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h1 Introdu
tionClassi
al vehi
le routing problems (VRPs) are impli
itly or expli
itly formulatedand are solved by 
onsidering resour
es: The 
apa
itated VRP (CVRP) has re-sour
es for limited vehi
le 
apa
ities and the VRP with time windows (VRPTW)has resour
es for servi
e times. In the 
ase of a homogeneous �eet, the limitingresour
e 
onstraints and resour
e 
onsumptions are identi
al for ea
h vehi
le. Fora heterogeneous �eet, resour
e 
onstraints and 
onsumptions 
an di�er betweenspe
i�
 groups of vehi
les. In both 
ases, the feasibility of a tour depends solelyon vehi
le-spe
i�
 resour
es. Here, we 
onsider 
onstraints for globally limited re-sour
es that di�erent vehi
les 
ompete for. Examples are a restri
ted number ofdo
king stations at depots, and a limited number of `long' tours, where long isde�ned w.r.t. the traveled distan
e, the number of stops, the arrival time at thedepot et
. We devise a general model and solution method and, for the sake of
larity, explain the approa
h with the example of a VRP with time-varying pro-
essing or sorting 
apa
ity 
onstraints. Su
h VRPs arise, for instan
e, in routingappli
ations for letter mail 
olle
tion from postboxes or for the pi
kup of par
elsfrom registered 
lients: Vehi
les 
olle
ting mail or par
els arrive at a spe
i�
 depotover time. The entire volume must be pro
essed (stamped, sorted, labeled with ama
hine-readable 
ode, 
ommissioned et
.) before a given 
ut-o� time. Moreover,the pro
essing rate at the depot is limited. It may vary over time so that, forea
h point in time, one 
an spe
ify a maximum quantity that 
an be handled inthe remaining time interval, i.e., from that point in time until 
ut-o�. While ea
hindividual tour may be feasible w.r.t. given time window and vehi
le 
apa
ity 
on-straints, the feasibility w.r.t. pro
essing 
apa
ities is not automati
ally guaranteed,but requires a staggered arrival of 
olle
ted mail. Thus, the feasibility of a solutionEmail addresses: hemps
h�or.rwth-aa
hen.de (Christoph Hemps
h),sirni
h�or.rwth-aa
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depends on the arrival time and 
olle
ted mail volume of every single vehi
le at adepot.The 
ontribution of this 
hapter is threefold: First, the aim of the new model isto help represent di�erent real-world VRPs with inter-tour 
onstraints in a generi
way. The model is mainly based on the uni�ed framework of Irni
h (2006b) andutilizes the giant-tour representation (Christo�des and Eilon, 1969) and the 
on-
ept of resour
e-
onstrained paths (Desaulniers et al., 1998; Irni
h and Desaulniers,2005). Not only inner-tour but also inter-tour resour
e 
onstraints are modeled us-ing resour
e-extension fun
tions (REFs). REFs des
ribe the resour
e update alonga path, i.e., when a vehi
le travels from one point to the next. The novelty ofthis approa
h is that not only are individual tours 
onsidered as resour
e-feasiblepaths, but also the entire giant route. By using tailored reset REFs 
onne
ting theend node of one tour with the start node of the next tour, inner-tour resour
es arereset, while inter-tour resour
es are propagated along the entire giant route. Thispaper 
lari�es whi
h types of REFs lead to well-stru
tured models, for whi
h thefeasibility of a giant route 
an be e�
iently 
he
ked.Se
ond, the new model is intended to support e�
ient solution pro
edures that arebased on lo
al sear
h (LS). LS-based pro
edures iteratively build neighbor solutions�rst and 
he
k the feasibility and gain of these afterwards. If straightforwardlyimplemented, this feasibility 
he
k 
auses an extra e�ort bounded by the lengthof a longest tour, whi
h is in general only bounded by O(Rn) for instan
es ofsize n with R resour
es. The methods of (Irni
h, 2006b) allow the sear
hing ofneighborhoods of size O(nk) in O(Rnk) time, thus avoiding an additional fa
tor inthe worst-
ase for 
ost 
omputations and feasibility 
he
ks. We provide su�
ient
onditions on the REFs that guarantee O(R) feasibility tests for VRPs with inter-tour resour
e 
onstraints.Third, the paper presents 
on
epts for applying sequential sear
h pro
edures tointer-tour 
onstrained VRPs in order to further redu
e the e�ort of evaluating aneighborhood of size O(nk). The goal here is to perform less than O(Rnk) oper-ations in the average 
ase. Sequential sear
h is a gain-based sear
h-tree pruningmethod whi
h was �rst applied to un
onstrained problems, su
h as graph partition-ing problems and the symmetri
 TSP (see Kernighan and Lin, 1970; Christo�desand Eilon, 1972). Irni
h et al. (2006) des
ribe the sequential sear
h approa
h gener-i
ally and apply it su

essfully to the CVRP. Good results have also been obtainedfor so-
alled `ri
h' VRPs with di�erent kinds of side 
onstraints (see Irni
h, 2006b).Here, we show that sequential sear
h enables the fast and e�
ient solution of large-s
ale multi-depot VRPTW (MDVRPTW) instan
es with time-varying pro
essing
apa
ities and up to a few hundred 
olle
tion points. The integration of the LSpro
edures into a large neighborhood sear
h (LNS) method (Shaw, 1998; Pisingerand Røpke, 2006) leads to an e�e
tive metaheuristi
, whi
h 
an easily be adaptedto other VRPs with inter-tour 
onstraints.The 
hapter is stru
tured as follows: The next se
tion fo
uses on modeling as-pe
ts, starting with models for the MDVRPTW, 
ontinuing with the in
orpora-2



tion of time-varying pro
essing 
apa
ity 
onstraints, and ending with the generi
inter-tour model and its appli
ations. Se
tion 3 summarizes the te
hniques used fore�
ient lo
al sear
h and sket
hes the implemented LNS metaheuristi
. Computa-tional results are presented in Se
tion 4. We show that the proposed modeling andsolution approa
h is helpful to perform new types of studies in whi
h the impa
tof inter-tour 
onstraints on the stru
ture and 
ost of solutions is analyzed. Final
on
lusions are drawn in Se
tion 5.2 Models for the VRP with Inter-Tour ConstraintsThe above-mentioned VRP with time-varying pro
essing-
apa
ity 
onstraints servesas an example motivating the giant-tour model and heuristi
 solution approa
h.The VRP we are 
onsidering is an extension of the MDVRPTW. We start with anon-standard formulation utilizing REFs. This MDVRPTW model has similaritieswith the uni�ed model of Desaulniers et al. (1998). Our goal is to provide a formu-lation from whi
h we 
an easily derive a new model. This new model will representa solution as a single resour
e-feasible path.2.1 The Multiple-Depot VRP with Time WindowsThe MDVRPTW is de�ned on a network N = (V,A) with node set V and ar
 set
A. As usual, at 
ustomer i ∈ C ⊂ V, a quantity of qi needs to be 
olle
ted by asingle visit of a vehi
le. Ea
h 
ustomer i allows the start of the servi
e (=
olle
tion)within the time window [ei, li].Let K be the set of vehi
les. Sin
e we assume that ea
h vehi
le performs exa
tly onetour during the planning horizon, K is also the set of tours. Ea
h tour k ∈ K startsat its origin o(k) ∈ V, ends at its destination d(k) ∈ V, and visits 
ustomers inbetween. Side-dependen
ies may restri
t vehi
le k to visiting only 
ustomers C k ⊆
C . Hen
e, the subnetwork N k = (Vk,Ak) with nodes Vk = C k ∪ {o(k), d(k)}des
ribes feasible movements of vehi
le k in spa
e. For modeling purposes, it isadvantageous to formulate the problem with distin
t nodes, whi
h results in O =
{o(k) : k ∈ K} and D = {d(k) : k ∈ K} both having 
ardinality |K|.The vehi
les k ∈ K are 
hara
terized by the following data: The total quantity
olle
ted by vehi
le k must not ex
eed the vehi
le 
apa
ity Qk. Time windows
[eo(k), lo(k)] and [ed(k), ld(k)] restri
t the start time and end time of tour k. Traveltimes tij and 
osts cij for (i, j) ∈ A are assumed to be vehi
le-independent. Notethat additional servi
e times at a node i 
an always be in
luded in tij without
hanging the interpretation of the time windows. The model for the MDVRPTWreads as follows:

min
∑

k∈K

T k,cost
d(k) (1a)s.t. ∑

k∈K

∑

j:(i,j)∈Ak

xk
ij = 1 ∀i ∈ C (1b)3



∑

j:(o(k),j)∈Ak

xk
o(k),j =

∑

i:(i,d(k))∈Ak

xk
i,d(k) = 1 ∀k ∈ K (1c)

∑

j:(i,j)∈Ak

xk
ij −

∑

j:(j,i)∈Ak

xk
ji = 0 ∀k ∈ K, i ∈ Vk (1d)

xk
ij ∈ {0, 1} ∀k ∈ K, (i, j) ∈ Ak (1e)

xk
ij(T

k,cost
i + cij − T k,cost

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2a)
T k,cost

i ≥ 0 ∀k ∈ K, i ∈ Vk (2b)
xk

ij(T
k,load
i + qj − T k,load

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2c)
0 ≤ T k,load

i ≤ Qk ∀k ∈ K, i ∈ Vk (2d)
xk

ij(T
k,time
i + tij − T k,time

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak (2e)
ei ≤ T k,time

i ≤ li ∀k ∈ K, i ∈ Vk (2f)This non-linear mathemati
al programming formulation of the MDVRPTW 
on-tains two types of de
ision variables: First, �ow variables xk
ij for k ∈ K and (i, j) ∈

Ak are equal to 1 if ar
 (i, j) is used in tour k, and 0 otherwise. Se
ond, resour
evariables T k,r
i represent the 
onsumption of resour
e r ∈ R of tour k at node i. Forthe MDVRPTW, one has to 
onsider the resour
es R = {cost, load, time}.Constraints (1b) ensure that ea
h 
ustomer i ∈ C is assigned to exa
tly onetour k ∈ K. A 
ontinuous �ow (=movement of vehi
le k) between origin o(k) anddestination d(k) in N k is guaranteed by (1c) and (1d). The non-negative resour
evariables T k,cost
i re
ord the 
osts of the (partial) tour starting at o(k) and ending atthe respe
tive node i ∈ Vk. The 
orre
t update of the tour 
osts is ensured by (2a):If vehi
le k moves dire
tly from i to j, the partial 
ost T k,cost

j is at least the 
ost
T k,cost

i plus the 
ost cij along the ar
 (i, j). Note that T k,cost
i 
an always be set tozero if a node i is not visited by vehi
le k. Therefore, the obje
tive (1a) exa
tlydetermines the 
ost of all tours. Operational 
osts on the ar
s 
an be supplementedby �xed 
osts on ar
s (o(k), i) 
onne
ting the origin with a �rst 
ustomer. Also thear
 (o(k), d(k)) 
an exist in Ak to represent the empty tour k.The remaining limited resour
es, time and load, are modeled by the resour
e vari-ables T k,time

i and T k,load
i , whi
h are 
onstrained to feasible values by (2d) and (2f).Their update is given by (2c) and (2e). The load update (2c) is managed identi
allyto the 
ost update (2a). The update of the times by (2e) guarantees together with(2f) that T k,time

j ≥ max{ej , T
k,time
i + tij} holds whenever vehi
le k uses ar
 (i, j).Vehi
les arriving before the start of the time window have to wait.It is obvious that the obje
tive and the 
apa
ity 
onstraints 
an also be formu-lated in a more `
lassi
al' way, e.g., minimize ∑

k

∑

ij cijx
k
ij and ∑

ij qjx
k
ij ≤ Qk forall k ∈ K. There also exist straightforward linear reformulations of the time up-dates (2e) using the well-known big-M te
hnique. The point is, however, that theabove formulation is more generi
, sin
e it handles all three resour
es identi
ally:The 
onstraints (2a), (2c), and (2e) 
an be reformulated with REFs, whi
h is more
onvenient for a graph-theoreti
 des
ription of the problem. The formulation withREFs is also essential for the appli
ation of e�
ient LS te
hniques as presented in4



Se
tion 3.2.2 Formulation of Resour
e Constraints by Classi
al REFsResour
e 
onstraints for paths 
an be modeled by means of (minimal) resour
e
onsumptions and resour
e intervals. Let R be the number of resour
es. A ve
tor
T = (T 1, . . . , TR)⊤ ∈ R

R is 
alled a resour
e ve
tor and its 
omponents resour
evariables. T is said to be not greater than S if the inequality T i ≤ Si holds for all
omponents i ∈ {1, . . . , R}, denoted by T ≤ S. For two resour
e ve
tors a and b,the interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b}. Resour
e intervals,also 
alled resour
e windows, are asso
iated with nodes i ∈ V and are denotedby [ai, bi] with ai, bi ∈ R

R. The 
hanges in the (minimum) resour
e 
onsumptionsalong ea
h ar
 (i, j) ∈ A are given by a ve
tor fij = (f r
ij)

R
r=1 of resour
e extensionfun
tions (REFs). An REF f r

ij : R
R → R depends on a resour
e ve
tor Ti ∈ R

R,whi
h 
orresponds to the resour
e 
onsumption a

umulated along a path (s, . . . , i)from s to i, i.e., up to the tail node i of ar
 (i, j). The result fij(Ti) ∈ R
R 
an beinterpreted as a resour
e 
onsumption a

umulated along the path (s, . . . , i, j). Fora 
omprehensive introdu
tion to resour
e-
onstrained paths, we refer to (Irni
h andDesaulniers, 2005; Irni
h, 2006a).Let P = (v0, v1, . . . , vp) be any path in N . Path P is resour
e-feasible if resour
eve
tors Ti ∈ [avi

, bvi
] exist for all i ∈ {0, 1, . . . , p} su
h that fvi−1,vi

(Ti−1) ≤ Tiholds for all i ∈ {1, . . . , p}. We 
an now re-formulate (2a)�(2f) with resour
e in-tervals and REFs: Let M be a su�
iently large number. For ea
h node i ∈ V,let ai = (acost
i , aload

i , atime
i )⊤ = (0, 0, ei)

⊤, bd = (bcost
d , bload

d , btime
d )⊤ = (M, Qk, li)

⊤for d = d(k) ∈ D and bi = (M, M, li)
⊤ for nodes i /∈ D . Moreover, let tij =

(tcost
ij , tload

ij , ttime
ij ) = (cij, qi, tij) for all ar
s (i, j) ∈ A and de�ne the REF fij by

fij(T ) = max{ai, T + tij}. (3)Then (2a)�(2f) is equivalent to
T k

i ∈ [ai, bi] ∀k ∈ K, i ∈ Vk (4a)
xk

ij(fij(T
k
i ) − T k

j ) ≤ 0 ∀k ∈ K, (i, j) ∈ Ak. (4b)These 
onstraints simply state that the paths P = P (xk), implied by the routingvariables xk, have to form resour
e-feasible paths.2.3 Formulation of Time-Varying Pro
essing Capa
itiesFor the MDVRPTW, we exemplify inter-tour 
onstraints by time-varying pro
ess-ing 
apa
ities. First, the limited pro
essing 
apa
ities are added to the model (1)�(2) (or (1)+(4)) as non-linear 
onstraints. Se
ond, we show that the same 
on-straints 
an be formulated more easily with additional resour
es as resour
e-feasiblepath 
onstraints, when the de�nition of REFs is extended to the giant route.Tours k ∈ K deliver their 
olle
ted load to several depots. Therefore, those desti-nation lo
ations d(k) that represent the same physi
al lo
ation must be grouped:5



Let G = {g(k) : k ∈ K} be the set of all depots, where g(k) denotes the depot atwhi
h tour k ends. Let ng be the number of tours ending at depot g so that we 
anindex the tours by h ∈ {1, 2, . . . , ng}. Moreover, vehi
le k(g, h) is the hth vehi
leending its tour at depot g and K(g) = {k(g, h) : h = 1, . . . , ng} is the set of alltours ending at depot g. Re
all that [ed(k), ld(k)] is the time interval in whi
h tours
k ∈ K(g) 
an deliver to depot g = g(k). Obviously, the amount to be deliveredto depot g after the 
ut-o� time ld(k), denoted by P g(ld(k)), is zero. In general,let P g(τ) be the maximum amount of load that 
an be delivered to depot g aftertime τ . For the earliest start of servi
e ed(k) at the depot g, P g(ed(k)) is the overallquantity that 
an be pro
essed at g in the given time horizon [ed(k), ld(k)].In the following, we assume that pro
essing 
apa
ities are dis
retized and that τℓ,
ℓ ∈ L are the points in time at whi
h pro
essing 
apa
ities are 
he
ked. Figure 1depi
ts a typi
al pro
essing-
apa
ity fun
tion and its dis
retization. (Note that�inprin
iple�we 
ould make the dis
retization of time dependent on the depots g ∈ G,but we do not want to overload the notation.)

Fig. 1. Example of a Dis
retization ofa Time-Varying Pro
essing Capa
ityFun
tionThe di�
ulty in formulating the pro
essing 
apa
ity 
onstraints at time τℓ anddepot g is that we have to sum up the load of all vehi
les k ∈ K(g), but only if
k arrives at g later than time τℓ. In a non-linear formulation, this dependen
y 
anbe modeled by partial sums over the vehi
les k(g, h), h ∈ {1, 2, . . . , ng}. We get

Sg
ℓ,h−1 ≤ Sg

ℓ,h ∀g ∈ G, ℓ ∈ L, h ∈ {2, . . . , ng} (5a)
(T k,time

d(k) − τ g
ℓ )(Sg

ℓ,h−1 + T k,load
d(k) − Sg

ℓ,h) ≤ 0

∀g ∈ G, ℓ ∈ L, h ∈ {2, . . . , ng}, k = k(g, h) (5b)
0 ≤ Sg

ℓ,h ≤ P g(τℓ) ∀g ∈ G, ∀ℓ ∈ L, h ∈ {2, . . . , ng} (5c)Herein, Sg
ℓ,h is the partial sum of all loads arriving at depot g later than time τℓ forthe �rst tours 1, 2, . . . , h. Inequalities (5a) guarantee that the sequen
e of partialsums is non-de
reasing. The interdependen
y between the arrival time and 
olle
tedload of tour k and the 
orresponding partial sum is modeled by (5b): If tour karrives late, i.e., T k,time

d(k) > τ g
ℓ , then the hth partial sum Sg

ℓ,h must ex
eed Sg
ℓ,h−1 bythe 
olle
ted load T k,load

d(k) . For early arrivals, i.e., T k,time
d(k) ≤ τ g

ℓ , the 
onstraints (5b)allow Sg
ℓ,h−1 = Sg

ℓ,h. The pro
essing-
apa
ity restri
tions are stated by (5c).The giant-tour representation of a solution is depi
ted in Figure 2. Here, giant toursare de�ned as Hamiltonian 
y
les in the routing graph (V,A), the nodes of whi
hare 
ustomer nodes C as well as start nodes and end nodes of tours, O and D .6



Following the ideas presented in (Irni
h, 2006b, p. 4), tour-start and tour-end nodes
(o, d) in a feasible route p = (o, . . . , d) must ful�ll a 
ompatibility relation. The
ompatibility relation∼ on O ×D introdu
es vehi
le and depot 
hara
teristi
s intothe problem. In multi-depot problems, the sets O and D are partitioned a

ordingto the |G| depots, e.g., O = O 1 ∪ . . . ∪ O |G|, D = D 1 ∪ . . . ∪ D |G|. Pairs (o, d) ∈
O e ×D f are 
ompatible o ∼ d if and only if e = f .In addition to the ar
s of model (1)�(2) (or (1)+(4)), the routing graph also 
ontainsreset ar
s (d, o) ∈ D × O . These reset ar
s 
onne
t end nodes of one tour withstart nodes of another tour. If (p1, p2, . . . , p|K|) are the tours forming a feasiblesolution to the MDVRPTW, the 
y
li
 
on
atenation of the tours is a giant tourin the routing graph. The 
orresponding giant route is a path (with identi
al startand end node). It is denoted by P = P (p1, p2, . . . , p|K|) and is de�ned as the
on
atenation of p1, p2, . . . , p|K|, o1, i.e., of the |K| tours plus the ar
 
onne
tingthe last node d|K| of the last tour p|K| = (o|K|, . . . , d|K|) with the �rst node o1 ofthe �rst tour p1 = (o1, . . . , d1).

o1 o2 o3 o4 d4d3d1 d2 Fig. 2. Giant-TourRepresentationThe pro
essing 
onstraints (5) 
an be equivalently reformulated as resour
e-feasiblepath 
onstraints for the giant route P . We de�ne additional resour
es r(g, ℓ) for allpairs (g, ℓ) ∈ G× L. The asso
iated resour
e variables have the following resour
ewindows at the nodes and REFs on the ar
s of the routing graph:
T g,ℓ

i ∈ [ag,ℓ
i , bg,ℓ

i ] = [0, P g(τℓ)] ∀i ∈ V (6a)
fij(T )g,ℓ =



















T g,ℓ + T load, if T time > τℓ and (i, j) = (d(k), o(k′)) reset ar
and g = g(k)

T g,ℓ, otherwise (6b)With the de�nitions tcost
do = 0 and tload

do = ttime
do = −M for reset ar
s (d, o) ∈ D ×O ,all MDVRPTW resour
es have well-de�ned REFs, given by (3) and (6b). (Notethat the name reset ar
 refers to the fa
t that fdo(T )load = 0 and fdo(T )time = eoholds, i.e., these inner-tour resour
es are reset to their lower bounds at the tour-start node o.)2.4 Generi
 Giant-Tour ModelThe generi
 model for VRPs with inter-tour 
onstraints is the following: Given(a) the routing graph with request/
ustomer nodes, tour-start nodes O and tour-end nodes D , (b) a 
ompatibility relation ∼ between O and D , and (
) resour
es,
onstrained by resour
e intervals at all nodes, with REFs de�ned on all (originaland reset) ar
s of the routing graph, a giant tour (p1, p2, . . . , p|K|) is feasible if its
orresponding giant route P = P (p1, p2, . . . , p|K|) is a resour
e-feasible path. Re
all7



that a giant tour has already been de�ned as a Hamiltonian 
y
le in the routinggraph, the tour-start and tour-end of whi
h respe
t the 
ompatibility relation ∼.The generi
 VRP with inter-tour 
onstraints is the problem of �nding a least-
ostfeasible giant tour. The novelty of this de�nition is that the entire giant route is
onsidered as one resour
e-
onstrained path (RCP) and that inner-tour as wellas inter-tour 
onstraints are all 
aptured in the de�nition of an RCP by resour
eintervals and REFs.The above de�nition of a VRP with inter-tour 
onstraints has several advantageswhen heuristi
 solution methods for solving VRPs are being 
onsidered. First, thede�nition is 
lear and 
on
ise. Se
ond, the 
on
ept of RCPs is a very powerful mod-eling tool, well-known in the 
ontext of exa
t solution approa
hes in vehi
le routingand 
rew s
heduling (Desaulniers et al., 1998). RCPs allow the modeling of manyrelevant types of 
onstraints for so-
alled ri
h VRPs in
luding appli
ations with
olle
tion and delivery, pre
eden
es, side dependen
ies, multiple use of vehi
les,limited waiting time and limited working hours in 
onne
tion with time windows,time- or load-dependent travel times and 
osts, 
omplex 
ost fun
tions and manymore aspe
ts (see Irni
h, 2006b); additional aspe
t of modeling with RCPs are
oved by (Desaulniers et al., 1998; Avella et al., 2004; Irni
h and Desaulniers, 2005;Irni
h, 2006a). Third, the de�nition of the giant tour as a Hamiltonian 
y
le leadsto easier des
riptions of lo
al sear
h neighborhoods. For instan
e, the relo
ationof a node inside its own tour or into another tour has the same des
ription in thegiant-tour representation. The most important advantage is, however, that thereare very e�
ient neighborhood sear
h methods available, at least when REFs ful�llsome basi
 requirements. This is the subje
t of the Se
tion 3.We now reformulate the MDVRPTW with pro
essing 
apa
ities and brie�y sket
hother inter-tour 
onstraints that 
an easily be modeled within the same generi
framework.2.4.1 Generi
 Model for MDVRPTW with Pro
essing Capa
itiesWith de�nitions (4) and (6) of resour
e windows and REFs, the MDVRPTWwith pro
essing 
apa
ities is the problem of �nding a least-
ost feasible giantroute P , where P is resour
e-feasible w.r.t. resour
es load, time, and r(g, ℓ) for all
(g, ℓ) ∈ G× L. If existent, side-dependen
ies have to be modeled by additional re-sour
e 
onstraints (see Irni
h, 2006b, p. 19). The 
onsideration of vehi
le-dependent
apa
ities Qk is trivial by de�ning 
orresponding resour
e intervals (4a) at nodes
d(k) ∈ D . However, vehi
le dependent 
osts and travel times 
an�in prin
iple�beformulated with REFs and additional resour
es (see Irni
h, 2006b, p. 21), but theseextensions are not fully 
ompatible with the e�
ient sear
h methods of Se
tion 3.2.4.2 Examples of Inter-Tour Resour
e ConstraintsTime-varying pro
essing 
apa
ities are a rather 
omplex example of inter-tour re-sour
es. Some other simple but pra
ti
ally relevant examples of inter-tour resour
e
onstraints are given in the following. 8



In many real-life, multi-depot problems, the total 
apa
ity of the depots is limited.The maximum depot 
apa
ity 
an easily be modeled with the pro
essing 
onstraintsintrodu
ed in Se
tion 2.3: For vehi
le k belonging to depot g = g(k), 
apa
ities areonly 
he
ked at the beginning ed(k) of the pro
essing time window and P g(ed(k))must be set to the overall quantity that 
an be pro
essed at depot g.Also, the number of vehi
les being servi
ed at the same time might be restri
teddue to a limited number of ramps at the depot. This is, again, a pro
essing 
apa
ity,where ea
h tour 
olle
ts one unit and P g(τ) has to be set to the number of availableramps at depot g from time τ until the 
losing of the depot at time ld(k).Irni
h (2006b, p. 22f) 
omments on restri
ting the number of tours with 
ertain
hara
teristi
s. Examples are a limited number of tours arriving after a 
ertainpoint in time, traveling more than a given distan
e or time, 
olle
ting more than a
ertain amount of goods et
. These examples have in 
ommon that one resour
e r1is, at tour-end nodes, 
ompared against an upper limit u1 (non-binding for theindividual tours). The number of times this limit is ex
eeded is re
orded by anotherresour
e r2, whi
h is bounded by a upper bound u2. As long as the resour
e r1 isupdated by a 
lassi
al REF of the form (3), one 
an also limit the number of toursthat do not ex
eed u1. Hen
e, it is also possible to restri
t the number of toursthat arrive early, travel short distan
es, or 
olle
t only a small quantity.Another interesting task that 
an be handled by an inter-tour resour
e is the al-lo
ation of a limited vehi
le �eet to several depots. Let a �eet of u vehi
les begiven. In the giant-tour representation, ea
h depot is initially provided with thewhole �eet of vehi
les, i.e., u = |O 1| = . . . = |O |G|| = |D 1| = . . . = |D |G||. Then,an inter-tour resour
e globally asserts that the total number of non-empty toursdoes not ex
eed u. It is straightforward to extend the model to �eets with multiplevehi
le types by using as many inter-tour resour
es as vehi
le types are present.3 Solution MethodsWe have already seen that inter-tour 
onstraints arise naturally in many VRP ap-pli
ations. In parti
ular, the 
onsideration of integrated problems (over multipledepots and extended planning horizons) leads to the 
on
ourse of large-s
ale prob-lem instan
es with inter-tour 
onstraints. It is, therefore, imperative that heuristi
methods should be designed to work both e�
iently and e�e
tively.The solution methodology presented next is based on the uni�ed framework ofIrni
h (2006b), and referen
e is also made to two earlier papers (Irni
h et al.,2006; Irni
h, 2006a) for a detailed des
ription of the methods and further questionsrelated to implementation issues.3.1 E�
ient Lo
al Sear
hNearly all metaheuristi
s for VRPs rely on the 
on
ept of neighbor solutions, de-�ned by neighborhoods, su
h as k-Opt and k-Opt* neighborhoods, node relo
ationand Or-Opt neighborhoods, node and string swap/ex
hange neighborhoods, and9



others (see surveys by Bräysy and Gendreau, 2005a,b; Funke et al., 2005). For allof these neighborhoods, a move from a 
urrent solution to a neighbor solution is
hara
terized by the fa
t that the given giant tour is �rst split into (a small num-ber of) paths. In the following, these paths are referred to as segments. The movepermutes the segments - some may be inverted - and they are �nally 
on
atenatedto form a new giant tour.A LS algorithm expli
itly or impli
itly inspe
ts all neighbor solutions and deter-mines the one that is feasible and most improving. There are two aspe
ts of e�
ientLS that we fo
us on in the following: First, e�
ient feasibility tests are ne
essaryto guarantee that neighborhoods 
an be explored qui
kly. It is important to pointout here that VRPs with R resour
e 
onstraints imply an additional fa
tor of atleast R in the feasibility tests. Hen
e, from a worst 
ase point of view, the best we
an expe
t are O(Rnk) time algorithms for sear
hing neighborhoods of size O(nk).Se
ond, we devise e�
ient sear
h methods that, in the average 
ase, need less than
Rnk steps for fully exploring an O(nk) neighborhood.The a

eleration of the average 
ase needs further explanation: In the 
ontext ofnode-ex
hange and edge-ex
hange neighborhoods, any LS algorithm 
an be 
onsid-ered a tree sear
h method. The tree has depth k for a neighborhood of size O(nk).In order to a

elerate the sear
h, the two main 
riteria for a redu
tion of the sear
hspa
e (i.e., pruning the sear
h tree) are feasibility and 
ost with two 
orrespond-ing approa
hes (Irni
h et al., 2006; Irni
h, 2006b): Lexi
ographi
 sear
h is drivenby feasibility redu
tions, i.e., one tries to prove at an early stage i < k that nofeasible ex
hange exists that in
ludes the nodes or edges of the stages 1, . . . , i. The
on
ept, as originally introdu
ed by Savelsbergh (1986, 1990), is intrinsi
ally tiedto the lexi
ographi
 ordering in whi
h neighbor solutions are 
onstru
ted: In theinnermost loop of the sear
h algorithm, from one iteration to the next, an innersegment must grow by one node (or a small 
onstant number of nodes), so that so-
alled global variables 
an be updated in O(R) time. Conversely, sequential sear
his based on the idea of 
ost-based redu
tions, i.e., one tries to prove at an earlystage i < k that no improvement 
an be found whi
h in
ludes the nodes or edgesof the stages 1, . . . , i. It requires, however, that all in-ar
s and out-ar
s of a nodeare sorted by in
reasing 
ost and moves are de
omposable into k 
ost-independentpartial moves (see Irni
h et al., 2006). Then, neighbor solutions are generated insu
h an ordering that partial gains of the partial moves ful�ll the gain 
riterion(Lin and Kernighan, 1973; Irni
h et al., 2006), i.e., one 
an restri
t the sear
h tothose 
ases where all the partial gains are positive. The idea 
an be applied in the
ontext of best-improvement as well as �rst-improvement strategies.3.1.1 E�
ient Feasibility Che
ksAs presented in the paper by Irni
h (2006b), the sear
h pro
edure 
an be split intoa prepro
essing phase, in whi
h information for feasibility 
he
ks is gathered, and ana
tual sear
h for the enumeration of the neighbor solutions. In the prepro
essingphase, generalized REFs are 
omputed for a set of segments. In essen
e, thesesegment REFs and their inverses enable O(R) time feasibility tests. Sin
e any10



neighbor solution, represented as a giant tour, results from the 
on
atenation ofsegments of the 
urrent solution, feasibility 
an be tested by propagating lower andupper bounds of resour
e 
onsumptions along the segments. Lower bounds haveto be propagated by segment REFs, while upper bounds have to be propagatedby inverse segment REFs. Although the number of all di�erent segment REFs ofa given giant-tour of length n is quadrati
, the work of Irni
h (2006b) shows thatonly O(n4/3) segment REFs must be a priori 
omputed.The feasibility test with segment REFs is very similar to the on-the-�y 
omputationof global variables, as suggested in lexi
ographi
 sear
h pro
edures. For instan
e,time window 
onstraints require the 
omputation of a total travel time, earliestdeparture time, and a latest arrival time as a global variable of a segment. Kinder-vater and Savelsbergh (1997) 
larify these pro
edures for 2-opt and Or-opt movesin 
onne
tion with time windows and pre
eden
e 
onstraints as well as for problemswith simultaneous deliveries and pi
kups.For both methods, lexi
ographi
 as well as sequential sear
h, there must hold sev-eral assumptions on properties of REFs in order to guarantee O(R) time feasibilitytests. All REFs must be 
omputable in O(R) and must be non-de
reasing, i.e.,
S ≤ T implies fij(S) ≤ fij(T ). It must be possible to generalize REFs to seg-ments, su
h that 
on
atenations of segment REFs 
an be 
omputed and evaluatedin O(R) time. Finally, REFs f (of ar
s and segments) must be invertible in thesense that f(T ) ≤ T ′ is equivalent to T ≤ f inv(T ′) for the inverse REF f inv. Theseassumptions are�in detail�derived and explained in (Irni
h, 2006a).The assumption about the existen
e of inverse REFs 
an be relaxed for some re-sour
es r. If a resour
e r is non-de
reasing along the entire giant-tour and globally
onstrained by node-independent resour
e windows [ar, br], there is no need to in-
lude the resour
e r in the de�nition of an inverse REF. The feasibility of a giantroute 
an be dire
tly 
he
ked only by the forward propagation of the resour
e. Theoverall resour
e 
onsumption is given at the �nal node of the newly 
onstru
tedgiant route. (A similar argument was used in (Irni
h, 2006a, p. 24) in order toexplain that some 
omplex REFs for 
ost must not ne
essarily be invertible.) Asa 
onsequen
e, the inter-tour resour
es r(g, ℓ) de�ned in Se
tion 2.3, do not re-quire an inversion. Hen
e, O(R) time feasibility 
he
ks for VRP with inter-tourresour
es 
an be implemented if one 
an 
onstru
t and evaluate segment REFsin O(R) time. This important property is shown for the time-varying pro
essing
apa
ity 
onstraints in Se
tion 3.1.3.3.1.2 Sequential Sear
hThe easiest way to des
ribe the idea of sequential sear
h is by 
onsidering the 2-opt∗ (=
rossover) neighborhood, originally suggested by Potvin et al. (1989). A2-opt∗ move is depi
ted in Figure 3 and its interpretation is that two di�erentroutes in the given giant tour ex
hange their end-segments. Along the alternating
y
le (t1, t2, t3, t4, t1) (of deleted and added ar
s), the 2-opt∗ move de
omposes intotwo 
ost-independent symmetri
 partial moves, where the �rst is the deletion of the11



ar
 (t1, t2) and insertion of (t3, t2), and the se
ond the deletion of the ar
 (t3, t4) andthe insertion of (t1, t4). For the 2-opt∗ move to be improving, at least one of the twopartial moves has to be improving, i.e., the inserted ar
 has to be less 
ostly than theremoved one (Irni
h et al., 2006, p. 2412f). A sequential sear
h algorithm utilizesthis property for �nding improving moves in the following way: An outer loopdetermines the node t1 and the ar
 (t1, t2) to be deleted. The pro
edure then loopsover all in-ar
s (t3, t2) of t2 as long as ct3,t2 < ct1,t2 holds. All these 
ombinationsof t1, t2 and t3 imply that the �rst partial move is improving. Sin
e t4 is uniquelydetermined by t3, one 
an also 
he
k the overall gain and the feasibility of the 2-opt∗ move. The 
ase with nodes t3, t4, and t1 is symmetri
 and, therefore, already
overed by the above loops. Note that for restri
ting the inner loop to 
ases with
ct3,t2 < ct1,t2 , in-ar
s must have been previously sorted by in
reasing 
ost and storedin neighbor lists.

t1 t2

t3t4

o1

o

h

| |K
d

d

h+1

Fig. 3. Prin
iple Sequential Sear
h in the2-opt∗ Neighborhood. Partial moves haveGains g1 = ct1,t2 − ct3,t2 and g2 = ct3,t4 − ct1,t4 ,and g1 > 0 or g2 > 0 must hold for ImprovingMovesSequential sear
h is dire
tly appli
able if the 
ost of a giant tour is the sum ofits ar
s' 
osts. Irni
h et al. (2006) explain de
ompositions of moves into partialmoves for many other types of edge-ex
hange and node-ex
hange neighborhoods.Note that the gain 
riterion 
an also be generalized to situations where best non-improving moves have to be found.3.1.3 Resour
e Extension Fun
tions for SegmentsRe
all that a segment σ is a sequen
e of nodes that o

ur as a sub-path in thegiant tour 
urrently under 
onsideration. Figure 3 also visualizes how a 2-opt∗ movepermutes segments. In order to form a neighbor solution, the segment (o1, . . . , t1)is 
on
atenated with the segments (t4, . . . , d
|K|), (oh+1, . . . , t3), and (t2, . . . , d

h). Ifsegment REFs are given and 
an be evaluated in O(R) time, the feasibility of theresulting new giant route 
an also be 
he
ked in O(R) time (the number of segmentsis 
onstant). Thus, we des
ribe next how REFs 
an be generalized to segments.For any segment σ, the forward propagation of resour
es (for given lower bounds Ton the resour
e 
onsumptions) 
an be 
omputed by a segment REF fσ of the form
fσ(T ) = max{aσ, T + hσ(T ) + tσ}, (7)where aσ, tσ ∈ R

R are resour
e ve
tors and hσ(T ) is a fun
tion hσ : R
R → R

R thattakes values 6= 0 only for some of the resour
es rg,ℓ and is 0 on all other resour
es.Moreover, if σ 
ontains no reset ar
, then hσ(T ) = 0 for all T , so that (7) isidenti
al to the de�nition of a 
lassi
al REF (3). Otherwise, let (d(k), o(k′)) bethe �rst reset ar
 in the segment, so that σ 
an be written as (. . . , d(k), o(k′), . . .).Now, we 
an pre
isely des
ribe all the 
oe�
ients ne
essary to de�ne hσ. If a reset12



ar
 exists, let gσ = g(k) be the depot 
orresponding to the tail node d(k) of the�rst reset ar
 (d(k), o(k′)), and let ϕ = (. . . , d(k)) be the pre�x segment of σ upto the �rst tour-end node d(k). Note that hσ does not depend on other reset ar
sthat may be present in σ. If σ 
ontains no reset ar
, we de�ne gσ = ⊥ and ϕ to bethe entire segment σ. Moreover, let atime
ϕ , ttime

ϕ and tload
ϕ ∈ R be the 
oe�
ients thatdes
ribe the resour
e 
onsumption for the resour
es time and load on the pre�xsegment ϕ, i.e., fϕ(T )time = max{atime

ϕ , T time + ttime
ϕ } is the earliest arrival time atthe last node of ϕ and fϕ(T )load = T load + tload

ϕ the 
olle
ted load. Then,
hσ(T )gσ,ℓ =











T load + tload
ϕ , if max{atime

ϕ , T time + ttime
ϕ } > τℓ

0, otherwise.Summing up, the segment REF on segment σ is de�ned by (aσ, tσ, gσ, a
time
ϕ , ttime

ϕ , tload
ϕ ) ∈

R
R × R

R × (G ∪ {⊥}) × R
3. Note that also the ar
 REFs (6b) are of the form (7)with appropriately de�ned fun
tions hσ(T ) having (atime

ϕ , ttime
ϕ , tload

ϕ ) = 0.What remains to be shown is how one 
an 
ompute the 
oe�
ients of the segmentREF of the 
on
atenation of two segments σ1 and σ2 in O(R) time. We assume thatthe last node of σ1 is identi
al with the �rst node of σ2, and that both segments aredes
ribed by (aσ1
, tσ1

, gσ1
, atime

ϕ1
, ttime

ϕ1
, tload

ϕ1
), (aσ2

, tσ2
, gσ2

, atime
ϕ2

, ttime
ϕ2

, tload
ϕ2

) ∈ R
R ×

R
R × (G∪ {⊥})×R

3. The 
on
atenation σ1 ⊕ σ2 has a pre�x segment denoted by
ϕ (either identi
al to ϕ1 or ϕ1 ⊕ ϕ2 depending on gσ1

) and ful�lls
aσ1⊕σ2

= fσ2
(aσ1

)

tσ1⊕σ2
= tσ1

+ tσ2
+ hσ2

(aσ1
)

gσ1⊕σ2
=











gσ1
, if gσ1

6= ⊥

gσ2
, otherwise (8)

(atime
ϕ , ttime

ϕ , tload
ϕ )=























(atime
ϕ1

, ttime
ϕ1

, tload
ϕ1

), if gσ1
6= ⊥

(max{atime
ϕ2

, atime
ϕ1

+ ttime
ϕ2

}, ttime
ϕ1

+ ttime
ϕ2

, tload
ϕ1

+ tload
ϕ2

),otherwise.An Example The following example illustrates segment REFs and formula (8).We 
onsider a 2-depot problem with depots G = {g, g′}, where the pro
essing timewindow is [806; 925]. Pro
essing rates are assumed to be 
onstant with 150 unitsper hour for depot g and 200 units per hour for depot g′. For the sake of simpli
ity,the pro
essing 
apa
ity fun
tions are dis
retized at times τ1 = 805 and τ2 = 835only. The resulting 
apa
ities are P g(τ1) = 300, P g(τ2) = 225, P g′(τ1) = 400 and
P g′(τ2) = 300.Two segments σ1 and σ2 and the asso
iated values for ttime

ij , [atime
i , btime

i ], tload
ij(=demand at node j) are given in Figure 4. Both segments 
ontain a reset ar
, i.e.,13



[720; 840] [780; 800] [806; 925] [400; 925] [720; 840] [720; 840] [720; 840] [806; 925] [400; 925] [740; 840]
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Fig. 4. TwoSegments σ1and σ2

(d1, o2) for σ1, and (d2, o3) for the segment σ2. Moreover, tour-end node d1 belongsto depot g and tour-end node d2 to depot g′.From the pro
essing 
apa
ity diagrams for both depots, as depi
ted in Figure 4, itbe
omes 
lear that we do not need to 
he
k pro
essing 
apa
ities at the 
ut-o� time
τ = 925, sin
e tours must return to the depots no later than this time. Con
luding,the resour
es to be 
onsidered in this example are {time, load, (g, τ1), (g, τ2), (g

′, τ1), (g
′, τ2)}(the 
omputation of 
osts is trivial and, therefore, left out).The segment REF fσ1

of the �rst segment σ1 is given by
fσ1













T time

T load

T g,τ1

T g,τ2

T g′,τ1

T g′,τ2













= max



































734
13
6
0
0
0













,













T time

T load

T g,τ1 + hσ1
(T )g,τ1

T g,τ2 + hσ1
(T )g,τ2

T g′,τ1

T g′,τ2













+













−M
−M
0
0
0
0



































,where hσ1
(T )g,τ1 = T load +6, and hσ1

(T )g,τ2 = 0 if max{814, T time +78} ≤ τ2 = 835and hσ1
(T )g,τ2 = T load + 6, otherwise. The interpretation is simple: The earliestarrival time at d1 is 814 > τ1 = 805, and, hen
e, the resour
e (g, τ1) is alwaysin
reased by T load + 6, whi
h is the load in the tour arriving at d1. In general,the arrival time at d1 is given by max{814, T time + 78}, whi
h explains hσ1

(T )g,τ2.Along the entire segment σ1, the 
oe�
ients of fσ1
re�e
t that the earliest arrivaltime at the last node of σ1 is 734 with 13 units of load 
olle
ted.The segment REF fσ2

is
fσ2
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,where hσ2
(T )g′,τ1 = T load + 10, and hσ2

(T )g′,τ2 = 0 or hσ2
(T )g′,τ2 = T load + 10depending on whether max{833, T time + 113} ≤ τ2 = 835 holds or not. Wheneverone arrives at the �rst node of σ2 three or more minutes later than the earliest14



servi
e time (720), the arrival at d2 is later than τ2 and resour
e (g′, τ2) is in
reasedby T load + 10.Using formula (8), the segment REF for the 
on
atenation σ = σ1 ⊕ σ2 is given by
fσ
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,where hσ(T ) = hσ1
(T ). The interpretation of this result is the following: Whentraversing the entire segment σ1 ⊕ σ2, the resulting arrival time and load at thelast node is independent from the initial resour
e 
onsumption T . The tour startingat node o3 arrives at the last node of σ at time 740 with 9 units of load on board.The 
on
atenation of σ1 and σ2 fully determines what happens at depot d2. 23units of load arrive after time τ2 and, hen
e, T g′,τ1 and T g′,τ2 are always in
reasedby 23 (whi
h is also the minimum resour
e 
onsumption). In 
ontrast, pro
essing
apa
ity resour
es for depot g depend on the 
olle
ted load and start time atthe beginning of the segment σ: Six units of load arrive at d1 later than τ1 and,depending on the start time at the �rst node, possibly also later than τ2. This is
ontrolled by hσ(T )g,τ , in whi
h the arrival time at the �rst depot is 
omputed by

max{814, T time + 78} and the 
olle
ted load by T load + 6.3.2 Large Neighborhood Sear
hMetaheuristi
s are substantial for produ
ing high-quality solutions be
ause theyallow an es
ape from lo
al minima. This se
tion brie�y des
ribes the metaheuristi
implemented here, whi
h is obviously only one out of many possible 
hoi
es forusing the e�
ient LS pro
edures as a 
omponent of a metaheuristi
.To �nd a �rst lo
al minimum, various neighborhoods are 
ombined in a VND
omponent (Mladenovi¢ and Hansen, 1997; Hansen and Mladenovi¢, 2001). In orderto es
ape from this joint lo
al optimum, a ki
k step is performed. The ki
k 
onsistsof a randomized removal of a subset of nodes that are 
onse
utively reinserted intothe giant route. The solution is then re-optimized with the VND 
omponent, theresulting solution is 
ompared against the previous lo
al optimum, and a

eptedwith the Metropolis a

eptan
e 
riterion of simulated annealing (Aarts and Korst,1989). Hen
e, the 
hosen approa
h has similarities with the large-step Markov 
hainapproa
h (Martin et al., 1992) and the large neighborhood sear
h (LNS) approa
horiginally proposed by (Shaw, 1998). The di�eren
e to the large-step Markov 
hainsis, however, that lo
al optimal solutions of the VND 
omponent are used instead oflo
al minima of a single neighborhood. The di�eren
e to standard LNS pro
eduresis the use of the Metropolis a

eptan
e 
riterion. Røpke and Pisinger (2006) alsouse LNS with the Metropolis a

eptan
e 
riterion, but their LNS solutions are notre-optimized by LS at all.There are plenty of 
hoi
es for de�ning node removal and node insertion opera-15



tors. Over the tested operators (pure random, based on node attributes su
h astime window length, demand, detour length et
.), the operator that performs bestrandomly sele
ts 20 `
lose' 
ustomers a

ording to a randomized distan
e-basedsele
tion pro
edure. Insertion of removed 
ustomers is done by building dummyroutes 
ontaining these 
ustomers and by applying the above VND 
omponent di-re
tly to the resulting giant tour (see also Irni
h, 2006b, p. 21). Røpke and Pisinger(2006) 
hoose from among di�erent removal and insertion operators a

ording tos
ores that are updated by a learning me
hanism based on the sear
h history. Thismay be a bene�
ial extension to the 
urrent implementation.4 ExperimentationThe 
omputations presented in this se
tion aim at two di�erent aspe
ts: First,we show that the solution methodology introdu
ed in (Irni
h, 2006b), i.e., giant-tour representation and O(R) feasibility 
he
ks by 
onsidering the giant-route as aresour
e-
onstrained path, lead to highly e�
ient lo
al sear
h-based metaheuris-ti
s. Se
ond, we exemplify the usefulness of inter-tour 
onstraints by presentingnew types of studies that 
an easily be performed with the methods at hand.4.1 E�
ient Lo
al Sear
hIn order to analyze the e�
ien
y of the proposed LS te
hniques, we generated aset of 80 MDVRPTW test instan
es with 100, 200, 400 and 800 nodes (ea
h 
lasswith 20 instan
es). Ea
h instan
e has between two and �ve depots. Customers arespread around the depots (a

ording to a normal distribution) su
h that the servi
eareas of the depots partially overlap. The width of the 
ustomer time windows isvaried in ea
h group of instan
es. This 
reates �ve groups of MDVRPTW instan
es.Moreover, four di�erent pro
essing time windows for the depots are 
hosen for ea
hMDVRPTW instan
e. The four di�erent pro
essing time windows re�e
t di�erentsituations where pro
essing 
apa
ities are more or less binding (from loosely tohardly 
onstrained). Overall, this generates 320 instan
es of the MDVRPTW withtime-varying pro
essing 
apa
ities.Ea
h of 320 instan
es is solved with the LNS metaheuristi
 of Se
tion 3.2. VND �rstalternates between 2-opt, 2-opt∗, node swap and node relo
ation neighborhoodsuntil a joint lo
al optimum is rea
hed. The sear
h pro
edures for �nding improvingstring-ex
hange and Or-opt moves (with and without inversion of the relo
atedsegment) are then applied to these lo
al optima. Ea
h VND step ends in a jointlo
al optimum of all seven neighborhoods. 250 ki
k moves are performed to diversifythe sear
h.Using a similar setup 1 as in (Irni
h, 2006b), the absolute performan
e of the se-quential sear
h approa
h is summarized in Table 1: The overall 
omputation time
1 All algorithms were 
oded in C++, were 
ompiled in release mode using MS-VisualC++ .NET 2003 version 7.1, and all runs were performed on a standard PC (Intel x86family 15 model 2 stepping 5, 2.8 GHz, 1GB main memory, on MS-Win 2000).16



(se
ond 
olumn) to perform the 250 ki
ks and VND steps does not ex
eed 15 min-utes, even for the largest instan
es with 800 nodes. The third 
olumn shows how of-ten sequential sear
h algorithms were invoked in VND and ki
k steps. This numberdoes not raise proportional to the size of the instan
es or size of the neighborhoods,but grows sub-linear. For all instan
es, the ratio of sear
hes that �nd an improv-ing neighbor to the total number of sear
hes is stable and between 60% and 68%.We have also 
omputed (fourth 
olumn) the average time ne
essary to perform asingle sequential sear
h (in
luding both sear
h phases, segment REF 
omputationand a
tual tree sear
h). These numbers show that the sequential sear
h pro
eduresare notably fast, in parti
ular for large-s
ale instan
es.Size Avg. Time Avg. Number of Avg. Time# Nodes 250 VND+ki
k Sear
h Steps Performed per Sear
h100 35.5 s 12738 2.8ms200 119.4 s 17040 7.0ms400 279.6 s 19227 14.4ms800 716.8 s 22641 31.4msTable 1Chara
teristi
s of the LNS Metaheuristi
 based on Sequential Sear
hFinally, we 
ompare the overall 
omputation times of the LNS metaheuristi
 wheneither sequential sear
h or lexi
ographi
 sear
h pro
edures are used. Figure 5 de-pi
ts the speedup gained by using sequential instead of lexi
ographi
 sear
h (thespeedup fa
tor is the quotient of the running times). For ea
h size of instan
es, the�ve sub
lasses 
orrespond to in
reasing widths of the 
ustomer time windows. One
an 
learly see that sequential sear
h outperforms lexi
ographi
 sear
h, sin
e thelatter takes (on average) between 1.5 and 11.4 times longer. As already observedin (Irni
h et al., 2006; Irni
h, 2006b), sequential sear
h is more e�e
tive for loosely
onstrained problems and when the size of the instan
es in
reases. The impa
t ofin
reasing 
ustomer time windows is that tours get longer and, therefore, instan
esare less 
onstrained and 
an be solved signi�
antly faster.
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Fig. 5. A

eleration Gained when Se-quential Sear
h is used instead of Lexi-
ographi
 Sear
hIt is worth mentioning that we have also analyzed the four groups of instan
eswith less and less binding pro
essing time windows. For these, the impa
t on thespeedup is less signi�
ant and varies by less than 6% within ea
h of the four groups.17



4.2 New Types of Studies based on Inter-Tour Resour
e ConstraintsWhen depots and pro
essing fa
ilities are being planned, the interdependen
y be-tween transport pro
esses and stationary pro
esses is often disregarded due to the
omplexity of integrated fa
ility design/layout and transport planning problems.For instan
e, the dimensioning of the depots as well as the duration of time windowsused for pro
essing are un
lear. The models and solution te
hniques presented inthis 
hapter allow su
h de
isions to be studied in an integrated way, at least if it ispossible to formulate the stationary pro
esses with inter-tour resour
e 
onstraints.4.2.1 Variation of the Cut-O� TimesSeveral aspe
ts have an impa
t on the temporal feasibility of solutions: Travel timesand servi
e time windows at 
ustomers spe
ify the feasibility of the individual tours.The pro
essing rates (i.e., the slopes of P g(τ)), the length of the pro
essing timewindows, and the 
ut-o� times together determine the temporal interdependen
ybetween the tours (see also Figure 1). The variation of ea
h of these parametershas 
onsequen
es for the 
ost and stru
ture of the resulting VRP solution.Here we analyze the impa
t of the 
ut-o� times ld(k) on the 
ost, the number oftours, and the number of 
ustomers that 
annot be servi
ed. We present results fora 4-depot instan
e with 100 nodes. 30 runs of the LNS metaheuristi
 are performed,where the 
ut-o� times of all depots are 
hanged from run to run by �ve minutes.The shape of the pro
essing 
apa
ity fun
tions P g(τ) is not altered.

Fig. 6. Simultaneous Variation of Cut-O� Times of all DepotsThe diagram at the bottom of Figure 6 shows the transportation 
osts, the numberof tours in the solution, and the number of 
ustomers that are not servi
ed due tothe early 
ut-o� times. The later the 
ut-o� times, the less tours must be operatedto 
olle
t the 
ustomers' supply. At the same time, the 
osts of the solutions de-18




rease. Note that we do not use any �xed 
osts per tour (with �xed 
osts the e�e
twould be even more drasti
). In addition to the 
ost diagram, the top part of Fig-ure 6 shows the two extremal solutions 
orresponding to the 
ut-o� times 15:55 hand 18:00 h. In the left tour plan, pro
essing 
apa
ities are strongly binding. Theresult is a relatively high number of tours with only a few 
ustomers in ea
h tour.In 
ontrast, with the late 
ut-o� at 18:00 h, tours are not all 
onstrained by thepro
essing 
apa
ities.4.2.2 Optimal Dimensioning of Pro
essing Fa
ilitiesAnother interesting issue is the determination of the ratio of the pro
essing 
apa
-ities at di�erent fa
ilities and the impa
t of pro
essing 
apa
ities to transportation(�eet size, 
ost et
.). For the sake of simpli
ity, we assume a 2-depot problem,
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essing Capa
-ities for Two Depots g and g′where the dimensioning of the ma
hines for both depots is un
lear. In order to�nd an optimal dimensioning of the ma
hines, one 
an solve several VRPs withinter-tour 
onstraints, where the pro
essing 
apa
ities at the two depots g and g′are varied. Figure 7 shows a diagram, in whi
h the resulting transportation 
ostfor ea
h s
enario of pro
essing 
apa
ities is given. Constant pro
essing rates and�xed pro
essing time windows at g1 and g2 are assumed. The pro
essing 
apa
ityis then quanti�ed by the pair (P g(ek), P

g′(ek′)) (with k ∈ K(g), k′ ∈ K(g′)), 
f.Se
tion 2.3). In Figure 7, missing bars 
orrespond to s
enarios that are infeasi-ble, sin
e pro
essing 
apa
ities are too small to pro
ess the entire quantity presentat the 
ustomers (
ustomers remain unservi
ed in the VRP solutions). Moreover,ea
h s
enario allows an estimation of the transportation 
osts, whi
h 
an thenbe 
ompared with 
osts in stationary pro
esses (investments for ma
hines, wagesfor workers et
.). Su
h a 
omparison of s
enarios means integrated planning oftransportation and fa
ility dimensioning.19



5 Con
lusionsThis 
hapter has fo
used on the heuristi
 solution of large-s
ale VRPs with inter-tour 
onstraints. Inter-tour 
onstraints are those 
onstraints for whi
h the feasibil-ity of a solution depends on properties of several tours and 
annot be de
ided by
onsidering the individual tours separately. Examples are sorting pro
esses at de-pots that require a staggered arrival of tours, limited number of ramps at depots,and depots with globally limited 
apa
ities. Many more examples 
an be foundwhen transportation and other logisti
s pro
esses are 
onsidered together.The presented modeling and solution approa
h 
an 
ope with su
h interdependen-
ies and is based on the uni�ed framework of Irni
h (2006b): A solution is repre-sented as a giant tour, i.e., as a single Hamiltonian 
y
le in the problem-spe
i�
routing graph. This representation is advantageous from a modeling point of view,sin
e 
omplex inter-tour 
onstraints 
an be taken into a

ount by the powerful
on
ept of resour
e-feasible paths. It has been shown that inter-tour 
onstraints,whi
h are sometimes 
ompli
ated to formulate in mixed integer programming mod-els, 
an be easily translated into simple resour
e-feasible path 
onstraints on thegiant route.The proposed solution method is based on lo
al sear
h (LS), whi
h is one of themost important te
hniques for improving VRP solutions. It is used as a 
omponentin metaheuristi
s, su
h as tabu sear
h, GRASP, VND and VNS, or as a postpro-
essing improvement method in all types of metaheuristi
s. By 
onsidering a giantroute as a single resour
e-feasible path, the uni�ed framework performs LS formany types of VRPs with inter-tour 
onstraints and for all 
lassi
al LS neighbor-hoods as e�
iently as it does for standard VRPs. The key te
hnique used hereis an O(R) time feasibility 
he
k for neighbor solutions, where R is the numberof resour
es. The e�
ien
y results from the de
omposition of LS pro
edures intotwo phases, where the �rst phase 
omputes segment resour
e extension fun
tionsin O(Rn4/3) time. These are used to guarantee O(R) feasibility tests in the se
ondphase, whi
h is the a
tual sear
h for improving neighbors. Overall, the sear
h takes
O(Rnk) time for node-ex
hange and edge-ex
hange neighborhoods of size O(nk).As a result, di�erent tree sear
h methods, su
h as lexi
ographi
 sear
h and sequen-tial sear
h, are appli
able and also allow an a

eleration of the sear
h also in theaverage 
ase.In the uni�ed framework, model and solution method both utilize the giant-tourrepresentation. This is important, sin
e 
lassi
al lo
al sear
h te
hniques (in parti
-ular those using inner-tour neighborhoods) have a quite restri
ted lo
al view of thesolution spa
e. In 
ontrast, the LS methods used here 
an better 
ope with 
om-pli
ated global interdependen
ies and work, at the same time, highly e�
iently.Con
luding, the new approa
h proposed in this 
hapter shows that large-s
aleinstan
es of VRPs with inter-tour 
onstraints 
an be solved e�
iently using LS
omponents. It is possible to perform new types of studies, where 
omplex inter-dependen
ies between tours and also the impa
t of other external parameters onstru
ture and 
osts of VRP solutions 
an be analyzed. This is mu
h needed for a20
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