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tIn many 
olumn-generation algorithms, the pri
ing problem 
onsists of 
omputing feasi-ble s-t-paths in a network. Examples stem from routing and s
heduling appli
ations intransportation, as well as from produ
tion and tele
ommuni
ation. The 
ontribution ofthis paper is to show how redu
ed 
osts of paths 
an be used to remove some ar
s fromthe underlying network, where shortest-path subproblems are iteratively solved. This 
anlead to a substantial speedup of the pri
ing pro
ess and the overall bran
h-and-pri
e al-gorithm, for whi
h the optimality of the solution is still guaranteed. Spe
ial attention isgiven to variants of shortest-path problems with resour
e 
onstraints and path-stru
tural
onstraints. A by-produ
t of the analysis is several new insights into redu
ed 
osts anddual solutions of some 
olumn-generation reformulations whi
h are valuable in the 
ontextof robust bran
h-and-pri
e-and-
ut algorithms. Computational results show the usefulnessof the proposed methods.Key words: 
olumn generation, shortest paths, variable �xing, variable elimination1 Introdu
tionExtensive formulations with many variables are widely used in integer program-ming models for hard 
ombinatorial optimization problems. The elimination ofmany variables from a formulation is attra
tive, sin
e smaller problem instan
es 
anoften be solved signi�
antly faster. One te
hnique for variable elimination/�xingis based on redu
ed 
ost arguments and works as follows: Given an integer lin-ear program, if the redu
ed 
ost of a non-negative integer variable in the linear-programming relaxation ex
eeds the optimality gap, the variable is zero in everyoptimal integer solution. It 
an therefore be �xed to zero or, equivalently, elimi-nated from the problem formulation.
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Column-generation models (see Lübbe
ke and Desrosiers, 2006; Desaulniers et al.,2005) use extensive formulations, often with millions or even billions of variables.At �rst glan
e, however, 
olumn-generation formulations are not well-suited toapplying variable �xing dire
tly: The solution pro
ess starts with an already smallsubset of variables, the number of newly generated variables is small relative to thenumber of feasible variables, and newly generated variables have negative redu
ed
osts, but only w.r.t. the 
urrent dual variables whi
h are an approximation of theoptimal dual variables. Nevertheless, variable elimination 
annot only be appliedto the 
olumn-generation master program, but also to the pri
ing subproblem. Inthis paper, we apply it to formulations where the subproblems 
onstitute variantsof shortest-path problems. The elimination of ar
s from the underlying network
an lead to a substantial speedup of the pri
ing subproblem and, therefore, of theoverall bran
h-and-pri
e algorithm.The te
hnique proposed here is widely appli
able be
ause, in the majority of
olumn-generation algorithms presented in the literature thus far, pri
ing prob-lems 
onsist of 
omputing feasible s-t-paths in networks. Additional 
onstraintslimit s
ar
e resour
es along the path or imply 
onstraints on the stru
ture of paths(
f. Irni
h and Desaulniers, 2005). Examples stem from routing and s
hedulingappli
ations in transportation, as well as from produ
tion and tele
ommuni
a-tion, e.g., vehi
le routing (Desro
hers et al., 1992), vehi
le s
heduling (Ribeiro andSoumis, 1994), 
rew s
heduling (Desaulniers et al., 1997; Van
e et al., 1997; De-saulniers et al., 1998a; Gama
he and Soumis, 1998), and network design (Barnhartand S
hneur, 1996; Barnhart et al., 2000). A unifying formulation and 
olumn-generation solution approa
h for these and other appli
ations has been presentedby Desaulniers et al. (1998b).The paper is stru
tured as follows: Se
tion 2 is intended to establish basi
 nota-tion in order to des
ribe 
olumn-generation algorithms with well-stru
tured sub-problems in general. Next, Se
tion 3 
ontains the main theoreti
al results. Threedi�erent methods for the 
omputation of redu
ed 
osts are dis
ussed along withalgorithmi
 pro
edures. Computational results with an empiri
al 
omparison oftwo methods are reported in Se
tion 4. Final 
on
lusions are drawn in Se
tion 5.2 Column GenerationWe start with the original or 
ompa
t formulation (
f. Lübbe
ke and Desrosiers,2006) of an integer linear programming problem (IP), to whi
h Dantzig-Wolfede
omposition is applied later on:
z∗IP = min c⊤xs.t. Ax ≥ b (1a)

Dx = d (1b)
x ∈ Z

n
+ (1c)2



In the appli
ations we have in mind, the de
ision variables x are ar
-�ow vari-ables xij , (i, j) ∈ A of an underlying network N = (V,A). Moreover, x might 
on-tain additional sla
k or surplus variables, resour
e variables, and others (
f. uni�edmodel of Desaulniers et al., 1998b). (Note that some of the variables 
an be 
on-tinuous variables but this option is left out in order not to overload the notation.)Constraints (1a) are referred to as 
overing 
onstraints, while (1b) are 
onstraintsforming the well-stru
tured domain of the subproblem. The LP-relaxation obtainedby relaxing (1c) to x ≥ 0 will be referred to as problem (P).Let X = {x ∈ Z
n
+ : Dx = d} be the domain of the subproblem. For the sakeof simpli
ity, we assume that X is bounded and therefore �nite. Let Q be the

(n × p)-matrix whose 
olumns uniquely 
orrespond to elements of X. (Alterna-tively, one 
an de�ne Q over the set of extreme points of the 
onvex hull of X,i.e., using 
onvexi�
ation of X instead of dis
retization of X (see Lübbe
ke andDesrosiers, 2006, p. 1011f, for details)). The extensive formulation of (IP) utilizesthe equality X = {Qλ : 1
⊤λ = 1, λ ∈ {0, 1}p} and repla
es x by Qλ:

z∗IP = min (c⊤Q)λ (2a)s.t. (AQ)λ ≥ b (2b)
1
⊤λ = 1 (2c)

λ ≥ 0 (2d)
Qλ − x = 0 (2e)
x ∈ Z

n
+ (2f)Sin
e 
olumn-generation 
an only handle linear programs, one has to solve the LP-relaxation of (2) and embed the approa
h into a bran
h-and-bound s
heme (
alledbran
h-and-pri
e, see Barnhart et al. (1998)). For solving the LP-relaxation of (2),there is no need to keep the 
oupling 
onstraints (2e) in the master program. Hen
e,the Dantzig-Wolfe master program (DWM) is given by (2a)�(2d). However, Poggide Aragão and U
hoa (2003) suggested using the 
oupling 
onstraint (2e) to dire
tlyretrieve redu
ed 
osts of variables x from (DWM) or some further reformulation,
alled expli
it master (EM), see Se
tion 3.2.Re
all that the 
olumn-generation prin
iple always starts with a subset of the vari-ables λ, the so-
alled restri
ted master program (RMP), and iteratively generatesnew variables as they are needed. The pri
ing problem PP(π, µ) is de�ned for dualvariables π and µ of the 
overing 
onstraints (2b) and 
onvexity 
onstraints (2c) of(RMP). (Here and in the following, we assume that dual variables are representedby row ve
tors.) The solution to the pri
ing problem either delivers new nega-tive redu
ed-
ost variables (
olumns) or enables us to stop the iterative 
olumngeneration pro
ess:

z∗PP (π,µ) = min (c⊤ − πA)x − µs.t. Dx = d (3a)
x ∈ Z

n
+3



E�
ient 
olumn-generation approa
hes need `ni
ely' stru
tured domains X = {x ∈
Z

n
+ : Dx = d} in order to keep the e�ort of solving the pri
ing problem manageable.One well-stru
tured type of problem 
onsidered in the following is the shortest-pathproblem with resour
e 
onstraints (SPPRC) (see Irni
h and Desaulniers, 2005).Often, D has a diagonal stru
ture so that X de
omposes into several SPPRCs overidenti
al or di�erent networks N k = (V k,Ak). This o

urs when di�erent groups kof identi
al vehi
les or 
rews (or 
rew members) have to be routed or s
heduled. Forour analysis, we will assume a single network N = (V,A) with n vehi
les/
rews sothat D de
omposes into n identi
al blo
ks (of SPPRCs). The reformulation withgroups of (path) variables λ must repla
e the 
onvexity 
onstraint (2c) by 1

⊤λ = n,for whi
h we still assume that the dual variable is denoted by µ. Multiple networks
an be handled similarly: The only di�eren
e is that the 
onvexity 
onstraint (2c)has to be repla
ed by 
onstraints for ea
h group k of vehi
les/
rews, leading to
onstraints of the form 1
k⊤λk = nk for all k = 1, . . . , K (see Barnhart et al., 1998,Se
t. 2.1). Note that, in this 
ase, the dual variable µ is the sum µ1 + µ2 + . . . +

µK of the 
orresponding duals to these generalized 
onvexity 
onstraints. Notealso that K pri
ing problems 
an�formally and algorithmi
ally�be handled as asingle problem, when the K subnetworks are merged (as disjoint or partially jointnetworks) by adding super-nodes s and t 
onne
ted to the individual sour
es skand sinks tk for k ∈ {1, . . . , K} (e.g., Kallehauge et al., 2005, Se
t. 8.2).3 Variable EliminationGiven an integer-linear program (IP) with an upper bound uIP , with obje
tive
min c⊤x and 
onstraints Ax ≥ b, x ∈ Z

n
+, let ᾱ be a feasible solution to the dualof the linear-programming relaxation of (IP). For the eth non-negative integervariable xe, (c − ᾱA)e > uIP − ᾱb implies xe = 0 in any optimal solution to IP.Here, the term c− ᾱA is the ve
tor of redu
ed 
osts depending on the dual solution

ᾱ, denoted in the following by r = r(α). Con
luding, if the redu
ed 
ost of a non-negative integer variable ex
eeds the optimality gap, the variable must be zero inevery optimal integer solution.The 
entral question we address in this paper is the following: Can we use infor-mation from the solution of the 
olumn-generation master (DWM) and PP(π, µ)to eliminate some of the variables x of the original formulation (IP)? The answerto this 
an either be based on redu
ed 
osts of variables or any primal and dualinformation from the master and subproblem together with additional informationgenerated by some algorithmi
 pro
edures. For ar
-�ow variables x of the originalformulation (IP), their elimination imposes sparser networks in the pri
ing sub-problem. SPPRCs on redu
ed networks 
an typi
ally be solved faster, 
ausing aspeedup of the entire bran
h-and-pri
e pro
ess. This is parti
ularly true for largebran
h-and-bound trees, where several modi�ed master problems with additionalbran
hing or 
utting 
onstraints have to be solved. However, methods for eliminat-ing variables 
ause an additional e�ort on top of the 
olumn-generation solutionpro
edure. One goal of this paper is to identify su
h methods for variable elimi-nation, to 
larify 
onditions under whi
h they are appli
able, and to analyze their4




omputational e�ort. We will distinguish between three methods:(i) If PP(π, µ) 
an be solved as a pure linear program, i.e., X = {x ≥ 0 : Dx =
d}, the method of Walker (1969) is appli
able: The optimal dual solution to (P)is (π∗, ρ∗), where (π∗, µ∗) are optimal dual solutions to the 
onstraints (2b)and (2c) of (DWM), and ρ∗ is an optimal dual solution to PP(π∗, µ∗), i.e.,to min(c⊤ − π∗A)x, Dx = d, x ≥ 0. Redu
ed 
osts of x are then given by
r(π∗, ρ∗)⊤ = c⊤ − π∗A − ρ∗D.(ii) If (DWM) is solved with additional 
oupling 
onstraints (2e), redu
ed 
osts of
x 
an be dire
tly retrieved from the solution of the restri
ted master program,as suggested by Poggi de Aragão and U
hoa (2003).(iii) The new method we propose in this paper is the following: In order to elim-inate an ar
 (i, j) ∈ A, it is not ne
essary to 
ompute a redu
ed 
ost for its
orresponding ar
-�ow variable xij in the original formulation or some equiv-alent reformulation. Instead, we 
ompute minimum redu
ed 
osts of all pathvariables of (DWM) 
ontaining the ar
 (i, j). If this minimum ex
eeds a givenoptimality gap, no path that 
ontains the ar
 (i, j) 
an be used in an optimalsolution. Hen
e, the ar
 (i, j) 
an be eliminated.The following se
tions des
ribe the three methods in detail and�in parti
ular�dis
uss advantages and drawba
ks when these methods are applied to di�erenttypes of SPPRC subproblems. We assume that the reader is familiar with SPPRCand dynami
-programming solutions methods for SPPRC as, e.g., des
ribed in(Irni
h and Desaulniers, 2005). We also use the terminology established there.3.1 The Method of Walker (1969)The appli
ation of Walker's method dire
tly implies the following question: Whi
htypes of subproblems (=SPPRCs) 
an be formulated as pure linear programs andhow 
an we retrieve the optimal dual solution?3.1.1 Shortest-Path Problems without Resour
e ConstraintsShortest-path problems (SPP) without any resour
e and path-stru
tural 
onstraints
an be formulated and solved as LPs as long as the underlying network does nothave 
y
les of negative length. In 
olumn generation, negative 
y
les result fromredu
ed ar
 
osts c̃ij = c̃ij(π, µ) whi
h have to be assigned to the ar
s (i, j) ∈ Awhen solving the SPP on N = (V,A, c̃(π, µ)). A
y
li
 networks, e.g., arising aspri
ing problems in (pure) multi-depot vehi
le-s
heduling problems (Ribeiro andSoumis, 1994), 
an be solved as LPs. The LP has the in
iden
e matrix IN of thenetwork N as its 
onstraint matrix D and the right hand side is d = es − et, where

es and et are unit ve
tors 
orresponding to the sour
e node s and the sink node t.The LP formulation of the subproblem is
min c̃⊤x, s.t. INx = es − et, x ≥ 0. (4)5



Instead of solving the SPP with general-purpose LP solvers, one wants to use moree�
ient algorithms, su
h as dynami
-programming labeling algorithms. When solv-ing an s-t-shortest path problem with a labeling algorithm, the negative shortestpath distan
es, i.e., the negative labels (−ℓi)i∈V are identi
al to the dual variables
ρ = (ρi)i∈V to (3a) (see Ahuja et al., 1993, p. 136). Note that for pri
ing sub-problems, the shortest-path distan
es ℓ depend on π, be
ause the distan
es in thenetwork N = (V,A, c̃) are de�ned by c̃⊤ = c⊤ − πA; they do not depend on µ.The 
onsequen
e for a 
olumn-generation approa
h is the following: Whenever
(π, µ) is a feasible dual solution to (DWM), and (ℓi) are distan
e labels of thesubproblem, redu
ed 
osts of variables x 
an be 
omputed by r⊤ = r(π, ℓ)⊤ =
c⊤ − πA + ℓD. The interpretation of the redu
ed 
ost

rij = rij(π, ℓ) = cij − (πA)ij + ℓi − ℓj (5)for a single ar
-�ow variable xij is that the network 
ost c̃ij = cij − (πA)ij (used inthe subproblem) is perturbed by ℓi − ℓj (note that ℓD is a ve
tor of size |A| withentries ℓi − ℓj 
orresponding to the ar
s (i, j) ∈ A). There are several possibilitiesto 
ompute feasible dual solutions (π, µ) to (DWM): One is to wait until the end ofthe 
olumn-generation pro
ess (at a node of the bran
h-and-bound-tree), where theoptimal dual solution (π∗, µ∗) to the restri
ted master program is optimal to thedual of (DWM). Another possibility is to use an arbitrary optimal dual (π, µ) toany restri
ted master program together with the obje
tive value of PP(π, µ). It isstraightforward to prove that (π, µ+nz∗PP (π,µ)) is a feasible dual solution to (DWM).As a result, redu
ed 
osts 
an be 
omputed without an additional e�ort in everyiteration of the 
olumn-generation method, provided that the pri
ing problem is anSPP and is solved exa
tly. The reason for this is that optimal dual variables ρ toPP(π, µ+nz∗PP (π,µ)) only depend on π but not on µ or on z∗PP (π,µ) and that redu
ed
osts of x only depend on π and ρ = −ℓ.Note that the optimality 
onditions for shortest paths guarantee ℓj − ℓi ≤ c̃ij ,implying rij ≥ 0. If the (ℓi)i∈V are shortest-path distan
e labels, the redu
ed 
osts
rij are zero for all ar
s (i, j) ∈ A that are used by non-dominated labels, i.e., allar
s in the shortest-path tree.3.1.2 SPPRC without Path-Stru
tural ConstraintsWe brie�y re
all the basi
 de�nitions of shortest-path problems with resour
e
onstraints (SPPRC); for a 
omprehensive introdu
tion and analysis, we refer to(Irni
h and Desaulniers, 2005; Irni
h, 2006). For this se
tion, any kind of path-stru
tural 
onstraints, su
h as pre
eden
e, pairing, elementarity, or k-
y
le elimi-nation 
onstraints, are not present in the SPPRC formulation. Su
h `pure' subprob-lems arise frequently, for instan
e, in some vehi
le and 
rew s
heduling and 
rewrostering appli
ations (see, e.g., Desaulniers et al., 1997; Gama
he et al., 1999).Let N = (V,A) be a simple digraph. A path P = (e1, . . . , ep) is a �nite sequen
eof ar
s (some ar
s may o

ur more than on
e), where the head node of ei ∈ A is6



identi
al to the tail node of ei+1 ∈ A for all i ∈ {1, . . . , p− 1}. Sin
e N is assumedto be simple, a path 
an be written as P = (v0, v1, . . . , vp), where (vi−1, vi) ∈ Aholds for all i ∈ {1, . . . , p}. Resour
e 
onstraints 
an be formulated by means of(minimal) resour
e 
onsumptions and resour
e intervals (e.g., the travel times tijand time windows [ai, bi] in the 
ase of the shortest-path problem with time win-dows (Desro
hers and Soumis, 1988)). Let R be the number of resour
es. A ve
tor
T = (T 1, . . . , TR)⊤ ∈ R

R is 
alled a resour
e ve
tor and its 
omponents resour
evariables. T is said to be not greater than S if the inequality T i ≤ Si holds for all
omponents i ∈ {1, . . . , R}. We denote this by T ≤ S. For two resour
e ve
tors aand b, the interval [a, b] is de�ned as the set {T ∈ R
R : a ≤ T ≤ b}. Resour
e inter-vals, also 
alled resour
e windows, are asso
iated with nodes i ∈ V and are denotedby [ai, bi] with ai, bi ∈ R

R. The 
hanges in the resour
e 
onsumptions asso
iatedwith an ar
 (i, j) ∈ A are given by a ve
tor fij = (f r
ij)

R
r=1 of resour
e extensionfun
tions (REFs). An REF f r

ij : R
R → R depends on a resour
e ve
tor Ti ∈ R

R,whi
h 
orresponds to the resour
e 
onsumption a

umulated along a path (s, . . . , i)from s to i, i.e., up to the tail node i of ar
 (i, j). The result fij(Ti) ∈ R
R 
an beinterpreted as a resour
e 
onsumption a

umulated along the path (s, . . . , i, j).Let P be any path in N . P = (v0, v1, . . . , vp) is resour
e-feasible if resour
e ve
tors

Ti ∈ [avi
, bvi

] exist for all i ∈ {0, 1, . . . , p} su
h that fvi−1,vi
(Ti−1) ≤ Ti holds forall i ∈ {1, . . . , p}. Desaulniers et al. (1998b) were the �rst to point out that non-de
reasing REFs, i.e., fun
tions fij where T ≤ T ′ imposes fij(T ) ≤ fij(T

′), allowe�
ient feasibility 
he
ks: P is resour
e-feasible, if and only if T P
0 := av0 ≤ bv0and T P

i := max{avi
, fvi−1,vi

(T P
i−1)} ≤ bvi

holds for all i ∈ {1, . . . , p}. This 
an beinterpreted as the forward propagation of minimum resour
e 
onsumptions andtheir 
he
k against the upper bound of the resour
e 
onsumption along the path.Let R = cost be the (redu
ed) 
ost resour
e and 1, . . . , R−1 be the other resour
es(su
h as time, a

umulated load et
.). The SPPRC is a problem of the form
z∗SPPRC = min

P=(v0=s,v1,...,vp=t)∈Fst
(T P

p )cost, (6)where F st is the set of all resour
e-feasible paths from sour
e node s to sink node t.It 
an be solved using dynami
 programming labeling algorithms (Irni
h and De-saulniers, 2005, Se
t. 4.1). As long as the resour
e windows and REFs are integerw.r.t. the resour
es r ∈ {1, . . . , R−1}, SPPRCs 
an be solved in pseudo-polynomialtime. In the following, we assume integer values for all non-
ost resour
es.Note that there exists no pure linear programming formulation of SPPRCs usingvariables xij , (i, j) ∈ A and resour
e variables only. First, the resour
e updatealong a path may involve non-linear REFs fij . Se
ond, negative 
ost 
y
les render itimpossible to asso
iate a single resour
e ve
tor (variable) with a node. Third, evenin a
y
li
 networks with linear REFs, the 
oupling between ar
 �ow variables xij ,
(i, j) ∈ A and resour
e variables Ti, i ∈ V requires non-linear 
onstraints, su
has xij(T

r
j − T r

i − trij) ≥ 0 for all (i, j) ∈ A and r ∈ {1, 2, . . . , R − 1}, or somelinearization of these 
onstraints imposing integer variables xij . The 
onsequen
e7



of the missing 
ompa
t LP formulation is that additional variables and 
onstraintsare needed.Next, we will show that SPPRCs de�ned by (6) 
an be solved as ordinary SPPsover the so-
alled state spa
e. (In the following and in 
ontrast to the use of theword in Dynami
 Programming theory, we refer to a state spa
e as a digraph,i.e., the set of states/nodes together with a set of transformations/ar
s.) It alsomeans that SPPRCs 
an be modeled and solved as pure LPs, but with a mu
hlarger set of variables and (�ow 
onservation) 
onstraints. A ne
essary assumptionis, however, that REFs de
ouple resour
e updates of the non-
ost resour
es from
ost-
omputations (for details, see below). More formally, for any node i ∈ V andany T ∈ [ai, bi], de�ne σ(T ) = (T 1, T 2, . . . , TR−1) as the proje
tion to the non-
ostresour
e values. The set of possible states is de�ned by Si = {σ(T ) ∈ Z
R−1 : T ∈

[ai, bi]}. The disjoint union S =
⋃

i∈V Si of states forms the node set of the statespa
e. Next, we de�ne the ar
s A# of the state spa
e. Let (i, j) ∈ A be an ar
 of theoriginal network. There are multiple `parallel' ar
s whi
h 
onne
t states σ ∈ Si withstates σ′ ∈ Sj . We refer to them as A#
ij . Moreover, let T ∈ [ai, bi], T ′ ∈ [aj , bj] beresour
e variables with fij(T ) = T ′, σ := σ(T ) ∈ Si, and σ′ := σ(T ′) ∈ Sj. We wantto assign a unique 
ost value to the ar
 (σ, σ′) ∈ A#

ij . Therefore, the 
ost di�eren
e
T ′cost−T cost is assumed to be identi
al for all T and T ′ with (σ(T ), σ(T ′)) = (σ, σ′)and fij(T ) = T ′. By de�ning dσσ′ = T ′cost − T cost one gets the dis
retization of theSPPRC in the form of the network N ′ := (S,

⋃

(i,j) A
#
ij , d).The solution to (6) 
an be obtained by 
omputing a shortest path P # in N ′starting at state σ(as) ∈ Ss and ending at any state of St. The nodes asso
iatedwith the states visited by P# yield the optimum s-t-path of the SPPRC. Notethat, typi
ally, the state spa
e is a
y
li
 be
ause some resour
e 
onsumptions arestri
tly in
reasing as, e.g., for the resour
e time.The solution of an SPPRC instan
e by dynami
-programming labeling algorithmsis performed by propagating labels through the original networkN . A label 
onsistsof the minimum resour
e 
onsumption T ∈ Z

R a

umulated along its asso
iatedpath P = P (T ) and a link to a prede
essor label, su
h that several paths sharinga 
ommon pre�x are e�
iently stored in a tree data-stru
ture. The pro
ess startswith the initial label T = as at the sour
e s and is 
ontinued by extending thislabel and its su

essors by means of REFs. The two main 
omponents of su
ha labeling pro
edure are the path extension step and the dominan
e algorithm(Irni
h and Desaulniers, 2005, Se
t. 4.1). In the shortest-path 
omputation on thestate spa
e, the path extension step is re
reated exa
tly by the propagation of
osts from one state to the next. However, there is no full equivalent in N ′ =
(S,

⋃

(i,j) A
#
ij , d) to the dominan
e algorithm: SPPRC dominan
e algorithms 
aneliminate labels with non-identi
al states, i.e., when the resour
e 
onsumption ofone label is greater or equal to the resour
e 
onsumption of another label. Thisallows the omittan
e of non-useful paths in the path extension step. In N ′, one 
aninterpret this dominan
e algorithm as an impli
it removal of all unrea
hable anddominated states. (A dominated state σ1 ∈ Si is one for whi
h there exists another8



state σ2 ∈ Si with σ2 ≤ σ1 and ℓσ2 ≤ ℓσ1 .) Contrary, a shortest-path algorithmin N ′ just 
ompares 
osts. The equivalen
e in the SPPRC dynami
 programminglabeling algorithm would be the use of a very restri
ted dominan
e rule whi
h only
ompares SPPRC labels whi
h have identi
al states. In order to have a strongerdominan
e, we use additional zero-
ost ar
s (σ, σ′) ∈ A#
i 
onne
ting pairs of stateswith σ ≤ σ′ belonging to the same node i ∈ V . In the following, we assume thatthe state spa
e is de�ned by N# = (S,A#, d) = (S,
⋃

(i,j)∈AA#
ij ∪

⋃

i∈V A#
i , d).Note that we have introdu
ed N# for reasons of explanation and not for e�
ient
omputation purposes.The view on the state spa
e N# enables us to apply variable elimination to theoriginal formulation and, thus, to the pri
ing network. We 
an 
onsider two equiv-alent original formulations both using variables y = (yσσ′).Compa
t Formulation with Variables y = (yσσ′) Only For the moment,we assume that the original model (1) is formulated in terms of routing variables

yσσ′ for (σ, σ′) ∈ A# instead of variables xij for (i, j) ∈ A. This assumption is noserious restri
tion, sin
e every variable xij is the sum of the yσσ′ with (σ, σ′) ∈ A#
ij .Now, the method of Walker�as explained in Se
tion 3.1.1�is appli
able to the
ompa
t formulation with variables yσσ′ and enables us to eliminate some of thevariables yσσ′ . Formally, we repla
e x = (xij) by Q′y = Q′(yσσ′), where the matrix

Q′ ∈ {0, 1}|A
#|×|A| shows whi
h of the ar
s (σ, σ′) 
orrespond to an original ar


(i, j). The 
ompa
t formulation now is
min c⊤Q′y, s.t. AQ′y ≥ b, DQ′y = d, y ∈ Z

|A#|
+ . (7a)Sin
e Q′ is a 0-1-matrix, the 
ondition Q′y ∈ Z

|A|
+ is equivalent to y ∈ Z

|A#|
+ .Hen
e, the domain Y = {Q′y : DQ′y = d, y ∈ Z

|A|
+ } of the subproblem is identi
alto X = {Qλ : 1λ = 1, λ ∈ {0, 1}p}. Consequently, the master program (DWM) isstill given by (2a)�(2d). The pri
ing problem PP(π, µ) be
omes min(c⊤ − πA)Q′y,subje
t to y ∈ Y . The point is that this pri
ing problem is identi
al to the pureLP, i.e., min(c⊤ − πA)Q′y subje
t to IN#

y = eσ(as) − eσ(bt), y ≥ 0.In order to eliminate ar
s (σ, σ′), we do not need to solve the pri
ing problemin variables yσσ′ as LPs on the huge network N#. Instead, we 
an simply applystandard dynami
 programming labeling pro
edures to N = (V,A) and interpretthe (Pareto-optimal) �nal labels Ti in the right way: A �nal non-dominated label Tasso
iated with node i 
orresponds to a 
ost label ℓσ = T cost of state σ = σ(T ) ∈ Si.With the redu
ed 
ost arguments given in Se
tion 3.1.1, we are able to eliminatethose ar
s from N# whose redu
ed 
osts ex
eed the optimality gap. For a morepre
ise algorithmi
 des
ription, assume that Γi is the set of labels asso
iated withnode i and that ea
h label T ∈ Γi has state σ(T ) ∈ Si and 
ost T cost = ℓ(T ):Algorithm 1 Redu
ed Cost Computation for State Spa
e1: Input: Sets Γi of labels at all nodes i ∈ V .9



2: FORALL (i, j) ∈ A DO3: FORALL (σ, σ′) ∈ A#
ij DO4: LET rσσ′ := c̃ij + (minT∈Γi:σ(T )≤σ T cost) − (minT ′∈Γj :σ(T ′)≤σ′ T ′cost)5: Output: Redu
ed 
osts rσσ′ .We 
an use the redu
ed 
osts rσσ′ not only to eliminate ar
s (σ, σ′) ∈ A#. If allar
s (σ, σ′) ∈ A#

ij 
an be removed, the original ar
 (i, j) 
an also be removed fromthe pri
ing network N . Note that this happens if the minimum redu
ed 
ost rσσ′of the ar
s (σ, σ′) ∈ A#
ij ex
eeds the optimality gap.Finally note that the addition of ar
s A#

i to the state spa
e N# is 
ru
ial for the
orre
tness of the Formula in Step 4 of Algorithm 1. Without these ar
s, we wouldhave rσσ′ = c̃ij − T cost + T ′cost only if labels T ∈ Γi and T ′ ∈ Γj with σ = σ(T )and σ′ = σ(T ′) exists and rσσ′ = 0 otherwise. The more ar
s in the state spa
e,the smaller the 
han
e that ar
s (σ, σ′) ∈ A#
ij are in the shortest-path tree (whi
hmeans a redu
ed 
ost of 0).Compa
t Formulation with a Mix of Variables x = (xij) and y = (yσσ′)One 
an utilize the fa
t that ea
h ar
 variable xij 
an be expressed as the sum ofvariables yσσ′ , (σ, σ′) ∈ A#

ij . With the results for reformulations and their impa
ton dual solutions, as given in the Appendix, we �rst extend (7a) by
xij =

∑

(σ,σ′)∈A#
ij

yσσ′ for all (i, j) ∈ A. (7b)Proposition 1 (in the Appendix) implies that the addition of (7b) leads to a fullyequivalent model (P ′
ext), in whi
h the variables xij always have redu
ed 
osts of 0.This extension is, therefore, uninteresting for our purposes. Amazingly, the (formal)addition of the non-negativity 
onstraints

xij ≥ 0 for all (i, j) ∈ A (7c)leads to the 
ompa
t formulation (7) that 
orresponds to model (Pext) of the Ap-pendix. Here, Proposition 2 implies that the added variables xij 
an have positiveredu
ed 
osts. For any dual feasible solution to the LP-relaxation of (7) or (7a),the redu
ed 
ost rij of xij 
an be 
hosen su
h that it is the minimum of all re-du
ed 
osts rσσ′ of variables yσσ′ , (σ, σ′) ∈ A#
ij . This obviously 
oin
ides with thear
-elimination 
riterion given in the last paragraph.Moreover, Proposition 3 makes 
lear that, w.r.t. dual solutions and redu
ed 
osts,it is fully equivalent to formulating the 
overing 
onstraints and obje
tive eitherin variables xij or variables yσσ′ , i.e., to minimize c⊤x or c⊤Q′y over Ax ≥ b or

AQ′y ≥ b, respe
tively. Be
ause of Proposition 3(iii), these reformulations have noimpa
t on the redu
ed 
osts of the variables xij . In all 
ases, the Dantzig-Wolfede
omposition of the models leads the model (DWM) with path variables. Its10



subproblem 
an, again, be solved on the original network N with SPPRC labelingalgorithms. This means that neither the master nor the subproblem have to workexpli
itly on variables y. The 
onsideration of variables yσσ′ is, therefore, nothingother than a formal devi
e to derive redu
ed 
osts of the original variables x. Wea
hieve the following pro
edure for the 
omputation of redu
ed 
osts of variables xijby means of SPPRC labels:Algorithm 2 Redu
ed Cost Computation for SPPRC1: Input: Sets Γi of labels at all nodes i ∈ V .2: FORALL (i, j) ∈ A DO3: LET rij := c̃ij + (minT∈Γi
T cost) − (minT ′∈Γj :σ(T ′)≤σ(fij (T )) T ′cost)4: Output: Redu
ed 
osts rij of variables x = (xij).Resour
e Window Redu
tion If only a subset of the variables yσσ′ with

(σ, σ′) ∈ A#
ij 
an be eliminated, but not all of them to also eliminate the origi-nal ar
 (i, j) ∈ A, the 
onsideration of eliminated ar
s in N# is still useful: Theremaining (not eliminated) ar
s are denoted by A#,rem

ij for (i, j) ∈ A. For everynode i, one 
an 
ompute the maximum resour
e ve
tor b̄i with σ(b̄i) ≤ σi for all
(i, j) in the forward star of i and all (σi, σj) ∈ A#,rem

ij . Similarly, for any node j let
āj be the minimum resour
e ve
tor with σ(āj) ≥ σj for all (i, j) in the ba
kwardstar of j and all (σi, σj) ∈ A#,rem

ij . One 
an now repla
e the resour
e window [ar
i , b

r
i ]by [ār

i , b̄
r
i ] for all nodes i ∈ V and all non-
ost resour
es r ∈ {1, . . . , R − 1}. Thisis a pro
edure to tighten resour
e windows. Similar ideas were suggested for theMDVSP by Hadjar et al. (2001).3.1.3 SPPRC with Path-Stru
tural ConstraintsWe 
annot dire
tly apply the same te
hniques of dis
retization to SPPRCs withpath-stru
tural 
onstraints. The reason for this is that path-stru
tural 
onstraints,su
h as pre
eden
e and pairing 
onstraints, k-
y
le freeness, and elementarity, 
an-not be formulated dire
tly, so that a pure LP represents the problem (e.g., byextending the above mentioned network �ow formulation IN#

x = es − et, x ≥ 0).The word `dire
tly' means that it is, however, possible to model path-stru
tural
onstraints by means of additional resour
es. For instan
e, Feillet et al. (2004);Salani (2005); Dell'Ami
o et al. (2006) use |V | additional binary resour
es in theelementary SPPRC (ESPPRC) in order to keep tra
k of the nodes that a path hasvisited or 
annot visit anymore. Due to su
h a vast extension of the state spa
e,we 
an expe
t a 
ombinatorial explosion in the number of states and ar
s as wellas ESPPRC labels. The impa
t on the redu
ed 
osts is that, for every originalar
 (i, j) ∈ A, in most of the 
ases at least one ar
 (σ, σ′) ∈ A#
ij of the extendedstate spa
e has redu
ed 
ost 0. Then, (i, j) 
annot be eliminated on the basis ofredu
ed 
osts rij.The situation of e�
ient labeling algorithms for SPPRC with k-
y
le elimination(SPPRC-k-
y
) is di�erent. As for the ESPPRC, additional resour
es for ea
hnode i ∈ V 
an be used to model k-
y
le elimination on an extended state spa
e:11



Using Krone
ker's symbol δab (with δab = 1 if a = b and δab = 0 otherwise), theREF of ar
 (i, j) ∈ A or (σ, σ′) ∈ A#
ij is f(T )v = max{T v − 1, kδiv} for resour
e(=node) v ∈ V . The resour
e window for resour
e v is [0, k(1 − δiv)] at node i or

σi ∈ Si, respe
tively. This is a minor re�nement of the simple SPPRC-k-
y
 dom-inan
e rule dis
ussed in (Irni
h and Villeneuve, 2006, �5.1). Extending the 2-
y
leelimination dominan
e rules of Kohl (1995), Irni
h and Villeneuve were able todevelop dominan
e rules for SPPRC-k-
y
 with k ≥ 3 whi
h are stronger than theabove straightforward approa
h of exhaustively extending the state spa
e: Severallabels T1, T2, . . . , Tq ∈ Γi, whi
h dominate a label T ∈ Γi w.r.t. resour
es, allow thedis
arding of T even if all these labels 
ome from (partially) di�erent prede
essornodes. (Here, the labels T1, T2, . . . , Tq and T refer to the original resour
es and donot in
lude additional resour
es for nodes!) We denote by E(T ) the set of possible
k-
y
le free extensions of a label T . If ⋃q

p=1 E(Tp) ⊇ E(T ) and dominan
e w.r.t.resour
es holds, then T 
an be dis
arded (see Irni
h and Villeneuve, 2006, �6, fordetails). (Computationally e�
ient implementations en
ode these extensions byso-
alled hole sets.) The point is that su
h a stronger dominan
e rule 
annot bemodeled on any state-spa
e graph. However, one 
an mimi
 the stronger domi-nan
e rule in SPPRC algorithms working on the state spa
e N# (with the originalresour
es) by adding additional arti�
ial labels. Any subset of labels Γ ⊆ Γj 
reatesan arti�
ial label at the same node j with resour
es maxT∈Γ T (
omponentwise) andpossible extensions ⋃T∈Γ E(T ). These arti�
ial labels 
reate additional 
onne
tionsbetween states of the same original node, and, therefore, more ar
s (σ, σ′) ∈ A#
ijhave positive redu
ed 
osts. This �nally imposes larger redu
ed 
osts on the originalar
s (i, j) ∈ A.Algorithm 3 Redu
ed Cost Computation for SPPRC-k-
y
1: Input: Sets Γi of labels at all nodes i ∈ V .2: FORALL (i, j) ∈ A DO3: LET rij := c̃ij + (minT∈Γi

T cost) − (minΓ⊆Γj :Γ dominates fij(T )(maxT ′∈Γ T ′cost))4: Output: Redu
ed 
osts rij of variables x = (xij).In Step 3, a subset of labels Γ ⊆ Γj dominates the label T ′ := fij(T ) 
orrespondingto path (P (T ), (i, j)), if T ≤ T ′ holds for all T ∈ Γ and ⋃T∈Γ E(T ) ⊇ E(T ′) holds.The minimization over all subsets Γ ⊆ Γj 
an easily be solved by simply sortingthe labels in Γj by in
reasing 
osts and testing all subsets Γ with the �rst q labelsfor q = 1, 2, . . . , |Γj|. Finally note that both types of labels (ordinary and arti�
ial)together give a dual feasible solution to the shortest-path problem on N#. Hen
e,the values rij are valid redu
ed 
osts for the variables xij of the original formulation.3.2 The Method of Poggi de Aragão and U
hoa (2003)Re
all that we refer to (2a)�(2d) as (DWM). The LP-relaxation of the extensiveformulation, i.e., (2a)�(2f), is denoted by (DWMext). The presen
e of the 
oupling
onstraints (2e) in the master program o�ers the possibility to dire
tly retrieveredu
ed 
osts of variables x 
oming from the original formulation. This was �rst12



suggested by Poggi de Aragão and U
hoa (2003). However, the 
oupling 
onstraintsin the master have important theoreti
al and algorithmi
 impli
ations whi
h arepointed out in the following.First, Propositions 1 and 2 show that it is 
ru
ial to also keep x ≥ 0 in the exten-sive formulation. Otherwise, the redu
ed 
osts are 0. However, even with the non-negativity 
onstraints x ≥ 0, there is no guarantee that any of the redu
ed 
osts ofthe variables x are positive and useful for variable elimination. Proposition 2 ex-plains this: For every dual feasible solution (π, µ) to (DWM), there exists the dualfeasible solution (π, µ, 0) to the extensive formulation (DMWext), for whi
h all xijhave redu
ed 
ost 0. Beside this dual solution (π, µ, 0), many other dual solutionstypi
ally exist, that imply di�erent redu
ed 
osts on the x variables. Nevertheless,the result that (DWMext) 
an leave us with `poor' redu
ed 
ost information simplymeans that we 
annot 
ontrol the output of (DWMext).Se
ond, Poggi de Aragão and U
hoa (2003) suggest to reformulating (DWMext) tothe following expli
it master (EM):
z∗EM = min c⊤x (8a)s.t. Ax ≥ b (8b)

Qλ − x = 0 (8c)
1
⊤λ = 1 (8d)

λ ≥ 0, x ≥ 0 (8e)(EM) di�ers from (DWM) by the formulation of the obje
tive (8a) and the 
overing
onstraints (8b) in the original variables x. The advantage of (EM) is that it isas strong as (DWM) and (DWMext), but that its asso
iated pri
ing problem isfully independent of the dual pri
es π of the 
onstraints Ax ≥ b. This allows, forinstan
e, the addition of any inequality formulated in x to (8b)�for bran
hing or
utting�without a�e
ting the stru
ture of the pri
ing problem for the generationof variables λ. Formulations with these properties lead to so-
alled robust bran
h-and-pri
e(-and-
ut) algorithm. With respe
t to redu
ed 
osts, (EM) is, however,no better than (DWMext), sin
e degenerated solutions with redu
ed 
ost 0 are stillpossible. This is exa
tly the statement of Proposition 3 applied to (DWMext) and(EM) (i.e., models (Pext) and (P3
ext) in Proposition 3).Third, Desrosiers and Lübbe
ke (2005, p. 11) suggest keeping the 
oupling 
on-straints in the (restri
ted) master program and imposing the additional 
onstraints

x ≥ ε, for a small ε ≥ 0, at the end of the (
olumn-generation) pro
ess. The shadowpri
es of these 
onstraints are then the redu
ed 
osts of the original variables x.Here, the addition of x ≥ ε 
hanges the obje
tive value and optimal solution ofthe master program. It is not 
lear to us as to whether we 
an dedu
e generalstatements about the 
omputed redu
ed 
osts. Nevertheless, the addition of the
onstraints x ≥ ε at the end of the 
olumn-generation pro
ess leaves several ques-tions open: Should we add the 
onstraints xij ≥ εij for all ar
s (i, j) simultaneouslyor 
onse
utively? This makes either a single re-optimization of the master program13



or several re-optimizations ne
essary. Are all values εij identi
al? Do we have toperform additional iterations with pri
ing and re-optimizations? What is the qual-ity of the 
omputed redu
ed 
osts?From an algorithmi
 point of view, there are also good arguments for not leaving the
oupling 
onstraints (2e) in a master program unless they are absolutely ne
essary:The main reason is that Qλ−x = 0 
onsists of |A| 
onstraints, whi
h substantiallyextends the restri
ted master program and 
an often make the LP too large to besolved iteratively.Finally note that we do not negate the usefulness of 
onsidering (DWMext) or (EM)for theoreti
al purposes, su
h as the devising of robust bran
h-and-pri
e algorithmswith e�e
tive bran
hing rules, allowing strong 
utting planes to be added to themaster, or for multiple 
olumn generation, as exempli�ed in the work of Poggi deAragão and U
hoa (2003) and Lübbe
ke and Desrosiers (2006).3.3 The Bidire
tional Sear
h MethodProposition 2(iv) applied to (DMWext) gives us another way of expressing (max-imum) redu
ed 
osts of variables xij . Let F st
ij be the set of feasible s-t-paths 
on-taining ar
 (i, j). Moreover, let nP

ij be the number of times ar
 (i, j) o

urs in path
P ∈ F st

ij . The path variables λ = (λP ) of (DWM) and (DWMext) have redu
ed
osts c̃(π, µ) = c⊤Q − πAQ − µ1 so that
rij := min

P∈Fst
ij

c̃P (π, µ)

nP
ij

≤ min
P∈Fst

ij

c̃P (π, µ) =: r̄ij (9)follows. Any value between 0 and rij is a valid redu
ed 
ost of xij . If r̄ij > rij, thevalue r̄ij is not a valid redu
ed 
ost of a variable in an original 
ompa
t formulation.However, we will show that r̄ij has a meaningful interpretation that justi�es its useinstead of rij for variable elimination. The interesting algorithmi
 question now ishow to 
ompute these values.The key observation is that r̄ij is the minimum redu
ed 
ost of all paths 
ontainingar
 (i, j). The proposed te
hnique to determine r̄ij is bidire
tional shortest-path
omputation. Any path P ∈ F st
ij 
an be de
omposed into P = (P1, (i, j), P2), where

P1 ∈ F si and P2 ∈ F jt. (The de
omposition is not unique if nP
ij > 1.) The values

c̃(P1) and c̃(P2) 
an be bounded from above by results of two SPPRC 
omputations:A standard forward SPPRC labeling pro
edure produ
es usual labels Γfw
i at nodes

i ∈ V . Assuming that P1 has an asso
iated state σ = σ(P1) ∈ Si, the path P1ful�lls̃
c(P1) ≥ min

T∈Γfw
i

:σ(T )≤σ(P1)
T cost.Similarly, a ba
kward SPPRC labeling algorithm 
an be used to bound c̃(P2). Onestarts with the initial path (t) and extends partial paths ending at a node ℓ against14



the ar
s dire
tion (k, ℓ) to a node k. Salani (2005) has shown that it is possibleto extend resour
es (su
h as 
ost, time, and load) in the opposite dire
tion. Aunifying des
ription of REFs and their inversion was presented in (Irni
h, 2006):The idea here is that upper bounds on the resour
e 
onsumption are propagatedba
kward by means of inverse REFs. The paper also 
lari�es whi
h types of REFsare invertible so that ba
kward SPPRCs are well-de�ned and 
ompatible with theforward SPPRCs. Assuming that ba
kward REFs exist, the 
orresponding labelsrepresent paths from a 
urrent node j to the sink t. The ba
kward SPPRC labelingalgorithm generates a set of ba
kward labels Γbw
j for ea
h node j ∈ V . Now, the
ost of P2 ful�lls

c̃(P2) ≥ min
T ′∈Γbw

j
:σ(T ′)≥σ(P2)

T ′cost.Putting the results together, one gets
r̄ij = c̃ij + min

T∈Γ
fw
i

,T ′∈Γbw
j

:σ(fij(T ))≤σ(T ′),

(P (T ),i,j,P (T ′))∈Fst

(

T cost + T ′cost
)

− µ. (10)The interpretation of (10) is that one �rst has to solve the forward and then the
orresponding ba
kward SPPRC with ar
 
osts c̃⊤ij = c⊤−(πA)ij . Subsequently, onemust determine all mat
hing pairs (T, T ′) of labels at node i and node j, respe
-tively. Two labels T ∈ Γfw
i and T ′ ∈ Γbw

j mat
h if they 
ompose a feasible s-t-path
(P (T ), (i, j), P (T ′)) ∈ F st. Feasibility 
on
erns two aspe
ts: The path is resour
e-feasible if the lower bound T extended along the ar
 (i, j) does not ex
eed theupper bound of the resour
e 
onsumption given by T ′. Moreover, feasibility w.r.t.path-stru
tural 
onstraints, su
h as k-
y
le freeness, elementarity, and pre
eden
eand pairing 
onstraints, have to be tested. The formal des
ription of the pro
edurereads as follows:Algorithm 4 Computation of r̄ for (E)SPPRC(-k-
y
)1: Input: Sets Γfw

i of forward labels at all nodes i ∈ V .2: Sets Γbw
j of ba
kward labels at all nodes j ∈ V .3: FORALL (i, j) ∈ A DO4: LET r̄ij := ∞5: FORALL T ∈ Γfw

i DO6: FORALL T ′ ∈ Γbw
j DO7: IF (σ(fij(T )) ≤ σ(T ′) AND (P (T ), (i, j), P (T ′)) ∈ Fst) THEN8: LET rP := T cost + c̃ij + T ′cost9: LET r̄ij := min{r̄ij , r

P }10:Output: Values r̄ij for all ar
s (i, j) ∈ A.The result is a value r̄ij for ea
h ar
 (i, j) ∈ A. If r̄ij ex
eeds the optimality gap, itmeans that every path 
ontaining the ar
 (i, j) is not part of any optimal solutionto (IP). Hen
e, all paths F ij 
an be removed from the master program (DWM).15



More importantly, we know that the ar
 (i, j) 
an also be removed from the pri
ingnetwork N , sin
e it 
an only produ
e non-optimal paths. Note that we have argueddire
tly using the 
olumn-generation formulation.If (DWM) is formulated solely with elementary paths, the values nP
ij are all 0 or 1and, hen
e, r̄ij and rij are identi
al. In this 
ase, rij = r̄ij is a proper redu
ed 
ostof the original variable xij .Con
erning the 
omputational 
omplexity of Algorithm 4, we have to distinguishbetween di�erent types of SPPRC labeling algorithms: Standard labeling algo-rithms 
ompute the set of all undominated forward labels every time the pri
ingproblem is solved exa
tly. An exa
t solution is required at least on
e for the so-lution of a bran
h-and-pri
e tree node, i.e., when optimality of the 
orrespondingrestri
ted master program is proven. The additional e�ort of Algorithm 4 is the
omputation of all undominated ba
kward labels (whi
h is typi
ally as hard assolving the forward SPPRC) and the 
omparison of forward and ba
kward labels(Steps 5�9).Also from a theoreti
al point of view, a 
omparison of rij and r̄ij is interesting.In the state spa
e N#, forward and ba
kward SPP is trivial to implement. Let

(ℓfw
σ )σ∈S be the forward labels and (ℓbw

σ )σ∈S be the ba
kward labels. Obviously,
ℓfw
σ(as) = ℓbw

σ(bt)
= 0 and ℓfw

σ(bt)
= ℓbw

σ(as) = z∗PP (π,µ). Any dual feasible solution (π, µ)to (DWM) guarantees z∗PP (π,µ) ≥ 0. A

ording to (5), for any ar
 (σ, σ′) ∈ A#
ij theequation rσσ′ = c̃ij + ℓfw

σ − ℓfw
σ′ holds. For any state σ ∈ S, the optimal solution ofthe SPP implies ℓfw

σ + ℓbw
σ ≥ zPP (π,µ) ≥ 0 and, therefore, rσσ′ = c̃ij + ℓfw

σ − ℓfw
σ′ ≤

ℓfw
σ + c̃ij + ℓbw

σ′ . Taking the minimum over all ar
s (σ, σ′) ∈ A#
ij yields

rij = min
(σ,σ′)∈A#

ij

rσσ′ ≤ min
(σ,σ′)∈A#

ij

(

ℓfw
σ + c̃ij + ℓbw

σ′

)

= r̄ij.Con
luding, for any given dual feasible solution (π, µ), the redu
ed 
ost rij 
om-puted by the method of Walker is not larger than the value r̄ij. Hen
e, the bidire
-tional method is superior to Walker's method, sin
e it 
an eliminate at least thesame ar
s as Walker's method 
an.A 
urrent and very su

essful trend for solving hard VRPs with time windowsor other VRP variants with bran
h-and-pri
e is to use the above mentioned ele-mentary path formulations. Sin
e ESPPRC is NP -hard in the strong sense (Dror,1994), the main di�
ulty lies in the development of e�e
tive labeling algorithmswhi
h 
an pra
ti
ally handle the elementarity 
onstraints. Besides other te
hniques,su
h as extension of dominan
e rules (Feillet et al., 2004) and state spa
e relax-ation/augmentation (Salani, 2005; Boland et al., 2006), one of the most e�e
tiveapproa
hes is that of bidire
tional sear
h with bounding, whi
h was su

essfullytested by Salani (2005) and Righini and Salani (2004). Inspired by the observationthat the number of undominated ESPPRC paths typi
ally grows exponentiallywith the length of these paths, one tries to bound the length of paths to half ofthe maximum path length: Thus, the �rst half of a path is 
omputed by an s-to-all16



labeling algorithm and the se
ond half is 
omputed by a ba
kward t-to-all labelingalgorithm. A so-
alled 
riti
al resour
e is used to 
ontrol the maximum forwardand ba
kward path length (for details, see Salani, 2005). When this te
hnique isused to solve ESPPRCs, Algorithm 4 is not dire
tly appli
able. The reason is thatthe 
omputation of r̄ij needs the 
omplete set of all forward and ba
kward labels.The half-way bounding te
hnique does not give us a valid lower bound for eitherthe �rst path P1 or the se
ond path P2.However, there is no need to use the same forward labels, as 
omputed in thepri
ing problem together with ba
kward labels of the inverse SPPRC. Any labelingsolution, in parti
ular a solution to an easier-to-solve ESPPRC relaxation, providesvalid bounds. Possible relaxations are the (non-elementary) SPPRC (Irni
h andDesaulniers, 2005), the SPPRC-k-
y
 for k ≥ 2 (Irni
h and Villeneuve, 2006), andthe SPPRC with forbidden (sub)paths (Villeneuve and Desaulniers, 2005). One
an expe
t that the quality of the 
omputed redu
ed 
osts depends signi�
antlyon the hardness of the relaxation used.
4 Computational ResultsFor the empiri
al evaluation of Walker's method (shortly denoted by W) and thebidire
tional method (B), we examine a bran
h-and-pri
e-and-
ut algorithm for thevehi
le-routing problem with time windows (VRPTW) tested on the well-knownben
hmark set of Solomon (1987). The implementation used for the following anal-ysis is the one previously used in (Irni
h and Villeneuve, 2006). In order to keepthe 
omputations veri�able, we leave out several other well-known a

elerationte
hniques, su
h as massive heuristi
 pri
ing, 
omplex bran
hing rules and strongbran
hing, sophisti
ated non-robust 
utting planes, stabilization et
. (see Jepsenet al., 2006; Desaulniers et al., 2006, and literature 
ited there). The solver for thepri
ing problem only makes use of a monodire
tional SPPRC-k-
y
 labeling algo-rithm and tries heuristi
 pri
ing in a 5-nearest neighbor subnetwork. 1-path 
utsand 2-path 
uts (Kohl et al., 1999) are the only 
utting planes whi
h are addedto the root node of the bran
h-and-bound tree. Bran
hing is performed with abest-node-�rst strategy, �rst on the number of vehi
les (if fra
tional) and then onthe ar
 (i, j) ∈ A, where the produ
t cij · min{x̄ij , 1 − x̄ij} of 
ost and deviationfrom the next integer is maximum.We �rst evaluate the two ar
-elimination methods w.r.t. the per
entage of ar
s that
an be eliminated using di�erent algorithmi
 setups. Se
ond, we brie�y 
omparethe 
omputational e�ort. Third, we analyze the a

eleration of the entire bran
h-and-pri
e-and-
ut algorithm 
aused by ar
 elimination. All algorithms were 
odedin C++, 
ompiled in release mode with MS-Visual C++ version 6.0; all runs wereperformed on a standard PC (Intel x86 family 15 model 2) with 2.8 GHz, 1GBmain memory, on MS-Windows 2000. 17



4.1 Per
entage of Eliminated Ar
sThe number of di�erent possible setups for the bran
h-and-pri
e-and-
ut algorithmis huge. The most important parameters are summarized in Table 1: k-
y
le elim-Parameter Values Des
riptionused hereMethod W, B W=Walker's method (Algorithm 2/3),B=Bidire
tional method (Algorithm 4)
k 2, 3 and 4 k-
y
le elimination
uts 1-p
, 2-p
 use of 1-path 
uts alone/with 2-path 
uts

UB opt + x% with x = quality of the upper bound supplied
0%, 0.1%, 0.5% and 1% to W and BTable 1Parameters Controlling the Bran
h-and-Pri
e-and-Cut Algorithm and Ar
 Eliminationination leads to tighter relaxations of the master problem if k is in
reased. Within
reasing k ∈ {2, 3, 4}, the e�ort of solving the subproblem grows, the integral-ity gap de
reases, and one 
an expe
t smaller bran
h-and-bound trees. The use of

1-path 
uts (i.e., subtour-elimination 
onstraints) is standard, sin
e these 
uts aree�
iently separable. Additional 2-path 
uts require more sophisti
ated separationspro
edures, in whi
h the solution of TSPTW is an algorithmi
 
omponent. Theyoften help to substantially de
rease the remaining integrality gap, so that one 
analso expe
t a redu
tion of the tree size. Finally, the quality of the upper bound
UB provided to both methods, W and B, dire
tly determines how many ar
s 
anbe eliminated. In order to be able to use 
omputed redu
ed 
osts rij and r̄ij notonly at the moment when they are 
omputed, but also when new improved up-per bounds UB be
ome available, we store the following information: For all ar
s
(i, j) ∈ A, the obje
tive of the dual feasible solution πb + µ plus the redu
ed 
ost
rij or r̄ij is stored as lower bounds lbij = πb + µ + rij or lbij = πb + µ + r̄ij . Theselower bounds 
an be 
ompared with any upper bound UB and allow the elimina-tion of all ar
s with lbij > UB for method W and lbij > UB for method D. Thefollowing analysis supplies di�erent upper bounds of UB = (1 + x) · opt to bothmethods, where opt is the 
ost of an optimal solution and x the deviation from it.Values for x between 0% and 1%, as given in Table 1, seem realisti
, sin
e good(meta)heuristi
s often produ
e high-quality solutions very 
lose to the optimum.For ea
h VRPTW instan
e, the variation of the parameters given in Table 1 leavesus with 48 di�erent setups to analyze. In order to keep the 
omputational exper-iments 
on
ise and the amount of data to be displayed small, we de
ided to �rst
hoose four instan
es whi
h re�e
t a `typi
al behavior' of a group of instan
es.Later, we summarize results from a larger data set. A meaningful way to visual-ize the 48 data points is to 
ompare the per
entage of eliminated ar
s with the18



following gap
gap =

UB − lb[1,2](k)

opt
= 1 + x −

lb[1,2](k)

opt
. (11)Herein, lb(k), lb1(k) and lb2(k) are the lower bounds πb + µ provided by the LP-relaxation of (DWM) using k-
y
le elimination and no 
uts, 1-path 
uts, and 1-path
uts and 2-path 
uts, respe
tively.Figure 1 depi
ts the relationship between gap (based on lb1(k) or lb2(k) dependingon 1-
p/2-
p) and the per
entage of ar
s eliminated for four representative in-stan
es. The obvious result of all 
omputations is that method B 
an always elimi-nate a signi�
antly larger portion of the ar
s than method W 
an. This qualitativeresult is not surprising, sin
e we have proven in Se
tion 3.3 that rij ≤ r̄ij holds,and, therefore, that every ar
 eliminated by method W 
an also be eliminated bymethod D. The empiri
al and quantitative result is interesting: B eliminates up to20% more ar
s than W (100% is the number of ar
 after resour
e window redu
tion(see Desrosiers et al., 1995)).The �rst instan
e R103.100, depi
ted in Figure 1, is an example of an instan
ewhere (DWM) produ
es tight lower bounds for opt independent of the k-
y
le elim-ination and 
utting-plane approa
h 
hosen. For all setups, the integrality gap (opt−

lb[1,2](k))/opt is about 0.2%. This means that this parti
ular instan
e does not tendto produ
e bad fra
tional solutions with many 
y
les and insu�
ient 
overed sub-sets of 
ustomers. Here, the number of eliminated ar
s primarily depends on thequality of upper bounds. W and D di�er (for otherwise identi
al parameters), byabout 10%.Instan
e RC107.100 shows that the parameters k and 1-
p/2-
p 
an also havean impa
t on the gap. One 
an 
learly see that the most important determiningfa
tor for the per
entage of eliminated ar
s is gap, likewise for both methods Wand B. There is a nearly linear dependen
y between gap and the portion of ar
seliminated. The presen
e of additional 2-path 
uts 
learly de
reases the gap and(
eteris paribus) leads to the elimination of more ar
s. However, 2-path 
uts seem-ingly make both methods behave less e�e
tively when gap and eliminated ar
sare 
ompared (a parallel shift of the points to the left/bottom). We interpret thisbehavior as follows: The additional 2-path 
uts mean more 
onstraints in (DWM)and, hen
e, more path variables λP in basis. The result is more ar
s with redu
ed
ost 0.For the instan
e R112.50, the integrality gap is between 2.2% and 3.7% for di�erent
hoi
es of k and 1-p
/2-p
. For the bidire
tional method, the dependen
y between
gap and the per
entage of eliminated ar
s is nearly linear (linear regression yields
% arcs eliminated = 89, 1% − 8.59 · gap with error R2 = 0.97). The method Wdoes not show su
h a dire
t dependen
y. Instead, for di�erent values of k, thedependen
y seem to be linear, but di�erent `stripes' result from variations of k.The interesting observation is here that in
reasing values of k, on the one hand,19
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Fig. 1. Per
entage of Eliminated Ar
s relative to Gap gap; Note the di�erent S
ales ofthe Axes and the di�erent Groupingsimprove the lower bound of (DWM), and on the other hand, lead to a largernumber of labels generated in SPPRC-k-
y
, whi
h, in turn, makes method Wwork less e�e
tively. We interpret this result as follows: Both e�e
ts are 
on
urringand, therefore, runs of the bran
h-and-pri
e-and-
ut algorithm, just di�ering inparameter k, roughly eliminate the same number of ar
s.The instan
e RC205.50 shows a di�erent behavior. The integrality gap substantially20



depends on the 
hosen relaxation, i.e., on k and 1-
p/2-
p, and varies from 0% for
k = 4 and 2-
p to about 14% for k = 2 and 1-p
. Hen
e, the ability of the twoar
-elimination methods mainly depends on the gap. The di�eren
e between Wand D (up to about 5%) is smaller than has been observed for the other instan
es.The smaller the gap, the larger the di�eren
e between W and D.Figure 2 depi
ts the di�eren
e between the lower bounds lbij and lbij for the in-stan
e R205.100. The pri
ing network N = (V,A) 
onsists of 7,327 ar
s (=100%),

R205.100
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1020

1 1001 2001 3001 4001 5001 6001 7001

7327 Arcs, Sorted by Lower Bound

lb=935.35

opt=954.2

lbij

Fig. 2. Values lbij and lbij
omputed by Walker'sMethod and Bidire
tionalMethod; Line=Values
lbij ; Dots=Values lbij forthe Same Ar
 (i, j)whi
h 
ould not be eliminated by resour
e windows strengthening te
hniques dur-ing the pre-pro
essing phase. The LP-relaxation of the master program is solvedwith 4-
y
le elimination and 1-path 
uts. At the root node of the bran
h-and-boundtree (when all 1-path 
uts are added), the 7,327 ar
s (i, j) ∈ A are sorted a

ordingto the values lbij . In this ordering, the two series of lower bounds, i.e., lbij and lbij ,are shown in Figure 2. The bottom level at lb = 935.35 
orresponds to all ar
swith redu
ed 
ost 0. These ar
s get a lower bound lbij identi
al to the obje
tiveof (DWM). Walker's method yields 1,218 ar
s (= 16.6%) with rij = 0 but only303 ar
s (=4.1%) have r̄ij = 0 in method B. With the upper bound UB = opt,method W eliminates 3,518 ar
s (=48%) while method B eliminates 4,696 ar
s(=64%).4.2 Computational E�ortThe 
omputational e�ort of ar
 elimination by Walker's method and by the bidire
-tional method is 
ompared next. Both methods use dual feasible solutions (π, µ)of (DWM), whi
h are available and globally valid whenever a root node of thebran
h-and-bound tree is solved to optimality. By the addition of 
utting planes,di�erent (improved) root nodes are solved su
h that methods W and B are, ingeneral, invoked more than on
e. (In prin
iple, it would be possible to use bothmethods in the entire bran
h-and-bound tree, but then lower bounds lbij and lbijfor ea
h ar
 would have to be stored at ea
h node of the tree.) The input datafor method W is a monodire
tional solution to the SPPRC-k-
y
 subproblem ap-plied to PP(π, µ), whi
h is available without any additional e�ort at the end of the21




olumn-generation pro
ess at ea
h node. Contrary, method B also needs a solutionto the ba
kward SPPRC-k-
y
, whi
h must be 
omputed on top of what is freelyavailable. Hen
e, we 
an expe
t that method B is 
omputationally more 
ostlythan method W. Both Algorithms 2/3 and 4 then roughly do the same: They loopover all ar
s (i, j) ∈ A and 
ompare (extended) labels of node i with other labelsof node j.For the sele
tion of a reasonable set of test instan
es, we have 
hosen the followingrules. The best 
ombination of the parameters k for k-
y
le elimination and 1-
p/2-
p are taken from (Irni
h and Villeneuve, 2006). Moreover, we only 
onsideran instan
e if its bran
h-and-bound tree 
ontains more than 10 nodes and theoverall 
omputation time does not ex
eed 3,600 se
onds. Note that the setup in(Irni
h and Villeneuve, 2006) was slightly di�erent, sin
e additional te
hniques forthe a

eleration of the pri
ing were used. Using these rules, 33 instan
es result.They are given in the �rst 
olumn of Table 2 and will be used in this and in thenext subse
tion.Besides the detailed results of Table 2, we have the following overall results: The
omputation times for method B are, by fa
tors of between 1.7 and 7.5 (with anaverage of 3.5), longer than those for method W. For method B, the portion ofits time spent on solving the inverse SPPRC widely varies from about 9% to 85%,with an average of 32%. A single 
all of method B takes between less than 0.1%and up to about 12% (avg. 2.8%) of the time needed to solve the root nodes.The results show that the 
omputing power ne
essary to use redu
ed 
ost infor-mation of paths from the master to eliminate ar
s is not negligible, but makes uponly a fra
tion of the overall 
omputing time. Only if the speedup for the entirebran
h-and-bound tree over
ompensates the additional e�ort, do ar
-eliminationmethods pay o�. This issue will be analyzed next.4.3 Impa
t on the Bran
h-and-Bound Tree�Overall A

elerationThe pre
eding se
tions have shown that the bidire
tional method outperforms themethod of Walker w.r.t. the number of eliminated ar
s, while its 
omputationale�ort seems still 
omparable to that of Walker's method. The relevan
e of the ad-ditional 
omputational e�ort vanishes when hard-to-solve instan
es with a largebran
h-and-bound tree are 
onsidered. Therefore, we analyze solely the bidire
-tional method and its impa
t on the 
omputation times of the bran
h-and-pri
ealgorithm.Table 2 summarizes the 
omputational analysis and 
ontains the following infor-mation. The name of the instan
e and the best parameters k and 1-
p/2-
p aregiven in the �rst two 
olumns (.25, .50, and .100 refers to the number of 
ustomersin the respe
tive instan
e). The 
olumn gap refers to the gap as de�ned by (11)with UB = opt and with lb(k) (lbf (k)) the lower bound 
omputed by (DWM)before (after) adding 
utting planes. The number of ar
s before and after mul-tiple 
alls of the bidire
tional method is given in the fourth 
olumn. In order tomake the standard bran
h-and-pri
e algorithm (std) 
omparable with the one using22



method B, we �rst 
ompute the bran
h-and-bound tree with (std) and re
ord thebran
hing de
isions. Subsequently, the bran
h-and-pri
e algorithm with method Bis run, using the re
orded bran
hing de
isions. This guarantees that the tree hasthe same stru
ture (otherwise, due to degenera
y, trees 
ould be
ome di�erent).However, method B 
an lead to tighter bounds in the tree so that some nodes
an be pruned in addition to those pruned by (std) ([+std℄ is the number of thesenodes given in 
olumn Tree). The next two 
olumns 
ompare the times of (std) andbran
h-and-pri
e with method B whi
h are needed to solve the root nodes of thebran
h-and-bound tree, i.e., to �nish the �rst node with lower bound lb(k) and thelast root node with lower bound lb1(k) or lb2(k). For the �rst root node, the 
om-putation times di�er exa
tly in the time method B needs to 
ompute the redu
ed
osts of all ar
s (the absolute di�eren
e is shown as +B and the relative di�eren
eas %). After the elimination of some ar
s, 
utting planes are iteratively added to(DWM) whi
h is then re-optimized and method B is invoked again. On the onehand, these additional runs of method B in
rease the 
omputation time for the lastroot node. On the other hand, method B iteratively redu
es the size of the pri
ingnetwork, whi
h 
an lead to a speedup of the re-optimization. Hen
e, the values
±B and % for the seventh 
olumn, referring to the last root node, 
an be positiveor negative. Similarly, the remaining 
olumns show the overall time (Time all)and the time spent in the bran
h-and-bound tree (Time tree) for solving non-rootnodes. The latter time does not in
lude the time spent on solving the root nodes.This information is signi�
ant, sin
e it shows the impa
t of the full ar
-eliminationmethod B on the 
omputing times. All values −B and % are negative be
ausesolving master programs (with additional bran
hing 
onstraints) always takes lesstime when the pri
ing networks N are smaller. The speedup fa
tors in the ninthand last 
olumn are the quotients of the times for (std) and bran
h-and-pri
e withmethod B.The results 
an be summarized as follows: The gap after adding 
utting planes isbetween 0.05% and 8.9%, with an average of 1.3%. Bran
h-and-bound tree sizesvary from 11 to 370 nodes (multiple re-optimizations after adding 1-path or 2-path 
uts are 
ounted as additional (root) nodes of the tree). Conform with theresults reported in Se
tion 4.1, the per
entage of ar
s that method B 
an eliminatemainly depends on the gap. As a rule of thumb we state: With a gap of 1% one
an eliminate approximately 80% of the ar
s.The additional e�ort of method B relative to the time ne
essary to solve the�rst root node (
olumn Time root 1 ) is relevant and 
an take up to about 50%(avg. 28%) for 25 
ustomer instan
es, up to 34% (avg. 17%) for 50 
ustomers, andup to 6% (avg. 4%) for 100 
ustomers. The larger the instan
es, the smaller theadditional e�ort of a single 
all of method B. The additional e�ort of method Bfor solving the root nodes with 
utting planes (
olumn Time root 2 ) 
an in
reaseto 85% of the time that (std) 
onsumes. However, for some instan
es, the e�ort ofapplying Algorithm 4 is over
ompensated by the faster pri
ing, so that the di�er-en
e of the 
omputing times 
an de
rease. For three instan
es, C207.25, RC202.50,and RC105.100, method B already pays o� only for solving the root nodes.23



The most important results are related to the speedup gained by method B on theoverall solution pro
ess and the speedup within the bran
h-and-bound tree. Thereis only one instan
e, RC101.100, out of the 33 instan
es, for whi
h method B doesnot a

elerate the overall solution pro
edure (it takes 20% longer; 22 
uts are addedto 13 root nodes, so that method B is invoked 13 times). However, the non-rootnodes bene�t from the elimination of ar
s by an a

eleration of fa
tor 1.9. All otherinstan
es are solved faster when method B is integrated. The speedups vary fromfa
tors of between 1.05 and 18.9 (avg. 2.8). If the time for solving the root nodesis ex
luded, the a

eleration fa
tors in the tree are signi�
antly higher and varybetween 1.3 and 29.2 (avg. 5.1). The largest speedups 
an be observed for instan
esof the se
ond series (C2, R2, RC2) of the Solomon (1987) ben
hmark problems,sin
e these tend to have longer routes and harder-to-solve subproblems. Finally,we 
ould not �nd a statisti
al 
orrelation between the gap and the a

elerationin per
ent or the speedup fa
tors (linear regression gives R2 ≈ 0.07 and R2 ≈
0.02, respe
tively). It remains un
lear to us whi
h properties of an instan
e andparameters of the solution method determine the overall speedup.5 Con
lusionsThe paper has provided insights into the relationship between redu
ed 
osts ofpaths in extensive 
olumn-generation formulations and redu
ed 
osts of ar
s inoriginal 
ompa
t formulations. Both types of redu
ed 
osts 
an be used for theelimination of ar
s, and two pra
ti
al methods are available: The adaption of a�rst te
hnique, originally proposed by Walker (1969), allows the 
omputing of re-du
ed 
osts of original variables from an extensive 
olumn-generation model whendual feasible solutions to the master and the subproblem are known. This methodis however restri
ted to subproblems whi
h 
an be formulated as pure linear pro-grams. The other te
hnique is newly proposed in this paper and is based on solvingthe s-t SPPRC subproblem twi
e, i.e., with bidire
tional methods as an s-to-all for-ward and as an t-to-all ba
kward SPPRC. The paper has theoreti
ally proven thatthe bidire
tional method is superior in the sense that it always provides bounds forar
 elimination that are at least as good as those 
omputed by Walker's method.Moreover, both methods were empiri
ally tested on standard ben
hmark problemsfor the VRPTW. On the one hand, the 
omputational e�ort of the bidire
tionalmethod is slightly higher than the e�ort needed for Walker's method. On theother hand, the bidire
tional method 
an 
onsistently remove more ar
s (up to20% more) and often leads to SPPRC subproblems from whi
h 80%-90% of thear
s are eliminated: Roughly, with a gap of 1% one 
an eliminate 80% of thear
s. Empiri
ally tested on 33 VRPTW instan
es, this 
aused a signi�
ant overallspeedup with fa
tors of between 1.3 and 29.2, with an average fa
tor of 5.1.A promising trend in 
olumn generation approa
hes for VRPs is that of solvingsubproblems with (good) heuristi
s and exa
tly solving the hard (E)SPPRC only avery few times, hopefully only to show optimality (see, e.g., Xu et al., 2003; Jepsenet al., 2006; Desaulniers et al., 2006). The extensive use of heuristi
s is 
learly24



another way of speeding up pri
ing, and we expe
t that the 
ombination of ar
-elimination te
hniques with heuristi
s will still improve these highly sophisti
atedimplementations, even if the speedups are probably smaller.The proposed ar
-elimination algorithm 
an be seen as a 
ooperative s
heme, inwhi
h exa
t and heuristi
 algorithms 
an both bene�t. Thus far, exa
t algorithmsprimarily bene�t from good integer solutions for bounding. One of the few papersdis
ussing 
ooperative approa
hes in exa
t vehi
le-routing is that by Danna andLe Pape (2005). In the future, heuristi
s may provide (at an early point in time)good upper bounds, whi
h are useful in the exa
t method for eliminating ar
sand a

elerating the exa
t approa
h. In turn, exa
t algorithms 
an provide sparserunderlying networks for the heuristi
s, still guaranteeing that the heuristi
s 
an�nd an optimal solution, but faster, be
ause of the smaller underlying networks.The latter approa
h is an exa
t intensi�
ation method.Finally, the adaptation of the proposed variable-elimination te
hniques to other
olumn-generation formulations is another interesting path of future resear
h: Then,subproblems of di�erent 
ombinatorial stru
tures su
h as, e.g., trees, sele
tions,pa
kings et
. have to be 
onsidered. The goal here would again be the devisingof e�
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ing subproblems and to speedups for the overall 
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AppendixA Results on the Dual of Some Extended and Reformulated ModelsWe 
onsider a standard linear program (P) and an equivalent reformulation (P ′
ext)of (P), where additional variables w are uniquely determined by the variables v of(P) and no other 
onstraints on the new variables exist:

min g⊤v

(P ) s.t. Mv ≥ m (α)

v ≥ 0

min g⊤v + 0
⊤w

(P ′
ext) s.t. Mv + 0w ≥ m (β)

Nv − w = 0 (γ)

v ≥ 0, w ∈ R
qProposition 1 Models (P) and (P ′

ext) are equivalent in the sense of the followingpoints (i) and (ii).(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible (op-timal) solution (v, w) = (v, Nv) to (P ′
ext), and vi
e versa. [Feasible 
orrespondsto feasible, optimal to optimal solution.℄(ii) Every dual feasible (optimal) solution α to (P) implies a dual feasible (optimal)solution (α, 0) to (P ′

ext), and vi
e versa. Every dual feasible solution to (P ′
ext)has γ = 0.(iii) For every dual feasible solution (β, γ) to (P ′

ext), the redu
ed 
ost of the vari-ables w are 0.This Proposition is only partly intuitive when one interprets it in the followingway: The equality w = Nv is easy to ful�ll sin
e unbounded and un
onstrainedvariables w 
an simply be set equal to Nv. Hen
e, the dual pri
e of the 
onstraints
Nv − w = 0 is zero, sin
e it 
an be ful�lled without imposing additional 
osts.However, the fa
t that the redu
ed 
osts of all variables w are zero is somehowsurprising. Marginally in
reasing one of the variables we dire
tly implies that someof the vf (for nef 6= 0) have to be adapted also. The redu
ed 
ost of we should,therefore, be expressible in the redu
ed 
osts of the variables vf , whi
h is obviouslyhere not the 
ase.From now on we are only interested in the spe
ial 
ase that N ∈ Z

q×p
+ holds, i.e.,every variable we is a (non-negative) sum of some variables vf . The assumption thatall entries of N are non-negative implies that w = Nv ≥ 0 holds. Let (Pext) denotethe model (P'ext) together with the 
onstraint w ≥ 0 (and with the assumption

N ∈ Z
q×p
+ ). The addition of the non-negativity 
onstraints w ≥ 0 is nothing buta formal devi
e; it enables us to derive more interesting results than those statedfor (P ′

ext):Proposition 2 Models (P) and (Pext) are equivalent in the sense of the followingpoints (i) and (ii). Statements about the relationship of dual solutions and redu
ed28




osts are given by (iii)-(v):(i) Every primal feasible (optimal) solution v to (P) implies a primal feasible(optimal) solution (v, w) = (v, Nv) to (Pext), and vi
e versa.(ii) Every dual feasible (optimal) solution α to (P) implies a dual feasible (optimal)solution (α, 0) to (Pext), and vi
e versa.(iii) Every dual feasible (optimal) solution α to (P) implies a set
∆(α) =

{

(α, γ) : γ ≥ 0, Nγ ≤ g⊤ − αM
}of dual feasible (optimal) solutions to (Pext). Moreover, any dual feasible (op-timal solution (β, γ) to (Pext) ful�lls (β, γ) ∈ ∆(β).(iv) Let a dual feasible (optimal) solution α to (P) (or, equivalently, (α, 0) to(Pext)) be given.For any index e∗ ∈ {1, . . . , q}, a ve
tor γ = (γe) with

0 ≤ γe∗ ≤ min
f∈{1,...,p}:ne∗,f 6=0

gf − (αM)f

ne∗,f

≤ min
f∈{1,...,p}:ne∗,f 6=0

gf − (αM)f (A.1)and γe = 0 for all e 6= e∗ ful�lls (α, γ) ∈ ∆(α), i.e., implies another dual feasible(optimal) solution to (Pext). For 0-1-matri
es N , the se
ond inequality holdsas an equality.Conversely, for any dual feasible (optimal) solution (β, γ) to (Pext), the
omponents of γ are all (individually) 
onstrained by inequality (A.1).For the original dual feasible (optimal) solution (α, 0) to (Pext), the right-most term in (A.1) is the minimum redu
ed 
ost of all variables vf involvedin the equality for we∗.(v) For every (β, γ) feasible dual solution to (Pext), the value γe is the redu
ed
ost of the variable we.Next, we 
onsider three di�erent reformulations of (Pext), where the 
ost ve
tor g
an be expressed as g⊤ = h⊤N and the 
oe�
ient matrix M 
an be expressed as
M = QN . Be
ause of w = Nv, it means that one 
an either express the obje
tiveby g⊤v or h⊤w and, similarly, the 
onstraints either by Mv ≥ m or Qw ≥ m.

min 0
⊤v + h⊤w min g⊤v + 0

⊤w min 0
⊤v + h⊤w

(P 1,2,3
ext ) s.t. Mv + 0w ≥ m s.t. 0v + Qw ≥ m s.t. 0v + Qw ≥ m (β1,2,3)

Nv − w = 0 Nv − w = 0 Nv − w = 0 (γ1,2,3)

v ≥ 0, w ≥ 0 v ≥ 0, w ≥ 0 v ≥ 0, w ≥ 0Proposition 3 Models (Pext) and (Pk
ext), k = 1, 2, 3 are equivalent in sense of thefollowing point (i). The relationship between the dual solutions and redu
ed 
ostsof the four models is given by (ii) and (iii):(i) Every primal feasible (optimal) solution (v, w) to (Pext) is a primal feasible(optimal) solution to (Pk

ext), k = 1, 2, 3 and vi
e versa.29



(ii) Every dual feasible (optimal) solution (β, γ) to (Pext) implies a dual feasible(optimal) solution (βk, γk) to (Pk
ext), k = 1, 2, 3 and vi
e versa. The relation-ship between the dual solutions is

(

β1

γ1

)

=

(

β

γ − h⊤

) (

β2

γ2

)

=

(

β

γ + βQ

) (

β3

γ3

)

=

(

β

γ + βQ − h⊤

)

.(iii) Every dual feasible solution to (Pext) or (Pk
ext), k = 1, 2, 3 as given in (ii)imposes the same redu
ed 
ost γ of the variables w.Proofs of all three propositions are straightforward based on elementary linearprogramming theory.
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Instan
e Param gap w.r.t. Ar
s Tree Time root 1 Time root 2 Time all Speed- Time tree Speed-
k =, f-p
 (lb(k)/lbf (k)) (std/B/% elim) (B[+std℄) (std/+B/%) [s℄ (std/±B/%) [s℄ (std/±B/%) [s℄ up all (std/−B/%) [s℄ up treeR110.25 2, 1-
p 1.5/1.5 526/136/74% 21 0.3/0.02/6% 0.3/0.02/6% 1.9/-0.6/-34% 1.5 1.6/-0.6/-40% 1.7R112.25 2, 2-
p 2.2/1.9 646/157/76% 15 0.8/0.2/23% 3.2/0.2/6% 5.1/-0.9/-18% 1.2 1.9/-1.1/-57% 2.3C204.25 2, 1-
p 1.0/1.0 622/113/82% 11 3.4/1.3/40% 5.4/0.2/4% 52.1/-37.1/-71% 3.5 46.8/-37.3/-80% 4.9C207.25 3, 1-
p 1.4/0.05 463/71/85% 11[+1℄ 0.8/0.3/34% 2.8/-0.3/-11% 6.5/-3.7/-57% 2.3 3.7/-3.4/-91% 10.8R203.25 3, 1-
p 1.1/1.1 596/126/79% 7 0.8/0.1/16% 0.8/0.1/16% 3.2/-1.6/-52% 2.1 2.4/-1.8/-73% 3.8R204.25 4, 1-
p 1.7/1.7 627/141/78% 23[+8℄ 4.7/2.3/49% 4.7/2.3/49% 369.2/-349.7/-95% 18.9 364.5/-352.0/-97% 29.2R207.25 3, 1-
p 1.2/0.8 609/119/80% 25 1.0/0.2/22% 1.7/0.06/3% 18.6/-12.9/-69% 3.3 16.9/-12.9/-76% 4.3R208.25 3, 1-
p 1.5/1.5 631/139/78% 16 2.9/1.1/38% 4.1/0.5/13% 53.5/-35.8/-67% 3.0 49.4/-36.3/-73% 3.8R211.25 4, 1-
p 3.1/3.1 647/244/62% 137[+2℄ 5.3/0.6/11% 5.3/0.6/11% 1038.4/-813.8/-78% 4.6 1033.1/-814.4/-79% 4.7RC203.25 4, 1-
p 13.4/8.9 596/422/29% 370[+4℄ 4.6/2.1/46% 9.0/7.7/85% 3884.2/-1825.9/-47% 1.9 3875.2/-1833.7/-47% 1.9RC207.25 4, 1-
p 11.3/6 561/300/47% 126[+8℄ 3.2/1.1/35% 7.1/0.4/6% 771.6/-352.8/-46% 1.8 764.4/-353.2/-46% 1.9R103.50 3, 2-
p 0.6/0.5 1969/233/88% 17 3.8/0.6/15% 11.2/0.7/6% 17.5/-3.3/-19% 1.2 6.3/-4.0/-64% 2.8R104.50 3, 2-
p 1.1/0.6 2397/295/88% 24[+2℄ 12.8/3.8/29% 32.6/0.0/0% 234.9/-189.9/-81% 5.2 202.3/-189.9/-94% 16.3R107.50 3, 2-
p 0.9/0.7 2091/285/86% 22 6.9/0.9/13% 11.5/0.7/6% 34.5/-17/-49% 2.0 23.0/-17.7/-77% 4.3R109.50 3, 2-
p 1.5/1.3 1533/385/75% 137[+2℄ 4.4/0.2/4% 11.8/0.0/0% 91.6/-35.5/-39% 1.6 79.8/-35.4/-44% 1.8R110.50 4, 2-
p 0.4/0.1 2018/163/92% 11 6.3/0.9/14% 15.0/0.1/1% 19.6/-3.8/-19% 1.2 4.6/-3.8/-83% 5.9R111.50 3, 2-
p 2.0/1.7 2034/574/72% 109[+2℄ 6.1/1.0/17% 22.5/1.1/5% 172.1/-78.1/-45% 1.8 149.6/-79.3/-53% 2.1R112.50 3, 2-
p 2.7/2.4 2527/777/69% 976 10.8/2.4/22% 29.6/2.2/7% 6059.9/-3284.5/-54% 2.2 6030.3/-3286.7/-55% 2.2RC102.50 3, 2-
p 12.4/1.1 1462/433/70% 139[+12℄ 5.4/0.4/7% 36.8/0.9/2% 137.5/-57/-41% 1.7 100.7/-57.9/-57% 2.4RC106.50 4, 2-
p 8.1/0.4 1242/304/76% 16 3.1/1.1/34% 17.3/1.9/11% 24.4/-4.2/-17% 1.2 7.0/-6.1/-87% 8.0RC107.50 4, 2-
p 6.3/0.5 1834/331/82% 19 26.5/7.2/27% 72.8/2.8/4% 257.5/-165.9/-64% 2.8 184.8/-168.6/-91% 11.5R203.50 3, 1-
p 1.1/1.1 2295/406/82% 11 23.0/4.6/20% 23.0/4.6/20% 90.4/-48.2/-53% 2.1 67.5/-52.7/-78% 4.6R205.50 4, 1-
p 1.1/1.1 1878/370/80% 141 13.1/0.4/3% 13.1/0.4/3% 991.9/-721.1/-73% 3.7 978.9/-721.5/-74% 3.8RC202.50 4, 1-
p 3.9/1.5 1973/424/79% 23[+6℄ 16.9/2.5/15% 32.8/-4.0/-12% 375.5/-301.4/-80% 5.1 342.7/-297.3/-87% 7.6RC206.50 4, 1-
p 2.5/2.1 1860/510/73% 62 16.8/1.6/9% 20.9/0.5/3% 533.4/-377.2/-71% 3.4 512.5/-377.8/-74% 3.8R101.100 2, 2-
p 0.4/0.2 3243/309/90% 10[+2℄ 29.0/1.1/4% 56.0/1.4/3% 65.6/-3/-5% 1.05 9.6/-4.5/-47% 1.9R103.100 2, 2-
p 0.2/0.2 7704/473/94% 37 105.8/4.9/5% 253.3/5.7/2% 602.1/-289.3/-48% 1.9 348.9/-295.0/-85% 6.5R105.100 2, 2-
p 0.7/0.4 4260/563/87% 47 64.2/3.0/5% 133.7/3.9/3% 239.1/-18.6/-8% 1.1 105.3/-22.6/-21% 1.3R106.100 2, 2-
p 0.7/0.6 6558/996/85% 208 82.5/4.8/6% 149.2/4.7/3% 2220.1/-1174.7/-53% 2.1 2070.9/-1179.4/-57% 2.3RC101.100 2, 2-
p 2.2/0.1 3641/343/91% 13[+1℄ 72.0/1.4/2% 261.8/65.0/25% 278.0/56.1/20% 0.8 16.2/-9.0/-55% 2.2RC105.100 2, 2-
p 2.8/0.3 5249/502/90% 16[+9℄ 76.0/3.5/5% 521.3/-57.1/-11% 563.6/-90.1/-16% 1.2 42.3/-33.0/-78% 4.5R201.100 4, 1-
p 0.3/0.3 5917/435/93% 35 105.1/2.3/2% 105.1/2.3/2% 1183.6/-845.4/-71% 3.5 1078.6/-847.6/-79% 4.7RC201.100 4, 1-
p 0.5/0.5 5918/585/90% 101[+6℄ 114.1/5.4/5% 114.1/5.4/5% 3686.8/-2602.9/-71% 3.4 3572.7/-2608.4/-73% 3.7

Table2Impa
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