, 2006b, p. 4), tour-start and tour-end nodes
(o, d) in a feasible route p = (o, . . . , d) must ful�ll a ompatibility relation. Theompatibility relation∼ on O ×D introdues vehile and depot harateristis intothe problem. In multi-depot problems, the sets O and D are partitioned aordingto the |G| depots, e.g., O = O 1 ∪ . . . ∪ O |G|, D = D 1 ∪ . . . ∪ D |G|. Pairs (o, d) ∈
O e ×D f are ompatible o ∼ d if and only if e = f .In addition to the ars of model (1)�(2) (or (1)+(4)), the routing graph also ontainsreset ars (d, o) ∈ D × O . These reset ars onnet end nodes of one tour withstart nodes of another tour. If (p1, p2, . . . , p|K|) are the tours forming a feasiblesolution to the MDVRPTW, the yli onatenation of the tours is a giant tourin the routing graph. The orresponding giant route is a path (with idential startand end node). It is denoted by P = P (p1, p2, . . . , p|K|) and is de�ned as theonatenation of p1, p2, . . . , p|K|, o1, i.e., of the |K| tours plus the ar onnetingthe last node d|K| of the last tour p|K| = (o|K|, . . . , d|K|) with the �rst node o1 ofthe �rst tour p1 = (o1, . . . , d1).

o1 o2 o3 o4 d4d3d1 d2 Fig. 2. Giant-TourRepresentationThe proessing onstraints (5) an be equivalently reformulated as resoure-feasiblepath onstraints for the giant route P . We de�ne additional resoures r(g, ℓ) for allpairs (g, ℓ) ∈ G× L. The assoiated resoure variables have the following resourewindows at the nodes and REFs on the ars of the routing graph:
T g,ℓ

i ∈ [ag,ℓ
i , bg,ℓ

i ] = [0, P g(τℓ)] ∀i ∈ V (6a)
fij(T )g,ℓ =



















T g,ℓ + T load, if T time > τℓ and (i, j) = (d(k), o(k′)) reset arand g = g(k)

T g,ℓ, otherwise (6b)With the de�nitions tcost
do = 0 and tload

do = ttime
do = −M for reset ars (d, o) ∈ D ×O ,all MDVRPTW resoures have well-de�ned REFs, given by (3) and (6b). (Notethat the name reset ar refers to the fat that fdo(T )load = 0 and fdo(T )time = eoholds, i.e., these inner-tour resoures are reset to their lower bounds at the tour-start node o.)2.4 Generi Giant-Tour ModelThe generi model for VRPs with inter-tour onstraints is the following: Given(a) the routing graph with request/ustomer nodes, tour-start nodes O and tour-end nodes D , (b) a ompatibility relation ∼ between O and D , and () resoures,onstrained by resoure intervals at all nodes, with REFs de�ned on all (originaland reset) ars of the routing graph, a giant tour (p1, p2, . . . , p|K|) is feasible if itsorresponding giant route P = P (p1, p2, . . . , p|K|) is a resoure-feasible path. Reall7



that a giant tour has already been de�ned as a Hamiltonian yle in the routinggraph, the tour-start and tour-end of whih respet the ompatibility relation ∼.The generi VRP with inter-tour onstraints is the problem of �nding a least-ostfeasible giant tour. The novelty of this de�nition is that the entire giant route isonsidered as one resoure-onstrained path (RCP) and that inner-tour as wellas inter-tour onstraints are all aptured in the de�nition of an RCP by resoureintervals and REFs.The above de�nition of a VRP with inter-tour onstraints has several advantageswhen heuristi solution methods for solving VRPs are being onsidered. First, thede�nition is lear and onise. Seond, the onept of RCPs is a very powerful mod-eling tool, well-known in the ontext of exat solution approahes in vehile routingand rew sheduling (Desaulniers et al., 1998). RCPs allow the modeling of manyrelevant types of onstraints for so-alled rih VRPs inluding appliations witholletion and delivery, preedenes, side dependenies, multiple use of vehiles,limited waiting time and limited working hours in onnetion with time windows,time- or load-dependent travel times and osts, omplex ost funtions and manymore aspets (see Irnih, 2006b); additional aspet of modeling with RCPs areoved by (Desaulniers et al., 1998; Avella et al., 2004; Irnih and Desaulniers, 2005;Irnih, 2006a). Third, the de�nition of the giant tour as a Hamiltonian yle leadsto easier desriptions of loal searh neighborhoods. For instane, the reloationof a node inside its own tour or into another tour has the same desription in thegiant-tour representation. The most important advantage is, however, that thereare very e�ient neighborhood searh methods available, at least when REFs ful�llsome basi requirements. This is the subjet of the Setion 3.We now reformulate the MDVRPTW with proessing apaities and brie�y skethother inter-tour onstraints that an easily be modeled within the same generiframework.2.4.1 Generi Model for MDVRPTW with Proessing CapaitiesWith de�nitions (4) and (6) of resoure windows and REFs, the MDVRPTWwith proessing apaities is the problem of �nding a least-ost feasible giantroute P , where P is resoure-feasible w.r.t. resoures load, time, and r(g, ℓ) for all
(g, ℓ) ∈ G× L. If existent, side-dependenies have to be modeled by additional re-soure onstraints (see Irnih, 2006b, p. 19). The onsideration of vehile-dependentapaities Qk is trivial by de�ning orresponding resoure intervals (4a) at nodes
d(k) ∈ D . However, vehile dependent osts and travel times an�in priniple�beformulated with REFs and additional resoures (see Irnih, 2006b, p. 21), but theseextensions are not fully ompatible with the e�ient searh methods of Setion 3.2.4.2 Examples of Inter-Tour Resoure ConstraintsTime-varying proessing apaities are a rather omplex example of inter-tour re-soures. Some other simple but pratially relevant examples of inter-tour resoureonstraints are given in the following. 8



In many real-life, multi-depot problems, the total apaity of the depots is limited.The maximum depot apaity an easily be modeled with the proessing onstraintsintrodued in Setion 2.3: For vehile k belonging to depot g = g(k), apaities areonly heked at the beginning ed(k) of the proessing time window and P g(ed(k))must be set to the overall quantity that an be proessed at depot g.Also, the number of vehiles being servied at the same time might be restriteddue to a limited number of ramps at the depot. This is, again, a proessing apaity,where eah tour ollets one unit and P g(τ) has to be set to the number of availableramps at depot g from time τ until the losing of the depot at time ld(k).Irnih (2006b, p. 22f) omments on restriting the number of tours with ertainharateristis. Examples are a limited number of tours arriving after a ertainpoint in time, traveling more than a given distane or time, olleting more than aertain amount of goods et. These examples have in ommon that one resoure r1is, at tour-end nodes, ompared against an upper limit u1 (non-binding for theindividual tours). The number of times this limit is exeeded is reorded by anotherresoure r2, whih is bounded by a upper bound u2. As long as the resoure r1 isupdated by a lassial REF of the form (3), one an also limit the number of toursthat do not exeed u1. Hene, it is also possible to restrit the number of toursthat arrive early, travel short distanes, or ollet only a small quantity.Another interesting task that an be handled by an inter-tour resoure is the al-loation of a limited vehile �eet to several depots. Let a �eet of u vehiles begiven. In the giant-tour representation, eah depot is initially provided with thewhole �eet of vehiles, i.e., u = |O 1| = . . . = |O |G|| = |D 1| = . . . = |D |G||. Then,an inter-tour resoure globally asserts that the total number of non-empty toursdoes not exeed u. It is straightforward to extend the model to �eets with multiplevehile types by using as many inter-tour resoures as vehile types are present.3 Solution MethodsWe have already seen that inter-tour onstraints arise naturally in many VRP ap-pliations. In partiular, the onsideration of integrated problems (over multipledepots and extended planning horizons) leads to the onourse of large-sale prob-lem instanes with inter-tour onstraints. It is, therefore, imperative that heuristimethods should be designed to work both e�iently and e�etively.The solution methodology presented next is based on the uni�ed framework ofIrnih (2006b), and referene is also made to two earlier papers (Irnih et al.,2006; Irnih, 2006a) for a detailed desription of the methods and further questionsrelated to implementation issues.3.1 E�ient Loal SearhNearly all metaheuristis for VRPs rely on the onept of neighbor solutions, de-�ned by neighborhoods, suh as k-Opt and k-Opt* neighborhoods, node reloationand Or-Opt neighborhoods, node and string swap/exhange neighborhoods, and9



others (see surveys by Bräysy and Gendreau, 2005a,b; Funke et al., 2005). For allof these neighborhoods, a move from a urrent solution to a neighbor solution isharaterized by the fat that the given giant tour is �rst split into (a small num-ber of) paths. In the following, these paths are referred to as segments. The movepermutes the segments - some may be inverted - and they are �nally onatenatedto form a new giant tour.A LS algorithm expliitly or impliitly inspets all neighbor solutions and deter-mines the one that is feasible and most improving. There are two aspets of e�ientLS that we fous on in the following: First, e�ient feasibility tests are neessaryto guarantee that neighborhoods an be explored quikly. It is important to pointout here that VRPs with R resoure onstraints imply an additional fator of atleast R in the feasibility tests. Hene, from a worst ase point of view, the best wean expet are O(Rnk) time algorithms for searhing neighborhoods of size O(nk).Seond, we devise e�ient searh methods that, in the average ase, need less than
Rnk steps for fully exploring an O(nk) neighborhood.The aeleration of the average ase needs further explanation: In the ontext ofnode-exhange and edge-exhange neighborhoods, any LS algorithm an be onsid-ered a tree searh method. The tree has depth k for a neighborhood of size O(nk).In order to aelerate the searh, the two main riteria for a redution of the searhspae (i.e., pruning the searh tree) are feasibility and ost with two orrespond-ing approahes (Irnih et al., 2006; Irnih, 2006b): Lexiographi searh is drivenby feasibility redutions, i.e., one tries to prove at an early stage i < k that nofeasible exhange exists that inludes the nodes or edges of the stages 1, . . . , i. Theonept, as originally introdued by Savelsbergh (1986, 1990), is intrinsially tiedto the lexiographi ordering in whih neighbor solutions are onstruted: In theinnermost loop of the searh algorithm, from one iteration to the next, an innersegment must grow by one node (or a small onstant number of nodes), so that so-alled global variables an be updated in O(R) time. Conversely, sequential searhis based on the idea of ost-based redutions, i.e., one tries to prove at an earlystage i < k that no improvement an be found whih inludes the nodes or edgesof the stages 1, . . . , i. It requires, however, that all in-ars and out-ars of a nodeare sorted by inreasing ost and moves are deomposable into k ost-independentpartial moves (see Irnih et al., 2006). Then, neighbor solutions are generated insuh an ordering that partial gains of the partial moves ful�ll the gain riterion(Lin and Kernighan, 1973; Irnih et al., 2006), i.e., one an restrit the searh tothose ases where all the partial gains are positive. The idea an be applied in theontext of best-improvement as well as �rst-improvement strategies.3.1.1 E�ient Feasibility CheksAs presented in the paper by Irnih (2006b), the searh proedure an be split intoa preproessing phase, in whih information for feasibility heks is gathered, and anatual searh for the enumeration of the neighbor solutions. In the preproessingphase, generalized REFs are omputed for a set of segments. In essene, thesesegment REFs and their inverses enable O(R) time feasibility tests. Sine any10



neighbor solution, represented as a giant tour, results from the onatenation ofsegments of the urrent solution, feasibility an be tested by propagating lower andupper bounds of resoure onsumptions along the segments. Lower bounds haveto be propagated by segment REFs, while upper bounds have to be propagatedby inverse segment REFs. Although the number of all di�erent segment REFs ofa given giant-tour of length n is quadrati, the work of Irnih (2006b) shows thatonly O(n4/3) segment REFs must be a priori omputed.The feasibility test with segment REFs is very similar to the on-the-�y omputationof global variables, as suggested in lexiographi searh proedures. For instane,time window onstraints require the omputation of a total travel time, earliestdeparture time, and a latest arrival time as a global variable of a segment. Kinder-vater and Savelsbergh (1997) larify these proedures for 2-opt and Or-opt movesin onnetion with time windows and preedene onstraints as well as for problemswith simultaneous deliveries and pikups.For both methods, lexiographi as well as sequential searh, there must hold sev-eral assumptions on properties of REFs in order to guarantee O(R) time feasibilitytests. All REFs must be omputable in O(R) and must be non-dereasing, i.e.,
S ≤ T implies fij(S) ≤ fij(T ). It must be possible to generalize REFs to seg-ments, suh that onatenations of segment REFs an be omputed and evaluatedin O(R) time. Finally, REFs f (of ars and segments) must be invertible in thesense that f(T ) ≤ T ′ is equivalent to T ≤ f inv(T ′) for the inverse REF f inv. Theseassumptions are�in detail�derived and explained in (Irnih, 2006a).The assumption about the existene of inverse REFs an be relaxed for some re-soures r. If a resoure r is non-dereasing along the entire giant-tour and globallyonstrained by node-independent resoure windows [ar, br], there is no need to in-lude the resoure r in the de�nition of an inverse REF. The feasibility of a giantroute an be diretly heked only by the forward propagation of the resoure. Theoverall resoure onsumption is given at the �nal node of the newly onstrutedgiant route. (A similar argument was used in (Irnih, 2006a, p. 24) in order toexplain that some omplex REFs for ost must not neessarily be invertible.) Asa onsequene, the inter-tour resoures r(g, ℓ) de�ned in Setion 2.3, do not re-quire an inversion. Hene, O(R) time feasibility heks for VRP with inter-tourresoures an be implemented if one an onstrut and evaluate segment REFsin O(R) time. This important property is shown for the time-varying proessingapaity onstraints in Setion 3.1.3.3.1.2 Sequential SearhThe easiest way to desribe the idea of sequential searh is by onsidering the 2-opt∗ (=rossover) neighborhood, originally suggested by Potvin et al. (1989). A2-opt∗ move is depited in Figure 3 and its interpretation is that two di�erentroutes in the given giant tour exhange their end-segments. Along the alternatingyle (t1, t2, t3, t4, t1) (of deleted and added ars), the 2-opt∗ move deomposes intotwo ost-independent symmetri partial moves, where the �rst is the deletion of the11



ar (t1, t2) and insertion of (t3, t2), and the seond the deletion of the ar (t3, t4) andthe insertion of (t1, t4). For the 2-opt∗ move to be improving, at least one of the twopartial moves has to be improving, i.e., the inserted ar has to be less ostly than theremoved one (Irnih et al., 2006, p. 2412f). A sequential searh algorithm utilizesthis property for �nding improving moves in the following way: An outer loopdetermines the node t1 and the ar (t1, t2) to be deleted. The proedure then loopsover all in-ars (t3, t2) of t2 as long as ct3,t2 < ct1,t2 holds. All these ombinationsof t1, t2 and t3 imply that the �rst partial move is improving. Sine t4 is uniquelydetermined by t3, one an also hek the overall gain and the feasibility of the 2-opt∗ move. The ase with nodes t3, t4, and t1 is symmetri and, therefore, alreadyovered by the above loops. Note that for restriting the inner loop to ases with
ct3,t2 < ct1,t2 , in-ars must have been previously sorted by inreasing ost and storedin neighbor lists.
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Fig. 3. Priniple Sequential Searh in the2-opt∗ Neighborhood. Partial moves haveGains g1 = ct1,t2 − ct3,t2 and g2 = ct3,t4 − ct1,t4 ,and g1 > 0 or g2 > 0 must hold for ImprovingMovesSequential searh is diretly appliable if the ost of a giant tour is the sum ofits ars' osts. Irnih et al. (2006) explain deompositions of moves into partialmoves for many other types of edge-exhange and node-exhange neighborhoods.Note that the gain riterion an also be generalized to situations where best non-improving moves have to be found.3.1.3 Resoure Extension Funtions for SegmentsReall that a segment σ is a sequene of nodes that our as a sub-path in thegiant tour urrently under onsideration. Figure 3 also visualizes how a 2-opt∗ movepermutes segments. In order to form a neighbor solution, the segment (o1, . . . , t1)is onatenated with the segments (t4, . . . , d
|K|), (oh+1, . . . , t3), and (t2, . . . , d

h). Ifsegment REFs are given and an be evaluated in O(R) time, the feasibility of theresulting new giant route an also be heked in O(R) time (the number of segmentsis onstant). Thus, we desribe next how REFs an be generalized to segments.For any segment σ, the forward propagation of resoures (for given lower bounds Ton the resoure onsumptions) an be omputed by a segment REF fσ of the form
fσ(T ) = max{aσ, T + hσ(T ) + tσ}, (7)where aσ, tσ ∈ R

R are resoure vetors and hσ(T ) is a funtion hσ : R
R → R

R thattakes values 6= 0 only for some of the resoures rg,ℓ and is 0 on all other resoures.Moreover, if σ ontains no reset ar, then hσ(T ) = 0 for all T , so that (7) isidential to the de�nition of a lassial REF (3). Otherwise, let (d(k), o(k′)) bethe �rst reset ar in the segment, so that σ an be written as (. . . , d(k), o(k′), . . .).Now, we an preisely desribe all the oe�ients neessary to de�ne hσ. If a reset12



ar exists, let gσ = g(k) be the depot orresponding to the tail node d(k) of the�rst reset ar (d(k), o(k′)), and let ϕ = (. . . , d(k)) be the pre�x segment of σ upto the �rst tour-end node d(k). Note that hσ does not depend on other reset arsthat may be present in σ. If σ ontains no reset ar, we de�ne gσ = ⊥ and ϕ to bethe entire segment σ. Moreover, let atime
ϕ , ttime

ϕ and tload
ϕ ∈ R be the oe�ients thatdesribe the resoure onsumption for the resoures time and load on the pre�xsegment ϕ, i.e., fϕ(T )time = max{atime

ϕ , T time + ttime
ϕ } is the earliest arrival time atthe last node of ϕ and fϕ(T )load = T load + tload

ϕ the olleted load. Then,
hσ(T )gσ,ℓ =











T load + tload
ϕ , if max{atime

ϕ , T time + ttime
ϕ } > τℓ

0, otherwise.Summing up, the segment REF on segment σ is de�ned by (aσ, tσ, gσ, a
time
ϕ , ttime

ϕ , tload
ϕ ) ∈

R
R × R

R × (G ∪ {⊥}) × R
3. Note that also the ar REFs (6b) are of the form (7)with appropriately de�ned funtions hσ(T ) having (atime

ϕ , ttime
ϕ , tload

ϕ ) = 0.What remains to be shown is how one an ompute the oe�ients of the segmentREF of the onatenation of two segments σ1 and σ2 in O(R) time. We assume thatthe last node of σ1 is idential with the �rst node of σ2, and that both segments aredesribed by (aσ1
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3. The onatenation σ1 ⊕ σ2 has a pre�x segment denoted by
ϕ (either idential to ϕ1 or ϕ1 ⊕ ϕ2 depending on gσ1

) and ful�lls
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),otherwise.An Example The following example illustrates segment REFs and formula (8).We onsider a 2-depot problem with depots G = {g, g′}, where the proessing timewindow is [806; 925]. Proessing rates are assumed to be onstant with 150 unitsper hour for depot g and 200 units per hour for depot g′. For the sake of simpliity,the proessing apaity funtions are disretized at times τ1 = 805 and τ2 = 835only. The resulting apaities are P g(τ1) = 300, P g(τ2) = 225, P g′(τ1) = 400 and
P g′(τ2) = 300.Two segments σ1 and σ2 and the assoiated values for ttime

ij , [atime
i , btime

i ], tload
ij(=demand at node j) are given in Figure 4. Both segments ontain a reset ar, i.e.,13
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Fig. 4. TwoSegments σ1and σ2

(d1, o2) for σ1, and (d2, o3) for the segment σ2. Moreover, tour-end node d1 belongsto depot g and tour-end node d2 to depot g′.From the proessing apaity diagrams for both depots, as depited in Figure 4, itbeomes lear that we do not need to hek proessing apaities at the ut-o� time
τ = 925, sine tours must return to the depots no later than this time. Conluding,the resoures to be onsidered in this example are {time, load, (g, τ1), (g, τ2), (g

′, τ1), (g
′, τ2)}(the omputation of osts is trivial and, therefore, left out).The segment REF fσ1

of the �rst segment σ1 is given by
fσ1
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,where hσ1
(T )g,τ1 = T load +6, and hσ1

(T )g,τ2 = 0 if max{814, T time +78} ≤ τ2 = 835and hσ1
(T )g,τ2 = T load + 6, otherwise. The interpretation is simple: The earliestarrival time at d1 is 814 > τ1 = 805, and, hene, the resoure (g, τ1) is alwaysinreased by T load + 6, whih is the load in the tour arriving at d1. In general,the arrival time at d1 is given by max{814, T time + 78}, whih explains hσ1

(T )g,τ2.Along the entire segment σ1, the oe�ients of fσ1
re�et that the earliest arrivaltime at the last node of σ1 is 734 with 13 units of load olleted.The segment REF fσ2
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,where hσ2
(T )g′,τ1 = T load + 10, and hσ2

(T )g′,τ2 = 0 or hσ2
(T )g′,τ2 = T load + 10depending on whether max{833, T time + 113} ≤ τ2 = 835 holds or not. Wheneverone arrives at the �rst node of σ2 three or more minutes later than the earliest14



servie time (720), the arrival at d2 is later than τ2 and resoure (g′, τ2) is inreasedby T load + 10.Using formula (8), the segment REF for the onatenation σ = σ1 ⊕ σ2 is given by
fσ
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,where hσ(T ) = hσ1
(T ). The interpretation of this result is the following: Whentraversing the entire segment σ1 ⊕ σ2, the resulting arrival time and load at thelast node is independent from the initial resoure onsumption T . The tour startingat node o3 arrives at the last node of σ at time 740 with 9 units of load on board.The onatenation of σ1 and σ2 fully determines what happens at depot d2. 23units of load arrive after time τ2 and, hene, T g′,τ1 and T g′,τ2 are always inreasedby 23 (whih is also the minimum resoure onsumption). In ontrast, proessingapaity resoures for depot g depend on the olleted load and start time atthe beginning of the segment σ: Six units of load arrive at d1 later than τ1 and,depending on the start time at the �rst node, possibly also later than τ2. This isontrolled by hσ(T )g,τ , in whih the arrival time at the �rst depot is omputed by

max{814, T time + 78} and the olleted load by T load + 6.3.2 Large Neighborhood SearhMetaheuristis are substantial for produing high-quality solutions beause theyallow an esape from loal minima. This setion brie�y desribes the metaheuristiimplemented here, whih is obviously only one out of many possible hoies forusing the e�ient LS proedures as a omponent of a metaheuristi.To �nd a �rst loal minimum, various neighborhoods are ombined in a VNDomponent (Mladenovi¢ and Hansen, 1997; Hansen and Mladenovi¢, 2001). In orderto esape from this joint loal optimum, a kik step is performed. The kik onsistsof a randomized removal of a subset of nodes that are onseutively reinserted intothe giant route. The solution is then re-optimized with the VND omponent, theresulting solution is ompared against the previous loal optimum, and aeptedwith the Metropolis aeptane riterion of simulated annealing (Aarts and Korst,1989). Hene, the hosen approah has similarities with the large-step Markov hainapproah (Martin et al., 1992) and the large neighborhood searh (LNS) approahoriginally proposed by (Shaw, 1998). The di�erene to the large-step Markov hainsis, however, that loal optimal solutions of the VND omponent are used instead ofloal minima of a single neighborhood. The di�erene to standard LNS proeduresis the use of the Metropolis aeptane riterion. Røpke and Pisinger (2006) alsouse LNS with the Metropolis aeptane riterion, but their LNS solutions are notre-optimized by LS at all.There are plenty of hoies for de�ning node removal and node insertion opera-15



tors. Over the tested operators (pure random, based on node attributes suh astime window length, demand, detour length et.), the operator that performs bestrandomly selets 20 `lose' ustomers aording to a randomized distane-basedseletion proedure. Insertion of removed ustomers is done by building dummyroutes ontaining these ustomers and by applying the above VND omponent di-retly to the resulting giant tour (see also Irnih, 2006b, p. 21). Røpke and Pisinger(2006) hoose from among di�erent removal and insertion operators aording tosores that are updated by a learning mehanism based on the searh history. Thismay be a bene�ial extension to the urrent implementation.4 ExperimentationThe omputations presented in this setion aim at two di�erent aspets: First,we show that the solution methodology introdued in (Irnih, 2006b), i.e., giant-tour representation and O(R) feasibility heks by onsidering the giant-route as aresoure-onstrained path, lead to highly e�ient loal searh-based metaheuris-tis. Seond, we exemplify the usefulness of inter-tour onstraints by presentingnew types of studies that an easily be performed with the methods at hand.4.1 E�ient Loal SearhIn order to analyze the e�ieny of the proposed LS tehniques, we generated aset of 80 MDVRPTW test instanes with 100, 200, 400 and 800 nodes (eah lasswith 20 instanes). Eah instane has between two and �ve depots. Customers arespread around the depots (aording to a normal distribution) suh that the servieareas of the depots partially overlap. The width of the ustomer time windows isvaried in eah group of instanes. This reates �ve groups of MDVRPTW instanes.Moreover, four di�erent proessing time windows for the depots are hosen for eahMDVRPTW instane. The four di�erent proessing time windows re�et di�erentsituations where proessing apaities are more or less binding (from loosely tohardly onstrained). Overall, this generates 320 instanes of the MDVRPTW withtime-varying proessing apaities.Eah of 320 instanes is solved with the LNS metaheuristi of Setion 3.2. VND �rstalternates between 2-opt, 2-opt∗, node swap and node reloation neighborhoodsuntil a joint loal optimum is reahed. The searh proedures for �nding improvingstring-exhange and Or-opt moves (with and without inversion of the reloatedsegment) are then applied to these loal optima. Eah VND step ends in a jointloal optimum of all seven neighborhoods. 250 kik moves are performed to diversifythe searh.Using a similar setup 1 as in (Irnih, 2006b), the absolute performane of the se-quential searh approah is summarized in Table 1: The overall omputation time
1 All algorithms were oded in C++, were ompiled in release mode using MS-VisualC++ .NET 2003 version 7.1, and all runs were performed on a standard PC (Intel x86family 15 model 2 stepping 5, 2.8 GHz, 1GB main memory, on MS-Win 2000).16



(seond olumn) to perform the 250 kiks and VND steps does not exeed 15 min-utes, even for the largest instanes with 800 nodes. The third olumn shows how of-ten sequential searh algorithms were invoked in VND and kik steps. This numberdoes not raise proportional to the size of the instanes or size of the neighborhoods,but grows sub-linear. For all instanes, the ratio of searhes that �nd an improv-ing neighbor to the total number of searhes is stable and between 60% and 68%.We have also omputed (fourth olumn) the average time neessary to perform asingle sequential searh (inluding both searh phases, segment REF omputationand atual tree searh). These numbers show that the sequential searh proeduresare notably fast, in partiular for large-sale instanes.Size Avg. Time Avg. Number of Avg. Time# Nodes 250 VND+kik Searh Steps Performed per Searh100 35.5 s 12738 2.8ms200 119.4 s 17040 7.0ms400 279.6 s 19227 14.4ms800 716.8 s 22641 31.4msTable 1Charateristis of the LNS Metaheuristi based on Sequential SearhFinally, we ompare the overall omputation times of the LNS metaheuristi wheneither sequential searh or lexiographi searh proedures are used. Figure 5 de-pits the speedup gained by using sequential instead of lexiographi searh (thespeedup fator is the quotient of the running times). For eah size of instanes, the�ve sublasses orrespond to inreasing widths of the ustomer time windows. Onean learly see that sequential searh outperforms lexiographi searh, sine thelatter takes (on average) between 1.5 and 11.4 times longer. As already observedin (Irnih et al., 2006; Irnih, 2006b), sequential searh is more e�etive for looselyonstrained problems and when the size of the instanes inreases. The impat ofinreasing ustomer time windows is that tours get longer and, therefore, instanesare less onstrained and an be solved signi�antly faster.
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Fig. 5. Aeleration Gained when Se-quential Searh is used instead of Lexi-ographi SearhIt is worth mentioning that we have also analyzed the four groups of instaneswith less and less binding proessing time windows. For these, the impat on thespeedup is less signi�ant and varies by less than 6% within eah of the four groups.17



4.2 New Types of Studies based on Inter-Tour Resoure ConstraintsWhen depots and proessing failities are being planned, the interdependeny be-tween transport proesses and stationary proesses is often disregarded due to theomplexity of integrated faility design/layout and transport planning problems.For instane, the dimensioning of the depots as well as the duration of time windowsused for proessing are unlear. The models and solution tehniques presented inthis hapter allow suh deisions to be studied in an integrated way, at least if it ispossible to formulate the stationary proesses with inter-tour resoure onstraints.4.2.1 Variation of the Cut-O� TimesSeveral aspets have an impat on the temporal feasibility of solutions: Travel timesand servie time windows at ustomers speify the feasibility of the individual tours.The proessing rates (i.e., the slopes of P g(τ)), the length of the proessing timewindows, and the ut-o� times together determine the temporal interdependenybetween the tours (see also Figure 1). The variation of eah of these parametershas onsequenes for the ost and struture of the resulting VRP solution.Here we analyze the impat of the ut-o� times ld(k) on the ost, the number oftours, and the number of ustomers that annot be servied. We present results fora 4-depot instane with 100 nodes. 30 runs of the LNS metaheuristi are performed,where the ut-o� times of all depots are hanged from run to run by �ve minutes.The shape of the proessing apaity funtions P g(τ) is not altered.

Fig. 6. Simultaneous Variation of Cut-O� Times of all DepotsThe diagram at the bottom of Figure 6 shows the transportation osts, the numberof tours in the solution, and the number of ustomers that are not servied due tothe early ut-o� times. The later the ut-o� times, the less tours must be operatedto ollet the ustomers' supply. At the same time, the osts of the solutions de-18



rease. Note that we do not use any �xed osts per tour (with �xed osts the e�etwould be even more drasti). In addition to the ost diagram, the top part of Fig-ure 6 shows the two extremal solutions orresponding to the ut-o� times 15:55 hand 18:00 h. In the left tour plan, proessing apaities are strongly binding. Theresult is a relatively high number of tours with only a few ustomers in eah tour.In ontrast, with the late ut-o� at 18:00 h, tours are not all onstrained by theproessing apaities.4.2.2 Optimal Dimensioning of Proessing FailitiesAnother interesting issue is the determination of the ratio of the proessing apa-ities at di�erent failities and the impat of proessing apaities to transportation(�eet size, ost et.). For the sake of simpliity, we assume a 2-depot problem,
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5 ConlusionsThis hapter has foused on the heuristi solution of large-sale VRPs with inter-tour onstraints. Inter-tour onstraints are those onstraints for whih the feasibil-ity of a solution depends on properties of several tours and annot be deided byonsidering the individual tours separately. Examples are sorting proesses at de-pots that require a staggered arrival of tours, limited number of ramps at depots,and depots with globally limited apaities. Many more examples an be foundwhen transportation and other logistis proesses are onsidered together.The presented modeling and solution approah an ope with suh interdependen-ies and is based on the uni�ed framework of Irnih (2006b): A solution is repre-sented as a giant tour, i.e., as a single Hamiltonian yle in the problem-spei�routing graph. This representation is advantageous from a modeling point of view,sine omplex inter-tour onstraints an be taken into aount by the powerfulonept of resoure-feasible paths. It has been shown that inter-tour onstraints,whih are sometimes ompliated to formulate in mixed integer programming mod-els, an be easily translated into simple resoure-feasible path onstraints on thegiant route.The proposed solution method is based on loal searh (LS), whih is one of themost important tehniques for improving VRP solutions. It is used as a omponentin metaheuristis, suh as tabu searh, GRASP, VND and VNS, or as a postpro-essing improvement method in all types of metaheuristis. By onsidering a giantroute as a single resoure-feasible path, the uni�ed framework performs LS formany types of VRPs with inter-tour onstraints and for all lassial LS neighbor-hoods as e�iently as it does for standard VRPs. The key tehnique used hereis an O(R) time feasibility hek for neighbor solutions, where R is the numberof resoures. The e�ieny results from the deomposition of LS proedures intotwo phases, where the �rst phase omputes segment resoure extension funtionsin O(Rn4/3) time. These are used to guarantee O(R) feasibility tests in the seondphase, whih is the atual searh for improving neighbors. Overall, the searh takes
O(Rnk) time for node-exhange and edge-exhange neighborhoods of size O(nk).As a result, di�erent tree searh methods, suh as lexiographi searh and sequen-tial searh, are appliable and also allow an aeleration of the searh also in theaverage ase.In the uni�ed framework, model and solution method both utilize the giant-tourrepresentation. This is important, sine lassial loal searh tehniques (in parti-ular those using inner-tour neighborhoods) have a quite restrited loal view of thesolution spae. In ontrast, the LS methods used here an better ope with om-pliated global interdependenies and work, at the same time, highly e�iently.Conluding, the new approah proposed in this hapter shows that large-saleinstanes of VRPs with inter-tour onstraints an be solved e�iently using LSomponents. It is possible to perform new types of studies, where omplex inter-dependenies between tours and also the impat of other external parameters onstruture and osts of VRP solutions an be analyzed. This is muh needed for a20
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