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Column-generation models (see Lübbeke and Desrosiers, 2006; Desaulniers et al.,2005) use extensive formulations, often with millions or even billions of variables.At �rst glane, however, olumn-generation formulations are not well-suited toapplying variable �xing diretly: The solution proess starts with an already smallsubset of variables, the number of newly generated variables is small relative to thenumber of feasible variables, and newly generated variables have negative reduedosts, but only w.r.t. the urrent dual variables whih are an approximation of theoptimal dual variables. Nevertheless, variable elimination annot only be appliedto the olumn-generation master program, but also to the priing subproblem. Inthis paper, we apply it to formulations where the subproblems onstitute variantsof shortest-path problems. The elimination of ars from the underlying networkan lead to a substantial speedup of the priing subproblem and, therefore, of theoverall branh-and-prie algorithm.The tehnique proposed here is widely appliable beause, in the majority ofolumn-generation algorithms presented in the literature thus far, priing prob-lems onsist of omputing feasible s-t-paths in networks. Additional onstraintslimit sare resoures along the path or imply onstraints on the struture of paths(f. Irnih and Desaulniers, 2005). Examples stem from routing and shedulingappliations in transportation, as well as from prodution and teleommunia-tion, e.g., vehile routing (Desrohers et al., 1992), vehile sheduling (Ribeiro andSoumis, 1994), rew sheduling (Desaulniers et al., 1997; Vane et al., 1997; De-saulniers et al., 1998a; Gamahe and Soumis, 1998), and network design (Barnhartand Shneur, 1996; Barnhart et al., 2000). A unifying formulation and olumn-generation solution approah for these and other appliations has been presentedby Desaulniers et al. (1998b).The paper is strutured as follows: Setion 2 is intended to establish basi nota-tion in order to desribe olumn-generation algorithms with well-strutured sub-problems in general. Next, Setion 3 ontains the main theoretial results. Threedi�erent methods for the omputation of redued osts are disussed along withalgorithmi proedures. Computational results with an empirial omparison oftwo methods are reported in Setion 4. Final onlusions are drawn in Setion 5.2 Column GenerationWe start with the original or ompat formulation (f. Lübbeke and Desrosiers,2006) of an integer linear programming problem (IP), to whih Dantzig-Wolfedeomposition is applied later on:
z∗IP = min c⊤xs.t. Ax ≥ b (1a)

Dx = d (1b)
x ∈ Z

n
+ (1c)2



In the appliations we have in mind, the deision variables x are ar-�ow vari-ables xij , (i, j) ∈ A of an underlying network N = (V,A). Moreover, x might on-tain additional slak or surplus variables, resoure variables, and others (f. uni�edmodel of Desaulniers et al., 1998b). (Note that some of the variables an be on-tinuous variables but this option is left out in order not to overload the notation.)Constraints (1a) are referred to as overing onstraints, while (1b) are onstraintsforming the well-strutured domain of the subproblem. The LP-relaxation obtainedby relaxing (1c) to x ≥ 0 will be referred to as problem (P).Let X = {x ∈ Z
n
+ : Dx = d} be the domain of the subproblem. For the sakeof simpliity, we assume that X is bounded and therefore �nite. Let Q be the

(n × p)-matrix whose olumns uniquely orrespond to elements of X. (Alterna-tively, one an de�ne Q over the set of extreme points of the onvex hull of X,i.e., using onvexi�ation of X instead of disretization of X (see Lübbeke andDesrosiers, 2006, p. 1011f, for details)). The extensive formulation of (IP) utilizesthe equality X = {Qλ : 1
⊤λ = 1, λ ∈ {0, 1}p} and replaes x by Qλ:

z∗IP = min (c⊤Q)λ (2a)s.t. (AQ)λ ≥ b (2b)
1
⊤λ = 1 (2c)

λ ≥ 0 (2d)
Qλ − x = 0 (2e)
x ∈ Z

n
+ (2f)Sine olumn-generation an only handle linear programs, one has to solve the LP-relaxation of (2) and embed the approah into a branh-and-bound sheme (alledbranh-and-prie, see Barnhart et al. (1998)). For solving the LP-relaxation of (2),there is no need to keep the oupling onstraints (2e) in the master program. Hene,the Dantzig-Wolfe master program (DWM) is given by (2a)�(2d). However, Poggide Aragão and Uhoa (2003) suggested using the oupling onstraint (2e) to diretlyretrieve redued osts of variables x from (DWM) or some further reformulation,alled expliit master (EM), see Setion 3.2.Reall that the olumn-generation priniple always starts with a subset of the vari-ables λ, the so-alled restrited master program (RMP), and iteratively generatesnew variables as they are needed. The priing problem PP(π, µ) is de�ned for dualvariables π and µ of the overing onstraints (2b) and onvexity onstraints (2c) of(RMP). (Here and in the following, we assume that dual variables are representedby row vetors.) The solution to the priing problem either delivers new nega-tive redued-ost variables (olumns) or enables us to stop the iterative olumngeneration proess:

z∗PP (π,µ) = min (c⊤ − πA)x − µs.t. Dx = d (3a)
x ∈ Z

n
+3



E�ient olumn-generation approahes need `niely' strutured domains X = {x ∈
Z

n
+ : Dx = d} in order to keep the e�ort of solving the priing problem manageable.One well-strutured type of problem onsidered in the following is the shortest-pathproblem with resoure onstraints (SPPRC) (see Irnih and Desaulniers, 2005).Often, D has a diagonal struture so that X deomposes into several SPPRCs overidential or di�erent networks N k = (V k,Ak). This ours when di�erent groups kof idential vehiles or rews (or rew members) have to be routed or sheduled. Forour analysis, we will assume a single network N = (V,A) with n vehiles/rews sothat D deomposes into n idential bloks (of SPPRCs). The reformulation withgroups of (path) variables λ must replae the onvexity onstraint (2c) by 1

⊤λ = n,for whih we still assume that the dual variable is denoted by µ. Multiple networksan be handled similarly: The only di�erene is that the onvexity onstraint (2c)has to be replaed by onstraints for eah group k of vehiles/rews, leading toonstraints of the form 1
k⊤λk = nk for all k = 1, . . . , K (see Barnhart et al., 1998,Set. 2.1). Note that, in this ase, the dual variable µ is the sum µ1 + µ2 + . . . +

µK of the orresponding duals to these generalized onvexity onstraints. Notealso that K priing problems an�formally and algorithmially�be handled as asingle problem, when the K subnetworks are merged (as disjoint or partially jointnetworks) by adding super-nodes s and t onneted to the individual soures skand sinks tk for k ∈ {1, . . . , K} (e.g., Kallehauge et al., 2005, Set. 8.2).3 Variable EliminationGiven an integer-linear program (IP) with an upper bound uIP , with objetive
min c⊤x and onstraints Ax ≥ b, x ∈ Z

n
+, let ᾱ be a feasible solution to the dualof the linear-programming relaxation of (IP). For the eth non-negative integervariable xe, (c − ᾱA)e > uIP − ᾱb implies xe = 0 in any optimal solution to IP.Here, the term c− ᾱA is the vetor of redued osts depending on the dual solution

ᾱ, denoted in the following by r = r(α). Conluding, if the redued ost of a non-negative integer variable exeeds the optimality gap, the variable must be zero inevery optimal integer solution.The entral question we address in this paper is the following: Can we use infor-mation from the solution of the olumn-generation master (DWM) and PP(π, µ)to eliminate some of the variables x of the original formulation (IP)? The answerto this an either be based on redued osts of variables or any primal and dualinformation from the master and subproblem together with additional informationgenerated by some algorithmi proedures. For ar-�ow variables x of the originalformulation (IP), their elimination imposes sparser networks in the priing sub-problem. SPPRCs on redued networks an typially be solved faster, ausing aspeedup of the entire branh-and-prie proess. This is partiularly true for largebranh-and-bound trees, where several modi�ed master problems with additionalbranhing or utting onstraints have to be solved. However, methods for eliminat-ing variables ause an additional e�ort on top of the olumn-generation solutionproedure. One goal of this paper is to identify suh methods for variable elimi-nation, to larify onditions under whih they are appliable, and to analyze their4



omputational e�ort. We will distinguish between three methods:(i) If PP(π, µ) an be solved as a pure linear program, i.e., X = {x ≥ 0 : Dx =
d}, the method of Walker (1969) is appliable: The optimal dual solution to (P)is (π∗, ρ∗), where (π∗, µ∗) are optimal dual solutions to the onstraints (2b)and (2c) of (DWM), and ρ∗ is an optimal dual solution to PP(π∗, µ∗), i.e.,to min(c⊤ − π∗A)x, Dx = d, x ≥ 0. Redued osts of x are then given by
r(π∗, ρ∗)⊤ = c⊤ − π∗A − ρ∗D.(ii) If (DWM) is solved with additional oupling onstraints (2e), redued osts of
x an be diretly retrieved from the solution of the restrited master program,as suggested by Poggi de Aragão and Uhoa (2003).(iii) The new method we propose in this paper is the following: In order to elim-inate an ar (i, j) ∈ A, it is not neessary to ompute a redued ost for itsorresponding ar-�ow variable xij in the original formulation or some equiv-alent reformulation. Instead, we ompute minimum redued osts of all pathvariables of (DWM) ontaining the ar (i, j). If this minimum exeeds a givenoptimality gap, no path that ontains the ar (i, j) an be used in an optimalsolution. Hene, the ar (i, j) an be eliminated.The following setions desribe the three methods in detail and�in partiular�disuss advantages and drawbaks when these methods are applied to di�erenttypes of SPPRC subproblems. We assume that the reader is familiar with SPPRCand dynami-programming solutions methods for SPPRC as, e.g., desribed in(Irnih and Desaulniers, 2005). We also use the terminology established there.3.1 The Method of Walker (1969)The appliation of Walker's method diretly implies the following question: Whihtypes of subproblems (=SPPRCs) an be formulated as pure linear programs andhow an we retrieve the optimal dual solution?3.1.1 Shortest-Path Problems without Resoure ConstraintsShortest-path problems (SPP) without any resoure and path-strutural onstraintsan be formulated and solved as LPs as long as the underlying network does nothave yles of negative length. In olumn generation, negative yles result fromredued ar osts c̃ij = c̃ij(π, µ) whih have to be assigned to the ars (i, j) ∈ Awhen solving the SPP on N = (V,A, c̃(π, µ)). Ayli networks, e.g., arising aspriing problems in (pure) multi-depot vehile-sheduling problems (Ribeiro andSoumis, 1994), an be solved as LPs. The LP has the inidene matrix IN of thenetwork N as its onstraint matrix D and the right hand side is d = es − et, where

es and et are unit vetors orresponding to the soure node s and the sink node t.The LP formulation of the subproblem is
min c̃⊤x, s.t. INx = es − et, x ≥ 0. (4)5



Instead of solving the SPP with general-purpose LP solvers, one wants to use moree�ient algorithms, suh as dynami-programming labeling algorithms. When solv-ing an s-t-shortest path problem with a labeling algorithm, the negative shortestpath distanes, i.e., the negative labels (−ℓi)i∈V are idential to the dual variables
ρ = (ρi)i∈V to (3a) (see Ahuja et al., 1993, p. 136). Note that for priing sub-problems, the shortest-path distanes ℓ depend on π, beause the distanes in thenetwork N = (V,A, c̃) are de�ned by c̃⊤ = c⊤ − πA; they do not depend on µ.The onsequene for a olumn-generation approah is the following: Whenever
(π, µ) is a feasible dual solution to (DWM), and (ℓi) are distane labels of thesubproblem, redued osts of variables x an be omputed by r⊤ = r(π, ℓ)⊤ =
c⊤ − πA + ℓD. The interpretation of the redued ost

rij = rij(π, ℓ) = cij − (πA)ij + ℓi − ℓj (5)for a single ar-�ow variable xij is that the network ost c̃ij = cij − (πA)ij (used inthe subproblem) is perturbed by ℓi − ℓj (note that ℓD is a vetor of size |A| withentries ℓi − ℓj orresponding to the ars (i, j) ∈ A). There are several possibilitiesto ompute feasible dual solutions (π, µ) to (DWM): One is to wait until the end ofthe olumn-generation proess (at a node of the branh-and-bound-tree), where theoptimal dual solution (π∗, µ∗) to the restrited master program is optimal to thedual of (DWM). Another possibility is to use an arbitrary optimal dual (π, µ) toany restrited master program together with the objetive value of PP(π, µ). It isstraightforward to prove that (π, µ+nz∗PP (π,µ)) is a feasible dual solution to (DWM).As a result, redued osts an be omputed without an additional e�ort in everyiteration of the olumn-generation method, provided that the priing problem is anSPP and is solved exatly. The reason for this is that optimal dual variables ρ toPP(π, µ+nz∗PP (π,µ)) only depend on π but not on µ or on z∗PP (π,µ) and that reduedosts of x only depend on π and ρ = −ℓ.Note that the optimality onditions for shortest paths guarantee ℓj − ℓi ≤ c̃ij ,implying rij ≥ 0. If the (ℓi)i∈V are shortest-path distane labels, the redued osts
rij are zero for all ars (i, j) ∈ A that are used by non-dominated labels, i.e., allars in the shortest-path tree.3.1.2 SPPRC without Path-Strutural ConstraintsWe brie�y reall the basi de�nitions of shortest-path problems with resoureonstraints (SPPRC); for a omprehensive introdution and analysis, we refer to(Irnih and Desaulniers, 2005; Irnih, 2006). For this setion, any kind of path-strutural onstraints, suh as preedene, pairing, elementarity, or k-yle elimi-nation onstraints, are not present in the SPPRC formulation. Suh `pure' subprob-lems arise frequently, for instane, in some vehile and rew sheduling and rewrostering appliations (see, e.g., Desaulniers et al., 1997; Gamahe et al., 1999).Let N = (V,A) be a simple digraph. A path P = (e1, . . . , ep) is a �nite sequeneof ars (some ars may our more than one), where the head node of ei ∈ A is6



idential to the tail node of ei+1 ∈ A for all i ∈ {1, . . . , p− 1}. Sine N is assumedto be simple, a path an be written as P = (v0, v1, . . . , vp), where (vi−1, vi) ∈ Aholds for all i ∈ {1, . . . , p}. Resoure onstraints an be formulated by means of(minimal) resoure onsumptions and resoure intervals (e.g., the travel times tijand time windows [ai, bi] in the ase of the shortest-path problem with time win-dows (Desrohers and Soumis, 1988)). Let R be the number of resoures. A vetor
T = (T 1, . . . , TR)⊤ ∈ R

R is alled a resoure vetor and its omponents resourevariables. T is said to be not greater than S if the inequality T i ≤ Si holds for allomponents i ∈ {1, . . . , R}. We denote this by T ≤ S. For two resoure vetors aand b, the interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b}. Resoure inter-vals, also alled resoure windows, are assoiated with nodes i ∈ V and are denotedby [ai, bi] with ai, bi ∈ R

R. The hanges in the resoure onsumptions assoiatedwith an ar (i, j) ∈ A are given by a vetor fij = (f r
ij)

R
r=1 of resoure extensionfuntions (REFs). An REF f r

ij : R
R → R depends on a resoure vetor Ti ∈ R

R,whih orresponds to the resoure onsumption aumulated along a path (s, . . . , i)from s to i, i.e., up to the tail node i of ar (i, j). The result fij(Ti) ∈ R
R an beinterpreted as a resoure onsumption aumulated along the path (s, . . . , i, j).Let P be any path in N . P = (v0, v1, . . . , vp) is resoure-feasible if resoure vetors

Ti ∈ [avi
, bvi

] exist for all i ∈ {0, 1, . . . , p} suh that fvi−1,vi
(Ti−1) ≤ Ti holds forall i ∈ {1, . . . , p}. Desaulniers et al. (1998b) were the �rst to point out that non-dereasing REFs, i.e., funtions fij where T ≤ T ′ imposes fij(T ) ≤ fij(T

′), allowe�ient feasibility heks: P is resoure-feasible, if and only if T P
0 := av0 ≤ bv0and T P

i := max{avi
, fvi−1,vi

(T P
i−1)} ≤ bvi

holds for all i ∈ {1, . . . , p}. This an beinterpreted as the forward propagation of minimum resoure onsumptions andtheir hek against the upper bound of the resoure onsumption along the path.Let R = cost be the (redued) ost resoure and 1, . . . , R−1 be the other resoures(suh as time, aumulated load et.). The SPPRC is a problem of the form
z∗SPPRC = min

P=(v0=s,v1,...,vp=t)∈Fst
(T P

p )cost, (6)where F st is the set of all resoure-feasible paths from soure node s to sink node t.It an be solved using dynami programming labeling algorithms (Irnih and De-saulniers, 2005, Set. 4.1). As long as the resoure windows and REFs are integerw.r.t. the resoures r ∈ {1, . . . , R−1}, SPPRCs an be solved in pseudo-polynomialtime. In the following, we assume integer values for all non-ost resoures.Note that there exists no pure linear programming formulation of SPPRCs usingvariables xij , (i, j) ∈ A and resoure variables only. First, the resoure updatealong a path may involve non-linear REFs fij . Seond, negative ost yles render itimpossible to assoiate a single resoure vetor (variable) with a node. Third, evenin ayli networks with linear REFs, the oupling between ar �ow variables xij ,
(i, j) ∈ A and resoure variables Ti, i ∈ V requires non-linear onstraints, suhas xij(T

r
j − T r

i − trij) ≥ 0 for all (i, j) ∈ A and r ∈ {1, 2, . . . , R − 1}, or somelinearization of these onstraints imposing integer variables xij . The onsequene7



of the missing ompat LP formulation is that additional variables and onstraintsare needed.Next, we will show that SPPRCs de�ned by (6) an be solved as ordinary SPPsover the so-alled state spae. (In the following and in ontrast to the use of theword in Dynami Programming theory, we refer to a state spae as a digraph,i.e., the set of states/nodes together with a set of transformations/ars.) It alsomeans that SPPRCs an be modeled and solved as pure LPs, but with a muhlarger set of variables and (�ow onservation) onstraints. A neessary assumptionis, however, that REFs deouple resoure updates of the non-ost resoures fromost-omputations (for details, see below). More formally, for any node i ∈ V andany T ∈ [ai, bi], de�ne σ(T ) = (T 1, T 2, . . . , TR−1) as the projetion to the non-ostresoure values. The set of possible states is de�ned by Si = {σ(T ) ∈ Z
R−1 : T ∈

[ai, bi]}. The disjoint union S =
⋃

i∈V Si of states forms the node set of the statespae. Next, we de�ne the ars A# of the state spae. Let (i, j) ∈ A be an ar of theoriginal network. There are multiple `parallel' ars whih onnet states σ ∈ Si withstates σ′ ∈ Sj . We refer to them as A#
ij . Moreover, let T ∈ [ai, bi], T ′ ∈ [aj , bj] beresoure variables with fij(T ) = T ′, σ := σ(T ) ∈ Si, and σ′ := σ(T ′) ∈ Sj. We wantto assign a unique ost value to the ar (σ, σ′) ∈ A#

ij . Therefore, the ost di�erene
T ′cost−T cost is assumed to be idential for all T and T ′ with (σ(T ), σ(T ′)) = (σ, σ′)and fij(T ) = T ′. By de�ning dσσ′ = T ′cost − T cost one gets the disretization of theSPPRC in the form of the network N ′ := (S,

⋃

(i,j) A
#
ij , d).The solution to (6) an be obtained by omputing a shortest path P # in N ′starting at state σ(as) ∈ Ss and ending at any state of St. The nodes assoiatedwith the states visited by P# yield the optimum s-t-path of the SPPRC. Notethat, typially, the state spae is ayli beause some resoure onsumptions arestritly inreasing as, e.g., for the resoure time.The solution of an SPPRC instane by dynami-programming labeling algorithmsis performed by propagating labels through the original networkN . A label onsistsof the minimum resoure onsumption T ∈ Z

R aumulated along its assoiatedpath P = P (T ) and a link to a predeessor label, suh that several paths sharinga ommon pre�x are e�iently stored in a tree data-struture. The proess startswith the initial label T = as at the soure s and is ontinued by extending thislabel and its suessors by means of REFs. The two main omponents of suha labeling proedure are the path extension step and the dominane algorithm(Irnih and Desaulniers, 2005, Set. 4.1). In the shortest-path omputation on thestate spae, the path extension step is rereated exatly by the propagation ofosts from one state to the next. However, there is no full equivalent in N ′ =
(S,

⋃

(i,j) A
#
ij , d) to the dominane algorithm: SPPRC dominane algorithms aneliminate labels with non-idential states, i.e., when the resoure onsumption ofone label is greater or equal to the resoure onsumption of another label. Thisallows the omittane of non-useful paths in the path extension step. In N ′, one aninterpret this dominane algorithm as an impliit removal of all unreahable anddominated states. (A dominated state σ1 ∈ Si is one for whih there exists another8



state σ2 ∈ Si with σ2 ≤ σ1 and ℓσ2 ≤ ℓσ1 .) Contrary, a shortest-path algorithmin N ′ just ompares osts. The equivalene in the SPPRC dynami programminglabeling algorithm would be the use of a very restrited dominane rule whih onlyompares SPPRC labels whih have idential states. In order to have a strongerdominane, we use additional zero-ost ars (σ, σ′) ∈ A#
i onneting pairs of stateswith σ ≤ σ′ belonging to the same node i ∈ V . In the following, we assume thatthe state spae is de�ned by N# = (S,A#, d) = (S,
⋃

(i,j)∈AA#
ij ∪

⋃

i∈V A#
i , d).Note that we have introdued N# for reasons of explanation and not for e�ientomputation purposes.The view on the state spae N# enables us to apply variable elimination to theoriginal formulation and, thus, to the priing network. We an onsider two equiv-alent original formulations both using variables y = (yσσ′).Compat Formulation with Variables y = (yσσ′) Only For the moment,we assume that the original model (1) is formulated in terms of routing variables

yσσ′ for (σ, σ′) ∈ A# instead of variables xij for (i, j) ∈ A. This assumption is noserious restrition, sine every variable xij is the sum of the yσσ′ with (σ, σ′) ∈ A#
ij .Now, the method of Walker�as explained in Setion 3.1.1�is appliable to theompat formulation with variables yσσ′ and enables us to eliminate some of thevariables yσσ′ . Formally, we replae x = (xij) by Q′y = Q′(yσσ′), where the matrix

Q′ ∈ {0, 1}|A
#|×|A| shows whih of the ars (σ, σ′) orrespond to an original ar

(i, j). The ompat formulation now is
min c⊤Q′y, s.t. AQ′y ≥ b, DQ′y = d, y ∈ Z

|A#|
+ . (7a)Sine Q′ is a 0-1-matrix, the ondition Q′y ∈ Z

|A|
+ is equivalent to y ∈ Z

|A#|
+ .Hene, the domain Y = {Q′y : DQ′y = d, y ∈ Z

|A|
+ } of the subproblem is identialto X = {Qλ : 1λ = 1, λ ∈ {0, 1}p}. Consequently, the master program (DWM) isstill given by (2a)�(2d). The priing problem PP(π, µ) beomes min(c⊤ − πA)Q′y,subjet to y ∈ Y . The point is that this priing problem is idential to the pureLP, i.e., min(c⊤ − πA)Q′y subjet to IN#

y = eσ(as) − eσ(bt), y ≥ 0.In order to eliminate ars (σ, σ′), we do not need to solve the priing problemin variables yσσ′ as LPs on the huge network N#. Instead, we an simply applystandard dynami programming labeling proedures to N = (V,A) and interpretthe (Pareto-optimal) �nal labels Ti in the right way: A �nal non-dominated label Tassoiated with node i orresponds to a ost label ℓσ = T cost of state σ = σ(T ) ∈ Si.With the redued ost arguments given in Setion 3.1.1, we are able to eliminatethose ars from N# whose redued osts exeed the optimality gap. For a morepreise algorithmi desription, assume that Γi is the set of labels assoiated withnode i and that eah label T ∈ Γi has state σ(T ) ∈ Si and ost T cost = ℓ(T ):Algorithm 1 Redued Cost Computation for State Spae1: Input: Sets Γi of labels at all nodes i ∈ V .9



2: FORALL (i, j) ∈ A DO3: FORALL (σ, σ′) ∈ A#
ij DO4: LET rσσ′ := c̃ij + (minT∈Γi:σ(T )≤σ T cost) − (minT ′∈Γj :σ(T ′)≤σ′ T ′cost)5: Output: Redued osts rσσ′ .We an use the redued osts rσσ′ not only to eliminate ars (σ, σ′) ∈ A#. If allars (σ, σ′) ∈ A#

ij an be removed, the original ar (i, j) an also be removed fromthe priing network N . Note that this happens if the minimum redued ost rσσ′of the ars (σ, σ′) ∈ A#
ij exeeds the optimality gap.Finally note that the addition of ars A#

i to the state spae N# is ruial for theorretness of the Formula in Step 4 of Algorithm 1. Without these ars, we wouldhave rσσ′ = c̃ij − T cost + T ′cost only if labels T ∈ Γi and T ′ ∈ Γj with σ = σ(T )and σ′ = σ(T ′) exists and rσσ′ = 0 otherwise. The more ars in the state spae,the smaller the hane that ars (σ, σ′) ∈ A#
ij are in the shortest-path tree (whihmeans a redued ost of 0).Compat Formulation with a Mix of Variables x = (xij) and y = (yσσ′)One an utilize the fat that eah ar variable xij an be expressed as the sum ofvariables yσσ′ , (σ, σ′) ∈ A#

ij . With the results for reformulations and their impaton dual solutions, as given in the Appendix, we �rst extend (7a) by
xij =

∑

(σ,σ′)∈A#
ij

yσσ′ for all (i, j) ∈ A. (7b)Proposition 1 (in the Appendix) implies that the addition of (7b) leads to a fullyequivalent model (P ′
ext), in whih the variables xij always have redued osts of 0.This extension is, therefore, uninteresting for our purposes. Amazingly, the (formal)addition of the non-negativity onstraints

xij ≥ 0 for all (i, j) ∈ A (7c)leads to the ompat formulation (7) that orresponds to model (Pext) of the Ap-pendix. Here, Proposition 2 implies that the added variables xij an have positiveredued osts. For any dual feasible solution to the LP-relaxation of (7) or (7a),the redued ost rij of xij an be hosen suh that it is the minimum of all re-dued osts rσσ′ of variables yσσ′ , (σ, σ′) ∈ A#
ij . This obviously oinides with thear-elimination riterion given in the last paragraph.Moreover, Proposition 3 makes lear that, w.r.t. dual solutions and redued osts,it is fully equivalent to formulating the overing onstraints and objetive eitherin variables xij or variables yσσ′ , i.e., to minimize c⊤x or c⊤Q′y over Ax ≥ b or

AQ′y ≥ b, respetively. Beause of Proposition 3(iii), these reformulations have noimpat on the redued osts of the variables xij . In all ases, the Dantzig-Wolfedeomposition of the models leads the model (DWM) with path variables. Its10



subproblem an, again, be solved on the original network N with SPPRC labelingalgorithms. This means that neither the master nor the subproblem have to workexpliitly on variables y. The onsideration of variables yσσ′ is, therefore, nothingother than a formal devie to derive redued osts of the original variables x. Weahieve the following proedure for the omputation of redued osts of variables xijby means of SPPRC labels:Algorithm 2 Redued Cost Computation for SPPRC1: Input: Sets Γi of labels at all nodes i ∈ V .2: FORALL (i, j) ∈ A DO3: LET rij := c̃ij + (minT∈Γi
T cost) − (minT ′∈Γj :σ(T ′)≤σ(fij (T )) T ′cost)4: Output: Redued osts rij of variables x = (xij).Resoure Window Redution If only a subset of the variables yσσ′ with

(σ, σ′) ∈ A#
ij an be eliminated, but not all of them to also eliminate the origi-nal ar (i, j) ∈ A, the onsideration of eliminated ars in N# is still useful: Theremaining (not eliminated) ars are denoted by A#,rem

ij for (i, j) ∈ A. For everynode i, one an ompute the maximum resoure vetor b̄i with σ(b̄i) ≤ σi for all
(i, j) in the forward star of i and all (σi, σj) ∈ A#,rem

ij . Similarly, for any node j let
āj be the minimum resoure vetor with σ(āj) ≥ σj for all (i, j) in the bakwardstar of j and all (σi, σj) ∈ A#,rem

ij . One an now replae the resoure window [ar
i , b

r
i ]by [ār

i , b̄
r
i ] for all nodes i ∈ V and all non-ost resoures r ∈ {1, . . . , R − 1}. Thisis a proedure to tighten resoure windows. Similar ideas were suggested for theMDVSP by Hadjar et al. (2001).3.1.3 SPPRC with Path-Strutural ConstraintsWe annot diretly apply the same tehniques of disretization to SPPRCs withpath-strutural onstraints. The reason for this is that path-strutural onstraints,suh as preedene and pairing onstraints, k-yle freeness, and elementarity, an-not be formulated diretly, so that a pure LP represents the problem (e.g., byextending the above mentioned network �ow formulation IN#

x = es − et, x ≥ 0).The word `diretly' means that it is, however, possible to model path-struturalonstraints by means of additional resoures. For instane, Feillet et al. (2004);Salani (2005); Dell'Amio et al. (2006) use |V | additional binary resoures in theelementary SPPRC (ESPPRC) in order to keep trak of the nodes that a path hasvisited or annot visit anymore. Due to suh a vast extension of the state spae,we an expet a ombinatorial explosion in the number of states and ars as wellas ESPPRC labels. The impat on the redued osts is that, for every originalar (i, j) ∈ A, in most of the ases at least one ar (σ, σ′) ∈ A#
ij of the extendedstate spae has redued ost 0. Then, (i, j) annot be eliminated on the basis ofredued osts rij.The situation of e�ient labeling algorithms for SPPRC with k-yle elimination(SPPRC-k-y) is di�erent. As for the ESPPRC, additional resoures for eahnode i ∈ V an be used to model k-yle elimination on an extended state spae:11



Using Kroneker's symbol δab (with δab = 1 if a = b and δab = 0 otherwise), theREF of ar (i, j) ∈ A or (σ, σ′) ∈ A#
ij is f(T )v = max{T v − 1, kδiv} for resoure(=node) v ∈ V . The resoure window for resoure v is [0, k(1 − δiv)] at node i or

σi ∈ Si, respetively. This is a minor re�nement of the simple SPPRC-k-y dom-inane rule disussed in (Irnih and Villeneuve, 2006, �5.1). Extending the 2-yleelimination dominane rules of Kohl (1995), Irnih and Villeneuve were able todevelop dominane rules for SPPRC-k-y with k ≥ 3 whih are stronger than theabove straightforward approah of exhaustively extending the state spae: Severallabels T1, T2, . . . , Tq ∈ Γi, whih dominate a label T ∈ Γi w.r.t. resoures, allow thedisarding of T even if all these labels ome from (partially) di�erent predeessornodes. (Here, the labels T1, T2, . . . , Tq and T refer to the original resoures and donot inlude additional resoures for nodes!) We denote by E(T ) the set of possible
k-yle free extensions of a label T . If ⋃q

p=1 E(Tp) ⊇ E(T ) and dominane w.r.t.resoures holds, then T an be disarded (see Irnih and Villeneuve, 2006, �6, fordetails). (Computationally e�ient implementations enode these extensions byso-alled hole sets.) The point is that suh a stronger dominane rule annot bemodeled on any state-spae graph. However, one an mimi the stronger domi-nane rule in SPPRC algorithms working on the state spae N# (with the originalresoures) by adding additional arti�ial labels. Any subset of labels Γ ⊆ Γj reatesan arti�ial label at the same node j with resoures maxT∈Γ T (omponentwise) andpossible extensions ⋃T∈Γ E(T ). These arti�ial labels reate additional onnetionsbetween states of the same original node, and, therefore, more ars (σ, σ′) ∈ A#
ijhave positive redued osts. This �nally imposes larger redued osts on the originalars (i, j) ∈ A.Algorithm 3 Redued Cost Computation for SPPRC-k-y1: Input: Sets Γi of labels at all nodes i ∈ V .2: FORALL (i, j) ∈ A DO3: LET rij := c̃ij + (minT∈Γi

T cost) − (minΓ⊆Γj :Γ dominates fij(T )(maxT ′∈Γ T ′cost))4: Output: Redued osts rij of variables x = (xij).In Step 3, a subset of labels Γ ⊆ Γj dominates the label T ′ := fij(T ) orrespondingto path (P (T ), (i, j)), if T ≤ T ′ holds for all T ∈ Γ and ⋃T∈Γ E(T ) ⊇ E(T ′) holds.The minimization over all subsets Γ ⊆ Γj an easily be solved by simply sortingthe labels in Γj by inreasing osts and testing all subsets Γ with the �rst q labelsfor q = 1, 2, . . . , |Γj|. Finally note that both types of labels (ordinary and arti�ial)together give a dual feasible solution to the shortest-path problem on N#. Hene,the values rij are valid redued osts for the variables xij of the original formulation.3.2 The Method of Poggi de Aragão and Uhoa (2003)Reall that we refer to (2a)�(2d) as (DWM). The LP-relaxation of the extensiveformulation, i.e., (2a)�(2f), is denoted by (DWMext). The presene of the ouplingonstraints (2e) in the master program o�ers the possibility to diretly retrieveredued osts of variables x oming from the original formulation. This was �rst12



suggested by Poggi de Aragão and Uhoa (2003). However, the oupling onstraintsin the master have important theoretial and algorithmi impliations whih arepointed out in the following.First, Propositions 1 and 2 show that it is ruial to also keep x ≥ 0 in the exten-sive formulation. Otherwise, the redued osts are 0. However, even with the non-negativity onstraints x ≥ 0, there is no guarantee that any of the redued osts ofthe variables x are positive and useful for variable elimination. Proposition 2 ex-plains this: For every dual feasible solution (π, µ) to (DWM), there exists the dualfeasible solution (π, µ, 0) to the extensive formulation (DMWext), for whih all xijhave redued ost 0. Beside this dual solution (π, µ, 0), many other dual solutionstypially exist, that imply di�erent redued osts on the x variables. Nevertheless,the result that (DWMext) an leave us with `poor' redued ost information simplymeans that we annot ontrol the output of (DWMext).Seond, Poggi de Aragão and Uhoa (2003) suggest to reformulating (DWMext) tothe following expliit master (EM):
z∗EM = min c⊤x (8a)s.t. Ax ≥ b (8b)

Qλ − x = 0 (8c)
1
⊤λ = 1 (8d)

λ ≥ 0, x ≥ 0 (8e)(EM) di�ers from (DWM) by the formulation of the objetive (8a) and the overingonstraints (8b) in the original variables x. The advantage of (EM) is that it isas strong as (DWM) and (DWMext), but that its assoiated priing problem isfully independent of the dual pries π of the onstraints Ax ≥ b. This allows, forinstane, the addition of any inequality formulated in x to (8b)�for branhing orutting�without a�eting the struture of the priing problem for the generationof variables λ. Formulations with these properties lead to so-alled robust branh-and-prie(-and-ut) algorithm. With respet to redued osts, (EM) is, however,no better than (DWMext), sine degenerated solutions with redued ost 0 are stillpossible. This is exatly the statement of Proposition 3 applied to (DWMext) and(EM) (i.e., models (Pext) and (P3
ext) in Proposition 3).Third, Desrosiers and Lübbeke (2005, p. 11) suggest keeping the oupling on-straints in the (restrited) master program and imposing the additional onstraints

x ≥ ε, for a small ε ≥ 0, at the end of the (olumn-generation) proess. The shadowpries of these onstraints are then the redued osts of the original variables x.Here, the addition of x ≥ ε hanges the objetive value and optimal solution ofthe master program. It is not lear to us as to whether we an dedue generalstatements about the omputed redued osts. Nevertheless, the addition of theonstraints x ≥ ε at the end of the olumn-generation proess leaves several ques-tions open: Should we add the onstraints xij ≥ εij for all ars (i, j) simultaneouslyor onseutively? This makes either a single re-optimization of the master program13



or several re-optimizations neessary. Are all values εij idential? Do we have toperform additional iterations with priing and re-optimizations? What is the qual-ity of the omputed redued osts?From an algorithmi point of view, there are also good arguments for not leaving theoupling onstraints (2e) in a master program unless they are absolutely neessary:The main reason is that Qλ−x = 0 onsists of |A| onstraints, whih substantiallyextends the restrited master program and an often make the LP too large to besolved iteratively.Finally note that we do not negate the usefulness of onsidering (DWMext) or (EM)for theoretial purposes, suh as the devising of robust branh-and-prie algorithmswith e�etive branhing rules, allowing strong utting planes to be added to themaster, or for multiple olumn generation, as exempli�ed in the work of Poggi deAragão and Uhoa (2003) and Lübbeke and Desrosiers (2006).3.3 The Bidiretional Searh MethodProposition 2(iv) applied to (DMWext) gives us another way of expressing (max-imum) redued osts of variables xij . Let F st
ij be the set of feasible s-t-paths on-taining ar (i, j). Moreover, let nP

ij be the number of times ar (i, j) ours in path
P ∈ F st

ij . The path variables λ = (λP ) of (DWM) and (DWMext) have reduedosts c̃(π, µ) = c⊤Q − πAQ − µ1 so that
rij := min

P∈Fst
ij

c̃P (π, µ)

nP
ij

≤ min
P∈Fst

ij

c̃P (π, µ) =: r̄ij (9)follows. Any value between 0 and rij is a valid redued ost of xij . If r̄ij > rij, thevalue r̄ij is not a valid redued ost of a variable in an original ompat formulation.However, we will show that r̄ij has a meaningful interpretation that justi�es its useinstead of rij for variable elimination. The interesting algorithmi question now ishow to ompute these values.The key observation is that r̄ij is the minimum redued ost of all paths ontainingar (i, j). The proposed tehnique to determine r̄ij is bidiretional shortest-pathomputation. Any path P ∈ F st
ij an be deomposed into P = (P1, (i, j), P2), where

P1 ∈ F si and P2 ∈ F jt. (The deomposition is not unique if nP
ij > 1.) The values

c̃(P1) and c̃(P2) an be bounded from above by results of two SPPRC omputations:A standard forward SPPRC labeling proedure produes usual labels Γfw
i at nodes

i ∈ V . Assuming that P1 has an assoiated state σ = σ(P1) ∈ Si, the path P1ful�lls̃
c(P1) ≥ min

T∈Γfw
i

:σ(T )≤σ(P1)
T cost.Similarly, a bakward SPPRC labeling algorithm an be used to bound c̃(P2). Onestarts with the initial path (t) and extends partial paths ending at a node ℓ against14



the ars diretion (k, ℓ) to a node k. Salani (2005) has shown that it is possibleto extend resoures (suh as ost, time, and load) in the opposite diretion. Aunifying desription of REFs and their inversion was presented in (Irnih, 2006):The idea here is that upper bounds on the resoure onsumption are propagatedbakward by means of inverse REFs. The paper also lari�es whih types of REFsare invertible so that bakward SPPRCs are well-de�ned and ompatible with theforward SPPRCs. Assuming that bakward REFs exist, the orresponding labelsrepresent paths from a urrent node j to the sink t. The bakward SPPRC labelingalgorithm generates a set of bakward labels Γbw
j for eah node j ∈ V . Now, theost of P2 ful�lls

c̃(P2) ≥ min
T ′∈Γbw

j
:σ(T ′)≥σ(P2)

T ′cost.Putting the results together, one gets
r̄ij = c̃ij + min

T∈Γ
fw
i

,T ′∈Γbw
j

:σ(fij(T ))≤σ(T ′),

(P (T ),i,j,P (T ′))∈Fst

(

T cost + T ′cost
)

− µ. (10)The interpretation of (10) is that one �rst has to solve the forward and then theorresponding bakward SPPRC with ar osts c̃⊤ij = c⊤−(πA)ij . Subsequently, onemust determine all mathing pairs (T, T ′) of labels at node i and node j, respe-tively. Two labels T ∈ Γfw
i and T ′ ∈ Γbw

j math if they ompose a feasible s-t-path
(P (T ), (i, j), P (T ′)) ∈ F st. Feasibility onerns two aspets: The path is resoure-feasible if the lower bound T extended along the ar (i, j) does not exeed theupper bound of the resoure onsumption given by T ′. Moreover, feasibility w.r.t.path-strutural onstraints, suh as k-yle freeness, elementarity, and preedeneand pairing onstraints, have to be tested. The formal desription of the proedurereads as follows:Algorithm 4 Computation of r̄ for (E)SPPRC(-k-y)1: Input: Sets Γfw

i of forward labels at all nodes i ∈ V .2: Sets Γbw
j of bakward labels at all nodes j ∈ V .3: FORALL (i, j) ∈ A DO4: LET r̄ij := ∞5: FORALL T ∈ Γfw

i DO6: FORALL T ′ ∈ Γbw
j DO7: IF (σ(fij(T )) ≤ σ(T ′) AND (P (T ), (i, j), P (T ′)) ∈ Fst) THEN8: LET rP := T cost + c̃ij + T ′cost9: LET r̄ij := min{r̄ij , r

P }10:Output: Values r̄ij for all ars (i, j) ∈ A.The result is a value r̄ij for eah ar (i, j) ∈ A. If r̄ij exeeds the optimality gap, itmeans that every path ontaining the ar (i, j) is not part of any optimal solutionto (IP). Hene, all paths F ij an be removed from the master program (DWM).15



More importantly, we know that the ar (i, j) an also be removed from the priingnetwork N , sine it an only produe non-optimal paths. Note that we have argueddiretly using the olumn-generation formulation.If (DWM) is formulated solely with elementary paths, the values nP
ij are all 0 or 1and, hene, r̄ij and rij are idential. In this ase, rij = r̄ij is a proper redued ostof the original variable xij .Conerning the omputational omplexity of Algorithm 4, we have to distinguishbetween di�erent types of SPPRC labeling algorithms: Standard labeling algo-rithms ompute the set of all undominated forward labels every time the priingproblem is solved exatly. An exat solution is required at least one for the so-lution of a branh-and-prie tree node, i.e., when optimality of the orrespondingrestrited master program is proven. The additional e�ort of Algorithm 4 is theomputation of all undominated bakward labels (whih is typially as hard assolving the forward SPPRC) and the omparison of forward and bakward labels(Steps 5�9).Also from a theoretial point of view, a omparison of rij and r̄ij is interesting.In the state spae N#, forward and bakward SPP is trivial to implement. Let

(ℓfw
σ )σ∈S be the forward labels and (ℓbw

σ )σ∈S be the bakward labels. Obviously,
ℓfw
σ(as) = ℓbw

σ(bt)
= 0 and ℓfw

σ(bt)
= ℓbw

σ(as) = z∗PP (π,µ). Any dual feasible solution (π, µ)to (DWM) guarantees z∗PP (π,µ) ≥ 0. Aording to (5), for any ar (σ, σ′) ∈ A#
ij theequation rσσ′ = c̃ij + ℓfw

σ − ℓfw
σ′ holds. For any state σ ∈ S, the optimal solution ofthe SPP implies ℓfw

σ + ℓbw
σ ≥ zPP (π,µ) ≥ 0 and, therefore, rσσ′ = c̃ij + ℓfw

σ − ℓfw
σ′ ≤

ℓfw
σ + c̃ij + ℓbw

σ′ . Taking the minimum over all ars (σ, σ′) ∈ A#
ij yields

rij = min
(σ,σ′)∈A#

ij

rσσ′ ≤ min
(σ,σ′)∈A#

ij

(

ℓfw
σ + c̃ij + ℓbw

σ′

)

= r̄ij.Conluding, for any given dual feasible solution (π, µ), the redued ost rij om-puted by the method of Walker is not larger than the value r̄ij. Hene, the bidire-tional method is superior to Walker's method, sine it an eliminate at least thesame ars as Walker's method an.A urrent and very suessful trend for solving hard VRPs with time windowsor other VRP variants with branh-and-prie is to use the above mentioned ele-mentary path formulations. Sine ESPPRC is NP -hard in the strong sense (Dror,1994), the main di�ulty lies in the development of e�etive labeling algorithmswhih an pratially handle the elementarity onstraints. Besides other tehniques,suh as extension of dominane rules (Feillet et al., 2004) and state spae relax-ation/augmentation (Salani, 2005; Boland et al., 2006), one of the most e�etiveapproahes is that of bidiretional searh with bounding, whih was suessfullytested by Salani (2005) and Righini and Salani (2004). Inspired by the observationthat the number of undominated ESPPRC paths typially grows exponentiallywith the length of these paths, one tries to bound the length of paths to half ofthe maximum path length: Thus, the �rst half of a path is omputed by an s-to-all16



labeling algorithm and the seond half is omputed by a bakward t-to-all labelingalgorithm. A so-alled ritial resoure is used to ontrol the maximum forwardand bakward path length (for details, see Salani, 2005). When this tehnique isused to solve ESPPRCs, Algorithm 4 is not diretly appliable. The reason is thatthe omputation of r̄ij needs the omplete set of all forward and bakward labels.The half-way bounding tehnique does not give us a valid lower bound for eitherthe �rst path P1 or the seond path P2.However, there is no need to use the same forward labels, as omputed in thepriing problem together with bakward labels of the inverse SPPRC. Any labelingsolution, in partiular a solution to an easier-to-solve ESPPRC relaxation, providesvalid bounds. Possible relaxations are the (non-elementary) SPPRC (Irnih andDesaulniers, 2005), the SPPRC-k-y for k ≥ 2 (Irnih and Villeneuve, 2006), andthe SPPRC with forbidden (sub)paths (Villeneuve and Desaulniers, 2005). Onean expet that the quality of the omputed redued osts depends signi�antlyon the hardness of the relaxation used.
4 Computational ResultsFor the empirial evaluation of Walker's method (shortly denoted by W) and thebidiretional method (B), we examine a branh-and-prie-and-ut algorithm for thevehile-routing problem with time windows (VRPTW) tested on the well-knownbenhmark set of Solomon (1987). The implementation used for the following anal-ysis is the one previously used in (Irnih and Villeneuve, 2006). In order to keepthe omputations veri�able, we leave out several other well-known aelerationtehniques, suh as massive heuristi priing, omplex branhing rules and strongbranhing, sophistiated non-robust utting planes, stabilization et. (see Jepsenet al., 2006; Desaulniers et al., 2006, and literature ited there). The solver for thepriing problem only makes use of a monodiretional SPPRC-k-y labeling algo-rithm and tries heuristi priing in a 5-nearest neighbor subnetwork. 1-path utsand 2-path uts (Kohl et al., 1999) are the only utting planes whih are addedto the root node of the branh-and-bound tree. Branhing is performed with abest-node-�rst strategy, �rst on the number of vehiles (if frational) and then onthe ar (i, j) ∈ A, where the produt cij · min{x̄ij , 1 − x̄ij} of ost and deviationfrom the next integer is maximum.We �rst evaluate the two ar-elimination methods w.r.t. the perentage of ars thatan be eliminated using di�erent algorithmi setups. Seond, we brie�y omparethe omputational e�ort. Third, we analyze the aeleration of the entire branh-and-prie-and-ut algorithm aused by ar elimination. All algorithms were odedin C++, ompiled in release mode with MS-Visual C++ version 6.0; all runs wereperformed on a standard PC (Intel x86 family 15 model 2) with 2.8 GHz, 1GBmain memory, on MS-Windows 2000. 17



4.1 Perentage of Eliminated ArsThe number of di�erent possible setups for the branh-and-prie-and-ut algorithmis huge. The most important parameters are summarized in Table 1: k-yle elim-Parameter Values Desriptionused hereMethod W, B W=Walker's method (Algorithm 2/3),B=Bidiretional method (Algorithm 4)
k 2, 3 and 4 k-yle eliminationuts 1-p, 2-p use of 1-path uts alone/with 2-path uts

UB opt + x% with x = quality of the upper bound supplied
0%, 0.1%, 0.5% and 1% to W and BTable 1Parameters Controlling the Branh-and-Prie-and-Cut Algorithm and Ar Eliminationination leads to tighter relaxations of the master problem if k is inreased. Withinreasing k ∈ {2, 3, 4}, the e�ort of solving the subproblem grows, the integral-ity gap dereases, and one an expet smaller branh-and-bound trees. The use of

1-path uts (i.e., subtour-elimination onstraints) is standard, sine these uts aree�iently separable. Additional 2-path uts require more sophistiated separationsproedures, in whih the solution of TSPTW is an algorithmi omponent. Theyoften help to substantially derease the remaining integrality gap, so that one analso expet a redution of the tree size. Finally, the quality of the upper bound
UB provided to both methods, W and B, diretly determines how many ars anbe eliminated. In order to be able to use omputed redued osts rij and r̄ij notonly at the moment when they are omputed, but also when new improved up-per bounds UB beome available, we store the following information: For all ars
(i, j) ∈ A, the objetive of the dual feasible solution πb + µ plus the redued ost
rij or r̄ij is stored as lower bounds lbij = πb + µ + rij or lbij = πb + µ + r̄ij . Theselower bounds an be ompared with any upper bound UB and allow the elimina-tion of all ars with lbij > UB for method W and lbij > UB for method D. Thefollowing analysis supplies di�erent upper bounds of UB = (1 + x) · opt to bothmethods, where opt is the ost of an optimal solution and x the deviation from it.Values for x between 0% and 1%, as given in Table 1, seem realisti, sine good(meta)heuristis often produe high-quality solutions very lose to the optimum.For eah VRPTW instane, the variation of the parameters given in Table 1 leavesus with 48 di�erent setups to analyze. In order to keep the omputational exper-iments onise and the amount of data to be displayed small, we deided to �rsthoose four instanes whih re�et a `typial behavior' of a group of instanes.Later, we summarize results from a larger data set. A meaningful way to visual-ize the 48 data points is to ompare the perentage of eliminated ars with the18



following gap
gap =

UB − lb[1,2](k)

opt
= 1 + x −

lb[1,2](k)

opt
. (11)Herein, lb(k), lb1(k) and lb2(k) are the lower bounds πb + µ provided by the LP-relaxation of (DWM) using k-yle elimination and no uts, 1-path uts, and 1-pathuts and 2-path uts, respetively.Figure 1 depits the relationship between gap (based on lb1(k) or lb2(k) dependingon 1-p/2-p) and the perentage of ars eliminated for four representative in-stanes. The obvious result of all omputations is that method B an always elimi-nate a signi�antly larger portion of the ars than method W an. This qualitativeresult is not surprising, sine we have proven in Setion 3.3 that rij ≤ r̄ij holds,and, therefore, that every ar eliminated by method W an also be eliminated bymethod D. The empirial and quantitative result is interesting: B eliminates up to20% more ars than W (100% is the number of ar after resoure window redution(see Desrosiers et al., 1995)).The �rst instane R103.100, depited in Figure 1, is an example of an instanewhere (DWM) produes tight lower bounds for opt independent of the k-yle elim-ination and utting-plane approah hosen. For all setups, the integrality gap (opt−

lb[1,2](k))/opt is about 0.2%. This means that this partiular instane does not tendto produe bad frational solutions with many yles and insu�ient overed sub-sets of ustomers. Here, the number of eliminated ars primarily depends on thequality of upper bounds. W and D di�er (for otherwise idential parameters), byabout 10%.Instane RC107.100 shows that the parameters k and 1-p/2-p an also havean impat on the gap. One an learly see that the most important determiningfator for the perentage of eliminated ars is gap, likewise for both methods Wand B. There is a nearly linear dependeny between gap and the portion of arseliminated. The presene of additional 2-path uts learly dereases the gap and(eteris paribus) leads to the elimination of more ars. However, 2-path uts seem-ingly make both methods behave less e�etively when gap and eliminated arsare ompared (a parallel shift of the points to the left/bottom). We interpret thisbehavior as follows: The additional 2-path uts mean more onstraints in (DWM)and, hene, more path variables λP in basis. The result is more ars with reduedost 0.For the instane R112.50, the integrality gap is between 2.2% and 3.7% for di�erenthoies of k and 1-p/2-p. For the bidiretional method, the dependeny between
gap and the perentage of eliminated ars is nearly linear (linear regression yields
% arcs eliminated = 89, 1% − 8.59 · gap with error R2 = 0.97). The method Wdoes not show suh a diret dependeny. Instead, for di�erent values of k, thedependeny seem to be linear, but di�erent `stripes' result from variations of k.The interesting observation is here that inreasing values of k, on the one hand,19
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Fig. 1. Perentage of Eliminated Ars relative to Gap gap; Note the di�erent Sales ofthe Axes and the di�erent Groupingsimprove the lower bound of (DWM), and on the other hand, lead to a largernumber of labels generated in SPPRC-k-y, whih, in turn, makes method Wwork less e�etively. We interpret this result as follows: Both e�ets are onurringand, therefore, runs of the branh-and-prie-and-ut algorithm, just di�ering inparameter k, roughly eliminate the same number of ars.The instane RC205.50 shows a di�erent behavior. The integrality gap substantially20



depends on the hosen relaxation, i.e., on k and 1-p/2-p, and varies from 0% for
k = 4 and 2-p to about 14% for k = 2 and 1-p. Hene, the ability of the twoar-elimination methods mainly depends on the gap. The di�erene between Wand D (up to about 5%) is smaller than has been observed for the other instanes.The smaller the gap, the larger the di�erene between W and D.Figure 2 depits the di�erene between the lower bounds lbij and lbij for the in-stane R205.100. The priing network N = (V,A) onsists of 7,327 ars (=100%),
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lbij ; Dots=Values lbij forthe Same Ar (i, j)whih ould not be eliminated by resoure windows strengthening tehniques dur-ing the pre-proessing phase. The LP-relaxation of the master program is solvedwith 4-yle elimination and 1-path uts. At the root node of the branh-and-boundtree (when all 1-path uts are added), the 7,327 ars (i, j) ∈ A are sorted aordingto the values lbij . In this ordering, the two series of lower bounds, i.e., lbij and lbij ,are shown in Figure 2. The bottom level at lb = 935.35 orresponds to all arswith redued ost 0. These ars get a lower bound lbij idential to the objetiveof (DWM). Walker's method yields 1,218 ars (= 16.6%) with rij = 0 but only303 ars (=4.1%) have r̄ij = 0 in method B. With the upper bound UB = opt,method W eliminates 3,518 ars (=48%) while method B eliminates 4,696 ars(=64%).4.2 Computational E�ortThe omputational e�ort of ar elimination by Walker's method and by the bidire-tional method is ompared next. Both methods use dual feasible solutions (π, µ)of (DWM), whih are available and globally valid whenever a root node of thebranh-and-bound tree is solved to optimality. By the addition of utting planes,di�erent (improved) root nodes are solved suh that methods W and B are, ingeneral, invoked more than one. (In priniple, it would be possible to use bothmethods in the entire branh-and-bound tree, but then lower bounds lbij and lbijfor eah ar would have to be stored at eah node of the tree.) The input datafor method W is a monodiretional solution to the SPPRC-k-y subproblem ap-plied to PP(π, µ), whih is available without any additional e�ort at the end of the21



olumn-generation proess at eah node. Contrary, method B also needs a solutionto the bakward SPPRC-k-y, whih must be omputed on top of what is freelyavailable. Hene, we an expet that method B is omputationally more ostlythan method W. Both Algorithms 2/3 and 4 then roughly do the same: They loopover all ars (i, j) ∈ A and ompare (extended) labels of node i with other labelsof node j.For the seletion of a reasonable set of test instanes, we have hosen the followingrules. The best ombination of the parameters k for k-yle elimination and 1-p/2-p are taken from (Irnih and Villeneuve, 2006). Moreover, we only onsideran instane if its branh-and-bound tree ontains more than 10 nodes and theoverall omputation time does not exeed 3,600 seonds. Note that the setup in(Irnih and Villeneuve, 2006) was slightly di�erent, sine additional tehniques forthe aeleration of the priing were used. Using these rules, 33 instanes result.They are given in the �rst olumn of Table 2 and will be used in this and in thenext subsetion.Besides the detailed results of Table 2, we have the following overall results: Theomputation times for method B are, by fators of between 1.7 and 7.5 (with anaverage of 3.5), longer than those for method W. For method B, the portion ofits time spent on solving the inverse SPPRC widely varies from about 9% to 85%,with an average of 32%. A single all of method B takes between less than 0.1%and up to about 12% (avg. 2.8%) of the time needed to solve the root nodes.The results show that the omputing power neessary to use redued ost infor-mation of paths from the master to eliminate ars is not negligible, but makes uponly a fration of the overall omputing time. Only if the speedup for the entirebranh-and-bound tree overompensates the additional e�ort, do ar-eliminationmethods pay o�. This issue will be analyzed next.4.3 Impat on the Branh-and-Bound Tree�Overall AelerationThe preeding setions have shown that the bidiretional method outperforms themethod of Walker w.r.t. the number of eliminated ars, while its omputationale�ort seems still omparable to that of Walker's method. The relevane of the ad-ditional omputational e�ort vanishes when hard-to-solve instanes with a largebranh-and-bound tree are onsidered. Therefore, we analyze solely the bidire-tional method and its impat on the omputation times of the branh-and-priealgorithm.Table 2 summarizes the omputational analysis and ontains the following infor-mation. The name of the instane and the best parameters k and 1-p/2-p aregiven in the �rst two olumns (.25, .50, and .100 refers to the number of ustomersin the respetive instane). The olumn gap refers to the gap as de�ned by (11)with UB = opt and with lb(k) (lbf (k)) the lower bound omputed by (DWM)before (after) adding utting planes. The number of ars before and after mul-tiple alls of the bidiretional method is given in the fourth olumn. In order tomake the standard branh-and-prie algorithm (std) omparable with the one using22



method B, we �rst ompute the branh-and-bound tree with (std) and reord thebranhing deisions. Subsequently, the branh-and-prie algorithm with method Bis run, using the reorded branhing deisions. This guarantees that the tree hasthe same struture (otherwise, due to degeneray, trees ould beome di�erent).However, method B an lead to tighter bounds in the tree so that some nodesan be pruned in addition to those pruned by (std) ([+std℄ is the number of thesenodes given in olumn Tree). The next two olumns ompare the times of (std) andbranh-and-prie with method B whih are needed to solve the root nodes of thebranh-and-bound tree, i.e., to �nish the �rst node with lower bound lb(k) and thelast root node with lower bound lb1(k) or lb2(k). For the �rst root node, the om-putation times di�er exatly in the time method B needs to ompute the reduedosts of all ars (the absolute di�erene is shown as +B and the relative di�ereneas %). After the elimination of some ars, utting planes are iteratively added to(DWM) whih is then re-optimized and method B is invoked again. On the onehand, these additional runs of method B inrease the omputation time for the lastroot node. On the other hand, method B iteratively redues the size of the priingnetwork, whih an lead to a speedup of the re-optimization. Hene, the values
±B and % for the seventh olumn, referring to the last root node, an be positiveor negative. Similarly, the remaining olumns show the overall time (Time all)and the time spent in the branh-and-bound tree (Time tree) for solving non-rootnodes. The latter time does not inlude the time spent on solving the root nodes.This information is signi�ant, sine it shows the impat of the full ar-eliminationmethod B on the omputing times. All values −B and % are negative beausesolving master programs (with additional branhing onstraints) always takes lesstime when the priing networks N are smaller. The speedup fators in the ninthand last olumn are the quotients of the times for (std) and branh-and-prie withmethod B.The results an be summarized as follows: The gap after adding utting planes isbetween 0.05% and 8.9%, with an average of 1.3%. Branh-and-bound tree sizesvary from 11 to 370 nodes (multiple re-optimizations after adding 1-path or 2-path uts are ounted as additional (root) nodes of the tree). Conform with theresults reported in Setion 4.1, the perentage of ars that method B an eliminatemainly depends on the gap. As a rule of thumb we state: With a gap of 1% onean eliminate approximately 80% of the ars.The additional e�ort of method B relative to the time neessary to solve the�rst root node (olumn Time root 1 ) is relevant and an take up to about 50%(avg. 28%) for 25 ustomer instanes, up to 34% (avg. 17%) for 50 ustomers, andup to 6% (avg. 4%) for 100 ustomers. The larger the instanes, the smaller theadditional e�ort of a single all of method B. The additional e�ort of method Bfor solving the root nodes with utting planes (olumn Time root 2 ) an inreaseto 85% of the time that (std) onsumes. However, for some instanes, the e�ort ofapplying Algorithm 4 is overompensated by the faster priing, so that the di�er-ene of the omputing times an derease. For three instanes, C207.25, RC202.50,and RC105.100, method B already pays o� only for solving the root nodes.23



The most important results are related to the speedup gained by method B on theoverall solution proess and the speedup within the branh-and-bound tree. Thereis only one instane, RC101.100, out of the 33 instanes, for whih method B doesnot aelerate the overall solution proedure (it takes 20% longer; 22 uts are addedto 13 root nodes, so that method B is invoked 13 times). However, the non-rootnodes bene�t from the elimination of ars by an aeleration of fator 1.9. All otherinstanes are solved faster when method B is integrated. The speedups vary fromfators of between 1.05 and 18.9 (avg. 2.8). If the time for solving the root nodesis exluded, the aeleration fators in the tree are signi�antly higher and varybetween 1.3 and 29.2 (avg. 5.1). The largest speedups an be observed for instanesof the seond series (C2, R2, RC2) of the Solomon (1987) benhmark problems,sine these tend to have longer routes and harder-to-solve subproblems. Finally,we ould not �nd a statistial orrelation between the gap and the aelerationin perent or the speedup fators (linear regression gives R2 ≈ 0.07 and R2 ≈
0.02, respetively). It remains unlear to us whih properties of an instane andparameters of the solution method determine the overall speedup.5 ConlusionsThe paper has provided insights into the relationship between redued osts ofpaths in extensive olumn-generation formulations and redued osts of ars inoriginal ompat formulations. Both types of redued osts an be used for theelimination of ars, and two pratial methods are available: The adaption of a�rst tehnique, originally proposed by Walker (1969), allows the omputing of re-dued osts of original variables from an extensive olumn-generation model whendual feasible solutions to the master and the subproblem are known. This methodis however restrited to subproblems whih an be formulated as pure linear pro-grams. The other tehnique is newly proposed in this paper and is based on solvingthe s-t SPPRC subproblem twie, i.e., with bidiretional methods as an s-to-all for-ward and as an t-to-all bakward SPPRC. The paper has theoretially proven thatthe bidiretional method is superior in the sense that it always provides bounds forar elimination that are at least as good as those omputed by Walker's method.Moreover, both methods were empirially tested on standard benhmark problemsfor the VRPTW. On the one hand, the omputational e�ort of the bidiretionalmethod is slightly higher than the e�ort needed for Walker's method. On theother hand, the bidiretional method an onsistently remove more ars (up to20% more) and often leads to SPPRC subproblems from whih 80%-90% of thears are eliminated: Roughly, with a gap of 1% one an eliminate 80% of thears. Empirially tested on 33 VRPTW instanes, this aused a signi�ant overallspeedup with fators of between 1.3 and 29.2, with an average fator of 5.1.A promising trend in olumn generation approahes for VRPs is that of solvingsubproblems with (good) heuristis and exatly solving the hard (E)SPPRC only avery few times, hopefully only to show optimality (see, e.g., Xu et al., 2003; Jepsenet al., 2006; Desaulniers et al., 2006). The extensive use of heuristis is learly24



another way of speeding up priing, and we expet that the ombination of ar-elimination tehniques with heuristis will still improve these highly sophistiatedimplementations, even if the speedups are probably smaller.The proposed ar-elimination algorithm an be seen as a ooperative sheme, inwhih exat and heuristi algorithms an both bene�t. Thus far, exat algorithmsprimarily bene�t from good integer solutions for bounding. One of the few papersdisussing ooperative approahes in exat vehile-routing is that by Danna andLe Pape (2005). In the future, heuristis may provide (at an early point in time)good upper bounds, whih are useful in the exat method for eliminating arsand aelerating the exat approah. In turn, exat algorithms an provide sparserunderlying networks for the heuristis, still guaranteeing that the heuristis an�nd an optimal solution, but faster, beause of the smaller underlying networks.The latter approah is an exat intensi�ation method.Finally, the adaptation of the proposed variable-elimination tehniques to otherolumn-generation formulations is another interesting path of future researh: Then,subproblems of di�erent ombinatorial strutures suh as, e.g., trees, seletions,pakings et. have to be onsidered. The goal here would again be the devisingof e�ient variable-elimination tehniques that lead to smaller instanes of thepriing subproblems and to speedups for the overall olumn-generation approah.ReferenesAhuja, R., Magnanti, T., and Orlin, J. (1993). Network Flows: Theory, Algorithms,and Appliations. Prentie Hall, Englewood Cli�s, New Jersey.Barnhart, C. and Shneur, R. (1996). Air network design for express shipmentservie. Operations Researh, 44(6), 852�863.Barnhart, C., Johnson, E., Nemhauser, G., Savelsbergh, M., and Vane, P. (1998).Branh-and-prie: Column generation for solving huge integer programs. Oper-ations Researh, 46(3), 316�329.Barnhart, C., Hane, C., and Vane, P. (2000). Using branh-and-prie-and-utto solve origin-destination integer multiommodity �ow problems. OperationsResearh, 48(2), 318�326.Boland, N., Dethridge, J., and Dumitresu, I. (2006). Aelerated label settingalgorithms for the elementary resoure onstrained shortest path problem. Op-erations Researh Letters, 34(1), 58�68.Danna, E. and Le Pape, C. (2005). Branh-and-prie heuristis: A ase study onthe vehile routing problem with time windows. In Desaulniers et al. (2005),hapter 4, pages 99�129.Dell'Amio, M., Righini, G., and Salani, M. (2006). A branh-and-prie approahto the vehile routing problem with simultaneous distribution and olletion.Transportation Siene, 40(2), 235�247.Desaulniers, G., Desrosiers, J., Dumas, Y., Mar, S., Rioux, B., Solomon, M. M.,and Soumis, F. (1997). Crew pairing at Air Frane. European Journal of Oper-ational Researh, 97, 245�259. 25
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AppendixA Results on the Dual of Some Extended and Reformulated ModelsWe onsider a standard linear program (P) and an equivalent reformulation (P ′
ext)of (P), where additional variables w are uniquely determined by the variables v of(P) and no other onstraints on the new variables exist:

min g⊤v

(P ) s.t. Mv ≥ m (α)

v ≥ 0

min g⊤v + 0
⊤w

(P ′
ext) s.t. Mv + 0w ≥ m (β)

Nv − w = 0 (γ)

v ≥ 0, w ∈ R
qProposition 1 Models (P) and (P ′

ext) are equivalent in the sense of the followingpoints (i) and (ii).(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible (op-timal) solution (v, w) = (v, Nv) to (P ′
ext), and vie versa. [Feasible orrespondsto feasible, optimal to optimal solution.℄(ii) Every dual feasible (optimal) solution α to (P) implies a dual feasible (optimal)solution (α, 0) to (P ′

ext), and vie versa. Every dual feasible solution to (P ′
ext)has γ = 0.(iii) For every dual feasible solution (β, γ) to (P ′

ext), the redued ost of the vari-ables w are 0.This Proposition is only partly intuitive when one interprets it in the followingway: The equality w = Nv is easy to ful�ll sine unbounded and unonstrainedvariables w an simply be set equal to Nv. Hene, the dual prie of the onstraints
Nv − w = 0 is zero, sine it an be ful�lled without imposing additional osts.However, the fat that the redued osts of all variables w are zero is somehowsurprising. Marginally inreasing one of the variables we diretly implies that someof the vf (for nef 6= 0) have to be adapted also. The redued ost of we should,therefore, be expressible in the redued osts of the variables vf , whih is obviouslyhere not the ase.From now on we are only interested in the speial ase that N ∈ Z

q×p
+ holds, i.e.,every variable we is a (non-negative) sum of some variables vf . The assumption thatall entries of N are non-negative implies that w = Nv ≥ 0 holds. Let (Pext) denotethe model (P'ext) together with the onstraint w ≥ 0 (and with the assumption

N ∈ Z
q×p
+ ). The addition of the non-negativity onstraints w ≥ 0 is nothing buta formal devie; it enables us to derive more interesting results than those statedfor (P ′

ext):Proposition 2 Models (P) and (Pext) are equivalent in the sense of the followingpoints (i) and (ii). Statements about the relationship of dual solutions and redued28



osts are given by (iii)-(v):(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible(optimal) solution (v, w) = (v, Nv) to (Pext), and vie versa.(ii) Every dual feasible (optimal) solution α to (P) implies a dual feasible (optimal)solution (α, 0) to (Pext), and vie versa.(iii) Every dual feasible (optimal) solution α to (P) implies a set
∆(α) =

{

(α, γ) : γ ≥ 0, Nγ ≤ g⊤ − αM
}of dual feasible (optimal) solutions to (Pext). Moreover, any dual feasible (op-timal solution (β, γ) to (Pext) ful�lls (β, γ) ∈ ∆(β).(iv) Let a dual feasible (optimal) solution α to (P) (or, equivalently, (α, 0) to(Pext)) be given.For any index e∗ ∈ {1, . . . , q}, a vetor γ = (γe) with

0 ≤ γe∗ ≤ min
f∈{1,...,p}:ne∗,f 6=0

gf − (αM)f

ne∗,f

≤ min
f∈{1,...,p}:ne∗,f 6=0

gf − (αM)f (A.1)and γe = 0 for all e 6= e∗ ful�lls (α, γ) ∈ ∆(α), i.e., implies another dual feasible(optimal) solution to (Pext). For 0-1-matries N , the seond inequality holdsas an equality.Conversely, for any dual feasible (optimal) solution (β, γ) to (Pext), theomponents of γ are all (individually) onstrained by inequality (A.1).For the original dual feasible (optimal) solution (α, 0) to (Pext), the right-most term in (A.1) is the minimum redued ost of all variables vf involvedin the equality for we∗.(v) For every (β, γ) feasible dual solution to (Pext), the value γe is the reduedost of the variable we.Next, we onsider three di�erent reformulations of (Pext), where the ost vetor gan be expressed as g⊤ = h⊤N and the oe�ient matrix M an be expressed as
M = QN . Beause of w = Nv, it means that one an either express the objetiveby g⊤v or h⊤w and, similarly, the onstraints either by Mv ≥ m or Qw ≥ m.

min 0
⊤v + h⊤w min g⊤v + 0

⊤w min 0
⊤v + h⊤w

(P 1,2,3
ext ) s.t. Mv + 0w ≥ m s.t. 0v + Qw ≥ m s.t. 0v + Qw ≥ m (β1,2,3)

Nv − w = 0 Nv − w = 0 Nv − w = 0 (γ1,2,3)

v ≥ 0, w ≥ 0 v ≥ 0, w ≥ 0 v ≥ 0, w ≥ 0Proposition 3 Models (Pext) and (Pk
ext), k = 1, 2, 3 are equivalent in sense of thefollowing point (i). The relationship between the dual solutions and redued ostsof the four models is given by (ii) and (iii):(i) Every primal feasible (optimal) solution (v, w) to (Pext) is a primal feasible(optimal) solution to (Pk

ext), k = 1, 2, 3 and vie versa.29



(ii) Every dual feasible (optimal) solution (β, γ) to (Pext) implies a dual feasible(optimal) solution (βk, γk) to (Pk
ext), k = 1, 2, 3 and vie versa. The relation-ship between the dual solutions is

(

β1

γ1

)

=

(

β

γ − h⊤

) (

β2

γ2

)

=

(

β

γ + βQ

) (

β3

γ3

)

=

(

β

γ + βQ − h⊤

)

.(iii) Every dual feasible solution to (Pext) or (Pk
ext), k = 1, 2, 3 as given in (ii)imposes the same redued ost γ of the variables w.Proofs of all three propositions are straightforward based on elementary linearprogramming theory.
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Instane Param gap w.r.t. Ars Tree Time root 1 Time root 2 Time all Speed- Time tree Speed-
k =, f-p (lb(k)/lbf (k)) (std/B/% elim) (B[+std℄) (std/+B/%) [s℄ (std/±B/%) [s℄ (std/±B/%) [s℄ up all (std/−B/%) [s℄ up treeR110.25 2, 1-p 1.5/1.5 526/136/74% 21 0.3/0.02/6% 0.3/0.02/6% 1.9/-0.6/-34% 1.5 1.6/-0.6/-40% 1.7R112.25 2, 2-p 2.2/1.9 646/157/76% 15 0.8/0.2/23% 3.2/0.2/6% 5.1/-0.9/-18% 1.2 1.9/-1.1/-57% 2.3C204.25 2, 1-p 1.0/1.0 622/113/82% 11 3.4/1.3/40% 5.4/0.2/4% 52.1/-37.1/-71% 3.5 46.8/-37.3/-80% 4.9C207.25 3, 1-p 1.4/0.05 463/71/85% 11[+1℄ 0.8/0.3/34% 2.8/-0.3/-11% 6.5/-3.7/-57% 2.3 3.7/-3.4/-91% 10.8R203.25 3, 1-p 1.1/1.1 596/126/79% 7 0.8/0.1/16% 0.8/0.1/16% 3.2/-1.6/-52% 2.1 2.4/-1.8/-73% 3.8R204.25 4, 1-p 1.7/1.7 627/141/78% 23[+8℄ 4.7/2.3/49% 4.7/2.3/49% 369.2/-349.7/-95% 18.9 364.5/-352.0/-97% 29.2R207.25 3, 1-p 1.2/0.8 609/119/80% 25 1.0/0.2/22% 1.7/0.06/3% 18.6/-12.9/-69% 3.3 16.9/-12.9/-76% 4.3R208.25 3, 1-p 1.5/1.5 631/139/78% 16 2.9/1.1/38% 4.1/0.5/13% 53.5/-35.8/-67% 3.0 49.4/-36.3/-73% 3.8R211.25 4, 1-p 3.1/3.1 647/244/62% 137[+2℄ 5.3/0.6/11% 5.3/0.6/11% 1038.4/-813.8/-78% 4.6 1033.1/-814.4/-79% 4.7RC203.25 4, 1-p 13.4/8.9 596/422/29% 370[+4℄ 4.6/2.1/46% 9.0/7.7/85% 3884.2/-1825.9/-47% 1.9 3875.2/-1833.7/-47% 1.9RC207.25 4, 1-p 11.3/6 561/300/47% 126[+8℄ 3.2/1.1/35% 7.1/0.4/6% 771.6/-352.8/-46% 1.8 764.4/-353.2/-46% 1.9R103.50 3, 2-p 0.6/0.5 1969/233/88% 17 3.8/0.6/15% 11.2/0.7/6% 17.5/-3.3/-19% 1.2 6.3/-4.0/-64% 2.8R104.50 3, 2-p 1.1/0.6 2397/295/88% 24[+2℄ 12.8/3.8/29% 32.6/0.0/0% 234.9/-189.9/-81% 5.2 202.3/-189.9/-94% 16.3R107.50 3, 2-p 0.9/0.7 2091/285/86% 22 6.9/0.9/13% 11.5/0.7/6% 34.5/-17/-49% 2.0 23.0/-17.7/-77% 4.3R109.50 3, 2-p 1.5/1.3 1533/385/75% 137[+2℄ 4.4/0.2/4% 11.8/0.0/0% 91.6/-35.5/-39% 1.6 79.8/-35.4/-44% 1.8R110.50 4, 2-p 0.4/0.1 2018/163/92% 11 6.3/0.9/14% 15.0/0.1/1% 19.6/-3.8/-19% 1.2 4.6/-3.8/-83% 5.9R111.50 3, 2-p 2.0/1.7 2034/574/72% 109[+2℄ 6.1/1.0/17% 22.5/1.1/5% 172.1/-78.1/-45% 1.8 149.6/-79.3/-53% 2.1R112.50 3, 2-p 2.7/2.4 2527/777/69% 976 10.8/2.4/22% 29.6/2.2/7% 6059.9/-3284.5/-54% 2.2 6030.3/-3286.7/-55% 2.2RC102.50 3, 2-p 12.4/1.1 1462/433/70% 139[+12℄ 5.4/0.4/7% 36.8/0.9/2% 137.5/-57/-41% 1.7 100.7/-57.9/-57% 2.4RC106.50 4, 2-p 8.1/0.4 1242/304/76% 16 3.1/1.1/34% 17.3/1.9/11% 24.4/-4.2/-17% 1.2 7.0/-6.1/-87% 8.0RC107.50 4, 2-p 6.3/0.5 1834/331/82% 19 26.5/7.2/27% 72.8/2.8/4% 257.5/-165.9/-64% 2.8 184.8/-168.6/-91% 11.5R203.50 3, 1-p 1.1/1.1 2295/406/82% 11 23.0/4.6/20% 23.0/4.6/20% 90.4/-48.2/-53% 2.1 67.5/-52.7/-78% 4.6R205.50 4, 1-p 1.1/1.1 1878/370/80% 141 13.1/0.4/3% 13.1/0.4/3% 991.9/-721.1/-73% 3.7 978.9/-721.5/-74% 3.8RC202.50 4, 1-p 3.9/1.5 1973/424/79% 23[+6℄ 16.9/2.5/15% 32.8/-4.0/-12% 375.5/-301.4/-80% 5.1 342.7/-297.3/-87% 7.6RC206.50 4, 1-p 2.5/2.1 1860/510/73% 62 16.8/1.6/9% 20.9/0.5/3% 533.4/-377.2/-71% 3.4 512.5/-377.8/-74% 3.8R101.100 2, 2-p 0.4/0.2 3243/309/90% 10[+2℄ 29.0/1.1/4% 56.0/1.4/3% 65.6/-3/-5% 1.05 9.6/-4.5/-47% 1.9R103.100 2, 2-p 0.2/0.2 7704/473/94% 37 105.8/4.9/5% 253.3/5.7/2% 602.1/-289.3/-48% 1.9 348.9/-295.0/-85% 6.5R105.100 2, 2-p 0.7/0.4 4260/563/87% 47 64.2/3.0/5% 133.7/3.9/3% 239.1/-18.6/-8% 1.1 105.3/-22.6/-21% 1.3R106.100 2, 2-p 0.7/0.6 6558/996/85% 208 82.5/4.8/6% 149.2/4.7/3% 2220.1/-1174.7/-53% 2.1 2070.9/-1179.4/-57% 2.3RC101.100 2, 2-p 2.2/0.1 3641/343/91% 13[+1℄ 72.0/1.4/2% 261.8/65.0/25% 278.0/56.1/20% 0.8 16.2/-9.0/-55% 2.2RC105.100 2, 2-p 2.8/0.3 5249/502/90% 16[+9℄ 76.0/3.5/5% 521.3/-57.1/-11% 563.6/-90.1/-16% 1.2 42.3/-33.0/-78% 4.5R201.100 4, 1-p 0.3/0.3 5917/435/93% 35 105.1/2.3/2% 105.1/2.3/2% 1183.6/-845.4/-71% 3.5 1078.6/-847.6/-79% 4.7RC201.100 4, 1-p 0.5/0.5 5918/585/90% 101[+6℄ 114.1/5.4/5% 114.1/5.4/5% 3686.8/-2602.9/-71% 3.4 3572.7/-2608.4/-73% 3.7

Table2ImpatofBidiretionalMethodonBranh-and-BoundTree
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