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Abstract

The multiple vehicle traveling purchaser problem (MVTPP) consists of simultaneously selecting suppliers
and routing a fleet of homogeneous vehicles to purchase different products at the selected suppliers so that all
product demands are fulfilled and traveling and purchasing costs are minimized. We consider variants of the
MVTPP in which the capacity of the vehicles can become binding and the demand for each product is one
unit. Corresponding solution algorithms from the literature are either branch-and-cut or branch-and-price
algorithms, where in the latter case the route-generation subproblem is solved on an expanded graph by
applying standard dynamic-programming techniques. Our branch-price-and-cut algorithm employs a novel
labeling algorithm that works directly on the original network and postpones the purchasing decisions until
the route has been completely defined. Moreover, we define a new branching rule generally applicable in case
of unitary product demands, introduce a new family of valid inequalities to apply when suppliers can be
visited at most once, and show how product incompatibilities can be handled without considering additional
resources in the pricing problem. In comprehensive computational experiments with standard benchmark
sets we prove that the new branch-price-and-cut approach is highly competitive.

Key words: vehicle routing, multiple vehicle traveling purchaser problem, unitary demand, incompatible products,
column generation, dynamic-programming labeling algorithm

1. Introduction

In the context of procurement problems, the multiple vehicle traveling purchaser problem (MVTTP) can
be seen as the problem faced by a company which needs to collect given amounts of different products from
several suppliers. To this aim, the company operates a fleet of homogeneous vehicles. All vehicles are based
at a common depot. Each supplier offers a subset of the products at possibly different prices (purchasing
costs) and availabilities. The company has to select a subset of suppliers and construct a set of routes to
visit them and collect products so that all product demands are fulfilled and traveling and purchasing costs
are minimized.

Formally, MVTPP variants can be defined on a directed graph G = (V,A) with vertex set V = M ∪
{0,m+ 1} and arc set A. The vertices M = {1, . . . ,m} represent the set of possible suppliers and vertices 0
and m+ 1 represent the depot where vehicle routes start and end, respectively. For each arc (i, j) ∈ A with
i 6= m+ 1 and j 6= 0, the vehicles can travel from i to j with non-negative travel costs cij . In the following,
it is assumed that the triangle inequality holds for the routing costs (cij).

Let K be the set of products to purchase. A non-negative quantity qki of product k ∈ K is available
at supplier i ∈ M . There are no products available at the depot so that we can define qk0 = qk,m+1 = 0.
Additionally, let Ki = {k ∈ K : qki > 0} ⊆ K be the subset of products sold by supplier i ∈ M , and let
Mk = {i ∈ M : qki > 0} ⊆ M be the set of suppliers offering product k ∈ K. The non-negative purchasing
costs of products k at suppliers i are denoted by pki. Moreover, for each product k a positive demand dk
has to be fulfilled, i.e., collected by one or several vehicles.

Suppliers are visited by means of a fleet F of homogeneous vehicles each with capacity Q. In the following,
a route r is a pair of an elementary 0-(m+ 1)-path in G and positive quantities δrki of all products k
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purchased at the visited suppliers i. The first component, the elementary 0-(m+ 1)-path, can be described
by (i0, i1, i2, . . . , iL−1, iL) with the requirements that all vertices must be different, i0 = 0, iL = m+ 1, and
(i`−1, i`) ∈ A for all ` = 1, 2, . . . , L. A route r is feasible if
(i) the total amount of products purchased at the visited suppliers does not exceed the vehicle capacity,

i.e.,
∑

`

∑
k δ

r
ki`
≤ Q,

(ii) the amount of products k purchased at suppliers i` does not exceed the available supply, i.e., δrki` ≤
qki` for all ` = 1, 2, . . . , L and all k ∈ Ki` , and

(iii) all purchases are feasible, i.e., δrki` = 0 for all ` = 1, 2, . . . , L and all k ∈ K \Ki` .

MVTPPs can be classified according to the following four categories referring to the available supply,
the demand, the vehicle capacity, and the purchasing policy. First, the available supply can be
• restricted, if the available quantity is less than the product demand for at least one product available at

a supplier;
• unrestricted, if the available quantity is not less than the corresponding demand for all products available

at the suppliers.
Second, the demand can be classified as
• unitary, if the demand for all products is one;
• general, otherwise.
Third, the vehicles can be
• capacitated, meaning that the given capacity can become binding;
• uncapacitated, otherwise.
Fourth and finally, with respect to the purchasing policy we distinguish between
• split (purchases), if the same product can be purchased multiple times and more than one purchase can

be smaller than the demand and the product availability at a supplier, i.e., δrki < min{dk, qki}. To fulfill
the demand of k, it can be that different suppliers are visited by the same vehicle or that several vehicles
purchase product k with visits to the same supplier or to different suppliers;

• non-split (purchases), otherwise. Note that, with restricted supply and general demand, also in this case
it may be possible to visit different suppliers to fulfill the demand of a product, but according to this
policy at most one purchase is allowed to be smaller than the demand and the product availability.

Table 1 summarizes the valid combinations for the four categories. Note that unitary demand implies an
unrestricted supply and non-split purchases. Gray entries in a row of the table correspond to combinations
giving rise to equivalent MVTPP variants. For a valid entry, there may still exist different MVTPP variants
when additional side constraints are considered. One important class of side constraints is the single-visit
constraints (SVC) imposing that no supplier is visited more than once. Without this requirement it is
probably not possible to develop strong two-index compact models for the problem (for the related discussion
on strong formulations for the split delivery vehicle-routing problem we refer to Bianchessi and Irnich, 2019).
SVCs imply that all products that are available only at one specific supplier have to be purchased when
this supplier is visited. Thus, in case of unitary demand and capacitated vehicles, imposing SVCs may
cause the problem to become infeasible if the number of products that are available only at one specific
supplier is greater than the capacity of the vehicles. Hence, when SVCs have to be fulfilled in this case, it is
usually assumed that the problem remains feasible. Finally, it is worth noting that SVCs do not prevent split
purchases, but impose that purchases of the same product must be done at different suppliers. In general,
in case no further side constraint has to be considered, allowing or forbidding multiple visits to the same
supplier is independent of the underlying purchasing policy.

non-split non-split split split

unrestricted [1,2,3,4,5,8] invalid capacited
unrestricted [6] invalid uncapacited

restricted invalid invalid [2,7] capacited
restricted invalid [9] invalid [6] uncapacited

unitary general unitary general

Table 1: MVTPP variants — [1]: Baldacci et al. (2007); [2]: Choi and Lee (2010); [3]: Hoshino and De Souza (2012);
[4]: Riera-Ledesma and Salazar-González (2012); [5]: Riera-Ledesma and Salazar-González (2013); [6]: Bianchessi et al. (2014);
[7]: Manerba and Mansini (2015); [8]: Gendreau et al. (2016); [9]: Manerba and Mansini (2016).

The focus of this paper at hand is the unrestricted, capacitated, unitary MVTPP with non-split purchases
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(left-upper corner variant in Table 1). Before highlighting our contribution, we briefly review the MVTPP
literature according to the above categories.

1.1. Literature

The MVTPP is NP-hard as it generalizes the well-known traveling purchaser problem (TPP, Manerba
et al., 2017) to the multiple vehicles case. For an in-depth overview also on related procurement problems,
the reader is referred to the cited survey. Here, we summarize the literature on the multi-vehicle case.

The MVTPP has been introduced by Choi and Lee (2010) who proposed Miller-Tucker-Zemlin formula-
tions (Miller et al., 1960) for both the unrestricted and the restricted version, considering unitary and general
demand, respectively, and capacitated vehicles. Instances with up to 40 suppliers, 40 products, and 4 vehicles
or up to 30 suppliers, 30 products, and 3 vehicles were solved by means of CPLEX 11.1, respectively.

Riera-Ledesma and Salazar-González (2012) used the capacitated, unitary MVTPP to model a school bus
routing problem. They presented a branch-and-cut (BC) algorithm based on a two-index single-commodity
flow formulation, solving symmetric and asymmetric instances with up to 125 stops (suppliers), 125 students
(products), and 6 buses (vehicles). Later, the same authors (Riera-Ledesma and Salazar-González, 2013)
addressed an extended version of the problem considering upper bounds on the length/duration of each
route and on the number of possible stops of each bus as well as lower bounds on the number of students
served by each bus. The MVTTP formulation was augmented by additional constraints and finally solved
with a branch-price-and-cut (BPC) algorithm. The pricing problem is modeled as an elementary shortest
path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005) on an expanded graph, in
which vertices correspond to all the potential assignments of a product to a supplier, and then solved through
an adaptation of the q-routes dynamic-programming labeling algorithm (Christofides et al., 1981). Instances
with up to 125 stops and 125 students were solved to optimality considering different combinations of active
bounds.

Bianchessi et al. (2014) introduced unrestricted and restricted versions of the MVTPP that consider
unitary and general demand, respectively. In both versions, the length of each route is bounded, whereas no
limit is imposed on the capacity of the vehicles. The authors proposed a branch-and-price (BP) algorithm in
which, thanks to the unlimited capacity of the vehicles, the pricing problem is directly modeled and solved
as an elementary SPPRC on the original graph. The algorithm is able to solve instances with up to 100
suppliers, 200 products, and 8 vehicles.

Manerba and Mansini (2015) introduced a variant of the restricted, capacitated, general MVTPP, named
MVTPP-PIC, involving possible incompatibilities among products that forbid to load two incompatible
products into the same vehicle. Incompatibilities may require several visits to the same supplier, even if
this is not beneficial with respect to traveling costs. Note that SVCs are typically not imposed for the
MVTPP-PIC, because they may quickly lead to infeasibility. The problem was addressed by means of a BC
algorithm that is based on a three-index formulation. The BC also makes use of an ad-hoc primal heuristic.
The algorithm solves instances with up to 50 suppliers, 100 products, 20 percent of cross-incompatibilities
among them, and 16 vehicles.

For the unitary demand version of the MVTPP-PIC, a BP algorithm was then presented by Gendreau
et al. (2016). At each column generation iteration, the pricing problem is tentatively solved heuristically
as an elementary SPPRC defined on an expanded graph as in (Riera-Ledesma and Salazar-González, 2013)
by means of a labeling algorithm. To finally prove optimality, a BC algorithm is applied directly to a MIP
formulation of the pricing problem resulting from the proposed Dantzig-Wolfe decomposition. The algorithm
is able to solve instances up to 50 suppliers, 70 products, with 70 percent of cross-incompatibilities among
them.

Finally, Manerba and Mansini (2016) introduced a further variant of the restricted, capacitated, general
MVTPP to model a nurse routing problem with inter-route incompatibilities constraints and bounds on the
duration of the routes. The BP algorithm proposed by the authors to solve the problem is similar to the one
devised in Gendreau et al. (2016).

A closely related problem is the capacitated m-ring-star problem (CmRSP, Baldacci et al., 2007) that can
also be modelled as a capacitated, unitary MVTPP. The CmRSP is the problem of designing a set of routes
starting and ending at a given depot, visiting some customers in between, and assigning each non-visited
customer to a visited point or customer. Baldacci et al. (2007) presented a sophisticated BC algorithm
and solved instances with up to 137 customers to optimality. Hoshino and De Souza (2012) presented a
BPC algorithm that solves the subproblem as an elementary SPPRC on a expanded graph using a complex
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single-visit restricted capacitated with incom-
constraints route length patibilities

Baldacci et al. (2007) • •
Choi and Lee (2010) • •
Hoshino and De Souza (2012) • •
Riera-Ledesma and Salazar-González (2012) • •
Riera-Ledesma and Salazar-González (2013) • • •
Bianchessi et al. (2014) • •
Gendreau et al. (2016) • •

Table 2: Characteristics of UMVTPP variants in the literature

dominance rule based on a deterministic finite automaton. Riera-Ledesma and Salazar-González (2012) used
the instances of Baldacci et al. (2007) to computationally evaluate the performance of their algorithm.

Table 2 provides a synopsis of the unitary MVTPP (UMVTPP) variants that we surveyed. For the
pairwise incompatibilities between different products, binary parameters wkk′ indicate whether products k
and k′ are incompatible. The set of incompatible product pairs is denoted by B = {(k, k′) ∈ K×K : wkk′ = 1}
(see Manerba and Mansini, 2015; Gendreau et al., 2016). For the route duration constraints, non-negative
travel times dij are given, for all arcs (i, j) ∈ A, and the maximum route duration is denoted by Dmax. A
route is feasible if (k, k′) /∈ B holds for all pairs of products (k, k′) purchased at the visited suppliers and

the accumulated travel time
∑L

`=1 di`−1i` for the path (i0, i1, i2, . . . , iL−1, iL) does not exceed Dmax.

1.2. Contribution

The overall contribution of the paper at hand is the presentation of a new BPC algorithm that can deal
with the basic version of the capacitated UMVTPP considering additional SVCs (as previously addressed by
five of the nine articles reviewed, see Table 1 and 2), as well as with the extensions arising from incompatibility
constraints and route duration constraints. Particular contributions are:
1. All previous BP algorithms for the capacitated UMVTPP or one of its extensions solve the route-

generation subproblem on an expanded graph with standard dynamic-programming labeling algorithms
(Riera-Ledesma and Salazar-González, 2013; Gendreau et al., 2016) or BC algorithms (Gendreau et al.,
2016; Manerba and Mansini, 2016). Our new labeling algorithm works directly on the original network,
i.e., the one with vertices for the suppliers and the depot. The key idea of the new approach is to postpone
the purchasing decision until the route has been completely defined. On the positive side, this drastically
reduces the size of the pricing network and thus accelerating the solution process. On the downside, new
and more complex dominance rules have to be defined.

2. For the UMVTPP and its extensions, we introduce a new generally applicable branching rule.
3. We introduce a new family of valid inequalities for strengthening SVCs.
4. Finally, we show how incompatibilities can be handled without additional resources in the pricing problem

by considering multiple pricing problems.
Our later presented computational results indicate that the new subproblem solution strategies are beneficial,
especially for instances in which many products are available at a supplier and routes are relatively short.

The remainder of this paper is organized as follows: Section 2 describes our BPC algorithm with subsec-
tions on the extensive formulation, the pricing subproblem, valid inequalities, and branching. In Section 3, we
computationally evaluate the BPC using instances from different benchmarks. Final conclusions are drawn
in Section 4.

2. Branch-Price-and-Cut Algorithm

This section describes the new BPC algorithm for the solution of different unitary MVTPP variants.
Section 2.1 presents the straightforward set-partitioning formulation that provides the basis for the column-
generation master program. The route-generation subproblem is discussed in Section 2.2. The valid inequal-
ities used to strengthen the linear relaxation of the master program and a dynamic neighborhood extension
are presented in Sections 2.3 and 2.4. Branching rules to finally obtain integer solutions are discussed in
Section 2.5.
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2.1. Route-based Formulation

We now propose a general route-based formulation that can model all the addressed unitary MVTPP
variants, and on which our BPC algorithm is based on. Recall that a route r is defined as an elementary
0-(m+ 1)-path together with the purchasing decisions δrki for the products k ∈ K offered by the suppliers
i ∈M visited en route. Let Ω denote the set of all feasible routes. Feasibility takes into account all variant-
specific intra-route constraints as described in Section 1. For a route r ∈ Ω, let the binary coefficient brij
gives the number of times that arc (i, j) ∈ A is traversed (0 or 1 for elementary routes). Finally, the cost of
the route is defined as cr =

∑
(i,j)∈A cijb

r
ij +

∑
k∈K

∑
i∈Mk

pkiδ
r
ki including routing and purchasing costs.

The route-based formulation uses two types of variables: Binary variables λr for all r ∈ Ω are equal to 1
if route r is performed. The non-negative integer variable f describes the number of vehicles used.

min
∑
r∈Ω

crλr (1a)

subject to
∑
r∈Ω

∑
i∈Mk

δrkiλ
r = 1 k ∈ K (1b)

∑
r∈Ω

λr = f (1c)

0 ≤ f ≤ |F | and integer (1d)

λr ∈ {0, 1} r ∈ Ω (1e)

The objective (1a) calls for the minimization of the total traveling and purchasing costs. The set-partitioning
constraints (1b) ensure that all products are purchased exactly once. Constraints (1c) and (1d) limit the
number of vehicles to use. Binary constraints (1e) are stated for all route variables.

In the following, the linear relaxation of formulation (1) in which the set of all feasible routes Ω is
replaced by a subset Ω̄ is denoted as restricted master program (RMP). We initialize the RMP with one
big-M variable that covers all product demands and has no impact on other constraints. For solving the
linear relaxation of (1), a column-generation algorithm is employed (Desaulniers et al., 2005). Branching is
required to finally ensure integer solutions.

2.2. Column Generation

In this section, we consider an arbitrary column-generation iteration and thus assume that the dual
prices (ρk)k∈K associated with constraints (1b) and the dual price µ of constraint (1c) are given.

We define the reduced purchasing cost p̄ki of product k ∈ K at supplier i ∈ M as p̄ki = pki − ρk. The
pricing problem asks for a route r with negative reduced cost

c̄r = cr −
∑
k∈K

∑
i∈Mk

ρkδ
r
ki − µ =

∑
(i,j)∈A

cijb
r
ij +

∑
k∈K

∑
i∈Mk

p̄kiδ
r
ki − µ.

For the sake of clarity, we first state this pricing problem as a binary program. We use the standard
notation A(S) = {(i, j) ∈ A : i ∈ S, j ∈ S} for the internal, Γ+(S) = {(i, j) ∈ A : i ∈ S, j /∈ S} the outgoing,
and Γ−(S) = {(i, j) ∈ A : i /∈ S, j ∈ S} the ingoing arcs of a vertex set S ⊂ V . For singleton sets S = {i},
we write Γ+(i) and Γ−(i). The binary program used to find a negative reduced cost route r, defined by an
elementary path and purchased quantities, comprises binary variables xij and zi that are equal to 1 if and
only if arc (i, j) ∈ A is traversed and supplier i ∈ M is visited, respectively. Moreover, binary variables δki
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indicate if product k ∈ K is purchased at supplier i ∈Mk. The subproblem can now be stated as follows:

min− µ+
∑

(i,j)∈A

cijxij +
∑
k∈K

∑
i∈Mk

p̄kiδki (2a)

subject to
∑
i∈M

x0i = 1 (2b)∑
(j,i)∈Γ−(i)

xji =
∑

(i,j)∈Γ+(i)

xij = zi i ∈M (2c)

∑
(i,j)∈Γ+(S)

xij ≥ zi S ⊆M, |S| ≥ 2, i ∈ S (2d)

∑
k∈K

∑
i∈Mk

δki ≤ Q (2e)

δki ≤ zi k ∈ K, i ∈Mk (2f)

δki ∈ {0, 1} k ∈ K, i ∈Mk (2g)

zi ∈ {0, 1} i ∈M (2h)

xij ∈ {0, 1} (i, j) ∈ A (2i)

The objective (2a) is the minimization of the reduced cost. Constraints (2b)–(2d) together with (2h) ensure
the route to be an elementary 0-(m+ 1)-path. Inequality (2e) imposes the capacity constraint. Consistency
between variables δki and zi is ensured by (2f). Binary domains for all variables are stated by (2g)–(2i).

Property 1. If the triangle inequality for travel costs (cij) holds, then there exists an optimal solution to
the UMVTPP in which at least one product is purchased at every visited supplier i ∈M .

Proof. See (Riera-Ledesma and Salazar-González, 2012).

For each supplier i ∈ M , let K∗i = {k ∈ Ki : {i} = Mk} denote the set of unique products that can
only be purchased at supplier i. Assuming that the routing costs fulfill the triangle inequality (as stated in
Section 1), we can strengthen formulation (2) of the pricing problem by∑

i∈M
zi ≤ Q (3a)∑

k∈Ki

δki ≥ zi i ∈M (3b)

δki = zi i ∈M,k ∈ K∗i (3c)

where constraint (3a) implies that the number of visited suppliers does not exceed the vehicle capacity,
constraints (3b) guarantee at least one purchase per visited supplier, and constraints (3c) guarantee that all
products that are only available at supplier i are bought when this supplier is visited.

2.2.1. Dynamic-Programming Labeling Algorithm

We now present the new labeling algorithm that works directly on the original network. The handling of
side constraints concerning single visits, incompatibilities, and the maximum route duration is discussed in
Section 2.2.2.

The pricing problem (2) is a variant of the SPPRC, for which dynamic programming-based labeling
algorithms are commonly used in BP algorithms when solving vehicle-routing and crew-scheduling problems
(Irnich and Desaulniers, 2005). In simple SPPRC variants, resource consumptions along arcs are known. In
MVTPP variants, however, the products to purchase at each visited supplier are decision variables, yielding
different reduced costs and resource consumptions. To circumvent additional decisions per arc traversed, the
MVTPP can be modeled over an expanded graph, in which vertices correspond to all potential combinations
of a product and a supplier (see, e.g., Riera-Ledesma and Salazar-González, 2013; Gendreau et al., 2016).
This modeling approach drastically increases the size of the pricing network. Hence, previous works using
the expanded network may suffer from long computation times required for pricing.

Our idea of solving the pricing problem directly on the original network strives for accelerated pricing us-
ing relatively small networks. Moreover, we postpone all unclear decisions concerning the potential purchase
of products at visited suppliers until the end of the route, i.e., when reaching the destination depot m+ 1.
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We show first how to compute the smallest reduced purchasing cost when a path is given. Let a partial
path P = (0, i1, . . . , in) be given, i.e., a path that does not necessarily end at the destination m+ 1. For
simplification purposes, we introduce the shorthand notations S(P ) = M ∩ V (P ) = {i1, . . . , in} for the set
of visited suppliers and K(P ) = Ki1 ∪ Ki2 ∪ · · · ∪ Kin for the set of products that can be purchased on
path P . For each product k ∈ K(P ), we define the minimum reduced purchasing cost (MRPC) given by

p̄∗k(S(P )) = min
i∈S(P )

p̄ki. (4a)

If the context is clear, we may lighten the notation and write p̄∗k instead of p̄∗k(S(P )).
Note first that only those products that have a strictly negative MRPC are relevant for an optimal

purchasing decision. Let h be the number of these products so that the h products can be sorted by non-
decreasing MRPCs. Accordingly, we define

O(S(P )) = ((k1, p̄
∗
k1

), . . . , (kh, p̄
∗
kh

)) (4b)

as the sorted sequence of pairs of products and their negative MRPCs. Note that absolute values are non-
increasing, i.e., |p̄∗k1

| ≥ |p̄∗k2
| ≥ . . . ≥ |p̄∗kh

|.
It is optimal to purchase the first h̄ = min{Q, |O(S(P ))|} = min{Q, h} products k1, k2, . . . , kh̄ of the

sequence. As Q is constant, the overall reduced purchasing cost can now be described by the function

f(S(P )) =

h̄∑
q=1

p̄∗kq
. (4c)

As a result, the minimum reduced cost of any route r using path P = (0 = i0, i1, . . . , iL, iL+1 = m+ 1) with

routing cost c(P ) =
∑L+1

`=1 ci`−1,i` is
c̄r = c(P ) + f(S(P ))− µ (5)

Note that such a sequence and function can also be defined independently of a path P . One only has to
know the subset of suppliers (for the path P the suppliers S = S(P )). Therefore, for any subset S ⊆ M of
suppliers, we define O(S) and f(S) accordingly via (4a)–(4c).

Proposition 1. The function f : 2M → R, S 7→ f(S) defined by (4a)–(4c) has the following properties:
(i) f is non-positive, i.e., f(S) ≤ 0 for all ∅ ⊆ S ⊆M ;
(ii) f is non-increasing, i.e., for any R ⊆ S ⊆M it follows f(R) ≥ f(S);
(iii) f is supermodular (−f is submodular), i.e., for any R,S ⊆ M it follows f(R) + f(S) ≤ f(R ∪ S) +

f(R ∩ S).

Proof. (i): By definition of f because all values p̄∗kq
are negative for q = 1, . . . , h̄.

(ii): R ⊆ S implies that the minima fulfill p̄∗kq
(R) ≥ p̄∗kq

(S). Hence, the sequence O(R) may contain less

elements compared to O(S) (this happens if K(R) =
⋃

i∈RKi ( K(S) =
⋃

i∈S Ki). Moreover, for elements
in the sequences with identical first component, i.e., (k, p̄∗k(R)) ∈ O(R) and (k, p̄∗k(S)) ∈ O(S), it follows
p̄∗k(R) ≥ p̄∗k(S). Hence, h̄(R) ≤ h̄(S) and therefore f(R) ≥ f(S) holds true.

(iii): To prove the submodularity of −f it is equivalent to prove that for any S ⊆ S′ and i ∈ M the
inequality

f(S)− f(S ∪ {i}) ≥ f(S′)− f(S′ ∪ {i}) (6)

holds (see, e.g., Schrijver, 2003, § 44, p. 766).
Note that the only interesting cases are those when i /∈ S′, because otherwise S′ = S′ ∪ {i} so that

the right-hand side in (6) is zero and the statement directly follows then from part (ii), i.e., since f is
non-increasing.

We can therefore assume that i /∈ S′ holds. If f(S′) = f(S′∪{i}), then (6) follows directly from part (ii).
We can therefore assume that f(S′) > f(S′ ∪ {i}) holds.

To simplify the analysis, we assume the sequences O(S) always comprise Q entries. This is not restrictive
because shorter sequences can be filled up with dummy products kdummy with MRPC p̄∗kdummy

= 0. In

particular, the Qth element of O(S) is then the product with non-positive but worst MRPC compared to
all other products in the sequence O(S).

Moreover, it is convenient to write k ∈ O(S) if and only if there exists a pair (kh, p̄
∗
kh

) in the sequence O(S)
with k = kh for some index h ∈ {1, . . . , Q}. We use this convention in the following.
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Another simplification is that we assume (for the moment) that Ki = {k} holds, i.e., the supplier i offers
a single product k only. Then, due to f(S′) > f(S′ ∪ {i}),

k ∈ O(S′ ∪ {i}) with pki = p̄∗k(S′ ∪ {i}). (7)

Moreover, S ⊆ S′ implies that

k ∈ O(S ∪ {i}) with pki = p̄∗k(S ∪ {i}). (8)

We can now distinguish four cases:
• Case k ∈ O(S) and k ∈ O(S′): Note first that the precondition of this case implies, together with (7)

and (8), that both O(S) and O(S ∪ {i}) as well as O(S′) and O(S′ ∪ {i}) differ in exactly one pair, i.e.,
the pair (kh, p̄

∗
kh

) with kh = k has differing values p̄∗kh
. Therefore,

f(S)− f(S ∪ {i}) (8)
= p̄∗k(S)− pki

S⊆S′
≥ p̄∗k(S′)− pki

(7)
= f(S′)− f(S′ ∪ {i}).

Note that the inequality directly results from the definition of p̄∗k(·) as a minimum of the subsets K(S) ⊆
K(S′), respectively, see equation (4a).

• Case k /∈ O(S) and k ∈ O(S′): The precondition of this case, together with S ⊆ S′, implies that p̄∗k(S′) ≤
p̄∗kQ

(S), where kQ is the product of the last pair (kQ, p̄
∗
kQ

) in the sequenceO(S). According to (8),O(S∪{i})
results from O(S) by removing its last pair (kQ, p̄

∗
kQ

) and inserting the pair (k, pki). It follows

f(S)− f(S ∪ {i}) (8)
= p̄∗kQ

(S)− pki
k/∈O(S)∧k∈O(S′)

≥ p̄∗k(S′)− pki
(7)
= f(S′)− f(S′ ∪ {i}).

• Case k ∈ O(S) and k /∈ O(S′): With arguments similar to those from the previous case we get

f(S)− f(S ∪ {i}) (8)
= p̄∗k(S)− pki

k∈O(S)∧k/∈O(S′)

≥ p̄∗kQ
(S′)− pki

(7)
= f(S′)− f(S′ ∪ {i}).

• Case k /∈ O(S) and k /∈ O(S′): With the arguments from the two previous cases, the remaining last case
is solved via

f(S)− f(S ∪ {i}) (8)
= p̄∗kQ

(S)− pki
S⊆S′
≥ p̄∗kQ

(S′)− pki
(7)
= f(S′)− f(S′ ∪ {i}).

What remains to discuss is the case that supplier i offers more than just one product, i.e., |Ki| > 1.
If Ki = {k1, k2, . . . , kq} for q ≥ 2, we can, just for the purpose of the proof, replace the one supplier i by
q different copies named suppliers i1, i2, . . . , iq with the product sets Kij = {kj}. These copies are single-
product suppliers for which the above-discussed four cases hold true. With f(S∪{i}) = f(S∪{i1, i2, . . . , iq})
and likewise f(S′ ∪ {i}) = f(S′ ∪ {i1, i2, . . . , iq}) we get

f(S)− f(S ∪ {i}) = f(S)− f(S ∪ {i1, i2, . . . , iq})

=
(
f(S})− f(S ∪ {i1})

)
+

q∑
j=2

(
f(S ∪ {i1, . . . , ij−1})− f(S ∪ {i1, i2, . . . , ij−1, ij})

)
≥

(
f(S′})− f(S′ ∪ {i1})

)
+

q∑
j=2

(
f(S′ ∪ {i1, . . . , ij−1})− f(S′ ∪ {i1, i2, . . . , ij−1, ij})

)
= f(S′)− f(S′ ∪ {i1, i2, . . . , iq}) = f(S′)− f(S′ ∪ {i})

where the inequality results from the four cases discussed above for single-product suppliers. This completes
the proof.

Forward Labeling. Let P be the partial path starting at the depot 0 and ending at vertex i ∈ V . We associate
a label L with P (to highlight the association we write L = L(P ) and reversely P = P (L)) that includes
the following attributes:

i: The last vertex of P ;
S: The set S(P ) of visited suppliers;

T cost: The accumulated routing costs c(P ) including also (parts of) the value µ.
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Tnum : The (minimum) number of collected products;
O: The sequence of pairs (product, MRPC value), available at the visited suppliers, sorted by

non-decreasing MRPC values as defined in (4b), i.e., O(S(P )) = O(S).
Note that the sequence O can be computed via (4a) and (4b) directly from the subset S. We store the
sequence O within the label for ease of convenience and speed (one can directly see which products are
bought at which visited supplier). Hence, for any partial path P , we can write the associated label L =
L(P ) = (i, S, T ), where T is the vector of attributes (T cost, Tnum). Later, this latter vector will be extended
to take additional constraints into account and to implement acceleration techniques.

We can now describe the labeling in more detail, i.e., the initial label, label extension, feasibility condi-
tions, and dominance between labels. The initial label at vertex 0 is defined as L0 = (0,∅,0).

When a feasible path P = (0, . . . , i) with associated label Li = (i, Si, Ti) is extended along arc (i, j) ∈ A,
the new label Lj = (j, Sj , Tj) for P ′ = (0, . . . , i, j) results from the following update rules:

Sj =

{
Si ∪ {j}, if j ∈M
Si otherwise

(9a)

T cost
j = T cost

i + cij −
{
µ/2, if i = 0 or j = m+ 1
0, otherwise

(9b)

Tnum
j = Tnum

i +

{
1, if j ∈M
0, otherwise

(9c)

The (partial) path P ′ is feasible if
Tnum
j ≤ Q. (10)

This feasibility condition is a direct consequence of Property 1 exploiting (3a).
Note that up to now we did not require the paths to be elementary. Indeed, with the following dominance

rule all non-elementary paths are dominated by their cycle-free subpaths whenever the triangle inequality
for the routing costs (cij) holds.

Proposition 2. Let label L1 = (i, S1, T1) and label L2 = (i, S2, T2) be two labels that represent two different
paths, i.e., P (L1) 6= P (L2), that end at the same vertex i ∈ V .

Label L1 dominates label L2 if the following conditions both hold true:

T cost
1 + f(S1) ≤ T cost

2 + f(S1 ∪ S2) (11a)

Tnum
1 ≤ Tnum

2 (11b)

Proof. Note first that any feasible extension of P2 = P (L2) along a path P̄ is certainly also a feasible
extension of P1 = P (L1) because of (11b) and the feasibility condition (10).

We assume that the extension along path P̄ visits the suppliers S̄. We have to show that inequality (11a)
implies

T cost
1 + c(P̄ ) + f(S1 ∪ S̄) ≤ T cost

2 + c(P̄ ) + f(S1 ∪ S2 ∪ S̄)

which is equivalent to the implication

T cost
1 − T cost

2 ≤ f(S1 ∪ S2 ∪ S̄)− f(S1 ∪ S̄).

We write

T cost
1 − T cost

2

(11a)

≤ f(S1 ∪ S2)− f(S1)

(6)

≤ f(S1 ∪ S2 ∪ S̄)− f(S1 ∪ S̄)

where the last inequality holds for S1 = S ⊆ S′ = S1 ∪ S2 and S̄ ≡ {i}, with Ki = K(P̄ ) arbitrary large.
This completes the proof.

If a path P2 is not elementary, the removal of suppliers visited two or more times (from the top) creates
an elementary path P1 ending at the same vertex i. Now P1 with label L1 = (i, S1, T1) dominates P2 with
label L2 = (i, S2, T2), because the triangle inequality for the routing costs ensures T cost

1 ≤ T cost
2 and by

construction Tnum
1 < Tnum

2 as well as S1 = S2 so that both conditions (11) are fulfilled.

9



ng-Path Relaxation. Cutting planes (Section 2.3) and branching constraints (Section 2.5) introduce addi-
tional dual prices on arcs that can make the associated reduced cost negative. In this situation, negative
reduced-cost cycles can occur so that non-elementary partial paths are no longer dominated by elementary
paths constructed by leaving out suppliers that are visited multiple times. It is known for a long time that
the linear relaxation of path-based formulations can be strengthened by eliminating all or at least some non-
elementary routes and their variables from the model. In this case, the pricing subproblem must prohibit
the generation of non-elementary partial paths.

Baldacci et al. (2011) invented ng-path relaxations, parameterized by neighborhoods Ni ⊂ M for all
i ∈ V , to effectively eliminate many non-elementary paths. For given neighborhoods Ni, we enforce ng-path
constraints for the UMVTPP as follows. Each label L = (j, S, T ) is complemented by binary attributes Tng,k

for all suppliers k ∈ Nj . The initial label at vertex 0 has attributes Tng = 0. When extending a partial
path Pi associated with label Li = L(Pi) along the arc (i, j) ∈ A, j ∈ Ni, the additional feasibility condition

Tng,j
i = 0 is checked. If the extension is feasible the new attribute is updated via Tng,j

j = 1 and Tng,k
j = Tng,k

i

if k ∈ Nj ∩ Ni, and Tng,k
j = 0 otherwise. Finally, the dominance rules (11) have to be supplemented by

the (componentwise) check Tng
1 ≤ Tng

2 when comparing two labels L1 = (i, S1, T1) and L2 = (i, S2, T2).
Section 2.4 explains the strategy that we apply to build initial neighborhoods Ni and how we enlarge the
neighborhoods in the course of the algorithm in order to strengthen the linear relaxations.

Bidirectional Labeling. Bidirectional labeling has become a quasi-standard for solving SPPRCs (Righini and
Salani, 2006; Tilk et al., 2017). Defining backward labels for the UMVTPP is trivial, because one can swap 0
and m+ 1 and consider the transposed digraph (V,A>) where A> comprises all arcs (j, i) for (i, j) ∈ A. We
use the resource Tnum as the monotone resource: only labels that fulfill the half-way condition Tnum ≤ Q/2
are extended. If the routing costs are symmetric (i.e., cij = cji for all i, j ∈ V ), it becomes even simpler: all
forward labels can be directly interpreted as backward labels (such an implicit bidirectional labeling was,
e.g., described in the works of Bode and Irnich, 2012; Goeke et al., 2019; Gschwind et al., 2019).

A forward label Lfw = (i, Sfw, Tfw) and a backward label Lbw = (i, Sbw, Tbw) can be merged, i.e., the
concatenation P = (Pfw, inv(Pbw)) of the two associated paths Pfw = P (Lfw) and Pbw = P (Lbw) is feasible
if the following conditions hold:

Tnum
fw + Tnum

bw ≤ Q+ 1 (12a)

Tng,k
fw + Tng,k

bw ≤ 1 for all k ∈ Ni \ {i} (12b)

Condition (12a) reflects feasibility condition (10), whereas condition (12b) refers to the ng-path relaxation.
The reduced cost of the merged path P can be obtained as cP = T cost

fw + T cost
bw + f(Sfw ∪ Sbw).

2.2.2. Handling of Side Constraints

We now describe the handling of side constraints, i.e., SVCs, incompatibilities between products, and
tour duration/length constraints in the column-generation algorithm that we propose.

Single-Visit Constraints. For the route-based formulation, the SVCs can directly be incorporated in the
master problem by adding the following set of constraints.∑

r∈Ω

∑
j:(i,j)∈A

brijλ
r ≤ 1 i ∈M (13)

with dual prices (πi)i∈M .
Moreover, by exploiting the SVCs, we can reduce the solution space of the subproblem by imposing that

all products K∗i are purchased directly at the point when supplier i ∈M is visited because of Property 2.

Property 2. If the triangle inequality holds for travel costs (cij) then there exists an optimal solution to
UMVTPP with SVCs in which at least max{1, |K∗i |} products are purchased at every visited supplier i ∈M .

Proof. See (Riera-Ledesma and Salazar-González, 2012).

To this end, we divide all products into unique and common products. Unique products
⋃

i∈M K∗i have
to be purchased and can be directly incorporated into the reduced cost of a partial path by using routing
costs

creqij = cij +
1

2
·

∑
k∈K∗i

p̄ki +
∑
k∈K∗j

p̄kj

+
1

2
· (πi + πj)
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in (9b) instead of cij (we define π0 = πm+1 = 0 for the depot vertices 0 and m+ 1). Note that the new
reduced routing costs creqij can be negative. Moreover, for symmetric cij the given definition of creqij implies
that these are then also symmetric.

The labeling algorithm takes the unique and common products into account as follows: For all unique
products k ∈ K∗i , i ∈ M , we set qki = 0 and p̄ki = ∞ to exclude unique products from being selected as
common products, i.e., they do not occur in the sequence O of a label.

To keep track of the number of unique products purchased, we introduce a new attribute Tuniq for
the labels. When propagating a label over an arc (i, j) ∈ A, the new attribute is updated via Tuniq

j =

Tuniq
i + |K∗j |. The minimum number of collected common products is Tnum

j = Tnum
i + 1 if j 6= m+ 1

and K∗j = ∅, otherwise Tnum
j = Tnum

i (this update rule replaces (9c)). The new label has the following
additional feasibility conditions (in addition to Tnum

j ≤ Q, i.e., condition (10)): Not more than Q unique

products can be purchased, i.e., Tuniq
j ≤ Q, and the maximum number of common products purchased is

now bounded by Tnum
j ≤ Q− Tuniq

j = Q− Tuniq
i − |K∗j |.

Regarding domination, a label L1 dominates another label L2, if in addition to (11a) and (11b) the
condition Tuniq

1 ≤ Tuniq
2 holds.

For the bidirectional labeling, the monotone resource is redefined as Tnum+Tuniq with identical half-way
point Q/2 as before. Moreover, the merge conditions

Tnum
fw + Tnum

bw ≤

{
Q+ 1, if |K∗i | = 0

Q, otherwise
(14a)

Tuniq
fw + Tuniq

bw ≤ Q+ |K∗i | (14b)

have to be tested instead of (12a). Condition (14a) and (14b) refers respectively to the common and unique
products. Note that, in the second constraint (14b), both the forward label and the backward label already
take the unique products K∗i into account that are only available at the merge vertex i.

Incompatibilities between Products. Gendreau et al. (2016) deal with incompatibilities between products
directly in the labeling algorithm. They introduce additional resources that guarantee that only compatible
products are selected along the partial path.

We propose another approach to cope with incompatibilities: We enumerate all maximal subsets of
products that are pairwise compatible. These are the maximal independent sets I of the incompatibility
graph (K,Ew), where an edge {k, k′} ∈ Ew exists between products if and only if (k, k′) ∈ B; see Section 1.
Let I = {I1, I2, . . . , Ib} be the set of all maximum independent sets. The computation of the set I can be
done with a straightforward enumeration algorithm.

The pricing subproblem can now be decomposed into b subproblems, where in the subproblem to Ij for
j ∈ {1, 2, . . . , b} only the products Ij ⊂ K are available. For all suppliers, their product set Ki is reduced to
Ki∩ Ij . If the set is empty and the triangle inequality for routing costs holds, the supplier becomes obsolete.
Note that in the presence of incompatibility constraints, the same supplier may be visited by multiple vehicles
and it is therefore not possible to impose SVCs and distinguish between unique and common products.

On the positive side, the b different column-generation subproblems are of the same structure as those dis-
cussed before. They can be solved with the labeling algorithm presented in Section 2.2.1. Due to the reduced
product and supplier sets, one can expect that these subproblems can be solved faster than one subproblem
with additional resources to cope with incompatibilities. On the downside, instead of one subproblem, there
are |I| different subproblems. To avoid solving |I| subproblems in each iteration, partial pricing (Gamache
et al., 1999) can be used to accelerate the solution process. We terminate the pricing when a certain number
of negative reduced-cost columns is found. However, all b subproblems must be solved in the final column-
generation iteration to prove optimality of the linear relaxation (per branch-and-bound node).

Maximum Route Duration Constraints. The integration of a maximum route duration constraint is simple.
We add the attribute T length to the attributes vector T of each label L = (i, S, T ). Initially the attribute is set

to T length = 0. Extensions along an arc (i, j) ∈ A increase the attribute by dij , i.e., T length
j = T length

i + dij .

The extension is feasible if T length
j ≤ Dmax. Dominance between two labels L = (i, S1, T1) and L = (i, S2, T2)

has to additionally check T length
1 ≤ T length

2 . The merge of a forward label Lfw = (i, Sfw, Tfw) and Lbw =

(i, Sbw, Tbw) must additionally test T length
fw + T length

bw ≤ Dmax.
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2.3. Valid Inequalities and Cutting Strategy

For the UMVTPP with SVCs, the initial RMP that we use does not contain the SVCs (13). Instead, we
add SVCs dynamically, i.e., when we find them violated.

In addition, four classes of valid inequalities are dynamically separated and added to the RMP in order
to strengthen the linear relaxation. These inequalities require different properties of the problem that are
summarized in Table 3.

Prerequisite

Unitary Single-visit Triangle Ineq.
Valid inequalities demand constraints (SVCs) for costs cij

(Limited memory) subset-row inequalities, (lm)SRIs •
Rounded ring-capacity inequalities, RRCIs •
Ci-ring-capacity inequalities, CiRCIs •
Purchase-visit inequalities, PVIs • • •

Table 3: Prerequisites for the validity of inequalities

Subset-row inequalities (SRIs) were originally introduced by Jepsen et al. (2008) for the vehicle routing
problem with time windows. This class of inequalities can only be used for UMVTPP variants with SVCs.
In the UMVTPP, each SRI is defined for a subset U ⊂ M of the suppliers. As proposed by Jepsen et al.
(2008), we restrict ourselves to SRIs defined on three suppliers, i.e., |U | = 3, because they can be separated
by straightforward enumeration. The corresponding SRI is∑

r∈Ω

⌊
gUr
2

⌋
λr ≤ 1 (SRI)

where gUr =
∑

i∈U air is the number of times route r ∈ Ω visits suppliers in U .
SRIs comprise a family of non-robust cuts meaning that for each active SRI, i.e., with non-zero dual

price, one binary attribute TSR,U must be added to the labels. The initial value of TSR,U is zero and it is
flipped (from zero to one, and vice versa) every time a supplier i ∈ U is visited. The (non-positive) dual

price of the SRI is subtracted when the attribute flips from one to zero. A higher value TSR,U
1 = 1 in a

first label L1 = (i, S1, T1) compared to TSR,U
2 = 0 in a second label L2 = (i, S2, T1) can be compensated

by replacing the cost comparison (11a) by T cost
1 + f(S1)−

∑
U :TSR,U

1 >TSR,U
2

αU ≤ T cost
2 + f(S1 ∪ S2), where

αU ≤ 0 is the dual price of the SRI related to the subset U . Even with this clever dominance rule of Jepsen
et al. (2008), the presence of many SRIs for different subsets U often drastically increases the practical
difficulty of the pricing problem.

To alleviate these negative effects, Pecin et al. (2017) introduced limited memory SRIs (lmSRIs) that are
a generalization of SRIs and whose impact on the difficulty of the pricing subproblem is typically reduced
by using a U -specific memory to store a given subset MU ⊆M of the suppliers. The role of the memory is
very similar to the neighborhoods in the ng-path relaxation of Baldacci et al. (2011). The attribute TSR,U

is reset to zero when a vertex i outside the memory, i.e., i /∈MU , is visited.
Rounded ring-capacity inequalities (RRCIs) and Ci-ring-capacity inequalities (CiRCIs) were introduced

in the work (Baldacci et al., 2007) for the CmRSP. They are defined for an arbitrary subset S ⊂ M of
suppliers. Let K(S) =

⋃
i∈S Ki be the union of all products available at all suppliers in S. As for other

capacity cuts, RRCIs and CiRCIs impose a lower bound on the number of times the subset S must be
exited:

∑
r∈Ω

∑
(i,j)∈Γ+(S)

brijλ
r +

∑
r∈Ω

∑
i/∈S

∑
k∈K(S)

δrki

|K(S)| (mod Q)
λr ≥

⌈
|K(S)|
Q

⌉
(RRCI)

and ∑
r∈Ω

∑
(i,j)∈Γ+(S)

brijλ
r ≥

⌈
|{k ∈ K : Mk ⊆ S}|

Q

⌉
. (CiRCI)
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Note that RRCIs result from some non-trivial inequalities that round fractions of integers. Hence they are
difficult to interpret and we refer to (Baldacci et al., 2007) for the description and proof. In contrast, CiRCIs
are simple to interpret: the left-hand side counts the number of times the subset S is exited, while the
nominator on the right-hand side counts the number of products that can only be purchased at suppliers
inside S so that the right-hand side term is the minimum number of vehicles needed to collect these products.
For the separation of violated RRCIs and CiRCIs, we use the heuristic procedure suggested by Baldacci et al.
(2007).

Finally, for UMVTPP with SVCs, in which the triangle inequality for the routing costs holds, we introduce
a new class of valid inequalities that we denote as purchase-visit inequalities (PVIs). This class of inequalities
exploits Property 2, i.e., that at each visited supplier i ∈ M at least max{1, |K∗i |} products must be
purchased. The inequality for supplier i ∈M is then given by

∑
r∈Ω

max{1, |K∗i |}
∑

(i,j)∈Γ+(i)

brij −
∑
k∈Ki

δrki

λr ≤ 0. (PVI)

For lmSRIs, RRCIs, CiRCIs, and PVIs, we use the following separation strategies. All inequalities are
separated in hierarchical order, and the next class is only separated if we have found no violated inequalities
of the previous class. The search for violated inequalities is limited to search-tree nodes of the overall branch-
and-bound tree up to a certain level maxlevel. For each round of separation, only the maxround most violated
inequalities found are added before the RMP is re-optimized. The total number of separated inequalities
per class is limited to maxtotal. Table 4 summarizes the values we used in our experiments.

PVIs CiRCIs RRCIs lmSRIs

Order 1 2 3 4

Separated up to level maxlevel ∞ 10 10 1

Maximum number maxround per round |M | 30 30 20

Maximum number maxtotal in total |M | 300 300 60

Table 4: Parameters of the separation strategy for the four classes of valid inequalities

2.4. Dynamic Neighborhood Extension

Dynamic neighborhood extension (DNE) is a strategy to initialize and modify ng-neighborhoods Ni

depending on the solutions obtained at branch-and-bound nodes. DNE was first proposed by Roberti and
Mingozzi (2014). The enlargement of neighborhoods can be interpreted as a tool to strengthen the linear
relaxations. Note that a basic tradeoff exists between the strength of the lower bounds resulting from ng-
neighborhoods Ni of given size and the required computation time for the solution of the corresponding
subproblems.

We implement DNE with the help of two integer parameters sznginit and szngmax. Recall that cycles are the
result of considering SVCs (and distinguishing between unique and common products) and adding cutting
planes and branching constraints. As a consequence, negative reduced cost cycles at the root node certainly
include some supplier i at least twice that offers a unique product, i.e., K∗i 6= ∅. Therefore, we add to the
initial neighborhood of j ∈ M the sznginit closest suppliers i with K∗i 6= ∅, so that |Ni| ≤ sznginit holds for all
i ∈M .

These initial neighborhoods are systematically enlarged considering the solution of linear relaxations at
each node of the search tree. If a fractional solution contains a route with a cycle D = (i, . . . , j, . . . , i), we
try to eliminate this cycle by adding i to all neighborhoods of vertices j in the cycle. Before actually adding
supplier i, we check that all neighborhoods Nj admit the addition, i.e., we check |Nj | < szngmax. Given the
solution of the current RMP defined over Ω̄, let λ̄r, r ∈ Ω̄, be the value of the corresponding variable λr.
Cycles in routes r are considered in decreasing order of the values λ̄r. Our implementation uses sznginit = 2
and szngmax = 8.

2.5. Branching

Let λ̄r for r ∈ Ω̄ and f̄ be the values of the corresponding variables λr and f in the current solution of
the RMP defined over Ω̄. If some of these values are fractional, branching is required.
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Stage SVCs Description Branching Variable Branches
with w/o on selection

1 • • Number of vehicles f̄ — ≤ bf̄c and ≥ df̄e
2 • • Selection of a supplier αki, k ∈ K, i ∈Mk closest to 0.5 = 0 and = 1
3 • Number of visits γi, i ∈M γi − bγic closest to 0.5 ≤ bγic and ≥ dγie
4 • • Slack of CiRCI βS , S ⊂M < 1, closest to 0.5 = 0 and ≥ 1
5 • • Arc Flow ηij , (i, j) ∈ A ηij − bηijc closest to 0.5 ≤ bηijc and ≥ dηije
6 • • Flow splitting see (Feillet et al., 2005) for details, not necessary in our experiments

Table 5: Six-stage branching strategy for the UMVTPP

We apply a six-stage hierarchical branching scheme to ensure integer solutions of formulation (1). For
the UMVTPP with SVCs, the third stage is obsolete. Table 5 provides an overview.

First, if the number of vehicles f̄ in use is fractional, we create two branches enforcing either f ≤ bf̄c or
f ≥ df̄e.

Second, we introduce a new branching rule that decides whether product k ∈ K is purchased at supplier
i ∈ M , or not (the use of this branching rule is new compared to Hoshino and De Souza, 2012; Gendreau
et al., 2016). For all products k ∈ K with |Mk| > 1 and all suppliers i ∈ Mk, we consider fractional values
αki defined as

∑
r∈Ω δkiλ̄r. We choose a pair (k∗, i∗) with value αk∗i∗ closest to 0.5 and create two branches∑

r∈Ω δkiλr = 0 and
∑

r∈Ω δkiλr = 1. Instead of adding constraints, we directly implement the branching
constraints by manipulating the product set of the suppliers. In the first branch, product k∗ is removed from
Ki∗ . In the second branch, product k∗ is removed from Ki for all other suppliers i ∈Mk \ {i∗}; this ensures
that product k∗ is purchased at supplier i∗. All route variables that do not comply with the branching
decision are removed from the RMP.

Third, we branch on the number of times a supplier i ∈M is visited if this value is fractional. Accordingly,
we define γi as

∑
r∈Ω

∑
(i,j)∈Γ+(i) b

r
ij λ̄

r. Among all suppliers i ∈M with fractional γi, we choose a supplier i∗

with γi∗ − bγi∗c closest to 0.5 and create two branches with either∑
r∈Ω

∑
(i,j)∈Γ+(i)

brijλ
r ≤ bγi∗c or

∑
r∈Ω

∑
(i,j)∈Γ+(i)

brijλ
r ≥ dγi∗e.

Note that this branching rule is obsolete for UMVTPP with SVCs when the second-stage branching rules
are applied before.

Fourth, as suggested by Baldacci et al. (2007), we branch on the slack in CiRCIs. Recall that for any
subset S ⊂M , the corresponding CiRCI ensures that the subset S is exited sufficiently often. Defining βS as∑

r∈Ω

∑
(i,j)∈Γ+(S) b

r
ij λ̄

r−
⌈
|{k∈K:Mk⊆S}|

Q

⌉
, we consider only those subsets S with a value βS strictly between

0 and 1. We use the heuristic proposed by Baldacci et al. (2007) to identify candidate sets S. Among all
candidate sets, we choose a subset S∗ with a value βS∗ closest to 0.5 and create two branches by adding the
additional constraints that either the slack is zero or at least one. The constraints defining these branches
can be written as ∑

r∈Ω

∑
(i,j)∈Γ+(S∗)

brijλ
r −

⌈
|{k ∈ K : Mk ⊆ S∗}|

Q

⌉
= 0 or ≥ 1.

Fifth, we branch on the number of times an arc (i, j) ∈ A is traversed. Let ηij be defined by
∑

r∈Ω b
r
ij λ̄

r,
i.e., the number of times arc (i, j) ∈ A is used in the current solution. Among all arcs with fractional value ηij ,
we choose the arc (i∗, j∗) with ηi∗j∗ closest to 0.5. We create two branches by forcing

∑
r∈Ω b

r
ijλ

r ≤ bηi∗j∗c
or
∑

r∈Ω b
r
ijλ

r ≥ dηi∗j∗e. This branching rule reduces to standard binary arc branching for the UMVTPP
with SVCs.

Note that integer flows on arcs may not guarantee that the route variables are integer for UMVTPPs
without SVCs. Therefore, the sixth stage applies the additional branching rule based on the flow-splitting
method introduced by Feillet et al. (2005) and later used also by Gendreau et al. (2016). In our computational
experiments, it was never necessary to apply this rule because fractional route variables could always be
convex combined into feasible integer solutions (see, Desaulniers et al., 1998; Jans, 2010). We attribute this
behavior to the use of the additional second-stage branching rule not used by Gendreau et al. (2016). We
doubt however that the first five stages already guarantee, in general, that the branching is complete.
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3. Computational Results

In this section, we report the results of computational experiments that were conducted on different
classes of UMVTPP instances (Section 3.1) using additional acceleration techniques based on partial pric-
ing (Section 3.2). We compare our BPC algorithm with algorithms from the literature on three standard
benchmark sets in Section 3.3.

We have implemented the BPC algorithm in C++ and compiled into 64-bit single-thread code with
MS Visual Studio 2015. The callable library of CPLEX 12.9.0 was used for (re-)optimizing the RMPs. All
results were obtained using a standard PC with an Intelr CoreTM i7-5930K processor clocked at 3.5 GHz
and 64 GB RAM running Microsoft Windows 10 Education. In the following, all computation times are
given in seconds.

3.1. UMVTPP Instances

We test our BPC algorithm on the CmRSP instances created by Baldacci et al. (2007) and Hoshino and
De Souza (2012) as well as on the MVTPP-PIC instances of Gendreau et al. (2016). Several comments on
these benchmarks sets and previous results presented in the literature are due:
1. The CmRSP instances of Baldacci et al. (2007) have been used in previous studies only in a restricted

version, where a canonical ring-star property has been assumed. Hoshino and De Souza (2012, p. 2734f)
already mention that Baldacci et al. assume canonical ring stars in which a Steiner point appears in a ring
only if there exists a connection arc in the star linking some customer to it. Only if routing costs satisfy
the triangle inequality, there always exists an optimal solution composed exclusively of canonical ring
stars. Otherwise, all optimal solutions may have non-canonical ring stars. Since the triangle inequality is
not fulfilled in this benchmark set, the solutions reported in (Baldacci et al., 2007) may not be optimal.
Moreover, in order to speed up the convergence of the solution process, the authors provided their BC
algorithm with initial feasible solutions (computed by applying at pre-processing time an initial stand-
alone heuristic) whose values were, on average, less than 0.7 % away from the optimal (dual bound) values.
Finally, it should also be noted that capacities have been chosen large for some of these instances, which
makes them somewhat harder for column-generation based algorithms but simpler for BC algorithms.

2. Hoshino and De Souza (2012) also forced the ring stars to be canonical to be in conformity with Baldacci
et al.. However, they adopt the instances of Baldacci et al., such that the triangle inequality is satisfied in
their new benchmark set. As their BC results are inferior to their BPC results, we do not include the BC
results into our comparison in Section 3.3. Additionally, in order to further assess their BPC algorithm,
the authors run a subset of experiments considering the instances proposed by Baldacci et al.. Their
aggregated results show that the BPC algorithm solves less instances to optimality compared to the BC
results of Baldacci et al..

3. Riera-Ledesma and Salazar-González (2012, 2013) extended the original benchmark set comprising the
two classes A and B of Baldacci et al. by three new classes C, D, and E. Unfortunately, these instances
are not obtainable anymore (Riera-Ledesma, 2019).

4. Instances of the MVTPP-PIC benchmark set of Gendreau et al. (2016) do not fulfill the triangle inequal-
ity for routing costs. Therefore, Property 1 does not hold true, i.e., visits to suppliers without actually
purchasing any product can be beneficial. In addition, their BP algorithm has been prematurely termi-
nated whenever the optimality gap has been fallen below 0.2 percent. Hence, some non-optimal solutions
are reported in their results.

Finally, we would like to mention that the instances of Bianchessi et al. (2014) were created and tested
only for uncapacitated variants of the MVTPP. In this case, the purchasing decisions can be transferred to
the master-problem level of a column-generation approach (as done by the authors). This makes these in-
stances irrelevant for any approach that explicitly considers capacities on the subproblem level. We therefore
disregard these instances.

3.2. Partial Pricing

To accelerate the solution process, we use partial pricing with reduced networks. A reduced network is
defined by a value α ∈ N that limits the number of ingoing and outgoing arcs per vertex. Arcs are chosen
according to the lowest reduced cost in the current pricing iteration.

Additionally, we use two heuristic dominance rule. In the first rule (‘rule 1’), condition (11a) is replaced
by

T cost
1 + f(S1) ≤ T cost

2 + f(S2)

15



and in the second rule (‘rule 2’), condition (11a) is replaced by

T cost
1 + f(S1) ≤ T cost

2 + βf(S1 ∪ S2)

with some value β between 0 and 1. In our computational experiments, we used six heuristic pricers. Their
configuration is summarized in Table 6.

Level Number α Dominance Factor β
of arcs rule in rule 2

1 20 rule 1 –
2 ∞ rule 1 –
3 30 rule 2 0.85
4 30 rule 2 0.95
5 10 exact 1
6 20 exact 1

Table 6: Configuration of heuristic pricers

Due to the restricted and hence smaller set of products and suppliers per pricing subproblem in the
MVTPP-PIC (see Section 2.2.2), we skip heuristic pricers at levels 1, 3, and 4.

3.3. Results for the CmRSP and the MVTPP-PIC Instances

In this section, we compare our BPC algorithm on instances for the CmRSP and the MVTPP-PIC with
the state-of-the-art algorithms from the literature. Tables 7–9 present aggregated results for the instances
of Baldacci et al. (2007), Hoshino and De Souza (2012), and Gendreau et al. (2016). Detailed instance-wise
results can be found in the Appendix. We set the same time limit as in the literature: 7200 seconds for the
instances of Baldacci et al. (2007) and Gendreau et al. (2016) as well as 1800 seconds for the instances of
Hoshino and De Souza (2012). The tables contain for each instance class, the number of instances (#), the
number of instances solved to optimality (#Opt), the average solution time in seconds, and the number of
branch-and-bound nodes solved (#B&B).

Baldacci et al. Our algorithm

Instance # #Opt Time #B&B #Opt Time #B&B

grouped by class
A25 9 9 0.7 1.1 9 0.3 4.9
A50 12 12 570.6 323.9 10 1659.2 54.8
A75 12 8 2942.1 590.8 4 4950.4 252.7

A100 12 6 4355.4 434.0 3 5424.9 9.3

B25 9 9 0.4 1.0 9 0.3 5.7
B50 12 12 613.1 230.3 12 655.8 43.5
B75 12 4 4976.5 597.1 3 5418.8 711.5

B100 12 3 5483.5 406.3 3 5458.8 31.1

grouped by vehicle capacity
3–6 26 26 67.9 14.3 26 3.3 10.7

7–10 20 19 415.9 54.8 19 511.7 597.7
11–14 18 11 3866.2 581.3 7 5027.9 57.4
≥15 26 7 5678.0 733.8 1 7000.0 2.4

Total 90 63 2525.6 344.5 53 3142.4 148.1

Table 7: Comparison with the branch-and-cut (BC) algorithm of Baldacci et al. (2007)

The first part of Table 7 contains aggregated results in which the instances are grouped by class (A or B)
and number of suppliers (25 to 100). Afterwards, in the second part of the table, we regroup the instances
by vehicle capacity.
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In the first part, we can see that our algorithm performs worse on the A instances, while it performs
nearly equally on the B instances. From the second part we can see that both algorithms operate similarly
on instances with a vehicle capacity up to 10. The BC algorithm of Baldacci et al. (2007) is slightly better
on instances with vehicle capacity between 11 and 14. However, we can provide two new optimal solutions
for that group. As expected, our algorithm performs poorly for instances that have a vehicle capacity larger
than 15. All in all, we can solve 10 instances less and our solution time increases on average.

Hoshino and De Souza Our algorithm

Instance class # #Opt Time #B&B #Opt Time #B&B

Small A 33 32 91.8 127.2 32 93.7 16.8
B 33 32 110.4 165.8 32 152.5 40.7
C 33 29 289.7 190.5 27 331.2 13.1

Large A 45 18 1162.5 483.3 18 1118.8 36.7
B 45 14 1269.1 828.3 16 1234.2 142.9
C 45 10 1464.4 384.7 15 1234.2 53.7

Total 234 135 818.6 394.4 140 694.1 50.6

Table 8: Comparison with the branch-price-and-cut (BPC) algorithm of Hoshino and De Souza (2012)

Compared with the BPC algorithm of Hoshino and De Souza (2012), our algorithm performs slightly
better on average. For the small instance class, both algorithms work similarly. The two instances of class
small C that we cannot solve (solved by the BPC of Hoshino and De Souza (2012)) have a large vehicle
capacity of 14. For the large instance classes, our algorithm performs better, in particular for the large
instances of class B and C. In total, we can solve five additional instances and the solution time decreases
slightly on average. It is notable that we need significantly less branch-and-bound nodes to solve the in-
stances to optimality. Moreover, the instance-wise results show that we can provide ten optimal solutions
for previously unsolved instances.

Gendreau et al.z Our algorithm

Instance size |M |+ 1 # #Opt Time #B&B #Opt Time #B&B

20 24 24 869.3 87.3 24 31.1 24.8
35 24 21 1906.9 8.5 24 93.0 20.6
50 24 13 4054.0 5.6 23 881.6 144.1

Total 72 58 2276.7 33.8 71 335.2 63.2
z: The BPC algorithm of Gendreau et al. has been prematurely terminated
whenever the optimality gap has been below 0.2 percent.

Table 9: Comparison with the BPC algorithm of Gendreau et al. (2016).

Compared to the BPC algorithm of Gendreau et al. (2016), our BPC algorithm performs much better.
We can solve all but one instance to optimality, thereby providing 19 new optimal solutions where six of them
are resulting from the preliminary stop criterion in the BPC of Gendreau et al.. Moreover, our algorithm is
on average more than six times faster, although the detailed results show (entry #Sub of Table 18 in the
Online Appendix) that there are up to 286 different pricing subproblems per instance.

4. Conclusions

In this work, we have presented a new branch-price-and-cut (BPC) algorithm for the solution of different
variants of the capacitated multiple vehicle traveling purchaser problem (MVTPP) with unitary demand. The
main novelty is the way in which the column-generation subproblems are solved by a dynamic-programming
labeling algorithm: The precise purchasing decisions are postponed until the route has been completely
defined. The decisive point here is the definition of an effective dominance rule. The novel dominance rule
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uses some deep-seated properties of the optimal reduced purchasing cost function, which we have proved
being supermodular.

Additional components of the BPC algorithm that contributed to the overall effectiveness of the approach
are implicit bidirectional and partial pricing, the incorporation of additional cutting planes, the dynamic
extension of the ng-route neighborhoods, and new branching rules. For the UMVTPP with incompatibilities
among products, the replacement of incompatibility constraints by multiple pricing subproblems has pro-
duced a BPC approach that outperforms former methods by one order of magnitude regarding computation
times. In general, the computational results indicate that the new subproblem solution strategies are bene-
ficial, especially for instances in which many products are available at a supplier and routes are relatively
short.
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Online Appendix

Tables 10–18 present detailed computational results for all tested instances. The first column indicates
the name of the instances, the second gives the number of suppliers and the third the number of products.
Columns LB und UB contain the lower and upper bounds obtained at the end of the optimization. Columns
Time LP and Time IP give the time the BPC algorithm takes for the solution of the root node and the
complete IP, respectively. Column #B&B contains the number of branch-and-bound nodes solved, column
#ExtNG the number of nodes at which the ng-neighborhood was extended, and column #Cuts the number
of added cutting planes. Finally, for the instances with incompatibilities, column fr denotes the percentage
of products that are free, i.e., the percentage of products that have no incompatibility restrictions, and
column #Sub shows the number of subproblems for that instance.

Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil26.tsp.3.12.5.A.BDS 25 12 242 242 0.1 0.1 2 1 8
eil26.tsp.4.12.4.A.BDS 25 12 261 261 0.1 0.1 2 1 7
eil26.tsp.5.12.3.A.BDS 25 12 292 292 0.1 0.1 2 1 12
eil26.tsp.3.18.7.A.BDS 25 18 301 301 0.1 0.8 14 7 57
eil26.tsp.4.18.5.A.BDS 25 18 339 339 0.1 0.1 2 1 10
eil26.tsp.5.18.4.A.BDS 25 18 375 375 0.1 0.1 2 1 17
eil26.tsp.3.25.10.A.BDS 25 25 325 325 0.2 0.8 11 8 38
eil26.tsp.4.25.7.A.BDS 25 25 362 362 0.1 0.4 7 5 26
eil26.tsp.5.25.6.A.BDS 25 25 382 382 0.1 0.1 2 1 18

eil51.tsp.3.12.5.A.BDS 50 12 242 242 0.1 0.1 2 1 8
eil51.tsp.4.12.4.A.BDS 50 12 261 261 0.1 0.1 2 1 7
eil51.tsp.5.12.3.A.BDS 50 12 286 286 0.1 0.1 2 1 8
eil51.tsp.3.25.10.A.BDS 50 25 322 322 0.5 2.0 6 4 38
eil51.tsp.4.25.7.A.BDS 50 25 360 360 0.3 1.3 10 5 53
eil51.tsp.5.25.6.A.BDS 50 25 379 379 0.2 0.3 2 1 17
eil51.tsp.3.37.14.A.BDS 50 37 373 373 7.3 491.7 40 19 71
eil51.tsp.4.37.11.A.BDS 50 37 405 405 1.8 1395.2 338 130 112
eil51.tsp.5.37.9.A.BDS 50 37 432 432 0.6 25.0 26 13 70
eil51.tsp.3.50.19.A.BDS 50 50 — 455 199.6 7200.0 33 18 119
eil51.tsp.4.50.14.A.BDS 50 50 490 490 39.1 3595.3 40 24 97
eil51.tsp.5.50.12.A.BDS 50 50 — 518 14.1 7200.0 156 72 93

eil76.tsp.3.18.7.A.BDS 75 18 330 330 0.4 1690.1 2947 227 135
eil76.tsp.4.18.5.A.BDS 75 18 385 385 0.2 4.7 25 5 62
eil76.tsp.5.18.4.A.BDS 75 18 448 448 0.2 4.9 28 9 68
eil76.tsp.3.37.14.A.BDS 75 37 — 394 2442.0 7200.0 3 2 27
eil76.tsp.4.37.11.A.BDS 75 37 — 440 178.0 7200.0 26 10 160
eil76.tsp.5.37.9.A.BDS 75 37 479 479 43.9 105.2 3 0 4
eil76.tsp.3.56.21.A.BDS 75 56 — — 7200.0 7200.0 0 0 0
eil76.tsp.4.56.16.A.BDS 75 56 — — 7200.0 7200.0 0 0 0
eil76.tsp.5.56.13.A.BDS 75 56 — — 7200.0 7200.0 0 0 0
eil76.tsp.3.75.28.A.BDS 75 75 — — 7200.0 7200.0 0 0 0
eil76.tsp.4.75.21.A.BDS 75 75 — — 7200.0 7200.0 0 0 0
eil76.tsp.5.75.17.A.BDS 75 75 — — 7200.0 7200.0 0 0 0

eil101.tsp.3.25.10.A.BDS 100 25 363 363 7.8 182.1 17 11 56
eil101.tsp.4.25.7.A.BDS 100 25 415 415 1.7 89.9 60 27 159
eil101.tsp.5.25.6.A.BDS 100 25 448 448 1.1 27.5 28 11 132
eil101.tsp.3.50.19.A.BDS 100 50 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.50.14.A.BDS 100 50 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.50.12.A.BDS 100 50 — 551 1540.7 7200.0 6 3 35
eil101.tsp.3.75.28.A.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.75.21.A.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.75.17.A.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.3.100.38.A.BDS 100 100 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.100.28.A.BDS 100 100 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.100.23.A.BDS 100 100 — — 7200.0 7200.0 0 0 0

Table 10: Detailed Results for the instance class A of Baldacci et al. (2007)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil26.tsp.3.12.5.B.BDS 25 12 1684 1684 0.1 0.1 4 3 8
eil26.tsp.4.12.4.B.BDS 25 12 1827 1827 0.1 0.1 3 1 9
eil26.tsp.5.12.3.B.BDS 25 12 2041 2041 0.1 0.0 2 1 12
eil26.tsp.3.18.7.B.BDS 25 18 2104 2104 0.1 1.0 22 11 74
eil26.tsp.4.18.5.B.BDS 25 18 2370 2370 0.1 0.1 3 2 14
eil26.tsp.5.18.4.B.BDS 25 18 2615 2615 0.1 0.1 2 1 16
eil26.tsp.3.25.10.B.BDS 25 25 2251 2251 0.1 0.5 5 3 30
eil26.tsp.4.25.7.B.BDS 25 25 2510 2510 0.1 0.4 7 4 42
eil26.tsp.5.25.6.B.BDS 25 25 2674 2674 0.1 0.2 3 2 23

eil51.tsp.3.12.5.B.BDS 50 12 1681 1681 0.1 0.4 8 4 29
eil51.tsp.4.12.4.B.BDS 50 12 1821 1821 0.1 0.2 7 4 18
eil51.tsp.5.12.3.B.BDS 50 12 1972 1972 0.1 0.1 3 2 8
eil51.tsp.3.25.10.B.BDS 50 25 2176 2176 0.6 0.9 2 1 21
eil51.tsp.4.25.7.B.BDS 50 25 2470 2470 0.2 5.6 25 13 112
eil51.tsp.5.25.6.B.BDS 50 25 2579 2579 0.2 0.4 2 1 25
eil51.tsp.3.37.14.B.BDS 50 37 2490 2490 6.3 117.8 21 7 85
eil51.tsp.4.37.11.B.BDS 50 37 2721 2721 1.2 978.5 304 97 103
eil51.tsp.5.37.9.B.BDS 50 37 2908 2908 0.6 41.6 50 23 86
eil51.tsp.3.50.19.B.BDS 50 50 3015 3015 104.3 2000.2 29 13 84
eil51.tsp.4.50.14.B.BDS 50 50 3260 3260 18.0 4709.0 68 28 94
eil51.tsp.5.50.12.B.BDS 50 50 3401 3401 6.7 14.7 3 2 17

eil76.tsp.3.18.7.B.BDS 75 18 2259 2248 0.6 7200.0 8401 685 156
eil76.tsp.4.18.5.B.BDS 75 18 2620 2620 0.3 2.8 18 5 50
eil76.tsp.5.18.4.B.BDS 75 18 3059 3059 0.2 11.5 90 12 115
eil76.tsp.3.37.14.B.BDS 75 37 — 2658 4803.2 7200.0 1 1 18
eil76.tsp.4.37.11.B.BDS 75 37 — 2999 335.1 7200.0 21 7 113
eil76.tsp.5.37.9.B.BDS 75 37 3284 3284 38.1 210.7 6 3 28
eil76.tsp.3.56.21.B.BDS 75 56 — — 7200.0 7200.0 0 0 0
eil76.tsp.4.56.16.B.BDS 75 56 — — 7200.0 7200.0 0 0 0
eil76.tsp.5.56.13.B.BDS 75 56 — 3580 7034.8 7200.0 1 1 9
eil76.tsp.3.75.28.B.BDS 75 75 — — 7200.0 7200.0 0 0 0
eil76.tsp.4.75.21.B.BDS 75 75 — — 7200.0 7200.0 0 0 0
eil76.tsp.5.75.17.B.BDS 75 75 — — 7200.0 7200.0 0 0 0

eil101.tsp.3.25.10.B.BDS 100 25 2434 2434 8.5 329.1 45 12 88
eil101.tsp.4.25.7.B.BDS 100 25 2782 2782 1.8 345.7 289 67 141
eil101.tsp.5.25.6.B.BDS 100 25 3009 3009 1.2 30.7 33 11 121
eil101.tsp.3.50.19.B.BDS 100 50 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.50.14.B.BDS 100 50 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.50.12.B.BDS 100 50 — 3731 1017.3 7200.0 6 5 59
eil101.tsp.3.75.28.B.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.75.21.B.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.75.17.B.BDS 100 75 — — 7200.0 7200.0 0 0 0
eil101.tsp.3.100.38.B.BDS 100 100 — — 7200.0 7200.0 0 0 0
eil101.tsp.4.100.28.B.BDS 100 100 — — 7200.0 7200.0 0 0 0
eil101.tsp.5.100.23.B.BDS 100 100 — — 7200.0 7200.0 0 0 0

Table 11: Detailed Results for the instance class B of Baldacci et al. (2007)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil26.tsp.3.6.3.A.CEIL 2D 25 6 178 178 0.1 0.1 1 0 0
eil26.tsp.3.12.5.A.CEIL 2D 25 12 254 254 0.1 0.1 2 1 6
eil26.tsp.4.12.4.A.CEIL 2D 25 12 271 271 0.1 0.1 1 0 0
eil26.tsp.5.12.3.A.CEIL 2D 25 12 304 304 0.1 0.1 1 0 0
eil26.tsp.3.18.7.A.CEIL 2D 25 18 312 312 0.1 0.4 10 7 48
eil26.tsp.4.18.5.A.CEIL 2D 25 18 349 349 0.1 0.2 3 2 24
eil26.tsp.5.18.4.A.CEIL 2D 25 18 387 387 0.1 0.1 3 2 40
eil26.tsp.7.18.3.A.CEIL 2D 25 18 462 462 0.1 0.1 2 1 20
eil26.tsp.3.25.10.A.CEIL 2D 25 25 346 346 0.1 0.8 12 8 56
eil26.tsp.4.25.7.A.CEIL 2D 25 25 379 379 0.1 0.3 6 4 39
eil26.tsp.5.25.6.A.CEIL 2D 25 25 398 398 0.1 0.1 1 0 0
eil26.tsp.7.25.4.A.CEIL 2D 25 25 490 490 0.1 0.1 2 1 10
eil26.tsp.10.25.3.A.CEIL 2D 25 25 601 601 0.1 0.1 4 3 37

eil51.tsp.3.12.5.A.CEIL 2D 50 12 254 254 0.1 0.2 4 2 30
eil51.tsp.4.12.4.A.CEIL 2D 50 12 271 271 0.1 0.1 2 1 3
eil51.tsp.5.12.3.A.CEIL 2D 50 12 303 303 0.1 0.1 2 1 4
eil51.tsp.3.25.10.A.CEIL 2D 50 25 343 343 0.4 2.0 10 6 65
eil51.tsp.4.25.7.A.CEIL 2D 50 25 378 378 0.2 1.9 17 10 82
eil51.tsp.5.25.6.A.CEIL 2D 50 25 395 395 0.1 0.2 1 0 0
eil51.tsp.7.25.4.A.CEIL 2D 50 25 489 489 0.1 0.2 3 1 26
eil51.tsp.10.25.3.A.CEIL 2D 50 25 595 595 0.1 0.2 2 1 49
eil51.tsp.3.37.14.A.CEIL 2D 50 37 406 406 3.4 37.3 29 16 108
eil51.tsp.4.37.11.A.CEIL 2D 50 37 437 437 0.9 28.7 29 20 115
eil51.tsp.5.37.9.A.CEIL 2D 50 37 467 467 0.4 12.2 31 17 99
eil51.tsp.7.37.6.A.CEIL 2D 50 37 547 547 0.3 2.4 15 11 97
eil51.tsp.10.37.5.A.CEIL 2D 50 37 626 626 0.1 3.7 27 15 156
eil51.tsp.14.37.3.A.CEIL 2D 50 37 829 829 0.1 1.2 12 7 122
eil51.tsp.3.50.19.A.CEIL 2D 50 50 — 495 27.2 1800.0 77 40 110
eil51.tsp.4.50.14.A.CEIL 2D 50 50 530 530 7.8 1075.4 100 61 116
eil51.tsp.5.50.12.A.CEIL 2D 50 50 560 560 3.0 35.7 17 11 108
eil51.tsp.7.50.8.A.CEIL 2D 50 50 648 648 1.2 67.6 66 34 162
eil51.tsp.10.50.6.A.CEIL 2D 50 50 754 754 0.5 13.2 34 16 125
eil51.tsp.14.50.4.A.CEIL 2D 50 50 954 954 0.2 5.9 29 10 234

Table 12: Detailed Results for instance class small A of Hoshino and De Souza (2012)

Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil26.tsp.3.6.3.B.CEIL 2D 25 6 1246 1246 0.1 0.1 1 0 0
eil26.tsp.3.12.5.B.CEIL 2D 25 12 1778 1778 0.1 0.1 2 1 6
eil26.tsp.4.12.4.B.CEIL 2D 25 12 1897 1897 0.1 0.1 1 0 0
eil26.tsp.5.12.3.B.CEIL 2D 25 12 2128 2128 0.1 0.1 1 0 0
eil26.tsp.3.18.7.B.CEIL 2D 25 18 2184 2184 0.1 0.3 10 5 50
eil26.tsp.4.18.5.B.CEIL 2D 25 18 2443 2443 0.1 0.1 3 2 24
eil26.tsp.5.18.4.B.CEIL 2D 25 18 2709 2709 0.1 0.1 3 2 40
eil26.tsp.7.18.3.B.CEIL 2D 25 18 3234 3234 0.1 0.1 2 1 20
eil26.tsp.3.25.10.B.CEIL 2D 25 25 2422 2422 0.1 0.7 12 8 58
eil26.tsp.4.25.7.B.CEIL 2D 25 25 2653 2653 0.1 0.3 6 4 39
eil26.tsp.5.25.6.B.CEIL 2D 25 25 2786 2786 0.1 0.1 1 0 0
eil26.tsp.7.25.4.B.CEIL 2D 25 25 3430 3430 0.1 0.1 2 1 10
eil26.tsp.10.25.3.B.CEIL 2D 25 25 4207 4207 0.1 0.1 4 3 37

eil51.tsp.3.12.5.B.CEIL 2D 50 12 1778 1778 0.1 0.2 4 3 34
eil51.tsp.4.12.4.B.CEIL 2D 50 12 1897 1897 0.1 0.1 2 1 3
eil51.tsp.5.12.3.B.CEIL 2D 50 12 2121 2121 0.1 0.1 2 1 4
eil51.tsp.3.25.10.B.CEIL 2D 50 25 2354 2354 0.4 1.4 7 4 56
eil51.tsp.4.25.7.B.CEIL 2D 50 25 2606 2606 0.2 1.2 11 7 65
eil51.tsp.5.25.6.B.CEIL 2D 50 25 2718 2718 0.1 0.1 1 0 0
eil51.tsp.7.25.4.B.CEIL 2D 50 25 3400 3400 0.1 0.2 3 2 32
eil51.tsp.10.25.3.B.CEIL 2D 50 25 4111 4111 0.1 0.1 2 1 26
eil51.tsp.3.37.14.B.CEIL 2D 50 37 2795 2795 2.3 20.4 24 19 96
eil51.tsp.4.37.11.B.CEIL 2D 50 37 3022 3022 0.6 45.7 52 35 116
eil51.tsp.5.37.9.B.CEIL 2D 50 37 3236 3236 0.3 11.9 28 17 109
eil51.tsp.7.37.6.B.CEIL 2D 50 37 3775 3775 0.3 0.7 5 3 61
eil51.tsp.10.37.5.B.CEIL 2D 50 37 4335 4335 0.2 2.9 25 13 128
eil51.tsp.14.37.3.B.CEIL 2D 50 37 5759 5759 0.1 1.0 10 7 137
eil51.tsp.3.50.19.B.CEIL 2D 50 50 — 3385 34.4 1800.0 138 77 101
eil51.tsp.4.50.14.B.CEIL 2D 50 50 3624 3624 6.4 617.2 90 40 88
eil51.tsp.5.50.12.B.CEIL 2D 50 50 3853 3853 2.4 1770.0 426 146 127
eil51.tsp.7.50.8.B.CEIL 2D 50 50 4474 4474 0.8 719.6 394 90 162
eil51.tsp.10.50.6.B.CEIL 2D 50 50 5216 5216 0.5 4.8 20 11 83
eil51.tsp.14.50.4.B.CEIL 2D 50 50 6612 6612 0.2 32.2 52 19 234

Table 13: Detailed Results for instance class small B of Hoshino and De Souza (2012)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil26.tsp.3.6.3.C.CEIL 2D 25 6 159 159 0.1 0.1 1 0 0
eil26.tsp.3.12.5.C.CEIL 2D 25 12 226 226 0.1 0.1 1 0 0
eil26.tsp.4.12.4.C.CEIL 2D 25 12 243 243 0.1 0.1 1 0 0
eil26.tsp.5.12.3.C.CEIL 2D 25 12 270 270 0.1 0.1 3 0 1
eil26.tsp.3.18.7.C.CEIL 2D 25 18 289 289 0.2 6.6 32 0 56
eil26.tsp.4.18.5.C.CEIL 2D 25 18 324 324 0.1 0.2 3 0 0
eil26.tsp.5.18.4.C.CEIL 2D 25 18 353 353 0.1 0.1 1 0 0
eil26.tsp.7.18.3.C.CEIL 2D 25 18 410 410 0.1 0.1 1 0 0
eil26.tsp.3.25.10.C.CEIL 2D 25 25 327 327 1.2 8.4 7 0 22
eil26.tsp.4.25.7.C.CEIL 2D 25 25 362 362 0.2 1.7 12 0 28
eil26.tsp.5.25.6.C.CEIL 2D 25 25 385 385 0.1 0.1 1 0 0
eil26.tsp.7.25.4.C.CEIL 2D 25 25 460 460 0.1 0.1 1 0 0
eil26.tsp.10.25.3.C.CEIL 2D 25 25 545 545 0.1 0.1 2 0 1

eil51.tsp.3.12.5.C.CEIL 2D 50 12 226 226 0.1 0.1 1 0 0
eil51.tsp.4.12.4.C.CEIL 2D 50 12 241 241 0.1 0.1 1 0 0
eil51.tsp.5.12.3.C.CEIL 2D 50 12 270 270 0.1 0.2 5 0 0
eil51.tsp.3.25.10.C.CEIL 2D 50 25 325 325 8.6 50.3 6 0 16
eil51.tsp.4.25.7.C.CEIL 2D 50 25 359 359 0.7 14.4 24 0 73
eil51.tsp.5.25.6.C.CEIL 2D 50 25 383 383 0.1 0.3 1 0 0
eil51.tsp.7.25.4.C.CEIL 2D 50 25 457 457 0.1 0.1 1 0 0
eil51.tsp.10.25.3.C.CEIL 2D 50 25 539 539 0.2 0.5 6 0 4
eil51.tsp.3.37.14.C.CEIL 2D 50 37 — 394 1319.4 1800.0 1 0 21
eil51.tsp.4.37.11.C.CEIL 2D 50 37 — 423 45.1 1800.0 19 0 72
eil51.tsp.5.37.9.C.CEIL 2D 50 37 446 446 7.2 18.0 3 0 12
eil51.tsp.7.37.6.C.CEIL 2D 50 37 530 530 0.7 10.7 24 0 45
eil51.tsp.10.37.5.C.CEIL 2D 50 37 598 598 0.1 0.2 1 0 0
eil51.tsp.14.37.3.C.CEIL 2D 50 37 765 765 0.2 1.7 20 0 7
eil51.tsp.3.50.19.C.CEIL 2D 50 50 — — 1800.0 1800.0 0 0 0
eil51.tsp.4.50.14.C.CEIL 2D 50 50 — — 1800.0 1800.0 0 0 0
eil51.tsp.5.50.12.C.CEIL 2D 50 50 — 530 1014.0 1800.0 2 0 4
eil51.tsp.7.50.8.C.CEIL 2D 50 50 — 620 5.0 1800.0 205 0 81
eil51.tsp.10.50.6.C.CEIL 2D 50 50 721 721 0.9 8.7 17 0 42
eil51.tsp.14.50.4.C.CEIL 2D 50 50 905 905 0.5 6.1 28 0 15

Table 14: Detailed Results for instance class small C of Hoshino and De Souza (2012)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil76.tsp.3.18.7.A.CEIL 2D 75 18 338 338 0.4 367.9 475 109 253
eil76.tsp.4.18.5.A.CEIL 2D 75 18 399 399 0.2 17.5 86 15 184
eil76.tsp.5.18.4.A.CEIL 2D 75 18 460 460 0.2 6.4 35 10 165
eil76.tsp.7.18.3.A.CEIL 2D 75 18 558 558 0.1 0.3 4 3 12
eil76.tsp.3.37.14.A.CEIL 2D 75 37 — 422 356.1 1800.0 5 4 40
eil76.tsp.4.37.11.A.CEIL 2D 75 37 — 463 54.4 1800.0 22 13 149
eil76.tsp.5.37.9.A.CEIL 2D 75 37 501 501 0.1 16.3 1 0 0
eil76.tsp.7.37.6.A.CEIL 2D 75 37 641 641 2.1 3.2 2 1 1
eil76.tsp.10.37.5.A.CEIL 2D 75 37 748 748 0.6 10.8 25 13 105
eil76.tsp.14.37.3.A.CEIL 2D 75 37 1045 1045 0.3 1.6 6 3 39
eil76.tsp.3.56.21.A.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.56.16.A.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.56.13.A.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.56.9.A.CEIL 2D 75 56 — 703 40.9 1800.0 30 23 79
eil76.tsp.10.56.7.A.CEIL 2D 75 56 824 824 3.6 67.0 21 12 91
eil76.tsp.14.56.5.A.CEIL 2D 75 56 1030 1030 0.7 20.9 34 18 122
eil76.tsp.3.75.28.A.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.75.21.A.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.75.17.A.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.75.12.A.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.10.75.9.A.CEIL 2D 75 75 — 931 152.5 1800.0 14 9 71
eil76.tsp.14.75.6.A.CEIL 2D 75 75 1180 1180 4.1 71.0 31 15 115

eil101.tsp.3.25.10.A.CEIL 2D 100 25 381 381 1.6 138.7 51 22 371
eil101.tsp.4.25.7.A.CEIL 2D 100 25 433 433 0.9 50.9 62 22 356
eil101.tsp.5.25.6.A.CEIL 2D 100 25 469 469 0.8 45.6 52 21 388
eil101.tsp.7.25.4.A.CEIL 2D 100 25 576 576 0.6 124.7 209 38 383
eil101.tsp.10.25.3.A.CEIL 2D 100 25 693 693 0.6 12.2 25 8 263
eil101.tsp.3.50.19.A.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.50.14.A.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.50.12.A.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.50.8.A.CEIL 2D 100 50 — 692 84.1 1800.0 25 9 136
eil101.tsp.10.50.6.A.CEIL 2D 100 50 819 819 6.0 273.8 53 19 193
eil101.tsp.14.50.4.A.CEIL 2D 100 50 1042 1042 1.7 517.1 198 39 392
eil101.tsp.3.75.28.A.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.75.21.A.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.75.17.A.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.75.12.A.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.75.9.A.CEIL 2D 100 75 — 897 300.1 1800.0 6 4 51
eil101.tsp.14.75.6.A.CEIL 2D 100 75 — 1126 10.1 1800.0 144 35 338
eil101.tsp.3.100.38.A.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.100.28.A.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.100.23.A.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.100.16.A.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.100.12.A.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.14.100.8.A.CEIL 2D 100 100 — 1176 96.0 1800.0 35 15 130

Table 15: Detailed Results for instance class large A of Hoshino and De Souza (2012)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil76.tsp.3.18.7.B.CEIL 2D 75 18 2319 2317 0.4 1800.0 2425 320 253
eil76.tsp.4.18.5.B.CEIL 2D 75 18 2729 2729 0.2 10.7 53 9 177
eil76.tsp.5.18.4.B.CEIL 2D 75 18 3172 3172 0.3 12.6 68 9 172
eil76.tsp.7.18.3.B.CEIL 2D 75 18 3824 3824 0.1 0.2 3 2 31
eil76.tsp.3.37.14.B.CEIL 2D 75 37 — 2906 342.3 1800.0 6 5 43
eil76.tsp.4.37.11.B.CEIL 2D 75 37 — 3214 81.8 1800.0 28 13 145
eil76.tsp.5.37.9.B.CEIL 2D 75 37 3495 3495 0.1 27.0 1 0 0
eil76.tsp.7.37.6.B.CEIL 2D 75 37 4451 4451 2.0 4.5 3 2 12
eil76.tsp.10.37.5.B.CEIL 2D 75 37 5177 5177 0.7 19.5 45 16 124
eil76.tsp.14.37.3.B.CEIL 2D 75 37 7235 7235 0.3 7.2 82 16 95
eil76.tsp.3.56.21.B.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.56.16.B.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.56.13.B.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.56.9.B.CEIL 2D 75 56 — 4741 26.8 1800.0 49 29 112
eil76.tsp.10.56.7.B.CEIL 2D 75 56 5541 5541 2.4 13.0 7 4 47
eil76.tsp.14.56.5.B.CEIL 2D 75 56 7010 7010 0.7 800.2 721 144 178
eil76.tsp.3.75.28.B.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.75.21.B.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.75.17.B.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.75.12.B.CEIL 2D 75 75 — 5317 796.1 1800.0 2 2 12
eil76.tsp.10.75.9.B.CEIL 2D 75 75 — 6241 20.0 1800.0 68 36 104
eil76.tsp.14.75.6.B.CEIL 2D 75 75 — 8000 2.2 1800.0 506 217 177

eil101.tsp.3.25.10.B.CEIL 2D 100 25 2629 2629 1.8 192.5 76 25 231
eil101.tsp.4.25.7.B.CEIL 2D 100 25 2972 2972 0.9 20.8 31 15 157
eil101.tsp.5.25.6.B.CEIL 2D 100 25 3237 3237 0.7 39.0 46 19 228
eil101.tsp.7.25.4.B.CEIL 2D 100 25 3986 3986 0.5 194.4 537 56 291
eil101.tsp.10.25.3.B.CEIL 2D 100 25 4803 4803 0.5 31.2 116 27 325
eil101.tsp.3.50.19.B.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.50.14.B.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.50.12.B.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.50.8.B.CEIL 2D 100 50 — 4729 28.4 1800.0 102 10 360
eil101.tsp.10.50.6.B.CEIL 2D 100 50 5596 5596 5.1 771.1 226 34 180
eil101.tsp.14.50.4.B.CEIL 2D 100 50 7130 7127 1.3 1800.0 647 81 422
eil101.tsp.3.75.28.B.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.75.21.B.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.75.17.B.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.75.12.B.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.75.9.B.CEIL 2D 100 75 6012 6012 67.0 1192.9 32 6 144
eil101.tsp.14.75.6.B.CEIL 2D 100 75 7530 7518 5.6 1800.0 376 126 323
eil101.tsp.3.100.38.B.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.100.28.B.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.100.23.B.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.100.16.B.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.100.12.B.CEIL 2D 100 100 — 6404 694.3 1800.0 3 3 34
eil101.tsp.14.100.8.B.CEIL 2D 100 100 — 7914 12.5 1800.0 171 57 182

Table 16: Detailed Results for instance class large B of Hoshino and De Souza (2012)
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Instance |M | |K| UB LB Time LP Time IP #B&B #ExtNG #Cuts

eil76.tsp.3.18.7.C.CEIL 2D 75 18 — 324 5.1 1800.0 123 0 404
eil76.tsp.4.18.5.C.CEIL 2D 75 18 385 385 0.5 22.2 47 2 367
eil76.tsp.5.18.4.C.CEIL 2D 75 18 439 439 0.4 30.1 70 5 232
eil76.tsp.7.18.3.C.CEIL 2D 75 18 527 527 0.2 1.6 19 0 12
eil76.tsp.3.37.14.C.CEIL 2D 75 37 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.37.11.C.CEIL 2D 75 37 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.37.9.C.CEIL 2D 75 37 491 491 46.1 86.0 2 0 2
eil76.tsp.7.37.6.C.CEIL 2D 75 37 626 626 2.1 145.9 93 0 87
eil76.tsp.10.37.5.C.CEIL 2D 75 37 723 723 1.2 20.8 28 3 45
eil76.tsp.14.37.3.C.CEIL 2D 75 37 969 969 0.7 2.1 4 0 19
eil76.tsp.3.56.21.C.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.56.16.C.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.56.13.C.CEIL 2D 75 56 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.56.9.C.CEIL 2D 75 56 — 683 60.9 1800.0 18 1 70
eil76.tsp.10.56.7.C.CEIL 2D 75 56 811 805 4.3 1800.0 335 0 95
eil76.tsp.14.56.5.C.CEIL 2D 75 56 1000 1000 2.0 105.2 339 1 79
eil76.tsp.3.75.28.C.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.4.75.21.C.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.5.75.17.C.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.7.75.12.C.CEIL 2D 75 75 — — 1800.0 1800.0 0 0 0
eil76.tsp.10.75.9.C.CEIL 2D 75 75 — 903 132.0 1800.0 14 0 77
eil76.tsp.14.75.6.C.CEIL 2D 75 75 1145 1145 3.6 58.2 25 1 79

eil101.tsp.3.25.10.C.CEIL 2D 100 25 — 367 454.9 1800.0 3 0 35
eil101.tsp.4.25.7.C.CEIL 2D 100 25 416 416 4.3 448.0 106 0 374
eil101.tsp.5.25.6.C.CEIL 2D 100 25 440 440 2.8 8.1 4 0 10
eil101.tsp.7.25.4.C.CEIL 2D 100 25 542 542 1.2 419.9 227 3 354
eil101.tsp.10.25.3.C.CEIL 2D 100 25 631 631 1.0 3.9 5 1 5
eil101.tsp.3.50.19.C.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.50.14.C.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.50.12.C.CEIL 2D 100 50 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.50.8.C.CEIL 2D 100 50 — 671 29.4 1800.0 46 1 121
eil101.tsp.10.50.6.C.CEIL 2D 100 50 793 793 5.9 179.7 58 0 97
eil101.tsp.14.50.4.C.CEIL 2D 100 50 993 993 3.8 7.2 3 0 11
eil101.tsp.3.75.28.C.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.75.21.C.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.75.17.C.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.75.12.C.CEIL 2D 100 75 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.75.9.C.CEIL 2D 100 75 — 876 327.7 1800.0 11 1 73
eil101.tsp.14.75.6.C.CEIL 2D 100 75 — 1096 9.5 1800.0 769 1 122
eil101.tsp.3.100.38.C.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.4.100.28.C.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.5.100.23.C.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.7.100.16.C.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.10.100.12.C.CEIL 2D 100 100 — — 1800.0 1800.0 0 0 0
eil101.tsp.14.100.8.C.CEIL 2D 100 100 — 1147 42.0 1800.0 68 0 86

Table 17: Detailed Results for instance class large C of Hoshino and De Souza (2012)
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Instance |M |+ 1 |K| fr #Sub UB LB Time LP Time IP #B&B #ExtNG #Cuts

CapEuclideo.20.10.30.5 20 10 30 4 3286 3286 0.1 0.1 1 0 0
CapEuclideo.20.10.30.2 20 10 30 4 4267 4267 0.1 0.1 9 0 0
CapEuclideo.20.10.55.5 20 10 55 4 2784 2784 0.1 0.1 1 0 0
CapEuclideo.20.10.55.2 20 10 55 4 4036 4036 0.1 0.1 1 0 0
CapEuclideo.20.10.80.5 20 10 80 2 2422 2422 0.1 0.1 1 0 0
CapEuclideo.20.10.80.2 20 10 80 2 3928 3928 0.1 0.1 19 0 0
CapEuclideo.20.30.30.15 20 30 30 35 8419 8419 1.5 1.5 1 0 0
CapEuclideo.20.30.30.5 20 30 30 35 8419 8419 0.5 0.5 1 0 0
CapEuclideo.20.30.55.15 20 30 55 16 6359 6359 1.1 1.1 1 0 0
CapEuclideo.20.30.55.3 20 30 55 16 7899 7899 0.1 1.4 31 0 0
CapEuclideo.20.30.80.15 20 30 80 5 4655 4655 2.3 4.9 3 0 0
CapEuclideo.20.30.80.2 20 30 80 5 10521 10521 0.1 0.5 41 0 0
CapEuclideo.20.50.30.25 20 50 30 102 11264 11264 11.2 126.2 43 3 0
CapEuclideo.20.50.30.9 20 50 30 102 11264 11264 9.5 106.9 45 2 0
CapEuclideo.20.50.55.17 20 50 55 35 9392 9392 10.8 15.5 3 0 0
CapEuclideo.20.50.55.4 20 50 55 35 10523 10523 1.2 60.7 144 1 0
CapEuclideo.20.50.80.25 20 50 80 11 6181 6181 16.4 16.4 1 0 0
CapEuclideo.20.50.80.4 20 50 80 11 9613 9613 0.3 18.9 162 5 0
CapEuclideo.20.70.30.18 20 70 30 286 19460 19460 75.5 75.5 1 0 0
CapEuclideo.20.70.30.6 20 70 30 286 19536 19536 25.4 25.4 1 0 0
CapEuclideo.20.70.55.35 20 70 55 87 14133 14133 139.9 144.0 2 0 0
CapEuclideo.20.70.55.7 20 70 55 87 14209 14209 14.2 72.7 15 0 0
CapEuclideo.20.70.80.35 20 70 80 12 9480 9480 53.4 53.4 1 0 0
CapEuclideo.20.70.80.5 20 70 80 12 13086 13085 0.7 21.1 67 2 0

CapEuclideo.35.10.30.5 35 10 30 5 1351 1351 0.1 0.1 1 0 0
CapEuclideo.35.10.30.2 35 10 30 5 1596 1596 0.1 0.1 3 0 0
CapEuclideo.35.10.55.4 35 10 55 4 1342 1342 0.1 0.1 1 0 0
CapEuclideo.35.10.55.2 35 10 55 4 1538 1538 0.1 0.1 3 0 0
CapEuclideo.35.10.80.5 35 10 80 2 1187 1187 0.1 0.1 1 0 0
CapEuclideo.35.10.80.2 35 10 80 2 1538 1538 0.1 0.1 7 0 0
CapEuclideo.35.30.30.10 35 30 30 25 5236 5236 1.0 1.0 1 0 0
CapEuclideo.35.30.30.4 35 30 30 25 5245 5245 0.5 1.1 3 0 0
CapEuclideo.35.30.55.15 35 30 55 15 4097 4097 4.7 4.7 1 0 0
CapEuclideo.35.30.55.3 35 30 55 15 4703 4703 0.1 0.5 7 0 0
CapEuclideo.35.30.80.8 35 30 80 5 3501 3501 1.3 10.8 12 2 0
CapEuclideo.35.30.80.2 35 30 80 5 5713 5713 0.1 4.5 135 0 0
CapEuclideo.35.50.30.17 35 50 30 62 12907 12907 25.7 25.7 1 0 0
CapEuclideo.35.50.30.6 35 50 30 62 12907 12907 9.1 9.1 1 0 0
CapEuclideo.35.50.55.13 35 50 55 45 9324 9324 75.2 75.2 1 0 0
CapEuclideo.35.50.55.3 35 50 55 45 11160 11160 0.8 7.2 27 0 0
CapEuclideo.35.50.80.25 35 50 80 11 5640 5640 1508.3 1508.3 1 0 0
CapEuclideo.35.50.80.4 35 50 80 11 8723 8723 0.8 4.4 23 0 0
CapEuclideo.35.70.30.18 35 70 30 147 12133 12133 47.2 47.2 1 0 0
CapEuclideo.35.70.30.6 35 70 30 147 12308 12308 21.8 59.5 9 0 0
CapEuclideo.35.70.55.24 35 70 55 81 9521 9521 99.0 99.0 1 0 0
CapEuclideo.35.70.55.5 35 70 55 81 10195 10195 10.1 62.6 13 0 0
CapEuclideo.35.70.80.35 35 70 80 15 6911 6911 152.0 152.0 1 0 0
CapEuclideo.35.70.80.5 35 70 80 15 8944 8944 2.0 158.5 241 11 0

CapEuclideo.50.10.30.4 50 10 30 6 2869 2869 0.1 0.1 1 0 0
CapEuclideo.50.10.30.2 50 10 30 6 3045 3045 0.1 0.1 1 0 0
CapEuclideo.50.10.55.4 50 10 55 4 2371 2371 0.1 0.1 1 0 0
CapEuclideo.50.10.55.2 50 10 55 4 2803 2803 0.1 0.1 1 0 0
CapEuclideo.50.10.80.5 50 10 80 2 1779 1779 0.2 0.2 1 0 0
CapEuclideo.50.10.80.2 50 10 80 2 2803 2803 0.1 0.1 1 0 0
CapEuclideo.50.30.30.8 50 30 30 33 5708 5708 10.5 10.5 1 0 0
CapEuclideo.50.30.30.3 50 30 30 33 5803 5803 0.5 0.5 1 0 0
CapEuclideo.50.30.55.15 50 30 55 15 5008 5008 32.8 32.8 1 0 0
CapEuclideo.50.30.55.3 50 30 55 15 5487 5487 0.3 0.8 5 0 0
CapEuclideo.50.30.80.15 50 30 80 5 3601 3601 235.3 235.3 1 0 0
CapEuclideo.50.30.80.2 50 30 80 5 6448 6448 0.1 0.3 5 0 0
CapEuclideo.50.50.30.25 50 50 30 138 7919 7919 52.7 52.7 1 0 0
CapEuclideo.50.50.30.9 50 50 30 138 7919 7919 44.1 44.1 1 0 0
CapEuclideo.50.50.55.25 50 50 55 37 6807 6807 66.5 66.5 1 0 0
CapEuclideo.50.50.55.5 50 50 55 37 7271 7271 4.9 101.5 47 0 0
CapEuclideo.50.50.80.17 50 50 80 9 5222 5222 28.1 798.2 15 0 0
CapEuclideo.50.50.80.3 50 50 80 9 8425 8425 0.3 17.6 135 0 0
CapEuclideo.50.70.30.35 50 70 30 237 10132 10132 283.7 2941.0 17 0 0
CapEuclideo.50.70.30.12 50 70 30 237 10140 10140 251.8 1904.9 15 0 0
CapEuclideo.50.70.55.24 50 70 55 68 9167 9167 451.6 615.3 2 0 0
CapEuclideo.50.70.55.5 50 70 55 68 9725 9725 13.5 37.1 7 0 0
CapEuclideo.50.70.80.35 50 70 80 17 — — 7200.0 7200.0 0 0 0
CapEuclideo.50.70.80.5 50 70 80 17 8360 8360 3.3 7095.1 3198 511 0

Table 18: Detailed Results for the instances of Gendreau et al. (2016)
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