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Abstract

The ongoing rise in e-commerce comes along with an increasing number of first-time delivery failures due
to the absence of the customer at the delivery location. Failed deliveries result in rework which in turn
has a large impact on the carriers’ delivery cost. In the classical vehicle routing problem (VRP) with time
windows, each customer request has only one location and one time window describing where and when
shipments need to be delivered. In contrast, we introduce and analyze the vehicle routing problem with
delivery options (VRPDO), in which some requests can be shipped to alternative locations with possibly
different time windows. Furthermore, customers may prefer some delivery options. The carrier must then
select, for each request, one delivery option such that the carriers’ overall cost is minimized and a given
service level regarding customer preferences is achieved. Moreover, when delivery options share a common
location, e.g., a locker, capacities must be respected when assigning shipments. The VRPDO generalizes
several known extensions of the VRP with time windows, e.g., the generalized VRP with time windows,
the multi-vehicle traveling purchaser problem, and the VRP with roaming delivery locations. To solve the
VRPDO exactly, we present a new branch-price-and-cut algorithm. The associated pricing subproblem is
a shortest-path problem with resource constraints that we solve with a bidirectional labeling algorithm on
an auxiliary network. We focus on the comparison of two alternative modeling approaches for the auxiliary
network and present optimal solutions for instances with up to 100 delivery options. Moreover, we provide
17 new optimal solutions for the benchmark set for the VRP with roaming delivery locations.
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1. Introduction

Over the past decade, mail-order trade has shown a strong compound annual growth rate, e.g., of 9.6% in
Germany with an overall revenue of 68.1 billion euros in 2018 (Furchheim et al., 2020). Due to the increasing
e-commerce, over 3.5 billion deliveries had to be handled in Germany in 2018 resulting in 12 million deliveries
per operations day on average (BIEK, 2019). These considerable numbers raise the question of how to cope
with the strongly growing demand and general challenges in last-mile logistics. While minimizing logistic
costs, operators are also faced with issues such as the trend of smaller and smaller truckloads, restrictions
imposed by urban development and environmental policies, and operational issues like traffic congestion
and strict parking regulation (Zhou et al., 2018). Furthermore, new challenges arise from logsumers (DHL,
2014) who are allowed to individualize their orders by choosing a preferred price, quality, time window, and
options for environmental friendliness. Consequently, last-mile logistic has been referred to as ‘the bottleneck
of e-commerce’ (Wang et al., 2014) and ‘the logistic service providers’ nightmare(s)’ (Savelsbergh and Van
Woensel, 2016).

The paper at hand introduces the vehicle routing problem with delivery options (VRPDO) which captures
one of the most recent trends in last-mile package delivery related to the introduction of delivery options.
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The VRPDO is obviously a generalization of the vehicle routing problem with time windows (VRPTW, Costa
et al., 2019) and the generalized vehicle routing problem with time windows (GVRPTW, Moccia et al., 2012)
in which each customer request is represented by one or several delivery options. The delivery options of
a customer differ within the designated location and delivery time window. Exactly one delivery option of
each customer has to be selected.

The VRPDO extends the GVRPTW by two important real-world aspects: First, customers can indi-
vidually prioritize their different delivery options beforehand, and the overall customer satisfaction level is
taken into account by a given service level that must be achieved. Second, some delivery options may share a
common location, e.g., pick-up points or postal boxes (Janjevic et al., 2019). The capacity of these locations
is limited, in particular in densely populated areas of cities where space is scarce and expensive. For finding
an optimal set of routes, both extensions lead to a non-trivial interdependence problem, where modifying
one route can make another route infeasible regarding location capacities or required service level (Drexl,
2012). The objective of the VRPDO is to minimize the overall cost while ensuring a minimum customer
satisfaction level as well as not violating location capacity restrictions.

The VRPDO also generalizes some other vehicle routing problems. In the VRP with multiple time
windows (Doerner et al., 2008), the delivery options of a customer have an identical location. The multiple-
vehicle traveling purchaser problem (Manerba et al., 2017) can be modeled by considering products as
customers/requests, the suppliers of a certain product as the delivery options, and the visited purchasers
as the routes performed by different vehicles. Moreover, to model the multi-vehicle covering tour problem
(Hachicha et al., 2000), one can introduce a delivery option for each customer and each service point covering
that customer. Last, the vehicle routing problem with (home and) roaming delivery locations (VRP(H)RDL,
Ozbaygin et al., 2017) is an application-specific variant of the GVRPTW and therefore also a special case
of the VRPDO. Note that none of these problems include location capacities or service-level constraints.

The two main contributions of this work are the following: We introduce the VRPDO and present
a branch-price-and-cut (BPC, Costa et al., 2019) algorithm for its solution. In particular, we present a
set-partitioning problem for the VRPDO, develop and analyze two different network structures for the
solution of the pricing problem, and adapt cutting planes and branching rules. The second contribution is
an extensive computational study with three parts: First, we evaluate the performance of our algorithm for
the two different network structures on a newly introduced benchmark instance set. Second, we compare
our BPC with the state-of-the-art algorithm from the literature on benchmark instances for the VRPHRDL
and VRPRDL. Last, we conduct a sensitivity analysis to determine the impact of varying service levels and
location capacities on routing costs and solution times.

The remainder of the paper is structured as follows: Section 2 introduces the VRPDO and all necessary
notation. Section 3 describes the BPC algorithm with subsections on the set partitioning formulation, the
pricing subproblem, valid inequalities, and branching. In Section 4, the results of the computational study
are shown and discussed. Final conclusions are drawn in Section 5.

2. Definition of the VRPDO

The VRPDO can be defined as follows: Let N denote the set of all (customer) requests, L the set of all
locations, and P = {1, . . . , pmax} the set of pmax ≥ 1 different (delivery) priorities. A delivery option is a
triplet o = (n, `, p) ∈ N × L × P and let O ⊂ N × L × P denote the set of all delivery options. In order
to identify for an option o ∈ O the associated request, location, and priority, we write o = (no, `o, po). A
request n ∈ N is fulfilled by selecting exactly one of the options ONn = {(no, `o, po) ∈ O : no = n}. For a
feasible VRPDO instance, there must exist at least one option per request, i.e., |ONn | ≥ 1 for all n ∈ N .
Similarly, we define OL` = {(no, `o, po) ∈ O : `o = `} as the set of options belonging to location ` ∈ L
and OPp = {(no, `o, po) ∈ O : po ≤ p} as the set of options with priority level p ∈ P or smaller (=better).
Moreover, each option o ∈ O has a non-negative service time so.

For each location ` ∈ L, a time window [a`, b`] represents the time period in which all deliveries to this
location must take place. Additionally, the capacity C` limits the number of shipments that can be delivered
to that location. A location with more than one delivery option is called multiple-delivery location, all other
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locations are called single-delivery locations. Lm = {` ∈ L : |OL` | > 1} denotes the set of all multiple-delivery
locations.

A fleet of K homogeneous vehicles is housed at the depot 0 for which `0 ∈ L denotes the depot location.
A vehicle has a capacity Q to serve the demands qn of the requests n ∈ N and fixed cost cf when used.
We assume the time window [a`0 , b`0 ] of the depot location to span the whole planning horizon. Traveling
between location ` and `′ ∈ L consumes a travel time of t``′ and a travel cost of c``′ . The travel time t``′ also
includes a required access time needed, e.g., for parking a vehicle at `′ before the actual service (=delivery)
at `′ can start.

Each priority level p ∈ P can be characterized by a percentage βp that indicates that at least dβp|N |e
delivery requests must be served with priority level p or smaller (=better). For this purpose, we assume
that priorities are nested and the set OPp contains all options o with po ≤ p. Note that the percentage βpmax

refers to the set OPpmax = O and is therefore irrelevant.
A (vehicle) route r = (0, o1, . . . , oh, 0

′) is as sequence of options in which the artificial options o0 = 0
and oh+1 = 0′ represent the visit of the depot location `0 at the start and end of the route, respectively.
A route r is feasible if it fulfils the capacity and time-window constraints that we define as follows. The
demand served by route r is q(r) =

∑h
j=1 qnoj

, so that r is capacity-feasible if q(r) ≤ Q holds true. A route is
time-window feasible if there exists a schedule (T0, T1, . . . , Th, Th+1) ∈ Rh+2 which complies with the option
service times, travel times, and time windows, i.e., if Tj−1 + t`oj−1

,`oj
+ soj−1

≤ Tj for all 1 ≤ j ≤ h + 1

(assuming so0 = 0) and Tj ∈ [a`oj , b`oj ] for all 0 ≤ j ≤ h+ 1. This definition has the following consequences:
a subsequence oi, . . . , oj of options with identical locations ` = `oi = · · · = `oj models a single physical
stop of a vehicle at this location. The above time-window feasibility conditions impose that (i) Ti, . . . , Tj
can be considered as the start times when the associated requests are served, (ii) Ti + soi , . . . , Tj + soj are
the respective service end times, and (iii) the time window [a`, b`] of location ` must cover all service times
entirely. We stress that we have chosen this definition of the time windows (diverging from the standard
definition for the VRPTW referring to possible service start times) because in the VRPDO the total service
time at a location is a variable. It results from the selection of options that are together served during the
one stop of a vehicle at the location.

The cost cr of a route r is the sum of the fixed cost and the travel costs between the visited locations,
i.e., cr = cf +

∑h+1
j=1 c`oj−1

,`oj
. The objective of the VRPDO is to find a least-cost set of feasible routes

together covering exactly one option of ONn for all customers n ∈ N respecting the fleet size and location
capacities as well as achieving the required service level.

3. Branch-Price-and-Cut

We use a BPC algorithm in order to solve the VRPDO exactly. According to the recent survey by Costa
et al. (2019), BPC is the leading exact methodology for solving many types of vehicle routing problems.
Section 3.1 presents the extensive formulation of the VRPDO and Section 3.2 the pricing subproblem
and approaches for its resolution. In particular, we describe two competing approaches for modeling the
underlying network including a discussion of expected pros and cons and a summary of their properties.
Section 3.3 then briefly describes known valid inequalities for strengthening the linear relaxation, their
adaption for the VRPDO, and separation algorithms. The branching scheme developed in Section 3.4
finally ensure integer solutions.

3.1. Extensive Formulation
Let Ω denote the set of all feasible routes. The following extensive formulation of the VRPDO comprises

one binary variables λr per possible route r ∈ Ω indicating whether r is part of the solution (λr = 1) or
not (=0). The binary coefficients αor indicate whether route r ∈ Ω serves option o ∈ O. The model is an
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extended set-partitioning formulation and reads as follows:

min
∑
r∈Ω

crλr (1a)

subject to
∑
r∈Ω

∑
o∈ON

n

αorλr = 1 ∀n ∈ N (1b)

∑
r∈Ω

∑
o∈OL

`

αorλr ≤ C` ∀` ∈ Lm (1c)

∑
r∈Ω

∑
o∈OP

p

αorλr ≥ dβp|N |e ∀p ∈ P (1d)

∑
r∈Ω

λr ≤ K (1e)

λr ∈ {0, 1} ∀r ∈ Ω (1f)

The objective (1a) minimizes the overall costs of the routes that are selected and performed. Constraints (1b)
ensure that each request is served exactly once. For each multiple-delivery location, the number of shipments
to this locations is bounded by constraints (1c). The required service level per priority level is enforced by
constraints (1d). Finally, constraint (1e) restricts the number of employed vehicles.

For solving the linear relaxation of (1), a column-generation algorithm is used (Desaulniers et al., 2005).
In the following, the linear relaxation of formulation (1) in which the set of all feasible routes Ω is replaced by
a subset Ω̄ ⊂ Ω is denoted as restricted master program (RMP). Column generation alternates between the
reoptimization of the RMP and the solution of the pricing subproblem that either generates new negative
reduced-cost variables (=routes) to be added to Ω̄, or proves that none exist. In the latter case, the column-
generation process terminates with a solution to the linear relaxation of the extensive formulation.

3.2. Column Generation
Let (πn)n∈N denote the dual prices of the constraints (1b), (ρ`)`∈Lm of the constraints (1c), (νp)p∈P of

constraints (1d), and µ of the fleet-size constraint (1e). Then, the reduced cost c̄r of a route r ∈ Ω is given
by

c̄r = cr − µ−
∑
n∈N

∑
o∈ON

n

αorπn −
∑
`∈Lm

∑
o∈OL

`

αorρ` −
∑
p∈P

∑
o∈OP

p

αorνp. (2)

The pricing problem asks for a feasible route with minimal reduced cost. We show in the following that it
is a variant of the shortest path problem with resource constraints (SPPRC, Irnich and Desaulniers, 2005).
SPPRCs can be solved with a dynamic-programming labeling algorithm that creates partial paths starting
from an origin vertex moving forward to a destination vertex of the network.

Next, we present two different possibilities to model the underlying network. A unified labeling algo-
rithm for both networks is described in Section 3.2.2. Standard acceleration techniques are presented in
Section 3.2.3.

3.2.1. Network Modeling
An important characteristic of the VRPDO is that in many realistic instances several options share the

same physical delivery location. This happens, e.g., when different customers choose the same delivery
locker or the same shop as a potential option. Moreover, customers living together in the same apartment
building and allowing home delivery is another case of identical locations.

One of our leading questions was whether these identical locations can be exploited so that a tailored
solution approach works better than one that does not anticipate the identical locations. The commodity-
constrained split delivery vehicle routing problem (C-SDVRP, Archetti et al., 2016) is an example of a VRP
in which the solution approach can be tailored to exploit identical locations. In this problem, the total
demand of a customer can be split into given smaller demands (the different commodities requested) which
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can be served by one or several visits to the customer. A straightforward approach for modeling and
solving the C-SDVRP is to reduce it to a standard CVRP, as done in (Archetti et al., 2016), where each
customer vertex is duplicated as many times as the number of commodities requested by the customer. Each
duplicated vertex has a demand given by the weight of the corresponding commodity. A solution approach
may either disregard or exploit the fact that this new CVRP instance has customers with identical locations.
The recently presented approach of Gschwind et al. (2019) is of the latter type and heavily benefits from
working on a transformed underlying graph with a macroscopic level considering locations and a microscopic
level considering the commodities of each customer separately.

In the same spirit, we present two modeling approaches for the underlying network. The first one uses an
option-based network Gopt = (V opt, Aopt). It is rather straightforward and only utilizes options and depots
as vertices. No information about identical locations is taken into account. Formally, the vertex set V opt of
the option-based network is given by {0, 0′} ∪ O. The arc set Aopt contains all feasible direct connections
between vertices, i.e., Aopt ⊂ V opt × V opt.

The second network, the location-based network Gloc = (V loc, Aloc), is more sophisticated as it makes
use of the location information of options. All options are grouped according to their respective location.
The idea of the location-based network is to significantly reduce the number of arcs at the cost of adding
two artificial vertices e` and f` for each multiple-delivery location ` ∈ Lm modeling the entry and exit point
of that location, respectively.

Formally,
E = {e` : ` ∈ Lm} and F = {f` : ` ∈ Lm}

denote the sets of all entry and exit vertices, respectively. (Conversely, to refer to an entry or exit’s location,
we write `e = `f = ` for ` ∈ Lm.) Then, the vertex set is given by V loc = {0, 0′}∪O∪E∪F = V opt∪E∪F .
Entering (exiting) a multiple-delivery location is only possible by using the entry (exit) vertex of that
location. Thus, the arc set can be characterized by

Aloc ⊆ {(i, j) ∈ Aopt : `i, `j /∈ Lm}
∪ {(e`, j) ∈ E × V opt : `j = `} ∪ {(i, f`) ∈ V opt × F : `i = `}
∪ {(f`, j) ∈ F × V opt : `j /∈ Lm, j 6= 0} ∪ {(i, e`) ∈ V opt × E : i 6= 0′, `i /∈ Lm}
∪ {(f`, e′`) ∈ F × E : ` 6= `′},

where the first row refers direct connections between options at single-delivery locations, the second row
internal connections of a multiple-delivery location, the third row connections between exit/entry vertices
and single-delivery locations, and the last row connections between exit and entry vertices. For the sake of
clarity, all arcs of the location-based network are summarized in Table 1. Note that typically time-window
constraints and demands allow to eliminate infeasible arcs so that Aloc is a proper subset of the indicated
arc set (this is also the reason why we write Aloc ⊆ . . . ).

Table 1: Arcs in the location-based network; entry “–” if no such arc exists, entry “X” if all such arcs exist, and a condition
under which some of the arcs exist.

from ↓ to → 0′ e`′ ∈ E f`′ ∈ F o′ ∈ O : `o′ /∈ Lm o′ ∈ O : `o′ ∈ Lm

0 – X – X –
e` ∈ E – – – – `o′ = `
f` ∈ F X ` 6= `′ – X –
o ∈ O : `o /∈ Lm X X – no 6= no′ –
o ∈ O : `o ∈ Lm – – `o = `′ – `o = `o′ , no 6= no′

Example 1. We consider the situation that a route serves six options o1, o2, o3, o4, o5, o6 in the given order.
Associated with these options are four different locations `o1 , `o2 = `o3 = `o4 , `o5 , and `o6 . Moreover, we
assume that the second and penultimate location, i.e., ` = `o2 and `′ = `o5 , are the only multiple-delivery
locations in this example.
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In the option-based network, the resulting route is represented by the path Popt = (0, o1, o2, o3, o4, o5, o6, 0
′).

In the location-based network, the path is P loc = (0, o1, e`, o2, o3, o4, f`, e`′ , o5, f`′ , o6, 0
′).

Table 2: Comparison of the option-based network and the location-based network.

Option-based Network Location-based Network
Gopt = (V opt, Aopt) Gloc = (V loc, Aloc)

Vertices less (−2|Lm|) more (+2|Lm|)
Arcs many more; O (|O|2) much less; O (|L|2) +O (|Lm|∆2)
Dominance weaker stronger

Note: ∆ denotes the size of the largest set OL
` for ` ∈ Lm.

Table 2 compares the option-based and location-based networks regarding the sizes of the vertex and arc
sets as well as regarding the strength of the dominance that is used in the dynamic-programming labeling
algorithm for solving the pricing problem. The following example explains what is meant by strength of
dominance:

Example 2. We consider two feasible routes that have no options in common. Moreover, option o1 is served
by the first route while option o2 is served by the second route. In addition, we assume that the options have
the identical delivery location ` = `o1 = `o2 .

Then, in the option-based network, the paths P1 and P2 representing the two routes are vertex disjoint,
except for the two depot vertices 0 and 0′. As a consequence, no dominance can occur between labels associated
with proper partial paths that occur when constructing the two paths.

In contrast, in the location-based network, the two paths are

(0, . . . , e`, . . . , o1, . . . , f`, . . . , 0
′)

and
(0, . . . , e`, . . . , o2, . . . , f`, . . . , 0

′),

i.e., they have at least the additional entry and exit vertices is common. At these vertices e` and f`, partial
paths associated with the two routes are compared by the dominance algorithm.

We can summarize that, in the location-based network, more partial paths are supposed to meet at
the entry and exit vertices of their common multiple-delivery locations. Consequently, there are more
possibilities that labels dominate each other so that the dominance ist stronger.

Moreover, the main driver for the computational effort of a labeling algorithm is the network size, because
it impacts the number of labels that are generated and compared against each other using the dominance
algorithm. Since labels are extended along arcs, also the two last points in combination with Table 2 speak
in favor of the location-based network. Therefore, we initially expected that a BPC algorithm with pricing
over the location-based network would clearly outperform the other BPC algorithm using the option-based
network. The later computational experiments presented in Section 4.2 will however show that results are
less clear cut. This came very unexpectedly for us.

3.2.2. Unified Labeling Algorithm
We now present the labeling algorithm in a unified way so that the description is correct for both

networks. To this end, let G = (V,A) ∈ {Gopt, Gloc} be the option-based or location-based digraph.
It is helpful to first introduce the dual price of a vertex i ∈ V that we defined as

dual(i) =

πni
+ ρ`i +

∑
p≤pi

νp, if i = (ni, `i, pi) ∈ O

0, otherwise
+

{
µ− cf , if i = 0 or i = 0′

0, otherwise
. (3)

6



Then, the travel time and reduced cost of an arc (i, j) ∈ A are defined as

t̄ij = t`i,`j +

{
si, if i = (ni, `i, pi) ∈ O
0, otherwise

and c̄ij = c`i,`j −
1

2
(dual(i) + dual(j)), (4)

respectively.
As in all VRPTW variants, we can remove infeasible arcs. Regarding the time window constraints, we

can remove all arcs (i, j) ∈ A with a`i + t̄ij > b`j . Moreover, for (i, j) ∈ O×O the arcs with qni
+ qnj

> Q}
can be eliminated. Note that the conditions in Table 1 already ensure that ni 6= nj holds.

Since the routing cost between two options of the same multiple-delivery location is 0, the order in which
these options are served does not matter. In the following, we therefore reduce the symmetry of the network
by eliminating the arcs in one direction. Let a total ordering < of all options be given, i.e., either i < j or
j < i holds for all i, j ∈ O, i 6= j. The arcs of set (i, j) ∈ O × O with `i = `j and i > j can be removed
from A. Note that with this symmetry reduction we partially exploit location-specific information also in
the option-based network.

A partial path Pi = (0, . . . , i) starts at the depot 0 and ends at some vertex i ∈ V . The associated label
Li = (i, Ci, Qi, Ti, Si) comprises the attributes

i: the last visited vertex,
Ci: the accumulated reduced cost,
Qi: the accumulated load,
Ti: the earliest arrival time at i, and
Si: the set of the requests served along the partial path Pi.

For the trivial partial path (0), the initial label is given by L0 = (0, C0, Q0, T0, S0) = (0, 0, 0, a`0 ,∅). Labels
are propagated over arcs toward the destination vertex with the help of so-called resource extension functions
(REFs, Irnich and Desaulniers, 2005). An arbitrary label Li = (i, Ci, Qi, Ti, Si) is extended along an arc
(i, j) ∈ A creating a new label (j, Cj , Qj , Tj , Sj) using the following REFs:

Cj = Ci + c̄ij (5a)

Qj =

{
Qi + qnj

, if j = (nj , `j , pj) ∈ O
Qi, otherwise

(5b)

Tj = max{a`j , Ti + t̄ij} (5c)

Sj =

{
Si ∪ {nj}, if j = (nj , `j , pj) ∈ O
Si, otherwise

(5d)

The extended partial path Pj = (0, . . . , i, j) is feasible if the following constraints are fulfilled:

Qj ≤ Q
Tj ≤ bj
nj /∈ Si, if j = (nj , `j , pj) ∈ O

To avoid the enumeration of all feasible paths, provable redundant labels are eliminated through a dominance
criterion. Let two labels Li = (i, Ci, Qi, Ti, Si) and L′i = (i, C ′i, Q

′
i, T
′
i , S
′
i) of two different partial paths ending

at the same vertex i ∈ V be given. Label Li dominates L′i if Ci ≤ C ′i, Qi ≤ Q′i, Ti ≤ T ′i , and Si ⊆ S′i holds.
A dominated label can be discarded as long as a dominating label is kept.

Note that the use of a dominance rule always plays with the tradeoff between the effort resulting from
less labels to be generated and further extended and the effort from applying the dominance algorithm
itself. For the location-based network, we will investigate different dominance strategies varying the vertices
at which the dominance is applied. Dominance can be checked at every vertex (full dominance) or only
at some vertices (reduced dominance). Examples for the latter are dominance only at option vertices or
dominance at all vertices but not at the option vertices of multiple-delivery locations. These three strategies
are computationally evaluated in Section 4.2.
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3.2.3. Acceleration of the Labeling
We apply bidirectional labeling which has become a quasi-standard for accelerating the solution of

SPPRC labeling algoriithms (Righini and Salani, 2006). In a bidirectional labeling algorithm, forward and
backward labels are only extended up to a half-way point that splits the domain of a monotone resource
into two intervals, one for extension of forward and one for the extension of backward labeling.

Backward labels refer to backward partial paths (j, . . . , 0′) staring at a vertex j ∈ V and ending at the des-
tination depot 0′. For the trivial backward partial path (0′), the initial label is B0′ = (0′, C0′ , Q0′ , T0′ , S0′) =
(0′, 0, 0, b`0 ,∅). Note that the time attribute in the backward case represents an as-late-as-possible schedule.
Backward labels are propagated against the arc direction toward the source vertex. An arbitrary label Bj =
(j, Cj , Qj , Tj , Sj) is extended backwards over an arc (i, j) ∈ A creating a new label Bi = (i, Ci, Qi, Ti, Si)
defined by:

Ci = Cj + c̄ij (6a)

Qi =

{
Qj + qni

, if i = (ni, `i, pi) ∈ O
Qj , otherwise

(6b)

Ti = min{b`i , Tj − t̄ij} (6c)

Si =

{
Sj ∪ {ni}, if i = (ni, `i, pi) ∈ O
Sj , otherwise

(6d)

The extended partial path Pi = (i, j, . . . , 0′) is feasible if Qi ≤ Q, Ti ≥ ai, and ni /∈ Sj if i ∈ O.
Let two backward labels Bj = (j, Cj , Qj , Tj , Sj) and B′j = (j, C ′j , Q

′
j , T
′
j , S
′
j) of two different backward

partial paths starting at the same vertex j ∈ V be given. Label Lj dominates L′j if Cj ≤ C ′j , Qj ≤ Q′j ,
Tj ≥ T ′j , and Sj ⊆ S′j holds.

The acceleration of a bidirectional labeling approach results from the consideration of a monotone re-
source, the time attribute here, for which a half-way point H is defined: Forward labels with a time attribute
T > H as well as backward labels with a time attribute T ≤ H are not further extended. This mitigates
the often observed combinatorial explosion that happens when partial paths with many arcs are generated.
We use a dynamic half-way point as defined in (Tilk et al., 2017) to balance the labels generated in forward
and backward labeling.

The merge step considers a forward label Li = (i, Ci, Qi, Ti, Si) for a partial path (0, . . . , i) and a backward
label Bi = (i, Cbwi , Qbwi , T bwi , Sbwi ) for a backward partial path (i, . . . , 0′). The two labels can be merged,
i.e., the concatenation (0, . . . , i, . . . , 0′) represents a feasible VRPDO route r if the following conditions hold:

Qi +Qbwi ≤

{
Q− qni

, if i = (ni, `i, pi) ∈ O
Q, otherwise

Ti ≤ T bwi

Si ∩ Sbwi =

{
{ni}, if i = (ni, `i, pi) ∈ O
∅, otherwise

The conditions take into account that both (5) and (6) model the operations at the merge point i so that
correction terms are needed to not double count. The reduced cost of the route r is c̄r = Ci + Cbwi .

The bidirectional labeling takes by far the largest portion of the computation time in the overall BPC
algorithm. To further speed up the solution process, two additional techniques are used. First, we adapt
the ng-path relaxation (Baldacci et al., 2011) with a more powerful dominance rule that comes at the
cost of introducing non-elementary routes as solutions to the pricing subproblem leading to a weaker linear
relaxation bound. We adopt the ng-path relaxation as follows: For each location `, we define a neighborhood
N` ⊂ N that contains the κ closest requests to ` (ties are broken arbitrarily). We define the distance of a
request n to a location ` as min{c`,`o : o ∈ ONn }.

Second, the labeling is solved heuristically but typically faster using a limited discrepancy search (Feillet
et al., 2007). In the heuristic labeling algorithm, the set of outgoing arcs of each vertex is partitioned in
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good and bad arcs. Then the total number of bad arcs that can be traversed in a route is limited by some
upper bound. Section 4 provides further details.

3.3. Valid Inequalities
To strengthen the linear relaxation of (1), two classes of valid inequalities for the VRPTW are adapted:

k-path inequalities (KPIs, Kohl et al., 1999) and limited memory subset-row inequalities (LmSRIs, Pecin
et al., 2017). We briefly describe them in the following.

Let S ⊆ V be a subset of vertices. We say that S contains a request n ∈ N if it contains all options
associated with n, i.e., On ⊆ S. The KPI for S is given by∑

r∈Ω

∑
(i,j)∈δ−(S)

erijλr ≥ k(S), (7)

where δ−(S) is the set of all in-going arcs into vertex set S, erij an integer coefficient counting how often arc
(i, j) ∈ A is used by route r, and k(S) the minimum number of vehicles need to serve all requests contained
in S. KPIs are robust, meaning they do not change the structure of the pricing problem: the dual price
of the KPI for S must simply be subtracted from the reduced cost of the arcs in δ−(S). The minimum
number k(S) of vehicles can be substituted by any lower bound. This lower bound can be determined either
considering the demand or time-window constraints. In the first case, we separate the KPIs by applying two
shrinking heuristics presented by Belenguer et al. (2000) and Ralphs et al. (2003), the extended shrinking
heuristic and the greedy shrinking heuristic, respectively. In the second case, we restrict ourselves to the
case k(S) = 2 and use the heuristic proposed by Kohl et al. (1999) to generate candidate sets S.

SRIs were first introduced for the VRPTW by Jepsen et al. (2008). Let S ⊂ N be any subset of requests
and let hSr be the number of times the route r serves a request in S. As proposed by Jepsen et al. (2008),
we restrict ourselves to SRIs defined on three requests, i.e., |S| = 3, because violated SRIs of this type can
be separated by straightforward enumeration. The corresponding SRI for S is then given by∑

r∈Ω

⌊
hSr
2

⌋
λr ≤ 1. (8)

SRIs comprise a family of non-robust cuts meaning that for each SRI with a positive dual value an additional
binary attribute has to be added in the labeling algorithm. Moreover, the standard dominance rule of
Section 3.2.2 has to be modified to effectively cope with the additional attributes (we refer to Jepsen et al.,
2008, for details).

The presence of many SRIs often drastically increases the practical difficulty of the pricing problem. To
alleviate these negative effects, Pecin et al. (2017) introduced LmSRIs that use an S-specific memory for
the associated binary attribute. The role of the memory is very similar to the neighborhoods in the ng-path
relaxation. With a complete memory, LmSRIs are identical to standard SRIs. However, with a S-specific
memory, the difficulty of the pricing subproblem is typically reduced. We use the same separation algorithm
and vertex memory as described by Pecin et al..

3.4. Branching
To finally compute integer solutions for (1), branching may be necessary. We use a hierarchical four-level

branching scheme and apply a best-first search to determine the next branch-and-bound node to process.
Let (λ̄r) be the current solution of the RMP.

First, we branch on the total number of vehicles used, whenever F̄ =
∑
r∈Ω λ̄r is fractional. We create

two branches enforcing either
∑
r∈Ω λr ≤ bF̄ c or

∑
r∈Ω λr ≥ dF̄ e.

At the second level, we branch on whether an option is used to fulfill a customer request. We select an
option o∗ ∈ O for which the value

∑
r∈Ω αo∗rλ̄r is fractional and closest to 0.5 (ties are broken arbitrarily).

Instead of adding a constraint, we directly implement the branching decision by manipulating the vertex
set V of the underlying network. In the first branch, option o∗ is removed from V . In the second branch, all
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options {o ∈ O : o 6= o∗, no = no∗} are removed from V . Moreover, all route variables that do not comply
with the branching decision are removed from the RMP.

The third level decides on the integer flow over arcs (i, j) ∈ A. For all arcs (i, j) ∈ A, we compute the
value ēij =

∑
r∈Ω e

r
ij λ̄r and select the arc (i∗, j∗) for which the value ēi∗j∗ − bēi∗j∗c is fractional and closest

to 0.5. Two branches are created by adding the constraint
∑
r∈Ω e

r
i∗j∗λr ≤ bēijc and

∑
r∈Ω e

r
i∗j∗λr ≥ dēije

to the RMP, respectively. Note that this branching rule reduces to standard binary arc branching in the
option-based network where it can be enforced directly on the underlying network by removing arcs. Note
also that, for the option-based network, this branching rule guarantees integer route variables.

For the VRPDO and the location-based network, integer flows on arcs do not guarantee that the route
variables are integer. Therefore, the fourth level applies the additional branching rule based on the flow-
splitting method proposed by Feillet et al. (2005). Given an subpath (i, f, e, j) with f ∈ F and e ∈ E, we
branch on the flow induced by all routes that exactly traverse this subpath. This flow value must either be
zero or one, which can be seen as follows. The flow on the two arcs (i, f) and (e, j) is necessarily binary,
because the network structure ensures that i and j are option vertices, i.e., i, j ∈ O. If the two arcs are
traversed by a route in this order, the flow on the subpath is one. Otherwise, the two arcs are traversed
by different routes or not in the given order so that the flow on the subpath is zero. We always select a
subpath (i∗, f∗, e∗, j∗) with flow closest to 0.5. These branching decisions change the structure of the pricing
problem and a new resource for each of these branching decision has to be added to the label. It is worth
mentioning that, in our computational experiments, it was never necessary to apply the fourth branching
rule (for a more detailed discussion we refer to Desaulniers et al., 1998; Jans, 2010).

4. Computational Results

The BPC algorithm is implemented in C++ and compiled with MS Visual Studio 2015 into 64-bit single-
thread code. The callable library of CPLEX 12.9.0 was used for (re)optimizing the RMPs and to determine
an integer solution based on the columns generated so far when reaching the time limit. All results were
obtained using a standard PC with an Intelr CoreTM i7-5930K processor clocked at 3.5 GHz and 64 GB
RAM running Microsoft Windows 10 Education.

This computational results section is structured as follows: In Section 4.1, we introduce the considered
benchmark instances. Section 4.2 compares the results obtained with the two networks used for solving
the subproblem. To evaluate the performance of our algorithm, we also solve benchmark instances of
the VRPRDL and the VRPHRDL and compare our results with those using the current state-of-the-art
algorithm from the literature in Section 4.3. Finally, we explore the impact of different service levels and
location capacities on total costs, computation times, and number of optimally solved instances in Section 4.4.

4.1. Benchmark Instances
We test our BPC algorithm described in Section 3 on two benchmark sets. The first set is specifically

generated for this study, since the VRPDO is a new problem. The instance set is divided into twelve instance
classes with ten instances each differing in the number of requests (25 or 50), the number of options (on
average 1.5 options per request in class V and 2 options in class U), and the time-window widths (small,
medium, or large). Priorities between 1 and 3 are uniformly distributed over the options of a request.
All instances have a planning horizon of 12 hours (=720 minutes) and the average time-window width for
single-delivery and multiple-delivery locations is either 60 and 240 (small), 120 and 480 (medium), or 240
and 600 (large) minutes, respectively. Locations are randomly placed in a 50 times 50 grid. Travel costs
and times are computed as Euclidean distances, multiplied by 10 and rounded up.

Travel times include a location preparation time, e.g., for parking, which is 6 minutes for single-delivery
locations and 4 minutes for multiple-delivery locations. The number of multiple-delivery locations is |N |/5,
each location has a capacity of between 3 and 5 requests. Options at multiple-delivery locations have
a service time of 2 minutes, while options at single-delivery locations have a service time of 5 minutes.
The vehicle capacity is 150 and demands are drawn uniformly at random from the interval [10, 20]. We
assume that there is a sufficient number of vehicles available at the depot. The fixed cost of a vehicle
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are set to 100 000 so that they are dominating the travel costs. As a result, we model the hierarchical
objective of minimizing the number of vehicles first and the total travel cost second. Note that the service-
level parameters (βp for p = 1, 2) are not part of the instance data. The benchmark set is available at
https://logistik.bwl.uni-mainz.de/research/benchmarks.

The second benchmark set has been introduced by Reyes et al. (2017) and is divided into 60 instances
for the VRPRDL and 60 instances for the VRPHRDL. All 120 instances are randomly generated with a size
ranging from 15 to 120 requests clustered to a maximum of 6 options per request. We adjust the data of
this benchmark set as suggested by Ozbaygin et al. (2017) such that the triangle inequality for travel cost
and travel times holds.

4.2. Comparison of the Option-based and Location-based Networks
Recall from Section 3.2.1 that the pricing problem can be modeled and solved on two different networks,

the option-based network and the location-based network. The consideration of the network size (number of
arcs) and of potential dominance between labels suggested that the location-based network may be superior
over the option-based network.

However, the following experiments are designed with the intention to make the comparison as fair and
clear as possible. To this end, we separately analyze the solution of the linear relaxation of the master
problem (1) (Secion 4.2.1) and the behaviour in the branch-and-bound tree when cutting and branching
take place (Section 4.2.2). One point is that results for the linear relaxation are significantly less scattered
regarding computation times, because slightly different trajectories of the column-generation processes often
lead to completely different branching decisions and hereby to strongly varying branch-and-bound trees.

Moreover, for the linear relaxation, the two networks can be used interchangeably. In contrast, the
possibilities of making cutting and branching decisions differ in the two networks. For every arc a ∈ Aloc
in the location-based network, there is a corresponding set B ⊂ Aopt of arcs in the option-based network
so that any constraint considering the flow over a can also be formulated as a flow constraint over B. This
correspondence is detailed in Table 3. As a result, any cutting and branching decision formulated as a flow
constraint in the location-based network can also be formulated as a flow constraint in the option-based
network. However, the reverse is not true, because arcs in the option-based network may refer to subpaths
in the location-based network. For example, an option-based arc (i, j) ∈ Aopt with `i, `j ∈ Lm and `i 6= `j
refers to the subpath (i,f`i ,e`j ,j) in the location-based network. The use of such a subpath cannot be
formulated directly with arc-flow variables of the location-based network. The experiments for producing
integer solutions must therefore be designed so that results are still comparable.

Table 3: Correspondence between arcs of the location-based network and arc sets in the option-based network.

Location-based network Option-based network
arc a ∈ Aloc corresponding set B ⊂ Aopt of arcs
(o, o′) o ∈ V opt, o′ ∈ V opt {(o, o′)}
(o, e`) o ∈ V opt, e` ∈ E {(o, i) ∈ Aopt : `i = `}
(o, f`) o ∈ V opt, f` ∈ F {(o, i) ∈ Aopt : `i 6= `}
(e`, o) e` ∈ E, o ∈ V opt {(i, o) ∈ Aopt : `i = `}
(f`, o) f` ∈ F, o ∈ V opt {(i, o) ∈ Aopt : `i 6= `}
(f`, e`′) f` ∈ F, e`′ ∈ E {(i, j) ∈ Aopt : `i = ` and `j = `′}

4.2.1. Linear Relaxation Results
In the first experiment, we compare the linear-relaxation solutions when either the option-based or the

location-based network is used in the pricing problem. We use the first benchmark, i.e., the self-generated
VRPDO instances with the service levels of β1 = 0.8 and β2 = 0.9. Pretests have shown that 10 is a
reasonable ng-neighborhood size. Furthermore, for the limited discrepancy search, good arcs are determined
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in each pricing iteration according to the current reduced cost of the arcs. Only one bad arc per path is
admissible.

We use four pricing heuristics, where the maximum number of outgoing good arcs per vertex is 2, 4,
8, and 14, respectively. Note that a reduced option-based network and a reduced location-based network
are not at all equivalent. In order to eliminated the impact of the heuristical network reduction, all four
pricing heuristics use the option-based network. The exact pricing is then performed with the two different
networks. Note that typically the exact solution of the pricing problems consumes more than 25% of the
total computation time. This implies that with this setup any substantial impact of the underlying network
should become observable.

Finally, the RMP is initialized with one big-M variable that covers all requests, fulfills all priority
constraints, and has no impact on other constraints. The time limit is two hours.

Table 4: Aggregated linear relaxation results for the VRPDO benchmark.

Option-based network Location-based network

default strategy unwise strategy clever strategy

Class #sol Time [s] #sol Time [s] #sol Time [s] #sol Time [s]

V.25.small 10 5.7 10 5.8 10 6.2 10 6.5
V.25.medium 10 12.5 10 14.0 10 13.3 10 14.6
V.25.large 10 16.8 10 17.4 10 17.2 10 17.4
V.50.small 10 350.7 10 337.6 10 404.5 10 313.9
V.50.medium 10 647.2 10 664.1 10 683.8 10 622.4
V.50.large 8 2534.0 8 2558.8 8 2670.9 8 2560.3
U.25.small 10 2.0 10 1.9 10 2.3 10 2.0
U.25.medium 10 85.1 10 94.1 10 92.7 10 88.2
U.25.large 10 176.4 10 182.0 10 237.9 10 177.9
U.50.small 10 52.9 10 51.1 10 60.3 10 53.0
U.50.medium 9 1327.0 9 1324.6 9 1671.6 9 1328.3
U.50.large 7 3142.5 7 3169.2 7 3196.6 7 3159.0

Total/Avg. 114 696.1 114 701.7 114 754.8 114 695.3

Table 4 displays aggregated results of the experiments grouped by classes of instances. Columns “#sol”
give the number of solved linear relaxations per group of 10 instances and “Time [s]” the average consumed
computation time in seconds (unsolved instances are considered with 7200 seconds). For the setup described
above, the comparison of the option-based network and the location-based network can be found in the
columns headlined “Option-based network” and “Location-based network, default strategy”. The same 114
of 120 VRPDO instances are solved. Moreover, the computation times per class and in total are very similar.

We have carefully checked and analyzed the results and have found out the following: The majority
of the computation time is spent in the dominance algorithm. Neither the creation of new labels in the
extension step, nor the merge procedure of the bidirectional labeling account for a considerable share of the
computation time. Moreover, the computation time of the dominance algorithm differs for different types
of vertices. For example, in the location-based network, the dominance on average consumes more time at
entry and exit vertices than at option vertices.

We have design a second experiment in order to highlight the impact that the dominance algorithm has
on the overall performance. Recall that the default strategy is to apply dominance at every vertex. We
define two alternative dominance strategies, one unwise and one clever.

In the unwise strategy, the dominance algorithm is only applied at option vertices. This eliminates
the potentially superior possibility of the location-based network to compare paths not comparable in the
option-based network (see Example 2). We can expect a worse performance compared to the default strategy.

In the clever strategy, the dominance algorithm is omitted at option vertices of multiple-delivery locations.
The reasoning behind this strategy is that already the initial and inevitable dominance performed at the
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entry vertex of a multiple-delivery location eliminates most of the labels that are discarded at an associated
option vertex when the default strategy were used. Moreover, the dominance at the exit vertex of a multiple-
delivery location actually ensures the elimination of all extensions of labels that were eliminated at option
vertices of the same location in the default strategy. Hence, the clever strategy can only extend useless
labels internally at a multiple-delivery location.

The last two blocks of Table 4 contain aggregated results for the unwise and the clever strategy. These
results confirm the expectations, i.e., the column-generation algorithm on the location-based network using
the clever strategy is superior to the one using the default strategy and, in turn, the latter is superior to the
one using the unwise strategy. The differences are however not really large, the average computation times
are 695.3 seconds, 701.7 seconds, and 754.8 seconds, respectively. It is more important that even with the
clever strategy, the difference to the approach using the option-based network is minor.

4.2.2. Integer Results
For the full BPC algorithm, we rely on the clever strategy when using the location-based network.

Moreover, the following reasonable parameters have been identified during pretests: A maximum of 10 SRIs
in total and 5 per cutting iteration are allowed, since pricing problems rapidly become harder after adding
SRIs. For KPIs, only sets S that contain not more than 20 requests are allowed. All valid inequalities are
separated up to the second level of the branch-and-bound tree. For all branching and cutting constraints,
we use the location-based network as a basis since each arc of the location-based network corresponds to a
set of arcs in the option-based network as summarized in Table 3. Hence, in that direction all dual prices of
arcs can be transferred in a straightforward way.

Table 5 summarizes in aggregated form the results for the integer problem (1). As additional information,
columns headlined with “#BB” give the average number of branch-and-bound nodes solved and columns
“#SRIs” and “#KPIs” the number of separated valid inequalities of the respective type. The average number
of branch-and-bound nodes solved is computed only over those instances that are solved to proven optimality.

As for the linear relaxation, results do not differ significantly for the two network types. In both cases,
the BPC algorithm solves 78 instances to optimality in less than 40 minutes on average.

Table 5: Aggregated integer results for the VRPDO benchmark.

Option-based network Location-based network

Class #sol Time [s] #BB #SRIs #KPIs #sol Time [s] #BB #SRIs #KPIs

V.25.small 10 33.9 27.0 8.9 6.6 10 44.7 25.0 8.9 6.6
V.25.medium 10 489.5 26.9 10.0 5.2 10 563.3 26.9 10.0 5.2
V.25.large 10 938.3 104.9 8.0 4.6 10 875.6 83.0 8.0 4.6
V.50.small 6 4090.9 682.2 10.0 5.8 6 3908.8 450.5 10.0 5.9
V.50.medium 4 4861.7 63.5 9.5 7.2 4 4861.7 64.3 9.5 7.0
V.50.large 2 6227.6 48.0 7.0 4.2 2 6248.9 45.0 7.0 4.4
U.25.small 10 23.6 13.8 9.5 1.7 10 26.5 13.9 9.5 1.7
U.25.medium 9 1089.3 44.1 9.0 4.8 9 1116.3 44.0 9.0 5.4
U.25.large 9 1595.0 44.6 10.0 6.1 9 1680.6 48.1 10.0 6.1
U.50.small 6 4020.6 280.3 10.0 4.5 6 4165.8 478.8 10.0 4.3
U.50.medium 1 7014.2 49.0 9.0 5.2 1 7049.4 49.0 9.0 4.3
U.50.large 1 6559.4 5.0 7.0 0.2 1 6622.9 9.0 7.0 0.3

Total/Avg. 78 2337.1 111.6 9.2 5.1 78 2349.2 106.4 9.2 5.1

The integer results, compared over the different classes of instances, reveal the normal behavior of a
BPC approach applied to a VRPTW variant: With increasing time-window widths and number of requests,
the computation times grow even stronger. While all instances with small time windows and 25 options
can be solved exactly within the time limit, medium and large time windows in combination with more
options provide more challenging instances. At the end, only 3 of 20 instances with large time windows
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and 50 options are solved to optimality. Detailed results for all 120 VRPDO instances can be found in the
Appendix in Section I.

4.3. Results for the VRP with Roaming Delivery Locations
We now report the results we obtained by applying our BPC algorithm to the VRPRDL and VRPHRDL

benchmarks. The current state of the art for exactly solving these problems is the branch-and-price algorithm
of Ozbaygin et al. (2017).

These benchmarks differ significantly from the VRPDO benchmark, because time windows are more
narrow so that instances require less computational effort. Therefore, we adjust our branching and cutting
strategies in the following way: First, we allow up to 200 SRIs in total and 10 per round of separation.
Second, we do not use the second-level branching rules (deciding whether a specific option is used), since
there are many more options per request on average compared to the VRPDO instances making these
branching decision less effective. Third, we apply strong branching with up to ten branching candidates
(Achterberg, 2007). For each candidate, a heuristic evaluation of the lower bound of the child node is
performed by using only the first two pricing heuristics to generate routes. We then choose the branching
decision that maximizes the minimum of the lower bounds of its children.

Table 6: Comparison with results of Ozbaygin et al. (2017) on VRPRDL and VRPHRDL benchmarks.

Ozbaygin et al. (2017) Our results

Problem |N | #sol Time [s] #BB #sol Time [s] #BB #SRIs #KPIs

VRPRDL

< 30 20 1.8 247.9 20 0.4 3.0 6.7 0.0
40 19 765.7 1896.4 20 7.5 14.1 69.7 2.6
60 10 76.4 949.6 10 3.0 5.4 21.7 0.1
120 3 16154.5 4481.2 10 872.2 113.9 127.1 0.6

VRPHRDL

<30 19 371.2 1550.8 20 1.3 3.1 9.9 0.0
40 —– not available —– 20 10.4 11.0 38.1 0.4
60 5 4006.0 771.4 10 150.1 16.7 95.2 0.5
120 0 21600.0 0.0 3 17371.1 61.4 150.1 1.7

76 93(+20)

As done in (Ozbaygin et al., 2017), we set the computation time limit to 2 hours for the instance with
up to 60 requests and 6 hours for the 120-request instances. Table 6 shows aggregated results comparing
the two solution approaches. The column entries have the same meaning as in the sections before. For
the VRPRDL, our BPC solves all instances with an average computation time less than 15 minutes while
Ozbaygin et al. (2017) solved 52 of the 60 instances where the largest class however requires more than
4 hours on average. For the VRPHRDL, Ozbaygin et al. (2017) did not report solution times for the 40-
request instances. Their branch-and-price algorithm solves 24 of the 40 remaining VRPHRDL instances,
while our BPC solves 33 of them and all 40-request instances. Summarizing, we find eight optimal solutions
for previously unsolved VRPRDL instances and nine for the VRPHRDL. In comparison over all instances
solved by both algorithms, ours is on average more than 20 times faster than the one of Ozbaygin et al.
(2017).

4.4. Sensitivity Analysis
During the experiments, we observed that the presence of service-level and location-capacity constraints

often makes VRPDO instances practically more difficult to solve. Therefore, we perform and present a
sensitivity analysis to more precisely explore the impact of different service levels and location capacities on
total costs, computation times, and number of optimally solved instances.

Regarding the service-level constraints (1d), we vary the required service level for the first priority
between 60% and 100% in steps of 4%, i.e., β1 ∈ {0.6, 0.64, 0.68, . . . , 0.96, 1.0}. Note that an increase of
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4% means that one more customer has to be served with first priority for the 25-customer instances and
two more for the 50-customer instances. In order to keep the scenarios simple, the second priorities are set
to β2 = 0. Regarding the location-capacity constraints (1c), we only consider two scenarios where either
capacities remain as given or are completely disregarded. The latter scenario assumes that there always
is sufficient capacity. With these parameter variations, we create 22 scenarios for each original VRPDO
instance. The one with β1 = 1.0 and without location capacities leads to a standard VRPTW in which all
first-priority options are the customers.

To limit the computational burden, we a priori restrict ourselves to those VRPDO instances solved in
less than 3600 seconds when setting the service levels to β1 = 0.8 and β2 = 0.9. This results in 69 instances
for each scenario. For all scenarios, we set the computation time limit to 3600 seconds.
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Figure 1: Sensitivity analysis, impact of service-level and location-capacity constraints.

Figure 1 summarizes the results of the sensitivity analysis. We can see that between 50 and 65 instances
per scenario can be solved to optimality (#sol) and the trend is that the number increases for higher service
levels. Moreover, consistently more instances can be solved when locations have restricting capacities. When
looking into the details, we find that 41 original VRPDO instances are solved to optimality in all 22 scenarios.

Only for these 41 VRPDO instances, we analyze the impact on total costs and computation times. (We
think that the analysis over this restricted test set makes the averages less biased.) Figure 1 also shows the
average runtime and confirms that the problem difficulty decreases when the service level increases. For
example, average run times decrease by around 75% over the 60–100% service-level interval for the scenarios
without capacity. Moreover, the runtime per service level is on average 25% higher when location capacities
are disregarded.

Note also that for average computation times and number of solved instances (#sol), the impact of the
service level is strongest, i.e., the absolute slope of the curves is highest, for values of β1 between 0.7 and
0.85, both in the capacitated and uncapacitated case in our benchmark.
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The average routing costs for the 41 instances that were solved to optimality in all scenarios are also
depicted in Figure 1. As expected, increasing the service level leads to an increase in total costs (around 22%
higher for β1 = 1.0 than for β1 = 0.6 with location-capacity constraints). With uncapacitated locations, the
average cost decreases by around 7%.

In summary, the practical difficulty of the VRPDO increases when constraints are relaxed. This is true
for service-level requirements as well as location-capacity constraints. We interpret these observations in the
following way: the possibility to really choose between more options is the main driver of the computation
time and therefore also for the capability to actually solve VRPDO instances.

5. Conclusions and Outlook

In this paper, we have introduced the vehicle routing problem with delivery options (VRPDO) as an
extension of the generalized VRPTW. The extension consists of service-level constraints that consider the
given priorities for the different options of fulfilling a delivery request. Moreover, subsets of options may
refer to the same physical location for which capacity constraints can be specified. Both service-level and
location-capacity constraints are inter-route constraints as defined in (Hempsch and Irnich, 2008) and (Irnich
et al., 2014, Sect. 1.3.5) making VRPDOs much more difficult than VRPTWs.

This statement is supported by the comprehensive sensitivity analysis that we performed. In a nutshell,
the possibility to choose between options is the main driver of the practical difficulty of the VRPDO. We
found also that more binding service-level and location-capacity constraints make instances less difficult, i.e.,
average computation times decrease and within a given time limit relatively more instances can be solved.

Additionally, we applied a sensitivity analysis of the effects of using different service levels and restricting
or non-restricting location capacities. We have seen that otherwise identical instances tend to become easier
when location capacities are restricted. Analyzing costs, we conclude that offering customers the choice of
different delivery options can reduce routing costs while a reasonable service level can be provided.

We see an important value in the fact that the VRPDO model allows us to quantify the impact that
service-level and location-capacity constraints have on the routing costs. Service levels are typically not
naturally given, but the result of negotiations between the carrier and its partners or found by trading costs
against customer expectations. In this spirit, the new model allows us to more deeply study independencies
and to finally make cost-based decisions.

The exact solution approach we propose for solving VRPDO instances is based on branch-price-and-
cut (BPC). It utilizes a route-based extended set-partitioning formulation. For generating routes in the
pricing subproblem, we proposed a unified labeling algorithm and offered two alternative networks. On the
one hand, the option-based network is straightforward because only options and depots are represented by
vertices. On the other hand, the location-based network makes use of the fact that often different options
share the same physical location. It has the superficial advantages of having fewer arcs and allowing for a
stronger dominance than the location-based network. Surprisingly, the use of the location-based network
does not pay off in the BPC algorithm, since both networks perform equally well when used for pricing.
Our experiments revealed that the computational effort of the dominance algorithm is the key factor in the
performance comparison. In the location-based network, the additional effort of checking dominance at the
extra entry and exit vertices of each multiple-delivery location is not overcompensated by the above-named
advantages. We suspect another factor to diminish the otherwise positive effects of grouping options of a
location. In the VRPDO, one cannot perform the effective preprocessing on the arcs inside the same location
as done in (Archetti et al., 2015; Gschwind et al., 2019) for the commodity-constrained split delivery VRP.

The computational experiments have shown that the BPC algorithm is highly competitive. For the
comparison of the pricing networks and the sensitivity analysis, we introduced 120 new benchmark instances
of the VRPDO with a variety of characteristics such as different number of requests, number of options per
request, and time-window widths. We were able to compute provably optimal solutions for 78 of the 120
instances. To compare our BPC algorithm against the only other exact approach for a slightly simpler
problem, we solved the benchmark sets for the VRP with roaming delivery locations. On this benchmark,
we computed 17 new optimal solutions with an average computation time that is approximately 20 times
faster than the former state of the art.
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We see several interesting paths for future research extending the here studied VRPDO. First, revenue
related aspects could be integrated in the sense that customers may pay for preferred options or carriers
may give a discount or bonus when customers accept lower-prioritized delivery options. Second, we have
introduced the VRPDO as a static and deterministic problem. However, in reality, location capacities,
e.g., at lockers, are not completely known in advance. Over the day, customers retrieve their deliveries from
lockers making the capacity time-dependent and stochastic. Third, we have observed that integrality gaps of
the VRPDO instances are larger compared, e.g., to those of typical VRPTW instances. Therefore, research
on finding tighter formulations with the help of problem-specific valid inequalities is worthwhile.
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Online Supplementary Material

Tables 7–14 present detailed computational results for all tested instances. These results have been
computed with the option-based network. The first column indicates the name of the instance, the second
gives the best found upper bound (UB). Columns LB Root and LB Tree contain the lower bound at the
root node and at the end of the optimization, respectively. Columns Time LP and Time IP give the time
the BPC algorithm takes for the solution of the root node and the complete integer program, respectively.
Columns headlined with “#BB” give the number of branch-and-bound nodes solved and columns “#SRIs”
and “#KPIs” the number of separated valid inequalities of the respective type.
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I. Results for the VRPDO Benchmark

Table 7: Detailed Results for VRPDO instances, class V with 25 requests

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

V.25.small.1 2876+3cf 2760+3cf 2876+3cf 0.9 25.5 31 10 1
V.25.small.2 2638+3cf 2573+3cf 2638+3cf 4.6 46.0 13 10 6
V.25.small.3 2716+3cf 2532+3cf 2716+3cf 4.8 50.8 51 10 14
V.25.small.4 2781+3cf 2688+3cf 2781+3cf 33.5 179.6 96 10 15
V.25.small.5 2401+3cf 2339+3cf 2401+3cf 0.6 8.6 18 10 4
V.25.small.6 2723+3cf 2623+3cf 2723+3cf 2.3 7.2 8 10 2
V.25.small.7 1941+3cf 1941+3cf 1941+3cf 1.4 1.4 1 0 0
V.25.small.8 2366+3cf 2345+3cf 2366+3cf 7.8 8.6 6 9 12
V.25.small.9 2817+3cf 2771+3cf 2817+3cf 0.4 3.0 13 10 10
V.25.small.10 2910+3cf 2788+3cf 2910+3cf 0.5 8.7 33 10 2
V.25.medium.1 2320+3cf 2280+3cf 2320+3cf 2.2 62.6 23 10 0
V.25.medium.2 2177+3cf 2129+3cf 2177+3cf 4.1 18.2 12 10 8
V.25.medium.3 2299+3cf 2200+3cf 2299+3cf 8.0 49.7 14 10 9
V.25.medium.4 2904+3cf 2889+3cf 2904+3cf 1.4 3.5 6 10 2
V.25.medium.5 2797+3cf 2744+3cf 2797+3cf 1.2 3.5 4 10 4
V.25.medium.6 2501+3cf 2420+3cf 2501+3cf 0.7 10.0 36 10 7
V.25.medium.7 2474+3cf 2423+3cf 2474+3cf 44.8 427.1 13 10 7
V.25.medium.8 2423+3cf 2396+3cf 2423+3cf 3.7 25.9 12 10 5
V.25.medium.9 2099+3cf 1976+3cf 2099+3cf 60.3 4287.6 142 10 10
V.25.medium.10 2442+3cf 2426+3cf 2442+3cf 1.9 7.3 7 10 0
V.25.large.1 1990+3cf 1963+3cf 1990+3cf 2.0 11.4 9 0 2
V.25.large.2 2342+3cf 2230+3cf 2342+3cf 9.5 161.1 45 10 14
V.25.large.3 1627+3cf 1584+3cf 1627+3cf 3.0 26.1 36 10 9
V.25.large.4 2444+3cf 2349+3cf 2444+3cf 13.8 1371.9 126 10 4
V.25.large.5 2064+3cf 2039+3cf 2064+3cf 5.2 51.1 9 10 3
V.25.large.6 2129+3cf 2127+3cf 2129+3cf 3.6 5.6 2 0 1
V.25.large.7 1533+3cf 1504+3cf 1533+3cf 2.0 10.0 9 10 1
V.25.large.8 1930+3cf 1919+3cf 1930+3cf 3.6 22.4 6 10 1
V.25.large.9 2484+3cf 2302+3cf 2484+3cf 71.4 3006.6 120 10 6
V.25.large.10 2604+3cf 2493+3cf 2604+3cf 53.5 4716.9 687 10 5
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Table 8: Detailed Results cfor VRPDO instances, class U with 25 requests

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

V.50.small.1 5111+5cf 4932+5cf 4977+5cf 320.5 7200.0 31 10 1
V.50.small.2 5117+7cf 4517+6cf 4535+6cf 2502.5 7200.0 2 10 0
V.50.small.3 3934+6cf 3808+6cf 3934+6cf 4.4 567.0 408 10 14
V.50.small.4 3387+5cf 3262+5cf 3387+5cf 16.5 711.5 37 10 14
V.50.small.5 3353+5cf 3108+5cf 3160+5cf 322.7 7200.0 38 10 7
V.50.small.6 4343+6cf 4207+6cf 4343+6cf 14.2 6481.0 3.075 10 6
V.50.small.7 4726+5cf 4503+5cf 4556+5cf 261.1 7200.0 26 10 5
V.50.small.8 5338+6cf 5276+6cf 5338+6cf 7.4 349.4 81 10 0
V.50.small.9 4082+6cf 3976+6cf 4082+6cf 1.4 161.7 185 10 4
V.50.small.10 4531+6cf 4444+6cf 4531+6cf 40.3 3837.9 307 10 7
V.50.medium.1 — 3972+5cf 4014+5cf 296.2 7200.0 28 10 0
V.50.medium.2 3576+5cf 3532+5cf 3576+5cf 36.7 1272.8 73 10 9
V.50.medium.3 3526+5cf 3486+5cf 3526+5cf 394.3 2790.9 9 10 1
V.50.medium.4 4275+6cf 4258+6cf 4258+6cf 4252.2 7200.0 2 5 1
V.50.medium.5 3945+5cf 3857+5cf 3917+5cf 71.7 7200.0 76 10 8
V.50.medium.6 — 4116+5cf 4173+5cf 495.1 7200.0 13 10 14
V.50.medium.7 3078+6cf 2996+6cf 3072+6cf 45.8 7200.0 196 10 5
V.50.medium.8 3574+5cf 3512+5cf 3574+5cf 17.5 548.8 23 10 5
V.50.medium.9 3709+6cf 3610+6cf 3709+6cf 20.7 804.8 149 10 25
V.50.medium.10 4098+5cf 3852+5cf 3900+5cf 746.6 7200.0 15 10 4
V.50.large.1 — 4064+5cf 4064+5cf 7200.0 7200.0 1 0 1
V.50.large.2 3634+7cf 3383+6cf 3423+6cf 108.6 7200.0 89 10 8
V.50.large.3 4021+5cf 3902+5cf 3964+5cf 300.4 7200.0 33 10 4
V.50.large.4 3882+5cf — — 7200.0 7200.0 0 0 0
V.50.large.5 — 3210+5cf 3241+5cf 1614.9 7200.0 12 10 6
V.50.large.6 — — — 7200.0 7200.0 0 0 0
V.50.large.7 3766+5cf 3579+5cf 3593+5cf 1799.8 7200.0 6 10 0
V.50.large.8 3893+6cf 3831+6cf 3893+6cf 130.8 4370.5 92 10 12
V.50.large.9 3777+6cf 3632+6cf 3646+6cf 1840.7 7200.0 7 10 7
V.50.large.10 3745+6cf 3730+6cf 3745+6cf 83.6 305.6 4 10 4
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Table 9: Detailed Results for VRPDO instances, class V with 50 requests

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

U.25.small.1 2188+3cf 2144+3cf 2188+3cf 2.4 68.8 10 10 2
U.25.small.2 2805+3cf 2727+3cf 2805+3cf 0.9 26.2 52 10 1
U.25.small.3 2460+3cf 2441+3cf 2460+3cf 7.4 78.0 7 10 0
U.25.small.4 2994+3cf 2983+3cf 2994+3cf 1.2 2.4 2 5 0
U.25.small.5 2580+3cf 2526+3cf 2580+3cf 0.4 2.4 12 10 1
U.25.small.6 1689+3cf 1665+3cf 1689+3cf 0.8 3.8 7 10 2
U.25.small.7 2454+3cf 2382+3cf 2454+3cf 4.1 30.5 12 10 1
U.25.small.8 1861+3cf 1803+3cf 1861+3cf 1.1 13.0 16 10 9
U.25.small.9 2992+3cf 2936+3cf 2992+3cf 1.0 4.0 11 10 0
U.25.small.10 2535+3cf 2513+3cf 2535+3cf 1.0 6.5 9 10 1
U.25.medium.1 2400+3cf 2298+3cf 2400+3cf 24.1 1163.6 72 10 5
U.25.medium.2 2290+3cf 2224+3cf 2290+3cf 6.0 73.6 22 10 16
U.25.medium.3 1525+3cf 1525+3cf 1525+3cf 0.7 0.7 1 0 0
U.25.medium.4 2805+4cf 2351+3cf 2375+3cf 579.1 7200.0 5 10 1
U.25.medium.5 2074+3cf 1989+3cf 2074+3cf 40.7 660.4 33 10 3
U.25.medium.6 2566+3cf 2434+3cf 2566+3cf 72.5 762.1 54 10 6
U.25.medium.7 1566+3cf 1503+3cf 1566+3cf 72.9 395.6 18 10 11
U.25.medium.8 2065+3cf 2039+3cf 2065+3cf 28.9 184.3 7 10 1
U.25.medium.9 1916+3cf 1847+3cf 1916+3cf 4.5 68.4 27 10 3
U.25.medium.10 2716+3cf 2563+3cf 2716+3cf 5.4 384.6 163 10 2
U.25.large.1 2423+3cf 2359+3cf 2423+3cf 2.3 70.0 59 10 9
U.25.large.2 2797+3cf 2633+3cf 2797+3cf 7.7 78.5 42 10 15
U.25.large.3 2107+3cf 2096+3cf 2107+3cf 565.0 2412.7 6 10 1
U.25.large.4 2411+3cf 2295+3cf 2411+3cf 84.7 585.8 49 10 3
U.25.large.5 1995+3cf 1931+3cf 1995+3cf 13.7 319.0 31 10 7
U.25.large.6 2316+3cf 2150+3cf 2244+3cf 194.7 7200.0 210 10 7
U.25.large.7 2237+3cf 2155+3cf 2237+3cf 13.4 431.1 88 10 1
U.25.large.8 2586+3cf 2532+3cf 2586+3cf 836.6 3930.7 6 10 7
U.25.large.9 2996+3cf 2869+3cf 2996+3cf 7.9 203.2 49 10 6
U.25.large.10 2538+3cf 2418+3cf 2538+3cf 28.8 719.0 71 10 5
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Table 10: Detailed Results cfor VRPDO instances, class V with 50 requests

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

U.50.small.1 — 4338+5cf 4430+5cf 118.2 7200.0 81 10 4
U.50.small.2 5303+7cf 4413+6cf 4554+6cf 18.9 7200.0 1.047 10 5
U.50.small.3 3940+5cf 3635+5cf 3726+5cf 85.0 7200.0 291 10 0
U.50.small.4 3732+6cf 3659+6cf 3732+6cf 6.3 200.6 69 10 2
U.50.small.5 — 3462+5cf 3568+5cf 52.6 7200.0 162 10 2
U.50.small.6 3188+6cf 3166+6cf 3188+6cf 121.7 989.3 26 10 18
U.50.small.7 3066+6cf 2987+6cf 3066+6cf 5.9 1994.0 838 10 5
U.50.small.8 4488+6cf 4373+6cf 4488+6cf 33.8 450.1 53 10 7
U.50.small.9 3460+5cf 3383+5cf 3460+5cf 56.5 3974.7 102 10 1
U.50.small.10 3387+6cf 3315+6cf 3387+6cf 19.7 3797.6 594 10 1
U.50.medium.1 4706+6cf — — 7200.0 7200.0 0 0 0
U.50.medium.2 3432+6cf 3290+6cf 3312+6cf 478.9 7200.0 10 10 18
U.50.medium.3 4296+6cf 4253+6cf 4296+6cf 120.1 5342.4 49 10 0
U.50.medium.4 3662+6cf 3288+6cf 3321+6cf 423.5 7200.0 10 10 2
U.50.medium.5 3387+5cf 3300+5cf 3308+5cf 948.9 7200.0 9 10 1
U.50.medium.6 6136+6cf 5251+6cf 5341+6cf 326.2 7200.0 14 10 19
U.50.medium.7 4652+5cf 4394+5cf 4441+5cf 1559.6 7200.0 7 10 4
U.50.medium.8 3979+5cf 3451+5cf 3503+5cf 92.0 7200.0 114 10 3
U.50.medium.9 — 2853+5cf 2881+5cf 1193.4 7200.0 7 10 4
U.50.medium.10 4332+6cf 4118+5cf 4162+5cf 1121.8 7200.0 23 10 1
U.50.large.1 — 4217+6cf 4222+6cf 4000.0 7200.0 2 10 0
U.50.large.2 — — — 7200.0 7200.0 0 0 0
U.50.large.3 — — — 7200.0 7200.0 0 0 0
U.50.large.4 — — — 7200.0 7200.0 0 0 0
U.50.large.5 3678+6cf 3466+6cf 3500+6cf 466.5 7200.0 33 10 0
U.50.large.6 — 3929+5cf 3934+5cf 2618.5 7200.0 3 10 0
U.50.large.7 3394+5cf 3296+5cf 3326+5cf 640.2 7200.0 25 10 1
U.50.large.8 3917+5cf 3774+5cf 3819+5cf 1262.4 7200.0 10 10 1
U.50.large.9 3803+5cf 3541+5cf 3586+5cf 612.0 7200.0 19 10 0
U.50.large.10 4244+6cf 4229+6cf 4244+6cf 361.1 793.6 5 10 0
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II. Results for the VRPRDL Benchmark

Table 11: Detailed Results for VRPRDL instances (1/2)

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

41.v1 3203 3132.7 3203 0.5 27.4 49 200 0
42.v1 2799 2737.0 2799 0.7 6.4 26 121 4
43.v1 2603 2503.0 2603 1.3 25.2 23 144 0
44.v1 2261 2182.1 2261 0.7 3.8 11 53 10
45.v1 3217 3217.0 3217 0.4 0.5 2 2 0
46.v1 2805 2769.5 2805 0.4 1.3 8 28 0
47.v1 3339 3192.7 3339 0.5 6.7 20 115 8
48.v1 3325 3325.0 3325 0.4 0.4 1 0 0
49.v1 3534 3463.0 3534 0.5 3.2 19 61 1
50.v1 2752 2714.5 2752 0.8 16.1 24 157 0
41.v2 2133 2084.5 2133 1.3 13.0 14 112 0
42.v2 1946 1863.8 1946 0.9 8.8 14 85 1
43.v2 1966 1916.3 1966 1.1 11.5 10 69 1
44.v2 1610 1588.5 1610 0.9 3.4 5 10 20
45.v2 2478 2478.0 2478 1.3 1.3 1 0 0
46.v2 2469 2437.4 2469 0.7 2.7 9 12 2
47.v2 1946 1918.0 1946 0.9 4.3 10 27 4
48.v2 2380 2341.3 2380 0.6 6.2 19 90 0
49.v2 2492 2477.9 2492 0.6 4.2 9 55 0
50.v2 2443 2418.9 2443 1.2 4.5 8 53 0
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Table 12: Detailed Results for VRPRDL instances (2/2)

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

instance.0-triangle 901 901.0 901 0.1 0.1 1 0 0
instance.1-triangle 1286 1286.0 1286 0.1 0.1 2 2 0
instance.2-triangle 991 991.0 991 0.1 0.1 1 0 0
instance.3-triangle 1062 1062.0 1062 0.1 0.1 1 0 0
instance.4-triangle 1832 1832.0 1832 0.1 0.1 1 0 0
instance.5-triangle 1294 1272.0 1294 0.1 0.2 5 6 0
instance.6-triangle 1155 1140.1 1155 0.1 0.9 5 17 0
instance.7-triangle 1455 1455.0 1455 0.1 0.1 1 0 0
instance.8-triangle 1260 1228.0 1260 0.1 0.3 5 8 0
instance.9-triangle 1684 1684.0 1684 0.1 0.1 2 1 0
instance.10-triangle 1922 1916.0 1922 0.2 0.6 4 8 0
instance.11-triangle 2324 2266.8 2324 0.1 0.6 6 18 0
instance.12-triangle 1747 1747.0 1747 0.2 0.2 1 0 0
instance.13-triangle 1273 1265.5 1273 0.3 0.9 4 12 0
instance.14-triangle 1694 1683.3 1694 0.2 0.7 4 21 0
instance.15-triangle 1938 1938.0 1938 0.2 0.2 1 0 0
instance.16-triangle 1965 1963.0 1965 0.2 0.3 2 4 0
instance.17-triangle 1827 1827.0 1827 0.1 0.1 1 0 0
instance.18-triangle 2083 2033.0 2083 0.3 1.5 10 37 0
instance.19-triangle 1822 1813.0 1822 0.2 0.5 3 0 0
instance.20-triangle 3761 3761.0 3761 1.3 1.3 1 0 0
instance.21-triangle 2828 2828.0 2828 1.8 1.8 1 0 0
instance.22-triangle 4440 4383.3 4440 0.6 5.3 19 101 1
instance.23-triangle 3378 3362.5 3378 1.3 1.8 2 10 0
instance.24-triangle 3161 3132.5 3161 2.6 5.1 5 10 0
instance.25-triangle 4536 4536.0 4536 1.0 1.0 1 0 0
instance.26-triangle 2865 2859.8 2865 1.9 3.7 3 6 0
instance.27-triangle 4173 4168.0 4173 2.2 5.1 9 29 0
instance.28-triangle 3964 3918.5 3964 0.6 4.1 11 57 0
instance.29-triangle 4107 4107.0 4107 0.9 1.3 2 4 0
instance.30-triangle 4935 4934.7 4935 26.9 71.6 17 99 0
instance.31-triangle 5258 5126.9 5258 19.3 2001.3 211 200 0
instance.32-triangle 5061 4939.8 5061 27.6 5931.4 754 200 4
instance.33-triangle 5218 5190.1 5218 26.8 63.2 9 64 0
instance.34-triangle 5498 5428.8 5498 22.6 120.6 24 200 1
instance.35-triangle 6498 6498.0 6498 10.7 13.3 3 6 0
instance.36-triangle 4830 4800.6 4830 17.1 49.1 10 75 1
instance.37-triangle 5604 5553.0 5604 17.6 319.8 72 143 0
instance.38-triangle 5841 5798.7 5841 11.0 34.0 13 84 0
instance.39-triangle 4995 4922.3 4995 16.0 117.7 26 200 0
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III. Results for the VRPHRDL Benchmark

Table 13: Detailed Results for VRPHRDL instances (1/2)

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

41.v1 2662 2662.0 2662 0.9 0.9 1 0 0
42.v1 2610 2610.0 2610 0.6 0.6 1 0 0
43.v1 2260 2245.0 2260 2.6 4.8 4 12 0
44.v1 2147 2091.0 2147 0.8 3.2 20 39 0
45.v1 3172 3172.0 3172 0.6 0.6 1 0 0
46.v1 2616 2578.5 2616 0.7 2.3 8 20 0
47.v1 3010 2943.8 3010 0.7 5.4 15 65 6
48.v1 3278 3278.0 3278 0.7 0.9 2 2 0
49.v1 3514 3430.0 3514 0.3 10.7 50 154 0
50.v1 2727 2690.5 2727 0.8 27.5 58 185 0
41.v2 1998 1998.0 1998 3.0 3.0 1 0 0
42.v2 1927 1830.5 1927 2.1 47.0 17 136 0
43.v2 1830 1812.7 1830 3.1 51.3 8 30 2
44.v2 1478 1477.1 1478 2.7 22.5 5 16 0
45.v2 2466 2466.0 2466 1.3 2.4 3 10 0
46.v2 2388 2348.5 2388 1.1 2.3 5 12 0
47.v2 1848 1804.5 1848 2.3 16.4 12 57 0
48.v2 2264 2263.5 2264 0.7 1.0 2 2 0
49.v2 2457 2444.7 2457 0.9 3.4 5 17 0
50.v2 2302 2302.0 2302 1.9 2.5 2 4 0
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Table 14: Detailed Results for VRPHRDL instances (2/2)

LB Time Number of

Instance UB Root Tree LP IP #BB #SRIs #KPIs

instance.0-triangle 773 773.0 773 0.1 0.1 1 0 0
instance.1-triangle 1065 1065.0 1065 0.1 0.1 1 0 0
instance.2-triangle 988 988.0 988 0.1 0.1 1 0 0
instance.3-triangle 914 914.0 914 0.1 0.1 1 0 0
instance.4-triangle 1710 1710.0 1710 0.0 0.0 1 0 0
instance.5-triangle 1099 1077.0 1099 0.1 0.3 5 6 0
instance.6-triangle 996 989.3 996 0.4 2.0 6 14 0
instance.7-triangle 1346 1346.0 1346 0.1 0.1 1 0 0
instance.8-triangle 997 997.0 997 0.2 0.2 1 0 0
instance.9-triangle 1166 1166.0 1166 0.1 0.1 1 0 0
instance.10-triangle 1587 1584.8 1587 0.7 1.0 2 10 0
instance.11-triangle 1808 1808.0 1808 0.4 0.4 1 0 0
instance.12-triangle 1563 1563.0 1563 0.5 0.5 1 0 0
instance.13-triangle 1058 1058.0 1058 0.4 0.4 1 0 0
instance.14-triangle 1347 1319.1 1347 0.4 15.8 21 106 0
instance.15-triangle 1517 1486.0 1517 0.5 1.4 6 25 0
instance.16-triangle 1445 1445.0 1445 0.6 0.6 1 0 0
instance.17-triangle 1627 1611.7 1627 0.3 1.4 8 36 0
instance.18-triangle 1461 1461.0 1461 0.4 0.4 1 0 0
instance.19-triangle 1715 1715.0 1715 0.3 0.3 1 0 0
instance.20-triangle 2580 2580.0 2580 5.1 7.3 2 6 0
instance.21-triangle 2206 2106.8 2206 8.3 773.7 59 200 0
instance.22-triangle 3363 3357.0 3363 2.5 3.8 3 12 0
instance.23-triangle 2569 2458.5 2569 5.5 82.1 33 164 1
instance.24-triangle 2378 2277.5 2378 25.0 124.8 17 168 0
instance.25-triangle 2845 2823.5 2845 4.5 13.2 10 86 0
instance.26-triangle 2518 2490.0 2518 3.9 16.7 17 82 4
instance.27-triangle 2758 2749.5 2758 20.0 341.6 7 44 0
instance.28-triangle 2892 2715.9 2892 6.0 133.0 18 190 0
instance.29-triangle 2691 2691.0 2691 4.6 4.6 1 0 0
instance.30-triangle 3666 3665.5 3666 501.3 933.6 4 28 0
instance.31-triangle — 3706.7 3824 268.1 21600.0 45 200 2
instance.32-triangle — 3467.0 3493 514.2 21600.0 9 78 0
instance.33-triangle 3694 3636.4 3694 253.4 20931.4 63 200 5
instance.34-triangle 3298 3080.7 3118 435.8 21600.0 31 200 1
instance.35-triangle 4570 4152.6 4188 190.9 21600.0 41 200 1
instance.36-triangle 3217 3189.9 3217 230.9 646.1 7 44 0
instance.37-triangle 4070 3711.7 3835 111.8 21600.0 188 200 5
instance.38-triangle 4324 4209.3 4274 59.5 21600.0 211 200 3
instance.39-triangle — 3332.4 3427 948.5 21600.0 15 151 0
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