Vehicle-Routing Problems with Inter-Tour
Resource Constraints

Christoph Hempsch ® Stefan Irnich ®

8 Deutsche Post Endowed Chair of Optimization of Distribution Networks,
RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany.

Key words: vehicle routing, global and inter-tour resources, efficient local search

1 Introduction

Classical vehicle routing problems (VRPs) are implicitly or explicitly formulated
and are solved by considering resources: The capacitated VRP (CVRP) has re-
sources for limited vehicle capacities and the VRP with time windows (VRPTW)
has resources for service times. In the case of a homogeneous fleet, the limiting
resource constraints and resource consumptions are identical for each vehicle. For
a heterogeneous fleet, resource constraints and consumptions can differ between
specific groups of vehicles. In both cases, the feasibility of a tour depends solely
on vehicle-specific resources. Here, we consider constraints for globally limited re-
sources that different vehicles compete for. Examples are a restricted number of
docking stations at depots, and a limited number of ‘long’ tours, where long is
defined w.r.t. the traveled distance, the number of stops, the arrival time at the
depot etc. We devise a general model and solution method and, for the sake of
clarity, explain the approach with the example of a VRP with time-varying pro-
cessing or sorting capacity constraints. Such VRPs arise, for instance, in routing
applications for letter mail collection from postboxes or for the pickup of parcels
from registered clients: Vehicles collecting mail or parcels arrive at a specific depot
over time. The entire volume must be processed (stamped, sorted, labeled with a
machine-readable code, commissioned etc.) before a given cut-off time. Moreover,
the processing rate at the depot is limited. It may vary over time so that, for
each point in time, one can specify a maximum quantity that can be handled in
the remaining time interval, i.e., from that point in time until cut-off. While each
individual tour may be feasible w.r.t. given time window and vehicle capacity con-
straints, the feasibility w.r.t. processing capacities is not automatically guaranteed,
but requires a staggered arrival of collected mail. Thus, the feasibility of a solution

Email addresses: hempsch@or .rwth-aachen.de (Christoph Hempsch),
sirnich@or.rwth-aachen.de (Stefan Irnich).

1 February 2007

depends on the arrival time and collected mail volume of every single vehicle at a
depot.

The contribution of this chapter is threefold: First, the aim of the new model is
to help represent different real-world VRPs with inter-tour constraints in a generic
way. The model is mainly based on the unified framework of Irnich (2006b) and
utilizes the giant-tour representation (Christofides and Eilon, 1969) and the con-
cept of resource-constrained paths (Desaulniers et al., 1998; Irnich and Desaulniers,
2005). Not only inner-tour but also inter-tour resource constraints are modeled us-
ing resource-extension functions (REFs). REFs describe the resource update along
a path, i.e., when a vehicle travels from one point to the next. The novelty of
this approach is that not only are individual tours considered as resource-feasible
paths, but also the entire giant route. By using tailored reset REFs connecting the
end node of one tour with the start node of the next tour, inner-tour resources are
reset, while inter-tour resources are propagated along the entire giant route. This
paper clarifies which types of REFs lead to well-structured models, for which the
feasibility of a giant route can be efficiently checked.

Second, the new model is intended to support efficient solution procedures that are
based on local search (LS). LS-based procedures iteratively build neighbor solutions
first and check the feasibility and gain of these afterwards. If straightforwardly
implemented, this feasibility check causes an extra effort bounded by the length
of a longest tour, which is in general only bounded by O(Rn) for instances of
size n with R resources. The methods of (Irnich, 2006b) allow the searching of
neighborhoods of size O(n*) in O(Rn*) time, thus avoiding an additional factor in
the worst-case for cost computations and feasibility checks. We provide sufficient
conditions on the REFs that guarantee O(R) feasibility tests for VRPs with inter-
tour resource constraints.

Third, the paper presents concepts for applying sequential search procedures to
inter-tour constrained VRPs in order to further reduce the effort of evaluating a
neighborhood of size O(n*). The goal here is to perform less than O(Rn*) oper-
ations in the average case. Sequential search is a gain-based search-tree pruning
method which was first applied to unconstrained problems, such as graph partition-
ing problems and the symmetric TSP (see Kernighan and Lin, 1970; Christofides
and Eilon, 1972). Irnich et al. (2006) describe the sequential search approach gener-
ically and apply it successfully to the CVRP. Good results have also been obtained
for so-called ‘rich’ VRPs with different kinds of side constraints (see Irnich, 2006b).
Here, we show that sequential search enables the fast and efficient solution of large-
scale multi-depot VRPTW (MDVRPTW) instances with time-varying processing
capacities and up to a few hundred collection points. The integration of the LS
procedures into a large neighborhood search (LNS) method (Shaw, 1998; Pisinger
and Ropke, 2006) leads to an effective metaheuristic, which can easily be adapted
to other VRPs with inter-tour constraints.

The chapter is structured as follows: The next section focuses on modeling as-
pects, starting with models for the MDVRPTW, continuing with the incorpora-

tion of time-varying processing capacity constraints, and ending with the generic
inter-tour model and its applications. Section 3 summarizes the techniques used for
efficient local search and sketches the implemented LNS metaheuristic. Computa-
tional results are presented in Section 4. We show that the proposed modeling and
solution approach is helpful to perform new types of studies in which the impact
of inter-tour constraints on the structure and cost of solutions is analyzed. Final
conclusions are drawn in Section 5.

2 Models for the VRP with Inter-Tour Constraints

The above-mentioned VRP with time-varying processing-capacity constraints serves
as an example motivating the giant-tour model and heuristic solution approach.
The VRP we are considering is an extension of the MDVRPTW. We start with a
non-standard formulation utilizing REFs. This MDVRPTW model has similarities
with the unified model of Desaulniers et al. (1998). Our goal is to provide a formu-
lation from which we can easily derive a new model. This new model will represent
a solution as a single resource-feasible path.

2.1 The Multiple-Depot VRP with Time Windows

The MDVRPTW is defined on a network N' = (V, A) with node set V and arc set
A. As usual, at customer ¢ € C C V, a quantity of ¢; needs to be collected by a
single visit of a vehicle. Each customer i allows the start of the service (=collection)
within the time window [e;, [;].

Let K be the set of vehicles. Since we assume that each vehicle performs exactly one
tour during the planning horizon, K is also the set of tours. Each tour k € K starts
at its origin o(k) € V, ends at its destination d(k) € V, and visits customers in
between. Side-dependencies may restrict vehicle k to visiting only customers C* C
C. Hence, the subnetwork N* = (V¥ A*) with nodes V¥ = C* U {o(k),d(k)}
describes feasible movements of vehicle £ in space. For modeling purposes, it is
advantageous to formulate the problem with distinct nodes, which results in O =
{o(k) : k € K} and D = {d(k) : k € K} both having cardinality |K]|.

The vehicles k € K are characterized by the following data: The total quantity
collected by vehicle k& must not exceed the vehicle capacity Q*. Time windows
[o(k)s loky] and [eqqr), lagr)] restrict the start time and end time of tour k. Travel
times ¢;; and costs ¢;; for (4, j) € A are assumed to be vehicle-independent. Note
that additional service times at a node 4 can always be included in ¢;; without
changing the interpretation of the time windows. The model for the MDVRPTW
reads as follows:

min Y Tclf(’lgm (1a)
keK
st. Y > ali=1 VieC (1b)

keK j:(i,j)eAF

Z xi(k)’] = Z xid(k) =1 Vk € K (1C)

j:(o(k),j)€A* i:(i,d(k))€.AF

Soodh— Y ah=0 VkeKkieVt (1d)
j:(i,5)€AF j:(j,i) €Ak
xf, €{0,1} Vke K, (i,j) € A* (1e)
xfj(]—yik,cost + Cz‘j _ Ty;f,cost) S 0 Vk c K, (’l,j) c Ak (2&)
TFest >0 Vke K,ie V" (2b)
ol (T g — Ty <0 VEk e K, (i,j) € A (2¢)

i 7 J 7 — AN

0<THd < QF VkeK,ie V" (2d)
.Z’Z(T;'k’mme + tij _ j}k,tzme) <0 Vkec K, (Z,j) c Ak (26)
e; <TF™ <1, VkeK,ieVF (2f)

This non-linear mathematical programming formulation of the MDVRPTW con-
tains two types of decision variables: First, flow variables xf] for k € K and (i, j) €
A* are equal to 1 if arc (i,) is used in tour k, and 0 otherwise. Second, resource
variables Tik’r represent the consumption of resource r € R of tour k at node 7. For
the MDVRPTW, one has to consider the resources R = {cost,load,time}.

Constraints (1b) ensure that each customer ¢ € C is assigned to exactly one
tour £ € K. A continuous flow (- movement of vehicle k) between origin o(k) and
destination d(k) in N* is guaranteed by (1c) and (1d). The non-negative resource
variables T/"°*" record the costs of the (partial) tour starting at o(k) and ending at
the respective node i € V*. The correct update of the tour costs is ensured by (2a):

If vehicle & moves directly from 7 to j, the partial cost Tf’COSt is at least the cost

T} plus the cost ¢;; along the arc (i,7). Note that T}"°** can always be set to
zero if a node i is not visited by vehicle k. Therefore, the objective (1a) exactly
determines the cost of all tours. Operational costs on the arcs can be supplemented
by fixed costs on arcs (o(k),) connecting the origin with a first customer. Also the
arc (o(k),d(k)) can exist in A* to represent the empty tour k.

The remaining limited resources, time and load, are modeled by the resource vari-
ables 777" and TF'** which are constrained to feasible values by (2d) and (2f).
Their update is given by (2c) and (2e). The load update (2c) is managed identically
to the cost update (2a). The update of the times by (2e) guarantees together with
(2f) that Tf’“me > max{e;, T + t;;} holds whenever vehicle k uses arc (i, 7).
Vehicles arriving before the start of the time window have to wait.

It is obvious that the objective and the capacity constraints can also be formu-
lated in a more ‘classical” way, e.g., minimize >}, >=,; cijxfj and qjxfj < QF for
all k& € K. There also exist straightforward linear reformulations of the time up-
dates (2e) using the well-known big-M technique. The point is, however, that the
above formulation is more generic, since it handles all three resources identically:
The constraints (2a), (2c), and (2e) can be reformulated with REFs, which is more
convenient for a graph-theoretic description of the problem. The formulation with
REFs is also essential for the application of efficient LS techniques as presented in

Section 3.

2.2 Formulation of Resource Constraints by Classical REF's

Resource constraints for paths can be modeled by means of (minimal) resource
consumptions and resource intervals. Let R be the number of resources. A vector
T = (TY....,T®T € RE is called a resource vector and its components resource
variables. T is said to be not greater than S if the inequality T < S® holds for all
components i € {1,..., R}, denoted by 7" < S. For two resource vectors a and b,
the interval [a, b] is defined as the set {T' € R : ¢ < T < b}. Resource intervals,
also called resource windows, are associated with nodes ¢ € V and are denoted
by [a;, b;] with a;,b; € R®. The changes in the (minimum) resource consumptions
along each arc (7, 7) € A are given by a vector f;; = (i’;)f:l of resource extension

functions (REFs). An REF fF. : RE — R depends on a resource vector T; € RE,

which corresponds to the resource consumption accumulated along a path (s, ...,)
from s to i, i.e., up to the tail node ¢ of arc (i, j). The result f;;(T;) € R can be
interpreted as a resource consumption accumulated along the path (s, ... 4,). For

a comprehensive introduction to resource-constrained paths, we refer to (Irnich and
Desaulniers, 2005; Irnich, 2006a).

Let P = (vg,v1,...,v,) be any path in N. Path P is resource-feasible if resource
vectors T; € [ay,,by,] exist for all i € {0,1,...,p} such that f,, .. (Ti-1) < T;
holds for all ¢ € {1,...,p}. We can now re-formulate (2a) (2f) with resource in-
tervals and REFs: Let M be a sufficiently large number. For each node i € V),
let a; = (azgost’aéoad’a;?ime)'l— — (O,O,Qi)T, bd — (béost’biload’bgime)"l' — (M, Qk,li)T
for d = d(k) € D and b; = (M, M,[;)" for nodes i ¢ D. Moreover, let t;; =
(tgost gload tlime) = (c;5, @i, ti;) for all arcs (i,j) € A and define the REF f;; by

v Y1y Vg

[i;(T) = max{a;, T + t;;}. (3)

Then (2a) (2f) is equivalent to

TF € [a;, b)) Vk € K,ieVF (4a)

7

xfj(fij(Tf) — T;f) <0 VkeK,\(ij) e A~ (4b)

These constraints simply state that the paths P = P(z*), implied by the routing
variables ¥, have to form resource-feasible paths.

2.8 Formulation of Time-Varying Processing Capacities

For the MDVRPTW, we exemplify inter-tour constraints by time-varying process-
ing capacities. First, the limited processing capacities are added to the model (1)-
(2) (or (1)+(4)) as non-linear constraints. Second, we show that the same con-
straints can be formulated more easily with additional resources as resource-feasible
path constraints, when the definition of REFs is extended to the giant route.

Tours k£ € K deliver their collected load to several depots. Therefore, those desti-
nation locations d(k) that represent the same physical location must be grouped:

Let G = {g(k) : k € K} be the set of all depots, where g(k) denotes the depot at
which tour k ends. Let ngy be the number of tours ending at depot g so that we can
index the tours by h € {1,2,...,n,4}. Moreover, vehicle k(g, h) is the hth vehicle
ending its tour at depot ¢ and K(g) = {k(g,h) : h = 1,...,n,} is the set of all
tours ending at depot g. Recall that [equ), lyx)] is the time interval in which tours
k € K(g) can deliver to depot g = g(k). Obviously, the amount to be delivered
to depot g after the cut-off time lq), denoted by P9(lyy)), is zero. In general,
let P9(7) be the mazimum amount of load that can be delivered to depot g after
time 7. For the earliest start of service eq() at the depot g, Pg(ed(k)) is the overall
quantity that can be processed at g in the given time horizon [eq), law)]-

In the following, we assume that processing capacities are discretized and that 7,
¢ € L are the points in time at which processing capacities are checked. Figure 1
depicts a typical processing-capacity function and its discretization. (Note that in
principle—we could make the discretization of time dependent on the depots g € G,
but we do not want to overload the notation.)

PE(T) y

300

overestimation of
processing capacities

200 1

underestimation of

100 -+ processing capacities

Fig. 1. Example of a Discretization of
a Time-Varying Processing Capacity
o 71 T2 T3 T4 s Time Function

The difficulty in formulating the processing capacity constraints at time 7, and
depot g is that we have to sum up the load of all vehicles k € K(g), but only if
k arrives at g later than time 7. In a non-linear formulation, this dependency can
be modeled by partial sums over the vehicles k(g,h), h € {1,2,...,n,}. We get

St <87, VgeG teLhe{2,... ng} (ha)
(Tf(’iﬁme = 7)) (Sih1 + Tc];(’zi(;ad —Sip) <0

Vge G, le Lhe 2. .. ,n)k=kgh) (5b)
0<57,<PYm) YgeGVleLhe{2. .. ng} (5¢)

Herein, SZ,L is the partial sum of all loads arriving at depot g later than time 7, for
the first tours 1,2, ..., h. Inequalities (5a) guarantee that the sequence of partial
sums is non-decreasing. The interdependency between the arrival time and collected
load of tour k and the corresponding partial sum is modeled by (5b): If tour k

arrives late, i.e., Tf(’,gme > 7/, then the hth partial sum S7, must exceed S7;,_, by

the collected load Tclf(’li‘)md. For early arrivals, i.e., Tf(’;éme < 77, the constraints (5b)
allow S7;, | = S7,,. The processing-capacity restrictions are stated by (5c).

The giant-tour representation of a solution is depicted in Figure 2. Here, giant tours
are defined as Hamiltonian cycles in the routing graph (V, A), the nodes of which
are customer nodes C as well as start nodes and end nodes of tours, O and D.

Following the ideas presented in (Irnich, 2006b, p. 4), tour-start and tour-end nodes
(0,d) in a feasible route p = (o,...,d) must fulfill a compatibility relation. The
compatibility relation ~ on O xD introduces vehicle and depot characteristics into
the problem. In multi-depot problems, the sets O and D are partitioned according
to the |G| depots, e.g., © =O'U...uQ¢l D =D'y...uDIC Pairs (0,d) €
O¢ x D/ are compatible o ~ d if and only if e = f.

In addition to the arcs of model (1)—(2) (or (1)+(4)), the routing graph also contains
reset arcs (d,0) € D x O. These reset arcs connect end nodes of one tour with
start nodes of another tour. If (p',p?,...,p/X!) are the tours forming a feasible
solution to the MDVRPTW, the cyclic concatenation of the tours is a giant tour
in the routing graph. The corresponding giant route is a path (with identical start
and end node). It is denoted by P = P(p',p?, ...,p!) and is defined as the
concatenation of p',p?,...,pl o', ie., of the |K| tours plus the arc connecting
the last node d/*1 of the last tour p/&l = (ol%l ... dI¥l) with the first node o' of
the first tour p! = (o, ...,d").

B

The processing constraints (5) can be equivalently reformulated as resource-feasible
path constraints for the giant route P. We define additional resources r(g, ¢) for all
pairs (g,¢) € G x L. The associated resource variables have the following resource
windows at the nodes and REFs on the arcs of the routing graph:

Fig. 2. Giant-Tour
Representation

T € [) = [0, Po(r)] ViV (62
T9¢ Tload if Ttme > 7, and (4, §) = (d(k), o(k')) reset arc

fi; (T)9" = and g = g(k) (6b)
T9¢, otherwise

With the definitions %! = 0 and #09¢ = tlime — — M for reset arcs (d,0) € D x O,
all MDVRPTW resources have well-defined REFs, given by (3) and (6b). (Note
that the name reset arc refers to the fact that fu,(7)°% = 0 and fu,(T)""¢ = e,
holds, i.e., these inner-tour resources are reset to their lower bounds at the tour-
start node o.)

2.4 Generic Giant-Tour Model

The generic model for VRPs with inter-tour constraints is the following: Given
(a) the routing graph with request/customer nodes, tour-start nodes O and tour-
end nodes D, (b) a compatibility relation ~ between O and D, and (c) resources,
constrained by resource intervals at all nodes, with REFs defined on all (original
and reset) arcs of the routing graph, a giant tour (p*,p?, ..., p/¥l) is feasible if its
corresponding giant route P = P(p',p?, ..., p) is a resource-feasible path. Recall

that a giant tour has already been defined as a Hamiltonian cycle in the routing
graph, the tour-start and tour-end of which respect the compatibility relation ~.
The generic VRP with inter-tour constraints is the problem of finding a least-cost
feasible giant tour. The novelty of this definition is that the entire giant route is
considered as one resource-constrained path (RCP) and that inner-tour as well
as inter-tour constraints are all captured in the definition of an RCP by resource
intervals and REFs.

The above definition of a VRP with inter-tour constraints has several advantages
when heuristic solution methods for solving VRPs are being considered. First, the
definition is clear and concise. Second, the concept of RCPs is a very powerful mod-
eling tool, well-known in the context of exact solution approaches in vehicle routing
and crew scheduling (Desaulniers et al., 1998). RCPs allow the modeling of many
relevant types of constraints for so-called rich VRPs including applications with
collection and delivery, precedences, side dependencies, multiple use of vehicles,
limited waiting time and limited working hours in connection with time windows,
time- or load-dependent travel times and costs, complex cost functions and many
more aspects (see Irnich, 2006b); additional aspect of modeling with RCPs are
coved by (Desaulniers et al., 1998; Avella et al., 2004; Irnich and Desaulniers, 2005;
Irnich, 2006a). Third, the definition of the giant tour as a Hamiltonian cycle leads
to easier descriptions of local search neighborhoods. For instance, the relocation
of a node inside its own tour or into another tour has the same description in the
giant-tour representation. The most important advantage is, however, that there
are very efficient neighborhood search methods available, at least when REFs fulfill
some basic requirements. This is the subject of the Section 3.

We now reformulate the MDVRPTW with processing capacities and briefly sketch
other inter-tour constraints that can easily be modeled within the same generic
framework.

2.4.1 Generic Model for MDVRPTW with Processing Capacities

With definitions (4) and (6) of resource windows and REFs, the MDVRPTW
with processing capacities is the problem of finding a least-cost feasible giant
route P, where P is resource-feasible w.r.t. resources load, time, and r(g, ¢) for all
(9,¢) € G x L. If existent, side-dependencies have to be modeled by additional re-
source constraints (see Irnich, 2006b, p. 19). The consideration of vehicle-dependent
capacities Q" is trivial by defining corresponding resource intervals (4a) at nodes
d(k) € D. However, vehicle dependent costs and travel times can in principle be
formulated with REFs and additional resources (see Irnich, 2006b, p. 21), but these
extensions are not fully compatible with the efficient search methods of Section 3.

2.4.2 Examples of Inter-Tour Resource Constraints

Time-varying processing capacities are a rather complex example of inter-tour re-
sources. Some other simple but practically relevant examples of inter-tour resource
constraints are given in the following.

In many real-life, multi-depot problems, the total capacity of the depots is limited.
The maximum depot capacity can easily be modeled with the processing constraints
introduced in Section 2.3: For vehicle k belonging to depot g = g(k), capacities are
only checked at the beginning eq) of the processing time window and P9(eqy))
must be set to the overall quantity that can be processed at depot g.

Also, the number of vehicles being serviced at the same time might be restricted
due to a limited number of ramps at the depot. This is, again, a processing capacity,
where each tour collects one unit and P9(7) has to be set to the number of available
ramps at depot g from time 7 until the closing of the depot at time ly).

Irnich (2006b, p. 22f) comments on restricting the number of tours with certain
characteristics. Examples are a limited number of tours arriving after a certain
point in time, traveling more than a given distance or time, collecting more than a
certain amount of goods etc. These examples have in common that one resource r;
is, at tour-end nodes, compared against an upper limit u; (non-binding for the
individual tours). The number of times this limit is exceeded is recorded by another
resource ro, which is bounded by a upper bound us. As long as the resource ry is
updated by a classical REF of the form (3), one can also limit the number of tours
that do not exceed wu;. Hence, it is also possible to restrict the number of tours
that arrive early, travel short distances, or collect only a small quantity.

Another interesting task that can be handled by an inter-tour resource is the al-
location of a limited vehicle fleet to several depots. Let a fleet of u vehicles be
given. In the giant-tour representation, each depot is initially provided with the
whole fleet of vehicles, i.e., u = |0 = ... = |0 = |D!| = ... = |DI|. Then,
an inter-tour resource globally asserts that the total number of non-empty tours
does not exceed wu. It is straightforward to extend the model to fleets with multiple
vehicle types by using as many inter-tour resources as vehicle types are present.

3 Solution Methods

We have already seen that inter-tour constraints arise naturally in many VRP ap-
plications. In particular, the consideration of integrated problems (over multiple
depots and extended planning horizons) leads to the concourse of large-scale prob-
lem instances with inter-tour constraints. It is, therefore, imperative that heuristic
methods should be designed to work both efficiently and effectively.

The solution methodology presented next is based on the wunified framework of
Irnich (2006b), and reference is also made to two earlier papers (Irnich et al.,
2006; Trnich, 2006a) for a detailed description of the methods and further questions
related to implementation issues.

3.1 Efficient Local Search

Nearly all metaheuristics for VRPs rely on the concept of neighbor solutions, de-
fined by neighborhoods, such as k-Opt and k-Opt* neighborhoods, node relocation
and Or-Opt neighborhoods, node and string swap/exchange neighborhoods, and

others (see surveys by Bréiysy and Gendreau, 2005a,b; Funke et al., 2005). For all
of these neighborhoods, a move from a current solution to a neighbor solution is
characterized by the fact that the given giant tour is first split into (a small num-
ber of) paths. In the following, these paths are referred to as segments. The move
permutes the segments - some may be inverted - and they are finally concatenated
to form a new giant tour.

A LS algorithm explicitly or implicitly inspects all neighbor solutions and deter-
mines the one that is feasible and most improving. There are two aspects of efficient
LS that we focus on in the following: First, efficient feasibility tests are necessary
to guarantee that neighborhoods can be explored quickly. It is important to point
out here that VRPs with R resource constraints imply an additional factor of at
least R in the feasibility tests. Hence, from a worst case point of view, the best we
can expect are O(Rn") time algorithms for searching neighborhoods of size O(n*).
Second, we devise efficient search methods that, in the average case, need less than
Rn* steps for fully exploring an O(n*) neighborhood.

The acceleration of the average case needs further explanation: In the context of
node-exchange and edge-exchange neighborhoods, any LS algorithm can be consid-
ered a tree search method. The tree has depth k for a neighborhood of size O(n*).
In order to accelerate the search, the two main criteria for a reduction of the search
space (i.e., pruning the search tree) are feasibility and cost with two correspond-
ing approaches (Irnich et al., 2006; Irnich, 2006b): Lezicographic search is driven
by feasibility reductions, i.e., one tries to prove at an early stage ¢+ < k that no
feasible exchange exists that includes the nodes or edges of the stages 1,...,4. The
concept, as originally introduced by Savelsbergh (1986, 1990), is intrinsically tied
to the lexicographic ordering in which neighbor solutions are constructed: In the
innermost loop of the search algorithm, from one iteration to the next, an inner
segment must grow by one node (or a small constant number of nodes), so that so-
called global variables can be updated in O(R) time. Conversely, sequential search
is based on the idea of cost-based reductions, i.e., one tries to prove at an early
stage ¢ < k that no improvement can be found which includes the nodes or edges
of the stages 1,...,4. It requires, however, that all in-arcs and out-arcs of a node
are sorted by increasing cost and moves are decomposable into k cost-independent
partial moves (see Irnich et al., 2006). Then, neighbor solutions are generated in
such an ordering that partial gains of the partial moves fulfill the gain criterion
(Lin and Kernighan, 1973; Irnich et al., 2006), i.e., one can restrict the search to
those cases where all the partial gains are positive. The idea can be applied in the
context of best-improvement as well as first-improvement strategies.

3.1.1 Efficient Feasibility Checks

As presented in the paper by Irnich (2006b), the search procedure can be split into
a preprocessing phase, in which information for feasibility checks is gathered, and an
actual search for the enumeration of the neighbor solutions. In the preprocessing
phase, generalized REFs are computed for a set of segments. In essence, these
segment REFs and their inverses enable O(R) time feasibility tests. Since any

10

neighbor solution, represented as a giant tour, results from the concatenation of
segments of the current solution, feasibility can be tested by propagating lower and
upper bounds of resource consumptions along the segments. Lower bounds have
to be propagated by segment REFSs, while upper bounds have to be propagated
by inverse segment REFs. Although the number of all different segment REFs of
a given giant-tour of length n is quadratic, the work of Irnich (2006b) shows that
only O(n*3) segment REFs must be a priori computed.

The feasibility test with segment REFs is very similar to the on-the-fly computation
of global variables, as suggested in lexicographic search procedures. For instance,
time window constraints require the computation of a total travel time, earliest
departure time, and a latest arrival time as a global variable of a segment. Kinder-
vater and Savelsbergh (1997) clarify these procedures for 2-opt and Or-opt moves
in connection with time windows and precedence constraints as well as for problems
with simultaneous deliveries and pickups.

For both methods, lexicographic as well as sequential search, there must hold sev-
eral assumptions on properties of REFs in order to guarantee O(R) time feasibility
tests. All REFs must be computable in O(R) and must be non-decreasing, i.e.,
S < T implies f;;(S) < fi;(T). It must be possible to generalize REFs to seg-
ments, such that concatenations of segment REFs can be computed and evaluated
in O(R) time. Finally, REFs f (of arcs and segments) must be invertible in the
sense that f(T) < T’ is equivalent to T < f™"(T") for the inverse REF f". These
assumptions are—in detail—derived and explained in (Irnich, 2006a).

The assumption about the existence of inverse REFs can be relaxed for some re-
sources r. If a resource r is non-decreasing along the entire giant-tour and globally
constrained by node-independent resource windows [a”, b"], there is no need to in-
clude the resource r in the definition of an inverse REF. The feasibility of a giant
route can be directly checked only by the forward propagation of the resource. The
overall resource consumption is given at the final node of the newly constructed
giant route. (A similar argument was used in (Irnich, 2006a, p. 24) in order to
explain that some complex REFs for cost must not necessarily be invertible.) As
a consequence, the inter-tour resources r(g,¢) defined in Section 2.3, do not re-
quire an inversion. Hence, O(R) time feasibility checks for VRP with inter-tour
resources can be implemented if one can construct and evaluate segment REFs
in O(R) time. This important property is shown for the time-varying processing
capacity constraints in Section 3.1.3.

3.1.2 Sequential Search

The easiest way to describe the idea of sequential search is by considering the 2-
opt* (=crossover) neighborhood, originally suggested by Potvin et al. (1989). A
2-opt* move is depicted in Figure 3 and its interpretation is that two different
routes in the given giant tour exchange their end-segments. Along the alternating
cycle (t1,ta,t3,t4,t1) (of deleted and added arcs), the 2-opt* move decomposes into
two cost-independent symmetric partial moves, where the first is the deletion of the

11

arc (1, t2) and insertion of (¢3,t3), and the second the deletion of the arc (t3,t4) and
the insertion of (¢1,t4). For the 2-opt* move to be improving, at least one of the two
partial moves has to be improving, i.e., the inserted arc has to be less costly than the
removed one (Irnich et al., 2006, p. 2412f). A sequential search algorithm utilizes
this property for finding improving moves in the following way: An outer loop
determines the node t; and the arc (¢1,t2) to be deleted. The procedure then loops
over all in-arcs (3,1tq) of ¢y as long as ¢, 4, < ¢ty.4, holds. All these combinations
of t1,t5 and t3 imply that the first partial move is improving. Since t4 is uniquely
determined by ¢3, one can also check the overall gain and the feasibility of the 2-
opt* move. The case with nodes t3,t4, and t; is symmetric and, therefore, already
covered by the above loops. Note that for restricting the inner loop to cases with
Ctgta < Ct, 1o, iN-arcs must have been previously sorted by increasing cost and stored
in neighbor lists.

Fig. 3. Principle Sequential Search in the
2-opt* Neighborhood. Partial moves have
Gains g1 = ¢4y 4, — Ctg,to and g2 = Cpq04 — Cty 44,
and g; > 0 or go > 0 must hold for Improving
Moves

Sequential search is directly applicable if the cost of a giant tour is the sum of
its arcs’ costs. Irnich et al. (2006) explain decompositions of moves into partial
moves for many other types of edge-exchange and node-exchange neighborhoods.
Note that the gain criterion can also be generalized to situations where best non-
improving moves have to be found.

3.1.8 Resource Extension Functions for Segments

Recall that a segment o is a sequence of nodes that occur as a sub-path in the
giant tour currently under consideration. Figure 3 also visualizes how a 2-opt™ move
permutes segments. In order to form a neighbor solution, the segment (o',... t;)
is concatenated with the segments (t4,...,d), (o"*1 ... t3), and (t,...,d"). If
segment REFs are given and can be evaluated in O(R) time, the feasibility of the
resulting new giant route can also be checked in O(R) time (the number of segments
is constant). Thus, we describe next how REFs can be generalized to segments.

For any segment o, the forward propagation of resources (for given lower bounds T’
on the resource consumptions) can be computed by a segment REF f, of the form

fo(T) = max{a,, T + ho(T) + t,}, (7)

where a,,t, € R are resource vectors and h,(T) is a function h, : Rf — R that
takes values # 0 only for some of the resources 79 and is 0 on all other resources.
Moreover, if o contains no reset arc, then h,(T) = 0 for all T, so that (7) is
identical to the definition of a classical REF (3). Otherwise, let (d(k),o(k")) be
the first reset arc in the segment, so that o can be written as (...,d(k),o(k),...).
Now, we can precisely describe all the coefficients necessary to define h,. If a reset

12

arc exists, let g, = g(k) be the depot corresponding to the tail node d(k) of the
first reset arc (d(k),o(k’)), and let ¢ = (..., d(k)) be the prefix segment of o up
to the first tour-end node d(k). Note that h, does not depend on other reset arcs
that may be present in o. If o contains no reset arc, we define g, = 1 and ¢ to be
the entire segment . Moreover, let ai™¢, t* and t** € R be the coefficients that
describe the resource consumption for the resources time and load on the prefix
segment @, i.e., f (T)"" = max{al™, T"" 4t} is the earliest arrival time at
the last node of ¢ and f, (7)) = T 4 t2%¢ the collected load. Then,

load load ; time time time
o (T)o! — Trood 204, if max{a™e, T +t0mC) > 1

0, otherwise.

Summing up, the segment REF on segment ¢ is defined by (a,, t,, g, agme, tlime tload) ¢

%)
RE x RE x (GU{L}) x R3 Note that also the arc REFs (6b) are of the form (7)

with appropriately defined functions h,(T') having (af™e, tlime tloed) = 0.

What remains to be shown is how one can compute the coefficients of the segment
REF of the concatenation of two segments oy and oy in O(R) time. We assume that
the last node of oy is identical with the first node of o9, and that both segments are
described by (ag,,te,, oy, A tE 1) (agy, Loy, oy, alir®, LM t1000) € RE x
RR x (GU{L}) x R3. The concatenation o & 09 has a prefix segment denoted by

¢ (either identical to ;1 or v; @ ¢y depending on g,,) and fulfills

Uo1®oy = f02 (a01>
to1wos = toy + toy + Noy(do,)

Gos if g # L
9o1®02 = . (8)
Jo,, Otherwise

time ytime tload :
(asp1 NN), if g, # L
time ytime tload

(’tgp ’tgp):

time time time time time tload load
v (max{aw ’asol +ts02 }’tsol +ts02 ’tsol _'_tsoz)’

otherwise.

An Example The following example illustrates segment REFs and formula (8).
We consider a 2-depot problem with depots G = {g, ¢'}, where the processing time
window is [806;925]. Processing rates are assumed to be constant with 150 units
per hour for depot g and 200 units per hour for depot ¢'. For the sake of simplicity,
the processing capacity functions are discretized at times 7, = 805 and 7, = 835
only. The resulting capacities are P9(7) = 300, P9(ry) = 225, P9 (1) = 400 and
P9 (13) = 300.

Two segments oy and o, and the associated values for /i, [al"™e, blime], ¢iood

(=demand at node j) are given in Figure 4. Both segments contain a reset arc, i.e.,

13

PE(T)

PE(T) 400
300 300
225

Demand Travel time

/
10 6 8/5 10 9

[720; 840] [780;800] [806;925] [400;925] [720;840] [720;840] [720;840] [806;925] [400;925] [740; 840]

S / R — Fig. 4. Two
©q Time window 2 Segments o1

0 o)) and o9

(d*, 0%) for oy, and (d?, 03) for the segment oy. Moreover, tour-end node d* belongs
to depot ¢ and tour-end node d? to depot ¢'.

From the processing capacity diagrams for both depots, as depicted in Figure 4, it
becomes clear that we do not need to check processing capacities at the cut-off time

T = 925, since tours must return to the depots no later than this time. Concluding,

the resources to be considered in this example are {time, load, (g, T1), (g, 72), (¢',71), (¢', 72)}
(the computation of costs is trivial and, therefore, left out).

The segment REF f,, of the first segment oy is given by

Ttime 734 Ttime —-M
Tload 13 Tload -M
T9,T1 . 6 T 4 by, (T)9 7L 0
f01 Ty/ﬂ'z = Inax 0) T9 72 4 h/al (T)9:72 + 0)
7971 0 7971 0
79 72 0 79 72 0

where h,, (T)9™ = T +6, and h,, (T)9™ = 0 if max{814, "¢ + 78} < 15 = 835
and hg, (T)9™ = T 4 6, otherwise. The interpretation is simple: The earliest
arrival time at d' is 814 > 7 = 805, and, hence, the resource (g,7;) is always
increased by 7% + 6, which is the load in the tour arriving at d'. In general,
the arrival time at d' is given by max{814, T"™¢ + 78} which explains h,, (T')% ™.
Along the entire segment oy, the coefficients of f,, reflect that the earliest arrival
time at the last node of ¢y is 734 with 13 units of load collected.

The segment REF f,, is

Ttime 740 Ttime M
Tload 9 Tload —-M
T9:71 o 0 T9:71 0
fUz T9:72 = max 0 ’ T9:72 + 0 ’
Tg:,n 10 Tg:,n + oy (T)g:,n 0
T9 72 0 T9 72 4 o, (T)9 72 0

where h,,(T)9"™ = T 1+ 10, and hy,(T)9™ = 0 or he,(T)9™ = Tl 4 10
depending on whether max{833, T"™¢ + 113} < 7, = 835 holds or not. Whenever
one arrives at the first node of oy three or more minutes later than the earliest

14

service time (720), the arrival at d? is later than 7, and resource (¢’, 7») is increased
by T'*¢ 4+ 10.

Using formula (8), the segment REF for the concatenation o = o1 @ 09 is given by

Ttime 740 Ttime M
Tload 9 Tload M
T9:T1 o 6 T9 T + he(T)9 71 0
fU T9:72 = max 0 v 792 4 hZ(T)g”? + 0 ’
791 23 7971 23
T 2 23 T9 ™2 23

where hy,(T) = hy, (T). The interpretation of this result is the following: When
traversing the entire segment o, @ o9, the resulting arrival time and load at the
last node is independent from the initial resource consumption 7'. The tour starting
at node o® arrives at the last node of ¢ at time 740 with 9 units of load on board.
The concatenation of o and o9 fully determines what happens at depot d?. 23
units of load arrive after time 7, and, hence, T9°™ and T9°™ are always increased
by 23 (which is also the minimum resource consumption). In contrast, processing
capacity resources for depot g depend on the collected load and start time at
the beginning of the segment o: Six units of load arrive at d' later than 7, and,
depending on the start time at the first node, possibly also later than 7. This is
controlled by h,(T)%7, in which the arrival time at the first depot is computed by
max{814, T%"¢ + 78} and the collected load by 7% + 6.

3.2 Large Neighborhood Search

Metaheuristics are substantial for producing high-quality solutions because they
allow an escape from local minima. This section briefly describes the metaheuristic
implemented here, which is obviously only one out of many possible choices for
using the efficient LS procedures as a component of a metaheuristic.

To find a first local minimum, various neighborhoods are combined in a VND
component (Mladenovi¢ and Hansen, 1997; Hansen and Mladenovi¢, 2001). In order
to escape from this joint local optimum, a kick step is performed. The kick consists
of a randomized removal of a subset of nodes that are consecutively reinserted into
the giant route. The solution is then re-optimized with the VND component, the
resulting solution is compared against the previous local optimum, and accepted
with the Metropolis acceptance criterion of simulated annealing (Aarts and Korst,
1989). Hence, the chosen approach has similarities with the large-step Markov chain
approach (Martin et al., 1992) and the large neighborhood search (LNS) approach
originally proposed by (Shaw, 1998). The difference to the large-step Markov chains
is, however, that local optimal solutions of the VND component are used instead of
local minima of a single neighborhood. The difference to standard LNS procedures
is the use of the Metropolis acceptance criterion. Rgpke and Pisinger (2006) also
use LNS with the Metropolis acceptance criterion, but their LNS solutions are not
re-optimized by LS at all.

There are plenty of choices for defining node removal and node insertion opera-

15

tors. Over the tested operators (pure random, based on node attributes such as
time window length, demand, detour length etc.), the operator that performs best
randomly selects 20 ‘close’ customers according to a randomized distance-based
selection procedure. Insertion of removed customers is done by building dummy
routes containing these customers and by applying the above VND component di-
rectly to the resulting giant tour (see also Irnich, 2006b, p. 21). Rgpke and Pisinger
(2006) choose from among different removal and insertion operators according to
scores that are updated by a learning mechanism based on the search history. This
may be a beneficial extension to the current implementation.

4 Experimentation

The computations presented in this section aim at two different aspects: First,
we show that the solution methodology introduced in (Irnich, 2006b), i.e., giant-
tour representation and O(R) feasibility checks by considering the giant-route as a
resource-constrained path, lead to highly efficient local search-based metaheuris-
tics. Second, we exemplify the usefulness of inter-tour constraints by presenting
new types of studies that can easily be performed with the methods at hand.

4.1 Efficient Local Search

In order to analyze the efficiency of the proposed LS techniques, we generated a
set of 80 MDVRPTW test instances with 100, 200, 400 and 800 nodes (each class
with 20 instances). Each instance has between two and five depots. Customers are
spread around the depots (according to a normal distribution) such that the service
areas of the depots partially overlap. The width of the customer time windows is
varied in each group of instances. This creates five groups of MDVRPTW instances.
Moreover, four different processing time windows for the depots are chosen for each
MDVRPTW instance. The four different processing time windows reflect different
situations where processing capacities are more or less binding (from loosely to
hardly constrained). Overall, this generates 320 instances of the MDVRPTW with
time-varying processing capacities.

Each of 320 instances is solved with the LNS metaheuristic of Section 3.2. VND first
alternates between 2-opt, 2-opt*, node swap and node relocation neighborhoods
until a joint local optimum is reached. The search procedures for finding improving
string-exchange and Or-opt moves (with and without inversion of the relocated
segment) are then applied to these local optima. Each VND step ends in a joint
local optimum of all seven neighborhoods. 250 kick moves are performed to diversify
the search.

Using a similar setup® as in (Irnich, 2006b), the absolute performance of the se-
quential search approach is summarized in Table 1: The overall computation time

L All algorithms were coded in C++, were compiled in release mode using MS-Visual
C+-+ .NET 2003 version 7.1, and all runs were performed on a standard PC (Intel x86
family 15 model 2 stepping 5, 2.8 GHz, 1GB main memory, on MS-Win 2000).

16

(second column) to perform the 250 kicks and VND steps does not exceed 15 min-
utes, even for the largest instances with 800 nodes. The third column shows how of-
ten sequential search algorithms were invoked in VND and kick steps. This number
does not raise proportional to the size of the instances or size of the neighborhoods,
but grows sub-linear. For all instances, the ratio of searches that find an improv-
ing neighbor to the total number of searches is stable and between 60% and 68%.
We have also computed (fourth column) the average time necessary to perform a
single sequential search (including both search phases, segment REF computation
and actual tree search). These numbers show that the sequential search procedures
are notably fast, in particular for large-scale instances.

Size Avg. Time Avg. Number of Avg. Time
Nodes 250 VND-+kick Search Steps Performed per Search
100 35.5s 12738 2.8 ms
200 11945 17040 7.0 ms
400 279.6s 19227 14.4 ms
800 716.8s 22641 31.4ms

Table 1
Characteristics of the LNS Metaheuristic based on Sequential Search

Finally, we compare the overall computation times of the LNS metaheuristic when
either sequential search or lexicographic search procedures are used. Figure 5 de-
picts the speedup gained by using sequential instead of lexicographic search (the
speedup factor is the quotient of the running times). For each size of instances, the
five subclasses correspond to increasing widths of the customer time windows. One
can clearly see that sequential search outperforms lexicographic search, since the
latter takes (on average) between 1.5 and 11.4 times longer. As already observed
in (Irnich et al., 2006; Irnich, 2006b), sequential search is more effective for loosely
constrained problems and when the size of the instances increases. The impact of
increasing customer time windows is that tours get longer and, therefore, instances
are less constrained and can be solved significantly faster.

12

10

oo

Speedup Factor
(=2}

~

\

£[. Fig. 5. Acceleration Gained when Se-
0 :

100 200 400 200 quentlal' Search is used instead of Lexi-
Size of the Instances cographic Search

It is worth mentioning that we have also analyzed the four groups of instances
with less and less binding processing time windows. For these, the impact on the
speedup is less significant and varies by less than 6% within each of the four groups.

17

4.2 New Types of Studies based on Inter-Tour Resource Constraints

When depots and processing facilities are being planned, the interdependency be-
tween transport processes and stationary processes is often disregarded due to the
complexity of integrated facility design/layout and transport planning problems.
For instance, the dimensioning of the depots as well as the duration of time windows
used for processing are unclear. The models and solution techniques presented in
this chapter allow such decisions to be studied in an integrated way, at least if it is
possible to formulate the stationary processes with inter-tour resource constraints.

4.2.1 Variation of the Cut-Off Times

Several aspects have an impact on the temporal feasibility of solutions: Travel times
and service time windows at customers specify the feasibility of the individual tours.
The processing rates (i.e., the slopes of P9(7)), the length of the processing time
windows, and the cut-off times together determine the temporal interdependency
between the tours (see also Figure 1). The variation of each of these parameters
has consequences for the cost and structure of the resulting VRP solution.

Here we analyze the impact of the cut-off times l44) on the cost, the number of
tours, and the number of customers that cannot be serviced. We present results for
a 4-depot instance with 100 nodes. 30 runs of the LNS metaheuristic are performed,
where the cut-off times of all depots are changed from run to run by five minutes.
The shape of the processing capacity functions P9(7) is not altered.

O Customers

Y- 5000
4500
4000
3500
3000
2500
2000
1500
1000
500

30 %
25

20 1 /

15 ¢ Number of tours

10 ~
571 <_———Number of unserviced customers
0 e I B T e

15:35

Total cost

L

©

16:00 1625 1650 1715 1740
Fig. 6. Simultaneous Variation of Cut-Off Times of all Depots

The diagram at the bottom of Figure 6 shows the transportation costs, the number
of tours in the solution, and the number of customers that are not serviced due to
the early cut-off times. The later the cut-off times, the less tours must be operated
to collect the customers’ supply. At the same time, the costs of the solutions de-

18

crease. Note that we do not use any fixed costs per tour (with fixed costs the effect
would be even more drastic). In addition to the cost diagram, the top part of Fig-
ure 6 shows the two extremal solutions corresponding to the cut-off times 15:55h
and 18:00h. In the left tour plan, processing capacities are strongly binding. The
result is a relatively high number of tours with only a few customers in each tour.
In contrast, with the late cut-off at 18:00 h, tours are not all constrained by the
processing capacities.

4.2.2 Optimal Dimensioning of Processing Facilities

Another interesting issue is the determination of the ratio of the processing capac-
ities at different facilities and the impact of processing capacities to transportation
(fleet size, cost etc.). For the sake of simplicity, we assume a 2-depot problem,

409

Fig. 7. Variation of Processing Capac-
ities for Two Depots g and ¢’

750

50 /
P8 (euw) 4 P g(ed(m)

where the dimensioning of the machines for both depots is unclear. In order to
find an optimal dimensioning of the machines, one can solve several VRPs with
inter-tour constraints, where the processing capacities at the two depots g and ¢
are varied. Figure 7 shows a diagram, in which the resulting transportation cost
for each scenario of processing capacities is given. Constant processing rates and
fixed processing time windows at g, and g, are assumed. The processing capacity
is then quantified by the pair (P9(ey), PY (ex)) (with k € K(g),k" € K(g')), cf.
Section 2.3). In Figure 7, missing bars correspond to scenarios that are infeasi-
ble, since processing capacities are too small to process the entire quantity present
at the customers (customers remain unserviced in the VRP solutions). Moreover,
each scenario allows an estimation of the transportation costs, which can then
be compared with costs in stationary processes (investments for machines, wages
for workers etc.). Such a comparison of scenarios means integrated planning of
transportation and facility dimensioning.

19

5 Conclusions

This chapter has focused on the heuristic solution of large-scale VRPs with inter-
tour constraints. Inter-tour constraints are those constraints for which the feasibil-
ity of a solution depends on properties of several tours and cannot be decided by
considering the individual tours separately. Examples are sorting processes at de-
pots that require a staggered arrival of tours, limited number of ramps at depots,
and depots with globally limited capacities. Many more examples can be found
when transportation and other logistics processes are considered together.

The presented modeling and solution approach can cope with such interdependen-
cies and is based on the unified framework of Irnich (2006b): A solution is repre-
sented as a giant tour, i.e., as a single Hamiltonian cycle in the problem-specific
routing graph. This representation is advantageous from a modeling point of view,
since complex inter-tour constraints can be taken into account by the powerful
concept of resource-feasible paths. It has been shown that inter-tour constraints,
which are sometimes complicated to formulate in mixed integer programming mod-
els, can be easily translated into simple resource-feasible path constraints on the
giant route.

The proposed solution method is based on local search (LS), which is one of the
most important techniques for improving VRP solutions. It is used as a component
in metaheuristics, such as tabu search, GRASP, VND and VNS, or as a postpro-
cessing improvement method in all types of metaheuristics. By considering a giant
route as a single resource-feasible path, the unified framework performs LS for
many types of VRPs with inter-tour constraints and for all classical LS neighbor-
hoods as efficiently as it does for standard VRPs. The key technique used here
is an O(R) time feasibility check for neighbor solutions, where R is the number
of resources. The efficiency results from the decomposition of LS procedures into
two phases, where the first phase computes segment resource extension functions
in O(Rn*?) time. These are used to guarantee O(R) feasibility tests in the second
phase, which is the actual search for improving neighbors. Overall, the search takes
O(Rn*) time for node-exchange and edge-exchange neighborhoods of size O(n*).
As a result, different tree search methods, such as lexicographic search and sequen-
tial search, are applicable and also allow an acceleration of the search also in the
average case.

In the unified framework, model and solution method both utilize the giant-tour
representation. This is important, since classical local search techniques (in partic-
ular those using inner-tour neighborhoods) have a quite restricted local view of the
solution space. In contrast, the LS methods used here can better cope with com-
plicated global interdependencies and work, at the same time, highly efficiently.
Concluding, the new approach proposed in this chapter shows that large-scale
instances of VRPs with inter-tour constraints can be solved efficiently using LS
components. It is possible to perform new types of studies, where complex inter-
dependencies between tours and also the impact of other external parameters on
structure and costs of VRP solutions can be analyzed. This is much needed for a

20

more realistic planning of transportation processes in integrated logistics networks.

References

Aarts, E. and Korst, J. (1989). Simulated Annealing and Boltzmann Machines. Wiley,
Chichester.

Avella, P., Boccia, M., and Sforza, A. (2004). Resource constrained shortest path prob-
lems in path planning for fleet management. Journal of Mathematical Modelling and
Algorithms, 3(1), 1-17.

Briysy, O. and Gendreau, M. (2005a). Vehicle routing with time windows, Part I: Route
construction and local search algorithms. Transportation Science, 39(1), 104-118.
Briysy, O. and Gendreau, M. (2005b). Vehicle routing with time windows, Part II:

Metaheuristics. Transportation Science, 39(1), 119-139.

Christofides, N. and Eilon, S. (1969). An algorithm for the vehicle-dispatching problem.
Operational Research Quarterly, 20(3), 309-318.

Christofides, N. and Eilon, S. (1972). Algorithms for large-scale travelling salesman prob-
lems. Operational Research Quarterly, 23(4), 511-518.

Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M., Soumis, F., and Villeneuve, D.
(1998). A unified framework for deterministic time constrained vehicle routing and
crew scheduling problems. In T. Crainic and G. Laporte, editors, Fleet Management
and Logistics, chapter 3, pages 57 93. Kluwer Academic Publisher, Boston, Dordrecht,
London.

Funke, B., Griinert, T., and Irnich, S. (2005). Local search for vehicle routing and schedul-
ing problems: Review and conceptual integration. Journal of Heuristics, 11(4), 267
306.

Hansen, P. and Mladenovi¢, N. (2001). Variable neighborhood search: Principles and
applications. Furopean Journal of Operational Research, 130(1), 449 467.

Irnich, S. (2006a). Resource extension functions: Properties, inversion, and generalization
to segments. Technical Report 2006-01, Deutsche Post Endowed Chair of Optimization
of Distribution Networks, RWTH Aachen University, Aachen, Germany. Available at
www.dpor .rwth-aachen.de, (accepted with minor modifications for publication in OR
Spectrum).

Irnich, S. (2006b). A unified modeling and solution framework for vehicle routing and
local search-based metaheuristics. Technical Report 2006-02, Deutsche Post Endowed
Chair of Optimization of Distribution Networks, RWTH Aachen University, Aachen,
Germany. Available at www.dpor.rwth-aachen.de, (accepted with minor modifications
for publication in INFORMS Journal on Computing).

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource constraints. In
G. Desaulniers, J. Desrosiers, and M. Solomon, editors, Column Generation, chapter 2,
pages 33—65. Springer.

Irnich, S., Funke, B., and Griinert, T. (2006). Sequential search and its application to
vehicle-routing problems. Computers & Operations Research, 33(8), 2405-2429.

Kernighan, B. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J., 49, 291-307.

Kindervater, G. and Savelsbergh, M. (1997). Vehicle routing: Handling edge exchanges.
In E. Aarts and J. Lenstra, editors, Local Search in Combinatorial Optimization, chap-
ter 10, pages 337 360. Wiley, Chichester.

21

Lin, S. and Kernighan, B. (1973). An effective heuristic algorithm for the traveling-
salesman problem. Operations Research, 21, 498 516.

Martin, O., Otto, S., and Felten, E. (1992). Large-step Markov chains for the TSP
incorporating local search heuristics. Operations Research Letters, 11(4), 219 224.
Mladenovi¢, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24, 1097 1100.

Pisinger, D. and Rgpke, S. (2006). A general heuristic for vehicle routing problems.
Computers € Operations Research, online available.

Potvin, J., Lapalme, G., and Rousseau, J. (1989). A generalized k-opt exchange procedure
for the MTSP. Information Systems and Operations Research, 27(4), 474-481.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for
the pickup and delivery problem with time windows. Transportation Science, 40(4),
455 472.

Savelsbergh, M. (1986). Local search for routing problems with time windows. In
C. Monma, editor, Algorithms and Software for Optimization, Part I, volume 4, pages
285-305. Baltzer, Basel.

Savelsbergh, M. (1990). An efficient implementation of local search algorithms for con-
strained routing problems. European Journal of Operational Research, 47, 75 85.

Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle
routing problems. Lecture Notes in Computer Science, 1520, 417 431.

22

