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Abstract

Radius search is an effective neighborhood exploration technique for standard edge-exchange neighborhoods
such as 2-opt, 2-opt*, swap, relocation, Or-opt, string exchange, etc. Up to now, it has only been used for
vehicle routing problems with a homogeneous fleet and in the single-depot context. In this work, we extend
dynamic-radius search to the multi-depot vehicle routing problem, in which 2-opt and 2-opt* moves may
involve routes from different depots. To this end, we equip dynamic-radius search with a modified pruning
criterion that still guarantees identifying a best-improving move, either intra-depot or inter-depot, with
little additional computational effort. We experimentally confirm that substantial speedups of factors of
100 and more are observed compared to an also optimized implementation of lexicographic search, another
effective neighborhood exploration technique using a feasibility-based pruning criterion. Moreover, the
computational results show that depot swapping strongly favors heuristic solution quality, especially for
multi-depot configurations where depots are not located close to each other.
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1. Introduction

This paper extends the realm of application of dynamic-radius search, an effective neighborhood explo-
ration technique, to themulti-depot vehicle routing problem (MDVRP). The two fundamental neighborhoods,
2-opt and 2-opt*, are extended to the multi-depot environment so that inter-depot moves of the affected
routes are explicitly considered. Since these moves have been studied before by Escobar et al. (2014) only in
a limited fashion, our contributions are threefold. First, we formalize the various inter-depot cases that arise
in 2-opt and 2-opt*. Second, we show how to equip dynamic-radius search with a modified pruning criterion
so that best-improving moves which allow inter-depot edges can be found with little additional computa-
tional effort. This is indeed not a simple exercise and we would as such like to stress that dynamic-radius
search is not a heuristic way to explore a neighborhood as it guarantees that improving moves are found so
long as no local minimum is reached. Third, we prove with rigorous statistical tests that the incorporation
of such moves is essential for solution quality.

Dynamic-radius search builds on several classical works on the symmetric traveling salesman problem
(TSP). In the context of the TSP, Hoos and Stützle (2005) use the expression fixed-radius search to col-
lectively describe the idea of Steiglitz and Weiner (1968) and numerous extensions such as Bentley (1992);
Martin et al. (1992); Reinelt (1994); Johnson and McGeoch (1997). For each vertex i, the predecessor pi and
successor si in the current TSP tour must be known. Then, for finding improving 2-opt and 3-opt moves,
the neighborhood exploration procedures first loop over all vertices i to determine a first deleted edge (pi, i)
or (i, si). The first inserted edge e = (i, j), replacing the deleted edge, must now be shorter, i.e., cij < cpi,i
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or cij < ci,si , respectively. This can be interpreted as choosing j as a neighbor of i within the known radius
given by cpi,i or ci,si . For 3-opt, the second decision about the second edge to insert must again produce
a positive accumulated gain. This selection criterion for inserted edges is know as the gain criterion. Lin
and Kernighan (1973) always choose edges according to the gain criterion in their famous Lin-Kernighan
variable-depth neighborhood. Irnich et al. (2006) have generalized this idea of using the gain criterion for
the CVRP and to VRP-specific moves such as node/vertex relocation, Or-opt, string exchange, etc. More-
over, Irnich (2008b) has shown that these techniques can be further generalized to handle more constrained
versions of the VRP such as the VRP with time windows, the periodic VRP, pickup-and-delivery problems,
etc.

Irnich et al. (2006) have introduced dynamic-radius search for VRPs under the name sequential search.
This naming was inspired by the fact that moves are decomposed into partial moves and complete moves
result from sequentially selecting the constituting partial moves. Note that cyclic independent move decom-
position as coined in Irnich et al. (2006) relies on the fact that all 2-opt and 3-opt moves can be characterized
by a single alternating cycle of deleted and added edges (see Funke et al. 2005; for a deeper analysis of single
alternating cycle TSP neighborhoods). However, the term sequential search might nowadays be confused
with single-threaded algorithms opposed to parallel/multi-threaded algorithms. Moreover, we think that
the term radius better captures the idea of pruning the search tree using the gain criterion whereas dynamic
follows in the footstep of the aforementioned fixed version. Certainly not taken lightly, we finally opt for
this name change decision.

A formal definition of the MDVRP is in order. It can be defined over a complete undirected graph G =
(V,E) where the vertex set V consists of customers N and depots D. Each customer i ∈ N has a positive
demand qi and we define qd = 0 for every depot d ∈ D. Moreover, a fleet of m homogeneous vehicles
characterized by a capacity Q and a maximal tour duration T (one of these limits may be omitted) are
stationed at each depot d ∈ D. A global fleet-size limit κ ≤ m |D| on the number of vehicles may also be
given. The edge set E models direct connections between customers as well as depots and customers. For
each edge e ∈ E, we assume routing costs ce and a travel time te. A route for depot d ∈ D is a directed cycle
r = (d = i0, i1, i2, . . . , ip, ip+1 = d) in which all vertices i1, i2, . . . , ip ∈ N are different customers. A route r is
feasible if it is capacity feasible, i.e.,

∑
i∈V (r) qi ≤ Q, and duration feasible, i.e.,

∑
e∈E(r) te ≤ T , where V (r)

denotes the set of vertices and E(r) the set of edges in r. The cost of a route r is cr =
∑
e∈E(r) ce. Let Rd

denote the subset of all feasible, non-empty routes associated with depot d ∈ D. A set R of feasible routes is
a solution to the MDVRP if (1) the local and global fleet-size limits are not exceeded, i.e., |R ∩Rd| ≤ m for
all d ∈ D and

∑
d∈D |R ∩Rd| ≤ κ, and (2) all customers are serviced exactly once, i.e., N =

⋃
r∈R(V (r)∩N)

and V (r1)∩ V (r2)∩N = ∅ for all r1 6= r2 ∈ R. Such a solution is optimal if it minimizes the (total) routing
costs c(R) =

∑
r∈R cr.

Our overall experimental setup uses a rather simple multi-start neighborhood-based local search approach
detailed in Section 5. We sketch it now in order to specify precisely the terminology. A neighborhood
(e.g., 2-opt) uses moves to map a solution to alternative solutions called neighbors. We assume that the
available neighborhoods are given by a set Ψ. Hence, for a given neighborhood N ∈ Ψ and current solution
R, a move µ ∈ N produces from R the neighbor solution R′ = µ(R). Its marginal gain is defined as
g(µ,R) = c(R) − c(µ(R)) (or simply g when contextually clear). The move is improving if g > 0, and
a solution is a local optimum w.r.t. N if no improving move µ ∈ N exists. Neighborhood exploration is
the systematic search for an improving move and associated improving solution. We assume here that the
exploration filters out infeasible solutions. Moreover, the pivoting rule (such as first improvement or best
improvement) controls whether and (if so) when neighborhood exploration is stopped before all possible
moves are considered. Finally, each constructed starting solution R is improved by iterative neighborhood
explorations. One of the possible neighborhood exploration technique is dynamic-radius search and we
discuss its relationship to other techniques in Section 3.

We combine the neighborhoods N ∈ Ψ in a variable neighborhood descent (VND) fashion, i.e., the
neighborhoods N ∈ Ψ are parameterized and the choice of a next neighborhood to explore is determined
according to a priority parameter of each neighborhood. For each starting solution R, we finally settle on
a heuristic solution R̃ which is locally optimal with respect to all N ∈ Ψ. This solution R̃ depends on
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the starting solution R, the available Ψ, and for each neighborhood N ∈ Ψ, its prioritization in VND, its
pivoting rule, and its neighborhood exploration strategy. We study the trade-off between solution quality
and the time it takes to find local optima R̃.

Our computational experiments presented in Section 6 show that this rather simple metaheuristic ap-
proach is competitive regarding solution quality and computation time compared to the state-of-the art
fully-fledged metaheuristics for the MDVRP.

The remainder of this paper is structured as follows: In Section 2, we briefly recall 2-opt and 2-opt*
moves for VRPs distinguishing intra/inter-tour moves as well as intra/inter-depot moves. Section 3 dis-
cusses neighborhood exploration techniques. The new radius search algorithm for efficiently exploring the
extended neighborhoods with inter-depot 2-opt and 2-opt* moves is presented in Section 4. The multi-start
neighborhood-based local search approach that we use as a simple metaheuristic is explained in Section 5.
Computational results follow in Section 6. Final conclusions are drawn in Section 7.

2. 2-Opt and 2-Opt* Moves in Multi-Depot Vehicle Routing Problems

Notation. A convenient representation of a solution R is obtained by concatenating all routes, in any order
and orientation, as one long sequence of vertices. This is known as the giant route or giant tour representation
(Bellmore and Hong 1974). In the following, the resulting sequence, denoted V, allows us to loop over relevant
vertices by writing i ∈ V. In order to have a unique predecessor pi and a unique successor si for each vertex
i ∈ V, the sequence V must include different copies of the depots, two for each route in order to also
distinguish between its source and sink depots (which must represent the identical physical depot). For any
route r ∈ R, let the first and last visited customers be denoted by fr and lr ∈ N , respectively. Moreover,
a reference to the original depot is given by dr ∈ D. In particular, any two routes r and r′ are associated
with the same depot if and only if dr = dr′ . For any vertex i ∈ V , its associated route is denoted by ri ∈ R.
Finally, we define the corresponding depot di of vertex i as dri , the first customer fi as fri , and the last
customer li as lri .

Legend. A consequence of having chosen an orientation for each route is that we can depict and write
solutions with directed arcs instead of undirected edges. Indicating the direction of traversal makes reading
and understanding the following figures easier. However, the underlying MDVRP is still assumed to be
symmetric. In the following figures, a snake-shaped link between vertices w and v forms a directed path of
arbitrary length (written as w  v or v ← w when it is an inversion of a given path) whereas a straight link
indicates a single arc. A solid connection keeps its orientation once the move is completed while a dashed
one is inverted as a consequence of the move. An arc is marked for deletion with a loosely dotted pattern
while a densely dotted one indicates an insertion. Affected vertices are filled in solid color when they are
chosen and a lighter shade when they are implied by a choice. This shading rule also applies when deleted
and inserted arcs are implied to repair an otherwise infeasible move. Finally, customers take on circle-shaped
vertices whereas different depots are explicitly distinguished by different polygon-shaped vertices (squares
and pentagons).

Developed with the TSP in mind, Croes (1958) has devised an algorithm which performs so-called
inversions. These are essentially 2-opt exchanges in the sense Lin (1965) has generally coined λ-opt. The 2-
opt neighborhood has been generalized to single-depot vehicle routing problems in a straightforward manner.
Potvin and Rousseau (1995) have introduced the 2-opt* neighborhood to tackle the vehicle routing problem
with time windows (VRPTW, Desaulniers et al. 2014). The leading observation is that a 2-opt inter-tour
move induces two segment inversions in the affected routes (see Figure 1b). A 2-opt* move differs from the
latter in that it maintains the general ordering of the customers in the current solution and is thus more
likely to produce an alternative solution feasible with respect to time windows (see Figure 1c).

The canonical description of both 2-opt and 2-opt* can be done with two deleted edges (i, si) and
(j, sj) as well as two inserted edges. In the 2-opt case, the inserted edges are (i, j) and (si, sj) whereas
in the 2-opt* case they are (i, sj) and (j, si). The gain of these moves can then be computed for 2-opt as
g = ci,si + cj,sj − cij − csi,sj and for 2-opt* as g = ci,si + cj,sj − ci,sj − cj,si . This description however
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di i si di

j sj

ci,si

cj,sj

cij
csi,sj

(a) 2-opt intra-tour.

di i si di

dj j sj dj

ci,si

cj,sj

cij csi,sj

(b) 2-opt inter-tour, di = dj .

di i si di

dj j sj dj

ci,si

cj,sj

ci,sj
cj,si

(c) 2-opt*, di = dj .

Figure 1: Intra-depot 2-opt and 2-opt* moves.

only holds if we face an intra-depot move, that is, a move that affects a single route (intra-tour) or two
routes (inter-tour) related to the same depot. Figure 1, which uses our multi-depot notation, therefore only
captures intra-depot 2-opt and 2-opt* moves.

In the next two subsections, we show that multi-depot considerations can nevertheless be taken into
account during the analysis of an inter-depot move. Observe that an inter-depot move must necessarily
be inter-tour. In both neighborhoods, 2-opt and 2-opt*, we break down the possible cases that arise and
must be covered by an exhaustive neighborhood exploration. In particular, an edge exchange infeasibly
connecting two different depots can be repaired in either of two different ways. Our various visual aids give
the final interpretation of the traditional neighborhood move together with a repair operation that must
be performed to ensure each route has matching source and sink depots. Moreover, we show that all final
move configurations fall under well-defined cases (standard, exception, and rejection, see below). The gain
computation of the final move is of course affected as a byproduct of the repair operation. It is opportune
at this point to separate the presentation of 2-opt and 2-opt*.

2.1. Inter-Depot 2-Opt*
An inter-depot 2-opt* move happens when the two deleted arcs (i, si) and (j, sj) belong to two different

routes ri 6= rj of two different depots di 6= dj . As illustrated in Figure 2, eight cases are sufficient to
exhaustively cover repair options. Figures 2a and 2b display the standard case where both deleted arcs
(i, si) and (j, sj) are either not the two first arcs or not the two last arcs in their respective routes ri and rj .
This offers two possibilities of swapping the depots at this end, i.e., swapping at the source (Figure 2a) and
at the sink (Figure 2b). Note that both cases allow the deleted arcs (i, si) and (j, sj) to be at the opposite
end of the two routes, so that the new tours are then (di, fj  lj , di) and (dj , fi  li, dj). This is the special
case of an exchange of two complete routes between two different depots.

The next four exception cases depicted in Figures 2c–2f happen if exactly one of the deleted arcs is the
first (last) and the other one is not the first (not the last). In the exception cases, only three arcs instead
of four are finally exchanged, one of the arcs inserted in the standard case is absent (arc (i, sj) or (j, si)).
Note that the four cases result from the inherent symmetry, on the one hand between the two routes ri and
rj (swapping the indices i and j), and on the other hand, between source and sink (reversal of the routes’
orientation).

The first six cases shown in Figures 2a–2f cover all feasible inter-depot 2-opt* moves. There exist two
more cases visualized in Figures 2g and 2h: (left) depot swap of the source depots with i = di and j = dj
and (right) depot swap of the sink depots with si = di and sj = dj . These cases are however infeasible
because the initially chosen arcs for deletion coincide with the two arcs that one wants to delete to perform
the source (sink) depot swap.

Ultimately, every 2-opt* inter-route move with different depots di 6= dj is evaluated with two repair
operations (one source and one sink) based on the expressed conditions yielding up to two distinct inter-
depot 2-opt* moves. Note that the conditions on i and j shown on the left-hand side of Figure 2 are
independent from the conditions on si and sj shown on the right-hand side. For example, if i = di and
j 6= dj holds (case 2c), exactly one of the four cases 2b, 2d, 2f, or 2h is true for si and sj .
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di fi i si li di

dj fj j sj lj dj

cdi,fi ci,si

cdj ,fj cj,sj

cj,si
ci,sjcdi,fj

cdj ,fi

(a) Standard case: i 6= di, j 6= dj .

di fi i si li di

dj fj j sj lj dj

ci,si cli,di

cj,sj clj ,dj

cj,si
ci,sj clj ,di

cli,dj

(b) Standard case: si 6= di, sj 6= dj

di fi li di

dj fj j sj lj dj

cdi,fi

cdj ,fj cj,sj

cj,ficdi,fj

cdj ,sj

(c) Exception case: i = di, j 6= dj , arc (i, sj) is absent.

di fi i si li di

dj fj lj dj

ci,si cli,di

clj ,dj

cj,si
cli,dj

ci,di

(d) Exception case: si 6= di, sj = dj , arc (i, sj) is absent.

di fi i si li di

dj fj lj dj

cdi,fi ci,si

cdj ,fj

cdi,si

cdj ,fi ci,fj

(e) Exception case: i 6= di, j = dj , arc (j, si) is absent.

di fi li di

dj fj j sj lj dj

cli,di

cj,sj clj ,dj

ci,sj

cj,dj

clj ,di

(f) Exception case: si = di, sj 6= dj , arc (j, si) is absent.

di fi li di

dj fj lj dj

cdi,fi

cdj ,fj

cdi,fj
cdj ,fi

(g) Rejection case: i = di, j = dj .

di fi li di

dj fj lj dj

cli,di

clj ,dj

clj ,di
cli,dj

(h) Rejection case: si = di, sj = dj .

Figure 2: Inter-depot 2-opt* moves, swap of source (left) or sink (right) depots.

2.2. Inter-Depot 2-Opt
For the 2-opt neighborhood, we also raise standard and exception cases as presented in Figure 3, but omit

rejection cases for the sake of brevity. The repair operation must always swap sink and source depots of the
two different routes. As a mnemonic device, depots finally always remain attached to their current route.
In the swap cases 3a, 3c, and 3e, the source/sink roles are preserved, whereas the roles are interchanged in
the swap cases 3b, 3d, and 3f.

3. Neighborhood Exploration Techniques

In the following, we describe and compare the three fundamental neighborhood exploration techniques
in local search: lexicographic search, radius search, and granular search. The organization follows this order
and we complete these descriptions in Section 3.4 with a comparison and summarizing remarks.

Regardless of the way a neighborhood is explored, the two bottleneck operations of testing moves are:
the gain computation and the feasibility check. For the gain computation, it can be straightforward as is the
case in the studied variant or involved, e.g., needed when computing route durations in the presence of time-
dependent travel times as proposed by Visser and Spliet (2017). For the feasibility check, it is almost never a
trivial task as per the inclusion of non-additive resource constraints. In accordance with Savelsbergh (1990);
Irnich (2008b); Vidal et al. (2014b), several resource constraints can nevertheless be tested in constant time
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di fi i si li di

dj fj j sj lj dj

ci,si
cli,di

cdj ,fj cj,sj
cij csi,sj

cfj ,di

cdj ,li

(a) Standard case: si 6= di, j 6= dj .

di fi i si li di

dj fj j sj lj dj

cdi,fi ci,si

cj,sj clj ,dj
cij csi,sj

cdj ,fi

lj , cdj

(b) Standard case: i 6= di, sj 6= dj .

di fi li di

dj fj j sj lj dj

cli,di

cdj ,fj cj,sj
cli,j

cfj ,di

cdj ,sj

(c) Exception case: si = di, j 6= dj , arc (si, sj) is absent.

di fi li di

dj fj j sj lj dj

cdi,fi

cj,sj clj ,dj

cdj ,j

cfi,sj

clj ,di

(d) Exception case: i = di, sj 6= dj , arc (i, j) is absent.

di fi i si li di

dj fj lj dj

ci,si cli,di

cdj ,fj

ci,di

csi,fj

cdj ,li

(e) Exception case: si 6= di, j = dj , arc (i, j) is absent.

di fi i si li di

dj fj lj dj

cdi,fi ci,si

clj ,djci,lj

csi,di

cdj ,fi

(f) Exception case: i 6= di, sj = dj , arc (si, sj) is absent.

Figure 3: Inter-depot 2-opt moves, source/sink depot roles are preserved (left) or interchanged (right).

by doing precomputations on the current solution and some segments of arcs (consecutive arcs in the current
solution). For the latter computations, segments have to be built-up in a vertex-by-vertex fashion, leading
to the lexicographic search paradigm. Constant time tests are well established for capacity, time-window,
and pickup-and-delivery constraints. In the following, we use the 2-opt intra-tour move (see Figure 1a) to
explain the different search paradigms. A synopsis of the three search principles is shown in Figure 4.

3.1. Lexicographic Search
The lexicographic search as presented by Savelsbergh (1990) consists in an elegant and systematic way to

explore a neighborhood using the customer order observed in the current solution. It is especially intuitive
for k-edge exchange moves. For exploring the 2-opt neighborhood, lexicographic search explores the vertices
i and j using the order given by V in two nested loops, see Algorithm 1. The first loop iterates over i ∈ V
whereas the second loop steps over j > i ∈ V. Hence, the inner loop iterator is always greater than the
preceding outer loop while still covering all possibilities for the 2-opt moves.

The key observation, see also Figure 1a, is that in the inner loop the new route of vertex i must contain
the path P = (di  i, j

←
 si), where the original orientation of path (si  j) has been inverted. Since

path P grows by one vertex in every inner-loop iteration, the idea of Savelsbergh (1990) is to prune the
search based on the local infeasibility of P (see first if-condition in Algorithm 1), that is, break the inner
loop if it can be shown that any further vertex in P always leads to a resource-infeasible move. Since this
is a necessary but not sufficient condition for the feasibility of the overall move, a global feasibility check
(see second if-condition in Algorithm 1) must be performed. Note that in an inter-tour move, the inner loop
would skip the remaining vertices sj , . . . , dj of route rj rather than break.

For capacity constraints, the local feasibility of P and any path constructed in later iterations of the
inner loop amounts to checking

∑
i∈V (P ) qi ≤ Q (always fulfilled in the intra-tour case). Assuming that the
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Algorithm 1: Lexicographic.
Set γ := 0
for i ∈ V

for j ∈ V ∩ V (ri) | j > i

Set P := (di  i, j
←
 si)

if P local infeasible
break

if infeasible or g ≤ γ
continue

Set (γ,
¯
i,

¯
j) := (g, i, j)

return (g∗ = γ, i∗ =
¯
i, j∗ =

¯
j)

Algorithm 2: Radius.
Set γ := 0
for i ∈ V, (pi, i) and (i, si)

Compute ρ
for j ∈ N(i)

if cij ≥ ρ
break

if infeasible or g ≤ γ
continue

Set (γ,
¯
i,

¯
j) := (g, i, j)

return (g∗ = γ, i∗ =
¯
i, j∗ =

¯
j)

Algorithm 3: Granular.
Set γ := 0
for u = 1, . . . , U

for (i, j) ∈ Au

if infeasible or g ≤ γ
continue

Set (γ,
¯
i,

¯
j) := (g, i, j)

if γ > 0
break

return (γ,
¯
i,

¯
j)

Figure 4: Synopsis of the three neighborhood exploration methods for the intra-depot 2-opt neighborhood.
It is assumed that both the feasibility and gain of a move are evaluated directly before the if-condition
“infeasible or g ≤ γ” is reached.

triangle inequality holds for travel times, route duration constraints necessarily require
∑
e∈E(P ) te ≤ T . For

the MDVRP, all this can be tested in O(1) by summing up demand and travel times for segment (di  i)
(outer loop over i) and segment (j

←
 si) (inner loop over j).

More intricate feasibility conditions such as time windows, pairing, precedence constraints, and many
more can be checked in O(1) as well. Recall that the 2-opt intra-tour move results in the new route
(di  i, j

←
 si, sj  di) = (P, sj  i). As a preparatory step, one must compute an upper bound on

the resource consumption when arriving at the last segment (sj  di). This requires a O(n) preparation
before the exploration is started. Then, the outer loop computes the resource consumption at the end of the
first segment (di  i), while the inner loop computes the resource extension function (Irnich 2008a) for the
second segment (j

←
 si) so that both the resources at the end of P and its local feasibility are determined

in O(1). To check global feasibility, the latter resource values are then propagated along the arc (si, sj) and
compared against the respective resource upper bounds that were computed in the preparatory step.

Summarizing, the effectiveness of lexicographic search stems from its feasibility-based pruning. It is
particularly well suited for a VRP with intricate or very constraining feasibility constraints. If both checking
its resource consumption and propagating resource levels over entire segments can be done in constant time,
there is no extra effort in the worst-case time complexity when exploring a neighborhood. For 2-opt, the
result is a O(n2) neighborhood exploration.

3.2. Radius Search
The idea of accelerating the neighborhood exploration based on the length of the inserted arc can done

with a priori computed bounded candidate lists. This idea can be combined with pruning using the gain
criterion. Finally, Irnich et al. (2006) sharpened the gain criterion by incorporating the quality of already
detected improving solutions. Accordingly, we present candidate-lists based search (Section 3.2.1), fixed-
radius search (Section 3.2.2), and dynamic-radius search (Section 3.2.3). In all variants, neighbor lists are
preemptively sorted according to arc costs. For the special case of costs defined by Euclidian distances, one
can imagine the search being conducted starting from the closest neighbor and spiraling outwards until some
break condition is met. Note that this break condition is identical for 2-opt intra- and inter-tour moves so
that implementations of radius search naturally consider both types of moves together.

3.2.1. Bounded Candidate-Lists based Search
Bounded candidate-lists based search follows the idea that good arcs to be inserted should have a small

cost. It initially builds, for each vertex i, a bounded length candidate list N(i) of neighbor vertices j in close
proximity of i. The neighbor j ∈ N(i) represents the arc (i, j), and only moves inserting the arc (i, j) with
j ∈ N(i) are considered as possible moves. In a naive implementation, a fixed size σ for the neighborhoods
is chosen first (e.g., 50 neighbors) and N(i) is then filled with the σ closest vertices.
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In Algorithm 2, the first if-condition for breaking the inner loop is never fulfilled for a non-constraining
radius such as ρ = ∞. A speedup solely results from the bounded candidate lists, because it reduces the
number of arcs (i, j) to be tested. Indeed, for a fixed size σ the considered search space becomes linear in |V|.
Obviously, it is however not guaranteed that a true local optimum is found as long as σ = |N(i)| < |δ(i)|.

Another way to interpret bounded candidate-lists based search is to see it as a radius search, as depicted
in Algorithm 2, where the radius ρ is not computed inside the outer loop. Instead, ρ is a priori chosen (for
each i possibly in a different way) so that the inner for loop and if-condition can be implemented by filling
N(i) appropriately.

For the TSP, bounded candidate lists have also been constructed on the basis of other criteria. Helsgaun
(2000), for example, uses a modified edge weight/cost obtained from an approximation of the Held-Karp
lower bound. For the tested instances, all edges of an optimal TSP solution were shown to be contained
in candidate lists of smaller size σ. No general guarantee can be given for arbitrary instances. In contrast,
the fixed-radius search presented next follows a different line of thought in order to achieve provably local
optimal solutions.

3.2.2. Fixed-Radius Search
In routing problems, a move µ comprises the deletion of some arcs and the insertion of the same number

of different arcs. It can therefore be decomposed into a number k of partial moves p1, . . . , pk, i.e., µ =
p1 ◦ p2 ◦ · · · ◦ pk, each of which deletes and inserts some of the arcs.

Definition 1. (Irnich et al. 2006) A move µ is respectively cyclic-independent and cost-independent if
µ = pπ(1) ◦ pπ(2) ◦ · · · ◦ pπ(k) for all cyclic permutations of {1, 2, . . . , k} and g(µ) =

∑k
i=1 g(pi), where g(pi)

is a partial gain associated with pi.

A neighborhood with moves that can be decomposed with respect to Definition 1 can be searched with
the gain criterion in light of the following theorem:

Theorem 1. (Lin and Kernighan 1973) If a sequence of k numbers (gi)i={1,...,k} has a positive sum, i.e.,∑k
i=1 gi > 0, then there exists a cyclic permutation π of these numbers such that every partial sum is positive,

i.e.,
∑`
i=1 gπ(i) > 0 for all 1 ≤ ` ≤ k.

Note that neither Definition 1 nor Theorem 1 claim that for a given neighborhood the move decomposition
is unique. Let us exemplify the gain criterion for intra-depot 2-opt moves as depicted in Figures 1a and 1b.
First, an improving 2-opt move µ has a gain g = g(µ) = ci,si − cij + cj,sj − csi,sj > 0. Second, to satisfy
Definition 1, one can decompose it into µ = p1 ◦p2 = p2 ◦p1, where one partial move p1 is deleting arc (i, si)
plus inserting arc (i, j) and another partial move p2 is deleting arc (j, sj) plus inserting arc (si, sj). From
Theorem 1, we obtain that g = g(p1) + g(p2) > 0 is improving only if

g(p1) = ci,si − cij > 0 or g(p2) = cj,sj − csi,sj > 0. (1)

This is a necessary condition for move µ to be improving. By handling both options of the compound
condition (1), we obtain independent radius conditions based on the cost of two different deleted arcs (i, si)
or (j, sj). This can be exploited algorithmically as done with the break condition in Algorithm 2 which
makes fixed-radius search effective: given a vertex i, only those neighbors j ∈ N(i) which fulfill the first
radius condition cij < ρ with ρ = ci,si need to be inspected.

We have to underline that one must ensure that a move rejected from one partial move can be recovered
when the other is analyzed. This can be easy to overlook when simplifying the loop design. Indeed, when
testing the deleted arc (i, si) with j ∈ N(i) and later interchanging the roles of the vertices as (j, sj) with
i ∈ N(j), we can observe two facts: we may evaluate the same move twice, and we have never evaluated
the second radius condition. The former point is a nuisance, but the latter point implies that this is an
incomplete examination of the compound condition (1). Additionally testing over neighbors sj ∈ N(si) such
that csj ,si < ρ however makes the search exhaustive. Indeed, one can verify that once again interchanging
the roles of i and j yields a deleted arc (j, sj) with si ∈ N(sj). For the reader keeping count, we are
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evaluating in the worst case the same move four times. Among these overlapping move evaluations, two are
mandatory to ascertain a complete examination of the neighborhood space and two are redundant by cost
symmetry. Since it is impossible to know in advance which of the two partial gains, if any, could fulfill its
radius condition, the redundancy is in principle unavoidable by the conservative nature of the gain criterion.
As supported by our computational results, we however claim that this redundancy is in practice more
limited than what transpires by this quadruple factor (see also the example presented in the next section).

Finally, two equivalent nested loop constructions are possible: an outer loop i ∈ V followed by two inner
loops j ∈ N(i) and sj ∈ N(si), or alternatively an outer loop i ∈ V for which both deleted arcs (pi, i) and
(i, si) are tested followed by a single inner loop j ∈ N(i). We retain the latter presentation in Algorithm 2
for aesthetics reasons but advice the former for low-level efficiency. Indeed, looking at the finer details of the
implementation, measurable speedup comes from tailoring neighbor lists to the specific inner loops j ∈ N(i)
and sj ∈ N(si) to include or exclude depot arcs, (i.e., arcs having a depot copy as an end vertex). Moreover,
for 2-opt we see in Section 4.2 that the evaluation of the so-called multi-depot threshold can be simplified
by using the same base term which only depends on the deleted arc (i, si).

At this point, we would also like to mention that the 2-opt move can also be decomposed in a different
way. If the one partial move is deleting (i, si) and inserting (si, sj), the other partial move is deleting
(j, sj) and inserting (sj , i). Anyway, this decomposition is also asymmetric and therefore also requires the
distinction of two cases.

Finally, fixed-radius search can use the complete candidate list N(i) for every vertex i, i.e., σ = |V | − 1
as long as computer memory permits the storage of O(n2) elements. Complete candidate lists require a
O(n2 log n) preprocessing, where each candidate list is sorted. Using complete candidate lists ensures that
fixed-radius search terminates in a local optimum.

3.2.3. Dynamic-Radius Search
As first discussed by Irnich et al. (2006), the gain criterion can be sharpened if a lower bound γ on the

best gain g∗ is known, e.g., because an improving move has already been found. In this case, the search effort
for further improving moves can be potentially lightened by reducing the search radius ρ. The theoretical
foundation is the following corollary of Theorem 1.

Corollary 1. (Irnich et al. 2006; p. 2411) If a sequence of k numbers (gi)i={1,...,k} has a sum greater
than g, i.e.,

∑k
i=1 gi > g, then there exists a cyclic permutation π of these numbers for which every partial

sum fulfills
∑`
i=1 gπ(i) > /̀k g for all 1 ≤ ` ≤ k.

For a move µ with k partial moves, it means that at the first level the radius can be reduced from ρ1

to ρ1 − γ/k, and at the second level from ρ2 to ρ2 − 2γ/k, etc. For the 2-opt move and its decomposition
discussed above, the gain criterion improving condition (1) becomes

ci,si − cij > γ/2 or cj,sj − csi,sj > γ/2 (2)

with the corresponding radius conditions

cij < ρ with ρ = ci,si − γ/2 (3a)
and csi,sj < ρ with ρ = cj,sj − γ/2. (3b)

Comparing (1) and (2) for the deleted arc (i, si), the initial radius, i.e., the one used in fixed-radius
search, is ρ0 = ci,si (the superscript 0 corresponds to γ = 0). The radius that results when the lower bound
is exact, i.e., γ = g∗, is ρ∗ = ci,si − g∗/2. Depending on the previously found improving moves, the radius ρ
actually used in inner loop of Algorithm 2 is between ρ∗ and ρ0. Therefore, it is always at least as sharp as
fixed-radius search. In the following, we call a radius search that is based on the sharpened gain criterion a
dynamic-radius search.

Figure 5 depicts part of an MDVRP solution in which we find an improving intra-depot 2-opt inter-tour
move as seen in Figure 1b. It deletes arcs (4, 15) and (12, 44), inserts arcs (4, 12) and (15, 44), and inverts
the segments (15, 37, 17, d) and (d, 12). Let us assume the deleted arc being tested is (i, si) = (4, 15). The
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Figure 5: Dynamic-radius search for 2-opt where the first deleted arc is (4, 15), neighbors in N(4) and
N(15) inspected with respect to threshold ρ0 are highlighted. The selected move is an intra-depot (because
d4 = d12 = d) and inter-tour move. It deletes (12, 44) and inserts (4, 12) and (15, 44). At any time of the
search, we have ρ∗ ≤ ρ ≤ ρ0 anywhere within the double arrow.

concentric circles indicate which of the neighbors N(4) and N(15) must be respectively evaluated for the
radii ρ0 and ρ∗. The neighbors are color shaded in one or even two colors if they appear in the area of
the circles with radius ρ0. As 12 ∈ N(4) and 44 ∈ N(15) within radius ρ0, the depicted 2-opt move is
found twice in fixed-radius search, once with the inserted arc (4, 12) as a neighbor of i = 4 and once more
with the inserted arc (15, 44) as a neighbor of si = 15. In fact, we evaluate it another two times when
looking at deleted arc (12, 44) and its cost c12,44 used for the threshold. It is however likely that the two
different deleted arcs have quite different costs which already gives a first explanation for a smaller observed
redundancy than the aforementioned factor of four.

Dynamic-radius search can reduce the observed redundancy even further although it is not as direct.
Imagine this particular move yields the best gain g∗, the threshold being used at any given time in the
exploration is then anywhere in the interval [ρ∗, ρ0] depending on the value γ. It is tempting to look at the
smaller overlapping area of the circles but this is mostly irrelevant since moves evaluated with vertices in this
area are not comparable, e.g., inserted arcs (4, 17) and (15, 17) do not lead to the same move. The reduced
observed redundancy simply comes from the smaller radius which potentially contains much less vertices to
evaluate. In the most optimistic scenario, testing another deleted arc (i, si) with a larger cost ci,si ≥ γ/2,
the threshold ρ becomes zero or even negative, thus implying that no neighbors must be analyzed at all.
The consequence of this is that the reduced observed redundancy is very tangible although unpredictable as
it depends on the loop construction and the observed gain.

We stress again the conservative nature of criterion (2) and take a look at when redundancy is maximal.
For fixed-radius search, it occurs when ci,si = cj,sj . A lot more conditions need to align for maximal
redundancy in dynamic-radius search, that is, it occurs when g∗ = ε is rather small and the arc cost of
all four arcs is almost identical, e.g., ci,si = cj,sj = cij = csi,sj + ε which leads to ρ0 = ρ∗ + ε/2. These
observations are independent of how one decomposes the move into partial moves or how one implements
the inner loops.

Finally, we close with a geometric interpretation of dynamic-radius search and an open question for future
research. Every unit reduction of the radius ρ reduces the area of the admissible neighbors quadratically by
definition of a circle. Any radius ρ > c15,44 would suffice for 44 ∈ N(15) to qualify for the gain criterion.
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Note that such a radius is smaller than ρ∗ except when the deleted edges are of the same length. The
question is therefore: Is there a way to predict the smallest but sufficiently large radius ensuring that a move
with maximum gain is identified?

3.3. Granular Search
We briefly review granular search to clarify its relationship to radius search. Granular search is a neigh-

borhood search and exploration technique that has been introduced via granular tabu search implementations
for VRPs (Toth and Vigo 2003; Escobar et al. 2014; Schneider et al. 2017). The idea is an extension of
bounded candidate-lists, as explained in Section 3.2.1, where arcs to be inserted are still ordered but now
stored in a single global list, instead of one candidate list per vertex. This global list, denoted A, is called
the generator-arc list. Granular search explores the given neighborhood by considering only those moves
where one specific inserted arc, the generator arc, is in A. In case of the 2-opt neighborhood, the generator
arc can be defined as the arc (i, j). Since (i, j) completely determines the 2-opt move, neighborhood explo-
ration boils down to loop over (i, j) ∈ A and to implicitly construct and evaluate the feasibility and gain of
the associated neighbor solution (the latter is possible in constant time for the MDVRP). Note that for a
2-opt move and the second inserted arc (si, sj) it is not required that (si, sj) ∈ A holds. In the same vein,
redundancy occurs if both arcs (i, j) and (si, sj) are present in A.

Only if the generator-arc list comprises all feasible arcs can granular search guarantee that an improving
move is found whenever one exists. Typically, A is a heavily truncated list so that granular search only
explores heuristically. Moreover, in the tabu search context, for which granular search was invented, one is
interested in a best but not necessarily improving move. A generator-arc list is well-suited for this task.

The granularity aspect of granular search comes from a partitioning of the generator-arc list, that is,
A =

⋃U
u=1Au, in which the sorted order of the arcs in A is also maintained. If no improving move is found

with Au, the exploration is pursued in Au+1 for all 1 ≤ u ≤ U − 1, see Algorithm 3.
The speedup of granular search also results from the increased flexibility of maintaining the generator

arcs in any order. Indeed, the above mentioned implementations for VRPs exploit that a better selection of
generator arcs (i.e., the choice of A) and ordering of generator arcs (i.e., their assignment to A1,A2, . . . ,AU )
often results when pseudo-costs are used instead of the given routing costs cij .

3.4. Comparison and Remarks
The synopsis of lexicographic, radius, and granular search provided by Figure 4 and the above discussion

highlights the different ideas behind the neighborhood exploration techniques: Lexicographic search primar-
ily prunes the search tree on the basis of local feasibility and is therefore well suited for strongly constrained
VRPs. In contrast, radius search primarily prunes on the basis of the gain criterion and can be expected
to be less effective for strongly constrained VRPs, because here many infeasible moves look promising from
a gain’s perspective. Later results will however show that for loosely constrained VRPs like the MDVRP,
radius search typically outperforms lexicographic search. Granular search prunes on the basis of a heuristic
preselection of generator arcs, which can either based on feasibility or cost criteria or a mix of both.

In all cases, we have the freedom to decide which comes first: the feasibility test or the gain computation.
One should decide this by comparing the computational effort and effectiveness of both tasks.

We have presented lexicographic and radius search as best improvement exploration strategies. Even
though both can be prematurely stopped when any improving and feasible solution has been found (this is
first improvement), the idea of dynamic-radius search is to not stop but to explicitly exploit previously found
improving solutions that lead to reduced search radii. By design, granular search follows a best improvement
strategy per generator-arc list subset Au. First improvement would only really make sense if U = 1 in which
case the initial sorting of the arcs is even more crucial.

4. Dynamic-Radius Search for Inter-Depot 2-Opt and 2-Opt* Moves

Using dynamic-radius search in the multi-depot environment, one must realize that the radii ρ0 and ρ∗,
as defined in (3) for the intra-depot 2-opt cases in Figures 1a and 1b, do not account for the additional
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source/sink depot swap cost that may occur. Using these radii, we are no longer guaranteed to find the
remaining improving moves, let alone provide the best gain available, unless we find a way to correctly
consider this otherwise neglected cost prior to the radius breakpoint, that is, before testing neighbor vertices
in an inner loop. For this purpose, we introduce a correction term τ on the standard threshold ρ which
bounds from above the potential gain any source or sink depot swap can produce with respect to the current
solution R and the explored neighborhood.

Let us further clarify the need for a correction term by presenting some facts regarding the inter-depot
2-opt* and 2-opt moves as broken down in the cases of Figures 2a–2f and 3a–3f. Note that we shorthand
the latter expression to ‘case xy’ and even only use the index ‘y’ in mathematical formulas of a given
neighborhood.

Table 1 summarizes all cases by listing their corresponding gains. The headers (standard, source, sink,
and exception) refer, respectively, to move-defining, exchanged arcs of the standard cases 1c, 2a and 2b of
2-opt* and standard cases 1b, 3a and 3b of 2-opt, the arcs exchanged at the source and the sink to repair
the otherwise infeasible depot assignment, and the added arcs of the exception cases that do not fall into
one of the former categories. It is obvious that the gain computations differ significantly from one another
and especially compared to the standard ones.

2-opt* Fig. Gain g from edges

Move type standard source sink exception

Intra-depot 1c ci,si−cj,si+cj,sj−ci,sj
Inter-depot 2a ci,si−cj,si+cj,sj−ci,sj +cdi,fi−cdj ,fi+cdj ,fj−cdi,fj

2b ci,si−cj,si+cj,sj−ci,sj +cli,di−cli,dj +clj ,dj−clj ,di
2c −cj,si+cj,sj +cdi,fi +cdj ,fj−cdi,fj −cdj ,sj
2d ci,si−cj,si +cli,di−cli,dj +clj ,dj −ci,di
2e ci,si −ci,sj +cdi,fi−cdj ,fi+cdj ,fj −cdi,si
2f ci,si +cj,sj−ci,sj +clj ,dj−clj ,di −cj,dj

(a) The seven different cases of 2-opt*.

2-opt Fig. Gain g from edges

Move type standard source sink exception

Intra-tour 1a ci,si+cj,sj−cij−csi,sj
Intra-depot 1b ci,si+cj,sj−cij−csi,sj
Inter-depot 3a ci,si+cj,sj−cij−csi,sj +cdj ,fj−cdj ,li +cli,di −cfj ,di

3b ci,si+cj,sj−cij−csi,sj +cdi,fi −clj ,di +clj ,dj −cdj ,fi
3c ci,si+cj,sj−cij +cdj ,fj −cfj ,di −cdj ,sj
3d ci,si+cj,sj −csi,sj −clj ,di +clj ,dj −cdj ,j
3e ci,si+cj,sj −csi,sj −cdj ,li +cli,di −ci,di
3f ci,si+cj,sj−cij +cdi,fi −cdj ,fi −csi,di

(b) The eight different cases of 2-opt.

Table 1: Gains of the 2-opt* and 2-opt moves.

In Table 2, the various cases that may arise are conditioned based on the known deleted arc (i, si) given
by the outer loop and whose cost is central to the threshold computation. For each neighborhood, we have
an explicit and an implicit column. This distinction is explained and utilized in the upcoming multi-depot
threshold analysis. In order to correctly apply dynamic-radius search, we must match the multi-depot
threshold with inner loops that are based on neighbor lists N(i) and N(si).

Finally, the symbol ρ is reserved for the threshold given by the standard cases displayed in Figure 1a–1c.
The latter appears as a common term (and therefore the lower bound) in all our thresholds. Each case
‘y’ indeed gives rise to a local threshold ρ + τy where τy is a correction term. We make the multi-depot
threshold clear by expressing it as ρMD = ρ+ τ , where τ is a case-dependent expression contributing to the
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2-opt* 2-opt
Figure 2 Figure 3

Conditions on i and si Explicit Implicit Explicit Implicit

i 6= di and si 6= di a, b, d e a, b, e f
i = di and si 6= di b, c, d a, e d
i 6= di and si = di a e, f b, c f
i = di and si = di c f c d

Table 2: Arising cases conditioned on the known deleted arc (i, si).

correction term. We now distinguish the 2-opt* and 2-opt neighborhoods.

4.1. 2-Opt* Moves
Recall that Figures 1c and 2a–2f display the seven cases to handle for the 2-opt* neighborhood. Following

the same line of arguments as explained in Section 3.2.3 for 2-opt, the radius for the standard intra-depot
2-opt* case 1c is given by

cj,si < ρ with ρ = ci,si − γ/2 (4a)
and ci,sj < ρ with ρ = cj,sj − γ/2. (4b)

Since dynamic-radius search exploits that the 2-opt* is completely symmetric with respect to i and j,
there is a single inner loop say on j ∈ N(si) for the known deleted arc (i, si). Observe that in cases 2e and 2f,
arc (j, si) is absent from the final move. This implies that its cost is irrelevant and cannot be subjected to
a threshold. We sidestep this by observing that case 2c is symmetric in the affected routes to case 2e and
likewise 2d to 2f. The idea is then that we must define a threshold in such a way that if an improving move
with g > γ exists in cases 2e or 2f, it is found by their symmetric counterpart. Our case-by-case analysis
works as follows:

In the standard source case 2a, the arcs affected by the 2-opt* move are distinct from those needed to
fix the depots. A new best gain is established by such a move if g = [ci,si − cj,si + cdi,fi − cdj ,fi ] + [cj,sj −
ci,sj +cdj ,fj −cdi,fj ] > γ. As before, we break down the gain into two expressions according to the bracketed
parts. This implies that cj,si < ci,si + cdi,fi − cdj ,fi − γ/2. The point here is that the term cdj ,fi (depending
on j) is unknown at the moment when (i, si) is deleted and the threshold ρ must be computed. We can
however replace cdj ,fi by a lower bound over any depot reconnection yielding a radius large enough:

cj,si < ρ+ τa with τa = cdi,fi −min
d∈D

cd,fi . (5a)

We find the interpretation of this correction term quite elegant because it goes in line with intuitive ex-
pectations of the multi-depot environment: If customer fi is already attached to the nearest depot, then
the right side simplifies to the original ρ value given by (4a). Otherwise, the radius takes into account the
potential for swapping source depots as the cost difference between the current depot assignment and one
of the actual nearest depot.

In the standard sink case 2b, the gain can be decomposed into g = [ci,si − cj,si + cli,di − cli,dj ] + [cj,sj −
ci,sj + clj ,dj − clj ,di ] so that the resulting radius is given by

cj,si < ρ+ τb with τb = cli,di −min
d∈D

cli,d , (5b)

where we note the similarity with the standard source case 2a that comes with exchanged roles of source
and sink depot swap in the gain formula and the nearest-depot interpretation

In the exception case 2c, the gain is computed as g = ci,si − cj,si + [cdj ,fj − cdi,fj ] + [cj,sj − cdj ,sj ].
Observe that arc (i, sj) is omitted from the final move (see Table 1a), since it would otherwise be inserted
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and removed upon swapping source depots. It turns out that we cannot reasonably decompose the gain’s
components so that the gain criterion can be applied. Moreover, remember that we must ensure a move
from case 2e can be found anyway. The following threshold bounds from above the gain seen in case 2c thus
fulfilling the latter wish:

cj,si < ρ+ τc with τc = max
r∈R

[cdr,fr − cdi,fr + max
j∈N(r)

(cj,sj − cdr,sj )]− γ/2, (5c)

where N(r) is the set of customers in route r and we have a subtraction of γ/2. As we did not decompose
the gain (into two independent parts) to test condition g > γ, the whole γ can be subtracted from the
computed radius. With −γ = −2 · γ/2 and the first half being already present in ρ (4), the validity of (5c)
becomes clear. Fortunately, since the terms are consciously organized, intuition still answers the call. The
first bracket describes whether there is some route r for which the first customer fj would be closer to
the source depot di than to the currently assigned source depot dj , whereas the second bracket describes
whether there is some route r for which short-cutting from dj to sj is favorable.

The exception case 2d slightly differs from the former case 2c because of the different arc costs that
are unknown in j and known in i. The gain g = ci,si − cj,si + [cli,di − ci,di ] + [clj ,dj − cli,dj ] still offers no
acceptable decomposition and we also want to cover case 2f. The resulting radius condition becomes

cj,si < ρ+ τd with τd = [cli,di − ci,di ] + max
r∈R

(clr,dr − cli,dr )− γ/2. (5d)

The difference compared to (5c) is that now there is no inner max-term over j ∈ N(r).
In summary, the case-by-case analysis has led to four different case-dependent correction terms given by

the equations (5a)–(5d). We still face the complication that the threshold must be computed when deleting
arc (i, si) and before knowing which correction term to apply. However, we do know whether i = di or i 6= di
as well as whether si = di or si 6= di. Depending on these four possibilities, we can filter out which of the
seven cases may happen (using Table 2). Accordingly, we define a final radius, tailored to the first deleted
arc (i, si), as the maximum of the corresponding radii.

A careful examination of the conditioned cases in Table 2 allows the nodes i and si to be treated
independently in the final formula. For example, the term τc occurs only when i = di and the term τa
only when i 6= di which is indeed irrespective of si. Judiciously collecting all terms results in an elegant
convoluted threshold expressed with respect to the various correction terms (5a)–(5d):

ρMD = ρ+ max

[ {
τc if i = di

τa if i 6= di
,

{
0 if si = di

max{ τb , τd } if si 6= di

]
. (6)

We can summarize that this radius definition, which depends on the type of the first deleted arc (i, si),
covers all cases of 2-opt*. The different correction terms added to ρ were precisely highlighted. The test
csi,j < ρMD is clearly a relaxed radius condition compared to the standard case, but it allows us to exactly
explore the 2-opt* neighborhood.

4.2. 2-Opt Moves
Deriving the correction term for 2-opt is slightly more intricate yet we find very similar expressions. Let

us again be supported by the broken down cases as depicted in Figure 3 together with their respective gains
in Table 1b. Exception cases 3c and 3f can indeed be merged into a one-sided test because the arc costs are
symmetric (same for 3e and 3d). The following correction terms cover the relevant cases 3a, 3b, 3c, and 3e:

τa = cli,di −min
d∈D

cd,li (7a)

τb = cdi,fi −min
d∈D

cd,fi (7b)

τc = max
r∈R

[(cdr,fr − cfr,di) + max
j∈N(r)

(cj,sj − cdr,sj )]− γ/2 (7c)

τe = cli,di − ci,di + max
r∈R

(cdr,fr − cdr,li)− γ/2 (7e)
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Using Table 2, the final radius is obtained by collecting the terms with respect to the deleted arc (i, si)
and independently treating the vertices i and si similarly to 2-opt* as

ρMD = ρ+ max

[ {
0 if i = di

τb if i 6= di
,

{
τc if si = di

max{ τa , τe } if si 6= di

]
. (8)

5. Iterated Local Search

In this section, we describe the algorithmic details of our metaheuristic. We have designed it with
simplicity in mind so that local search is the fundamental building block. A good pick in this respect is
iterated local search (ILS, Lourenço et al. 2002) as it combines local search with a perturbation mechanism.
Local optima are permuted into new solutions so that local search can be applied repeatedly.

In our ILS, capacity constraints and duration constraints (if any) are handled as hard constraints such
that feasibility of all routes is maintained starting from the construction heuristic to the perturbation and
throughout the local search. The vehicle fleet-size limit however is construed as a soft constraint. It is
relaxed in the construction procedure and in the perturbation. Our local search is able to ensure that a
given solution does not degrade in its fleet-size feasibility. In order to reach solutions that are perfectly
fleet-size feasible, we use a fleet-reduction operation.

The main complication of the perturbation step is indeed to construct solutions that are fleet-size feasible.
In pretests, we found that for some instances (in particular those that do not have a distance constraint),
constructing overall feasible solutions is rather simple. However, for some other instances, ensuring feasibility
after perturbation is a delicate task. This explains why we had to design the ILS with a somewhat more
involved perturbation mechanism.

We describe the construction heuristic in Section 5.1, the local search in Section 5.2, the perturbation
and fleet-reduction operations in Section 5.3, and we provide an overview and pseudo-code of the entire ILS
in Section 5.4.

5.1. Construction Heuristic
Our construction procedure is based on the savings heuristic of Clarke and Wright (1964). The core

idea remains to process an arc list sorted decreasingly by their potential saving, but the multi-depot aspect
and the additional duration constraints are accounted for as follows. First, we draw uniformly distributed
parameters ζ ∈ [0, 2] and λ ∈ [ζ − 0.25, ζ + 1.75]. Then, we compute the saving of every arc (i, j) with
respect to each depot d ∈ D as σdij = −λcij + cdi+ cjd+ ζ(cdi− cjd), where λ and ζ influence the comparison
between the cost of arc (i, j) and of connecting i and j to d. We of course reject those combinations where
(d, i, j, d) is an infeasible route. To further randomize the procedure, for each arc (i, j), we take from these
|D| depot-specific savings values (σdij)d∈D an arbitrary one that is non-negative, denoted σij . Next, we sort
these savings (σij)(i,j) decreasingly.

At the start, all customers i ∈ N form separate segments (i). After computing and sorting the savings
values (σij)(i,j), the main loop considers the associated arcs (i, j) one by one. If the vertices i and j are the
last/first of their segments and the concatenation of their segments (v  i) and (j  w) gives a feasible
route (d, v  i, j  w, d) for some depot d ∈ D, we join the segments together. At the end, when no more
segments can be joined, each segment is finally assigned to the depot d that leads to the cheapest feasible
route. Note that this type of depot assignment may lead to a solution R that is infeasible regarding the
fleet-size constraints. We accept slightly infeasible solutions R if |R ∩ Rd| ≤ δm, where δ is a parameter.
We call solutions R that respect the relaxed fleet-size constraints δ-fleet feasible solutions.

The above procedure is repeated with δ = 1.5 and new random parameters ζ and λ until the constructed
solution R is δ-fleet feasible.

5.2. Local Search
A reasonable local search procedure must use additional neighborhoods besides 2-opt and 2-opt*. For the

purpose of this study, we complement them with six other neighborhoods relocation, swap, string exchange
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(ordered and inverted), and Or-opt (ordered and inverted) as commonly defined in Aarts and Lenstra (1997);
Funke et al. (2005). Figures 6 and 7 describe the general composition of Or-opt and string-exchange moves
in ordered and inverted variants. Both neighborhoods restrict the length of their relocated chains to a length
parameter L. Note that a relocation move is an Or-opt move with L = 1, and likewise a swap move is a
string exchange with L = 1. We nevertheless implemented independent relocation- and swap-neighborhood
exploration algorithms to benefit from the specialization, because for relocation and swap the distinction
between ordered and inverted chains is irrelevant. In the following, we use L = 5 for Or-opt and string
exchange unless stated otherwise.
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(a) Ordered chain.
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(b) Inverted chain.

Figure 6: Inter-depot Or-opt, |si  j| ≤ L.
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(b) Inverted chains.

Figure 7: Inter-depot string exchange, |si  j| ≤ L and |sk  l| ≤ L.

Relocation, swap, string exchange, and Or-opt are naturally compliant with the multi-depot environment
because all these inter-depot moves result in routes that have matching source and sink depots.

Our local search is kept as simple as possible: All eight neighborhoods (we consider inverted and ordered
Or-opt and string exchange as different neighborhoods) are explored in a cyclic fashion. The exploration is
done with a best-improvement strategy. Whenever an improving move is returned from the neighborhood
exploration, it is performed and we move to the next neighborhood. Local search terminates when all
neighborhoods are explored without success, so that the solution R returned is always a local optimum with
regards to all eight neighborhoods.

Note finally that δ-fleet feasibility can easily be maintained in the local search if the starting solution
fulfills it. We must only use a feasible number of copies of the depots. More precisely, exactly 2bδmc copies
are needed per depot d ∈ D (two for each route, see Section 2).

5.3. Perturbation and Fleet-Reduction
A local optimum R is perturbed by a multi-phase re-clustering. We first permute the routes randomly in

the giant tour and then apply a circular shift on a random position. From this new customer sequence, routes
are filled in order while satisfying resource consumption. This process is repeated 2 to 5 times (uniformly
random). If the re-clustering fails to produce a suitable customer assignment, i.e., a δ-fleet feasible solution,
a new solution R is constructed with the construction heuristic.

The purpose of the fleet-reduction operation is to transform a given solution R that is δ-fleet feasible
into one that is perfectly fleet-size feasible. As this is an NP-hard and sometimes practically difficult task,
the fleet-reduction operation may terminate with a solution that is only partly improved regarding fleet-size
feasibility. Note that in any case such an improvement comes at the cost of worsening the objective value.
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The fleet-reduction operation tries to patch up the given solution by moving chains of customers from
overused to underused depots and their routes. We reuse the exploration of 2-opt* and Or-opt neighborhoods
to find a chain inside a route belonging to an overused depot that can be moved to another depot at minimal
cost. 2-opt* and Or-opt moves are repeated until a fleet-size feasible solution is constructed or the search for
such a feasible 2-opt* or Or-opt move fails. The modified solution is returned irrespective of its feasibility
status.

5.4. Iterated Local Search
The general design is an ILS with a limit of nILS local search iterations as summarized by the pseudo-

code in Algorithm 4. The current solution is denoted by R and it is initialized by the result of the savings
heuristic in Step 1. The counter count (initialized at zero in Step 2) keeps track of the number of consecutive
iterations for which the fleet-reduction operation fails to produce a fleet-size feasible solution.

Algorithm 4: Iterated Local Search (ILS)
// Initialization

1 Savings(R) // Section 5.1
2 count := 0

// Main Loop
3 for nILS iterations do

// Local Search Phase
4 LocalSearch(R, δ = 1.25) // Section 5.2
5 if not fleet-size feasible then
6 Fleet-reduction(R) // Section 5.3
7 if fleet-size feasible then
8 LocalSearch(R, δ = 1.0) // Section 5.2

// Perturbation
9 if not fleet-size feasible then

10 count := count+ 1
11 if random() < 0.7count then
12 Perturbation(R) // Section 5.3
13 else
14 Savings(R) // Section 5.1
15 else
16 count := 0
17 Perturbation(R) // Section 5.3

We perform up to two passes in each local descent (Steps 4 and 8). In the first pass (Step 4), the limit
on the number of vehicles is relaxed. When a local optimum is reached, if said limit is satisfied we move on
to the perturbation operation. Otherwise, the fleet-reduction operation tries to make the solution fleet-size
feasible (Step 6) and, if so, the second local search pass is performed, for which the strict fleet-size limit is
imposed (Step 8).

The perturbation mechanism (Steps 9 to 17) uses the savings heuristic as a fallback whenever the actual
perturbation procedure described in Section 5.3 fails to produce a δ-fleet feasible solution.

6. Computational Results

The implementation of the ILS algorithm is written in C++ and compiled in 64-bit release mode under
Microsoft Visual Studio 2015. The experiments are conducted on a Microsoft Windows 10 standard
personal computer equipped with an Intel i7-6700 CPU clocked at 3.40GHz and 16GB of RAM. A single
thread is allocated to each run.

Section 6.1 describes the benchmark instances used in this study. A comparison of the previous dynamic-
radius search implementation follows in Section 6.2. The impact of the correction term is analyzed in
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Section 6.3 by evaluating its contribution under various usage scenarios. Finally, Section 6.4 compares the
results of our algorithm to best known solutions available in the literature.

6.1. Instances
We start our analysis of dynamic-radius neighborhood exploration techniques by reproducing a compar-

ative assessment with lexicographic search using
• 560 CVRP instances [10 (seed) × 4 (density) × 14 (size)] from Irnich et al. (2006).

We then put the proposed ILS to test by tackling the following commonly used MDVRP instances from the
literature:
• 33 MDVRP instances [p01–pr10] from Cordeau et al. (1997);
• 14 MDVRPTW instances [pr11a–pr24a with neglected time windows (TW)] from Vidal et al. (2013);
• 10 MDVRP instances [Belgium-] from De Smet et al. (2006).

Moreover, we decided to newly generate
• 1,120 large-scale MDVRP instances [10(depot configuration) × 4(density) × 14(size) × 2(R vs. RC)]

in which the multi-depot characteristics are systematically varied in order to have a sufficiently large
benchmark allowing rigorous statistical tests. Such tests are hardly possible with the limited sets [pr-]
and [Belgium-]. Note also that the [pr-] instances are well studied but relatively small (up to 360 cus-
tomers), while the [Belgium-] instances are less studied but the largest instance comprises 2,750 cus-
tomers. The CVRP instances from the previous work (Irnich et al. 2006) and the new ones are available at
https://logistik.bwl.uni-mainz.de/research/benchmarks/.

6.2. Improved Implementation
We mention for the sake of scientific rigor that, not only have we reproduced the results of Irnich

et al. (2006) for the single-depot (=CVRP) environment, we exceeded expectations. Dynamic-radius search
has been re-implemented with a greater focus on low-level efficiency but we also gave due attention to
lexicographic search. The reader may compare the previous results (Irnich et al. 2006; Figures 7 and 9)
with Figures 8 and 9 referring to the 560 CVRP instances. Irnich et al. (2006) systematically compared
lexicographic and radius search analyzing two indicators: the acceleration factor describing the average ratio
of computing times needed with lexicographic compared to dynamic-radius search (ratios are dimensionless)
as well as average neighborhood-exploration times (in milliseconds [ms]). To understand what is depicted,
one must know that the effectiveness of (dynamic-)radius search for the CVRP strongly depends on how
many customers a route contains on average, denoted as the load factor. Therefore, the results presented in
Figures 8 and 9 are exactly grouped by both number |N | of customers and load factor f .

Figure 8 shows the average acceleration factor. Comparing relative performance to lexicographic search
with the 2-opt neighborhood (old factor 35 versus new factor 20) and the string-exchange neighborhood (900
versus 600) for the largest instances with |N | = 2,500 customers, it appears that the benefit of dynamic-
radius search has slightly decreased. This is due to significant improvements in the lexicographic search
implementation but also the fact that the increased maximum string length from L = 3 to 5 favors the
lexicographic paradigm. Contrarily to the previous computational study in (Irnich et al. 2006), the trend lines
also do not show any significant negative slope when increasing the number of customers. This is particularly
striking on the string-exchange neighborhood and can be explained by the fact that we have incorporated
feasibility pruning inside the string examinations of dynamic-radius search. Some neighborhoods such as
relocation now also exploit the threshold whenever a new best gain is identified rather than only in the inner
loop head.

Figure 9 depicts the average computation time for a single neighborhood exploration. We achieve a
reduction in absolute computation time by at least a factor of 10 for every neighborhood including those
with larger maximal string lengths L. We believe that technological progress since 2006 cannot single-
handedly explain this improvement as evidenced by the average search times of the swap neighborhood (70
milliseconds [ms] versus 4 ms) and string-exchange neighborhood (350 ms versus 9 ms) for instances with
|N | = 2,500 customers. We point here to the aforementioned transition to an explicit double inner-loop
design which allows finer treatment of depot arcs, see Section 3.2.2.
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Figure 8: [CVRP, Irnich et al. (2006)] Average acceleration factor of dynamic-radius search over lexicographic
search for various neighborhood operators and instances ranging from 300 to 2,500 in customer size.
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Figure 9: [CVRP, Irnich et al. (2006)] Average neighborhood-exploration time (in milliseconds) of dynamic-
radius search for various neighborhood operators and instances ranging from 300 to 2,500 in customer size.
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As a last note, we rectify a mistake in the pseudo-code (Irnich et al. 2006; Algorithm 8, Line 6) of
the swap neighborhood. Making abstraction of the different nomenclature, it should read as “LET B1 =
(cv1,t1 + ct1,w1

)/2−G∗/4” instead of 2 in the last denominator.

6.3. Inter-Depot Moves and the Correction Term
In Section 6.3.1, we analyze three options for implementing the neighborhood exploration of 2-opt and 2-

opt*: allowing inter-depot moves by either using the correction term (With) or not (Without), and forbidding
inter-depot moves altogether (Forbid). OptionWithout uses the simple radii of the inner-depot cases, i.e.,
(3) and (4), but still requires the whole machinery of the depot repair operation. It does not guarantee
that a move with maximum gain is identified. In Section 6.3.2, we provide insights regarding the depot
configurations by analyzing the same three options on the newly created instance set. Finally, we take a
look in Section 6.3.3 at an alternative way to recover inter-depot 2-opt and 2-opt* moves that foregoes both
the challenging implementation and the correction term.

6.3.1. Comparison on commonly used Benchmark Instances
We examine how the three optionsWith,Without, and Forbid perform against each other by comparing

the respective relative gap measures. Given an option o and an MDVRP instance b, we compute the sampled
relative gaps over each local descent l as ζblo = (zblo − z̄b)/z̄b × 100, where zblo is the value obtained in run
l and z̄b is the best known objective value for the instance b. Moreover, we denote per instance and option
the average relative gap by ζ̄bo and the first order statistic by ζ̃bo. Figure 10 displays aggregated results of
the relative gaps on 1,000 local descents for the three options. For each instance, we find the corresponding
legend marking of an option at three heights, the middle one (filled symbols) is the average, the one above
(unfilled symbols) is one standard deviation away whereas the one below (unfilled symbols) is the first order
statistic.

It is visible that option Forbid (blue triangle) performs more inconsistently than the other two despite
reaching similar first order statistics. In order to take a more objective stand than what is visually available,
Table 3 reports the findings using hypothesis testing on the average relative gap ζ̄bo. For each option o,
we additionally list proportions of instances where the incumbent solution minl,o zblo is found and the
relative computational times with respect to the fastest option. Let tblo denote the computational time for
solve local descent l. The overall time of option o is then to =

∑
b,l tblo. The fastest option is denoted

omin = arg mino(to). For the geometric measurement of option o, we compute the geometric mean of∑
l tblo/

∑
l tbl,omin over the instances b.

z z Incumbent (%) Relative time
Option Without Forbid Inclusive Exclusive Overall Geometric

With −1.503 −4.127 53.2 25.5 1.95 1.36

Without −4.419 51.1 23.4 1.06 1.02

Forbid 48.9 21.3 1.00 1.00

Table 3: [MDVRP, Cordeau et al. (1997); Vidal et al. (2013)] Pairwise Wilcoxon signed-ranked test z-scores,
inclusive/exclusive incumbent proportions, and relative computing times from 1,000 starting solutions on
three options for implementing the neighborhood exploration of 2-opt and 2-opt* (all available neighborhood
operators are utilized).

We use the Wilcoxon signed-ranked test to compare the options pairwise. For example, the null hypoth-
esis is that optionWith has no added value compared to optionWithout, i.e., H0 : instance paired differences
ζ̄b,With− ζ̄b,Without are distributed around zero, whereas the alternative hypothesis H1 is that the differences
are significantly signed, i.e., the options impact solution quality.

Intermediate measures of the opposing optionsWith andWithout are W =
∑Nr

i=1 sgn(∆i) ·Ri = −284,
where Nr = 47 is the number of non-zero paired differences, sgn(∆i) denotes the sign of their respective
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Figure 10: [MDVRP, Cordeau et al. (1997); Vidal et al. (2013)] Sampled average, standard deviation,
and first order statistic of relative gaps in percentage from 1,000 starting solutions on three options for
implementing the neighborhood exploration of 2-opt and 2-opt* (all available neighborhood operators are
utilized).

values, and Ri their ranks. We then evaluate σ2
W = Nr(Nr+1)(2Nr+1)

6 = 35,720. The resulting z-score is
W/σW ≈ −1.503 which corresponds to a p-value of 0.066. As a result, we can reject the null hypothesis at
around 95% confidence level in the unilateral test.

With respect to the other columns of Table 3, the inclusive column states that optionWith finds the
incumbent 53.2% of the time whereas the exclusive column that option Forbid finds an incumbent that no
other option has identified 21.3% of the time. Option Forbid is the fastest such that optionWith takes
overall an arithmetic factor of 1.95 longer than Forbid, i.e., tWith/tForbid = 1.95. For the geometric mean,
it is 1.36.

Finally, performing an hypothesis test over the first order statistics ζ̃b,o renders pairwise non-significant
results even over option Forbid which matches what we see visually. However, the above presented hypothesis
testing over averages speaks volumes about the consistency of the various options: the correction term incurs
a computational cost but indeed seems to provide added value whether we look at the average test scores
or the found incumbent percentages.

As a side note, we also experimented with another option Last resort which only uses the correction term
after optionWithout reaches a local optimum. In line with expectations, it performs almost equally as option
Without. Including this additional option Last resort in the comparison would bias the table especially with
respect to the exclusive incumbent count.

6.3.2. Comparison on new Large-Scale MDVRP Instances
The new instances are generated across 14 groups increasing in the number of customers from |N | = 300

to 2,500 (in steps of 100, 200, and 500). Each group contains 80 instances which systematically vary
several key characteristics: customer distribution, load factor, and depot configuration. The customers are
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distributed either randomly over a square or using a mixture of random and clustered coordinates. Moreover,
four different load factors f = 25, 50, 75, and 100 for the average ratio of customers per route are considered
(as in Irnich et al. (2006), the value of f is controlled by choosing Q ≈ f ·∑i∈N qi/|N | which strongly
impacts several types of results). Finally, we have also predetermined ten configurations of depot locations
ranging in the number of depots (2 ≤ |D| ≤ 6) and differing in depot proximity from close to remote from
one another.

Table 4 lists these configurations with a geometric qualifier, the number |D| of depots, and the degree of
proximity (near or far). Moreover, we report the z-score of optionWith opposed to optionWithout while
omitting those of option Forbid because of its repeated poor performance as in the previous experiment. In
the remaining columns, the table displays relative time ratios of optionWith compared to optionWithout as
well as the difference in exclusive incumbents. For the first configuration ‘stack’, optionWith takes overall
1.53 times longer thanWithout to complete and finds 1 more exclusive incumbent. The takeaway here is
that we can claim that far depot configurations benefit more from using the correction term. Furthermore,
using the correction term in near depot configurations is relatively more computationally expensive than in
far depot configurations. This makes sense, since depots far away from each other give greater arbitrage
possibility in route optimization and therefore render the depot association an even more important question.
With respect to the relative time, recall that it is empirically observed that customers are often assigned to
their nearest depot. We venture that in a near depot configuration (such as configurations stack (identical)
or cluster, and all those with near proximity, i.e., ID = 1, 2, 3, 5, 7, and 9 in Table 4) the depot assignment
might make less difference and therefore optionsWith andWithout perform comparably (except for ID =
9, where the reason remains unclear to us). Indeed, recall that the correction terms of the standard cases
are zero if customers are already assigned to a closest depot. Unfortunately, this is not necessarily true for
the exception cases: In 2-opt* exception case 2c, the term (5c) could be positive. For 2-opt, both exception
cases could yield positive correction terms for (7c) and (7e). In a depot configuration with multiple depots
at the same location (case stack, ID = 1 in Table 4), we may have positive correction terms that yet reduce
the pruning potential even though they do not provide any better moves. This also explains why we can
end up in different local optima when comparing optionsWith andWithout.

With vs. Without

Instance group Relative time Exclusive

ID Configuration |D| Proximity z-score Overall Geometric Difference

1 stack 2 identical 0.183 1.53 1.30 1
2 cluster 3 near −0.851 1.50 1.29 −1

3 diagonal 2 near −1.338 1.37 1.21 4
4 diagonal 2 far −2.119 1.15 1.08 8

5 diamond 4 near 0.479 1.56 1.32 4
6 diamond 4 far −3.989 1.24 1.12 13

7 cross 5 near 0.160 1.66 1.41 −1
8 cross 5 far −6.645 1.30 1.16 −15

9 circle 6 near −3.536 1.54 1.29 17
10 circle 6 far −5.377 1.15 1.10 −5

Table 4: Characteristics of the ten depot configurations and comparison of optionsWith andWithout.

6.3.3. Inter-Depot Moves via String Exchange and Or-Opt
In this section, we exploit that all inter-depot 2-opt* and 2-opt moves are specific string exchange and

Or-opt moves on the giant tour. For example, 2-opt* moves (Figure 2) can be reproduced by ordered
variants of the string exchange (standard cases 2a, 2b) and Or-opt (exception cases 2c, 2d, 2e, 2f) moves. In
particular, one can see that the string fi  i in Figure 2e (2-opt*) can have any length and corresponds to
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the string si  j in Figure 6a (ordered Or-opt). With respect to 2-opt moves (Figure 3), inverted variants
of the string exchange and Or-opt respectively reproduce standard and exception cases.

Accounting for inter-depot 2-opt* and 2-opt moves in dynamic-radius search implies that two algorithmic
tasks have to be fulfilled: the computation of correction terms and obviously the implementation of the actual
inter-depot moves. The exception correction terms are likely to be larger than their standard counterparts
to account for worst-case scenarios in unknown customer j. Fortunately, exceptions occur only sporadically,
see Table 2. With this in mind, we discuss three alternatives to cope with exhaustively testing for inter-depot
moves.

First, it is possible to duplicate the 2-opt* and 2-opt methods and specialize these copies to account for
specific inter-depot cases. In this fashion, we inevitably face redundant move tests and therefore have an
overall slower method. Moreover, it is a cumbersome implementation for which one must indeed implement
inter-depot cases.

Second, specializing the string exchange and Or-opt neighborhoods to test for specific depot cases is
even more cumbersome (number and complexity of loop blocks) and slower, since we must also pay for the
overhead of these richer neighborhoods.

Third, we can forbid inter-depot 2-opt and 2-opt* moves and herewith get rid of all the correction terms
as well as the repair operations. Instead, we allow arbitrary string lengths, i.e., L =∞ in the string exchange
and Or-opt neighborhood exploration.

We have implemented this third alternative and tested how well string exchange and Or-opt scale with this
length increase. Obviously, the time of neighborhood exploration increases with an unbounded length L =∞
but it is limited by the longest route of the candidate solution. The results of the comparison between the
maximum string length L = ∞ and L = 5 are shown in Figure 11. We ultimately observe a factor around
6 (up to 10) on instances with load factor f = 100.
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Figure 11: [MDVRP, large-scale instances] Dynamic-radius search computing time comparison of allowed
length L = ∞ over L = 5 in string exchange and Or-opt neighborhood explorations for instances ranging
from 300 to 2,500 in customer size.

The reader may expect now that we present a direct comparison of the implementations of 2-opt and 2-
opt* using the correction terms of Section 4 and Or-opt and string exchange with unlimited string length L =
∞. Such a comparison would reveal that already longer neighborhood exploration times of Or-opt and string
exchange (see Figure 9) must be compounded with the observed factors of Figure 11. However, by allowing
arbitrary string lengths, we do not only recover all inter-depot 2-opt* and 2-opt moves, but we also enrich
the local optima space: additional improving Or-opt and string exchange moves that do not represent 2-opt
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or 2-opt* moves are found. Hence, such a direct comparison considering relative computation times is an
oversimplification. We therefore omit further analyses.

Finally, we arrive at the conclusion that the simplest possibility is to rely on string exchange and Or-
opt neighborhoods to produce inter-depot 2-opt and 2-opt* moves. However, even if this implementation
shortcut is functional, it does not compete with a full-fledged inter-depot adaptation for the 2-opt* and
2-opt neighborhoods.

6.4. Comparison against Best Known Solutions from the Literature
Results are reported under the following general format. On the left side, we have the structural de-

scription of the instances obtained from the paper listed in the caption. Then follows the best known
solutions (BKS) available in the literature z̄ with a reference listing for the first occurrence and a bold id
entry whenever optimality has been proven (Baldacci and Mingozzi 2009; Contardo and Martinelli 2014).
Finally, we have our solutions z̃, running times t in seconds ([s]), and relative gaps computed in percent as
(z̃ − z̄)/z̄ × 100.

The first set of results gathered in Table 5 are based on the instances of Cordeau et al. (1997). The
average relative gap amounts to 0.46% after some 250,000 local descents. Moreover, our heuristic takes an
average of 6.5 minutes per instance, the longest time of 40 minutes being spent on pr10. In comparison, the
state-of-the-art hybrid genetic algorithm which uses adaptive diversity control (HGSADC) of Vidal et al.
(2012) establishes an average relative gap of virtually 0% after an average running time of 42.40 minutes
(10 runs of average 4.24 minutes).

Table 6 reads exactly in the same way except it is based on the MDVRPTW instances of Vidal et al.
(2013). We compare with the results of Vidal et al. (2014a) and therefore likewise discard input of time
windows and the depot fleet size limitm. The authors present various algorithms but two of them (HGSADC-
noR and HGSADC+), each running for up to 5 hours per instance, produce almost all incumbent solutions.
Using some 25,000 local descents, the quality of our solutions lies around 3% above these but are obtained
in 10 minutes rather than 10 hours. It is a good time to acknowledge that we obviously attain the limitation
of this simple metaheuristic since additional iterations give less and less improved incumbent solutions.

While De Smet et al. (2006) have developed a software interface for OptaPlanner which deserves praise,
we have no choice but to underscore that it clearly outputs subpar solutions. In fact, it makes us wonder
whether the benchmark version is fully featured since a simple visual inspection is sometimes enough to
discern possible solution improvements. The software has a hard coded time limit of 5 minutes but observing
its behavior in the solution process suggests that the time limit could be halved without impacting solution
quality. This does not bode well for the diversification mechanism that they employ.

The documentation is not explicitly clear about the variant used for the objective function but our
understanding is that a hierarchy prioritizing minimal fleet size is used. We present results for our algorithm
under the standard travel cost minimization objective as well as an adaptation for the hierarchical objective.
In the case of the latter, it is well established that vehicle lower bounds computed based on expected route
distributions are easier to reach as the instance grows in size. Since the fleet size is handled as a soft
constraint, we slightly modified our algorithm to attempt to solve the problem with a vehicle limit that
increases by one unit whenever the algorithm fails to achieve soft feasibility after its allocated runtime.
With respect to smaller instances, since they are solved faster, the fact that the lower bound might be off by
several units is not so concerning. Table 7 reports these results on 10 instances whose names belgium-d-n-k
reflect the number of depots (d = |D| if more than one), the number of vertices (n = |N | + |D|), and the
depot fleet size limit (k = m). The objective priority is indicated by z̃ or κ̃. The number of local descents has
been fixed to 500 to reproduce a similar running time. With average relative gaps of −13.54 % and −11.84 %
respectively for routing costs and fleet-size objectives, it is clear that we obtain far better solutions. The
cost disparity in fleet-size optimization yielding the same number of vehicles as in routing cost optimization
can be explained by the δ-parameter which is set to the number of customers in the latter kind.

25



Instance BKS Dynamic-Radius Search

|N | m |D| T Q z̄ ref. z̃ t [s] % z̄

p01 50 4 4 0 80 576.87 RLB96 576.87 71.0 0.00
p02 50 2 4 0 160 473.53 PR07 473.53 55.7 0.00
p03 75 3 5 0 140 641.19 PR07 641.19 94.9 0.00
p04 100 8 2 0 100 1,001.04 PR07 1,003.59 153.1 0.25
p05 100 5 2 0 200 750.03 VCGLR12 751.15 114.6 0.15
p06 100 6 3 0 100 876.50 RLB96 880.04 136.8 0.40
p07 100 4 4 0 100 881.97 PR07 891.33 189.2 1.06
p08 249 14 2 310 500 4,371.66 ELTG14 4,423.40 499.7 1.18
p09 249 12 3 310 500 3,858.66 VCGLR12 3,899.13 469.7 1.05
p10 249 8 4 310 500 3,629.60 ELTG14 3,668.89 440.2 1.08
p11 249 6 5 310 500 3,545.18 ELTG14 3,569.11 476.7 0.68
p12 80 5 2 0 60 1,318.95 RLB96 1,318.95 64.3 0.00
p13 80 5 2 200 60 1,318.95 RLB96 1,318.95 49.2 0.00
p14 80 5 2 180 60 1,360.12 CGL97 1,360.12 63.0 0.00
p15 160 5 4 0 60 2,505.42 PR07 2,505.42 181.0 0.00
p16 160 5 4 200 60 2,572.23 RLB96 2,572.23 139.2 0.00
p17 160 5 4 180 60 2,709.09 PR07 2,742.80 172.4 1.24
p18 240 5 6 0 60 3,702.85 PR07 3,702.85 351.6 0.00
p19 240 5 6 200 60 3,827.06 RLB96 3,827.06 258.1 0.00
p20 240 5 6 180 60 4,058.07 CGL97 4,091.78 308.4 0.83
p21 360 5 9 0 60 5,474.84 PR07 5,490.11 693.9 0.28
p22 360 5 9 200 60 5,702.16 PR07 5,702.16 487.2 0.00
p23 360 5 9 180 60 6,078.75 PR07 6,160.98 589.7 1.35
pr01 48 1 4 500 200 861.32 CGL97 861.32 82.1 0.00
pr02 96 2 4 480 195 1,307.34 PR07 1,307.34 369.7 0.00
pr03 144 3 4 460 190 1,803.80 VCGLR12 1,806.53 208.5 0.15
pr04 192 4 4 440 185 2,058.31 VCGLR12 2,073.65 422.8 0.75
pr05 240 5 4 420 180 2,331.20 VCGLR12 2,359.04 948.7 1.19
pr06 288 6 4 400 175 2,676.30 VCGLR12 2,703.31 708.5 1.01
pr07 72 1 6 500 200 1,089.56 PR07 1,089.56 191.0 0.00
pr08 144 2 6 475 190 1,664.85 PR07 1,667.24 764.1 0.14
pr09 216 3 6 450 180 2,133.20 VCGLR12 2,148.61 524.5 0.72
pr10 288 4 6 425 170 2,868.26 VCGLR12 2,912.24 2,486.7 1.53

Average 386.9 0.46

Table 5: [MDVRP, Cordeau et al. (1997)] Computational results of the multi-start iterated local search with
nILS = 250,000 iterations.
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Dynamic-Radius Search

Instance BKS nILS = 2500 nILS = 25,000

|N | m |D| T Q z̄ z̃ t [s] % z̄ z̃ t [s] % z̄

pr11a 360 10 4 450 200 4,994.67 5,207.44 12.7 4.26 5,129.05 122.4 2.69
pr12a 480 13 4 440 195 6,367.67 6,577.68 23.9 3.30 6,555.29 212.8 2.95
pr13a 600 16 4 430 190 7,645.29 8,011.74 31.5 4.79 7,917.86 343.3 3.57
pr14a 720 19 4 420 185 9,101.67 9,477.76 50.7 4.13 9,403.68 474.3 3.32
pr15a 840 22 4 410 180 10,598.70 10,961.81 76.1 3.43 10,920.67 740.4 3.04
pr16a 960 26 4 400 175 11,919.71 12,391.17 119.5 3.96 12,312.47 1,048.4 3.30
pr17a 360 7 6 460 200 4,761.70 4,877.06 15.5 2.42 4,856.80 153.4 2.00
pr18a 520 10 6 440 190 6,504.36 6,744.90 32.6 3.70 6,666.09 313.4 2.49
pr19a 700 13 6 420 180 8,639.44 8,995.29 77.3 4.12 8,971.01 649.9 3.84
pr20a 880 16 6 400 170 9,825.50 10,207.03 95.6 3.88 10,160.99 1,014.0 3.41
pr21a 420 4 12 475 200 4,582.62 4,709.52 23.1 2.77 4,677.77 228.7 2.08
pr22a 600 6 12 450 190 6,141.63 6,297.61 48.7 2.54 6,283.19 405.6 2.30
pr23a 780 8 12 425 180 8,014.10 8,273.65 81.8 3.24 8,218.96 764.2 2.56
pr24a 960 10 12 400 170 9,909.49 10,238.21 144.2 3.32 10,221.22 1,337.6 3.15

Average 59.5 3.56 557.7 2.91

Table 6: [MDVRP, Vidal et al. (2013)] Computational results of the multi-start iterated local search with
nILS = 2500 and nILS = 25,000 iterations.

Dynamic-Radius Search

Instance BKS Distance objective Fleet-size objective

Q z̄ κ̄ z̃ κ t [s] % z̄ z κ̃ t [s] % z̄

belgium-d2-n50-k10 125 15.47 8 15.46 9 0.1 −0.06 16.17 8 0.2 4.52
belgium-d3-n100-k10 250 17.43 8 17.33 8 0.3 −0.57 17.40 8 0.3 −0.57
belgium-d5-n500-k20 250 54.70 15 38.43 16 3.1 −29.74 39.92 15 6.9 −27.02
belgium-d8-n1000-k20 500 68.04 16 50.56 17 13.6 −25.69 51.12 15 37.7 -24.87
belgium-d10-n2750-k55 500 119.77 40 90.70 43 65.2 −24.27 94.85 40 304.5 −20.81
belgium-n50-k10 125 21.16 8 21.02 8 0.1 −0.66 20.81 8 0.1 −0.66
belgium-n100-k10 250 22.98 8 23.11 8 0.3 0.57 23.11 8 0.3 0.57
belgium-n500-k20 250 57.49 14 47.75 15 3.1 −16.94 49.56 14 9.3 −13.79
belgium-n1000-k20 500 77.59 14 59.20 14 9.9 −23.70 60.55 14 22.2 −23.70
belgium-n2750-k55 500 150.22 39 128.67 41 100.1 −14.35 132.03 39 274.0 −12.11

Average 19.6 −13.54 65.6 −11.84

Table 7: [MDVRP, De Smet et al. (2006)] Computational results of the multi-start iterated local search with
nILS = 500 iterations.
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7. Conclusion and Outlook

In this paper, we have revisited radius search, an effective neighborhood exploration technique, which dis-
tinguishes itself from other techniques such as lexicographic search by the way the neighborhood is explored:
A lexicographic search prunes a exploration branch whenever a local infeasibility is observed. Dynamic-
radius search is closer in spirit to the optimization paradigm, since the pruning is based on coefficients of
the objective function, that is, the threshold bound is a function of the best gain found at any given time.

We have extended previous works on radius search to the multi-depot vehicle routing problem including
capacity and tour-duration constraints. The focus of our research is on the two fundamental neighborhoods
2-opt and 2-opt* and their exploration which not includes standard intra-depot moves but also inter-depot
moves. Case-dependent correction terms to be added to the otherwise incorrect standard search radii have
been derived. Dynamic-radius search equipped with this modified pruning criterion allows identifying a
best-improving move, either inner-depot or inter-depot, with little additional computational effort.

In comparison to lexicographic search, speedups of factors of 100 and more are observed for 2-opt, 2-opt*,
Or-opt, swap, and string-exchange neighborhoods. Furthermore, we have confirmed with statistical tests that
allowing depot swapping strongly favors heuristic solution quality, especially for multi-depot configurations
where depots are not located close to each other.

While there certainly are some fancier metaheuristics out there, we believe our basic iterated-local search
implementation is legitimate enough. Summarizing the results on three benchmark sets from the literature,
we can state that we have created a single implementation with very little parametrization which successfully
competes with state-of-the-art metaheuristics.

We can think of the following research paths. First, the way the threshold is constructed is particularly
interesting because it relies on cost upper bounds rather than the actual cost. Tackling alternative vehicle
routing problem variants where the objective function is not exactly a sum of arc costs such as time-dependent
travel costs then becomes possible. Second, for asymmetric problems, the redundancy in the exploration
does not mean we get to test asymmetric arc costs for free. Indeed, the worst-case factor is eight rather than
four which fortunately is still prone to significant empirical reduction. Finally, we venture that machine
learning may help answer the question we raised at the end of Section 3.2.3 concerning the prediction of the
smallest but sufficiently large radius ensuring that a move with maximum gain is identified.

Acknowledgement

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. IR 122/7-1.

References

Emile H. L. Aarts and Jan Karel Lenstra, editors. Local Search in Combinatorial Optimization. Wiley-Interscience series in
discrete mathematics and optimization. John Wiley & Sons, New York, NY, USA, 1997.

Roberto Baldacci and Aristide Mingozzi. A unified exact method for solving different classes of vehicle routing problems.
Mathematical Programming, 120(2):347–380, 2009. doi:10.1007/s10107-008-0218-9.

Mandell Bellmore and Saman Hong. Transformation of multisalesmen problem to the standard traveling salesman problem.
Journal of the Association for Computing Machinery, 21:500–504, 1974. doi:10.1145/321832.321847.

Jon Jouis Bentley. Fast algorithms for geometric traveling salesman problems. ORSA Journal on Computing, 4(4):387–411,
1992. doi:10.1287/ijoc.4.4.387.

Geoff Clarke and J. W. Wright. Scheduling of vehicles from a central depot to a number of delivery points. Operations Research,
12(4):568–581, 1964. doi:10.1287/opre.12.4.568.

Claudio Contardo and Rafael Martinelli. A new exact algorithm for the multi-depot vehicle routing problem under capacity
and route length constraints. Discrete Optimization, 12:129–146, 5 2014. doi:10.1016/j.disopt.2014.03.001.

Jean-François Cordeau, Michel Gendreau, and Gilbert Laporte. A tabu search heuristic for periodic and multi-depot vehicle
routing problems. Networks, 30(2):105–119, 1997. doi:10.1002/(SICI)1097-0037(199709)30:2<105::AID-NET5>3.0.CO;2-G.

G. A. Croes. A method for solving traveling-salesman problems. Operations Research, 6(6):791–812, 1958.
Geoffrey De Smet et al. OptaPlanner User Guide 7.17.0. Red Hat and the community, 2006. URL https://www.optaplanner.

org. OptaPlanner is an open source constraint satisfaction solver in Java.
Guy Desaulniers, Oli B. G. Madsen, and Stefan Røpke. The vehicle routing problem with time windows. In Paolo Toth

and Daniele Vigo, editors, Vehicle Routing, chapter 5, pages 119–159. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, 2014. doi:10.1137/1.9781611973594.ch5.

28

https://doi.org/10.1007/s10107-008-0218-9
https://doi.org/10.1145/321832.321847
https://doi.org/10.1287/ijoc.4.4.387
https://doi.org/10.1287/opre.12.4.568
https://doi.org/10.1016/j.disopt.2014.03.001
https://doi.org/10.1002/(SICI)1097-0037(199709)30:2%3C105::AID-NET5%3E3.0.CO;2-G
https://www.optaplanner.org
https://www.optaplanner.org
https://doi.org/10.1137/1.9781611973594.ch5


John Willmer Escobar, Rodrigo Linfati, Paolo Toth, and Maria G. Baldoquin. A hybrid granular tabu search algorithm for
the multi-depot vehicle routing problem. Journal of Heuristics, 20(5):483–509, 2014. doi:10.1007/s10732-014-9247-0.

Birger Funke, Tore Grünert, and Stefan Irnich. A note on single alternating cycle neighborhoods for the TSP. Journal of
Heuristics, 11(2):135–146, 2005. doi:10.1007/s10732-005-0713-6.

Keld Helsgaun. An effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational
Research, 126(1):106–130, 2000. doi:10.1016/s0377-2217(99)00284-2.

Holger H. Hoos and Thomas Stützle. Stochastic Local Search: Foundations and Applications. The Morgan Kaufmann Series
in Artifical Intelligence. Elsevier, San Francisco, CA, USA, 2005.

Stefan Irnich. Resource extension functions: properties, inversion, and generalization to segments. OR Spectrum, 30(1):113–148,
2008a. doi:10.1007/s00291-007-0083-6.

Stefan Irnich. A unified modeling and solution framework for vehicle routing and local search-based metaheuristics. INFORMS
Journal on Computing, 20(2):270–287, 2008b. doi:10.1287/ijoc.1070.0239.

Stefan Irnich, Birger Funke, and Tore Grünert. Sequential search and its application to vehicle-routing problems. Computers
& Operations Research, 33(8):2405–2429, 2006. doi:10.1016/j.cor.2005.02.020.

David Stifler Johnson and Lyle A. McGeoch. The traveling salesman problem: A case study in local optimization. In Local
Search in Combinatorial Optimization, chapter 8, pages 215–310. 1997.

Shen Lin. Computer solutions of the traveling salesman problem. The Bell System Technical Journal, 44(10):2245–2269, 1965.
doi:10.1002/j.1538-7305.1965.tb04146.x.

Shen Lin and Brian Wilson Kernighan. An effective heuristic algorithm for the traveling-salesman problem. Operations
Research, 21(2):498–516, 1973.

Helena R. Lourenço, Olivier C. Martin, and Thomas Stützle. Iterated local search. In Fred Glover and Gary A. Kochenberger,
editors, Handbook of Metaheuristics, pages 321–353. Kluwer Academic Publishers, Norwell, MA, USA, 2002. doi:10.1007/0-
306-48056-5_11.

Olivier Martin, Steve W. Otto, and Edward William Felten. Large-step Markov chains for the TSP incorporating local search
heuristics. Operations Research Letters, 1(4):219–224, 1992. doi:10.1016/0167-6377(92)90028-2.

Jean-Yves Potvin and Jean-Marc Rousseau. An exchange heuristic for routeing problems with time windows. The Journal of
the Operational Research Society, 46(12):1433–1446, 1995. doi:10.2307/2584063.

Gerhard Reinelt. The Traveling Salesman: Computational Solutions for TSP Applications, volume 840 of Lecture Notes in
Computer Science. Springer, Berlin Heidelberg, Germany, 1994. doi:10.1007/3-540-48661-5.

Martin W. P. Savelsbergh. An efficient implementation of local search algorithms for constrained routing problems. European
Journal of Operational Research, 47(1):75–85, 1990. doi:10.1016/0377-2217(90)90091-O.

Michael Schneider, Fabian Schwahn, and Daniele Vigo. Designing granular solution methods for routing problems with time
windows. European Journal of Operational Research, 263(2):493–509, 2017. doi:10.1016/j.ejor.2017.04.059.

Kenneth Steiglitz and Peter Weiner. Some improved algorithms for computer solution of the traveling salesman problem. In
Proceedings of the Sixth Allerton Conference on Circuit and System Theory, pages 814–821, Urbana, IL, USA, 1968.

Paolo Toth and Daniele Vigo. The granular tabu search and its application to the vehicle-routing problem. INFORMS Journal
on Computing, 15(4):333–346, 2003. doi:10.1287/ijoc.15.4.333.24890.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, Nadia Lahrichi, and Walter Rei. A hybrid genetic algorithm for
multidepot and periodic vehicle routing problems. Operations Research, 60(3):611–624, 2012. doi:10.1287/opre.1120.1048.

Thibaut Vidal, Gabriel Crainic Teodor, Michel Gendreau, and Christian Prins. A hybrid genetic algorithm with adaptive
diversity management for a large class of vehicle routing problems with time-windows. Computers & Operations Research,
40(1):475–489, 2013. doi:10.1016/j.cor.2012.07.018.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. Implicit depot assignments and rotations in
vehicle routing heuristics. European Journal of Operational Research, 237(1):15–28, 2014a. doi:10.1016/j.ejor.2013.12.044.

Thibaut Vidal, Teodor Gabriel Crainic, Michel Gendreau, and Christian Prins. A unified solution framework for multi-attribute
vehicle routing problems. European Journal of Operational Research, 234(3):658–673, 2014b. doi:10.1016/j.ejor.2013.09.045.

Thomas Visser and Remy Spliet. Efficient move evaluations for time-dependent vehicle routing problems. Technical Report
EI2017-23, Erasmus University Rotterdam, 2017. URL http://hdl.handle.net/1765/100852.

29

https://doi.org/10.1007/s10732-014-9247-0
https://doi.org/10.1007/s10732-005-0713-6
https://doi.org/10.1016/s0377-2217(99)00284-2
https://doi.org/10.1007/s00291-007-0083-6
https://doi.org/10.1287/ijoc.1070.0239
https://doi.org/10.1016/j.cor.2005.02.020
https://doi.org/10.1002/j.1538-7305.1965.tb04146.x
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.1016/0167-6377(92)90028-2
https://doi.org/10.2307/2584063
https://doi.org/10.1007/3-540-48661-5
https://doi.org/10.1016/0377-2217(90)90091-O
https://doi.org/10.1016/j.ejor.2017.04.059
https://doi.org/10.1287/ijoc.15.4.333.24890
https://doi.org/10.1287/opre.1120.1048
https://doi.org/10.1016/j.cor.2012.07.018
https://doi.org/10.1016/j.ejor.2013.12.044
https://doi.org/10.1016/j.ejor.2013.09.045
http://hdl.handle.net/1765/100852

	Introduction
	2-Opt and 2-Opt* Moves in Multi-Depot Vehicle Routing Problems
	Inter-Depot 2-Opt*
	Inter-Depot 2-Opt

	Neighborhood Exploration Techniques
	Lexicographic Search
	Radius Search
	Bounded Candidate-Lists based Search
	Fixed-Radius Search
	Dynamic-Radius Search

	Granular Search
	Comparison and Remarks

	Dynamic-Radius Search for Inter-Depot 2-Opt and 2-Opt* Moves
	2-Opt* Moves
	2-Opt Moves

	Iterated Local Search
	Construction Heuristic
	Local Search
	Perturbation and Fleet-Reduction
	Iterated Local Search

	Computational Results
	Instances
	Improved Implementation
	Inter-Depot Moves and the Correction Term
	Comparison on commonly used Benchmark Instances
	Comparison on new Large-Scale MDVRP Instances
	Inter-Depot Moves via String Exchange and Or-Opt

	Comparison against Best Known Solutions from the Literature

	Conclusion and Outlook

