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Abstract

The multi-compartment vehicle routing problem with flexible compartment sizes is a variant of the classical
vehicle routing problem in which customers demand different product types and the vehicle capacity can
be separated into different compartments each dedicated to a specific product type. The size of each
compartment is not fixed beforehand but the number of compartments is limited. We consider two variants
for dividing the vehicle capacity: On the one hand the vehicle capacity can be discretely divided into
compartments and on the other hand compartment sizes can be chosen arbitrarily. The objective is to
minimize the total distance of all vehicle routes such that all customer demands are met and vehicle capacities
are respected. Modifying a branch-and-cut algorithm based on a three-index formulation for the discrete
problem variant from the literature, we introduce an exact solution approach that is tailored to the continuous
problem variant. Moreover, we propose two other exact solution approaches, namely a branch-and-cut
algorithm based on a two-index formulation and a branch-price-and-cut algorithm based on a route-indexed
formulation, that can tackle both packing restrictions with mild adaptions and can be combined into an
effective two-stage approach. Extensive computational tests have been conducted to compare the different
algorithms. For the continuous variant, we can solve instances with up to 50 customers to optimality and
for the discrete variant, several previously open instances can now be solved to proven optimality. Moreover,
we analyse the cost savings of using continuously flexible compartment sizes instead of discretely flexible
compartment sizes.
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1. Introduction

Multi-compartment vehicle routing problems (MCVRP) are variants of the classical capacitated vehicle-
routing problem (CVRP, Toth and Vigo 2014) in which several product types must be transported separately.
The transportation of products in separated zones is necessary for various real-world problems, e.g., the
transportation of dangerous goods, liquid or bulk products, as well as the transportation of food products in
different temperature zones. Instead of using one type of vehicle for each product type, it is often beneficial
to collect or deliver several product types combined in one vehicle (Muyldermans and Pang 2010). Various
different multi-compartment vehicle configurations can be presumed, e.g., the size of separated zones can
be fixed or flexible, the assignment of product types to compartments can be preset or arbitrary, and there
can exist different (in)compatibilities between two different product types or a compartment and a product
type (Pollaris et al. 2014).

The paper at hand considers MCVRPs with flexible compartment sizes in which different product types
are incompatible with each other such that they must be transported in separate compartments. The
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assignment of product types to compartments is preset. Two different problem variants are investigated:
On the one hand we consider the multi-compartment vehicle routing problem with continuously flexible
compartment sizes (MCVRP-CFCS, Koch et al. 2016) in which compartment sizes can be set arbitrarily
within the limits of the vehicle capacity. A practical application is, in particular, the distribution of food
(Derigs et al. 2010; Hübner and Ostermeier 2019). On the other hand, we consider the multi-compartment
vehicle routing problem with discretely flexible compartment sizes (MCVRP-DFCS, Henke et al. 2015) in
which compartment sizes can only be set according to pre-defined, equally spaced positions. Practical
applications are amongst others the shipment of bulk products (Fagerholt and Christiansen 2000) and the
collection of glass waste (Henke et al. 2015). In the following, we refer collectively to the MCVRP-CFCS and
MCVRP-DFCS as multi-compartment vehicle routing problems with flexible compartment sizes (MCVRP-
FCS).

The MCVRP-CFCS and MCVRP-DFCS are both a generalization of the CVRP (Toth and Vigo 2014)
and, therefore, NP-hard. Moreover, the MCVRP-CFCS is a restriction of the commodity-constrained split
delivery vehicle routing problem (C-SDVRP, Archetti et al. 2016; Gschwind et al. 2019) in which customer
demands are composed of different commodities but no product types exist such that all commodities can
be transported together in one zone. If the limit on the number of compartments in the MCVRP-CFCS is
greater or equal to the number of product types then all different product types can be transported together
on one vehicle and both the MCVRP-CFCS and the C-SDVRP are equivalent.

In the literature, several variants of the MCVRP with heuristic and exact solution approaches have been
discussed. Pollaris et al. (2014) present an overview of vehicle routing problems with loading constraints
including a summary of MCVRP literature. Henke (2017) provides a recent review and extended classifica-
tions for the MCVRP. In the following, we first give a short overview of publications about MCVRPs with
fixed compartment sizes and focus afterwards on literature about MCVRPs with flexible compartment sizes.

Fixed compartments. Numerous MCVRP publications with fixed compartment sizes deal with the distribu-
tion of liquid products. In particular, different petrol replenishment problems are studied. The specialty of
petrol distribution is that typically the content of each compartment can only be delivered to one customer
because vehicles are not equipped with debit meters. Brown and Graves (1981) present an automated real-
time dispatch system. Avella et al. (2004) provide a branch-and-price algorithm and Cornillier et al. (2008)
formulate a set-partitioning problem that can solve instances with a small set of petrol stations optimally.
Recent technology allows us to equip vehicles with debit meters so that the content of a compartment can be
split between several deliveries and customers may allow different vehicles to fill the same tank. Using this
fact, Coelho and Laporte (2015) present a classification scheme that distinguishes between split and unsplit
compartments and tanks. They propose specialized models for particular versions of the problem and a
branch-and-cut algorithm applicable to all variants. A variant of the MCVRP that includes time windows is
solved by Benantar et al. (2016) with a tabu search algorithm. Other MCVRP variants with liquid products
are the collection of olive oil (Lahyani et al. 2015), solved by a branch-and-cut algorithm, and the collection
of raw milk (Caramia and Guerriero 2010), solved by the combination of two mathematical formulations
and a local search algorithm.

Routing logistics literature on other goods than liquid products is also rich. Muyldermans and Pang
(2010) introduce a local search algorithm for a waste collection problem and compare separate collection
for each waste type with co-collection of different waste types. An ant colony algorithm is proposed by
Reed et al. (2014) that solves a waste collection problem in which the location of the depot site is separated
from the vehicle depot. Fallahi et al. (2008) suggest a memetic algorithm and a tabu search for an animal
food distribution problem with sanitary rules that recommend to always use the same compartment for
one species. Similar sanitary rules are defined in the livestock collection problem in which animals from
farms are collected for slaughter at a slaughterhouse. Oppen and Løkketangen (2008) present a tabu search
approach and Oppen et al. (2010) introduce an exact column-generation based solution approach. A grocery
distribution problem is presented by Ostermeier et al. (2018) that includes the decision of using cost-different
single-compartment or multi-compartment vehicles. The problem is solved by a large neighborhood search.
An MCVRP with time windows and three time planning periods arising in a city logistics problem is proposed
and solved by an adaptive large neighborhood search by Eshtehadi et al. (2020). Mirzaei and Wøhlk (2017)
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compare two MCVRP variants that allow either only single or multiple visits to the same customer. Both
variants are solved exactly by a branch-and-price algorithm. A variable neighborhood search for the selective
MCVRP with time windows is proposed by Melechovskỳ (2013). In this variant profits are dedicated to
customers and product types and the aim is to maximize the total profit. Other MCVRP variants consider
stochastic instead of deterministic demands (Mendoza et al. 2010; 2011; Goodson 2015).

Flexible compartments. Little attention has been paid to MCVRP with flexible compartment sizes. Fager-
holt and Christiansen (2000) introduce a bulk ship scheduling problem with a flexible cargo hold that can
be partitioned discretely into several smaller holds. The problem is solved by a set partitioning approach
consisting of two phases for the scheduling and allocation problem. Chajakis and Guignard (2003) propose
a model for the distribution to convenience stores and develop approximation schemes based on Lagrangean
relaxation. The packing is constrained by two independent dimensions (weight and volume), and apart from
transportation also cooling costs of each compartment for non-ambient temperature items are considered.
An MCVRP with loading and unloading costs that occurs in grocery distribution is introduced by Hübner
and Ostermeier (2019). In this variant, using multi-compartment vehicles saves transportation costs but
increases (un)loading costs because more than one shipping gate has to be approached at the warehouse.
They present a large-neighborhood search with specialized removal and reinsert operators. Ostermeier et al.
(2018) include loading constraints to the problem, develop a branch-and-cut algorithm, and extend the large
neighborhood search of Hübner and Ostermeier. Derigs et al. (2010) consider the MCVRP with fixed and
flexible compartment sizes and introduce a solver suite consisting of construction heuristics, improvement
heuristics, and metaheuristics. In both variants, products are not dedicated to compartments but incompat-
ibility relations between products and compartments as well as two products are considered. Compartment
sizes can be set arbitrarily in the variant with flexible compartment sizes. They do not consider the dis-
crete version. Pirkwieser et al. (2012) extend this problem by using a measure to distinguish packings and
aiming to use solutions with a denser packing. They present a variable neighborhood search with a new
neighborhood structure.

Henke et al. (2015) introduce the MCVRP-DFCS that occurs in the context of glass waste collection. A
model formulation is proposed that can solve problem instances with up to 10 locations to proven optimality.
Moreover, they provide a variable neighborhood search that finds good quality solutions. Later on, Henke
et al. (2018) suggest a branch-and-cut algorithm for the MCVRP-DFCS. Their algorithm can solve instances
with up to 50 locations to proven optimality within two hours. The model formulation is also used for the
MCVRP-CFCS variant by setting the unit compartment size to one. We later compare against their results.
Koch et al. (2016) introduce the MCVRP-CFCS and present a heuristic approach that is based on different
genetic algorithms for the CVRP from the literature. The algorithm can find an optimal solution for the
majority of instances with up to 50 locations within one second (Henke 2018). The cost saving of using
continuously flexible compartments instead of discrete ones is also investigated.

The contributions of the paper at hand are the following. We introduce a three-index formulation tailored
to solve the MCVRP-CFCS exactly. Moreover, we introduce a two-index formulation and a route-based
formulation suited for column generation for both the MCVRP-CFCS and MCVRP-DFCS. Both algorithms
can solve the two problem variants with mild adaptions and are combined to an effective two-stage approach.
To compare the algorithms, extensive numerical experiments have been conducted on instances from the
literature. For the MCVRP-CFCS, the experiments demonstrate good performance for instances with up
to 50 customers. For the MCVRP-DFCS, several new instances can be solved to proven optimality for the
first time compared to results from the literature.

The remainder of the paper is organized as follows. In the next section, we formally define the MCVRP-
CFCS and MCVRP-DFCS. Subsequently, three exact solution approaches are presented. At first, a branch-
and-cut algorithm based on a three-index and separation procedures are introduced in Sections 3. We do the
same in Section 4 with a branch-and-cut algorithm based on a two-index formulation. Afterwards, a branch-
price-and-cut algorithm including details on the generation of route variables, stabilization techniques, valid
inequalities, and branching is presented in Section 5. In Section 6, we conduct numerical experiments
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to compare the different algorithms and compare total costs of the MCVRP-CFCS and MCVRP-DFCS.
Conclusions are drawn in Section 7.

2. Problem Definition

We formally define the MCVRP-CFCS and MCVRP-DFCS as follows. Let N = {1, . . . , n} be the set
of customers and P = {1, . . . , ρ} the set of product types. The demand of customer i ∈ N for product
type p ∈ P is denoted by dip. The set of product types Pi = {p ∈ P ∶ dip > 0} delivered to customer i ∈ N
may contain any and all product types P , i.e., Pi ⊆ P for all i ∈ N .

A maximum of m homogeneous vehicles F = {1, . . . ,m} is available for delivery. Each vehicle can be
separated into a limited number of C compartments. Note that the number of product types demanded by
customer i can exceed the number of compartments, i.e., ∣Pi∣ > C is possible such that at least two vehicles
are needed to serve customer i. For the MCVRP-CFCS, the compartment sizes can be set arbitrarily. For
the MCVRP-DFCS, the vehicle capacity can be separated into compartments such that each compartment
size is a multiple of unit size qunit.

Let G(V,E) be a complete undirected graph with vertex set V = N ∪ {0} and edge set E with i < j for
all {i, j} ∈ E. Vertex 0 represents the depot and routing costs between two nodes {i, j} ∈ E are given by
cij . A route r = {i0, . . . , is, is+1} delivering products Sik ⊆ Pik , k ∈ {1, . . . , s}, is feasible if
(i) it is a cycle passing through the depot, i.e., i0 = is+1 = {0};
(ii) all customers i1, . . . , is are different;
(iii) the number of compartments is respected, i.e., ∣⋃s

k=1 Sik∣ ≤ C; and
(iv) capacity constraints hold, i.e., for continuously flexible compartment sizes

s

∑
k=1

∑
p∈Sik

dikp ≤ Q, (1a)

or for discretely flexible compartment sizes

∑
p∈P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

∑
k∈{1,...,s},
p∩Sik≠∅

dikp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥qunit

≤ Q, (1b)

where ⌈.⌉qunit denotes the rounding up value according to the unit compartment size qunit. Regardless of
compartment division, the task is to determine a cost-minimal set of at most m feasible routes such that all
customer demands are met.

The formulations that we introduce in the following rely on different graphs. For the sake of clarity,
we already define most of these graphs in this section. A summary of all graphs is depicted in Table 1.
Graph Ḡ(V̄ , Ē) is derived from graph G(V,E) by duplicating each customer node i ∈ N for all product
types p ∈ Pi yielding a new customer set N̄ . The new graph Ḡ consists of ∣V̄ ∣ = 1+∑i∈N ∣Pi∣ vertices. For
each vertex k ∈ N̄ , let fc(k) ∈ N denote the corresponding customer, fp(k) ∈ P the corresponding product
type, and fd(k) ∈ P the corresponding demand, respectively. Moreover, let Ē be the corresponding edge set
such that Ḡ(V̄ , Ē) results in a complete undirected graph. Both graphs G and Ḡ can also be converted into
directed graphs Gd and Ḡd, respectively, by duplicating each edge between customers into two reversed arcs
and adding a second depot node n + 1. The start depot 0 is connected to all customer nodes by outgoing
arcs and the end depot n+ 1 is connected to all customer nodes by incoming arcs. Let A and Ā denote the
arc sets, respectively.
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Table 1: Overview of graphs.

graph (un)directed vertex set customer set edge/arc set depot vertices number of vertices
of customer i

G undirected V N E 0 1
G
d directed V ∪ {n + 1} N A 0, n + 1 1

Ḡ undirected V̄ N̄ Ē 0 ∣Pi∣
Ḡ
d directed V̄ ∪ {n + 1} N̄ Ā 0, n + 1 ∣Pi∣

3. Branch-and-cut algorithm (three-index formulation)

Henke et al. (2018) suggest a branch-and-cut algorithm for the MCVRP-DFCS based on a three-index
formulation. Their model handles discrete compartment size by variables yIpf , with p ∈ P and f ∈ F , that
indicate the size of the compartment of vehicle f for product type p in the number of basic unit sizes qunit. To
compare the total cost of both (continuous and discrete) problem variants, they suggest setting qunit

= 1 for
the continuous variant. Instead, we propose a model for the MCVRP-CFCS that does not use the basic unit
compartment size. Note that in this section we only present the solution approach for the MCVRP-CFCS.
For the MCVRP-DFCS, we refer to (Henke et al. 2018).

Recall graph G(V,E) defined in Section 2. The new model relies on four types of variables. First of all,
the symmetric formulation has non-negative integer routing variables xijf for all edges {i, j} ∈ E and vehicles
f ∈ F . Binary delivery variables uipf indicate whether the demand of product type p ∈ P at customer i ∈ N
is served by vehicle f ∈ F . The coupling between routing and delivery variables is ensured variables zif that
specify if node i ∈ V is visited by vehicle f ∈ F . Additionally, to handle the maximal allowed number of
compartments per vehicle, we introduce binary variables ypf indicating whether the vehicle f ∈ F delivers
product type p ∈ P . The new formulation is:

min ∑
{i,j}∈E

∑
f∈F

cijxijf (2a)

subject to ∑
f∈F

uipf = 1 ∀i ∈ N, p ∈ P, dip > 0 (2b)

uijf ≤ zif ∀i ∈ N, p ∈ P, f ∈ F (2c)
zif ≤ z0f ∀i ∈ N, f ∈ F (2d)

∑
j∈N

x0jf ≤ 2m (2e)

∑
j∈V,{i,j}∈E

xijf + ∑
j∈V,{j,i}∈E

xjif = zif ∀i ∈ V, f ∈ F (2f)

∑
i∈N

uipf ≤ nypf ∀p ∈ P, f ∈ F (2g)

∑
p∈P

ypf ≤ C ∀f ∈ F (2h)

∑
i∈N

∑
p∈P

dipuipf ≤ Q ∀f ∈ F (2i)

∑
{i,j}∈δ(S)

xijf ≥ 2σ(S) ∀f ∈ F, S ⊆ N,S ≠ ∅ (2j)

xijf ∈ {0, 1} ∀{i, j} ∈ E, i ≠ 0, f ∈ F (2k)
x0jf ∈ {0, 1, 2} ∀j ∈ N, f ∈ F (2l)
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uipf ∈ {0, 1} ∀i ∈ N, p ∈ P, f ∈ F (2m)
zif ∈ {0, 1} ∀i ∈ V, f ∈ F (2n)
ypf ∈ {0, 1} ∀p ∈ P, f ∈ F. (2o)

The objective function (2a) minimizes routing costs. Equalities (2b) ensure that each supply is deliv-
ered by exactly one vehicle. The coupling between u- and z-variables is established by constraints (2c).
Constraints (2d) ensure that a vehicle only visits customers if the depot is included in the tour and (2e)
restricts the number of vehicles. The float constraints are established by (2f). The coupling between u- and
y-variables is guaranteed by constraints (2g). Constraints (2h) and (2i) limit the number of compartments
and the capacity per vehicle, respectively. Constraints (2j), known as capacity cuts, ensure both solution
connectivity and packing feasibility according to (iii) and (1). In these constraints, δ(S) is the set of edges
with exactly one endpoint in S and σ(S) denotes the minimum number of vehicles needed to serve S. Al-
ready for the classical CVRP, it is difficult to calculate σ(S) because an (NP-hard) one-dimensional bin
packing problem with items k ∈ S, weights fd(k), and bin capacity Q must be solved. Therefore, it is usual
to replace σ(S) by a lower bound of a simple relaxation. For the MCVRP-CFCS, one such bound that
calculates the minimum of vehicles needed to serve S according to the number of compartments and the
vehicle capacity is

max{⌈
∣fp(S)∣
C

⌉ , ⌈fd(S)
Q

⌉} , (3a)

where fp(S) is the set of product types and fd(S) the sum of the demands of all vertices in S. For the
MCVRP-DFCS, we can bound σ(S) from below by

max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⌈
∣fp(S)∣
C

⌉ ,
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

1

Q
∑
p∈P

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
∑

k∈S,p=fp(k)
fd(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥qunit

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (3b)

Here, the second argument additionally takes into account discrete compartment sizes. Finally, variable
domains are defined by (2k)-(2o).

3.1. Valid inequalities
Additional symmetry breaking constraints are added to formulation (2) to avoid equivalent feasible

solutions that can occur if the same tour is assigned to different vehicles. Preliminary experiments showed
that ordering tours in decreasing order of their total cost is most beneficial for the MCVRP-DFCS (Henke
et al. 2018). Therefore, we also add the following symmetry breaking constraints to formulation (2) for the
MCVRP-CFCS.

∑
{i,j}∈E

cijxij,f+1 ≤ ∑
{i,j}∈E

cijxijf ∀f ∈ F \ {∣F ∣} (4)

3.2. Separation procedure
Simply solving (2) by using a MIP solver is not advisable because the number of capacity cuts is ex-

ponential in ∣V ∣. In this section we describe how these constraints can be added dynamically utilizing a
separation procedure.

For both integer and fractional solutions, we apply two different procedures, namely subtour-elimination
constraints and exact capacity cuts. Note that an inequality is violated if the difference between the left-hand
and right-hand side is greater than a given threshold ε = 10

−4.

Subtour-elimination constraints. For each vehicle f ∈ F , we find subtours as follows. Let x̄ijf be a solution to
the LP for vehicle f ∈ F and Gs(V,Es) be the support graph. To determine subtours, we call Algorithm 1
on support graph G

s(V,Es) with edge set Es = {{i, j} ∈ E ∶ x̄ijf > 0}. Irrespective of whether or not
subset S is a real subtour, all found violated cuts are added to the model. Note that contrary to (Henke
et al. 2018), we allow fractional solutions for this procedure.
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Capacity cuts. As proposed by Henke et al. (2018), capacity cuts are additionally separated. We call
Algorithm 1 on a combined support graph Gs(V,Es) for all vehicles where edge set Es = {{i, j} ∈ E ∶ x̄ij =
∑f∈F x̄ijf > 0, i ≠ 0}. Connected components S are determined and all violated cuts are added.

Algorithm 1: Violated cut generator
input : support graph G(V,E) with edge set E = {{i, j} ∈ E ∶ x̄ij > 0}
output: violated cuts

1 Determine connected components S of G via the efficient union-find algorithm of Tarjan (1979);
2 foreach connected component S do
3 Set S ← S \ {0};
4 Calculate the flow f0S between the depot 0 and S;
5 Calculate σ(S) according to (3a) or (3b), respectively;
6 if f0S < 2σ(S) then
7 A violated cut for subset S is found;

4. Branch-and-cut algorithm (two-index formulation)

The two-index formulation relies on the undirected graph Ḡ(V̄ , Ē) defined in Section 2. Recall that for
each node k ∈ N̄ , the functions fc(k) ∈ N , fp(k) ∈ P , and fd(k) ∈ P respectively denote the corresponding
customer, product type, and demand. Travel costs between the same customer are set to 0, i.e., ckl = 0 for
all {k, l} ∈ Ē with fc(k) = fc(l). For k ∈ V̄ , let δ(k) be the set of all edges incident to k. Our formulation is
based on the classical symmetric formulation of Laporte et al. (1985) that is already successfully applied to
other vehicle routing problems (VRP) with difficult packing restrictions, e.g. the VRP with two-dimensional
loading constraints (Iori et al. 2007). We use binary routing variables xkl indicating whether a vehicle
traverses edge {k, l} ∈ Ē. The two-index formulation is:

min ∑
{k,l}∈Ē

cklxkl (5a)

subject to ∑
{k,l}∈δ(k)

xkl = 2 ∀k ∈ N̄ (5b)

∑
{0,l}∈δ(0)

x0l = 2y (5c)

∑
{k,l}∈δ(S)

xkl ≥ 2σ(S) ∀S ⊆ N̄ , S ≠ ∅ (5d)

xkl ∈ {0, 1} ∀{k, l} ∈ Ē \ δ(0) (5e)
x0l ∈ {0, 1, 2} ∀{0, l} ∈ δ(0) (5f)

⌈∑k∈V̄ fd(k)
Q

⌉ ≤ y ≤ m and integer. (5g)

The objective (5a) minimizes travel costs. Constraints (5b) impose that each node is visited once and
constraint (5c) restricts the number of vehicles leaving from and returning to the depot. Constraints (5d),
known as capacity cuts, ensure both solution connectivity and packing feasibility according to (iii) and (1).
Again, δ(S) is the set of edges with exactly one endpoint in S and σ(S) denotes the minimum number of
vehicles needed to serve S. We bound σ(S) from below by (3a) or (3b). The domains of routing and vehicle
number variables are given by (5e)-(5f) and (5g), respectively.
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The disadvantage of formulation (5) is that on the one hand symmetry can occur between two solutions
when tours are identical but the sequence of packing product types for a customer is different and on the
other hand it cannot be solved by directly using a MIP solver because it contains the large-size family
of constraints (5d). In the following, we introduce symmetry breaking constraints as well as other valid
inequalities and describe how constraints (5d) can be added dynamically using separation procedures.

4.1. Valid inequalities
Formulation (5) can be further strengthened by employing valid inequalities. We introduce one class of

symmetry breaking constraints and two classes of logical inequalities.
Consider a customer with (at least) three product types k, l, and s supplied by one vehicle (see Figure

1a). Then the solution xkl = xls = 1 is equivalent to xks = xls = 1. To forbid the latter and ensure that
products belonging to the same customer are collected in an increasingly manner, we introduce the class of
symmetry breaking constraints

xks + xls ≤ 1 ∀k, l, s ∈ V̄ , fc(k) = fc(l) = fc(s). (6a)

Moreover, it is possible to calculate an upper bound on the flow within a customer. An example is
illustrated in Figure 1b. Consider a customer i demanding pi product types. We can divide the vertices
belonging to customer i into groups of size C, e.g. nodes 1 and 2 in Figure 1b are one group. The number
of edges within one group is at most C − 1. The pi mod C leftover vertices not assigned to a group (node 5
in Figure 1b) can be connected by at most max{0, (pi mod C)− 1} edges. Hence, the flow between vertices
of customer i is at most

maxflow(i) = ⌈pi
C

⌉ (C − 1) +max{0, (pi mod C) − 1}.

Therefore, valid inequalities are

∑
{k,l}∈Ē,

fc(k)=fc(l)=i

xkl ≤ maxflow(i) ∀i ∈ N. (6b)

If the number of compartments is C = 2 then the flow from a vertex of a customer to other vertices of the
same customer is at most 1. This is especially essential for customers with many product types. Therefore,
we can employ the second class of valid inequalities

∑
{k,l}∈δ(l),
fc(k)=fc(l)

xkl + ∑
{l,s}∈δ(l),
fc(l)=fc(s)

xls ≤ 1 ∀l ∈ V̄ . (6c)

k l

s

(a) Equivalent solutions xkl = xls = 1 (solid
lines) and xks = xls = 1 (dashed lines).

1 2

3 4 5

(b) Solution with a maximum number of edges for a customer with
five product types and a limited number of compartments C = 2.

Figure 1: Examples to illustrate inequalities (6a) and (6b). In both cases, all vertices belong to one customer
and only edges between vertices of this customer are considered.

4.2. Separation procedure
Again, formulation (5) contains a large-sized family of constraints because the number of capacity cuts

is exponential in ∣V̄ ∣. Similar to the separation procedure described in Section 3.2, subtour-elimination
constraints, and capacity cuts are added dynamically to the model as follows.
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Subtour-elimination constraints. Let x̄kl be an integer or fractional solution to the LP and Ḡs(V̄ , Ēs) be the
support graph with edge set Ēs = {{k, l} ∈ Ē ∶ x̄kl > 0}. Subtours are determined by utilizing Algorithm 1.
Analogous to Section 3.2, irrespective of whether or not subset S is a real subtour, all found violated cuts
are added to the model.

Capacity cuts. First, we apply a heuristic procedure that also relies on the support graph Ḡ
s with edge

set Ēs. The algorithm tries to find a subset S of small size that is connected and consists of many different
product types. The pseudocode is depicted in Algorithm 2. Starting with a randomly chosen vertex k ∈ N̄ ,
the set S is enlarged by adding connected vertices on the support graph Ḡ

s with preferably new product
types. Set S is further enlarged until either no connected vertex exists or a violated cut f0S < 2σ(S) is
found. The algorithm is restarted with a new non-considered randomly chosen vertex k ∈ N̄ \ U (set U
contains already considered vertices) until all vertices are processed.

Second, if no violated cut is found by the heuristic procedure, we apply Algorithm 1 for the support
graph Gs(V̄ , Ēs) and edge set Ēs = {{k, l} ∈ Ē ∶ x̄kl > 0, k ≠ 0}.

Algorithm 2: Heuristic capacity cut
input : graph Ḡs(V̄ , Ēs)
output: sets to check S

1 Set S = U = ∅;
2 while U ≠ V̄ \ {0} do
3 if S = ∅ then
4 Choose randomly a vertex k ∈ N̄ \ U and set S ← S ∪ {k} and U ← U ∪ {k};
5 else if Vertices connected to S exist then
6 Choose randomly a vertex k ∈ N̄ \ U connected to S (if possible with fp(k) ∉ fp(S)) and set

S ← S ∪ {k} and U ← U ∪ {k};
7 else
8 S = ∅;

9 Check S regarding f0S < 2σ(S);

5. Branch-price-and-cut algorithm

To solve both the MCVRP-CFCS and MCVRP-DFCS with a column-based solution approach, we pro-
pose a set-partitioning formulation. Since the MCVRP-CFCS is a restriction of the C-SDVRP, we can adapt
the model of Archetti et al. (2015). The new formulation is based on the directed graph Gd(V ∪ {n+ 1}, A)
(cf. Section 2). Each vehicle route starts and ends at the depot vertices 0 and n+ 1, respectively. A feasible
route is an elementary 0-(n + 1)-path that respects the number of compartments and capacity constraints
(cf. (i)-(1) in Section 2). Let Ω be the set of feasible routes and cr = ∑(i,j)∈A(r) cij the cost of route r ∈ Ω,
where A(r) ⊂ A is the set of arcs traversed by route r. The formulation uses binary route variables λr,
r ∈ Ω, that indicate whether a route is performed. The non-negative integer variables ψ and zi model the
number of used vehicles and the number of times customer i ∈ N is visited, respectively. The flow over
arc (i, j) ∈ A is modeled by non-negative integer variables xij . Moreover, let X = {P ′ ⊆ P ∶ ∣P ′∣ = C}
be the set of all feasible packing combinations of different product types. For example, an instance with
three product types and a maximum of C = 2 compartments results in three feasible packing combinations
X = {{1, 2}, {2, 3}, {1, 3}}. Moreover, let χL be the number of routes packed with compartment combination
L ∈ X. The formulation is as follows:

min ∑
r∈Ω

c
r
λ
r (7a)
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subject to ∑
r∈Ω

a
r
ipλ

r
= 1 ∀i ∈ N, p ∈ Pi (7b)

∑
r∈Ω

λ
r
− ψ = 0 (7c)

⌈
∑i∈N ∑p∈Pi

dip

Q
⌉ ≤ ψ ≤ m and integer (7d)

λ
r
∈ {0, 1} ∀r ∈ Ω (7e)

∑
r∈Ω

g
r
Lλ

r
− χL = 0 ∀L ∈ X (7f)

0 ≤ χL ≤ m and integer ∀L ∈ X (7g)

∑
r∈Ω

e
r
iλ
r
− zi = 0 ∀i ∈ N (7h)

1 ≤ zi ≤ min{∣Pi∣,m} and integer ∀i ∈ N (7i)

∑
r∈Ω

b
r
ijλ

r
− xij = 0 ∀(i, j) ∈ A (7j)

0 ≤ xij ≤ min{∣Pi∣, ∣Pj∣,m} and integer ∀(i, j) ∈ A. (7k)

The objective function (7a) minimizes routing costs. Equalities (7b) ensure that each supply is delivered
by exactly one route. In these constraints, the binary coefficient arip = 1 if product p ∈ Pi is delivered to
customer i ∈ N by route r. Constraint (7c) models the number of vehicles and constraints (7d) and (7e)
define the domains for vehicle number variable ψ and route variables λr. Constraints (7f)-(7k) are redundant
but might be added for branching and/or to ensure integer solutions. More precisely, constraints (7f)-(7g)
count the number of routes that are packed with compartment combination L ∈ X. Here, the coefficients grL
indicate if route r is packed with compartment combination L ∈ X. Moreover, constraints (7h)-(7k) restrict
the number of times customer i ∈ N is visited and arc (i, j) ∈ A is traversed. In these constraints, the
binary coefficients eri and brij indicate if customer i ∈ N is visited and arc (i, j) ∈ A is traversed by route r,
respectively.

Since the set Ω of feasible routes and, accordingly, the number of columns in formulation (7) is very big,
we perform a branch-price-and-cut (BPC) algorithm to solve the problem. For this purpose, we start with
the linear relaxation of (7) over a subset Ω

′
⊂ Ω. This so-called restricted master problem (RMP) is solved

by column generation (Desaulniers et al. 2005). Similar to the C-SDVRP, the subproblem can be formulated
as a variant of the shortest-path problem with resource constraints (SPPRC, Irnich and Desaulniers 2005).
To reach integrality this column generation process is embedded in a branch-and-bound algorithm.

In the following, we describe different components of the algorithm, namely how to solve the subproblem,
stabilization techniques by the help of dual inequalities, valid inequalities to strengthen the lower bound,
the branching procedure, and further acceleration techniques.

5.1. Pricing problem formulation
Instead of solving one subproblem at each column generation iteration, we divide the subproblem into

several pricing problems and solve each of these pricing problems separately. To reduce the difficulty of
packing constraints according to compartments, we consider ∣X∣ pricing problems, i.e., one pricing problem
for each feasible compartment combination L ∈ X, where L ⊆ P denotes the set of considered product types.
Recall that for example, an instance with three product types and a maximum of C = 2 compartments results
in three pricing problems X = {{1, 2}, {2, 3}, {1, 3}}.

Let πip, σ, νL, µi, and ρij be the dual variables associated with constraints (7b), (7c), (7f), (7h), and
(7j), respectively. Reconsider the directed graph Ḡd(V̄ ∪ {n + 1}, Ā) defined in Section 2. Let

c̄kl = ckl −
1

2
(πfc(k)fp(k) + πfc(l)fp(l)) −

1

2
(µfc(k) + µfc(l)) − ρfc(k)fc(l)
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be the modified travel cost over arc (k, l) ∈ Ā. Then, the pricing problem for L ∈ X can be formulated as
follows:

min ∑
(k,l)∈Ā

c̄klxkl − σ − νL (8a)

subject to ∑
(k,l)∈Ā

xkl − ∑
(l,s)∈Ā

xls = 0 ∀l ∈ N̄ (8b)

∑
l∈V̄

x0l = 1 (8c)

∑
k∈V̄

xk,m+1 = 1 (8d)

∑
(k,l)∈Ā

xkl + ∑
(l,s)∈Ā

xls = 0 ∀l, fp(l) ∈ P \ L (8e)

∑
(k,l)∈δ(S)

xkl ≥ 2σ(S) ∀S ⊆ N̄ , S ≠ ∅ (8f)

xkl ∈ {0, 1} ∀(k, l) ∈ Ā. (8g)

The objective (8a) minimizes the reduced cost of the route and float conservation is ensured by con-
straints (8b). Constraints (8c) and (8d) impose that exactly one vehicle leaves and enters the depot, respec-
tively. All arcs that should not be considered in the pricing problem for L ∈ X are set to 0 in constraints (8e).
Capacity constraints (8f) ensure connectivity and packing feasibility according to (1). Note that (iii) holds
true by construction because the number of used compartments is already limited by constraints (8e). The
domain of variables xkl is given by (8g).

5.2. SPPRC formulation for the pricing problem
To solve the pricing problem for L ∈ X, we formulate it as an SPPRC over an undirected multi-graph.

For this purpose, the depot node 0 and all customer nodes i ∈ N are duplicated into two copies 0
′ and 0

′′

as well as i′ and i
′′, respectively. Each arc (i, j) ∈ A results in two routing edges {i′, j ′′} and {i′′, j ′}. To

model deliveries to customer i, there are parallel delivery edges between i′ and i′′ for each feasible packing
combination Si ⊆ Pi with Si ⊆ L, denoted as {i′, i′′}Si . Figure 2 shows an example of two pricing problems
for an instance with three customers.
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Figure 2: Two SPPRC pricing networks with three customers N = {1, 2, 3} and product type sets P1 =

{2, 3}, P2 = {1, 2} and P3 = {1, 2, 3} for an instance with C = 2 and ρ = 3 yielding three separate pricing
problem L1 = {1, 2}, L2 = {1, 3}, and L3 = {2, 3}. The left picture illustrates the network for L2 and the
right one for L3. Note that packing combinations including product types p = 2 and p = 1 are not feasible
for L2 and L3, respectively.

A route is a 0
′′-0′-path alternating between vertices V ′

= {0
′}∪ {i′ ∶ i ∈ N} and V ′′

= {0
′′}∪ {i′′ ∶ i ∈ N}.

The reduced cost can be defined as

c̃i′,j ′′ = c̃i′′,j ′ = cij − (µi + µj + ρij + ρji)/2 ∀(i, j) ∈ A (9a)

c̃
Si
i′,i′′

= − ∑
p∈Si

πip ∀i ∈ N,Si ⊆ Pi, Si ⊆ L (9b)

with µ0 = σ + νL. All benchmark instances are symmetric, therefore, the multi-graph has also a symmetric
reduced-cost structure.

The demand is modeled differently for both problem variants. For the MCVRP-CFCS, we set the demand

d
Si
i′,i′′

= ∑
p∈Si

dip (10)

for all delivery edges and di′j ′′ = di′′j ′ = 0 on routing edges {i′, j ′′} and {i′′, j ′}. A 0
′′-0′-path represents a

feasible route if the accumulated demand does not exceed the vehicle capacity Q.
For the MCVRP-DFCS, we consider instead a demand vector d of dimension ∣L∣ as resource with

(dSi
i′,i′′

)
p
= {dip if p ∈ Si,

0 otherwise,
p ∈ L, (11)

for delivery edges and d = 0 for routing edges {i′, j ′′} and {i′′, j ′}. A 0
′′-0′-path with accumulated demand

vector d represents a feasible route if

∑
p∈L

⌈dp⌉qunit ≤ Q. (12)

The solution approach of the pricing problems is split into two phases. First, we pre-compute Pareto-
optimal deliveries for each customer i ∈ N . Second, the pricing problem is solved via an SPPRC on the
reduced SPPRC multi-graph only containing Pareto-optimal deliveries.

Pareto-optimal deliveries. Since the number of product types per pricing problem does not exceed ten for
all benchmark instances (see Section 6.1), the number of Pareto-optimal deliveries can be determined by
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enumeration. The definition of Pareto-optimality differs for both problem variants. For the MCVRP-CFCS,
an edge {i′, i′′}S

1
i is not Pareto-optimal and can be excluded if an edge {i′, i′′}S

2
i exists with

c̃
S

2
i

i′,i′′
≤ c̃

S
1
i

i′,i′′
and d

S
2
i

i′,i′′
< d

S
1
i

i′,i′′
. (13)

For the MCVRP-DFCS, additionally S2
i ⊆ S

1
i must hold. Note that the Pareto-reduction must be repeated

in every column generation iteration because dual prices change in each iteration.

SPPRC over the reduced multi-graph. To solve the SPPRC on the reduced multi-graph, we use the following
resources: (i) accumulated reduced cost according to (9); (ii) accumulated demand (vector) according to
(10) or (11), respectively; and (iii) visit indicators for each customer i ∈ N that are increased when one
of the edges {i′, i′′}Si is traversed. At the beginning, all resources are set to 0 and labels are propagated
alternating between vertex sets V ′ and V

′′, i.e., in monodirectional forward labeling, a vertex i
′ is only

propagated towards the same customer vertex i
′′ and vertices i′′ ∈ V

′′ are only propagated towards a
different customer vertex j ′ ∈ V ′ with i ≠ j. Labels are feasible if the (sum of vector entries of the) demand
does not exceed Q and if the visit indicator does not exceed 1. Note that for the MCVRP-DFCS, it does
not suffice to compare the accumulated demand for dominance but the demand vector must be taken into
account component-by-component.

It is possible to use an implicit bidirectional labeling approach because the SPPRC is completely sym-
metric such that forward and backward propagation produces identical partial paths. Thereby, the compu-
tational effort can be reduced by only propagating in one direction and combining these partial paths in
a merge procedure. This technique has already been applied in (Bode and Irnich 2012; Goeke et al. 2019;
Gschwind et al. 2019).

5.3. Stabilization and dual inequalities
To stabilize the column generation process, dual inequalities (DIs) can be added to the dual model to the

linear relaxation of (7). Let D∗ be the set of optimal solutions to the dual model to the linear relaxation of
(7). According to (Amor et al. 2006), a dual-optimal inequality (DOI) is defined as a DI of the form t

T
π ≤ t

with t ∈ Zm and t ∈ Z if D∗
⊆ {π ∶ tTπ ≤ t}. Moreover, a set of DIs QT

π ≤ q with Q ∈ Zm×n and q ∈ Zn

comprises deep dual-optimal inequalities (DDOIs) if D∗ ∩ {π ∶ QT
π ≤ q} ≠ ∅. A general introduction to

the use of DIs for the stabilization of the column generation process can be found in (Amor et al. 2006;
Gschwind and Irnich 2016).

DIs are in general not necessarily DOIs or DDOIs for both the MCVRP-CFCS and MCVRP-DFCS.
Nevertheless, it is beneficial to add DI columns at the beginning to the RMP to stabilize the column-
generation process at the risk of a possible over-stabilization. The addition of DIs and possible over-
stabilization resolved with a recovery procedure are explained in more detail in the following.

Static addition of dual inequalities. For each customer i ∈ N and product pair p, q ∈ P with dip ≤ diq,
the DIs columns corresponding to the pair inequalities (PI) πip ≤ πiq are added to the initial RMP. Since
the number of product types ∣Pi∣ per customer i is low (less than ten for all benchmark instances) and
rather many PIs are eliminated because of over-stabilization (see the paragraph below), we decided to
add all PIs per customer instead of typically used ranking inequalities πip1 ≤ πip2 ≤ ⋅ ⋅ ⋅ ≤ πip∣Pi∣ with
dip1 ≤ dip2 ≤ ⋅ ⋅ ⋅ ≤ dip∣Pi∣ (Amor et al. 2006). To avoid a high number of recovery procedure iterations, we
do not add further DIs of the form πip ≤ ∑p∈S πip with S ⊆ Pi, so-called subset inequalities, that strongly
influence the compartment composition of the solution routes. Moreover, we do not identify violated DIs
during the pricing approach and add them dynamically to the master problem (7).

Over-stabilization and recovery procedure. Note that in general PIs are neither DOIs nor DDOIs such that
all dual-optimal solutions are cut-off. This possible over-stabilization can be purged by a recovery procedure
proposed in (Gschwind and Irnich 2016). Given the RMP solution, this procedure tries to build a pure
route-columns solution. If this is not possible, i.e. a DI column corresponding to πip ≤ πiq with a positive
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value exists that is not compatible with any route column, then the RMP is over-stabilized. In this case,
the recovery procedure eliminates all PIs πip̄ ≤ πiq with p̄ ∈ Pi from the RMP. Afterwards, the column
generation process restarts and iterates until a pure route-columns solution exists. Note that a DI column
is classified incompatible with a route column if either the resulting route column exceeds the number of
compartments C or a product type is delivered twice.

5.4. Valid inequalities and cutting strategy
Three classes of valid inequalities are added to the RMP during the solution process. On the one hand we

add two families of non-robust cuts, namely subset-row inequalities (SR inequalities) (Jepsen et al. 2008) for
subsets of cardinality three and strong-degree constraints (SD constraints) (Contardo et al. 2014). Subset-
row inequalities for subsets of cardinality three ensure for elementary routes that at most one route that
fulfills at least two of three tasks is part of a feasible solution. Strong-degree constraints ensure that a
demand dip with i ∈ N and p ∈ P is served by at least one elementary or non-elementary route. The
definition of these non-robust cuts including the impact on DIs is the same for both MCVRP-FCS variants
as for the C-SDVRP. Therefore, we refer to (Gschwind et al. 2019) for a detailed description. On the other
hand, we add the family of robust capacity cuts (Fukasawa et al. 2005) that are described in detail in the
following.

Let S ⊆ N , S ≠ ∅, be a customer subset and let δ−(S) denote the arcs of the digraph G = (V,A) with
i ∉ S and j ∈ S. Then, we can formulate the capacity cut (CC)

∑
r∈Ω

⎛
⎜
⎝

∑
(i,j)∈δ−(S)

b
r
ij

⎞
⎟
⎠
λ
r
≥ max{⌈

∑i∈S∑p∈Pi
dip

Q
⌉ , ⌈∣{p ∈ Pi ∶ i ∈ S}∣

C
⌉} (14)

with corresponding dual price γS . The right-hand side does not only consider the vehicle capacity Q but also
the available number of compartments C. These cuts are robust because the value γS/2 can be distributed
symmetrically on the edges (i′, j ′′) and (i′′, j ′) for all (i, j) ∈ δ−(S) of the undirected SPPRC pricing network.

Overall cutting strategy. The cut-generation strategy depends on the MCVRP-FCS variant and the underly-
ing instance. Since the number of compartments C is typically more restrictive than the vehicle capacity Q,
SR inequalities and SD constraints are less effective compared to the C-SDVRP. Moreover, both cutting
types influence the Pareto-reduction and are therefore not used at all or only up to level three in the branch-
and-bound tree (for details see Section 6.3). Of course, SD constraints are additionally added deeper in the
tree if needed to guarantee elementary routes for the completeness of the branching rule (cf. Section 5.5).

In contrary, CCs are very effective for both MCVRP-FCS variants. Therefore, the following CCs are
already added at the beginning to the initial RMP. For each customer i ∈ N with ∣Pi∣ > C, we add a
capacity cut for subset S = {i} if the right-hand side of (14) is at least 2. Moreover, let ri(j) be a ranking
function ordering the neighbors of i by travel cost, i.e. ri(j1) = 1, ri(j2) = 2, . . . for ordered travel costs
ci,j1 ≤ ci,j2 ≤ . . . for j1, j2, ⋅ ⋅ ⋅ ∈ N . For each i ∈ N , we add all CCs for customer subsets S = {i, j} ⊆ N
with Pi ∪ Pj ≠ Pi ∩ Pj , ∣Pi ∪ Pj∣ > C, and minimal ranking function ri(j). Additionally, for instances with
three or more available vehicles, we sort for each customer i ∈ N the neighbors j1, j2, ⋅ ⋅ ⋅ ∈ N according to
the ranking function, i.e. ri(j1) < ri(j2) < . . . , and add a CC for the smallest subset S = {i, j1, j2, . . . } with
the right-hand side of (14) equal to 3.

5.5. Branching
In the following, we briefly summarize the six-level branching strategy that is similar to the one applied

in (Archetti et al. 2015; Gschwind et al. 2019). At the first level, we branch on the number of vehicles and at
the second level, we branch on the number of routes that are packed with compartment combination L ∈ X
(see constraints (7f)-(7g)). At the third level, we branch on the number of visits to each customer. Note that
infeasible subsets Pi are eliminated from the customer network if possible. At the fourth level, we branch
on the edge flow. Again, edges can be eliminated from the customer network for zero-flow decisions. At
level five and six, we use Ryan-Foster-branching for supplies at the same customer and different customers,
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respectively. Up to level six the branching scheme is not complete because non-elementary routes can still be
part of the solution. To guarantee elementary routes, we separate SD constraints if all other values considered
at branching levels one to six are integer. For an explanation for the completeness of the branching scheme
and the impact of branching on DIs, we refer to (Gschwind et al. 2019; p. 97).

To improve the dual bound as fast as possible, we use a best-bound first tree exploration strategy. The
branching variable is selected as the one with the fractional part closest to 0.5.

5.6. Acceleration techniques
To relax the elementary SPPRC, we use the ng-path relaxation proposed by Baldacci et al. (2011) that

prohibits cycles in a pre-defined neighborhood of vertex i but allows cycles over vertex j if j is not in the
neighborhood of i. For larger neighborhood sizes, fewer cycles are possible but the computational effort
increases on average. In our case, a good tradeoff between neighborhood size and computational effort is
obtained with a neighborhood size of ten.

Moreover, the SPPRC is solved first heuristically on several reduced SPPRC network at each iteration
to accelerate the column generation process. We consider two types of reduction techniques. The first one
reduces the size of the customer network according to delivery edges. Considering Pareto-optimal deliveries,
we only use the best or three best product combinations for each customer i ∈ N , i.e. S∗i = arg minSi⊆Pi c̃

Si
i′,i′′

or S∗i = {Si1 , Si2 , Si3} with c̃
Si1
i′,i′′

, c̃
Si2
i′,i′′

, c̃
Si3
i′,i′′

minimal, respectively. Let Ddel
= 1, 3 denote this relaxation and

D
del

= S
∗ all Pareto-optimal deliveries, respectively. The second type of reduction technique reduces the

size of the customer network according to routing edges. We limit the number of edges Dadj adjacent to a
customer by 2, 5, and 10. Additionally, we only consider edges between customers and the depot as well as
edges between customers belonging to the pre-calculated TSP-tour over all vertices. Let Dadj

= TSP denote
this relaxation. Combining both reduction techniques and considering different pricing problems, the overall
pricing strategy is depicted in Algorithm 3.

Algorithm 3: Heuristic pricing strategy
input : dual prices for the SPPRC network
output: negative reduced cost columns or information that no such column exists

1 for Ddel
∈ {1, 3, S

∗} do
2 for Dadj

∈ {2,TSP, 5, 10, ∣n∣} do
3 for randomly sorted L ∈ X do
4 Solve pricing problem L for the reduced SPPRC network with delivery edges Ddel and

routing edges Dadj ;
5 if at least one negative reduced cost column is found then
6 return columns;

7 return information that no negative reduced cost column exist;

6. Computational results

In this section, we first give an overview of the benchmark instances and then describe details of the
implementation. After presenting an overview of pretests and the computational setup, the section closes
with detailed results and a comparison between the algorithms and total costs for both MCVRP-FCS
variants.
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6.1. Benchmark instances
In total, we consider three sets of small(H15), mid-size(H18), and large(H15) benchmark instances.

All instances are characterized by three parameters: the number of product types ρ, the number of available
compartments per vehicle C, and a supply parameter s that denotes if the total number of supplies is small
(s = 1), medium (s = 2), or large (s = 3). Note that the classification into small(H15), mid-size(H18), and
large(H15) only depends on the number of vertices ∣V ∣ and not on other parameters (especially not on the
supply parameter s). The same set of benchmark instances can be used for both problem variants. For the
MCVRP-DFCS, the unit compartment size is set to qunit

= 0.1Q, i.e., the vehicle is divided into 10 basic
compartment units. Note that the vehicle capacity Q is divisible by ten for all benchmark instances. If the
number of product types equals the number of compartments, i.e., ρ = C, then the number of compartments
does not restrict the feasible region and the MCVRP-CFCS is actually a C-SDVRP.

The first set of mid-size(H18) instances is proposed in (Henke et al. 2018) and consists of 675 instances
with 10 to 50 vertices. The number of product types is ρ = 3, 4, the maximal number of compartments is
C = 2, 3, 4, and the supply parameter is s = 1, 2, 3. The instances are constructed in such a way that the
number of vehicles m = 2, 3 is relatively constant.

The second and third set of benchmark instances are introduced in (Henke et al. 2015). For these
instances, the number of product types ρ = 3, 6, 9 and the maximal number of compartments C = 2, 3, 4, 6, 7, 9
are larger compared to the first set of instances while the supply parameter is again s = 1, 2, 3. Moreover,
the number of vehicles is not relatively constant but is higher for instances with more customers and total
demand. Originally, the second set contained 1350 instances with 10 vertices. Because the instances are
small and rather easy to solve, we only use a subset of 135 small(H15) instances that consists of 5 (instead
of 50) instances for each ρ-C-s-combination. The third set of 27 large(H15) instances with 50 vertices
contains one instance for each ρ-C-s-combination.

6.2. Details of the implementation
The branch-and-cut algorithms are implemented in C++ using CPLEX 12.10.0 with Concert Technology.

For the branch-price-and-cut algorithm, the RMP is also solved utilizing CPLEX at each column-generation
iteration. Moreover, CPLEX is used as a primal MIP-based heuristic solver after the solution of each branch-
and-bound node using all generated but DI columns. All algorithms are compiled into 64-bit single-thread
code with Microsoft Visual Studio 2015. The computational study is carried out on a 64-bit Microsoft
Windows 10 computer with an Intel® Core™ i7-5930k CPU clocked at 3.5 GHz and 64 GB of RAM. For
the separation procedure of the branch-and-cut algorithms, generic callbacks are used for both user and
lazy cuts. According to (Henke et al. 2018), computation times are limited to a maximum of 7200 seconds
(2 hours). Apart from the number of threads and the time limit, CPLEX’s default values are kept for all
parameters.

6.3. Pretests and computational setup
In this section, we specify the solution approaches that are compared for both problem variants. Pretests

showed that it is beneficial to combine two of the three solution approaches (see details below). Table 2
shows an overview of all solution approaches that are explained in detail in the following.

First of all, the branch-price-and-cut algorithm proposed in Section 5 is called BaP. Moreover, we refer
to the branch-and-cut algorithms based on the three-index and two-index formulation as ThreeIndex (for
the continuous variant), ThreeIndexDiscrete (for the discrete variant) and TwoIndex (for both variants),
respectively. Henke et al. (2018) propose to solve the MCVRP-CFCS with the three-index formulation for
the MCVRP-DFCD and unit size qunit

= 1. We also refer to this version as ThreeIndexDiscrete.
For the branch-price-and-cut algorithm, pretests showed that the following settings are beneficial. As

stated in Section 5.4, some CCs are already added at the beginning to the initial RMP and the cut-generation
of SR inequalities and SD constraints depends on the underlying instance and problem variant. For the
MCVRP-CFCS, SR inequalities and SD constraints affect the Pareto-reduction and have a strong impact
on computation times unless the supply parameter is s = 1. Therefore, we do not use SR inequalities at all
and SD constraints within the first levels of the branch-and-bound tree for the MCVRP-CFCS for instances
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Table 2: Overview of solution approaches.

name MCVRP-CFCS MCVRP-DFCS

ThreeIndex branch-and-cut of the three-index for-
mulation (see Section 3)

ThreeIndexDiscrete branch-and-cut of Henke et al. (2018)
with qunit

= 1 (see Section 3)
branch-and-cut of Henke et al. (2018)
(see Section 3)

TwoIndex branch-and-cut of the two-index formulation (see Section 4)
BaP branch-price-and-cut (see Section 5)
BaP+ThreeIndex two-stage-approach combining BaP and ThreeIndex
BaP+TwoIndex two-stage-approach combining BaP and TwoIndex

with supply parameter s = 2, 3, respectively. SD constraints are only separated if all values at all branching
levels are integer. For the MCVRP-DFCS, the Pareto-reduction is less effective and SR inequalities and SD
constraints are used up to level three in the branch-and-bound tree.

The computation time of ThreeIndex mainly depends on the number of vertices. Instead, the compu-
tational performance of both TwoIndex and the BaP is instance-specific and does not follow obvious rules.
Moreover, the solution times are discrepant for these algorithms for some instances as depicted in Table 3.
Note that the entries of all result tables have the following meaning:

#opt: number of instances solved to proven optimality within 2 hours (7200 seconds);
time T̄ : average computation time in seconds; unsolved instances are taken into account with the

time limit TL of 2 hours (7200 seconds);
gap: 100 ⋅ (UB − LB)/LB, i.e., the gap in percent;
No.: instance number.

To take advantage of the obvious discrepancy in the computation times, we combine both algorithms by first
solving the problem with BaP. If no optimal solution is found after 60 seconds or 1000 generated columns, the
MIP solver is called to find a good feasible solution and the problem is solved by TwoIndex. Using the feasible
solution as upper bound for the branch-and-cut algorithm reduces the size of the branch-and-bound tree and,
therefore, yields better computational performance. We refer to this variant as BaP+TwoIndex. To test the
influence of using upper bounds for the branch-and-cut algorithm of the three-index formulation depicted in
Section 3, we also consider the variant BaP+ThreeIndex in which the BaP is analogously interrupted after
60 seconds or 1000 generated columns.

Table 3: Instances for the MCVRP-CFCS with contrary computation times for the TwoIndex and BaP
approach and summarized results for mid-size(H18) instances with ∣V ∣ = 10, 15.

Instances TwoIndex BaP BaP+TwoIndex

∣V ∣ ρ C s No. #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

10 4 2 3 1 1 516.8 0.0 1 30.8 0.0 1 24.1 0.0
10 4 2 3 3 1 1736.5 0.0 1 91.0 0.0 1 706.7 0.0
15 3 2 2 3 1 1.9 0.0 1 529.6 0.0 1 62.0 0.0
15 3 3 2 4 1 0.1 0.0 1 1119.9 0.0 1 63.5 0.0

Total 4 563.9 0.0 4 442.8 0.0 4 214.1 0.0

Total (∣V ∣ = 10) 75 46.0 0.0 75 7.4 0.0 75 24.0 0.0
Total (∣V ∣ = 15) 69 791.4 0.3 63 1653.8 13.4 69 681.0 0.3
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6.4. Results for the MCVRP-CFCS
To compare the algorithms, we first consider mid-size(H18) benchmark instances with a lower number

of product types ρ compared to the small(H15) and large(H15) benchmark instances. As mentioned
before, we combine the BaP approach with both the ThreeIndex and TwoIndex approach. The results
clustered according to the number of supplies are summarized in Table 4. Overall, the ThreeIndex approach
can solve most of the instances to proven optimality and has the lowest average computation time. The
ThreeIndexDiscrete is slightly inferior but can solve one more instance with supply parameter s = 1 exactly
and is on average a bit faster for instances with supply parameter s = 2. Using the BaP approach for upper
bounds up to 60 seconds does not speed up the ThreeIndex approach on average. The BaP+TwoIndex
approach is altogether inferior but is almost 50 % faster for instances with supply parameter s = 1.

Table 4: MCVRP-CFCS results for mid-size(H18) instances clustered according to the number of supplies.

ThreeIndexDiscrete
Instances ThreeIndex BaP+ThreeIndex BaP+TwoIndex (Henke et al. 2018)

s #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

1 225 210 602.4 0.5 210 597.2 0.5 217 348.8 0.6 211 632.6 0.5
2 225 209 914.9 0.3 208 904.4 0.3 153 2373.1 17.0 205 890.8 0.3
3 225 209 811.9 0.5 208 857.3 0.5 123 3346.0 36.0 207 861.9 0.5

Total 675 628 776.4 0.4 626 786.3 0.4 493 2022.6 17.9 623 795.1 0.4

Given an instance with unknown supply parameter s, it is very simple to classify the instance accord-
ing to s. Therefore, we suggest applying the BaP+TwoIndex approach for instances with s = 1 and the
ThreeIndex approach for instances with s = 2, 3, respectively. In the following, we refer to this combined
approach as ThreeIndex/BaP+TwoIndex. The results clustered according to the number of vertices are
summarized in Table 5. Excluding results of ThreeIndex/BaP+TwoIndex, the ThreeIndex approach per-
forms best and is superior in almost all clusters. The computation time of BaP+TwoIndex is on average
considerably slower. Nevertheless, combing both approaches yields seven more optimally solved instances
and reduces the average computation time by around 80 seconds compared to the ThreeIndex approach. In
total, the ThreeIndex/BaP+TwoIndex approach can solve 635 of 675 instances to proven optimality.

Table 5: MCVRP-CFCS results for mid-size(H18) instances clustered according to the number of vertices.

ThreeIndexDiscrete ThreeIndex/
Instances ThreeIndex BaP+ThreeIndex BaP+TwoIndex (Henke et al. 2018) BaP+TwoIndex

∣V ∣ #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

10 75 75 0.9 0.0 75 3.4 0.0 75 24.0 0.0 75 1.0 0.0 75 0.8 0.0
15 75 75 4.0 0.0 75 32.4 0.0 69 681.0 0.3 75 5.2 0.0 75 3.8 0.0
20 75 75 28.8 0.0 75 57.3 0.0 61 1486.9 8.5 75 22.6 0.0 75 28.0 0.0
25 75 75 107.7 0.0 75 132.1 0.0 55 2052.6 14.3 75 147.5 0.0 75 84.9 0.0
30 75 75 214.0 0.0 75 209.4 0.0 51 2361.2 23.9 75 280.1 0.0 75 192.8 0.0
35 75 72 845.4 0.1 72 757.5 0.1 49 2587.5 23.9 72 658.7 0.1 72 824.3 0.1
40 75 66 1407.5 0.7 65 1423.8 0.6 45 2933.4 30.1 66 1338.3 0.6 65 1428.4 1.7
45 75 58 2205.3 1.4 58 2193.5 1.5 45 2924.0 28.4 55 2294.2 1.4 61 1949.0 1.0
50 75 57 2174.2 1.8 56 2267.3 1.7 43 3153.3 31.4 55 2408.4 1.6 62 1715.0 1.4

Total 675 628 776.4 0.4 626 786.3 0.4 493 2022.6 17.9 623 795.1 0.4 635 691.9 0.5

The so-far best-performing algorithms ThreeIndex, BaP+TwoIndex, and ThreeIndex/BaP+TwoIndex
are also tested for small(H15) and large(H15) instances, both with a higher number of product types
compared to the mid-size(H18) instances. Additionally, we test the BaP approach for these instances
because symmetry issues are more relevant for the TwoIndex approach for larger ρ. Results clustered
according to the number of product types and the supply parameter are summarized in Table 6. Note that
we only report the gap if an upper bound is found.
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For the small(H15) instances with only 10 vertices, the ThreeIndex approach can solve all instances
with an average computation time of 37.2 seconds to proven optimality. The other approaches, BaP
and BaP+TwoIndex, only perform appropriately for instances with supply parameter s = 1. Also the
ThreeIndex/BaP+TwoIndex approach can solve one instance less with an average computation of about
50 seconds more compared to the ThreeIndex approach.

For large(H15) instances, the performance of the algorithms is different. The ThreeIndex approach
cannot solve any of the instances and cannot even find a feasible solution. The reason for the poor perfor-
mance is most likely that the number of vehicles is on average three times higher for large(H15) instances
compared to small(H15) and mid-size(H18) instances and, therefore, symmetry issues outweigh. Note
that the number of available vehicles for mid-size(H18) (large(H15)) instances is on average 2.7 (8.4).
The BaP approach can at least solve four instances to proven optimality and the BaP+TwoIndex approach
performs best with six instances solved to proven optimality. In total, we can find the optimal solution for
6 of 27 large(H15) instances.

Summarized we advise using the ThreeIndex approach for instances with a low number of ver-
tices ∣V ∣. For mid-size(H18) and large(H15) instances, we recommend solving the instance with the
ThreeIndex/BaP+TwoIndex approach. Combining all results, we can solve all 135 small(H15) instances,
643 of 658 mid-size(H18) instances and 6 of 27 large(H15) instances. Instance-by-instance results are
listed in the Online Appendix.

Table 6: MCVRP-CFCS results for small(H15) and large(H15) instances clustered according to the number
of product types and the supply parameter.

ThreeIndex/
Instance ThreeIndex BaP BaP+TwoIndex BaP+TwoIndex

class ∣V ∣ ρ s #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

small 10 3 1 10 10 0.2 0.0 10 0.1 0.0 10 0.2 0.0 10 0.2 0.0
2 10 10 0.4 0.0 10 0.9 0.0 10 0.9 0.0 10 0.4 0.0
3 10 10 0.5 0.0 10 3.0 0.0 10 2.8 0.0 10 0.5 0.0

6 1 15 15 0.4 0.0 15 1.2 0.0 15 1.2 0.0 15 1.2 0.0
2 15 15 1.1 0.0 15 40.5 0.0 12 1477.2 0.8 15 1.1 0.0
3 15 15 2.2 0.0 14 531.0 4.3 12 1515.1 6.7 15 2.2 0.0

9 1 20 20 12.3 0.0 20 12.9 0.0 19 367.8 < 0.1 19 367.8 < 0.1
2 20 20 85.6 0.0 18 1287.2 0.3 9 4028.5 13.8 20 85.6 0.0
3 20 20 149.9 0.0 11 4317.9 2.1 5 5404.6 34.7 20 149.9 0.0

Total(∣V ∣ = 10) 135 135 37.2 0.0 123 896.2 0.8 102 1784.9 8.0 134 90.0 0.0

large 50 3 1 2 0 TL 1 3615.6 < 0.1 2 278.3 0.0 2 278.3 0.0
2 2 0 TL 0 TL 40.3 0 TL 15.5 0 TL
3 2 0 TL 0 TL 0 TL 50.7 0 TL

6 1 3 0 TL 2 4203.4 1.0 2 2496.4 29.3 2 2496.4 29.3
2 3 0 TL 0 TL 0 TL 0 TL
3 3 0 TL 0 TL 0 TL 0 TL

9 1 4 0 TL 1 6983.1 2 4131.1 2 4131.1
2 4 0 TL 0 TL 0 TL 0 TL
3 4 0 TL 0 TL 0 TL 0 TL

Total(∣V ∣ = 50) 27 0 TL 4 6569.4 6 5710.0 6 5710.0

6.5. Results for the MCVRP-DFCS
For this problem variant, we also consider the mid-size(H18) benchmark instances with a lower number

of product types ρ first. The results clustered according to the number of supplies are summarized in
Table 7. The performance of the algorithms is similar to the MCVRP-CFCS variant. Again, using the
BaP approach for upper bounds up to 60 seconds does not speed up the ThreeIndexDiscrete approach on
average. Overall, the ThreeIndexDiscrete approach performs best but the BaP+TwoIndex is superior for
instances with supply parameter s = 1. Due to the different performance of the algorithms for different
supply parameters s, we also consider the ThreeIndexDiscrete/BaP+TwoIndex approach.
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Table 7: MCVRP-DFCS results for mid-size(H18) instances clustered according to the number of supplies.

ThreeIndexDiscrete
Instances (Henke et al. 2018) BaP+ThreeIndexDiscrete BaP+TwoIndex

s #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

1 225 208 704.9 0.6 208 719.7 0.6 214 562.3 0.7
2 225 206 1025.1 0.3 206 1061.1 0.4 152 2586.2 20.4
3 225 208 871.1 0.5 207 941.2 0.6 114 3634.6 39.0

Total 675 622 867.0 0.5 621 907.3 0.5 480 2261.0 20.0

Results clustered according to the number of vertices can be found in Table 8. Excluding results of
ThreeIndexDiscrete/BaP+TwoIndex, the ThreeIndexDiscrete approach is the best performing single-
stage approach with 622 of 675 optimally solved instances and an average computation time of 867.0 seconds.
For this problem variant, the ThreeIndexDiscrete/BaP+TwoIndex approach can solve 628 of 675 instances
to proven optimality. Compared to the MCVRP-CFCS variant, we can solve 7 instances less and the average
computation time increases by around 120 seconds (2 minutes).

Table 8: MCVRP-DFCS results for mid-size(H18) instances clustered according to the number of vertices.

ThreeIndexDiscrete ThreeIndexDiscrete/
Instances (Henke et al. 2018) BaP+ThreeIndexDiscrete BaP+TwoIndex BaP+TwoIndex

∣V ∣ #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

10 75 75 1.2 0.0 75 19.4 0.0 74 193.1 < 0.1 75 1.1 0.0
15 75 75 5.5 0.0 75 43.3 0.0 68 833.6 2.8 75 6.7 0.0
20 75 75 37.7 0.0 75 78.3 0.0 65 1280.3 8.0 75 41.5 0.0
25 75 74 190.8 0.0 74 238.4 0.0 53 2395.6 17.2 74 274.2 0.0
30 75 75 367.8 0.0 74 379.4 0.0 49 2778.6 26.8 75 488.5 0.0
35 75 72 928.2 0.2 72 969.5 0.2 46 3016.3 27.9 71 1022.8 0.2
40 75 65 1365.5 0.7 65 1428.6 0.7 44 2996.4 32.0 65 1332.4 1.7
45 75 57 2336.8 1.3 57 2394.9 1.4 41 3484.1 30.3 58 2168.3 1.2
50 75 54 2569.6 2.2 54 2614.0 2.2 40 3371.0 35.3 60 2039.6 1.5

Total 675 622 867.0 0.5 621 907.3 0.5 480 2261.0 20.0 628 819.5 0.5

Results for small(H15) and large(H15) instances are depicted in Table 9. Again, the performance of the
algorithms is similar to the MCVRP-CFCS variant. For small(H15) instances, the ThreeIndexDiscrete
approach can solve all instances to proven optimality and is very fast with an average computation time
of 36.5 seconds compared to the other algorithms. The large(H15) instances are very hard to solve for
this problem variant. Only one instance can be solved by the BaP+TwoIndex approach. Contrary to the
MCVRP-CFCS variant, the BaP approach performs best with two instances solved to proven optimality.

Overall, we recommend using the ThreeIndexDiscrete approach for small(H15) instances with a low
number vertices ∣V ∣ and the ThreeIndexDiscrete/BaP+TwoIndex approach for mid-size(H18) instances.
For large(H15) instances, the BaP and BaP+TwoIndex approach perform best, most likely, because the
number of available vehicles has again a high impact on symmetry issues of the ThreeIndex approach.
Combining all results, we can solve all 135 small(H15) instances, 638 of 658 mid-size(H18) instances and
2 of 27 large(H15) instances. Note that instance-by-instance results are listed in the Online Appendix.
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Table 9: MCVRP-DFCS results for small(H15) and large(H15) instances clustered according to the num-
ber of product types and the supply parameter.

ThreeIndexDiscrete ThreeIndexDiscrete/
Instance (Henke et al. 2018) BaP BaP+TwoIndex BaP+TwoIndex

class ∣V ∣ ρ s #inst #opt time T̄ gap #opt time T̄ gap #opt time T̄ gap

small 10 3 1 10 10 0.2 0.0 10 0.1 0.0 10 0.2 0.0 10 0.2 0.0
2 10 10 0.3 0.0 10 1.2 0.0 10 1.2 0.0 10 0.3 0.0
3 10 10 0.5 0.0 10 23.7 0.0 10 9.5 0.0 10 0.5 0.0

6 1 15 15 0.3 0.0 15 2.3 0.0 15 2.3 0.0 15 2.3 0.0
2 15 15 1.1 0.0 10 2607.2 1.0 12 1506.2 0.8 15 1.1 0.0
3 15 15 3.1 0.0 6 4965.2 60.1 9 4199.9 31.3 15 3.1 0.0

9 1 20 20 16.6 0.0 19 381.1 0.0 20 103.5 0.0 20 103.5 0.0
2 20 20 66.8 0.0 8 4892.3 50.6 7 4871.7 28.4 20 66.8 0.0
3 20 20 159.2 0.0 0 TL 71.0 1 6930.9 73.7 20 159.2 0.0

Total(∣V ∣ = 10) 135 135 36.5 0.0 88 2691.4 24.8 94 2398.9 18.7 135 49.6 0.0

large 50 3 1 2 0 TL 1 3946.0 1 4402.6 1 4402.6
2 2 0 TL 0 TL 0 TL 0 TL
3 2 0 TL 0 TL 0 TL 0 TL

6 1 3 0 TL 1 7095.8 0 TL 0 TL
2 3 0 TL 0 TL 0 TL 0 TL
3 3 0 TL 0 TL 0 TL 0 TL

9 1 4 0 TL 0 TL 0 TL 0 TL
2 4 0 TL 0 TL 0 TL 0 TL
3 4 0 TL 0 TL 0 TL 0 TL

Total(∣V ∣ = 50) 27 0 TL 2 6947.4 1 6992.8 1 6992.8

6.6. Cost comparison between MCVRP-CFCS and MCVRP-DFCS
In this section, we compare the total cost of continuously flexible compartment sizes with the total

cost of discretely flexible compartment sizes. We only consider instances that are optimally solved for
both MCVRP-FCS variants. Note that large(H15) instances are not taken into account because only
a few instances are solved to proven optimality. Nevertheless, we observe that the total costs differ for
7 large(H15) instances and so far no large(H15) instance with identical total costs for both MCVRP-FCS
variants is known. Table 10 displays the total cost comparison clustered according to the number of vertices,
Table 11 clustered according to the number of supplies, and Table 12 clustered according to the number of
product types. The table entries have the following meaning:

set: benchmark instance set;
#div: number of instances with different total cost, i.e., number of instances with zcon ≠ zdis;

div(%): percentage of instances with different total cost, i.e., 100 ⋅#div/#inst;
z̄con: average total cost of the MCVRP-CFCS variant;
z̄dis: average total cost of the MCVRP-DFCS variant;

red(%): the average reduction of the total cost in percent, i.e., the average of 100 ⋅ (zdis− zcon)/zdis.

According to Table 10, the number of instances with different total cost does not depend on the number
of vertices but cost savings are on average higher for instances with a lower number of vertices.

Table 11 shows that the supply parameter s impacts the cost savings of continuously flexible compartment
sizes compared to discretely flexible compartment sizes. Cost savings are on average higher for instances
with a smaller supply parameter.

Table 12 shows that cost savings are higher for instances with a higher number of product types. More-
over, the number of instances with different total cost increases for instances with a higher number of product
types.
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Table 10: Total cost comparison of mid-size(H18) instances clusterd according to the number of vertices.

∣V ∣ #inst #div div(%) z̄con z̄dis red(%)

10 75 43 57.3 433.8 447.6 3.1
15 75 47 62.7 508.2 518.6 2.0
20 75 45 60.0 557.9 566.2 1.5
25 75 51 68.0 617.6 626.3 1.4
30 75 50 66.7 654.6 663.0 1.3
35 73 55 75.3 694.1 702.8 1.2
40 66 45 68.2 722.6 730.5 1.1
45 60 41 68.3 724.9 733.2 1.1
50 59 37 62.7 753.2 759.4 0.8

Total 633 414 65.4 622.8 631.8 1.4

Table 11: Total cost comparison of small(H15) and mid-size(H18) instances clusterd according to the
number of supplies.

set ∣V ∣ s #inst #div div(%) z̄con z̄dis red(%)

small(H15) 10 1 45 21 46.7 423.9 432.4 2.0
10 2 45 18 40.0 553.4 562.5 1.6
10 3 45 10 22.2 658.3 666.1 1.2

Total 135 49 36.3 545.2 553.6 1.5

mid-size(H18) 10–50 1 220 144 65.5 545.4 555.2 1.8
10–50 2 204 163 79.9 614.3 625.0 1.7
10–50 3 209 107 51.2 712.4 719.1 0.9

Total 633 414 65.4 622.8 631.8 1.4

Table 12: Total cost comparison of small(H15) and mid-size(H18) instances clusterd according to the
number of product types.

set ∣V ∣ ρ #inst #div div(%) z̄con z̄dis red(%)

small(H15) 10 3 30 8 26.7 412.2 414.6 0.6
10 6 45 14 31.1 523.6 528.4 0.9
10 9 60 27 45.0 627.8 642.1 2.2

Total 135 49 36.3 545.2 553.6 1.5

mid-size(H18) 10–50 3 262 172 65.6 608.7 615.8 1.2
10–50 4 371 242 65.2 632.7 643.1 1.6

Total 633 414 65.4 622.8 631.8 1.4
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7. Conclusion

In this paper, we provided three new exact solution approaches for the multi-compartment vehicle routing
problem with continuous flexible compartment sizes and two new exact solution approaches for the multi-
compartment vehicle routing problem with discrete flexible compartment sizes. Computational tests have
been conducted on benchmark instances from the literature. We identified that the performance of the
algorithms depends on the instance parameters. For the MCVRP-CFCS and MCVRP-DFCS, a branch-
and-cut algorithm based on a three-index formulation performs best for small(H15) instances with a low
number of vertices. A combined algorithm of this branch-and-cut algorithm for instances with high supplies
per customer and a two-stage approach consisting of a branch-price-and-cut and a branch-and-cut algorithm
of a two-index formulation turned out to perform best for mid-size(H18) instances with a low number of
vehicles. For the former type (MCVRP-CFCS), the algorithms can solve all small(H15) instances and
mid-size(H18) instances with up to 30 vertices and over 80% of the mid-size(H18) instances with 50
vertices to optimality within two hours. Moreover, the two-stage approach consisting of the branch-price-
and-cut and the branch-and-cut algorithm of the two-index formulation can solve 6 of 27 large(H15)
instances. For the latter type (MCVRP-DFCS), the algorithms deliver new provably optimal solutions
for 16 mid-size(H18) instances and 2 large(H15) instances. A comparison between the total costs of
both variants shows that the savings potential of using continuously flexible compartment sizes instead of
discretely flexible compartment sizes depends on average on the number of vertices, the number of supplies,
and the number of product types.
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Online Appendix

In this Appendix, we present instance-by-instance results. The entries in the Tables 13–15 have the
following meaning:

∣V ∣: number of nodes;
ρ: number of product types;
C: number of compartments;
s: supply parameter;

No.: instance number;
UB: upper bound; bold if LB = UB, i.e., optimality is proven;
LB: lower bound; bold ditto;
div: marked if divergent optimal objective values of MCVRP-CFCS and MCVRP-DFCS.

Table 13 displays the results for the small(H15) instances, Table 14 for the mid-size(H18) instances,
and Table 15 for the large(H15) instances.
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Table 13: Detailed results for the small(H15) instances.

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

10 3 2 1 1 339 339 339 339
10 3 2 1 2 371 371 371 371
10 3 2 1 3 355 355 355 355
10 3 2 1 4 348 348 348 348
10 3 2 1 5 374 374 376 376 ×
10 3 2 2 1 375 375 375 375
10 3 2 2 2 517 517 517 517
10 3 2 2 3 477 477 478 478 ×
10 3 2 2 4 478 478 478 478
10 3 2 2 5 496 496 496 496
10 3 2 3 1 609 609 609 609
10 3 2 3 2 623 623 623 623
10 3 2 3 3 614 614 614 614
10 3 2 3 4 630 630 630 630
10 3 2 3 5 579 579 579 579
10 3 3 1 1 342 342 353 353 ×
10 3 3 1 2 338 338 350 350 ×
10 3 3 1 3 273 273 297 297 ×
10 3 3 1 4 355 355 355 355
10 3 3 1 5 329 329 329 329
10 3 3 2 1 358 358 358 358
10 3 3 2 2 408 408 408 408
10 3 3 2 3 333 333 339 339 ×
10 3 3 2 4 338 338 338 338
10 3 3 2 5 353 353 367 367 ×
10 3 3 3 1 413 413 413 413
10 3 3 3 2 306 306 306 306
10 3 3 3 3 401 401 403 403 ×
10 3 3 3 4 295 295 295 295
10 3 3 3 5 340 340 340 340
10 6 2 1 1 485 485 485 485
10 6 2 1 2 560 560 560 560
10 6 2 1 3 629 629 629 629
10 6 2 1 4 509 509 509 509
10 6 2 1 5 579 579 579 579
10 6 2 2 1 754 754 754 754
10 6 2 2 2 813 813 813 813
10 6 2 2 3 912 912 912 912
10 6 2 2 4 880 880 880 880
10 6 2 2 5 611 611 611 611
10 6 2 3 1 1062 1062 1062 1062
10 6 2 3 2 912 912 912 912
10 6 2 3 3 1045 1045 1045 1045
10 6 2 3 4 1053 1053 1053 1053
10 6 2 3 5 835 835 835 835
10 6 4 1 1 320 320 335 335 ×
10 6 4 1 2 391 391 391 391
10 6 4 1 3 285 285 285 285
10 6 4 1 4 389 389 391 391 ×
10 6 4 1 5 370 370 392 392 ×
10 6 4 2 1 429 429 429 429
10 6 4 2 2 532 532 532 532
10 6 4 2 3 455 455 455 455
10 6 4 2 4 499 499 501 501 ×
10 6 4 2 5 381 381 381 381
10 6 4 3 1 593 593 593 593
10 6 4 3 2 697 697 697 697
10 6 4 3 3 565 565 565 565
10 6 4 3 4 489 489 489 489
10 6 4 3 5 543 543 543 543
10 6 6 1 1 396 396 406 406 ×
10 6 6 1 2 318 318 318 318
10 6 6 1 3 305 305 309 309 ×
10 6 6 1 4 305 305 321 321 ×
10 6 6 1 5 384 384 415 415 ×
10 6 6 2 1 329 329 342 342 ×
10 6 6 2 2 297 297 335 335 ×
10 6 6 2 3 346 346 362 362 ×
10 6 6 2 4 331 331 331 331
10 6 6 2 5 333 333 358 358 ×
10 6 6 3 1 304 304 304 304
10 6 6 3 2 381 381 381 381
10 6 6 3 3 338 338 338 338
10 6 6 3 4 313 313 328 328 ×
10 6 6 3 5 304 304 311 311 ×
10 9 2 1 1 675 675 675 675
10 9 2 1 2 567 567 567 567
10 9 2 1 3 888 888 888 888
10 9 2 1 4 781 781 781 781
10 9 2 1 5 822 822 822 822

Continued on next column

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

10 9 2 2 1 1111 1111 1111 1111
10 9 2 2 2 940 940 940 940
10 9 2 2 3 1178 1178 1178 1178
10 9 2 2 4 1134 1134 1134 1134
10 9 2 2 5 1003 1003 1003 1003
10 9 2 3 1 1146 1146 1146 1146
10 9 2 3 2 1399 1399 1399 1399
10 9 2 3 3 1418 1418 1418 1418
10 9 2 3 4 1442 1442 1442 1442
10 9 2 3 5 1395 1395 1395 1395
10 9 4 1 1 431 431 431 431
10 9 4 1 2 272 272 272 272
10 9 4 1 3 414 414 425 425 ×
10 9 4 1 4 395 395 395 395
10 9 4 1 5 620 620 620 620
10 9 4 2 1 705 705 705 705
10 9 4 2 2 542 542 542 542
10 9 4 2 3 688 688 688 688
10 9 4 2 4 651 651 651 651
10 9 4 2 5 586 586 588 588 ×
10 9 4 3 1 893 893 893 893
10 9 4 3 2 643 643 643 643
10 9 4 3 3 831 831 831 831
10 9 4 3 4 842 842 842 842
10 9 4 3 5 856 856 856 856
10 9 7 1 1 307 307 319 319 ×
10 9 7 1 2 377 377 382 382 ×
10 9 7 1 3 385 385 400 400 ×
10 9 7 1 4 389 389 389 389
10 9 7 1 5 310 310 346 346 ×
10 9 7 2 1 564 564 569 569 ×
10 9 7 2 2 390 390 399 399 ×
10 9 7 2 3 475 475 486 486 ×
10 9 7 2 4 470 470 470 470
10 9 7 2 5 488 488 496 496 ×
10 9 7 3 1 543 543 543 543
10 9 7 3 2 493 493 493 493
10 9 7 3 3 593 593 593 593
10 9 7 3 4 575 575 577 577 ×
10 9 7 3 5 490 490 497 497 ×
10 9 9 1 1 351 351 359 359 ×
10 9 9 1 2 351 351 394 394 ×
10 9 9 1 3 388 388 389 389 ×
10 9 9 1 4 349 349 413 413 ×
10 9 9 1 5 355 355 393 393 ×
10 9 9 2 1 371 371 398 398 ×
10 9 9 2 2 358 358 435 435 ×
10 9 9 2 3 443 443 488 488 ×
10 9 9 2 4 389 389 406 406 ×
10 9 9 2 5 381 381 474 474 ×
10 9 9 3 1 352 352 434 434 ×
10 9 9 3 2 325 325 383 383 ×
10 9 9 3 3 360 360 443 443 ×
10 9 9 3 4 396 396 448 448 ×
10 9 9 3 5 384 384 430 430 ×
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Table 14: Detailed results for the mid-size(H18) instances.

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

10 3 2 1 1 357 357 357 357
10 3 2 1 2 356 356 408 408 ×
10 3 2 1 3 392 392 392 392
10 3 2 1 4 381 381 388 388 ×
10 3 2 1 5 332 332 334 334 ×
10 3 2 2 1 517 517 517 517
10 3 2 2 2 625 625 634 634 ×
10 3 2 2 3 509 509 532 532 ×
10 3 2 2 4 427 427 432 432 ×
10 3 2 2 5 444 444 453 453 ×
10 3 2 3 1 724 724 724 724
10 3 2 3 2 631 631 631 631
10 3 2 3 3 674 674 674 674
10 3 2 3 4 542 542 542 542
10 3 2 3 5 547 547 566 566 ×
10 3 3 1 1 349 349 351 351 ×
10 3 3 1 2 297 297 297 297
10 3 3 1 3 444 444 444 444
10 3 3 1 4 331 331 340 340 ×
10 3 3 1 5 347 347 448 448 ×
10 3 3 2 1 347 347 441 441 ×
10 3 3 2 2 409 409 430 430 ×
10 3 3 2 3 379 379 387 387 ×
10 3 3 2 4 301 301 313 313 ×
10 3 3 2 5 456 456 466 466 ×
10 3 3 3 1 349 349 354 354 ×
10 3 3 3 2 356 356 379 379 ×
10 3 3 3 3 384 384 394 394 ×
10 3 3 3 4 269 269 269 269
10 3 3 3 5 318 318 338 338 ×
10 4 2 1 1 474 474 474 474
10 4 2 1 2 412 412 412 412
10 4 2 1 3 451 451 464 464 ×
10 4 2 1 4 411 411 411 411
10 4 2 1 5 444 444 444 444
10 4 2 2 1 411 411 411 411
10 4 2 2 2 640 640 640 640
10 4 2 2 3 477 477 477 477
10 4 2 2 4 516 516 518 518 ×
10 4 2 2 5 602 602 620 620 ×
10 4 2 3 1 728 728 728 728
10 4 2 3 2 545 545 545 545
10 4 2 3 3 591 591 591 591
10 4 2 3 4 640 640 640 640
10 4 2 3 5 639 639 639 639
10 4 3 1 1 306 306 306 306
10 4 3 1 2 370 370 404 404 ×
10 4 3 1 3 391 391 391 391
10 4 3 1 4 418 418 418 418
10 4 3 1 5 411 411 426 426 ×
10 4 3 2 1 452 452 488 488 ×
10 4 3 2 2 328 328 328 328
10 4 3 2 3 381 381 382 382 ×
10 4 3 2 4 483 483 488 488 ×
10 4 3 2 5 359 359 411 411 ×
10 4 3 3 1 438 438 441 441 ×
10 4 3 3 2 496 496 496 496
10 4 3 3 3 534 534 536 536 ×
10 4 3 3 4 575 575 575 575
10 4 3 3 5 618 618 618 618
10 4 4 1 1 328 328 328 328
10 4 4 1 2 321 321 349 349 ×
10 4 4 1 3 389 389 412 412 ×
10 4 4 1 4 392 392 406 406 ×
10 4 4 1 5 437 437 437 437
10 4 4 2 1 351 351 402 402 ×
10 4 4 2 2 294 294 375 375 ×
10 4 4 2 3 377 377 393 393 ×
10 4 4 2 4 265 265 303 303 ×
10 4 4 2 5 322 322 393 393 ×
10 4 4 3 1 367 367 380 380 ×
10 4 4 3 2 380 380 424 424 ×
10 4 4 3 3 330 330 342 342 ×
10 4 4 3 4 378 378 378 378
10 4 4 3 5 270 270 292 292 ×
15 3 2 1 1 484 484 486 486 ×
15 3 2 1 2 360 360 366 366 ×
15 3 2 1 3 450 450 450 450
15 3 2 1 4 543 543 562 562 ×
15 3 2 1 5 548 548 548 548 ×

Continued on next column/page

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

15 3 2 2 1 495 495 496 496 ×
15 3 2 2 2 630 630 630 630
15 3 2 2 3 570 570 574 574 ×
15 3 2 2 4 597 597 608 608 ×
15 3 2 2 5 607 607 611 611 ×
15 3 2 3 1 689 689 706 706 ×
15 3 2 3 2 742 742 742 742
15 3 2 3 3 607 607 607 607
15 3 2 3 4 668 668 673 673 ×
15 3 2 3 5 619 619 619 619
15 3 3 1 1 467 467 474 474 ×
15 3 3 1 2 449 449 455 455 ×
15 3 3 1 3 362 362 362 362
15 3 3 1 4 341 341 341 341 ×
15 3 3 1 5 438 438 438 438
15 3 3 2 1 451 451 483 483 ×
15 3 3 2 2 393 393 398 398 ×
15 3 3 2 3 372 372 419 419 ×
15 3 3 2 4 402 402 408 408 ×
15 3 3 2 5 408 408 412 412 ×
15 3 3 3 1 356 356 370 370 ×
15 3 3 3 2 458 458 458 458
15 3 3 3 3 450 450 453 453 ×
15 3 3 3 4 426 426 429 429 ×
15 3 3 3 5 423 423 459 459 ×
15 4 2 1 1 526 526 526 526
15 4 2 1 2 413 413 413 413
15 4 2 1 3 477 477 477 477
15 4 2 1 4 587 587 616 616 ×
15 4 2 1 5 571 571 571 571
15 4 2 2 1 614 614 614 614
15 4 2 2 2 562 562 566 566 ×
15 4 2 2 3 661 661 661 661
15 4 2 2 4 615 615 615 615
15 4 2 2 5 726 726 726 726
15 4 2 3 1 806 806 806 806
15 4 2 3 2 641 641 644 644 ×
15 4 2 3 3 695 695 696 696 ×
15 4 2 3 4 821 821 821 821
15 4 2 3 5 650 650 650 650
15 4 3 1 1 490 490 502 502 ×
15 4 3 1 2 516 516 516 516
15 4 3 1 3 394 394 395 395 ×
15 4 3 1 4 387 387 400 400 ×
15 4 3 1 5 420 420 420 420
15 4 3 2 1 510 510 517 517 ×
15 4 3 2 2 477 477 490 490 ×
15 4 3 2 3 489 489 497 497 ×
15 4 3 2 4 433 433 502 502 ×
15 4 3 2 5 458 458 462 462 ×
15 4 3 3 1 741 741 741 741
15 4 3 3 2 530 530 545 545 ×
15 4 3 3 3 642 642 642 642
15 4 3 3 4 430 430 430 430
15 4 3 3 5 647 647 647 647
15 4 4 1 1 360 360 381 381 ×
15 4 4 1 2 435 435 508 508 ×
15 4 4 1 3 446 446 481 481 ×
15 4 4 1 4 448 448 448 448
15 4 4 1 5 373 373 375 375 ×
15 4 4 2 1 440 440 462 462 ×
15 4 4 2 2 432 432 476 476 ×
15 4 4 2 3 411 411 411 411
15 4 4 2 4 409 409 437 437 ×
15 4 4 2 5 412 412 437 437 ×
15 4 4 3 1 415 415 445 445 ×
15 4 4 3 2 432 432 432 432
15 4 4 3 3 391 391 404 404 ×
15 4 4 3 4 485 485 539 539 ×
15 4 4 3 5 493 493 506 506 ×
20 3 2 1 1 494 494 494 494
20 3 2 1 2 448 448 448 448
20 3 2 1 3 576 576 576 576
20 3 2 1 4 475 475 476 476 ×
20 3 2 1 5 523 523 530 530 ×
20 3 2 2 1 633 633 634 634 ×
20 3 2 2 2 593 593 593 593
20 3 2 2 3 678 678 682 682 ×
20 3 2 2 4 533 533 533 533 ×
20 3 2 2 5 586 586 588 588 ×
20 3 2 3 1 763 763 763 763
20 3 2 3 2 641 641 641 641

Continued on next column/page
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Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

20 3 2 3 3 869 869 869 869
20 3 2 3 4 878 878 878 878
20 3 2 3 5 790 790 793 793 ×
20 3 3 1 1 463 463 463 463
20 3 3 1 2 464 464 466 466 ×
20 3 3 1 3 416 416 425 425 ×
20 3 3 1 4 401 401 401 401
20 3 3 1 5 427 427 446 446 ×
20 3 3 2 1 435 435 443 443 ×
20 3 3 2 2 424 424 430 430 ×
20 3 3 2 3 472 472 493 493 ×
20 3 3 2 4 400 400 400 400
20 3 3 2 5 434 434 466 466 ×
20 3 3 3 1 477 477 477 477
20 3 3 3 2 468 468 479 479 ×
20 3 3 3 3 376 376 394 394 ×
20 3 3 3 4 466 466 467 467 ×
20 3 3 3 5 419 419 419 419
20 4 2 1 1 565 565 565 565
20 4 2 1 2 576 576 586 586 ×
20 4 2 1 3 485 485 485 485
20 4 2 1 4 488 488 488 488
20 4 2 1 5 640 640 640 640
20 4 2 2 1 717 717 717 717
20 4 2 2 2 712 712 712 712
20 4 2 2 3 627 627 628 628 ×
20 4 2 2 4 613 613 620 620 ×
20 4 2 2 5 689 689 689 689
20 4 2 3 1 822 822 823 823 ×
20 4 2 3 2 688 688 688 688
20 4 2 3 3 833 833 833 833
20 4 2 3 4 896 896 896 896
20 4 2 3 5 812 812 812 812
20 4 3 1 1 513 513 519 519 ×
20 4 3 1 2 403 403 447 447 ×
20 4 3 1 3 472 472 472 472
20 4 3 1 4 481 481 481 481
20 4 3 1 5 443 443 452 452 ×
20 4 3 2 1 521 521 525 525 ×
20 4 3 2 2 527 527 528 528 ×
20 4 3 2 3 576 576 582 582 ×
20 4 3 2 4 608 608 640 640 ×
20 4 3 2 5 514 514 514 514
20 4 3 3 1 614 614 614 614
20 4 3 3 2 758 758 771 771 ×
20 4 3 3 3 745 745 759 759 ×
20 4 3 3 4 893 893 893 893
20 4 3 3 5 675 675 675 675 ×
20 4 4 1 1 458 458 490 490 ×
20 4 4 1 2 468 468 484 484 ×
20 4 4 1 3 453 453 453 453
20 4 4 1 4 508 508 515 515 ×
20 4 4 1 5 429 429 548 548 ×
20 4 4 2 1 449 449 449 449 ×
20 4 4 2 2 437 437 487 487 ×
20 4 4 2 3 523 523 542 542 ×
20 4 4 2 4 429 429 438 438 ×
20 4 4 2 5 442 442 445 445 ×
20 4 4 3 1 445 445 459 459 ×
20 4 4 3 2 468 468 486 486 ×
20 4 4 3 3 482 482 503 503 ×
20 4 4 3 4 443 443 462 462 ×
20 4 4 3 5 481 481 486 486 ×
25 3 2 1 1 592 592 592 592
25 3 2 1 2 586 586 586 586
25 3 2 1 3 488 488 488 488
25 3 2 1 4 594 594 596 596 ×
25 3 2 1 5 512 512 517 517 ×
25 3 2 2 1 637 637 638 638 ×
25 3 2 2 2 733 733 734 734 ×
25 3 2 2 3 732 732 732 732
25 3 2 2 4 735 735 735 735
25 3 2 2 5 576 576 586 586 ×
25 3 2 3 1 793 793 793 793
25 3 2 3 2 817 817 817 817 ×
25 3 2 3 3 886 886 886 886
25 3 2 3 4 896 896 924 924 ×
25 3 2 3 5 888 888 888 888
25 3 3 1 1 494 494 495 495 ×
25 3 3 1 2 474 474 558 558 ×
25 3 3 1 3 475 475 476 476 ×
25 3 3 1 4 472 472 486 486 ×
25 3 3 1 5 497 497 508 508 ×
25 3 3 2 1 502 502 514 514 ×
25 3 3 2 2 490 490 508 508 ×
25 3 3 2 3 534 534 549 549 ×

Continued on next column/page

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

25 3 3 2 4 443 443 445 445 ×
25 3 3 2 5 489 489 502 502 ×
25 3 3 3 1 436 436 436 436
25 3 3 3 2 507 507 521 521 ×
25 3 3 3 3 474 474 475 475 ×
25 3 3 3 4 455 455 471 471 ×
25 3 3 3 5 516 516 531 531 ×
25 4 2 1 1 616 616 616 616
25 4 2 1 2 724 724 724 724
25 4 2 1 3 613 613 613 613
25 4 2 1 4 556 556 556 556
25 4 2 1 5 608 608 614 614 ×
25 4 2 2 1 773 773 773 773
25 4 2 2 2 744 744 746 746 ×
25 4 2 2 3 835 835 844 844 ×
25 4 2 2 4 937 937 942 942 ×
25 4 2 2 5 881 881 884 884 ×
25 4 2 3 1 919 919 927 927 ×
25 4 2 3 2 885 885 885 885
25 4 2 3 3 861 861 861 861
25 4 2 3 4 798 798 798 798
25 4 2 3 5 896 896 896 896
25 4 3 1 1 544 544 545 545 ×
25 4 3 1 2 492 492 523 523 ×
25 4 3 1 3 545 545 545 545
25 4 3 1 4 518 518 521 521 ×
25 4 3 1 5 543 543 543 543
25 4 3 2 1 558 558 568 568 ×
25 4 3 2 2 677 677 687 687 ×
25 4 3 2 3 603 603 625 625 ×
25 4 3 2 4 623 623 623 623
25 4 3 2 5 465 465 504 504 ×
25 4 3 3 1 812 812 825 825 ×
25 4 3 3 2 827 827 827 827 ×
25 4 3 3 3 794 794 800 800 ×
25 4 3 3 4 774 774 774 774
25 4 3 3 5 789 789 789 789
25 4 4 1 1 483 483 496 496 ×
25 4 4 1 2 460 460 472 472 ×
25 4 4 1 3 510 510 534 534 ×
25 4 4 1 4 434 434 499 499 ×
25 4 4 1 5 496 496 511 511 ×
25 4 4 2 1 513 513 520 520 ×
25 4 4 2 2 477 477 483 483 ×
25 4 4 2 3 521 521 521 521
25 4 4 2 4 432 432 436 436 ×
25 4 4 2 5 533 533 540 540 ×
25 4 4 3 1 512 512 543 543 ×
25 4 4 3 2 492 492 502 502 ×
25 4 4 3 3 554 554 561 561 ×
25 4 4 3 4 521 521 528 528 ×
25 4 4 3 5 446 446 458 458 ×
30 3 2 1 1 553 553 564 564 ×
30 3 2 1 2 560 560 560 560
30 3 2 1 3 589 589 605 605 ×
30 3 2 1 4 534 534 534 534
30 3 2 1 5 616 616 620 620 ×
30 3 2 2 1 717 717 717 717 ×
30 3 2 2 2 774 774 778 778 ×
30 3 2 2 3 750 750 750 750
30 3 2 2 4 755 755 758 758 ×
30 3 2 2 5 758 758 758 758
30 3 2 3 1 939 939 939 939
30 3 2 3 2 935 935 935 935
30 3 2 3 3 897 897 898 898 ×
30 3 2 3 4 909 909 910 910 ×
30 3 2 3 5 955 955 955 955
30 3 3 1 1 538 538 549 549 ×
30 3 3 1 2 500 500 522 522 ×
30 3 3 1 3 528 528 528 528
30 3 3 1 4 532 532 540 540 ×
30 3 3 1 5 440 440 457 457 ×
30 3 3 2 1 482 482 482 482 ×
30 3 3 2 2 597 597 608 608 ×
30 3 3 2 3 541 541 571 571 ×
30 3 3 2 4 473 473 487 487 ×
30 3 3 2 5 513 513 523 523 ×
30 3 3 3 1 445 445 445 445
30 3 3 3 2 554 554 562 562 ×
30 3 3 3 3 494 494 519 519 ×
30 3 3 3 4 484 484 499 499 ×
30 3 3 3 5 565 565 565 565
30 4 2 1 1 535 535 555 555 ×
30 4 2 1 2 557 557 558 558 ×
30 4 2 1 3 703 703 703 703
30 4 2 1 4 640 640 640 640

Continued on next column/page
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Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

30 4 2 1 5 693 693 693 693
30 4 2 2 1 890 890 893 893 ×
30 4 2 2 2 905 905 905 905 ×
30 4 2 2 3 847 847 853 853 ×
30 4 2 2 4 870 870 870 870
30 4 2 2 5 799 799 799 799 ×
30 4 2 3 1 967 967 967 967
30 4 2 3 2 899 899 899 899
30 4 2 3 3 1032 1032 1032 1032
30 4 2 3 4 1017 1017 1017 1017
30 4 2 3 5 954 954 954 954
30 4 3 1 1 585 585 593 593 ×
30 4 3 1 2 512 512 522 522 ×
30 4 3 1 3 564 564 590 590 ×
30 4 3 1 4 573 573 599 599 ×
30 4 3 1 5 549 549 552 552 ×
30 4 3 2 1 756 756 758 758 ×
30 4 3 2 2 699 699 724 724 ×
30 4 3 2 3 554 554 573 573 ×
30 4 3 2 4 634 634 651 651 ×
30 4 3 2 5 663 663 670 670 ×
30 4 3 3 1 768 768 768 768
30 4 3 3 2 830 830 830 830
30 4 3 3 3 761 761 761 761
30 4 3 3 4 878 878 878 878
30 4 3 3 5 841 841 841 841
30 4 4 1 1 501 501 517 517 ×
30 4 4 1 2 502 502 539 539 ×
30 4 4 1 3 543 543 567 567 ×
30 4 4 1 4 524 524 539 539 ×
30 4 4 1 5 534 534 552 552 ×
30 4 4 2 1 509 509 531 531 ×
30 4 4 2 2 490 490 500 500 ×
30 4 4 2 3 489 489 492 492 ×
30 4 4 2 4 540 540 540 540
30 4 4 2 5 557 557 567 567 ×
30 4 4 3 1 549 549 577 577 ×
30 4 4 3 2 482 482 509 509 ×
30 4 4 3 3 529 529 539 539 ×
30 4 4 3 4 451 451 474 474 ×
30 4 4 3 5 497 497 501 501 ×
35 3 2 1 1 622 622 628 628 ×
35 3 2 1 2 640 640 647 647 ×
35 3 2 1 3 671 671 674 674 ×
35 3 2 1 4 560 560 560 560
35 3 2 1 5 552 552 555 555 ×
35 3 2 2 1 742 742 742 742
35 3 2 2 2 783 783 784 784 ×
35 3 2 2 3 831 831 836 836 ×
35 3 2 2 4 833 833 854 854 ×
35 3 2 2 5 793 793 794 794 ×
35 3 2 3 1 1073 1073 1073 1073 ×
35 3 2 3 2 963 963 963 963
35 3 2 3 3 1030 1030 1035 1035 ×
35 3 2 3 4 1055 1055 1055 1055
35 3 2 3 5 938 938 938 938
35 3 3 1 1 555 555 565 565 ×
35 3 3 1 2 540 540 548 548 ×
35 3 3 1 3 557 557 564 564 ×
35 3 3 1 4 528 528 557 557 ×
35 3 3 1 5 528 528 550 550 ×
35 3 3 2 1 533 533 543 543 ×
35 3 3 2 2 545 545 548 548 ×
35 3 3 2 3 572 572 572 572
35 3 3 2 4 494 494 506 506 ×
35 3 3 2 5 600 600 602 602 ×
35 3 3 3 1 532 532 574 574 ×
35 3 3 3 2 502 502 502 502
35 3 3 3 3 520 520 521 521 ×
35 3 3 3 4 542 542 555 555 ×
35 3 3 3 5 530 530 533 533 ×
35 4 2 1 1 665 665 669 669 ×
35 4 2 1 2 686 686 686 686
35 4 2 1 3 755 755 755 755
35 4 2 1 4 688 688 688 688
35 4 2 1 5 687 687 691 691 ×
35 4 2 2 1 1058 1058 1058 1058
35 4 2 2 2 856 856 856 856
35 4 2 2 3 907 907 910 910 ×
35 4 2 2 4 987 987 996 996 ×
35 4 2 2 5 1054 1037 1056 1037
35 4 2 3 1 1049 1049 1049 1049 ×
35 4 2 3 2 954 954 954 954
35 4 2 3 3 1049 1049 1057 1057 ×
35 4 2 3 4 1089 1089 1089 1089
35 4 2 3 5 991 991 1000 1000 ×

Continued on next column/page

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s No. UB LB UB LB div

35 4 3 1 1 583 583 601 601 ×
35 4 3 1 2 624 624 636 636 ×
35 4 3 1 3 549 549 571 571 ×
35 4 3 1 4 556 556 560 560 ×
35 4 3 1 5 595 595 595 595
35 4 3 2 1 733 733 734 734 ×
35 4 3 2 2 694 694 731 731 ×
35 4 3 2 3 757 757 760 760 ×
35 4 3 2 4 732 732 737 737 ×
35 4 3 2 5 703 703 720 720 ×
35 4 3 3 1 915 915 918 915
35 4 3 3 2 930 930 930 930
35 4 3 3 3 925 925 925 925
35 4 3 3 4 904 904 939 939 ×
35 4 3 3 5 861 861 861 861
35 4 4 1 1 533 533 549 549 ×
35 4 4 1 2 515 515 523 523 ×
35 4 4 1 3 499 499 503 503 ×
35 4 4 1 4 526 526 564 564 ×
35 4 4 1 5 475 475 505 505 ×
35 4 4 2 1 605 605 607 607 ×
35 4 4 2 2 577 577 590 590 ×
35 4 4 2 3 535 535 557 557 ×
35 4 4 2 4 538 538 550 550 ×
35 4 4 2 5 578 578 584 584 ×
35 4 4 3 1 536 536 574 574 ×
35 4 4 3 2 516 516 518 518 ×
35 4 4 3 3 566 566 570 570 ×
35 4 4 3 4 470 470 471 471 ×
35 4 4 3 5 466 466 500 500 ×
40 3 2 1 1 726 726 729 729 ×
40 3 2 1 2 662 662 670 670 ×
40 3 2 1 3 598 598 601 601 ×
40 3 2 1 4 630 630 632 632 ×
40 3 2 1 5 598 598 601 601 ×
40 3 2 2 1 853 853 856 853
40 3 2 2 2 842 842 842 842
40 3 2 2 3 829 829 832 832 ×
40 3 2 2 4 836 836 837 837 ×
40 3 2 2 5 819 819 833 833 ×
40 3 2 3 1 1054 1054 1054 1054
40 3 2 3 2 996 996 996 996
40 3 2 3 3 1049 1049 1049 1049
40 3 2 3 4 1078 1078 1078 1078
40 3 2 3 5 1074 1074 1074 1074
40 3 3 1 1 540 540 544 544 ×
40 3 3 1 2 606 606 621 621 ×
40 3 3 1 3 615 615 615 615
40 3 3 1 4 555 555 555 555
40 3 3 1 5 504 504 516 516 ×
40 3 3 2 1 620 620 625 625 ×
40 3 3 2 2 629 629 633 633 ×
40 3 3 2 3 594 594 602 602 ×
40 3 3 2 4 590 590 591 591 ×
40 3 3 2 5 585 585 586 586 ×
40 3 3 3 1 558 558 560 560 ×
40 3 3 3 2 604 604 608 608 ×
40 3 3 3 3 599 599 607 607 ×
40 3 3 3 4 624 624 624 624
40 3 3 3 5 565 565 565 565
40 4 2 1 1 798 746 799 746
40 4 2 1 2 729 729 732 732 ×
40 4 2 1 3 813 813 813 813
40 4 2 1 4 757 757 774 774 ×
40 4 2 1 5 729 729 732 732 ×
40 4 2 2 1 944 944 944 944
40 4 2 2 2 931 931 938 938 ×
40 4 2 2 3 1039 1039 1043 1043 ×
40 4 2 2 4 990 980 1015 980
40 4 2 2 5 965 965 965 965
40 4 2 3 1 1095 1095 1095 1095
40 4 2 3 2 1090 1090 1111 1111 ×
40 4 2 3 3 1079 1079 1086 1086 ×
40 4 2 3 4 1053 1053 1053 1053
40 4 2 3 5 1169 1169 1169 1169
40 4 3 1 1 576 576 576 576
40 4 3 1 2 688 688 688 688
40 4 3 1 3 559 559 606 606 ×
40 4 3 1 4 598 598 598 598 ×
40 4 3 1 5 609 609 617 617 ×
40 4 3 2 1 695 695 695 695
40 4 3 2 2 685 685 711 711 ×
40 4 3 2 3 772 772 774 774 ×
40 4 3 2 4 770 757 774 774 ×
40 4 3 2 5 825 798 848 810
40 4 3 3 1 952 952 970 952
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40 4 3 3 2 927 912 930 912
40 4 3 3 3 946 946 946 946
40 4 3 3 4 874 853 874 853
40 4 3 3 5 969 950 992 958
40 4 4 1 1 568 568 584 584 ×
40 4 4 1 2 626 626 641 641 ×
40 4 4 1 3 526 526 551 551 ×
40 4 4 1 4 603 603 607 607 ×
40 4 4 1 5 597 597 622 622 ×
40 4 4 2 1 561 561 633 633 ×
40 4 4 2 2 542 542 580 580 ×
40 4 4 2 3 569 569 577 577 ×
40 4 4 2 4 576 576 585 585 ×
40 4 4 2 5 604 604 610 610 ×
40 4 4 3 1 542 542 558 558 ×
40 4 4 3 2 594 594 618 618 ×
40 4 4 3 3 547 547 547 547
40 4 4 3 4 581 581 595 595 ×
40 4 4 3 5 554 554 561 561 ×
45 3 2 1 1 749 749 749 749
45 3 2 1 2 725 725 725 725
45 3 2 1 3 718 718 722 722 ×
45 3 2 1 4 632 632 634 634 ×
45 3 2 1 5 722 722 723 723 ×
45 3 2 2 1 936 919 958 922
45 3 2 2 2 907 889 917 889
45 3 2 2 3 803 803 806 806 ×
45 3 2 2 4 860 860 861 861 ×
45 3 2 2 5 836 836 846 846 ×
45 3 2 3 1 1113 1113 1113 1113
45 3 2 3 2 1063 1063 1063 1063
45 3 2 3 3 1130 1130 1130 1130
45 3 2 3 4 982 982 982 982
45 3 2 3 5 1240 1235 1240 1238
45 3 3 1 1 577 577 581 581 ×
45 3 3 1 2 574 574 606 606 ×
45 3 3 1 3 578 578 578 578
45 3 3 1 4 552 552 556 556 ×
45 3 3 1 5 571 571 578 578 ×
45 3 3 2 1 599 599 604 604 ×
45 3 3 2 2 609 609 609 609
45 3 3 2 3 577 577 577 577
45 3 3 2 4 639 639 639 639
45 3 3 2 5 575 575 581 581 ×
45 3 3 3 1 603 603 614 614 ×
45 3 3 3 2 559 559 561 561 ×
45 3 3 3 3 606 606 615 615 ×
45 3 3 3 4 605 605 618 618 ×
45 3 3 3 5 586 586 604 604 ×
45 4 2 1 1 809 809 819 809
45 4 2 1 2 759 759 766 766 ×
45 4 2 1 3 637 637 637 637
45 4 2 1 4 835 781 835 790
45 4 2 1 5 732 732 732 732
45 4 2 2 1 1075 1054 1075 1075
45 4 2 2 2 989 980 989 980
45 4 2 2 3 993 961 996 975
45 4 2 2 4 1030 991 1030 1030
45 4 2 2 5 1040 1040 1041 1041 ×
45 4 2 3 1 1105 1105 1113 1113 ×
45 4 2 3 2 1169 1169 1169 1169
45 4 2 3 3 1089 1089 1089 1089
45 4 2 3 4 1199 1199 1214 1214 ×
45 4 2 3 5 1108 1108 1108 1108
45 4 3 1 1 609 609 616 616 ×
45 4 3 1 2 676 676 676 676
45 4 3 1 3 596 596 607 607 ×
45 4 3 1 4 635 635 664 664 ×
45 4 3 1 5 614 614 624 624 ×
45 4 3 2 1 777 777 800 800 ×
45 4 3 2 2 777 777 779 779 ×
45 4 3 2 3 777 777 800 786 ×
45 4 3 2 4 805 805 805 805
45 4 3 2 5 802 802 809 802
45 4 3 3 1 1034 1011 1056 1028
45 4 3 3 2 918 918 931 931 ×
45 4 3 3 3 1071 1011 1100 1011
45 4 3 3 4 1031 978 1031 981
45 4 3 3 5 1021 957 1033 957
45 4 4 1 1 567 567 587 587 ×
45 4 4 1 2 599 599 628 628 ×
45 4 4 1 3 623 623 629 629 ×
45 4 4 1 4 594 594 594 594
45 4 4 1 5 621 621 621 621
45 4 4 2 1 607 607 652 652 ×
45 4 4 2 2 585 585 592 592 ×
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45 4 4 2 3 605 605 626 626 ×
45 4 4 2 4 671 671 676 676 ×
45 4 4 2 5 598 598 606 606 ×
45 4 4 3 1 628 628 640 640 ×
45 4 4 3 2 590 590 626 626 ×
45 4 4 3 3 610 610 627 627 ×
45 4 4 3 4 633 633 637 637 ×
45 4 4 3 5 574 574 603 603 ×
50 3 2 1 1 687 687 693 693 ×
50 3 2 1 2 685 685 685 685
50 3 2 1 3 793 793 793 793
50 3 2 1 4 682 682 694 694 ×
50 3 2 1 5 770 770 770 770
50 3 2 2 1 940 915 983 915
50 3 2 2 2 900 900 908 900
50 3 2 2 3 899 899 899 899 ×
50 3 2 2 4 929 929 931 931 ×
50 3 2 2 5 872 872 873 873 ×
50 3 2 3 1 1258 1258 1258 1258
50 3 2 3 2 1216 1198 1250 1203
50 3 2 3 3 1078 1078 1078 1078
50 3 2 3 4 1199 1164 1199 1173
50 3 2 3 5 1094 1094 1094 1094
50 3 3 1 1 613 613 643 643 ×
50 3 3 1 2 601 601 605 605 ×
50 3 3 1 3 609 609 621 621 ×
50 3 3 1 4 627 627 627 627
50 3 3 1 5 664 664 667 667 ×
50 3 3 2 1 619 619 633 633 ×
50 3 3 2 2 626 626 641 641 ×
50 3 3 2 3 632 632 632 632
50 3 3 2 4 699 699 707 707 ×
50 3 3 2 5 641 641 641 641
50 3 3 3 1 650 650 650 650
50 3 3 3 2 665 665 665 665
50 3 3 3 3 680 680 680 680
50 3 3 3 4 608 608 608 608
50 3 3 3 5 651 651 654 654 ×
50 4 2 1 1 830 821 830 830
50 4 2 1 2 862 862 862 862
50 4 2 1 3 791 728 828 734
50 4 2 1 4 727 727 727 727
50 4 2 1 5 758 758 758 758
50 4 2 2 1 975 956 979 956
50 4 2 2 2 1079 1079 1088 1079
50 4 2 2 3 1034 1034 1034 1034
50 4 2 2 4 1076 1065 1096 1065
50 4 2 2 5 1062 1059 1062 1059
50 4 2 3 1 1290 1290 1293 1293 ×
50 4 2 3 2 1182 1182 1182 1182
50 4 2 3 3 1070 1062 1072 1072 ×
50 4 2 3 4 1145 1145 1145 1145
50 4 2 3 5 1154 1154 1156 1156 ×
50 4 3 1 1 652 652 665 665 ×
50 4 3 1 2 617 617 617 617
50 4 3 1 3 725 725 728 728 ×
50 4 3 1 4 614 614 618 618 ×
50 4 3 1 5 695 695 700 700 ×
50 4 3 2 1 804 804 805 804
50 4 3 2 2 830 830 884 834 ×
50 4 3 2 3 840 840 841 841 ×
50 4 3 2 4 763 763 770 770 ×
50 4 3 2 5 768 768 779 779 ×
50 4 3 3 1 1030 1030 1030 1030
50 4 3 3 2 1098 1098 1098 1098
50 4 3 3 3 1069 1012 1147 1037
50 4 3 3 4 1018 968 1062 991
50 4 3 3 5 1077 996 1077 999
50 4 4 1 1 668 668 673 673 ×
50 4 4 1 2 602 602 613 613 ×
50 4 4 1 3 659 659 659 659 ×
50 4 4 1 4 570 570 581 581 ×
50 4 4 1 5 625 625 626 626 ×
50 4 4 2 1 625 625 627 627 ×
50 4 4 2 2 585 585 605 605 ×
50 4 4 2 3 593 593 621 621 ×
50 4 4 2 4 584 584 599 599 ×
50 4 4 2 5 609 609 642 642 ×
50 4 4 3 1 615 615 629 629 ×
50 4 4 3 2 615 615 630 630 ×
50 4 4 3 3 607 607 617 617 ×
50 4 4 3 4 604 604 619 619 ×
50 4 4 3 5 592 592 615 615 ×
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Table 15: Detailed results for the large(H15) instances.

Instance MCVRP-CFCS MCVRP-DFCS

∣V ∣ ρ C s UB LB UB LB div

50 3 2 1 1000 1000 1022 1022 ×
50 3 2 2 1486 1036 2537 1036
50 3 2 3 1340 1343
50 3 3 1 1028 1028 2227 1036 ×
50 3 3 2 1017 1013 1020 ×
50 3 3 3 954 917 944
50 6 2 1 1324 1310 1324 1324
50 6 2 2 1485 1534
50 6 2 3 1820 1821
50 6 4 1 917 917 2369 945 ×
50 6 4 2 1116 1176
50 6 4 3 1242 1260
50 6 6 1 972 972 1012 ×
50 6 6 2 1057 910 981
50 6 6 3 857 897
50 9 2 1 2493 1513 2777 1513
50 9 2 2 1889 1889
50 9 2 3 2440 2440
50 9 4 1 3353 1108 1139
50 9 4 2 1041 1041
50 9 4 3 1397 1402
50 9 7 1 951 951 1008 ×
50 9 7 2 980 988
50 9 7 3 1126 1148
50 9 9 1 963 963 1013 ×
50 9 9 2 966 1068
50 9 9 3 914 1014
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