Speeding up Column-Generation Algorithms by
Using Reduced Costs of Paths to Eliminate Arcs

Stefan Irnich &*

aDeutsche Post Endowed Chair of Optimization of Distribution Networks,
RWTH Aachen University, Templergraben 64, D-52056 Aachen, Germany.

Abstract

In many column-generation algorithms, the pricing problem consists of computing feasi-
ble s-t-paths in a network. Examples stem from routing and scheduling applications in
transportation, as well as from production and telecommunication. The contribution of
this paper is to show how reduced costs of paths can be used to remove some arcs from
the underlying network, where shortest-path subproblems are iteratively solved. This can
lead to a substantial speedup of the pricing process and the overall branch-and-price al-
gorithm, for which the optimality of the solution is still guaranteed. Special attention is
given to variants of shortest-path problems with resource constraints and path-structural
constraints. A by-product of the analysis is several new insights into reduced costs and
dual solutions of some column-generation reformulations which are valuable in the context
of robust branch-and-price-and-cut algorithms. Computational results show the usefulness
of the proposed methods.

Key words: column generation, shortest paths, variable fixing, variable elimination

1 Introduction

Extensive formulations with many variables are widely used in integer program-
ming models for hard combinatorial optimization problems. The elimination of
many variables from a formulation is attractive, since smaller problem instances can
often be solved significantly faster. One technique for variable elimination /fixing
is based on reduced cost arguments and works as follows: Given an integer lin-
ear program, if the reduced cost of a non-negative integer variable in the linear-
programming relaxation exceeds the optimality gap, the variable is zero in every
optimal integer solution. It can therefore be fixed to zero or, equivalently, elimi-
nated from the problem formulation.

* Corresponding author.
Email address: sirnich@or.rwth-aachen.de (Stefan Irnich).

Preprint available at www.dpor.rwth-aachen.de 17 January 2007

Column-generation models (see Liibbecke and Desrosiers, 2006; Desaulniers et al.,
2005) use extensive formulations, often with millions or even billions of variables.
At first glance, however, column-generation formulations are not well-suited to
applying variable fixing directly: The solution process starts with an already small
subset of variables, the number of newly generated variables is small relative to the
number of feasible variables, and newly generated variables have negative reduced
costs, but only w.r.t. the current dual variables which are an approximation of the
optimal dual variables. Nevertheless, variable elimination cannot only be applied
to the column-generation master program, but also to the pricing subproblem. In
this paper, we apply it to formulations where the subproblems constitute variants
of shortest-path problems. The elimination of arcs from the underlying network
can lead to a substantial speedup of the pricing subproblem and, therefore, of the
overall branch-and-price algorithm.

The technique proposed here is widely applicable because, in the majority of
column-generation algorithms presented in the literature thus far, pricing prob-
lems consist of computing feasible s-t-paths in networks. Additional constraints
limit scarce resources along the path or imply constraints on the structure of paths
(cf. Irnich and Desaulniers, 2005). Examples stem from routing and scheduling
applications in transportation, as well as from production and telecommunica-
tion, e.g., vehicle routing (Desrochers et al., 1992), vehicle scheduling (Ribeiro and
Soumis, 1994), crew scheduling (Desaulniers et al., 1997; Vance et al., 1997; De-
saulniers et al., 1998a; Gamache and Soumis, 1998), and network design (Barnhart
and Schneur, 1996; Barnhart et al., 2000). A unifying formulation and column-
generation solution approach for these and other applications has been presented
by Desaulniers et al. (1998b).

The paper is structured as follows: Section 2 is intended to establish basic nota-
tion in order to describe column-generation algorithms with well-structured sub-
problems in general. Next, Section 3 contains the main theoretical results. Three
different methods for the computation of reduced costs are discussed along with
algorithmic procedures. Computational results with an empirical comparison of
two methods are reported in Section 4. Final conclusions are drawn in Section 5.

2 Column Generation

We start with the original or compact formulation (cf. Liibbecke and Desrosiers,
2006) of an integer linear programming problem (IP), to which Dantzig-Wolfe
decomposition is applied later on:

Zip=min ¢z
s.t. Az >0 (1a)
Dx=d (1b)
x €L (1c)

In the applications we have in mind, the decision variables x are arc-flow vari-
ables z;;, (i,7) € A of an underlying network N' = (V, A). Moreover, x might con-
tain additional slack or surplus variables, resource variables, and others (cf. unified
model of Desaulniers et al., 1998b). (Note that some of the variables can be con-
tinuous variables but this option is left out in order not to overload the notation.)
Constraints (1a) are referred to as covering constraints, while (1b) are constraints
forming the well-structured domain of the subproblem. The LP-relaxation obtained
by relaxing (1c) to x > 0 will be referred to as problem (P).

Let X = {x € Z} : Dx = d} be the domain of the subproblem. For the sake
of simplicity, we assume that X is bounded and therefore finite. Let () be the
(n X p)-matrix whose columns uniquely correspond to elements of X. (Alterna-
tively, one can define () over the set of extreme points of the convex hull of X,
i.e., using convexification of X instead of discretization of X (see Liibbecke and
Desrosiers, 2006, p. 1011f, for details)). The extensive formulation of (IP) utilizes
the equality X = {QX: 17X = 1,\ € {0,1}?} and replaces = by Q:

Zip =min (¢’ Q)A (2a)
st (AQ)A > b (2b)
1"A=1 (2c)

A>0 (2d)
QN—x=0 (2e)

xr €Ly (2f)

Since column-generation can only handle linear programs, one has to solve the LP-
relaxation of (2) and embed the approach into a branch-and-bound scheme (called
branch-and-price, see Barnhart et al. (1998)). For solving the LP-relaxation of (2),
there is no need to keep the coupling constraints (2e) in the master program. Hence,
the Dantzig-Wolfe master program (DWM) is given by (2a) (2d). However, Poggi
de Aragao and Uchoa (2003) suggested using the coupling constraint (2e) to directly
retrieve reduced costs of variables z from (DWM) or some further reformulation,
called explicit master (EM), see Section 3.2.

Recall that the column-generation principle always starts with a subset of the vari-
ables A, the so-called restricted master program (RMP), and iteratively generates
new variables as they are needed. The pricing problem PP(m, i) is defined for dual
variables 7 and p of the covering constraints (2b) and convexity constraints (2c) of
(RMP). (Here and in the following, we assume that dual variables are represented
by row vectors.) The solution to the pricing problem either delivers new nega-
tive reduced-cost variables (columns) or enables us to stop the iterative column
generation process:

Zpp(r,y) = Min (" —mA)x — p
st. Dr=d (3a)
x €7l

Efficient column-generation approaches need ‘nicely’ structured domains X = {x €
7% : Dz = d} in order to keep the effort of solving the pricing problem manageable.
One well-structured type of problem considered in the following is the shortest-path
problem with resource constraints (SPPRC) (see Irnich and Desaulniers, 2005).
Often, D has a diagonal structure so that X decomposes into several SPPRCs over
identical or different networks AN’* = (V¥ A¥). This occurs when different groups k
of identical vehicles or crews (or crew members) have to be routed or scheduled. For
our analysis, we will assume a single network N' = (V, A) with n vehicles/crews so
that D decomposes into n identical blocks (of SPPRCs). The reformulation with
groups of (path) variables A\ must replace the convexity constraint (2c) by 1T\ = n,
for which we still assume that the dual variable is denoted by p. Multiple networks
can be handled similarly: The only difference is that the convexity constraint (2c)
has to be replaced by constraints for each group k of vehicles/crews, leading to
constraints of the form 1¥*T* =, for all k = 1,..., K (see Barnhart et al., 1998,
Sect. 2.1). Note that, in this case, the dual variable p is the sum py + ps + ... +
i of the corresponding duals to these generalized convexity constraints. Note
also that K pricing problems can formally and algorithmically be handled as a
single problem, when the K subnetworks are merged (as disjoint or partially joint
networks) by adding super-nodes s and ¢ connected to the individual sources sy
and sinks t; for k € {1,..., K} (e.g., Kallehauge et al., 2005, Sect. 8.2).

3 Variable Elimination

Given an integer-linear program (IP) with an upper bound u;p, with objective
minc' 2z and constraints Az > b,z € 7, let @ be a feasible solution to the dual
of the linear-programming relaxation of (IP). For the eth non-negative integer
variable z., (¢ — @A) > u;p — @b implies . = 0 in any optimal solution to IP.
Here, the term ¢ — @A is the vector of reduced costs depending on the dual solution
@, denoted in the following by r = r(«). Concluding, if the reduced cost of a non-
negative integer variable exceeds the optimality gap, the variable must be zero in
every optimal integer solution.

The central question we address in this paper is the following: Can we use infor-
mation from the solution of the column-generation master (DWM) and PP(m, i)
to eliminate some of the variables x of the original formulation (IP)? The answer
to this can either be based on reduced costs of variables or any primal and dual
information from the master and subproblem together with additional information
generated by some algorithmic procedures. For arc-flow variables x of the original
formulation (IP), their elimination imposes sparser networks in the pricing sub-
problem. SPPRCs on reduced networks can typically be solved faster, causing a
speedup of the entire branch-and-price process. This is particularly true for large
branch-and-bound trees, where several modified master problems with additional
branching or cutting constraints have to be solved. However, methods for eliminat-
ing variables cause an additional effort on top of the column-generation solution
procedure. One goal of this paper is to identify such methods for variable elimi-
nation, to clarify conditions under which they are applicable, and to analyze their

computational effort. We will distinguish between three methods:

(i) If PP(m,) can be solved as a pure linear program, i.e., X = {x > 0: Dx =
d}, the method of Walker (1969) is applicable: The optimal dual solution to (P)
is (7%, p*), where (7*, u*) are optimal dual solutions to the constraints (2b)
and (2c¢) of (DWM), and p* is an optimal dual solution to PP(7*, u*), i.e.,
to min(c" — 7*A)z, Dz = d,z > 0. Reduced costs of x are then given by
r(n*,p*) =c' —7*A— p*D.

(ii) If (DWM) is solved with additional coupling constraints (2e), reduced costs of
x can be directly retrieved from the solution of the restricted master program,
as suggested by Poggi de Aragao and Uchoa (2003).

(iii) The new method we propose in this paper is the following: In order to elim-
inate an arc (i,7) € A, it is not necessary to compute a reduced cost for its
corresponding arc-flow variable z;; in the original formulation or some equiv-
alent reformulation. Instead, we compute minimum reduced costs of all path
variables of (DWM) containing the arc (7, j). If this minimum exceeds a given
optimality gap, no path that contains the arc (i, j) can be used in an optimal
solution. Hence, the arc (4, j) can be eliminated.

The following sections describe the three methods in detail and—in particular—
discuss advantages and drawbacks when these methods are applied to different
types of SPPRC subproblems. We assume that the reader is familiar with SPPRC
and dynamic-programming solutions methods for SPPRC as, e.g., described in
(Irnich and Desaulniers, 2005). We also use the terminology established there.

3.1 The Method of Walker (1969)

The application of Walker’s method directly implies the following question: Which
types of subproblems (—SPPRCs) can be formulated as pure linear programs and
how can we retrieve the optimal dual solution?

3.1.1 Shortest-Path Problems without Resource Constraints

Shortest-path problems (SPP) without any resource and path-structural constraints
can be formulated and solved as LLPs as long as the underlying network does not
have cycles of negative length. In column generation, negative cycles result from
reduced arc costs ¢; = ¢;;(m,) which have to be assigned to the arcs (i,j) € A
when solving the SPP on N = (V| A, é(m, u)). Acyclic networks, e.g., arising as
pricing problems in (pure) multi-depot vehicle-scheduling problems (Ribeiro and
Soumis, 1994), can be solved as LPs. The LP has the incidence matrix IV of the
network N as its constraint matrix D and the right hand side is d = e, — ¢;, where
es and e; are unit vectors corresponding to the source node s and the sink node ¢.
The LP formulation of the subproblem is

miné'z, st Nz =e, —e,z>0. (4)

Instead of solving the SPP with general-purpose LLP solvers, one wants to use more
efficient algorithms, such as dynamic-programming labeling algorithms. When solv-
ing an s-t-shortest path problem with a labeling algorithm, the negative shortest
path distances, i.e., the negative labels (—¢;);cy are identical to the dual variables
p = (pi)iev to (3a) (see Ahuja et al., 1993, p. 136). Note that for pricing sub-
problems, the shortest-path distances ¢ depend on 7, because the distances in the
network N = (V, A, &) are defined by ¢" = ¢ — 74; they do not depend on p.

The consequence for a column-generation approach is the following: Whenever
(m,p) is a feasible dual solution to (DWM), and (¢;) are distance labels of the
subproblem, reduced costs of variables z can be computed by r' = r(7, ()T =
¢’ — 1A+ ¢D. The interpretation of the reduced cost

rij = rig(ml) = cij — (TA)i + L — L (5)

for a single arc-flow variable x;; is that the network cost ¢;; = ¢;; — (mA);; (used in
the subproblem) is perturbed by ¢; — ¢; (note that ¢D is a vector of size |A| with
entries ¢; — {; corresponding to the arcs (7, j) € A). There are several possibilities
to compute feasible dual solutions (7, 1) to (DWM): One is to wait until the end of
the column-generation process (at a node of the branch-and-bound-tree), where the
optimal dual solution (7%, 4*) to the restricted master program is optimal to the
dual of (DWM). Another possibility is to use an arbitrary optimal dual (7, u) to
any restricted master program together with the objective value of PP (7,). It is
straightforward to prove that (7, u+n2pp(,) is a feasible dual solution to (DWM).
As a result, reduced costs can be computed without an additional effort in every
iteration of the column-generation method, provided that the pricing problem is an
SPP and is solved exactly. The reason for this is that optimal dual variables p to
PP(m, p+nzpp(,) only depend on 7 but not on i or on 2jp,) and that reduced
costs of x only depend on 7 and p = —/.

Note that the optimality conditions for shortest paths guarantee ¢; — ¢; < ¢;;,
implying 7;; > 0. If the ({;);ey are shortest-path distance labels, the reduced costs
r;; are zero for all arcs (7,7) € A that are used by non-dominated labels, i.e., all
arcs in the shortest-path tree.

3.1.2 SPPRC without Path-Structural Constraints

We briefly recall the basic definitions of shortest-path problems with resource
constraints (SPPRC); for a comprehensive introduction and analysis, we refer to
(Irnich and Desaulniers, 2005; Irnich, 2006). For this section, any kind of path-
structural constraints, such as precedence, pairing, elementarity, or k-cycle elimi-
nation constraints, are not present in the SPPRC formulation. Such ‘pure’ subprob-
lems arise frequently, for instance, in some vehicle and crew scheduling and crew
rostering applications (see, e.g., Desaulniers et al., 1997; Gamache et al., 1999).

Let N = (V,A) be a simple digraph. A path P = (eq,...,e,) is a finite sequence
of arcs (some arcs may occur more than once), where the head node of e; € A is

identical to the tail node of e;,1 € A forall i € {1,...,p— 1}. Since N is assumed
to be simple, a path can be written as P = (vg, vy, ...,v,), where (v;,_1,v;) € A
holds for all i € {1,...,p}. Resource constraints can be formulated by means of
(minimal) resource consumptions and resource intervals (e.g., the travel times t;;
and time windows [a;, b;] in the case of the shortest-path problem with time win-
dows (Desrochers and Soumis, 1988)). Let R be the number of resources. A vector
T = (T,...,T®)T € RE is called a resource vector and its components resource
variables. T is said to be not greater than S if the inequality T < S® holds for all
components i € {1,..., R}. We denote this by 7' < S. For two resource vectors a
and b, the interval [a, b] is defined as the set {T' € R : a < T < b}. Resource inter-
vals, also called resource windows, are associated with nodes i € V' and are denoted
by [a;, b;] with a;,b; € RE. The changes in the resource consumptions associated
with an arc (i,j) € A are given by a vector f;; = ([j)le of resource extension
functions (REFs). An REF fF. : RE — R depends on a resource vector T; € RE,
which corresponds to the resource consumption accumulated along a path (s, ..., 1)
from s to i, i.e., up to the tail node ¢ of arc (i, j). The result f;;(T;) € R can be
interpreted as a resource consumption accumulated along the path (s, ... 4, 7).

Let P be any path in N. P = (vg, v1, ..., v,) is resource-feasible if resource vectors
T; € [ay,, by, exist for all i € {0,1,...,p} such that f,, | ,.(T;—1) < T; holds for
all i € {1,...,p}. Desaulniers et al. (1998b) were the first to point out that non-
decreasing REFs, i.e., functions f;; where T < T" imposes f;;(T) < fi;(1"), allow
efficient feasibility checks: P is resource-feasible, if and only if T} = a,, < by,
and TF := max{ay,, fuo, ,2:(T21)} < by, holds for all i € {1,...,p}. This can be
interpreted as the forward propagation of minimum resource consumptions and
their check against the upper bound of the resource consumption along the path.

Let R = cost be the (reduced) cost resource and 1, ..., R—1 be the other resources
(such as time, accumulated load etc.). The SPPRC is a problem of the form

* o : P\ cost
2SPPRC — P:(U():&glf’l.l.?vp:t)efst(Tp), (6)

where F* is the set of all resource-feasible paths from source node s to sink node ¢.
It can be solved using dynamic programming labeling algorithms (Irnich and De-
saulniers, 2005, Sect. 4.1). As long as the resource windows and REFs are integer
w.r.t. the resources r € {1,..., R—1}, SPPRCs can be solved in pseudo-polynomial
time. In the following, we assume integer values for all non-cost resources.

Note that there exists no pure linear programming formulation of SPPRCs using
variables x;;, (i,7) € A and resource variables only. First, the resource update
along a path may involve non-linear REFSs f;;. Second, negative cost cycles render it
impossible to associate a single resource vector (variable) with a node. Third, even
in acyclic networks with linear REFSs, the coupling between arc flow variables x;;,
(1,7) € A and resource variables T;, i € V requires non-linear constraints, such
as zj(17 — T —tj;) > 0 for all (i,5) € Aand r € {1,2,...,R — 1}, or some
linearization of these constraints imposing integer variables x;;. The consequence

of the missing compact LP formulation is that additional variables and constraints
are needed.

Next, we will show that SPPRCs defined by (6) can be solved as ordinary SPPs
over the so-called state space. (In the following and in contrast to the use of the
word in Dynamic Programming theory, we refer to a state space as a digraph,
i.e., the set of states/nodes together with a set of transformations/arcs.) It also
means that SPPRCs can be modeled and solved as pure LPs, but with a much
larger set of variables and (flow conservation) constraints. A necessary assumption
is, however, that REFs decouple resource updates of the non-cost resources from
cost-computations (for details, see below). More formally, for any node i € V' and
any T € [a;, b;], define o(T) = (T, T?,...,TT1) as the projection to the non-cost
resource values. The set of possible states is defined by S; = {o(T) € Z%! : T €
la;, b;]}. The disjoint union & = U;eyy S; of states forms the node set of the state
space. Next, we define the arcs A% of the state space. Let (i, j) € A be an arc of the
original network. There are multiple ‘parallel’ arcs which connect states o € S; with
states o’ € S;. We refer to them as Af; Moreover, let T' € [a;,b;], T" € [a;, ;] be
resource variables with f;;(T) = 1", 0 :== 0(T) € S;, and 0’ := o(1”) € S;. We want
to assign a unique cost value to the arc (o,0’) € Af; Therefore, the cost difference
T'ost —Teost ig assumed to be identical for all T and 7" with (o(T'),(T")) = (0, 0")
and f;;(T) = T'. By defining d,,» = T — T one gets the discretization of the
SPPRC in the form of the network N := (S, U A% d).

i
The solution to (6) can be obtained by computing a shortest path P# in N’
starting at state o(as) € Ss and ending at any state of S;. The nodes associated
with the states visited by P# yield the optimum s-t-path of the SPPRC. Note
that, typically, the state space is acyclic because some resource consumptions are
strictly increasing as, e.g., for the resource time.

The solution of an SPPRC instance by dynamic-programming labeling algorithms
is performed by propagating labels through the original network A. A label consists
of the minimum resource consumption 7' € Zf accumulated along its associated
path P = P(T) and a link to a predecessor label, such that several paths sharing
a common prefix are efficiently stored in a tree data-structure. The process starts
with the initial label 7" = a, at the source s and is continued by extending this
label and its successors by means of REFs. The two main components of such
a labeling procedure are the path extension step and the dominance algorithm
(Irnich and Desaulniers, 2005, Sect. 4.1). In the shortest-path computation on the
state space, the path extension step is recreated exactly by the propagation of
costs from one state to the next. However, there is no full equivalent in N’/ =
(S, Ui Af;,d) to the dominance algorithm: SPPRC dominance algorithms can
eliminate labels with non-identical states, i.e., when the resource consumption of
one label is greater or equal to the resource consumption of another label. This
allows the omittance of non-useful paths in the path extension step. In N/, one can
interpret this dominance algorithm as an implicit removal of all unreachable and
dominated states. (A dominated state o1 € S; is one for which there exists another

state 09 € S; with oy < 0y and ¢,, < {,,.) Contrary, a shortest-path algorithm
in V just compares costs. The equivalence in the SPPRC dynamic programming
labeling algorithm would be the use of a very restricted dominance rule which only
compares SPPRC labels which have identical states. In order to have a stronger
dominance, we use additional zero-cost arcs (0, ') € A¥ connecting pairs of states
with ¢ < ¢’ belonging to the same node i € V. In the following, we assume that
the state space is defined by N# = (S, A%, d) = (S,Uu yea Al U Uiey A7, d).
Note that we have introduced N'# for reasons of explanation and not for efficient
computation purposes.

The view on the state space N enables us to apply variable elimination to the
original formulation and, thus, to the pricing network. We can consider two equiv-
alent original formulations both using variables y = (y,0/).

Compact Formulation with Variables y = (y,,v) Only For the moment,
we assume that the original model (1) is formulated in terms of routing variables
Yoo for (o,0') € A¥ instead of variables x;; for (,7) € A. This assumption is no
serious restriction, since every variable z;; is the sum of the y,, with (o,0’) € Af;
Now, the method of Walker—as explained in Section 3.1.1—is applicable to the
compact formulation with variables y,,» and enables us to eliminate some of the
variables y,/. Formally, we replace x = (x;;) by Q'y = Q' (¥s0), where the matrix
Q' e {0, 1}A7IXIAl shows which of the arcs (o, 0”) correspond to an original arc
(,7). The compact formulation now is

minc' Q'y, st. AQy>0b,DQy=d,y € Z'j‘#'. (7a)

Since @' is a 0-1-matrix, the condition Q'y € le:‘l is equivalent to y € Zlf#l.
Hence, the domain Y = {Q'y : DQ'y = d,y € Z‘f‘} of the subproblem is identical
to X = {QX: 1A =1, X € {0,1}?}. Consequently, the master program (DWM) is
still given by (2a)—(2d). The pricing problem PP(r, ;1) becomes min(c” — 7A)Q'y,
subject to y € Y. The point is that this pricing problem is identical to the pure
LP, i.e., min(c" — 7A)Q'y subject to Ny = €o(as) — Eoby), Y = 0.

In order to eliminate arcs (o,0’), we do not need to solve the pricing problem
in variables y,, as LPs on the huge network N#. Instead, we can simply apply
standard dynamic programming labeling procedures to N = (V, A) and interpret
the (Pareto-optimal) final labels T in the right way: A final non-dominated label T
associated with node i corresponds to a cost label £, = T of state 0 = o(T') € S;.
With the reduced cost arguments given in Section 3.1.1, we are able to eliminate
those arcs from N# whose reduced costs exceed the optimality gap. For a more
precise algorithmic description, assume that I'; is the set of labels associated with
node ¢ and that each label T' € T'; has state o(T') € S; and cost T°** = {(T):

Algorithm 1 Reduced Cost Computation for State Space
1: Input: Sets I'; of labels at all nodes i € V.

: FORALL (i,5) € ADO
FORALL (0,0") € AJ; DO

LET rgg 1= &j + (minger,.o(ry<e T%) — (Mingrer, .o (7)<’ Treost)
: Output: Reduced costs rgq.

[S2 0" ~ NN GV V]

We can use the reduced costs 7,5 not only to eliminate arcs (o,0’) € A%, If all
arcs (o,0') € Af; can be removed, the original arc (7, j) can also be removed from
the pricing network A. Note that this happens if the minimum reduced cost 4,
of the arcs (0,0") € Af; exceeds the optimality gap.

Finally note that the addition of arcs Af& to the state space N'# is crucial for the
correctness of the Formula in Step 4 of Algorithm 1. Without these arcs, we would
have r,q, = ¢;; — T 4+ T only if labels T € T'; and 7" € T; with 0 = o(T)
and ¢’ = o(7T") exists and 7,,» = 0 otherwise. The more arcs in the state space,
the smaller the chance that arcs (o,0') € Af; are in the shortest-path tree (which
means a reduced cost of 0).

Compact Formulation with a Mix of Variables z = (z;;) and y = (yo0)
One can utilize the fact that each arc variable x;; can be expressed as the sum of
variables y,,/, (0,0') € Af; With the results for reformulations and their impact
on dual solutions; as given in the Appendix, we first extend (7a) by

Tij = Z Yoo! for all (Z,j) c A (7b)

#
(o,0")EAT

Proposition 1 (in the Appendix) implies that the addition of (7b) leads to a fully
equivalent model (P.,,), in which the variables x;; always have reduced costs of 0.
This extension is, therefore, uninteresting for our purposes. Amazingly, the (formal)

addition of the non-negativity constraints
Tij >0 for all (Z,j) e A (70)

leads to the compact formulation (7) that corresponds to model (P.,;) of the Ap-
pendix. Here, Proposition 2 implies that the added variables z;; can have positive
reduced costs. For any dual feasible solution to the LP-relaxation of (7) or (7a),
the reduced cost 7; of z;; can be chosen such that it is the minimum of all re-
duced costs r,, of variables yyo, (0,0") € Af; This obviously coincides with the
arc-elimination criterion given in the last paragraph.

Moreover, Proposition 3 makes clear that, w.r.t. dual solutions and reduced costs,
it is fully equivalent to formulating the covering constraints and objective either
in variables x;; or variables y,,, i.e., to minimize c'z or ¢'Qy over Ax > b or
AQ'y > b, respectively. Because of Proposition 3(iii), these reformulations have no
impact on the reduced costs of the variables z;;. In all cases, the Dantzig-Wolfe
decomposition of the models leads the model (DWM) with path variables. Its

10

subproblem can, again, be solved on the original network N with SPPRC labeling
algorithms. This means that neither the master nor the subproblem have to work
explicitly on variables y. The consideration of variables vy, is, therefore, nothing
other than a formal device to derive reduced costs of the original variables z. We
achieve the following procedure for the computation of reduced costs of variables x;;
by means of SPPRC labels:

Algorithm 2 Reduced Cost Computation for SPPRC

1: Input: Sets I'; of labels at all nodes ¢ € V.

. FORALL (4,5) € A DO

LET ry; == ¢;; + (minTepi TCOSt) — (minT’Gf‘j:U(T’)So(fij(T)) T/COSt)
: Output: Reduced costs r;; of variables x = ().

oW N

Resource Window Reduction If only a subset of the variables y,,» with
(0,0") € AZ‘? can be eliminated, but not all of them to also eliminate the origi-
nal arc (i,j) € A, the consideration of eliminated arcs in N'# is still useful: The
remaining (not eliminated) arcs are denoted by A" for (i,5) € A. For every
node 4, one can compute the maximum resource vector b; with O’(Z_)i) < og; for all
(i,7) in the forward star of ¢ and all (0;,0;) € Af;’rem. Similarly, for any node j let
a; be the minimum resource vector with o(a;) > o; for all (4, j) in the backward
star of j and all (0;,0,) € Aﬁram. One can now replace the resource window [a], b}]

by [af, b}] for all nodes i € V and all non-cost resources r € {1,..., R — 1}. This

is a procedure to tighten resource windows. Similar ideas were suggested for the
MDVSP by Hadjar et al. (2001).

3.1.3 SPPRC with Path-Structural Constraints

We cannot directly apply the same techniques of discretization to SPPRCs with
path-structural constraints. The reason for this is that path-structural constraints,
such as precedence and pairing constraints, k-cycle freeness, and elementarity, can-
not be formulated directly, so that a pure LP represents the problem (e.g., by
extending the above mentioned network flow formulation Ny = es — e, © > 0).
The word ‘directly” means that it is, however, possible to model path-structural
constraints by means of additional resources. For instance, Feillet et al. (2004);
Salani (2005); Dell’Amico et al. (2006) use |V| additional binary resources in the
elementary SPPRC (ESPPRC) in order to keep track of the nodes that a path has
visited or cannot visit anymore. Due to such a vast extension of the state space,
we can expect a combinatorial explosion in the number of states and arcs as well
as ESPPRC labels. The impact on the reduced costs is that, for every original
arc (i,7) € A, in most of the cases at least one arc (o,0') € Af; of the extended
state space has reduced cost 0. Then, (i,7) cannot be eliminated on the basis of
reduced costs r;;.

The situation of efficient labeling algorithms for SPPRC with k-cycle elimination
(SPPRC-k-cyc) is different. As for the ESPPRC, additional resources for each
node ¢ € V' can be used to model k-cycle elimination on an extended state space:

11

Using Kronecker’s symbol 0, (with 6, = 1 if @ = b and d,, = 0 otherwise), the
REF of arc (i,j) € A or (0,0') € Af; is f(T)" = max{T" — 1,kd;,} for resource
(=node) v € V. The resource window for resource v is [0, k(1 — d;,)] at node i or
o; € S;, respectively. This is a minor refinement of the simple SPPRC-k-cyc dom-
inance rule discussed in (Irnich and Villeneuve, 2006, §5.1). Extending the 2-cycle
elimination dominance rules of Kohl (1995), Irnich and Villeneuve were able to
develop dominance rules for SPPRC-k-cyc with & > 3 which are stronger than the
above straightforward approach of exhaustively extending the state space: Several
labels T3, T3, ..., T, € I';, which dominate a label T € I'; w.r.t. resources, allow the
discarding of T" even if all these labels come from (partially) different predecessor
nodes. (Here, the labels T, T5,...,T, and T refer to the original resources and do
not include additional resources for nodes!) We denote by £(T") the set of possible
k-cycle free extensions of a label T. If U?_, £(T,) 2 £(T) and dominance w.r.t.
resources holds, then 7" can be discarded (see Irnich and Villeneuve, 2006, §6, for
details). (Computationally efficient implementations encode these extensions by
so-called hole sets.) The point is that such a stronger dominance rule cannot be
modeled on any state-space graph. However, one can mimic the stronger domi-
nance rule in SPPRC algorithms working on the state space N'# (with the original
resources) by adding additional artificial labels. Any subset of labels I' C I'; creates
an artificial label at the same node j with resources maxrer 7' (componentwise) and
possible extensions Upcr £(T). These artificial labels create additional connections
between states of the same original node, and, therefore, more arcs (o,0’) € Af;»
have positive reduced costs. This finally imposes larger reduced costs on the original
arcs (i,7) € A.

Algorithm 3 Reduced Cost Computation for SPPRC-k-cyc

1: Input: Sets I'; of labels at all nodes i € V.

2: FORALL (i,5) € A DO

3: LET ry; = ¢ + (minger, T°) — (Mihrcr.r dominates f,, (1) (maxgrer 7°°))
4: Output: Reduced costs r;; of variables x = (z;;).

In Step 3, a subset of labels I' C I'; dominates the label T" := f;;(T") corresponding
to path (P(T), (4,7)), if T < T" holds for all T € T" and Uper E(T) 2 E(T”) holds.
The minimization over all subsets I' C I'; can easily be solved by simply sorting
the labels in I'; by increasing costs and testing all subsets I' with the first ¢ labels
for ¢ =1,2,...,|[;|. Finally note that both types of labels (ordinary and artificial)
together give a dual feasible solution to the shortest-path problem on N'#. Hence,
the values r;; are valid reduced costs for the variables x;; of the original formulation.

3.2 The Method of Poggi de Aragao and Uchoa (2003)

Recall that we refer to (2a) (2d) as (DWM). The LP-relaxation of the extensive
formulation, i.e., (2a) (2f), is denoted by (DWM,,;). The presence of the coupling
constraints (2e) in the master program offers the possibility to directly retrieve
reduced costs of variables z coming from the original formulation. This was first

12

suggested by Poggi de Aragao and Uchoa (2003). However, the coupling constraints
in the master have important theoretical and algorithmic implications which are
pointed out in the following.

First, Propositions 1 and 2 show that it is crucial to also keep x > 0 in the exten-
sive formulation. Otherwise, the reduced costs are 0. However, even with the non-
negativity constraints x > 0, there is no guarantee that any of the reduced costs of
the variables x are positive and useful for variable elimination. Proposition 2 ex-
plains this: For every dual feasible solution (7, 1) to (DWM), there exists the dual
feasible solution (7, u, 0) to the extensive formulation (DMW,,;), for which all z;;
have reduced cost 0. Beside this dual solution (7, i, 0), many other dual solutions
typically exist, that imply different reduced costs on the x variables. Nevertheless,
the result that (DWM,,,) can leave us with ‘poor’ reduced cost information simply
means that we cannot control the output of (DWM,,,).

Second, Poggi de Aragao and Uchoa (2003) suggest to reformulating (DWM,,;) to
the following explicit master (EM):

Zpy =min ¢’z (8a)
st. Az >b (8b)
QN—z=0 (8¢)

1" =1 (8d)
A>0,2>0 (8e)

(EM) differs from (DWM) by the formulation of the objective (8a) and the covering
constraints (8b) in the original variables z. The advantage of (EM) is that it is
as strong as (DWM) and (DWM,,,), but that its associated pricing problem is
fully independent of the dual prices m of the constraints Ax > b. This allows, for
instance, the addition of any inequality formulated in z to (8b)—for branching or
cutting—without affecting the structure of the pricing problem for the generation
of variables A. Formulations with these properties lead to so-called robust branch-
and-price(-and-cut) algorithm. With respect to reduced costs, (EM) is, however,
no better than (DWM,,,), since degenerated solutions with reduced cost 0 are still
possible. This is exactly the statement of Proposition 3 applied to (DWM,,;) and
(EM) (i.e., models (P.;) and (P32,) in Proposition 3).

ext

Third, Desrosiers and Liibbecke (2005, p. 11) suggest keeping the coupling con-
straints in the (restricted) master program and imposing the additional constraints
x > €, for asmall € > 0, at the end of the (column-generation) process. The shadow
prices of these constraints are then the reduced costs of the original variables x.
Here, the addition of x > e changes the objective value and optimal solution of
the master program. It is not clear to us as to whether we can deduce general
statements about the computed reduced costs. Nevertheless, the addition of the
constraints x > € at the end of the column-generation process leaves several ques-
tions open: Should we add the constraints x;; > ¢;; for all arcs (4, j) simultaneously
or consecutively? This makes either a single re-optimization of the master program

13

or several re-optimizations necessary. Are all values ¢;; identical? Do we have to
perform additional iterations with pricing and re-optimizations? What is the qual-
ity of the computed reduced costs?

From an algorithmic point of view, there are also good arguments for not leaving the
coupling constraints (2e) in a master program unless they are absolutely necessary:
The main reason is that Q\—x = 0 consists of |.A| constraints, which substantially
extends the restricted master program and can often make the LP too large to be
solved iteratively.

Finally note that we do not negate the usefulness of considering (DWM,,;) or (EM)
for theoretical purposes, such as the devising of robust branch-and-price algorithms
with effective branching rules, allowing strong cutting planes to be added to the
master, or for multiple column generation, as exemplified in the work of Poggi de
Aragao and Uchoa (2003) and Liibbecke and Desrosiers (2006).

3.8 The Bidirectional Search Method

Proposition 2(iv) applied to (DMW,,;) gives us another way of expressing (max-
imum) reduced costs of variables x;;. Let F; be the set of feasible s-t-paths con-
taining arc (4, j). Moreover, let n/; be the number of times arc (4, j) occurs in path
P € F;f. The path variables A = (Ap) of (DWM) and (DWM,,;) have reduced
costs &(m, i) = c' Q — mAQ — pl so that

. cp(m,) - _
7y = min, = F < min, Ge(m) =:)

follows. Any value between 0 and r;; is a valid reduced cost of x;;. If 7;; > r;;, the
value 7; is not a valid reduced cost of a variable in an original compact formulation.
However, we will show that 7;; has a meaningful interpretation that justifies its use
instead of 7;; for variable elimination. The interesting algorithmic question now is
how to compute these values.

The key observation is that 7;; is the minimum reduced cost of all paths containing
arc (i,7). The proposed technique to determine 7;; is bidirectional shortest-path
computation. Any path P € F; can be decomposed into P = (Py, (,7), P»), where
Py € F* and P, € F7'. (The decomposition is not unique if n; > 1.) The values
¢(Py) and ¢(P,) can be bounded from above by results of two SPPRC computations:
A standard forward SPPRC labeling procedure produces usual labels F{w at nodes
i € V. Assuming that P; has an associated state ¢ = o(P;) € §;, the path P
fulfills

é(P) > min Teost,
Ter!™:o(T)<o(P1)

Similarly, a backward SPPRC labeling algorithm can be used to bound é(P,). One
starts with the initial path (¢) and extends partial paths ending at a node ¢ against

14

the arcs direction (k,¢) to a node k. Salani (2005) has shown that it is possible
to extend resources (such as cost, time, and load) in the opposite direction. A
unifying description of REFs and their inversion was presented in (Irnich, 2006):
The idea here is that upper bounds on the resource consumption are propagated
backward by means of inverse REFs. The paper also clarifies which types of REFs
are invertible so that backward SPPRCs are well-defined and compatible with the
forward SPPRCs. Assuming that backward REFs exist, the corresponding labels
represent paths from a current node j to the sink ¢. The backward SPPRC labeling
algorithm generates a set of backward labels Fg’-“’ for each node 7 € V. Now, the
cost of Py fulfills

é(Py) > min Teost,
T'ert:o(T") >0 (P2)

Putting the results together, one gets

772-]- _ 52']' X min (Tcost + T/cost) — . (10)
TEFwa,TIEF?wia(fij(T))So'(T/)v
(P(T),4,4,P(T"))eFst

The interpretation of (10) is that one first has to solve the forward and then the
corresponding backward SPPRC with arc costs 6Z-Tj = CT—(WA),'j. Subsequently, one
must determine all matching pairs (7,T") of labels at node ¢ and node j, respec-
tively. Two labels T' € Ffw and T" € Fg’-“’ match if they compose a feasible s-t-path
(P(T),(i,7), P(T")) € F*'. Feasibility concerns two aspects: The path is resource-
feasible if the lower bound T extended along the arc (i,j) does not exceed the
upper bound of the resource consumption given by 7”. Moreover, feasibility w.r.t.
path-structural constraints, such as k-cycle freeness, elementarity, and precedence
and pairing constraints, have to be tested. The formal description of the procedure
reads as follows:

Algorithm 4 Computation of 7 for (E)SPPRC(-k-cyc)

: Input: Sets F{w of forward labels at all nodes i € V.
Sets Fg’-w of backward labels at all nodes j € V.
: FORALL (i,j) € A DO
LET rij 1= 00
FORALL T € I/ DO
FORALL T’ € T% DO
F (o(/5(T)) < o(I") AND (P(T), (i), P(T")) € #*) THEN
LET 7, Tcost + 6 + T/cost
LET 74 := mm{rw,r }
10 Output: Values 7;; for all arcs (7,5) € A.

QOOO\ICDU'I»POJN)I—*

The result is a value 7;; for each arc (¢,j) € A. If 7;; exceeds the optimality gap, it
means that every path containing the arc (i, 7) is not part of any optimal solution
o (IP). Hence, all paths F¥ can be removed from the master program (DWM).

15

More importantly, we know that the arc (7, j) can also be removed from the pricing
network A, since it can only produce non-optimal paths. Note that we have argued
directly using the column-generation formulation.

If (DWM) is formulated solely with elementary paths, the values nf; are all 0 or 1
and, hence, 7;; and r;; are identical. In this case, r;; = 7;; is a proper reduced cost
of the original variable x;;.

Concerning the computational complexity of Algorithm 4, we have to distinguish
between different types of SPPRC labeling algorithms: Standard labeling algo-
rithms compute the set of all undominated forward labels every time the pricing
problem is solved exactly. An exact solution is required at least once for the so-
lution of a branch-and-price tree node, i.e., when optimality of the corresponding
restricted master program is proven. The additional effort of Algorithm 4 is the
computation of all undominated backward labels (which is typically as hard as
solving the forward SPPRC) and the comparison of forward and backward labels
(Steps 5-9).

Also from a theoretical point of view, a comparison of r;; and 7;; is interesting.
In the state space N7, forward and backward SPP is trivial to implement. Let
(07") yes be the forward labels and (¢%%),cs be the backward labels. Obviously,
63:2‘;8) = (%, = 0 and €£%t) = (00,) = Zpp(z - Any dual feasible solution (7,)
to (DWM) guarantees 2pp(,. ,) > 0. According to (5), for any arc (0,0") € Af; the
equation 7, = &; + (¥ — Eﬁf” holds. For any state o € S, the optimal solution of
the SPP implies €£w + £gw > zpp(ru) = 0 and, therefore, 150 = ¢;; + 6{:” — Kf;f" <
05w + ¢ + €% Taking the minimum over all arcs (o, 0’) € Af;» yields

ry = min 7,y < min (ﬁfrw +Cij + E?f) = Tij.-
(O’,O'I)EA?; (a,a’)EA?;

Concluding, for any given dual feasible solution (m,), the reduced cost 7;; com-
puted by the method of Walker is not larger than the value 7;;. Hence, the bidirec-
tional method is superior to Walker’s method, since it can eliminate at least the
same arcs as Walker’s method can.

A current and very successful trend for solving hard VRPs with time windows
or other VRP variants with branch-and-price is to use the above mentioned ele-
mentary path formulations. Since ESPPRC is /P -hard in the strong sense (Dror,
1994), the main difficulty lies in the development of effective labeling algorithms
which can practically handle the elementarity constraints. Besides other techniques,
such as extension of dominance rules (Feillet et al., 2004) and state space relax-
ation/augmentation (Salani, 2005; Boland et al., 2006), one of the most effective
approaches is that of bidirectional search with bounding, which was successfully
tested by Salani (2005) and Righini and Salani (2004). Inspired by the observation
that the number of undominated ESPPRC paths typically grows exponentially
with the length of these paths, one tries to bound the length of paths to half of
the maximum path length: Thus, the first half of a path is computed by an s-to-all

16

labeling algorithm and the second half is computed by a backward ¢-to-all labeling
algorithm. A so-called critical resource is used to control the maximum forward
and backward path length (for details, see Salani, 2005). When this technique is
used to solve ESPPRCs, Algorithm 4 is not directly applicable. The reason is that
the computation of 7;; needs the complete set of all forward and backward labels.
The half-way bounding technique does not give us a valid lower bound for either
the first path P, or the second path P.

However, there is no need to use the same forward labels, as computed in the
pricing problem together with backward labels of the inverse SPPRC. Any labeling
solution, in particular a solution to an easier-to-solve ESPPRC relaxation, provides
valid bounds. Possible relaxations are the (non-elementary) SPPRC (Irnich and
Desaulniers, 2005), the SPPRC-k-cyc for & > 2 (Irnich and Villeneuve, 2006), and
the SPPRC with forbidden (sub)paths (Villeneuve and Desaulniers, 2005). One
can expect that the quality of the computed reduced costs depends significantly
on the hardness of the relaxation used.

4 Computational Results

For the empirical evaluation of Walker’s method (shortly denoted by W) and the
bidirectional method (B), we examine a branch-and-price-and-cut algorithm for the
vehicle-routing problem with time windows (VRPTW) tested on the well-known
benchmark set of Solomon (1987). The implementation used for the following anal-
ysis is the one previously used in (Irnich and Villeneuve, 2006). In order to keep
the computations verifiable, we leave out several other well-known acceleration
techniques, such as massive heuristic pricing, complex branching rules and strong
branching, sophisticated non-robust cutting planes, stabilization etc. (see Jepsen
et al., 2006; Desaulniers et al., 2006, and literature cited there). The solver for the
pricing problem only makes use of a monodirectional SPPRC-k-cyc labeling algo-
rithm and tries heuristic pricing in a 5-nearest neighbor subnetwork. 1-path cuts
and 2-path cuts (Kohl et al., 1999) are the only cutting planes which are added
to the root node of the branch-and-bound tree. Branching is performed with a
best-node-first strategy, first on the number of vehicles (if fractional) and then on
the arc (i,j) € A, where the product ¢;; - min{Z;;,1 — Z;;} of cost and deviation
from the next integer is maximum.

We first evaluate the two arc-elimination methods w.r.t. the percentage of arcs that
can be eliminated using different algorithmic setups. Second, we briefly compare
the computational effort. Third, we analyze the acceleration of the entire branch-
and-price-and-cut algorithm caused by arc elimination. All algorithms were coded
in C+-, compiled in release mode with MS-Visual C+-+ version 6.0; all runs were
performed on a standard PC (Intel x86 family 15 model 2) with 2.8 GHz, 1GB
main memory, on MS-Windows 2000.

17

4.1 Percentage of Eliminated Arcs

The number of different possible setups for the branch-and-price-and-cut algorithm
is huge. The most important parameters are summarized in Table 1: k-cycle elim-

Parameter Values Description
used here
Method W, B W=Walker’s method (Algorithm 2/3),
B=Bidirectional method (Algorithm 4)
k 2,3 and 4 k-cycle elimination
cuts 1-pc, 2-pc use of 1-path cuts alone/with 2-path cuts
UB opt + 2% with x = quality of the upper bound supplied

0%,0.1%,0.5% and 1% to W and B

Table 1
Parameters Controlling the Branch-and-Price-and-Cut Algorithm and Arc Elimination

ination leads to tighter relaxations of the master problem if k is increased. With
increasing k € {2, 3,4}, the effort of solving the subproblem grows, the integral-
ity gap decreases, and one can expect smaller branch-and-bound trees. The use of
1-path cuts (i.e., subtour-elimination constraints) is standard, since these cuts are
efficiently separable. Additional 2-path cuts require more sophisticated separations
procedures, in which the solution of TSPTW is an algorithmic component. They
often help to substantially decrease the remaining integrality gap, so that one can
also expect a reduction of the tree size. Finally, the quality of the upper bound
UB provided to both methods, W and B, directly determines how many arcs can
be eliminated. In order to be able to use computed reduced costs r;; and 7;; not
only at the moment when they are computed, but also when new improved up-
per bounds UB become available, we store the following information: For all arcs
(1,7) € A, the objective of the dual feasible solution 7b + p plus the reduced cost
r;; or 7 is stored as lower bounds lb;; = wb + p + r;; or Eij = b+ p + 7. These
lower bounds can be compared with any upper bound UB and allow the elimina-
tion of all arcs with lb;; > UB for method W and Eij > UB for method D. The
following analysis supplies different upper bounds of UB = (1 + x) - opt to both
methods, where opt is the cost of an optimal solution and z the deviation from it.
Values for x between 0% and 1%, as given in Table 1, seem realistic, since good
(meta)heuristics often produce high-quality solutions very close to the optimum.

For each VRPTW instance, the variation of the parameters given in Table 1 leaves
us with 48 different setups to analyze. In order to keep the computational exper-
iments concise and the amount of data to be displayed small, we decided to first
choose four instances which reflect a ‘typical behavior’ of a group of instances.
Later, we summarize results from a larger data set. A meaningful way to visual-
ize the 48 data points is to compare the percentage of eliminated arcs with the

18

following gap

Ly 9 (k)
- =1 — AV 11
gap ot +x opt (11)

Herein, (b(k), Iby(k) and lbs(k) are the lower bounds 7b + p provided by the LP-
relaxation of (DWM) using k-cycle elimination and no cuts, 1-path cuts, and 1-path
cuts and 2-path cuts, respectively.

Figure 1 depicts the relationship between gap (based on (b (k) or lbs(k) depending
on 1-cp/2-cp) and the percentage of arcs eliminated for four representative in-
stances. The obvious result of all computations is that method B can always elimi-
nate a significantly larger portion of the arcs than method W can. This qualitative
result is not surprising, since we have proven in Section 3.3 that r;; < 7; holds,
and, therefore, that every arc eliminated by method W can also be eliminated by
method D. The empirical and quantitative result is interesting: B eliminates up to
20% more arcs than W (100% is the number of arc after resource window reduction
(see Desrosiers et al., 1995)).

The first instance R103.100, depicted in Figure 1, is an example of an instance
where (DWM) produces tight lower bounds for opt independent of the k-cycle elim-
ination and cutting-plane approach chosen. For all setups, the integrality gap (opt—
Ibj1,9(k))/opt is about 0.2%. This means that this particular instance does not tend
to produce bad fractional solutions with many cycles and insufficient covered sub-
sets of customers. Here, the number of eliminated arcs primarily depends on the
quality of upper bounds. W and D differ (for otherwise identical parameters), by
about 10%.

Instance RC107.100 shows that the parameters k£ and 1-cp/2-cp can also have
an impact on the gap. One can clearly see that the most important determining
factor for the percentage of eliminated arcs is gap, likewise for both methods W
and B. There is a nearly linear dependency between gap and the portion of arcs
eliminated. The presence of additional 2-path cuts clearly decreases the gap and
(ceteris paribus) leads to the elimination of more arcs. However, 2-path cuts seem-
ingly make both methods behave less effectively when gap and eliminated arcs
are compared (a parallel shift of the points to the left /bottom). We interpret this
behavior as follows: The additional 2-path cuts mean more constraints in (DWM)
and, hence, more path variables Ap in basis. The result is more arcs with reduced
cost 0.

For the instance R112.50, the integrality gap is between 2.2% and 3.7% for different
choices of k and 1-pc/2-pc. For the bidirectional method, the dependency between
gap and the percentage of eliminated arcs is nearly linear (linear regression yields
% arcs eliminated = 89,1% — 8.59 - gap with error R* = 0.97). The method W
does not show such a direct dependency. Instead, for different values of k, the
dependency seem to be linear, but different ‘stripes’ result from variations of k.
The interesting observation is here that increasing values of k, on the one hand,

19

w
- - 2 ©
= &
e E Ry Y
S S a
5 e = ISV
S O < o 5 [
S = o 2 <@ | =
] T ® -
o = o=
O e o e
u} - o)
el
[o
©
L o
o =
%
&
0 ol
o = Hﬁ
o ° 5 °
P=1 S o X </ B
= 2 B o s Fog
€
Is (4] g Il Oe, o
~=
- o~ N O
¢S] [$]
o 14 5]
b o
bt
A o
?
&
e
I Ao b
- <
’
o
?
- o
0 a . (3
o o
& 3
S+
1
<
L 1 o O (=)
o o o o o (=} o o o o o
154 c 8 3 < S 5] S & ® ~ © b ¥ & & =
pajeulwi|3 sy % pajeuIw| So1y %
- f_" - [t}
X
E t E g .
S 5 S ~ k3
S i 5 s o -
|5} 5} N
g2 s/ 1+ | g 2 I 5
T © g o Lo T © = I
o = ' I - o = & = L @
o e o . X <
-~ () *
b
<
el
= & %)
5
iri © & o 4
S S a
& ?
o & | =) =
s SIS "Q_ (=] - m;_
ra n o« o ‘» [
- » © @ el
© —1 o ~ o & Y]
= © = 2 o /e
; g i
14 < a o ~ .
5 3 .
A S
© o
= i . o
=
+ = /8 *// 4
S =~ =
S <] il
) o
S —
@l | =
5 | L@
é L — 7 o~ o
S@ | = s
<+
l
<
£
-+ © F t t t t t t t t t
o 0 o Jrey o 0 o 0 o 1w 9o v 9 w o v 9Q
S =3 > o o ~ = © K © ® v’ B’ <+ ¥ © ®
- pajeulw|3 o1y % pajeuIw|3 SOV %

Fig. 1. Percentage of Eliminated Arcs relative to Gap gap; Note the different Scales of
the Axes and the different Groupings

improve the lower bound of (DWM), and on the other hand, lead to a larger
number of labels generated in SPPRC-k-cyc, which, in turn, makes method W
work less effectively. We interpret this result as follows: Both effects are concurring
and, therefore, runs of the branch-and-price-and-cut algorithm, just differing in
parameter k, roughly eliminate the same number of arcs.

The instance RC205.50 shows a different behavior. The integrality gap substantially

20

depends on the chosen relaxation, i.e., on k and 1-cp/2-cp, and varies from 0% for
k = 4 and 2-cp to about 14% for k = 2 and 1-pc. Hence, the ability of the two
arc-elimination methods mainly depends on the gap. The difference between W
and D (up to about 5%) is smaller than has been observed for the other instances.
The smaller the gap, the larger the difference between W and D.

Figure 2 depicts the difference between the lower bounds lb;; and Eij for the in-
stance R205.100. The pricing network N = (V, A) consists of 7,327 arcs (—100%),

1020

R205.100

1010

1000

990

980

970

960
opr=954.2
950

Fig. 2. Values [b;; and Eij
computed by Walker’s
Method and Bidirectional
Method; Line=Values

1 1001 2001 3001 4001 5001_ 6001 7001 Ib;;; Dots—Values 1b;; for
7327 Arcs, Sorted by Lower Bound /b;; ..
the Same Arc (i, j)

940
1b=935.35

930

which could not be eliminated by resource windows strengthening techniques dur-
ing the pre-processing phase. The LP-relaxation of the master program is solved
with 4-cycle elimination and 1-path cuts. At the root node of the branch-and-bound
tree (when all 1-path cuts are added), the 7,327 arcs (4, j) € A are sorted according
to the values Eij. In this ordering, the two series of lower bounds, i.e., [b;; and %ij,
are shown in Figure 2. The bottom level at (b = 935.35 corresponds to all arcs
with reduced cost 0. These arcs get a lower bound [b;; identical to the objective
of (DWM). Walker’s method yields 1,218 arcs (= 16.6%) with r;; = 0 but only
303 arcs (=4.1%) have 7;; = 0 in method B. With the upper bound UB = opt,
method W eliminates 3,518 arcs (—48%) while method B eliminates 4,696 arcs
(—64%).

4.2 Computational Effort

The computational effort of arc elimination by Walker’s method and by the bidirec-
tional method is compared next. Both methods use dual feasible solutions (7, 1)
of (DWM), which are available and globally valid whenever a root node of the
branch-and-bound tree is solved to optimality. By the addition of cutting planes,
different (improved) root nodes are solved such that methods W and B are, in
general, invoked more than once. (In principle, it would be possible to use both
methods in the entire branch-and-bound tree, but then lower bounds [b;; and Eij
for each arc would have to be stored at each node of the tree.) The input data
for method W is a monodirectional solution to the SPPRC-k-cyc subproblem ap-
plied to PP(m,), which is available without any additional effort at the end of the

21

column-generation process at each node. Contrary, method B also needs a solution
to the backward SPPRC-k-cyc, which must be computed on top of what is freely
available. Hence, we can expect that method B is computationally more costly
than method W. Both Algorithms 2/3 and 4 then roughly do the same: They loop
over all arcs (i,j) € A and compare (extended) labels of node i with other labels
of node j.

For the selection of a reasonable set of test instances, we have chosen the following
rules. The best combination of the parameters k for k-cycle elimination and 1-
cp/2-cp are taken from (Irnich and Villeneuve, 2006). Moreover, we only consider
an instance if its branch-and-bound tree contains more than 10 nodes and the
overall computation time does not exceed 3,600 seconds. Note that the setup in
(Irnich and Villeneuve, 2006) was slightly different, since additional techniques for
the acceleration of the pricing were used. Using these rules, 33 instances result.
They are given in the first column of Table 2 and will be used in this and in the
next subsection.

Besides the detailed results of Table 2, we have the following overall results: The
computation times for method B are, by factors of between 1.7 and 7.5 (with an
average of 3.5), longer than those for method W. For method B, the portion of
its time spent on solving the inverse SPPRC widely varies from about 9% to 85%),
with an average of 32%. A single call of method B takes between less than 0.1%
and up to about 12% (avg. 2.8%) of the time needed to solve the root nodes.

The results show that the computing power necessary to use reduced cost infor-
mation of paths from the master to eliminate arcs is not negligible, but makes up
only a fraction of the overall computing time. Only if the speedup for the entire
branch-and-bound tree overcompensates the additional effort, do arc-elimination
methods pay off. This issue will be analyzed next.

4.8 Impact on the Branch-and-Bound Tree—Querall Acceleration

The preceding sections have shown that the bidirectional method outperforms the
method of Walker w.r.t. the number of eliminated arcs, while its computational
effort seems still comparable to that of Walker’s method. The relevance of the ad-
ditional computational effort vanishes when hard-to-solve instances with a large
branch-and-bound tree are considered. Therefore, we analyze solely the bidirec-
tional method and its impact on the computation times of the branch-and-price
algorithm.

Table 2 summarizes the computational analysis and contains the following infor-
mation. The name of the instance and the best parameters k& and 1-cp/2-cp are
given in the first two columns (.25, .50, and .100 refers to the number of customers
in the respective instance). The column gap refers to the gap as defined by (11)
with UB = opt and with lb(k) (Ibs(k)) the lower bound computed by (DWM)
before (after) adding cutting planes. The number of arcs before and after mul-
tiple calls of the bidirectional method is given in the fourth column. In order to
make the standard branch-and-price algorithm (std) comparable with the one using

22

method B, we first compute the branch-and-bound tree with (std) and record the
branching decisions. Subsequently, the branch-and-price algorithm with method B
is run, using the recorded branching decisions. This guarantees that the tree has
the same structure (otherwise, due to degeneracy, trees could become different).
However, method B can lead to tighter bounds in the tree so that some nodes
can be pruned in addition to those pruned by (std) (|+std] is the number of these
nodes given in column Tree). The next two columns compare the times of (std) and
branch-and-price with method B which are needed to solve the root nodes of the
branch-and-bound tree, i.e., to finish the first node with lower bound (b(k) and the
last root node with lower bound (b, (k) or Iby(k). For the first root node, the com-
putation times differ exactly in the time method B needs to compute the reduced
costs of all arcs (the absolute difference is shown as +B and the relative difference
as %). After the elimination of some arcs, cutting planes are iteratively added to
(DWM) which is then re-optimized and method B is invoked again. On the one
hand, these additional runs of method B increase the computation time for the last
root node. On the other hand, method B iteratively reduces the size of the pricing
network, which can lead to a speedup of the re-optimization. Hence, the values
+B and % for the seventh column, referring to the last root node, can be positive
or negative. Similarly, the remaining columns show the overall time (Time all)
and the time spent in the branch-and-bound tree (Time tree) for solving non-root
nodes. The latter time does not include the time spent on solving the root nodes.
This information is significant, since it shows the impact of the full arc-elimination
method B on the computing times. All values —B and % are negative because
solving master programs (with additional branching constraints) always takes less
time when the pricing networks AN are smaller. The speedup factors in the ninth
and last column are the quotients of the times for (std) and branch-and-price with
method B.

The results can be summarized as follows: The gap after adding cutting planes is
between 0.05% and 8.9%, with an average of 1.3%. Branch-and-bound tree sizes
vary from 11 to 370 nodes (multiple re-optimizations after adding 1-path or 2-
path cuts are counted as additional (root) nodes of the tree). Conform with the
results reported in Section 4.1, the percentage of arcs that method B can eliminate
mainly depends on the gap. As a rule of thumb we state: With a gap of 1% one
can eliminate approximately 80% of the arcs.

The additional effort of method B relative to the time necessary to solve the
first root node (column Time root 1) is relevant and can take up to about 50%
(avg. 28%) for 25 customer instances, up to 34% (avg. 17%) for 50 customers, and
up to 6% (avg. 4%) for 100 customers. The larger the instances, the smaller the
additional effort of a single call of method B. The additional effort of method B
for solving the root nodes with cutting planes (column Time root 2) can increase
to 85% of the time that (std) consumes. However, for some instances, the effort of
applying Algorithm 4 is overcompensated by the faster pricing, so that the differ-
ence of the computing times can decrease. For three instances, C207.25, RC202.50,
and RC105.100, method B already pays off only for solving the root nodes.

23

The most important results are related to the speedup gained by method B on the
overall solution process and the speedup within the branch-and-bound tree. There
is only one instance, RC101.100, out of the 33 instances, for which method B does
not accelerate the overall solution procedure (it takes 20% longer; 22 cuts are added
to 13 root nodes, so that method B is invoked 13 times). However, the non-root
nodes benefit from the elimination of arcs by an acceleration of factor 1.9. All other
instances are solved faster when method B is integrated. The speedups vary from
factors of between 1.05 and 18.9 (avg. 2.8). If the time for solving the root nodes
is excluded, the acceleration factors in the tree are significantly higher and vary
between 1.3 and 29.2 (avg. 5.1). The largest speedups can be observed for instances
of the second series (C2, R2, RC2) of the Solomon (1987) benchmark problems,
since these tend to have longer routes and harder-to-solve subproblems. Finally,
we could not find a statistical correlation between the gap and the acceleration
in percent or the speedup factors (linear regression gives R?> ~ 0.07 and R? =~
0.02, respectively). It remains unclear to us which properties of an instance and
parameters of the solution method determine the overall speedup.

5 Conclusions

The paper has provided insights into the relationship between reduced costs of
paths in extensive column-generation formulations and reduced costs of arcs in
original compact formulations. Both types of reduced costs can be used for the
elimination of arcs, and two practical methods are available: The adaption of a
first technique, originally proposed by Walker (1969), allows the computing of re-
duced costs of original variables from an extensive column-generation model when
dual feasible solutions to the master and the subproblem are known. This method
is however restricted to subproblems which can be formulated as pure linear pro-
grams. The other technique is newly proposed in this paper and is based on solving
the s-t SPPRC subproblem twice, i.e., with bidirectional methods as an s-to-all for-
ward and as an t-to-all backward SPPRC. The paper has theoretically proven that
the bidirectional method is superior in the sense that it always provides bounds for
arc elimination that are at least as good as those computed by Walker’s method.

Moreover, both methods were empirically tested on standard benchmark problems
for the VRPTW. On the one hand, the computational effort of the bidirectional
method is slightly higher than the effort needed for Walker’s method. On the
other hand, the bidirectional method can consistently remove more arcs (up to
20% more) and often leads to SPPRC subproblems from which 80%-90% of the
arcs are eliminated: Roughly, with a gap of 1% one can eliminate 80% of the
arcs. Empirically tested on 33 VRPTW instances, this caused a significant overall
speedup with factors of between 1.3 and 29.2, with an average factor of 5.1.

A promising trend in column generation approaches for VRPs is that of solving
subproblems with (good) heuristics and exactly solving the hard (E)SPPRC only a
very few times, hopefully only to show optimality (see, e.g., Xu et al., 2003; Jepsen
et al., 2006; Desaulniers et al., 2006). The extensive use of heuristics is clearly

24

another way of speeding up pricing, and we expect that the combination of arc-
elimination techniques with heuristics will still improve these highly sophisticated
implementations, even if the speedups are probably smaller.

The proposed arc-elimination algorithm can be seen as a cooperative scheme, in
which exact and heuristic algorithms can both benefit. Thus far, exact algorithms
primarily benefit from good integer solutions for bounding. One of the few papers
discussing cooperative approaches in exact vehicle-routing is that by Danna and
Le Pape (2005). In the future, heuristics may provide (at an early point in time)
good upper bounds, which are useful in the exact method for eliminating arcs
and accelerating the exact approach. In turn, exact algorithms can provide sparser
underlying networks for the heuristics, still guaranteeing that the heuristics can
find an optimal solution, but faster, because of the smaller underlying networks.
The latter approach is an exact intensification method.

Finally, the adaptation of the proposed variable-elimination techniques to other
column-generation formulations is another interesting path of future research: Then,
subproblems of different combinatorial structures such as, e.g., trees, selections,
packings etc. have to be considered. The goal here would again be the devising
of efficient variable-elimination techniques that lead to smaller instances of the
pricing subproblems and to speedups for the overall column-generation approach.

References

Ahuja, R., Magnanti, T., and Orlin, J. (1993). Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs, New Jersey.

Barnhart, C. and Schneur, R. (1996). Air network design for express shipment
service. Operations Research, 44(6), 852 863.

Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vance, P. (1998).
Branch-and-price: Column generation for solving huge integer programs. Oper-
ations Research, 46(3), 316-329.

Barnhart, C., Hane, C., and Vance, P. (2000). Using branch-and-price-and-cut
to solve origin-destination integer multicommodity flow problems. Operations
Research, 48(2), 318 326.

Boland, N., Dethridge, J., and Dumitrescu, I. (2006). Accelerated label setting
algorithms for the elementary resource constrained shortest path problem. Op-
erations Research Letters, 34(1), 58-68.

Danna, E. and Le Pape, C. (2005). Branch-and-price heuristics: A case study on
the vehicle routing problem with time windows. In Desaulniers et al. (2005),
chapter 4, pages 99-129.

Dell’Amico, M., Righini, G., and Salani, M. (2006). A branch-and-price approach
to the vehicle routing problem with simultaneous distribution and collection.
Transportation Science, 40(2), 235 247.

Desaulniers, G., Desrosiers, J., Dumas, Y., Marc, S., Rioux, B., Solomon, M. M.,
and Soumis, F. (1997). Crew pairing at Air France. Furopean Journal of Oper-
ational Research, 97, 245-259.

25

Desaulniers, G., Desrosiers, J., Gamache, M., and Soumis, F. (1998a). Crew
scheduling in air transportation. In T. Crainic and G. Laporte, editors, Fleet
Management and Logistics, chapter 1, pages 169-186. Kluwer Academic Publish-
ers, Norwell, Massachusetts and Dordrecht, The Netherlands.

Desaulniers, G., Desrosiers, J., loachim, I., Solomon, M., Soumis, F., and Vil-
leneuve, D. (1998b). A unified framework for deterministic time constrained
vehicle routing and crew scheduling problems. In T. Crainic and G. Laporte, ed-
itors, Fleet Management and Logistics, chapter 3, pages 57-93. Kluwer Academic
Publisher, Boston, Dordrecht, London.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Genera-
tion. Number 5 in GERAD 25th Anniversary Series. Springer.

Desaulniers, G., Lessard, F., and Hadjar, A. (2006). Tabu search, generalized k-
path inequalities, and partial elementarity for the vehicle routing problem with
time windows. Les Cahiers du GERAD G-2006-45, GERAD, Ecole des Hautes
Etudes Commerciales, Montréal, Canada.

Desrochers, M. and Soumis, F. (1988). A generalized permanent labelling algorithm
for the shortest path problem with time windows. Information Systems and
Operations Research, 26(3), 191-212.

Desrochers, M., Desrosiers, J., and Solomon, M. (1992). A new optimization algo-
rithm for the vehicle routing problem with time windows. Operations Research,
40(2), 342 354.

Desrosiers, J. and Liibbecke, M. (2005). A primer in column generation. In De-
saulniers et al. (2005), chapter 1, pages 1 32.

Desrosiers, J., Dumas, Y., Solomon, M., and Soumis, F. (1995). Time constrained
routing and scheduling. In M. Ball, T. Magnanti, C. Monma, and G. Nemhauser,
editors, Network Routing, volume 8 of Handbooks in Operations Research and
Management Science, chapter 2, pages 35 139. Elsevier, Amsterdam.

Dror, M. (1994). Note on the complexity of the shortest path models for column
generation in VRPTW. Operations Research, 42(5), 977-978.

Feillet, D., Dejax, P., Gendreau, M., and Guéguen, C. (2004). An exact algorithm
for the elementary shortest path problem with resource constraints: Application
to some vehicle routing problems. Networks, 44(3), 216 229.

Gamache, M. and Soumis, F. (1998). A method for optimally solving the rostering
problem. In G. Yu, editor, Operations Research in the Airline Industy, chapter 5,
pages 124-157. Kluwer Academic Publishers, Boston, Dordrecht, London.

Gamache, M., Soumis, F., and Marquis, G. (1999). A column generation approach
for large-scale aircrew rostering problems. Operations Research, 47(2), 247 263.

Hadjar, A., Marcotte, O., and Soumis, F. (2001). A branch-and-cut algorithm
for the multiple depot vehicle scheduling problem. Technical Report G-2001-25,
GERAD, Université de Montréal, Quebec, Canada.

Irnich, S. and Desaulniers, G. (2005). Shortest path problems with resource con-
straints. In Desaulniers et al. (2005), chapter 2, pages 33 65.

Irnich, S. and Villeneuve, D. (2006). The shortest path problem with resource
constraints and k-cycle elimination for £ > 3. INFORMS Journal on Computing,
18(3), 391-406.

26

Irnich, S. (2006). Resource extension functions: Properties, inversion, and gener-
alization to segments. Technical Report 2006-01, Deutsche Post Endowed Chair
of Optimization of Distribution Networks, RWTH Aachen University, Aachen,
Germany. Available at www.dpor.rwth-aachen.de.

Jepsen, M., Spoorendonk, S., Petersen, B., and Pisinger, D. (2006). A non-robust
branch-and-cut-and-price algorithm for the vehicle routing problem with time
windows. DIKU Technical Report no. 06/03, Dept. of Computer Science, Uni-
versity of Copenhagen, Copenhagen, Denmark.

Kallehauge, B., Larsen, J., Madsen, O., and Solomon, M. (2005). Vehicle routing
problem with time windows. In Desaulniers et al. (2005), chapter 3, pages 67-98.

Kohl, N., Desrosiers, J., Madsen, O., Solomon, M., and Soumis, F. (1999). 2-path
cuts for the vehicle routing problem with time windows. Transportation Science,
33(1), 101-116.

Kohl, N. (1995). Ezact methods for Time Constrained Routing and Related Schedul-
ing Problems. Dissertation, Department of Mathematical Modelling, Technical
University of Denmark.

Liibbecke, M. and Desrosiers, J. (2006). Selected topics in column generation.
Operations Research, 53(6), 1007-1023.

Poggi de Aragao, M. and Uchoa, E. (2003). Integer program reformulation for
robust branch-abd-price algorithms. Technical report, Departamento de Infor-
matica, PUC-Rio.

Ribeiro, C. and Soumis, F. (1994). A column generation approach to the multiple-
depot vehicle scheduling problem. Operations Research, 42(1), 41 52.

Righini, G. and Salani, M. (2004). Bounded bidirectional dynamic programming
for the elementary shortest path problem with resource constraints. Technical
report, Dipartimento di Tecnologie dell’Informazione, Universita degli Studi di
Milano, Crema, Italy.

Salani, M. (2005). Branch-and-price algorithms for Vehicle Routing Problems. Dis-
sertation, Universita degli Studi di Milano, Facolta die Scienze Matematiche,
Fisiche e Naturali, Dipartimento di Tecnologie dell‘Informatione, Milan, Italy.

Solomon, M. (1987). Algorithms for the vehicle routing and scheduling problem
with time window constraints. Operations Research, 35(2), 254 265.

Vance, P., Atamtiirk, A., Barnhart, C., Gelman, E., Johnson, E., Krishna, A.,
Mahidhara, D., Nemhauser, G., and Rebello, R. (1997). A heuristic branch-and-
price approach for the airline crew pairing problem. Technical report, Depart-
ment of Industrial and Systems Engeneering, Auburn Univerity.

Villeneuve, D. and Desaulniers, G. (2005). The shortest path problem with forbid-
den paths. European Journal of Operational Research, 165(1), 97 107.

Walker, W. (1969). A method for obtaining the optimal dual solution to a linear
program unsing the Dantzig-Wolfe decomposition. Operations Research, 17,
368-370.

Xu, H., Chen, Z., Rajagopal, S., and Arunapuram, S. (2003). Solving a practical
pickup and delivery problem. Transportation Science, 37(3), 347 364.

27

Appendix
A Results on the Dual of Some Extended and Reformulated Models

We consider a standard linear program (P) and an equivalent reformulation (P/,,)
of (P), where additional variables w are uniquely determined by the variables v of
(P) and no other constraints on the new variables exist:

min g'v+0Tw

min g'v
(P..,) st. Mv+0w>m (B)
(P) st Muzm (a)
st. Mv>m («
o Nvo—w=0 (v)
vz

v>0,weR?

Proposition 1 Models (P) and (P!

Y .+) are equivalent in the sense of the following
points (i) and (ii).

(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible (op-

timal) solution (v, w) = (v, Nv) to (P.,,), and vice versa. [Feasible corresponds
to feasible, optimal to optimal solution.|

(ii) Every dual feasible (optimal) solution « to (P) implies a dual feasible (optimal)
solution (a, 0) to (P.,,), and vice versa. Every dual feasible solution to (P.,,)
has v = 0.

(iii) For every dual feasible solution (/3,7) to (P!

Y 1), the reduced cost of the vari-
ables w are 0.

This Proposition is only partly intuitive when one interprets it in the following
way: The equality w = Nw is easy to fulfill since unbounded and unconstrained
variables w can simply be set equal to Nv. Hence, the dual price of the constraints
Nv —w = 0 is zero, since it can be fulfilled without imposing additional costs.
However, the fact that the reduced costs of all variables w are zero is somehow
surprising. Marginally increasing one of the variables w, directly implies that some
of the vy (for n.s # 0) have to be adapted also. The reduced cost of w, should,
therefore, be expressible in the reduced costs of the variables vy, which is obviously
here not the case.

From now on we are only interested in the special case that N € Z1*? holds, i.e.,
every variable w, is a (non-negative) sum of some variables v;. The assumption that
all entries of N are non-negative implies that w = Nv > 0 holds. Let (P.,;) denote
the model (P’.;;) together with the constraint w > 0 (and with the assumption
N € Z4?). The addition of the non-negativity constraints w > 0 is nothing but
a formal device; it enables us to derive more interesting results than those stated

for (P.,,):

Proposition 2 Models (P) and (P.,;) are equivalent in the sense of the following
points (i) and (ii). Statements about the relationship of dual solutions and reduced

28

costs are given by (iii)-(v):

(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible
(optimal) solution (v, w) = (v, Nv) to (Pest), and vice versa.
(ii) Every dual feasible (optimal) solution « to (P) implies a dual feasible (optimal)
solution (a, 0) to (P), and vice versa.
(iii) Every dual feasible (optimal) solution « to (P) implies a set

Ala) ={(a,7):v>0,Ny< g —aM}

of dual feasible (optimal) solutions to (P..;). Moreover, any dual feasible (op-
timal solution (3,7) to (P.) fulfills (5,7v) € A(B).
(iv) Let a dual feasible (optimal) solution « to (P) (or, equivalently, (a,0) to
(Pext)) be given.
For any index e* € {1,...,¢q}, a vector v = (,) with

— (aM
fe{lr"vp}:ne*,fséo ne*7f fe{lvnvp}:ne*,fséo

gy — (aM)y (A1)

and 7. = 0 for all e # e* fulfills (o, y) € A(a), i.e., implies another dual feasible
(optimal) solution to (P,). For 0-1-matrices N, the second inequality holds
as an equality.

Conversely, for any dual feasible (optimal) solution (3,7) to (Pes), the
components of v are all (individually) constrained by inequality (A.1).

For the original dual feasible (optimal) solution («, 0) to (Ps), the right-
most term in (A.1) is the minimum reduced cost of all variables v, involved
in the equality for we«.

(v) For every (f3,7) feasible dual solution to (P.), the value . is the reduced
cost of the variable w..

Next, we consider three different reformulations of (P..;), where the cost vector g
can be expressed as g' = A" N and the coefficient matrix M can be expressed as
M = QN. Because of w = Nwv, it means that one can either express the objective
by ¢"v or h"w and, similarly, the constraints either by Mv > m or Qw > m.

min min g'v+0'w min
(PLF%) st Mu+Ow=m st >mo st >m (329)
Nv—w=0 Nv—w=0 Nv—w=0 (y523)

v>0,w>0 v>0,w>0 v>0,w>0
Proposition 3 Models (P.,) and (P%,), k = 1,2, 3 are equivalent in sense of the
following point (i). The relationship between the dual solutions and reduced costs
of the four models is given by (ii) and (iii):

(i) Every primal feasible (optimal) solution (v,w) to (P..) is a primal feasible

(optimal) solution to (P%,), k = 1,2,3 and vice versa.

29

(ii) Every dual feasible (optimal) solution (3,7) to (Pes) implies a dual feasible
(optimal) solution (5%, +*) to (P%,), k = 1,2,3 and vice versa. The relation-
ship between the dual solutions is

) I O I B S B) R S

(iii) Every dual feasible solution to (P.;) or (P*.), k = 1,2,3 as given in (ii)
imposes the same reduced cost ~ of the variables w.

Proofs of all three propositions are straightforward based on elementary linear
programming theory.

30

1€

991], pUNOg-pue-youeIg U0 POy [BUOIPAIIPIg Jo joedu]

¢ Sl9BL

Instance Param gap w.r.t. Arcs Tree Time root 1 Time root 2 Time all Speed- Time tree Speed-
k=, f-pc (b(k)/ibs (k) (std/B/% elim) (B[+std]) (std/+B/%) [s] (std/£B/%) [s] (std/£B/%) [s] up all (std/—B/%) [s] up tree

R110.25 2, 1-cp 1.5/1.5 526/136/74% 21 0.3/0.02/6% 0.3/0.02/6% 1.9/-0.6/-34% 1.5 1.6/-0.6/-40% 1.7
R112.25 2, 2-cp 2.2/1.9 646/157/76% 15 0.8/0.2/23% 3.2/0.2/6% 5.1/-0.9/-18% 1.2 1.9/-1.1/-57% 2.3
C204.25 2, 1-cp 1.0/1.0 622/113/82% 11 3.4/1.3/40% 5.4/0.2/4% 52.1/-37.1/-711% 3.5 46.8/-37.3/-80% 4.9
C207.25 3, 1-cp 1.4/0.05 463/71/85% 11[+1] 0.8/0.3/34% 2.8/-0.3/-11% 6.5/-3.7/-57% 2.3 3.7/-3.4/-91% 10.8
R203.25 3, 1-cp 1.1/1.1 596/126/79% 7 0.8/0.1/16% 0.8/0.1/16% 3.2/-1.6/-52% 2.1 2.4/-1.8/-73% 3.8
R204.25 4, 1-cp 1.7/1.7 627/141/78% 23|+8] 4.7/2.3/49% 4.7/2.3/49% 369.2/-349.7/-95% 18.9 364.5/-352.0/-97% 29.2
R207.25 3, 1-cp 1.2/0.8 609/119/80% 25 1.0/0.2/22% 1.7/0.06/3% 18.6/-12.9/-69% 3.3 16.9/-12.9/-76% 4.3
R208.25 3, 1-cp 1.5/1.5 631/139/78% 16 2.9/1.1/38% 4.1/0.5/13% 53.5/-35.8/-67% 3.0 49.4/-36.3/-73% 3.8
R211.25 4, 1-cp 3.1/3.1 647/244/62% 137|+2] 5.3/0.6/11% 5.3/0.6/11% 1038.4/-813.8/-78% 4.6 1033.1/-814.4/-79% 4.7
RC203.25 4, 1-cp 13.4/8.9 596/422/29% 370[+4] 4.6/2.1/46% 9.0/7.7/85% 3884.2/-1825.9/-47% 1.9 3875.2/-1833.7/-47% 1.9
RC207.25 4, 1-cp 11.3/6 561/300/47% 126[+8] 3.2/1.1/35% 7.1/0.4/6% 771.6/-352.8/-46% 1.8 764.4/-353.2/-46% 1.9
R103.50 3, 2-cp 0.6/0.5 1969/233/88% 17 3.8/0.6/15% 11.2/0.7/6% 17.5/-3.3/-19% 1.2 6.3/-4.0/-64% 2.8
R104.50 3, 2-cp 1.1/0.6 2397/295/88% 24[+2] 12.8/3.8/29% 32.6/0.0/0% 234.9/-189.9/-81% 5.2 202.3/-189.9/-94% 16.3
R107.50 3, 2-cp 0.9/0.7 2091/285/86% 22 6.9/0.9/13% 11.5/0.7/6% 34.5/-17/-49% 2.0 23.0/-17.7/-77% 4.3
R109.50 3, 2-cp 1.5/1.3 1533/385/75% 137|+2] 4.4/0.2/4% 11.8/0.0/0% 91.6/-35.5/-39% 1.6 79.8/-35.4/-44% 1.8
R110.50 4, 2-cp 0.4/0.1 2018/163/92% 11 6.3/0.9/14% 15.0/0.1/1% 19.6/-3.8/-19% 1.2 4.6/-3.8/-83% 5.9
R111.50 3, 2-cp 2.0/1.7 2034/574/72% 109[+2] 6.1/1.0/17% 22.5/1.1/5% 172.1/-78.1/-45% 1.8 149.6/-79.3/-53% 2.1
R112.50 3, 2-cp 2.7/2.4 2527/777/69% 976 10.8/2.4/22% 29.6/2.2/7% 6059.9/-3284.5/-54% 2.2 6030.3/-3286.7/-55% 2.2
RC102.50 3, 2-cp 12.4/1.1 1462/433/70% 139[+12] 5.4/0.4/7% 36.8/0.9/2% 137.5/-57/-41% 1.7 100.7/-57.9/-57% 2.4
RC106.50 4, 2-cp 8.1/0.4 1242/304/76% 16 3.1/1.1/34% 17.3/1.9/11% 24.4/-4.2/-17% 1.2 7.0/-6.1/-87% 8.0
RC107.50 4, 2-cp 6.3/0.5 1834/331/82% 19 26.5/7.2/27% 72.8/2.8/4% 257.5/-165.9/-64% 2.8 184.8/-168.6/-91% 11.5
R203.50 3, 1-cp 1.1/1.1 2295/406/82% 11 23.0/4.6/20% 23.0/4.6/20% 90.4/-48.2/-53% 2.1 67.5/-52.7/-718% 4.6
R205.50 4, 1-cp 1.1/1.1 1878/370/80% 141 13.1/0.4/3% 13.1/0.4/3% 991.9/-721.1/-73% 3.7 978.9/-721.5/-74% 3.8
RC202.50 4, l-cp 3.9/1.5 1973/424/79% 23|+6] 16.9/2.5/15% 32.8/-4.0/-12% 375.5/-301.4/-80% 5.1 342.7/-297.3/-87% 7.6
RC206.50 4, 1-cp 2.5/2.1 1860/510/73% 62 16.8/1.6/9% 20.9/0.5/3% 533.4/-377.2/-11% 3.4 512.5/-377.8/-74% 3.8
R101.100 2, 2-cp 0.4/0.2 3243/309/90% 10[+2] 29.0/1.1/4% 56.0/1.4/3% 65.6/-3/-5% 1.05 9.6/-4.5/-47% 1.9
R103.100 2, 2-cp 0.2/0.2 7704/473/94% 37 105.8/4.9/5% 253.3/5.7/2% 602.1/-289.3/-48% 1.9 348.9/-295.0/-85% 6.5
R105.100 2, 2-cp 0.7/0.4 4260/563/87% 47 64.2/3.0/5% 133.7/3.9/3% 239.1/-18.6/-8% 1.1 105.3/-22.6/-21% 1.3
R106.100 2, 2-cp 0.7/0.6 6558,/996 /85% 208 82.5/4.8/6% 149.2/4.7/3% 2220.1/-1174.7/-53% 2.1 2070.9/-1179.4/-57% 2.3
RC101.100 2, 2-cp 2.2/0.1 3641/343/91% 13[+1] 72.0/1.4/2% 261.8/65.0/25% 278.0/56.1/20% 0.8 16.2/-9.0/-55% 2.2
RC105.100 2, 2-cp 2.8/0.3 5249/502/90% 16[+9] 76.0/3.5/5% 521.3/-57.1/-11% 563.6/-90.1/-16% 1.2 42.3/-33.0/-78% 4.5
R201.100 4, 1-cp 0.3/0.3 5917/435/93% 35 105.1/2.3/2% 105.1/2.3/2% 1183.6/-845.4/-71% 3.5 1078.6/-847.6/-79% 4.7
RC201.100 4, 1-cp 0.5/0.5 5918/585/90% 101[+6] 114.1/5.4/5% 114.1/5.4/5% 3686.8/-2602.9/-71% 3.4 3572.7/-2608.4/-73% 3.7

