Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem

Timo Hintsch ${ }^{*, a}$
${ }^{a}$ Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the classical capacitated vehiclerouting problem. Customers are partitioned into clusters and all customers of the same cluster must be served by the same vehicle. In this paper, we present a large multiple neighborhood search for the SoftCluVRP. We design and analyze multiple cluster destroy and repair operators as well as two post-optimization components, which are both based on variable neighborhood descent. The first allows inter-route exchanges of complete clusters, while the second searches for intra-route improvements by combining classical neighborhoods (2opt, Or-Opt, double-bridge) and the Balas-Simonetti neighborhood. Computational experiments show that our algorithm clearly outperforms the only existing heuristic approach from the literature. By solving benchmark instances, we provide 130 new best solutions for 220 medium-sized instances with up to 483 customers and prove 12 of them to be optimal.

Key words: Vehicle Routing, Clustered Vehicle Routing, Large neighborhood search

1. Introduction

The soft-clustered vehicle-routing problem (SoftCluVRP) is a variant of the well-known capacitated vehicle-routing problem (CVRP, Toth and Vigo, 2014) and has been introduced by Defryn and Sörensen (2017). It can be described as follows. The customers are grouped into disjoint clusters and all customers of a cluster must be served by the same vehicle (soft-cluster constraints). Visits to customers of the same cluster can be interrupted by visits to customers of other clusters. This is a relaxation of the clustered vehicle-routing problem (CluVRP, Sevaux and Sörensen, 2008) in which interruption is not allowed, but all customers of a cluster must be served contiguously (hard-cluster constraints). Hintsch and Irnich (2018a) have shown that this relaxation can decrease the costs of optimal solutions by 6.21% on average for medium-sized instances, but finding optimal solutions is very difficult.

Both the SoftCluVRP and the CluVRP arise in practical scenarios, e.g., in parcel/small-package delivery in courier companies (Sevaux and Sörensen, 2008): Typically, customers are grouped into regional zones/districts (see Butsch et al. 2014, for districting) and parcels are sorted into containers according to their corresponding district by ZIP codes. Note that the districting and thus the sorting policy are made on the tactical planning level and altered only occasionally. They are fixed before the actual demand distribution is known. Therefore, the clustering decision must be taken into account when the routing decision is made on the operational planning level. In the CluVRP each parcel from one container is delivered before delivering parcels from another container is allowed, while in the SoftCluVRP there are no such requirements.

The CluVRP is addressed by exact approaches (Pop et al., 2012; Battarra et al., 2014) and by several metaheuristics (Barthélemy et al., 2010, Expósito Izquierdo et al. 2013 Vidal et al. 2015 Expósito-Izquierdo

[^0]et al., 2016, Defryn and Sörensen, 2017, Hintsch and Irnich, 2018b; Pop et al., 2018). To the best of our knowledge, only two approaches consider the SoftCluVRP. Hintsch and Irnich (2018a) presented an exact branch-and-price algorithm, which provides optimal solutions for instances with up to 420 customers and up to 52 clusters. Defryn and Sörensen (2017) suggested a two-level metaheuristics that originally was developed for the CluVRP. In this case, the low-level routing problem only considers the routing of customers inside a cluster (intra-cluster routing) and the high-level routing problem alters the position of clusters inside a route or moves clusters to another route (inter-cluster routing). This approach was adapted to the SoftCluVRP by allowing for customers to be moved to any position inside the current route at the lower level. Hence, the low-level routing considers intra-route moves of customers and the high-level routing considers inter-route moves of complete clusters. Both levels are solved by variable neighborhood search (VNS, Mladenović and Hansen, 1997).

The main contribution of the paper at hand is the design and computational analysis of a large multiple neighborhood search (LMNS, Pisinger and Ropke, 2007) for the SoftCluVRP. We will show that our new LMNS is able to improve the best known solutions for more than half of the considered medium-sized benchmark instances. In addition, we provide solutions for large-sized benchmarks that were not considered for the SoftCluVRP in the literature before.

Large neighborhood search (LNS, Shaw, 1998; Ropke and Pisinger, 2006b) has been shown to solve a wide range of routing problems successfully (see the survey by Pisinger and Ropke, 2010). Our approach combines the usage of multiple destroy and repair operators with two variable neighborhood descents (VNDs, Hansen and Mladenović, 2001) for post-optimization. The first VND allows for swapping and relocating complete clusters between routes, while the second VND improves single routes by classical neighborhoods (2-opt, Or-Opt, double-bridge) for the asymmetric traveling salesman problem (ATSP) as well as the BalasSimonetti neighborhood (Balas, 1999, Balas and Simonetti, 2001). Although it is of exponential size, the Balas-Simonetti neighborhood can be searched in polynomial time.

The general design of our approach is adapted from the LMNS for the CluVRP presented by Hintsch and Irnich (2018b). However, important components of their approach are based on the exploitation of the hard-cluster constraints, for example the preprocessing of intra-cluster routes, a meta-representation with meta-nodes for the clusters, and a generalization of the Balas-Simonetti neighborhood. Since we consider soft-cluster constraints, major modifications are required for the destroy and repair operators as well as the post-optimization, resulting in a clearly differing algorithm (see Section 22).

We use the following notation: Let $V=\{0, \ldots, n\}$ be the node set with the depot node 0 and the customer nodes $V \backslash\{0\}=\{1, \ldots, n\}$ and let E be the edge set. Then, the SoftCluVRP can be defined on a complete undirected graph $G=(V, E)$. A fleet of m homogeneous vehicles with capacity Q is located at the depot 0 . The nodes are partitioned into $N+1$ clusters $V_{0}, V_{1}, V_{2}, \ldots, V_{N}$, where $V_{0}=\{0\}$ represents the depot cluster for convenience. A positive demand $d_{h}>0$ is associated with every customer cluster indexed by $h \in H=\{1,2, \ldots, N\}$. The depot cluster V_{0} has zero demand $d_{0}=0$. We define $n_{h}=\left|V_{h}\right|$ as the cardinality of cluster $h \in H \cup 0$. A non-negative routing cost $c_{i j}$ is associated with each edge $\{i, j\} \in E$.

The task is to find m feasible routes visiting each customer exactly once and minimizing the total routing costs. According to the literature, each vehicle has to serve at least one cluster. Hence, a route r is feasible if
(i) it starts and ends at the depot node 0 and serves at least one cluster $h \in H$,
(ii) it visits each customer $i \in V_{h}$ exactly once if any customer $j \in V_{h}$ is visited by r, and
(iii) the demand of the visited clusters respects the vehicle capacity Q.

The remainder of this paper is structured as follows. In Section 2, the overall LMNS algorithm and all its components are described in detail. Comprehensive computational studies are summarized in Section 3 We analyze the effects of the destroy and repair operators as well as both post-optimization components. Moreover, we compare the results of the LMNS to the results generated by Defryn and Sörensen (2017). Final conclusions are drawn in Section 4.

2. LMNS for the SoftCluVRP

The general LNS procedure (for VRPs) works as follows: A feasible starting solution has to be given or created. Then, a destroy operator removes a subset of the customers from the current solution. Afterwards, these customers are reinserted by a repair operator, possibly at different positions or in different routes. The destroy and repair operators are applied repeatedly until a stopping criterion is met, while keeping track of the best solution found.

The number of customers to be removed can vary from iteration to iteration. In the basic version, it is increased if no improvement can be found for a specified number of iterations (Shaw, 1998), while Ropke and Pisinger (2006a) randomly choose the number of customers out of a given range in each iteration. After restoring the solution with the repair operator, it is accepted as the current solution based on an acceptance criterion. Shaw (1998) only accepts improving solutions, while Ropke and Pisinger (2006ab) suggest to use a simulated annealing acceptance criterion.

As an extension, Ropke and Pisinger (2006a) introduced the adaptive LNS (ALNS) for the pickup and delivery problem with time windows. In each iteration, the destroy and the repair operator are selected randomly out of a set of multiple destroy and repair operators depending on a given weight per operator. The weights are updated according to the success of the respective operators in former iterations. LMNS (Pisinger and Ropke, 2007) also uses different destroy and repair operators, but in contrast to ALNS their given weights remain unchanged. Our approach is an adaptation of the LMNS for the CluVRP developed by Hintsch and Irnich (2018b). We adopt the record-to-record acceptance criterion and the idea of postoptimizing the repaired solution (which was first suggested by Ropke, 2009). However, due to the soft-cluster constraints, customers of clusters that are served by the same route can be visited in arbitrary order and a meta-representation of routes on a cluster level is not applicable. The meta-representation was an essential property of the LMNS by Hintsch and Irnich (2018b). Hence, we have to implement four major modifications:
(i) We cannot exploit the pre-computation of intra-cluster routes. Instead, we calculate feasible routes that include the depot and serve one cluster or a pair of clusters. These routes are used during the construction phase and possibly during the repair and the post-optimization phase.
(ii) The destroy and repair operators have to be tailored to the SoftCluVRP.
(iii) Similarly, new variants of the cluster neighborhoods are presented and combined in a VND for postoptimization (called Clu-VND in the following).
(iv) The generalized version of the Balas-Simonetti neighborhood, used during and after the VND, cannot be employed. Instead, we extend the post-optimization phase by a second VND which combines classical neighborhoods with the basic Balas-Simonetti neighborhood. This VND searches for intraroute improvements and is called ATSP-VND in the following.
In the following, we describe all our LMNS components. Section 2.1 presents improvement strategies for single routes, including the ATSP-VND, and Section 2.2 combines two neighborhoods that exchange clusters between different routes to another VND, called Clu-VND. In Section 2.3, we introduce our destroy and repair operators. Subsequently, the overall LMNS is summarized in Section 2.4 .

2.1. ATSP Heuristics

In the SoftCluVRP, customers of a cluster $h \in H$ that are visited by the same route can be visited in an arbitrary order. Hence, the construction or improvement of a single route r can be considered as a traveling salesman problem (TSP, Gutin and Punnen, 2007), where the task is to find a cost-minimizing route, starting and ending in the depot, and visiting all customers in between. In the following, \bar{n} denotes the number of customer nodes visited by a single route r.

In this section, we present a simple VND for the ATSP, which is used in our LMNS as a post-optimization component. It is based on three classical edge-exchange neighborhoods (2-opt, Or-opt, and double-bridge, see, e.g., Funke et al. 2005) and the Balas-Simonetti neighborhood. Furthermore, we embed the VND in an iterated local search (ILS, Johnson et al., 2007), which results in a combined ILS/VND similar to the algorithm presented by Irnich (2008). This procedure is used during the construction phase (see Section 2.4). Before explaining the ATSP-VND and the Combined-ILS/VND, we give a short description on the BalasSimonetti neighborhood.

Balas-Simonetti neighborhood. The Balas-Simonetti neighborhood $\mathcal{N}_{k}^{B S}$ was introduced by Balas (1999) and is defined for a given integer parameter $k \geq 2$. Let $r=\left(r_{0}=0, r_{1}, \ldots, r_{\bar{n}}, r_{\bar{n}+1}=0\right)$ be a feasible route. Then, if r_{i} precedes r_{j} in r by at least k positions, node r_{i} must also precede node r_{j} in a neighbor route $r^{\prime} \in \mathcal{N}_{k}^{B S}(r)$. Hence, the Balas-Simonetti neighborhood $\mathcal{N}_{k}^{B S}(r)$ comprises all routes r^{\prime} in which (i) $r_{0}^{\prime}=r_{0}$ and $r_{\bar{n}+1}^{\prime}=r_{\bar{n}+1}$, and (ii) for all $i, j \in\{1, \ldots, \bar{n}\}$ with $i+k \leq j$, node r_{i} precedes node r_{j} also in r^{\prime}. A layered auxiliary network is constructed to find the best neighbor route, where each network node represents a combination of a node r_{i} of the current route r and a (possibly new) position i^{\prime} in route r^{\prime}, for which $i-k<i^{\prime}<i+k$ holds. Each source-sink path in the auxiliary network represents a feasible neighbor route $r^{\prime} \in \mathcal{N}_{k}^{B S}(r)$.

We use Neil Simonetti's code (written in C and available online at http://www.andrew.cmu.edu/user/ neils/) to construct the auxiliary network (for details, we refer to Balas and Simonetti |2001; Simonetti and Balas, 1996). Next, we briefly summarize the most important properties: The auxiliary network is independent of the current route r and needs to be constructed only once beforehand. Only the costs of the arcs in the auxiliary network have to be updated for a given input route. Although the neighborhood is of exponential size (for details see Gutin et al., 2007, p. 233), the shortest source-sink path, representing the best neighbor route $r^{\prime} \in \mathcal{N}_{k}^{B S}(r)$, can be found in $\mathcal{O}\left(\bar{n} k^{2} 2^{k}\right)$ time by dynamic programming. Thus, the computational effort is linear w.r.t. the route size \bar{n}. Moreover, if $k \geq \bar{n}$, the best neighbor represents the optimal solution of the ATSP route. However, the computational effort grows exponentially with k.
$A T S P-V N D$. We combine the Balas-Simonetti neighborhood $\mathcal{N}_{k}^{B S}$ with three classical edge-exchange neighborhoods in a simple VND and search them in the order 2-opt, Or-opt, double-bridge, and Balas-Simonetti. All three classical edge-exchange neighborhoods can be searched in $\mathcal{O}\left(\bar{n}^{2}\right)$ time (see Glover, 1996). The result is a local optimum w.r.t. all four neighborhoods. Note that the SoftCluVRP is defined as a symmetric problem, but all four neighborhoods, and hence the VND, are applicable to the asymmetric case as well.

Combined-ILS $/ V N D$. Our Combined-ILS/vND uses the parameters $n^{\text {small }}$ for the maximum number of customer nodes in a small route, $I t_{\mathrm{ILS}}$ as the number of ILS iterations for improving larger routes, and k for the Balas-Simonetti neighborhood used during the VND. Depending on the number of customer nodes \bar{n} the algorithm distinguishes three cases:
$\bar{n} \leq 2$: There is nothing to do. The resulting route is a pendulum tour including the depot and the only customer node (or two customer nodes); note that we consider symmetric instances.
$3 \leq \bar{n} \leq n^{\text {small }}$: We construct an arbitrary starting route r and search for the best neighbor route $r^{\prime} \in$ $\mathcal{N}_{\bar{n}}^{B S}(r)$ only once. Since we set $k=\bar{n}$ for the Balas-Simonetti neighborhood, the resulting route is already optimal.
$\bar{n}>n^{\text {small }}$: The actual combination of ILS and VND similar to the procedure by Irnich (2008) is applied: First, a starting route is constructed by the nearest neighbor heuristic. Second, we iteratively call $\operatorname{ATSP} \operatorname{-VND}(k)$ and permute the derived local optimum by two random double-bridge moves. The result of the permutation is used as the new starting solution for the next iteration. Overall, $I t_{\text {ILS }}$ iterations are executed, while keeping track of the best solution found.

2.2. Cluster Neighborhoods and VND

The goal of this section is to present a simple combination of two cluster neighborhoods, Relocate and Swap, within a VND. Both cluster neighborhoods are adapted from the CVRP, but always move complete clusters. They both remove and reinsert a single (Relocate) or two different (Swap) cluster(s).

To remove a cluster $h \in H$, all customers $i \in V_{h}$ have to be removed from their current route. After removing a customer, the preceding and succeeding customers are connected. Note that the route remains feasible if all customers $i \in V_{h}$ are removed.

The reinsertion of cluster h into a given route r is feasible if d_{h}, the demand of cluster h, does not exceed the residual capacity of r. Only feasible insertions are considered. To reinsert the cluster h, all customers $i \in V_{h}$ are sorted randomly. Then, they are inserted one after another by the Procedure Best

Insert. A single customer is inserted into the current route by minimizing the insertion cost. Note that the computational effort is bounded by $\mathcal{O}\left(n_{\max } n\right)$, where $n_{\max }$ is the size of the largest cluster.

```
Procedure Best Insert ( \(V_{h}^{\text {ran }}, r\) )
    Input: Randomly sorted customers \(V_{h}^{\text {ran }}\) of cluster \(h \in H\),
            a route \(r\).
    Output: Insertion costs and new route \(r\) including all customers in \(V_{h}\)
    for \(i \in V_{h}^{r a n}\) do
        \(c_{\text {min }}=\infty\)
        pos \(=-1\)
        for \(j=0, \ldots, \operatorname{size}(r)-2\) do
            \(\operatorname{cost}=c_{r_{j}, i}+c_{i, r_{j+1}}-c_{r_{j}, r_{j+1}}\)
            if cost \(<c_{\text {min }}\) then
                \(c_{\text {min }}=\) cost
                pos \(=j\)
        \(r=\left(r_{0}, \ldots, r_{\text {pos }}, i, r_{\text {pos }+1}, \ldots, r_{\bar{n}}, r_{\bar{n}+1}\right)\)
```

In the following we describe the Relocate and the Swap neighborhoods:
Relocate Neighborhood. The neighborhood $\mathcal{N}^{\text {reloc }}$ comprises all SoftCluVRP solutions that result from the removal of a cluster from its current route and the insertion of the same cluster into the same or another route by the Procedure Best Insert. The size of $\mathcal{N}^{\text {reloc }}$ is $N m$, which is bounded by N^{2} in the extreme case. Therefore, the complexity to search it is $\mathcal{O}\left(n_{\max } n N^{2}\right)$, when using Best Insert.

Swap Neighborhood. The neighborhood $\mathcal{N}^{\text {swap }}$ contains all SoftCluVRP solutions that result from the swapping of two clusters from two different routes. A swap of cluster g, currently visited by route r, and cluster h, currently visited by route s, is performed as follows: First, we remove all nodes $i \in V_{g} \cup V_{h}$ from their current route. Second, we perform Best Insert $\left(V_{g}^{\text {ran }}, s\right)$ and Best Insert $\left(V_{h}^{\text {ran }}, r\right)$. The size of $\mathcal{N}^{\text {swap }}$ grows quadratically with the number of clusters N and the computational effort is limited to $\mathcal{O}\left(2 n_{\max } n N^{2}\right)$.

Both neighborhoods are combined within a VND, called Clu-VND in the following. As it is common practice, we start with the neighborhood that can be searched faster, the Relocate neighborhood $\mathcal{N}^{\text {reloc }}$. For both neighborhoods, we use a first improvement pivoting strategy.

2.3. LNS Operators

Here, we describe the different destroy (Section 2.3.1) and repair operators (Section 2.3.2) employed in our LMNS.

2.3.1. Destroy Operators

The destroy operators always remove complete clusters, which means that each customer $i \in V_{h}$ is removed if cluster h is removed. Removing a cluster is performed as described in the previous section. The percentage of clusters to be removed is defined by a parameter τ and we use four different destroy operators, similar to the operators applied by Hintsch and Irnich (2018b):

1. Random destroy removes τN clusters at random Ropke and Pisinger, 2006a). (Note that τN is always rounded to the next integer. Here, we omit the corresponding formular for simplicity.)
2. Related destroy was introduced by $\operatorname{Shaw}(\sqrt{1998})$ and we adapt it to the presence of clusters: First, one cluster h is removed at random. Then, $\tau N-1$ clusters closest to h are removed, too. The distance between two clusters V_{g} and V_{h} is defined as $\min _{(i, j) \in V_{g} \times V_{h}} c_{i j}$.
3. Worst destroy was introduced by Ropke and Pisinger (2006a) and is adapted for clusters: First, the improvement that would be realized if a cluster is removed from the current solution is calculated for each cluster $h \in H$ and sorted by decreasing improvement in a list L. Furthermore, we define the parameter $\rho^{\text {worst }} \geq 1$ to randomize the operator. Then, for τN iterations, we determine a uniformly distributed random number $y \in[0,1)$, pick the cluster at position $\left\lfloor y^{\rho^{\text {worst }}}|L|\right\rfloor$ in L, and remove it from L and the current solution.
4. Route destroy removes one entire route at random. Note that the parameter τ is not used by this operator.

2.3.2. Repair Operators

Analogous to the destroy operators, the repair operators reinsert complete clusters. All operators use the same procedure to insert a given cluster h : If the destroy operator has reduced the number of routes and not every vehicle serves at least one cluster in the current solution, the given cluster is used to start a new route. Otherwise, for each route where h could be inserted w.r.t. the capacity, we evaluate the insertion costs for cluster h by the Procedure Best Insert as described in Section 2.2. Afterwards, the route with smallest insertion cost is chosen and cluster h is inserted as determined before. If cluster h cannot be inserted into any route because of the capacity constraint, the repair operator is stopped and the current solution remains infeasible. The operators only differ in the order the clusters are inserted:

1. Random repair reinserts all removed clusters in random order.
2. Demand repair reinserts all removed clusters in descending order of their demand.
3. Randomized Demand repair is a mixture of both other repair operators and all removed clusters are sorted according to their demand in descending order. Let L^{\prime} be the list of sorted clusters. The following procedure is repeated until all clusters are reinserted: Similar to the worst destroy operator, we pick the cluster at position $\left\lfloor y^{\rho^{\text {demand }}}\left|L^{\prime}\right|\right\rfloor$ from L^{\prime}, where the parameter $\rho^{\text {demand }} \geq 1$ is used to randomize the operator and $y \in[0,1)$ is a uniformly distributed random number. The chosen cluster is reinserted to the current solution and removed from L^{\prime}.

2.4. Overall LMNS Algorithm

Our overall LMNS approach combines all components described in Sections 2.1,2.3. Next, we describe the pseudo-code that is given in Algorithm 1.

In Step 1, we employ a savings algorithm, tailored to the SoftCluVRP, to construct a starting solution x. In contrast to the classical savings algorithm, a pendulum tour is defined as a route visiting all customers of one cluster, instead of visiting only one customer. For each cluster $h \in H$, we calculate a route, starting and ending in the depot, and visiting all customers $i \in V_{h}$ by applying the Combined-ILS/VND (Section 2.1) with the given input parameters. Moreover, the same is done for each pair of clusters $(g, h) \in H \times H$. Such a route visits all customers $i \in V_{g} \cup V_{h}$ of both clusters. The costs of the resulting routes are defined as \hat{c}_{h} and $\hat{c}_{g, h}$, respectively, and savings values are calculated for each pair (g, h) as $s a v_{g, h}=\hat{c}_{g}+\hat{c}_{h}-\hat{c}_{g, h}$.

Now, we construct routes as follows. As in the classical savings algorithm, the largest savings value $s a v_{g, h}$ is chosen first. Instead of constructing real routes already at this stage, we only consider the corresponding clusters g and h to be part of the same route. A saving becomes infeasible if both clusters are already part of the same route or if the total demand of both routes exceeds the vehicle capacity Q. If the resulting number of routes exceeds the number of vehicles m, we compute a bin-packing solution based on the clusters (Valério de Carvalho, 1999). Finally, for each set of clusters that are considered to be part of the same route, either generated by the savings algorithm or by the bin-packing approach, we construct a route with the Combined-ILS/VND. Such a route visits all customers belonging to clusters that were assigned to that route.

Afterwards, the main loop (Steps 214) runs for $I t_{\text {LMNS }}$ iterations. Note that infeasible solutions can occur after the destroy/repair phase, but we only consider feasible solutions (Step 3). Furthermore, given a parameter $\epsilon_{\text {post }}$, we only consider promising solutions that fulfill the record-to-record criterion $c(x)<$

```
Algorithm 1: LMNS algorithm for the SoftCluVRP
    Input: Iterations \(I t_{\mathrm{ILS}}\) and \(I t_{\mathrm{LMNS}}\)
            Parameters \(k_{\text {sav }}\) and \(k_{\text {post }}\) of Balas-Simonetti neighborhoods
            Weights \(\left(\psi^{\text {random }}, \psi^{\text {related }}, \psi^{\text {worst }}, \psi^{\text {route }}\right)\) and ( \(\left.\omega^{\text {random }}, \omega^{\text {demand }}, \omega^{\text {ranDem }}\right)\) of destroy and
            repair operators
            Parameters \(n^{\text {small }}, \epsilon_{\text {LMNS }}, \epsilon_{\text {post }}, \tau_{\min }, \tau_{\text {max }}, \rho^{\text {worst }}\), and \(\rho^{\text {demand }}\)
    \(x:=x^{\text {accepted }}:=x^{\text {best }}:=\) Savings Algorithm \(\left(n^{\text {small }}, I t_{\mathrm{ILS}}, k_{\mathrm{sav}}\right)\)
    for iter \(:=1, \ldots, I t_{\text {LMNS }}\) do
        if \(x\) is feasible then
            if AcceptanceCriterion1 \(\left(\epsilon_{\text {post }}, x, x^{\text {best }}\right)\) then
                \(x:=\mathrm{Clu}-\operatorname{VND}(x)\)
                \(x:=\operatorname{ATSP}-\operatorname{VND}\left(k_{\text {post }}, x\right)\)
            if \(c(x)<c\left(x^{b e s t}\right)\) then
                \(x^{b e s t}:=x\)
            if AcceptanceCriterion2 \(\left(\epsilon_{\text {LMNS }}, x, x^{\text {best }}\right)\) then
                \(x^{\text {accepted }}:=x\)
        Randomly choose \(\tau \in\left\{\tau_{\text {min }}, \ldots, \tau_{\text {max }}\right\}\)
        Randomly choose Op \({ }^{\text {destroy }}\) according to weights ( \(\psi^{\text {random }}, \psi^{\text {related }}, \psi^{\text {worst }}, \psi^{\text {route }}\) )
        Randomly choose Op \({ }^{\text {repair }}\) according to weights ( \(\omega^{\text {random }}, \omega^{\text {demand }}, \omega^{\text {ranDem }}\) )
        \(x:=\mathrm{Op}^{\text {repair }}\left(\rho^{\text {demand }}, \mathrm{Op}^{\text {destroy }}\left(\tau, \rho^{\text {worst }}, x^{\text {accepted }}\right)\right)\)
```

$\left(1+\epsilon_{\text {post }}\right) c\left(x^{\text {best }}\right)$ for post-optimization, see Step 4. The post-optimization is performed in Steps 5 and 6 with the Clu-VND from Section 2.2 followed by the ATSP-VND from Section 2.1. The latter is called for each route of the current solution x and with $k=k_{\text {post }}$.

In Steps 710 , we possibly update the best solution found and/or the accepted solution depending on the second acceptance criterion. Again, we use a record-to-record acceptance criterion and the current solution is accepted if $c(x)<\left(1+\epsilon_{\mathrm{LMNS}}\right) c\left(x^{\text {best }}\right)$ is fulfilled for a given parameter ϵ_{LMNS}. Note that we always set $\epsilon_{\text {post }} \geq \epsilon_{\text {LMNS }}$. Steps 11,13 randomly choose the percentage τ of clusters to be removed as well as one destroy and one repair operator out of the seven operators presented in Section 2.3. Afterwards, the chosen operators are applied in Step 14 resulting in the new solution for the next iteration.

In both the Clu-VND as well as the repair operators, we deviate from the described procedure if cluster g is inserted into a route which currently serves no other or only one other cluster h. In such a case, our algorithm uses the route that was already derived by the Combined-ILS/VND during the savings algorithm, according to cluster g or the pair of clusters (g, h), respectively.

Furthermore, we enable our algorithm to stop prematurely if a time limit is given.

3. Computational Results

All computational results are obtained using a standard PC equipped with MS Windows 7, an $\operatorname{Intel}(\mathrm{R})$ Core(TM) i7-5930K CPU processor clocked at 3.5 GHz , and with 64 GB of main memory. Our algorithm is implemented in C++ and compiled in 64-bit single-thread code with MS Visual Studio 2015 in release mode. If necessary, CPLEX 12.8 is used to compute bin-packing solutions.

In Section 3.1, we introduce the considered benchmark instances and in Section 3.2, the parameters of our LMNS are tuned. Afterwards, the calibrated LMNS is analyzed and compared to the two-level VNS by Defryn and Sörensen (2017) on different instance sets (Sections 3.3 and 3.4. Results for large-sized instances that were not considered for the SoftCluVRP in the literature before are presented in Section 3.5

3.1. SoftCluVRP Benchmark Instances

We test our LMNS algorithm on three benchmark sets that were used in previous studies in the literature. All SoftCluVRP benchmark sets were derived from CVRP benchmarks by defining θ as the desired average number of customers per customer cluster and building $N=\lceil(n+1) / \theta\rceil$ customer clusters (for details, see Fischetti et al., 1997, Bektaş et al., 2011). The first benchmark set was proposed by Bektaş et al. (2011). They adapted the CVRP benchmarks called A, B, P, and GC by choosing $\theta \in\{2,3\}$, resulting in the two subsets GVRP-2 and GVRP-3. Overall, 158 small- and medium-sized instances (available online at http://www.personal.soton.ac.uk/tb12v07/gvrp.html) with 16 to 262 nodes and 6 to 131 clusters were generated. The second benchmark set Golden is based on the well-known CVRP instances by Golden et al. (1998) and was generated by choosing $\theta=\{5, \ldots, 15\}$ for each of the 20 original instances Golden1 to Golden20. It was provided by Battarra et al. (2014) and consists of 220 large-scale instances with 201 to 484 nodes and 14 to 97 clusters. The third set Li was generated by Vidal et al. (2015) using the CVRP instances of Li et al. (2005) and $\theta=5$. It comprises 12 large-scale instances with 561 to 1201 nodes and 113 to 241 clusters. The number of vehicles m is given for each instance and it is not allowed to use less vehicles.

For each instance, our LMNS is run with ten different random seeds. The computation time is measured as the average over the ten runs. In the following, all computation times T are given in seconds. Furthermore, we define the gap in percentage between the solution value z and the best known solution BKS as $g a p=$ $100(z-\mathrm{BKS}) / \mathrm{BKS}$. The smallest gap found in the ten runs is given by Gap Best, while Gap Avg. refers to the average gap over the ten runs.

3.2. Parameter studies

In this section, we determine reasonable parameter settings for our LMNS algorithm to obtain highquality solutions in fast computation times. As suggested by Ropke and Pisinger (2006a), we start with a setting found during pretests and then analyze the different components. First, we configure the SoftCluVRP tailored savings algorithm in Section 3.2.1. Afterwards, we determine the basic LMNS parameters, including the weights for the destroy and repair operators, and assess the usefulness of our post-optimization components in Sections 3.2 .2 and 3.2.3. If not stated otherwise, we refer to a setting of our algorithm as $\mathrm{LMNS}_{I t_{\text {LMNS }}}^{k_{\text {post }}}$ or, if a time limit is given, as $\operatorname{LMNS}_{I_{\text {LMNS }}}^{k_{\text {post }}}$ (maxTime), where maxTime is the time limit in seconds.

3.2.1. Parameters for the Savings Algorithm

The only parameters that need to be set for the savings algorithm are those of the Combined-ILS/VND: $n^{\text {small }}, I t_{\mathrm{ILS}}, k_{\mathrm{sav}}$. We simply adopt the parameter settings chosen by Hintsch and Irnich (2018b), which turned out to be a good tradeoff between solution quality and computational effort. In their approach, the Combined-ILS/VND was used to compute the shortest Hamiltonian path for each pair of nodes inside a cluster, which played an important role for the overall algorithm. In the paper at hand, it is only used during the construction phase. Although the derived routes might be used during the overall algorithm (see Section 2.4), the results are not crucial for our LMNS. In contrast to the approach by Hintsch and Irnich (2018b), they can be corrected by later steps.

Therefore, we do not invest much effort in adjusting these parameters and set $\left(n^{\text {small }}, I t_{\text {ILS }}, k_{\text {sav }}\right)=$ $(8,50,3)$. Hence, routes with up to $n^{\text {small }}=8$ customer nodes are solved exactly by applying the BalasSimonetti neighborhood only once. Otherwise, the ILS runs for $I t_{\mathrm{ILS}}=50$ iterations using $k_{\mathrm{sav}}=3$ for the Balas-Simonetti neighborhood. This decision is supported by experiments conducted a posteriori: For the chosen parameters, the setup $\mathrm{LMNS}_{10000}^{3}$, e.g., generates an average Gap Best of 0.029% (Gap Avg. $=0.136 \%$) over all GVRP and Golden instances, while the geometric mean of the computation times is Geo. $T=17.0$. Increasing the number of iterations $I t_{\text {ILS }}$ from 50 to 100 even leads to an inferior solution quality with Gap Best $=0.039 \%$ and Gap Avg. $=0.138 \%$ with the same computational effort (Geo. $T=17.0$).

3.2.2. Parameters for the basic $L M N S$

In this section, we analyze the basic parameters of our LMNS, focusing on the destroy and repair operators. Pretests have shown that $\left(\epsilon_{\text {post }}, \epsilon_{\text {LMNS }}, \tau_{\text {min }}, \tau_{\text {max }}, \rho^{\text {worst }}, \rho^{\text {demand }}\right)=(0.1,0.005,10,40,3,50)$ represent a good basic setting. It means that the current solution x is post-optimized by the Clu-VND and the ATSP-VND only if $c(x) \leq 1.1 c\left(x^{\text {best }}\right)$ and accepted as new current solution only if $c(x) \leq 1.005 c\left(x^{\text {best }}\right)$. The destroy operator removes between $\tau_{\min }=10 \%$ and $\tau_{\max }=40 \%$ of the clusters from the current solution, and $\rho^{\text {worst }}=3$ and $\rho^{\text {demand }}=50$ are chosen as the randomization values for the Worst destroy and the Randomized Demand repair operators, respectively.

To configure the weights $\left(\psi^{\text {random }}, \psi^{\text {related }}, \psi^{\text {worst }}, \psi^{\text {route }}, \omega^{\text {random }}, \omega^{\text {demand }}, \omega^{\text {ranDem }}\right)$ of all destroy and repair operators, we set $k_{\text {post }}=3$ (see Section 3.2 .3 for analyses on $k_{\text {post }}$) and run our LMNS with 10000 iterations and for several different setups. To limit the computational effort, we only consider the 158 GVRP instances for this series of experiments. The most important finding concerning the destroy operators is that the operator Route destroy is clearly inferior compared to all three other destroy operators. For example, if only one destroy operator is used (together with equally weighted repair operators), the average Gap Best is 0.939 \% for Route destroy. Using Random (Related, Worst) destroy instead, the average Gap Best is reduced to $0.013 \%(0.032 \%, 0.020 \%)$. On the basis of these results and further pretests we decide to use the Route destroy less often than the other three operators. Comparing only these three operators, they perform comparable. Hence, we choose $\left(\psi^{\text {random }}, \psi^{\text {related }}, \psi^{\text {worst }}, \psi^{\text {route }}\right)=(0.3,0.3,0.3,0.1)$. Similarly, for the repair operators, we find that choosing equal weights turns out to be a good setup. The resulting average Gap Best is smaller than 0.001% and the best out of ten runs finds the BKS for all but one instance. By using only one repair operator (together with the weights previously chosen for the destroy operators), Gap Best ranges from 0.004% to 0.009%.

Subsequently, we systematically test for the usefulness of each and every operator. We compare the chosen setup (called All Operators) to setups where one of the operators is disabled, but the ratio of the remaining operators is kept fixed. For example, if the Worst destroy is disabled, the weights for the destroy operators change to $\left(\psi^{\text {random }}, \psi^{\text {related }}, \psi^{\text {route }}\right)=(0.3,0.3,0.1) / 0.7$. Again, we set $k_{\mathrm{post}}=3$ and $I t_{\mathrm{LMNS}}=10000$. The results are summarized in Table 1. Avg. T refers to the arithmetic mean of the average computation time over ten runs for all 158 instances and Geo. T gives the geometric mean.

	w/o destroy operator					w/o repair operator				All
	Random	Related	Worst	Route		Random	Demand	Ran.Dem.	Operators	
Avg. T	3.1	3.1	3.1	3.0		3.1	3.1	3.0	3.2	
Geo. T	2.0	2.0	2.0	2.0		2.0	2.0	2.0	2.1	
Gap Best $[\%]$	0.004	0.014	0.004	0.014		0.014	0.026	0.003	<0.001	
Gap Avg. $[\%]$	0.093	0.111	0.100	0.081		0.123	0.090	0.092	0.086	
\# BKS (158)	156	154	156	155		154	155	156	157	

Table 1: Comparison of LMNS using different destroy and repair operators and 158 GVRP benchmark instances.

The computational effort is nearly the same for all settings. For example, Avg. T ranges from 3.0 to 3.2 seconds. All Operators produces an average Gap Best smaller than 0.001%, while the other seven settings result in a Gap Best between 0.003% and 0.026%. Comparing for the average Gap Avg., All Operators is inferior to the setting without Route destroy (0.086% vs. 0.081%), while the remaining six gaps are not smaller than 0.090%. Nevertheless, due to the smaller Gap Best, we still keep the Route destroy operator. Furthermore, it is the only setting that finds the BKS in 157 out of the 158 GVRP instances. Hence, we fix the chosen weights for all remaining studies.

3.2.3. Usefulness of the post-optimization

In our LMNS, the post-optimization of repaired solutions comprises two components: The Clu-VND, which relocates and swaps complete clusters, and the ATSP-VND, which improves single routes and consists of four neighborhoods (2-opt, Or-opt, double-bridge, Balas-Simonetti). In addition to the GVRP instances, we

Figure 1: Comparison of different post-optimization strategies on 378 benchmarks (158 GVRP and 220 Golden instances).
include the medium-sized Golden instances for the analysis of the two components. Altogether, we compare the following 15 post-optimization strategies:

Full- $k_{\text {post }}$: The full LMNS is applied as described in Section 2.4 including the Clu-VND and the ATSP-VND. For the ATSP-VND, we test 5 different settings with $k_{\text {post }} \in\{0,3,5,7,9\}$, where $k_{\text {post }}=0$ means that the Balas-Simonetti neighborhood is switched off. Note that $k_{\text {post }}=1$ is not reasonable because nodes could only be moved for less than $k_{\text {post }}=1$ positions in the current route, which corresponds to not move them at all.
BSLS- $k_{\text {post }}$: Instead of using the complete ATSP-VND, we only search for the local optimum with respect to the Balas-Simonetti neighborhood for each route, using different $k_{\text {post }} \in$ $\{3,5,7,9\}$. Note that $k_{\text {post }}=0$ would switch off the ATSP-VND completely, which is the strategy W/o ATSP.
$\mathrm{BS}-k_{\text {post }}$: As BSLS- $k_{\text {post }}$, but instead of searching for the local optimum, the Balas-Simonetti neighborhood is applied only once for each route.
W/o ATSP: The complete ATSP-VND is switched off. Only Clu-VND is used for post-optimization.
W/o Clu-VND: Clu-VND is switched off. Only the (full) ATSP-VND with $k_{\text {post }}=3$ is used for postoptimization.
We have also tested settings where the Clu-VND and ATSP-VND are incorporated within one VND or where the complete Combined-ILS/VND is performed, instead of only running the ATSP-VND. These were clearly inferior and we do not include them in the analysis of this section.

Figure 1 gives a comparison of the different post-optimization strategies when running the LMNS with 10000 iterations. It reports the average computation time Avg. T and the average Gap Best for all the 378 GVRP and Golden instances. To compare for similar computation times, we additionally run the setting Full-3 with a reduced number of iterations $I t_{\text {LMNS }}=5000$, indicated by the open dot \circ.

The results can be summarized as follows: First, it is superior to post-optimize solutions with the ATSP-VND including the three classical edge-exchange neighborhoods. All settings where ATSP-VND is switched off or reduced to a local/single search with the Balas-Simonetti neighborhood are clearly outperformed w.r.t. Gap Best. Reducing the number of iterations, e.g., of setting Full-3, shows that this also holds when computation times are comparable. Second, a similar effect is observed for the Clu-VND. Comparing the strategies W/o Clu-VND and Full-3, the Clu-VND decreases the Gap Best from 0.116% to 0.031% but increases the

Avg. T from 31.9 to 55.2 seconds. As before, reducing the number of iterations for Full-3 helps to show the usefulness of Clu-VND by producing a Gap Best of 0.047% in 27.9 seconds average computation time. Third, we observe the expected tradeoff between solution quality and computation time for the $k_{\text {post }}$ of the BalasSimonetti neighborhood used in the ATSP-VND. Higher values for $k_{\text {post }}$ help to find better solutions, while the computational effort only raises reasonably for $k_{\text {post }} \leq 5$. However, for $k_{\text {post }}>5$, computation times increase drastically with only little improvement in the solution quality. We omit settings with $k_{\text {post }}=9$ in Figure 1 due to very high running times. For example, Full-9 gives the smallest Gap Best of only 0.018% but runs for 276.3 seconds on average.

Very similar results are observed by comparing Gap Avg. instead of Gap Best. Overall, both VND components used for post-optimization contribute to the quality of our LMNS. Furthermore, setting $k_{\text {post }}$ to 3 or 5 yields the most favorable results and we report more details on both settings in the next sections. This result is very similar to observations from the literature (see, e.g., Gschwind and Drexl, 2018; Hintsch and Irnich, 2018b).

3.3. Results for the GVRP Instances

In this section, we give more detailed results of our LMNS for the small-sized GVRP instance set and compare them to the results of the two-level VNS proposed by Defryn and Sörensen (2017). Our LMNS is run with both chosen settings, $k_{\text {post }}=3$ as well as $k_{\text {post }}=5$, and again for $I t_{\text {LMNS }}=10000$ iterations.

Set (\# inst.)	$\mathrm{LMNS}_{10000}^{3}$					$\mathrm{LMNS}_{10000}^{5}$					DS (2017)			
	T		Gap		$\begin{aligned} & \# \\ & \text { BKS } \end{aligned}$	T		Gap		$\#$ BKS	T Avg.	Gap		\# BKS
	Avg.	Geo.	Best	Avg.		Avg.	Geo.	Best	Avg.			Best	Avg.	
GVRP-2														
A-2 (27)	1.87	1.71	0.00	0.11	27	2.78	2.54	0.00	0.10	27	n.a.	n.a.	n.a.	n.a.
B-2 (23)	2.19	2.05	0.00	0.01	23	2.91	2.76	0.00	0.01	23	n.a.	n.a.	n.a.	n.a.
P-2 (24)	2.42	2.42	0.00	0.14	24	3.18	2.06	0.00	0.12	24	n.a.	n.a.	n.a.	n.a.
GC-2 (5)	12.74	11.79	0.01	0.60	4	14.54	13.77	0.16	0.61	3	n.a.	n.a.	n.a.	n.a.
GVRP-3														
A-3 (27)	1.97	1.84	0.00	0.03	27	2.79	2.64	0.00	0.03	27	0.28	0.07	0.14	26
B-3 (23)	2.25	2.25	0.00	0.02	23	3.08	2.92	0.00	0.02	23	0.06	0.00	0.00	23
P-3 (24)	2.48	1.64	0.00	0.02	24	3.28	2.31	0.00	0.02	24	0.52	0.10	0.16	19
GC-3 (5)	22.71	17.98	0.00	0.49	5	24.95	20.22	0.00	0.44	5	13.46	0.43	0.91	1
Total (158)	3.17	2.06	<0.01	0.09	157	4.06	2.84	<0.01	0.08	156	n.a.	n.a.	n.a.	n.a.

Table 2: Aggregated results for the 158 GVRP instances.
The results are summarized in Table 2, where 'DS (2017)' refers to the two-level VNS by Defryn and Sörensen (2017). Our two LMNS settings perform very similar on these instances. In total, the computation time is smaller for $\mathrm{LMNS}_{10000}^{3}$, but it differs less than one second on average. Overall, $\mathrm{LMNS}_{10000}^{3}$ ($\operatorname{LMNS}_{10000}^{5}$) finds the BKS for all but one (two) instance(s), resulting in an average Gap Best of $<0.01 \%$ $(<0.01 \%)$. For the GC-2 instances, we obtain an average Gap Best of $0.01 \% ~(0.16 \%)$. Considering Gap Avg., $\mathrm{LMNS}_{10000}^{5}$ performs slightly better (0.08% vs. 0.09% overall).

Comparing with the two-level VNS, note that Defryn and Sörensen (2017) run their algorithm for 20 different random seeds, but did not consider the GVRP-2 instances. Furthermore, they reported computation times only by arithmetic means for subsets. For the GVRP-3 instances, they can find the BKS for 69 instances, whereas both LMNS settings find each and every BKS, resulting in smaller or equal Gap Best values. The Gap Avg. values are smaller for the LMNS, too, except for the B-3 instances (0.02% vs. 0.00%). Computation times are clearly smaller for the two-level VNS, but also reasonably small for both LMNS settings and all subsets A-3, B-3, P-3 (at most 3.28 seconds on average). Moreover, reducing the number of iterations to 1000 and applying additional tests, for example with LMNS_{1000}^{3}, leads to average computation times that are smaller for our LMNS for each of the subsets except B-3 (0.27 vs .0 .06 seconds $)$, and we can still find every BKS.

Furthermore, our LMNS finds every solution that is known to be optimal (for optimal solutions, see Hintsch and Irnich, 2018a) and improves the BKS from the literature for $10\left(\operatorname{LMNS}_{10}^{3}{ }_{000}\right)$ and $11\left(\operatorname{LMNS}_{10}^{5}{ }_{000}\right)$ of the remaining 13 instances (where the exact approach was prematurely terminated after 3600 seconds). One of the new BKS can even be proven to be the optimal solution, since the calculated costs equal the corresponding lower bound reported for this instance by Hintsch and Irnich (2018a). Detailed instance-byinstance results are given in Tables 58 of the Online Supplement.

3.4. Results for the Golden Instances

Analogous to the previous section, we analyze our LMNS for the medium-sized Golden instances. Results are given in Tables 3 (for $\left.k_{\text {post }}=3\right)$ and $4\left(k_{\text {post }}=5\right)$, where the instances are grouped by average cluster size $\theta \in\{5, \ldots, 15\}$. Instances are easier to solve for larger average cluster sizes θ, which implies a decreasing number of clusters N. This leads to strictly decreasing computation times for both LMNS settings. The gaps also tend to decrease with an increasing θ, but this observation is ambiguous, in particular for Gap Best.

Over all 220 instances, the average Gap Best of 0.05% produced by $\operatorname{LMNS}_{10000}^{3}$ can be reduced to 0.04% by $\mathrm{LMNS}_{10000}^{5}$, accepting a slightly higher computation time (92.6 vs. 98.8 seconds on average and 77.6 vs. 84.6 geometrical mean). Simultaneously, Gap Avg. reduces from 0.18% to 0.15%. We observe smaller gaps for $\mathrm{LMNS}_{10000}^{5}$ compared to $\mathrm{LMNS}_{10000}^{3}$ for all average cluster sizes, except $\theta=5$, where $\mathrm{LMNS}_{10000}^{5}$ generates Gap Best $=0.05 \%$ compared to 0.04%. Overall, $147(162)$ BKS are found by $\operatorname{LMNS}_{10000}^{3}\left(\operatorname{LMNS}_{10000}^{5}\right)$.

θ	$\mathrm{LMNS}_{10000}^{3}$									DS (2017)			
	Gap		T		$\#$ BKS	Gap		T Avg.	$\#$ BKS	Gap		T Avg.	$\#$ BKS
	Best	Avg.	Avg.	Geo		Best	Avg.			Best	Avg.		
5	0.04	0.18	126.5	105.3	14	0.30	0.71	10.0	6	3.84	5.02	10.0	0
6	0.08	0.24	113.2	94.9	10	0.35	0.64	10.0	4	3.58	4.65	10.0	0
7	0.03	0.19	105.1	89.5	14	0.29	0.58	10.0	5	3.31	4.24	10.0	0
8	0.07	0.18	98.5	84.1	14	0.22	0.45	10.0	9	3.01	3.97	10.0	0
9	0.04	0.16	92.5	79.0	14	0.22	0.51	10.0	8	2.66	3.65	10.0	0
10	0.04	0.16	88.5	76.0	14	0.17	0.44	10.0	9	2.77	3.51	10.0	0
11	0.09	0.17	84.7	72.4	10	0.18	0.44	10.0	9	2.60	3.38	10.0	0
12	0.08	0.17	82.0	70.3	12	0.20	0.40	10.0	9	2.45	3.20	10.0	0
13	0.07	0.24	79.3	67.7	14	0.16	0.44	10.0	7	2.42	3.26	10.0	0
14	0.03	0.12	75.0	64.2	15	0.16	0.34	10.0	8	2.28	3.10	10.0	0
15	0.02	0.10	72.9	61.8	16	0.12	0.31	10.0	8	2.27	3.11	10.0	0
Total	0.05	0.18	92.6	77.6	147	0.22	0.48	10.0	82	2.84	3.74	10.0	0

Table 3: Aggregated results for $k_{\text {post }}=3$ and benchmark set Golden, sorted by the average number of nodes per cluster θ (220 instances divided into 11 groups of 20 instances each).

Since Defryn and Sörensen (2017) set a time limit of 10 seconds, we also run our LMNS with the same time limit. The results clearly show the superiority of our LMNS over the two-level VNS. For all groups of instances, the gaps obtained by the LMNS do not exceed 0.35% for Gap Best and 0.73% for Gap Avg.. On the contrary, Defryn and Sörensen (2017) report gaps between 2.27% and 3.84% (Gap Best), and from 3.10% to 5.02% (Gap Avg.). Moreover, $\operatorname{LMNS}_{10000}^{3}(10)$ and $\operatorname{LMNS}_{10000}^{5}(10)$ find 82 and 89 BKS, respectively, while the two-level VNS cannot find any BKS. Comparing the two LMNS settings with the time limit of ten seconds, $k_{\text {post }}=5$ also performs slightly better w.r.t. both Gap Best and Gap Avg. $(0.20 \%$ and 0.45% over all 220 Golden instances compared to 0.22% and 0.48%). However, comparing for different average cluster sizes, there is more volatility than for the case without a time limit.

Finally, both our LMNS settings produce 130 new BKS for the Golden instance set. Out of them, 7 solutions can be proven to be optimal because they hit the corresponding lower bound generated by the branch-and-price algorithm of Hintsch and Irnich (2018a). In addition, 5 solutions that were generated

θ	$\mathrm{LMNS}_{10000}^{5}$					$\mathrm{LMNS}_{10000}^{5}(10)$				DS (2017)			
	Gap		T		$\#$ BKS	Gap		T Avg.	\# BKS	Gap		T Avg.	\# BKS
	Best	Avg.	Avg.	Geo		Best	Avg.			Best	Avg.		
5	0.05	0.19	130.7	111.4	13	0.33	0.73	10.0	5	3.84	5.02	10.0	0
6	0.02	0.19	119.7	101.9	15	0.31	0.64	10.0	4	3.58	4.65	10.0	0
7	0.03	0.16	112.2	97.3	15	0.25	0.50	10.0	6	3.31	4.24	10.0	0
8	0.07	0.16	104.5	90.7	15	0.23	0.41	10.0	8	3.01	3.97	10.0	0
9	0.01	0.15	98.5	85.5	19	0.16	0.47	10.0	11	2.66	3.65	10.0	0
10	0.04	0.13	95.3	83.2	14	0.16	0.38	10.0	9	2.77	3.51	10.0	0
11	0.05	0.15	91.0	79.2	14	0.21	0.40	10.0	9	2.60	3.38	10.0	0
12	0.07	0.15	88.7	77.4	12	0.22	0.37	10.0	10	2.45	3.20	10.0	0
13	0.05	0.20	85.7	74.8	14	0.12	0.41	10.0	10	2.42	3.26	10.0	0
14	0.03	0.10	81.1	70.6	13	0.13	0.30	10.0	9	2.28	3.10	10.0	0
15	0.01	0.09	79.1	68.7	18	0.11	0.29	10.0	8	2.27	3.11	10.0	0
Total	0.04	0.15	98.8	84.6	162	0.20	0.45	10.0	89	2.84	3.74	10.0	0

Table 4: Aggregated results for $k_{\text {post }}=5$ and benchmark set Golden, sorted by the average number of nodes per cluster θ (220 instances divided into 11 groups of 20 instances each).
during the computational experiments and further improved the BKS are also proven to be optimal. Overall, our LMNS with setting $\mathrm{LMNS}_{10000}^{3}\left(\mathrm{LMNS}_{10000}^{5}\right)$ finds 81 (82) out of the 99 solutions for Golden instances that are now known to be optimal. Detailed results for each instance are given in the Online Supplement (Tables 912).

Further note that, compared to the BKS reported for the CluVRP in the literature, heuristic solutions generated with our LMNS for the SoftCluVRP (e.g. with setting $\operatorname{LMNS}_{10}^{5}{ }_{000}$) reduce the costs by 6.19% on average over all Golden instances. If we only consider instances that are solved exactly for both problem variants, the cost reduction is 6.10% on average. We refer to Hintsch and Irnich (2018a) for a more detailed comparison of hard- and soft-cluster constraints on exactly solved instances.

3.5. Results for the Li instances

In a subsequent study, we run our LMNS with both settings, $\mathrm{LMNS}_{10000}^{3}$ and $\mathrm{LMNS}_{10000}^{5}$, on the 12 large-sized Li instances (see Table 13 of the Online Supplement for detailed instance-by-instance results). These were not solved for the SoftCluVRP before. $\mathrm{LMNS}_{10000}^{3}$ finds the better result for 7 instances, while $\mathrm{LMNS}_{10000}^{5}$ finds better solutions for the remaining 5 instances. The resulting gaps are Gap Best $=$ $0.02 \%($ Gap Avg. $=0.36 \%)$ within 658 seconds of average runtime for $\mathrm{LMNS}_{10000}^{3}$ and Gap Best $=0.03 \%$ (Gap Avg. $=0.31 \%$) within 680 seconds for $\mathrm{LMNS}_{10000}^{5}$. Hence, $\mathrm{LMNS}_{10000}^{3}$ performs slightly better on these instances, but note that they were all generated by choosing $\theta=5$ and $\mathrm{LMNS}_{10000}^{3}$ also performed better on this group of the Golden instances.

Compared to the BKS for the CluVRP (see Vidal et al., 2015, Hintsch and Irnich, 2018b), costs for the Li instances are reduced by up to 7.38% (4.75% on average) due to the relaxation of only including soft-cluster constraints.

4. Conclusions

In this article, we designed and analyzed a new and well-structured LMNS for the SoftCluVRP. For our new LMNS we presented four destroy and three repair operators, all tailored to the SoftCluVRP. These are used to remove and reinsert complete clusters during the destroy and repair phase. Furthermore, we added two post-optimization components to improve restored solutions after the repair step by local search. Both components are based on VND. The first VND uses new variants of cluster neighborhoods that allow the
exchange of clusters between routes, while the second VND improves single routes with the help of classical edge-exchange neighborhoods and the Balas-Simonetti neighborhood.

We have carefully tested our algorithm on benchmark instances from the literature, showing that all components, in particular both the Clu-VND and the ATSP-VND, help to increase the quality of our LMNS. Our algorithm clearly outperforms the two-level VNS by Defryn and Sörensen (2017), the only existing metaheuristic from the literature. For the medium-sized Golden instances, e.g., our algorithm produces an average gap of 0.45% (best gap of 0.20%) compared to $3.74 \%(2.84 \%)$ within the same time limit of ten seconds. Moreover, for more than half of these instances we generated new best known solutions. In addition, we could prove 13 new best solutions for small- and medium-sized benchmark instances to be optimal and our LMNS found 228 of 255 solutions that are known to be optimal. Furthermore, we provided solutions for large-sized instances with up to 1200 customers and 241 clusters. These were not considered for the SoftCluVRP by the literature before, but comparing to best known solutions for the CluVRP (with hard-cluster constraints), costs were reduced by 4.75% on average if only soft-cluster constraints have to be respected.

References

Balas, E. (1999). New classes of efficiently solvable generalized traveling salesman problems. Annals of Operations Research, 86(0), 529-558.
Balas, E. and Simonetti, N. (2001). Linear time dynamic-programming algorithms for new classes of restricted TSPs: A computational study. INFORMS Journal on Computing, 13(1), 56-75.
Barthélemy, T., Rossi, A., Sevaux, M., and Sörensen, K. (2010). Metaheuristic approach for the clustered VRP. In $E U / M E$ 2010 - 10th anniversary of the metaheuristic community, Lorient, France.
Battarra, M., Erdoğan, G., and Vigo, D. (2014). Exact algorithms for the clustered vehicle routing problem. Operations Research, 62(1), 58-71.
Bektaş, T., Erdoğan, G., and Ropke, S. (2011). Formulations and branch-and-cut algorithms for the generalized vehicle routing problem. Transportation Science, 45(3), 299-316.
Butsch, A., Kalcsics, J., and Laporte, G. (2014). Districting for arc routing. INFORMS Journal on Computing, 26(4), 809-824.
Defryn, C. and Sörensen, K. (2017). A fast two-level variable neighborhood search for the clustered vehicle routing problem. Computers ξ^{8} Operations Research, 83, 78-94.
Expósito Izquierdo, C., Rossi, A., and Sevaux, M. (2013). Modeling and Solving the Clustered Capacitated Vehicle Routing Problem. In A. Fink and M.-J. Geiger, editors, Proceedings of the 14 th $E U / M E$ workshop, $E U / M E$ 2013, pages 110-115, Hamburg, Germany.
Expósito-Izquierdo, C., Rossi, A., and Sevaux, M. (2016). A two-level solution approach to solve the clustered capacitated vehicle routing problem. Computers \mathcal{E}^{3} Industrial Engineering, 91, 274-289.
Fischetti, M., González, J. J. S., and Toth, P. (1997). A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research, 45(3), 378-394.
Funke, B., Grünert, T., and Irnich, S. (2005). Local search for vehicle routing and scheduling problems: Review and conceptual integration. Journal of Heuristics, 11(4), 267-306.
Glover, F. (1996). Finding a best traveling salesman 4-opt move in the same time as a best 2-opt move. Journal of Heuristics, 2(2), 169-179.
Golden, B. L., Wasil, E. A., Kelly, J. P., and Chao, I.-M. (1998). The impact of metaheuristics on solving the vehicle routing problem: Algorithms, problem sets, and computational results. In T. G. Crainic and G. Laporte, editors, Fleet Management and Logistics, pages 33-56. Springer US, Boston, MA.
Gschwind, T. and Drexl, M. (2018). Adaptive large neighborhood search with a constant-time feasibility test for the dial-a-ride problem. Transportation Science, forthcoming.
Gutin, G. and Punnen, A. P., editors (2007). The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial Optimization. Springer US, Boston, MA.
Gutin, G., Yeo, A., and Zverovich, A. (2007). Exponential neighborhoods and domination analysis for the TSP. In G. Gutin and A. Punnen, editors, The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial Optimization, pages 223-256. Springer US, Boston, MA.
Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and applications. European Journal of Operational Research, 130(3), 449-467.
Hintsch, T. and Irnich, S. (2018a). Exact solution of the soft-clustered vehicle-routing problem. Technical Report LM-2018-04, Chair of Logistics Management, Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.
Hintsch, T. and Irnich, S. (2018b). Large multiple neighborhood search for the clustered vehicle-routing problem. European Journal of Operational Research, 270(1), 118-131.
Irnich, S. (2008). Solution of real-world postman problems. European Journal of Operational Research, 190(1), 52-67.

Johnson, D. S., Gutin, G., McGeoch, L. A., Yeo, A., Zhang, W., and Zverovitch, A. (2007). Experimental analysis of heuristics for the ATSP. In G. Gutin and A. P. Punnen, editors, The Traveling Salesman Problem and Its Variations, volume 12 of Combinatorial Optimization, pages 445-487. Springer US, Boston, MA.
Li, F., Golden, B., and Wasil, E. (2005). Very large-scale vehicle routing: new test problems, algorithms, and results. Computers © Operations Research, 32(5), 1165-1179.
Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers \& Operations Research, 24(11), $1097-1100$.
Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing problems. Computers \& Operations Research, 34(8), 2403-2435.
Pisinger, D. and Ropke, S. (2010). Large neighborhood search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Metaheuristics, volume 146 of International Series in Operations Research \mathcal{E} Management Science, pages 399-419. Springer.
Pop, P. C., Kara, I., and Marc, A. H. (2012). New mathematical models of the generalized vehicle routing problem and extensions. Applied Mathematical Modelling, 36(1), 97-107.
Pop, P. C., Fuksz, L., Marc, A. H., and Sabo, C. (2018). A novel two-level optimization approach for clustered vehicle routing problem. Computers 8 Industrial Engineering, 115(Supplement C), 304-318.
Ropke, S. (2009). Parallel large neighborhood search-a software framework. In MIC 2009. The VIII Metaheuristics International Conference.
Ropke, S. and Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transportation Science, 40(4), 455-472.
Ropke, S. and Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing problems with backhauls. European Journal of Operational Research, 171(3), 750-775. Feature Cluster: Heuristic and Stochastic Methods in Optimization. Feature Cluster: New Opportunities for Operations Research.
Sevaux, M. and Sörensen, K. (2008). Hamiltonian paths in large clustered routing problems. In Proceedings of the EU/MEeting 2008 workshop on Metaheuristics for Logistics and Vehicle Routing, EU/ME'08, pages 4:1-4:7, Troyes, France.
Shaw, P. (1998). Using constraint programming and local search methods to solve vehicle routing problems. Lecture Notes in Computer Science, 1520, 417-431.
Simonetti, N. and Balas, E. (1996). Implementation of a linear time algorithm for certain generalized traveling salesman problems. In W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Integer Programming and Combinatorial Optimization: 5th International IPCO Conference Vancouver, British Columbia, Canada, June 3-5, 1996 Proceedings, pages 316-329. Springer Berlin Heidelberg, Berlin, Heidelberg.
Toth, P. and Vigo, D., editors (2014). Vehicle Routing, volume 18 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics, Philadelphia, PA.
Valério de Carvalho, J. M. (1999). Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research, 86, 629-659.
Vidal, T., Battarra, M., Subramanian, A., and Erdoǧan, G. (2015). Hybrid metaheuristics for the clustered vehicle routing problem. Computers $\& \mathcal{S}$ Operations Research, 58, 87-99.

This appendix is supposed to become online supplementary material.

Appendix

I. Detailed Results

I.1. Detailed Results for the GVRP Instances

Detailed instance-by-instance results for the GVRP instance set are provided in Tables 58. The instance is described by the number of customers n, the number of vehicles k in the original CVRP instance, the number of clusters N, and the number of vehicles m. In addition, BKS gives the best known solution (written in bold if proven optimal) and First found by refers to the article (or our LMNS) that has found this solution first. For our LMNS, we show the best solution out of ten runs (Best), the average solution over ten runs (Avg.), and the average total time over ten runs T derived by setting $\operatorname{LMNS}_{10000}^{5}$ (which means the LMNS is run for 10000 iterations and with $k_{\text {post }}=5$). If the BKS was first found by our LMNS, we omit the number of iterations in the column First found by for simplicity. For example, we refer to setting $\mathrm{LMNS}_{10000}^{5}$ by LMNS^{5}. If it was found with both $k_{\text {post }}=3$ and $k_{\text {post }}=5$ we state $\mathrm{LMNS}^{3 / 5}$. Furthermore, LMNS* declares a solution found during computational experiments.

Instance							LMNS ${ }_{10}^{5} 000$		
	n	k	N	m	BKS	First found by	Best	Avg.	T
A	31	5	16	2	595	Hintsch and Irnich (2018a	595	606.1	1.2
A	32	5	17	3	528	Hintsch and Irnich (2018a	528	528	1.7
A	32	6	17	3	561	Hintsch and Irnich (2018a	561	563.1	1.6
A	33	5	17	3	568	Hintsch and Irnich 2018 a ,	568	568	1.8
A	35	5	18	2	596	Hintsch and Irnich 2018a	596	596	1.6
A	36	5	19	3	573	Hintsch and Irnich 2018 a	573	573	2.1
A	36	6	19	3	660	Hintsch and Irnich (2018a	660	660	1.4
A	37	5	19	3	547	Hintsch and Irnich (2018a	547	547	2.2
A	38	5	20	3	659	Hintsch and Irnich 2018 a	659	659	2.1
A	38	6	20	3	676	Hintsch and Irnich 2018 a	676	676.7	2.1
A	43	6	22	3	723	Hintsch and Irnich (2018a	723	723	2.3
A	44	6	23	4	679	Hintsch and Irnich (2018a	679	679	2.5
A	44	7	23	4	774	Hintsch and Irnich (2018a	774	774	1.7
A	45	7	23	4	708	Hintsch and Irnich 2018a,	708	709.5	2.5
A	47	7	24	4	784	Hintsch and Irnich 2018 a	784	784	2.1
A	52	7	27	4	732	Hintsch and Irnich 2018a	732	732.6	2.8
A	53	7	27	4	806	Hintsch and Irnich (2018a	806	806	3.0
A	54	9	28	5	778	Hintsch and Irnich 2018 a	778	778	2.2
A	59	9	30	5	877	Hintsch and Irnich 2018 a	877	877	2.7
A	60	9	31	5	749	Hintsch and Irnich 2018 a	749	749	3.7
A	61	8	31	4	849	Hintsch and Irnich (2018a	849	849	4.4
A	62	9	32	5	1043	Hintsch and Irnich (2018a	1043	1043	4.1
A	62	10	32	5	895	Hintsch and Irnich 2018 a	895	895	4.1
A	63	9	32	5	895	Hintsch and Irnich 2018 a	895	895.1	3.0
A	64	9	33	5	825	Hintsch and Irnich 2018 a	825	825.8	5.6
A	68	9	35	5	857	Hintsch and Irnich (2018a	857	857	6.3
A	79	10	40	5	1115	Hintsch and Irnich (2018a,	1115	1115	4.4
B	30	5	16	3	451	Hintsch and Irnich 2018a	451	451	1.4
B	33	5	17	3	495	Hintsch and Irnich 2018 a	495	495	2.1
B	34	5	18	3	654	Hintsch and Irnich 2018 a	654	654	1.9
B	37	6	19	3	479	Hintsch and Irnich 2018a	479	479	2.0
B	38	5	20	3	378	Hintsch and Irnich 2018 a	378	378	1.7
B	40	6	21	3	514	Hintsch and Irnich (2018a	514	514	1.9
B	42	6	22	3	522	Hintsch and Irnich (2018a	522	522	2.4
B	43	7	22	4	562	Hintsch and Irnich 2018 a	562	562	1.8
B	44	5	23	3	542	Hintsch and Irnich 2018 a	542	542	2.8
B	44	6	23	4	506	Hintsch and Irnich 2018 a	506	506	2.5
B	49	7	25	4	495	Hintsch and Irnich (2018a	495	495	3.3
B	49	8	25	5	954	Hintsch and Irnich 2018a	954	954	2.6
B	50	7	26	4	672	Hintsch and Irnich 2018 a	672	672	2.9
B	51	7	26	4	485	Hintsch and Irnich 2018 a	485	485	3.3
B	55	7	28	4	520	Hintsch and Irnich (2018a	520	520	3.6
B	56	7	29	4	776	LMNS ${ }^{3 / 5}$	776	776	3.9
B	56	9	29	5	983	Hintsch and Irnich 2018a	983	983	2.8
B	62	10	32	5	865	Hintsch and Irnich (2018a	865	865	3.5
B	63	9	32	5	550	Hintsch and Irnich 2018a,	550	550	4.8
B	65	9	33	5	849	LMNS ${ }^{3 / 5}$	849	849	3.5
B	66	10	34	5	721	LMNS ${ }^{3 / 5}$	721	721	4.7
B	67	9	34	5	745	Hintsch and Irnich 2018 a	745	745	3.9
B	77	10	39	5	842	Hintsch and Irnich (2018a,	842	843.4	3.9

Table 5: Detailed results for the GVRP-2 instances, subsets A and B.

Instance							$\mathrm{LMNS}_{10}^{5} 000$		
	n	k	N	m	BKS	First found by	Best	Avg.	T
P	15	8	8	5	299	Hintsch and Irnich 2018a	299	299	0.2
P	18	2	10	2	195	Hintsch and Irnich (2018a	195	195	0.7
P	19	2	10	2	208	Hintsch and Irnich (2018a	208	208	0.8
P	20	2	11	2	208	Hintsch and Irnich 2018a	208	208	1.0
P	21	2	11	2	209	Hintsch and Irnich 2018a	209	209	1.0
P	21	8	11	5	397	Hintsch and Irnich (2018a	397	397	0.4
P	22	8	12	5	369	Hintsch and Irnich (2018a	369	369	0.5
P	39	5	20	3	401	Hintsch and Irnich (2018a	401	401	2.5
P	44	5	23	3	443	Hintsch and Irnich (2018a	443	443	2.9
P	49	7	25	4	464	Hintsch and Irnich 2018a	464	464.4	3.4
P	49	8	25	4	501	Hintsch and Irnich (2018a	501	504	1.5
P	49	10	25	5	512	Hintsch and Irnich (2018a	512	517	2.1
P	50	10	26	6	548	Hintsch and Irnich 2018a	548	548	2.3
P	54	7	28	4	477	Hintsch and Irnich (2018a	477	477	3.6
P	54	8	28	4	484	Hintsch and Irnich 2018a	484	484.5	3.8
P	54	10	28	5	514	Hintsch and Irnich (2018a	514	514	2.7
P	54	15	28	8	684	Hintsch and Irnich 2018a	684	684	1.8
P	59	10	30	5	575	Hintsch and Irnich (2018a	575	577	2.9
P	59	15	30	8	700	Hintsch and Irnich (2018a	700	700	3.0
P	64	10	33	5	616	Hintsch and Irnich 2018a	616	616	4.0
P	69	10	35	5	643	Hintsch and Irnich 2018a	643	643	4.5
P	75	4	38	2	557	Hintsch and Irnich (2018a	557	561.6	6.8
P	75	5	38	3	571	Hintsch and Irnich (2018a)	571	571	7.1
P	100	4	51	2	645	LMNS ${ }^{3 / 5}$	645	645	16.5
G	261	25	131	12	3655	LMNS*	3668	3692.3	19.6
C	100	10	51	5	628	Hintsch and Irnich (2018a)	628	628	7.9
C	120	7	61	4	799	LMNS ${ }^{3 / 5}$	799	806	11.9
C	150	12	76	6	805	$\mathrm{LMNS}^{3 / 5}$	805	805.9	19.4
C	199	16	100	8	944	LMNS ${ }^{3}$	948	953.7	13.8

Table 6: Detailed results for the GVRP-2 instances, subsets P and GC.

Instance								$\mathrm{LMNS}_{10000}^{5}$		
	n	k	N	m	BKS	First foun	und by	Best	Avg.	T
A	31	5	11	2	515	Defryn and Sörensen	(2017)	515	515	1.5
A	32	5	11	2	461	Defryn and Sörensen	(2017)	461	461	1.7
A	32	6	11	2	554	Defryn and Sörensen	(2017)	554	554	1.7
A	33	5	12	2	538	Defryn and Sörensen	(2017	538	538	1.9
A	35	5	12	2	543	Defryn and Sörensen	(2017)	543	543	1.5
A	36	5	13	2	545	Hintsch and Irnich	2018a	545	545	2.1
A	36	6	13	2	605	Defryn and Sörensen	(2017)	605	605	1.8
A	37	5	13	2	507	Battarra et al.	2014	507	507	2.2
A	38	5	13	2	588	Defryn and Sörensen	(2017)	588	588	2.4
A	38	6	13	2	603	Defryn and Sörensen	(2017)	603	603	2.1
A	43	6	15	2	691	Defryn and Sörensen	(2017	691	691.8	2.0
A	44	6	15	3	652	Defryn and Sörensen	(2017)	652	652	2.6
A	44	7	15	3	661	Defryn and Sörensen	(2017	661	661	2.1
A	45	7	16	3	642	Defryn and Sörensen	(2017)	642	642	2.7
A	47	7	16	3	680	Defryn and Sörensen	(2017)	680	680	2.5
A	52	7	18	3	627	Defryn and Sörensen	(2017)	627	627	3.3
A	53	7	18	3	699	Defryn and Sörensen	(2017	699	699	3.5
A	54	9	19	3	645	Defryn and Sörensen	(2017	645	645	3.3
A	59	9	20	3	762	Defryn and Sörensen	(2017)	762	762	3.5
A	60	9	21	4	671	Defryn and Sörensen	(2017)	671	672.6	3.4
A	61	8	21	3	771	Defryn and Sörensen	(2017)	771	771	4.2
A	62	10	21	4	779	Defryn and Sörensen	(2017	779	779	3.5
A	62	9	21	3	837	Defryn and Sörensen	(2017)	837	837	3.3
A	63	9	22	3	767	Defryn and Sörensen	(2017)	767	767	3.8
A	64	9	22	3	693	Defryn and Sörensen	(2017)	693	693	3.7
A	68	9	23	3	794	Defryn and Sörensen	(2017)	794	798	3.8
A	79	10	27	4	944	Defryn and Sörensen	(2017)	944	944	5.1
B	30	5	11	2	375	Battarra et al.	(2014)	375	375	1.6
B	33	5	12	2	415	Defryn and Sörensen	(2017	415	415	2.0
B	34	5	12	2	557	Defryn and Sörensen	(2017	557	557.3	2.1
B	37	6	13	2	427	Defryn and Sörensen	(2017)	427	427	1.8
B	38	5	13	2	317	Defryn and Sörensen	(2017)	317	317	2.3
B	40	6	14	2	469	Defryn and Sörensen	(2017)	469	469	2.3
B	42	6	15	2	405	Defryn and Sörensen	(2017)	405	405	2.6
B	43	7	15	3	443	Defryn and Sörensen	(2017)	443	443	1.8
B	44	5	15	2	489	Defryn and Sörensen	(2017	489	489	2.8
B	44	6	15	2	386	Defryn and Sörensen	(2017	386	386	2.5
B	49	7	17	3	464	Defryn and Sörensen	(2017	464	464	2.9
B	49	8	17	3	661	Defryn and Sörensen	(2017	661	661	2.7
B	50	7	17	3	578	Defryn and Sörensen	(2017)	578	578	3.3
B	51	7	18	3	427	Battarra et al.	(2014	427	427	3.6
B	55	7	19	3	420	Defryn and Sörensen	(2017)	420	420	3.8
B	56	7	19	3	622	Defryn and Sörensen	(2017)	622	622	3.5
B	56	9	19	3	746	Defryn and Sörensen	(2017)	746	746	3.6
B	62	10	21	3	685	Battarra et al.	(2014	685	685	3.2
B	63	9	22	4	524	Defryn and Sörensen	(2017)	524	524	4.6
B	65	9	22	3	683	Defryn and Sörensen	(2017)	683	685.5	4.2
B	66	10	23	4	619	Defryn and Sörensen	(2017	619	619	4.8
B	67	9	23	3	582	Defryn and Sörensen	(2017)	582	582	3.6
B	77	10	26	4	704	Defryn and Sörensen	(2017)	704	704	5.4

Table 7: Detailed results for the GVRP-3 instances, subsets A and B.

Instance							$\mathrm{LMNS}_{10}^{5} 000$		
	n	k	N	m	BKS	First found by	Best	Avg.	T
P	15	8	6	4	251	Defryn and Sörensen 2017)	251	251	0.4
P	18	2	7	1	170	Defryn and Sörensen (2017)	170	170	0.8
P	19	2	7	1	177	Defryn and Sörensen 2017	177	177	0.8
P	20	2	7	1	179	Defryn and Sörensen	179	179	0.9
P	21	2	8	1	183	Defryn and Sörensen (2017)	183	183	1.0
P	21	8	8	4	365	Battarra et al. 2014	365	365	0.5
P	22	8	8	3	270	Defryn and Sörensen	270	270	0.7
P	39	5	14	2	381	Defryn and Sörensen (2017)	381	381	2.5
P	44	5	15	2	422	Defryn and Sörensen 2017	422	422	2.8
P	49	7	17	3	430	Defryn and Sörensen	430	430	3.1
P	49	8	17	3	441	Defryn and Sörensen (2017)	441	441.3	2.8
P	49	10	17	4	471	Defryn and Sörensen 2017	471	471	2.8
P	50	10	17	4	493	Defryn and Sörensen (2017)	493	493	2.6
P	54	7	19	3	454	Hintsch and Irnich (2018a	454	454.2	3.6
P	54	8	19	3	454	Hintsch and Irnich (2018a	454	454.8	3.8
P	54	10	19	4	481	Defryn and Sörensen 2017	481	481.4	3.1
P	54	15	19	6	572	Defryn and Sörensen (2017)	572	572	2.4
P	59	10	20	4	534	Hintsch and Irnich (2018a	534	534.1	4.0
P	59	15	20	5	591	Defryn and Sörensen (2017)	591	591	2.5
P	64	10	22	4	575	Hintsch and Irnich 2018 a	575	575	4.7
P	69	10	24	4	602	Defryn and Sörensen 2017	602	602	5.1
P	75	4	26	2	556	Hintsch and Irnich (2018a	556	556	7.5
P	75	5	26	2	556	Defryn and Sörensen 2017	556	556.6	7.5
P	100	4	34	2	649	Defryn and Sörensen 2017)	649	649	12.9
G	261	25	88	9	3178	LMNS ${ }^{3 / 5}$	3178	3178	50.3
C	100	10	34	4	598	Defryn and Sörensen (2017)	598	599.5	9.5
C	120	7	41	3	680	LMNS ${ }^{3 / 5}$	680	693.2	10.4
C	150	12	51	4	756	Hintsch and Irnich (2018a)	756	756	19.3
C	199	16	67	6	865	LMNS ${ }^{3 / 5}$	865	865	35.3

Table 8: Detailed results for the GVRP-3 instances, subsets P and GC.

I.2. Detailed Results for the Golden Instances

Analogous to Section [.1, detailed results for the Golden instances are given in Tables 9 to 12 (without the number of vehicles k in the original CVRP instance). In addition, we give the best and average solution over ten runs for setting $\operatorname{LMNS}_{10000}^{5}(10 s)$, where the LMNS is stopped after the time limit of 10 seconds.

Instance						$\mathrm{LMNS}_{10000}^{5}$			$\mathrm{LMNS}_{10000}^{5}(10 s)$	
	n	N	m	BKS	First found by	Best	Avg.	T	Best	Avg.
Golden1	240	17	4	4640	Hintsch and Irnich (2018a	4640	4640	30	4640	4640.6
Golden1	240	18	4	4645	Hintsch and Irnich 2018a	4645	4645	31	4645	4645
Golden1	240	19	4	4650	Hintsch and Irnich (2018a)	4650	4650	33	4650	4650
Golden1	240	21	4	4650	Hintsch and Irnich 2018a)	4650	4650	33	4650	4650
Golden1	240	22	4	4650	LMNS ${ }^{\text {//5 }}$	4650	4650	33	4650	4650
Golden1	240	25	4	4650	$\mathrm{LMNS}^{3 / 5}$	4650	4651.2	35	4650	4653
Golden1	240	27	4	4652	$\mathrm{LMNS}^{3 / 5}$	4652	4652	35	4652	4652.6
Golden1	240	31	4	4665	$\mathrm{LMNS}^{3 / 5}$	4665	4665	44	4665	4665
Golden1	240	35	4	4619	$\mathrm{LMNS}^{3 / 5}$	4619	4619.8	46	4619	4620.8
Golden1	240	41	4	4619	LMNS ${ }^{3 / 5}$	4619	4621.3	44	4619	4628.3
Golden1	240	49	4	4607	LMNS*	4619	4625.5	47	4619	4629.6
Golden2	320	22	4	7394	LMNS ${ }^{5}$	7394	7395.9	66	7395	7400.4
Golden2	320	23	4	7369	Hintsch and Irnich 2018a	7372	7381.2	66	7386	7398.8
Golden2	320	25	4	7367	LMNS ${ }^{\text {/5 }}$	7367	7370.4	69	7367	7380.9
Golden2	320	27	4	7333	LMNS ${ }^{3 / 5}$	7333	7334.3	72	7333	7343.1
Golden2	320	30	4	7329	$\mathrm{LMNS}^{3 / 5}$	7329	7329	78	7329	7336.5
Golden2	320	33	4	7311	$\mathrm{LMNS}^{3 / 5}$	7311	7314.1	80	7312	7320.3
Golden2	320	36	4	7293	$\mathrm{LMNS}^{3 / 5}$	7293	7293.2	84	7293	7304.1
Golden2	320	41	4	7283	LMNS ${ }^{5}$	7283	7286.2	88	7288	7296.7
Golden2	320	46	4	7284	LMNS ${ }^{5}$	7284	7290.7	95	7291	7303.1
Golden2	320	54	4	7274	LMNS*	7277	7278.7	101	7282	7285.9
Golden2	320	65	4	7261	LMNS*	7264	7272.4	104	7281	7286.6
Golden3	400	27	4	10077	LMNS ${ }^{3 / 5}$	10077	10078.5	107	10077	10105.6
Golden3	400	29	4	10018	$\mathrm{LMNS}^{3 / 5}$	10018	10020.6	113	10023	10035.9
Golden3	400	31	4	10002	LMNS*	10003	10012.7	126	10026	10046.6
Golden3	400	34	4	9995	LMNS*	9999	10004	131	10007	10020.1
Golden3	400	37	4	9986	LMNS ${ }^{5}$	9986	9999.4	131	10018	10032.3
Golden3	400	41	4	9926	LMNS ${ }^{3 / 5}$	9926	9932.9	135	9938	9976.5
Golden3	400	45	4	9936	LMNS*	9946	9953.9	143	9965	9984.5
Golden3	400	51	4	9916	LMNS*	9921	9932.1	152	9936	9945.8
Golden3	400	58	4	9910	LMNS*	9926	9931	169	9930	9951.7
Golden3	400	67	4	9901	LMNS*	9903	9907.9	174	9941	10007.4
Golden3	400	81	4	9868	LMNS*	9871	9875.7	185	9884	9927.5
Golden4	480	33	4	12741	LMNS ${ }^{3 / 5}$	12741	12749.5	179	12756	12827.7
Golden4	480	35	4	12740	$L^{\prime 2} N^{3}$	12741	12748.3	182	12754	12840.2
Golden4	480	37	4	12645	LMNS ${ }^{3 / 5}$	12645	12645.8	191	12651	12715.3
Golden4	480	41	4	12568	LMNS ${ }^{3 / 5}$	12568	12568	190	12568	12649.8
Golden4	480	44	4	12566	LMNS ${ }^{5}$	12566	12599.4	190	12605	12687.2
Golden4	480	49	4	12566	LMNS*	12568	12597.4	196	12582	12702.5
Golden4	480	54	4	12525	LMNS ${ }^{5}$	12525	12609.5	191	12583	12750.1
Golden4	480	61	4	12558	LMNS ${ }^{3 / 5}$	12558	12558	207	12562	12585.3
Golden4	480	69	4	12573	LMNS*	12575	12581.1	225	12600	12655
Golden4	480	81	4	12555	LMNS*	12557	12580.6	270	12601	12641.5
Golden4	480	97	4	12528	LMNS ${ }^{3 / 5}$	12528	12567.5	269	12637	12727.1
Golden5	200	14	4	6970	Hintsch and Irnich 2018a	6970	6970	22	6970	6970
Golden5	200	15	3	6742	Hintsch and Irnich 2018a	6742	6752	26	6742	6752
Golden5	200	16	3	6742	Hintsch and Irnich 2018a	6742	6849.1	26	6742	6849.1
Golden5	200	17	3	6862	Hintsch and Irnich 2018 a	6862	6868	26	6862	6872.3
Golden5	200	19	4	6874	Hintsch and Irnich 2018a	6874	6874	25	6874	6874
Golden5	200	21	4	6816	Hintsch and Irnich 2018a	6816	6817.4	26	6816	6825.9
Golden5	200	23	4	6750	Hintsch and Irnich 2018a	6750	6750	25	6750	6750
Golden5	200	26	4	6704	Hintsch and Irnich 2018a	6704	6704	27	6704	6704
Golden5	200	29	4	6704	Hintsch and Irnich 2018a	6704	6704	28	6704	6704
Golden5	200	34	4	6684	Hintsch and Irnich 2018a	6684	6692.4	29	6684	6692.4
Golden5	200	41	4	6557	Hintsch and Irnich (2018a)	6557	6578.2	32	6557	6578.4

Table 9: Detailed results for the Golden instances 1-5.

Instance						$\mathrm{LMNS}_{10}^{5} 000$				
	n	N	m	BKS	First found by	Best	Avg.	T	Best	Avg.
Golden6	280	19	3	8115	Hintsch and Irnich 2018a	8115	8115.3	54	8115	8116.8
Golden6	280	21	3	8119	Hintsch and Irnich (2018a)	8119	8125.5	52	8119	8131.7
Golden6	280	22	3	8107	Hintsch and Irnich (2018a)	8107	8113.7	52	8107	8122
Golden6	280	24	4	8316	Hintsch and Irnich 2018a)	8316	8318.8	52	8316	8320.5
Golden6	280	26	4	8249	Hintsch and Irnich (2018a)	8249	8256.4	54	8249	8288.2
Golden6	280	29	4	8244	LMNS ${ }^{3 / 5}$	8244	8251.4	60	8244	8254
Golden6	280	32	4	8179	$\mathrm{LMNS}^{3 / 5}$	8179	8197.3	59	8179	8215.4
Golden6	280	36	4	8179	$\mathrm{LMNS}^{3 / 5}$	8179	8180.9	59	8179	8199.1
Golden6	280	41	4	8204	$\mathrm{LMNS}^{3 / 5}$	8204	8206.5	66	8204	8219.1
Golden6	280	47	4	8179	$\mathrm{LMNS}^{3 / 5}$	8179	8192.6	65	8181	8200.3
Golden6	280	57	4	8204	LMNS ${ }^{3 / 5}$	8204	8205.6	75	8205	8225
Golden7	360	25	3	9318	Hintsch and Irnich 2018a)	9318	9321.5	99	9321	9341.4
Golden7	360	26	3	9295	Hintsch and Irnich (2018a)	9307	9314.1	101	9313	9330
Golden7	360	28	3	9271	LMNS^{3}	9272	9282.7	109	9274	9299.3
Golden7	360	31	4	9418	Hintsch and Irnich (2018a)	9418	9442.6	101	9451	9458.5
Golden7	360	33	4	9395	LMNS*	9401	9401.8	103	9401	9404.4
Golden7	360	37	4	9395	Hintsch and Irnich 2018a)	9395	9403.7	104	9395	9427.1
Golden7	360	41	4	9386	LMNS ${ }^{\text {s }}$	9386	9400.3	108	9386	9414.5
Golden7	360	46	4	9368	LMNS ${ }^{3 / 5}$	9368	9376.7	102	9383	9391
Golden7	360	52	4	9365	$\mathrm{LMNS}^{3 / 5}$	9365	9373.1	114	9375	9411.4
Golden7	360	61	4	9316	LMNS ${ }^{3 / 5}$	9316	9343.6	128	9343	9369.4
Golden7	360	73	4	9302	LMNS ${ }^{5}$	9302	9314.9	145	9325	9368.8
Golden8	440	30	4	10409	LMNS ${ }^{5}$	10409	10417.1	133	10415	10464.8
Golden8	440	32	4	10409	LMNS*	10411	10422.3	134	10420	10442.9
Golden8	440	34	4	10409	LMNS*	10411	10418.3	139	10424	10451.7
Golden8	440	37	4	10360	LMNS*	10368	10378.9	146	10386	10410.1
Golden8	440	41	4	10360	LMNS*	10368	10371.2	152	10379	10424.9
Golden8	440	45	4	10385	LMNS*	10387	10392.4	152	10393	10438.7
Golden8	440	49	4	10399	LMNS ${ }^{5}$	10399	10413.2	165	10425	10454
Golden8	440	56	4	10371	LMNS ${ }^{3 / 5}$	10371	10393.8	180	10412	10443.7
Golden8	440	63	4	10361	LMNS*	10365	10391	184	10413	10451.3
Golden8	440	74	4	10356	LMNS*	10363	10368.6	201	10397	10455.3
Golden8	440	89	4	10281	LMNS ${ }^{3}$	10282	10292.1	217	10352	10419.1
Golden9	255	18	4	281	Hintsch and Irnich 2018a)	281	281	39	281	282.1
Golden9	255	19	4	279	Hintsch and Irnich 2018a)	279	279.2	38	279	280.2
Golden9	255	20	4	276	Hintsch and Irnich 2018a)	276	276.6	40	276	277.4
Golden9	255	22	4	276	Hintsch and Irnich 2018a	276	276.7	44	277	277.1
Golden9	255	24	4	276	Hintsch and Irnich 2018a	276	276.9	44	277	277.3
Golden9	255	26	4	273	Hintsch and Irnich 2018a	273	273.9	46	274	274.3
Golden9	255	29	4	273	Hintsch and Irnich 2018a	273	273.6	45	273	274.2
Golden9	255	32	4	273	Hintsch and Irnich 2018a	273	273.9	48	274	274.3
Golden9	255	37	4	273	Hintsch and Irnich 2018a)	273	273.9	50	274	274.6
Golden9	255	43	4	270	LMNS ${ }^{\text {/ }}$	270	270.8	53	271	272
Golden9	255	52	4	269	LMNS ${ }^{3 / 5}$	269	269	57	269	269.7
Golden10	323	22	4	346	Hintsch and Irnich 2018a)	346	347	63	347	347.6
Golden10	323	24	4	346	Hintsch and Irnich 2018a	346	346.2	65	346	346.9
Golden10	323	25	4	346	Hintsch and Irnich 2018a)	346	346.2	65	346	347
Golden10	323	27	4	346	Hintsch and Irnich 2018a	346	346.2	68	346	346.7
Golden10	323	30	4	347	Hintsch and Irnich 2018a)	347	348	71	348	349
Golden10	323	33	4	344	Hintsch and Irnich 2018a)	344	344.1	73	344	345
Golden10	323	36	4	344	Hintsch and Irnich (2018a)	344	344.1	72	344	345.7
Golden10	323	41	4	346	LMNS ${ }^{\text {/ } / 5}$	346	346	79	346	346.9
Golden10	323	47	4	344	$\mathrm{LMNS}^{3 / 5}$	344	345.1	83	346	346.7
Golden10	323	54	4	340	LMNS ${ }^{5}$	340	341.1	82	341	343.4
Golden10	323	65	4	335	$\mathrm{LMNS}^{3 / 5}$	335	337.1	87	338	339.8

Table 10: Detailed results for the Golden instances 6-10.

Instance						$\mathrm{LMNS}_{10}^{5} 000$			$\operatorname{LMNS}_{10000}^{5}(10 s)$	
	n	N	m	BKS	First found by	Best	Avg.	T	Best	Avg.
Golden11	399	27	5	434	Hintsch and Irnich 2018a	434	434.7	90	435	436.3
Golden11	399	29	5	434	Hintsch and Irnich 2018a	434	434.4	97	436	436.6
Golden11	399	31	5	433	Hintsch and Irnich 2018a	435	435.6	95	436	437.3
Golden11	399	34	5	427	Hintsch and Irnich (2018a,	428	429.2	101	430	431
Golden11	399	37	5	427	LMNS*	428	429.1	99	429	430.5
Golden11	399	40	5	425	LMNS*	426	427.1	108	428	428.8
Golden11	399	45	5	425	LMNS ${ }^{3 / 5}$	425	425.3	112	426	427.8
Golden11	399	50	5	423	LMNS*	424	425.8	109	427	428.3
Golden11	399	58	5	422	$\mathrm{LMNS}^{3 / 5}$	422	423.6	123	425	426.3
Golden11	399	67	5	422	LMNS ${ }^{5}$	422	423.6	130	425	426.3
Golden11	399	80	5	417	LMNS ${ }^{3 / 5}$	417	417.6	138	420	421.5
Golden12	483	33	5	512	LMNS ${ }^{3 / 5}$	512	513.1	138	514	515.9
Golden12	483	35	5	512	LMNS ${ }^{3 / 5}$	512	512.2	139	513	515.3
Golden12	483	38	5	511	LMNS*	513	513	146	513	514.3
Golden12	483	41	5	512	LMNS*	513	513.4	145	515	516.2
Golden12	483	44	5	511	LMNS*	512	512.8	151	516	516.8
Golden12	483	49	5	511	LMNS*	512	513.2	163	515	516.5
Golden12	483	54	5	510	LMNS ${ }^{5}$	510	513.1	164	514	517.6
Golden12	483	61	5	510	LMNS*	512	512.6	181	514	516.4
Golden12	483	70	5	509	$\mathrm{LMNS}^{3 / 5}$	509	509.8	185	511	515.8
Golden12	483	81	5	502	LMNS ${ }^{5}$	502	504.1	209	508	510.6
Golden12	483	97	5	502	LMNS*	504	505	235	505	513.1
Golden13	252	17	4	530	Hintsch and Irnich 2018a	530	530.4	40	530	530.7
Golden13	252	19	4	521	Hintsch and Irnich 2018a	521	521.8	40	521	521.8
Golden13	252	20	4	521	Hintsch and Irnich 2018a	521	521.5	42	521	521.8
Golden13	252	22	4	523	Hintsch and Irnich (2018a	523	523.2	42	523	523.9
Golden13	252	23	4	523	Hintsch and Irnich 2018 a	523	523.2	43	523	523.5
Golden13	252	26	4	523	Hintsch and Irnich 2018a	523	523	46	523	523.2
Golden13	252	29	4	522	Hintsch and Irnich 2018a	522	522	48	522	522.8
Golden13	252	32	4	521	Hintsch and Irnich 2018 a	521	521.2	49	521	522.1
Golden13	252	37	4	521	Hintsch and Irnich 2018 a	521	521.9	53	522	522.5
Golden13	252	43	4	521	Hintsch and Irnich (2018a,	521	521	54	521	521.3
Golden13	252	51	4	521	LMNS ${ }^{3 / 5}$	521	521	58	521	521.3
Golden14	320	22	4	665	Hintsch and Irnich 2018a	666	666	62	666	666.9
Golden14	320	23	4	662	Hintsch and Irnich 2018 a	662	662	64	662	662.2
Golden14	320	25	4	660	Hintsch and Irnich 2018a	660	660	66	660	660.7
Golden14	320	27	4	660	Hintsch and Irnich 2018a	660	660	67	660	660.2
Golden14	320	30	4	660	Hintsch and Irnich 2018a,	660	660	69	660	660.1
Golden14	320	33	4	660	LMNS ${ }^{3 / 5}$	660	660	71	660	660.3
Golden14	320	36	4	658	LMNS ${ }^{3 / 5}$	658	658.9	75	658	660.2
Golden14	320	41	4	658	Hintsch and Irnich 2018a	658	658	82	658	658.6
Golden14	320	46	4	658	LMNS ${ }^{3 / 5}$	658	659.4	87	658	659.8
Golden14	320	54	4	658	LMNS ${ }^{3 / 5}$	658	659	93	659	660.4
Golden14	320	65	4	658	LMNS ${ }^{3 / 5}$	658	658.2	99	658	660.2
Golden15	396	27	4	815	$\mathrm{LMNS}^{3 / 5}$	815	816.6	94	816	817.9
Golden15	396	29	4	815	LMNS*	816	817.6	100	819	819.5
Golden15	396	31	4	813	Hintsch and Irnich (2018a,	813	814.4	101	815	817.1
Golden15	396	34	4	813	LMNS*	815	815.2	102	817	817.2
Golden15	396	37	4	815	LMNS ${ }^{3 / 5}$	815	815.2	102	815	816.6
Golden15	396	40	4	815	LMNS ${ }^{3 / 5}$	815	815.8	109	817	818
Golden15	396	45	5	817	LMNS ${ }^{3 / 5}$	817	818.6	115	819	821.6
Golden15	396	50	5	815	LMNS*	819	819.2	123	821	822.2
Golden15	396	57	5	815	LMNS*	817	817.8	131	819	821.5
Golden15	396	67	5	815	LMNS*	817	817.2	142	819	820.6
Golden15	396	80	5	815	LMNS*	817	817.8	157	819	821.2

Table 11: Detailed results for the Golden instances 11-15.

Instance						$\mathrm{LMNS}_{10000}^{5}$			$\underline{L M N S ~_{10000}^{5}(10 s)}$	
	n	N	m	BKS	First found by	Best	Avg.	T	Best	Avg.
Golden16	480	33	5	993	LMNS ${ }^{5}$	993	995	141	997	998.7
Golden16	480	35	5	993	LMNS ${ }^{3 / 5}$	993	994.6	144	997	997.9
Golden16	480	37	5	993	LMNS ${ }^{3 / 5}$	993	994.6	150	997	999.3
Golden16	480	41	5	993	LMNS*	995	996.2	158	997	999.9
Golden16	480	44	5	993	LMNS*	995	996.2	164	998	999.7
Golden16	480	49	5	989	LMNS*	991	992.1	171	993	995.1
Golden16	480	54	5	985	LMNS ${ }^{3 / 5}$	985	986	179	990	991.6
Golden16	480	61	5	985	LMNS*	987	988	193	990	991.5
Golden16	480	69	5	984	LMNS*	985	986.3	214	990	992.2
Golden16	480	81	5	984	LMNS ${ }^{5}$	984	986.4	230	987	990.9
Golden16	480	97	5	984	LMNS ${ }^{3}$	985	985.6	247	990	992
Golden17	240	17	3	386	Hintsch and Irnich 2018a	386	386	44	386	386
Golden17	240	18	3	385	Hintsch and Irnich (2018a	385	385	45	385	385
Golden17	240	19	3	385	Hintsch and Irnich (2018a)	385	385	46	385	385.1
Golden17	240	21	3	385	Hintsch and Irnich 2018a	385	385	47	385	385
Golden17	240	22	3	385	Hintsch and Irnich 2018a	385	385	47	385	385
Golden17	240	25	3	382	Hintsch and Irnich (2018a)	382	382.2	47	382	382.3
Golden17	240	27	3	382	Hintsch and Irnich 2018a	382	382	49	382	382.1
Golden17	240	31	4	390	Hintsch and Irnich (2018a)	390	390	51	390	390.3
Golden17	240	35	4	390	LMNS ${ }^{3 / 5}$	390	390	57	390	390.3
Golden17	240	41	4	388	Hintsch and Irnich 2018a	388	388.4	59	388	389.3
Golden17	240	49	4	387	LMNS ${ }^{3 / 5}$	387	387.2	60	387	387.9
Golden18	300	21	4	558	Hintsch and Irnich 2018a	558	558	58	558	558.2
Golden18	300	22	4	558	Hintsch and Irnich (2018a)	558	558	59	558	558.2
Golden18	300	24	4	558	Hintsch and Irnich 2018a	558	558	64	558	558.1
Golden18	300	26	4	562	Hintsch and Irnich (2018a)	562	562	63	562	562.6
Golden18	300	28	4	558	Hintsch and Irnich (2018a	558	558	66	558	558
Golden18	300	31	4	554	Hintsch and Irnich (2018a)	554	554	71	554	554.5
Golden18	300	34	4	554	Hintsch and Irnich 2018a	554	554.1	70	554	555.2
Golden18	300	38	4	555	Hintsch and Irnich (2018a)	555	555.1	74	555	556.2
Golden18	300	43	4	558	LMNS ${ }^{3 / 5}$	558	558	83	558	559.2
Golden18	300	51	4	555	LMNS ${ }^{5}$	555	555.9	83	558	559.5
Golden18	300	61	4	556	LMNS ${ }^{3 / 5}$	556	556.6	92	557	558.4
Golden19	360	25	10	886	Hintsch and Irnich 2018a	887	887.9	50	888	888.6
Golden19	360	26	10	888	Hintsch and Irnich (2018a)	889	889	51	889	889.6
Golden19	360	28	4	741	Hintsch and Irnich (2018a)	741	742	77	742	743.3
Golden19	360	31	4	735	Hintsch and Irnich (2018a	737	737.5	84	739	739.2
Golden19	360	33	4	727	Hintsch and Irnich (2018a	728	729.1	89	730	731
Golden19	360	37	5	732	Hintsch and Irnich 2018a	733	733.5	100	734	735.1
Golden19	360	41	5	730	Hintsch and Irnich (2018a)	730	730.7	109	731	732.2
Golden19	360	46	5	730	LMNS ${ }^{3 / 5}$	730	730.7	115	731	732.5
Golden19	360	52	5	730	Hintsch and Irnich (2018a	730	730.8	120	731	733
Golden19	360	61	5	737	LMNS ${ }^{3 / 5}$	737	738.5	120	740	742.4
Golden19	360	73	5	736	LMNS ${ }^{3 / 5}$	736	736.9	135	739	740.4
Golden20	420	29	11	1170	Hintsch and Irnich 2018a	1170	1170.9	75	1171	1171.8
Golden20	420	31	12	1183	Hintsch and Irnich (2018a)	1184	1184.2	74	1185	1185.9
Golden20	420	33	12	1175	Hintsch and Irnich (2018a)	1176	1177.1	78	1176	1178.2
Golden20	420	36	5	1005	LMNS*	1006	1007.2	102	1010	1012.4
Golden20	420	39	5	991	LMNS ${ }^{5}$	991	992.5	110	994	998.7
Golden20	420	43	5	990	LMNS ${ }^{3 / 5}$	990	990.4	115	991	993.7
Golden20	420	47	5	988	$\mathrm{LMNS}^{3 / 5}$	988	989.2	121	990	991.8
Golden20	420	53	5	988	$\mathrm{LMNS}^{3 / 5}$	988	988.9	125	990	993.2
Golden20	420	61	5	987	LMNS ${ }^{3 / 5}$	987	988.8	133	990	992
Golden20	420	71	5	986	$\mathrm{LMNS}^{3 / 5}$	986	987.4	126	988	991.7
Golden20	420	85	5	980	$\mathrm{LMNS}^{3 / 5}$	980	981.2	175	982	986.8

Table 12: Detailed results for the Golden instances 16-20.
I.3. Detailed Results for the Li Instances

Analogous to Section I.1, detailed results for the Li instances are given in Table 13 (without the number of vehicles k in the original CVRP instance).

Instance						$\mathrm{LMNS}_{10}^{5} 000$		
	n	N	m	BKS	First found by	Best	Avg.	T
Li	560	113	39	27225	LMNS ${ }^{5}$	27225	27274.9	188
Li	600	121	62	28759	LMNS ${ }^{3}$	28804	28821.5	211
Li	640	129	10	19797	LMNS ${ }^{3}$	19802	19832.9	208
Li	720	145	11	22879	LMNS ${ }^{5}$	22879	22908.1	309
Li	760	153	78	35048	LMNS ${ }^{3}$	35078	35111.6	337
Li	800	161	11	25423	LMNS ${ }^{5}$	25423	25453.2	552
Li	840	169	86	37775	LMNS ${ }^{3}$	37789	37825.2	413
Li	880	177	11	28232	LMNS ${ }^{3}$	28240	28356.3	559
Li	960	193	11	30607	LMNS ${ }^{3}$	30611	30808.2	976
Li	1040	209	11	33506	LMNS ${ }^{3}$	33518	33580	1077
Li	1120	225	11	36219	LMNS ${ }^{5}$	36219	36510.2	1410
Li	1200	241	11	38785	LMNS ${ }^{5}$	38785	38961.4	1915

Table 13: Detailed results for the Li instances.

[^0]: * Corresponding author.

 Email address: thintsch@uni-mainz.de (Timo Hintsch)

