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Abstract

The generalized traveling salesman problem (GTSP) is the problem of finding a cost-minimal cycle in
a clustered graph so that exactly one vertex of every cluster is contained in the cycle. We introduce
three new GTSP neighborhoods that allow the simultaneous permutation of the sequence of the clusters
and the selection of vertices from each cluster. The three neighborhoods and some known neighborhoods
from the literature are combined into a simple but effective iterated local search (ILS) for the GTSP.
The simplicity of the ILS consists in its straightforward random neighborhood selection within the local
search and an ordinary record-to-record ILS acceptance criterion. The computational experiments on four
symmetric standard GTSP libraries show that, with some small refinements, the ILS can compete with
state-of-the-art algorithms, although it is simple in structure and less involved to code compared to many
other metaheuristics.

Key words: traveling salesman, generalized traveling salesman problem, iterated local search, variable
neighborhood descent

1. Introduction

The generalized traveling salesman problem (GTSP) is the problem of finding a cost-minimal cycle in a
clustered graph so that exactly one vertex of every cluster is contained in the cycle. Formally, an instance
of the symmetric GTSP is defined by an edge-weighted complete undirected graph G = (V,E), where V
denotes the set of vertices and E the set of edges. The vertices are partitioned into N non-empty disjoint
subsets, denoted as clusters and indexed by i ∈ I = {1, 2, . . . , N}, such that V =

⋃
i∈I Vi. For a vertex

v ∈ V , let i = [v] ∈ I be the index of the cluster to which the vertex belongs, i.e., v ∈ V[v]. The edge set E
comprises (ordered) pairs vw of vertices v, w ∈ V for [v] 6= [w], implying vw ≡ wv and symmetric edge
weights cvw = cwv. We use the symbols n for the cardinality of the vertex set and mi for the size of the
ith cluster, i.e., mi = |Vi| for all i ∈ I. A feasible solution to the GTSP is a cycle x = (x1, x2, . . . , xN , x1)
with exactly one vertex per cluster, i.e., [xi] 6= [xj ] for all i, j ∈ I, i 6= j. Such a cycle is also denoted as a
G-tour. The cost of the G-tour x is defined as c(x) =

∑
i∈I cxixi+1 (assuming xN+1 = x1). The objective of

the GTSP is to find a minimum-cost G-tour.
In the paper at hand, we present a simple but effective metaheuristic for the GTSP. The metaheuristic

follows the principles of a clean iterated local search (ILS, Lourenço et al., 2003). The local search part of the
ILS combines a small subset of known and three new GTSP neighborhoods in a variable neighborhood descent
(VND, Hansen and Mladenović, 2001) fashion. The simplicity of the ILS consists in its straightforward
random neighborhood selection within the VND and an ordinary record-to-record ILS acceptance criterion
(Dueck, 1993).
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One contribution of our work is the introduction of three new neighborhoods for the GTSP that allow
the simultaneous permutation of the sequence of the clusters and the selection of vertices from each cluster.
Despite the exponential size of the new neighborhoods, they can be explored efficiently: We present three
neighborhood exploration algorithms, all with polynomial worst-case complexity, where two algorithms
allow the complete exploration of the respective neighborhood so that a provably best improving neighbor
(if existent) is found. For the third new neighborhood, a polynomial time heuristic neighborhood exploration
is presented. With these components, our basic ILS is already competitive with GTSP metaheuristics from
the literature.

The second contribution is the refinement of the basic ILS regarding a reset mechanism to the best found
solution, the neighborhood prioritization in the VND, and the use of the GTSP-adapted Balas-Simonetti
neighborhood (Balas and Simonetti, 2001) for improving high-quality solutions. Moreover, we present a
straightforward grouping scheme for GTSP instances that allow us to control which algorithmic refinements
are to be applied to which type of GTSP instance. In computational experiments on standard GTSP
benchmark instances we show that the resulting refined ILS produces excellent solutions, e.g., outperforming
the GLNS metaheuristic of Smith and Imeson (2017, reviewed in the next section) on the GTSP_LIB (Fischetti
et al., 1997; Silberholz and Golden, 2007) regarding average gaps. Finally, we find two new best-known
solutions, one in the GTSP_LIB and one in the LARGE_LIB (Helsgaun, 2015).

The remainder of the paper is structured as follows. In Section 2, we review the pertinent GTSP liter-
ature. We describe GTSP neighborhoods and corresponding efficient neighborhood exploration algorithms
used in our ILS in Section 3. The overall ILS is presented in Section 4 together with computational results
obtained with the basic ILS implementation. Refinements of the ILS tailored to specific groups of GTSP
instances are presented in Section 5. Here, we introduce measures that decide which ILS variant to apply
for a given GTSP instance. The paper closes with final conclusions drawn in Section 6.

2. Literature Review

A variety of combinatorial optimization problems can be modeled as GTSPs, or contain the GTSP as a
subproblem. Among them are location routing problems, material-flow system design problems, post-box
collection problems (Laporte et al., 1996) as well as the routing of clients through welfare agencies (Saksena,
1970), and computer file sequencing (Henry-Labordere, 1969).

Since its introduction in the late sixties/early seventies (Henry-Labordere, 1969; Saksena, 1970) a lot
of attention has been paid to solving the GTSP. One group of solution approaches relies on the fact that
every GTSP instance can be transformed into an equivalent traveling salesman problem (TSP) instance.
Thus, different reduction algorithms were developed, e.g., by Noon and Bean (1993); Laporte and Semet
(1999); Ben-Arieh et al. (2003). The resulting TSP instances can then be solved with a TSP solver, either
heuristically or, if not too large, exactly. For example, Helsgaun (2015) combined the Noon-Bean reduction
with the Lin-Kernighan-Helsgaun algorithm (LKH, Helsgaun, 2000) into a powerful GTSP solver.

Several exact approaches for the GTSP have shown very good results: The branch-and-cut algorithm of
Fischetti et al. (1997) solves symmetric GTSP instances with up to 89 clusters and 442 vertices to optimality.
A Lagrangian based approach to solve asymmetric GTSP instances was developed by Noon and Bean (1991).
Their results show success on a range of randomly generated instances with up to 100 vertices. Solving larger
instances to proven optimality can still be a very hard task nowadays.

Certainly, large-scale GTSP instances require heuristic solution approaches. Many different approaches
have been published, ranging from simple tour construction heuristics (e.g., Noon, 1988) to more involved and
rather effective metaheuristics. Table 1 provides an overview of the pertinent GTSP publications. Almost
all listed metaheuristics have at least one thing in common: They contain local optimization techniques that
run one or more local/neighborhood-search heuristics to improve a given solution (an exception is Pintea
et al., 2017). A first approach, called RP2 and nowadays known as cluster optimization (CO), was invented
by Fischetti et al. (1997). CO determines a globally best vertex selection according to a given and fixed
cluster sequence. This is done by constructing and solving a shortest-path problem in a layered network
(a detailed description follows in Section 3.3). Because of its efficiency, CO can be found in many different
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Table 1: Selected Literature on (Meta)Heuristics for the GTSP.

(Meta)heuristic Reference(s)

Tour construction heuristic Noon (1988); Fischetti et al. (1997)
Composite heuristic Renaud and Boctor (1998)

Adaptive Large Neighborhood Search Smith and Imeson (2017)
Ant Colony Optimization Yang et al. (2008); Reihaneh and Karapetyan (2012);

Pintea et al. (2017)
Genetic/memetic Algorithm Snyder and Daskin (2006); Silberholz and Golden (2007);

Gutin et al. (2008); Gutin and Karapetyan (2010);
Bontoux et al. (2010)

Lin-Kerninghan adaption Karapetyan and Gutin (2011)
Multi-start method Cacchiani et al. (2011)
Particle Swarm Optimization Tasgetiren et al. (2007)
Variable Neighborhood Search Hu and Raidl (2008)

GTSP algorithms, e.g., of Cacchiani et al. (2011); Reihaneh and Karapetyan (2012); Smith and Imeson
(2017).

Another straightforward approach is to use a standard TSP improvement procedure, such as the 2-Opt,
3-Opt, and k-Opt (for k ≥ 4) heuristics (Lin, 1965). Such improvement procedures have been used in Yang
et al. (2008) and Bontoux et al. (2010). CO and k-Opt are two extremes of GTSP improvement procedures,
where the first only optimizes the vertex selection per cluster and the second only optimizes the sequence
in which the clusters are visited. The other decision remains fully fixed in both cases.

The disadvantage of the approaches that work only on one type of improvement method is that they
are too myopic. Note that often a local improvement requires a modification in both the vertex selection
and cluster sequence. In order to overcome this disadvantage, several researchers have developed GTSP-
tailored neighborhoods so that both types of decisions can change within one move. One of them is the
RP1 procedure by Fischetti et al. (1997) based on 2-Opt and 3-Opt exchanges. Renaud and Boctor (1998)
introduced the G2-Opt, G3-Opt, and G-Opt heuristics, which reverse tour segments and determine an
optimal vertex selection via the CO algorithm. Finally, Renaud and Boctor combine G-Opt and G2-Opt to
a powerful improvement part of their composite heuristic. Some years later, Hu and Raidl (2008) revisited
the G2-Opt heuristic and refined the vertex selection process for a given cluster sequence. In detail, they
apply an incremental bidirectional shortest-path calculation to save computation time. Another interesting
method is to adapt the classical TSP 2-Opt as suggested by Gutin and Karapetyan (2009).

Special k-Opt heuristics, like swap moves (special 4-Opt) and relocation moves (special 3-Opt) are well
known from the TSP. They were also adapted for the GTSP, e.g., different types of swap moves can be found
in (Gutin et al., 2008; Gutin and Karapetyan, 2010). Adapted relocation moves, also known as insert or
node shift moves, are used in (Snyder and Daskin, 2006; Silberholz and Golden, 2007; Tasgetiren et al., 2007;
Gutin et al., 2008; Gutin and Karapetyan, 2010; Smith and Imeson, 2017). Bontoux et al. (2010) search for
best relocation moves with a special dynamic-programming algorithm that is inspired by the work of Feillet
et al. (2004) on the elementary shortest-path problem with resource constraints.

As the LKH algorithm is still the state-of-the-art heuristic for the classical TSP, it can also be used in the
GTSP context. For example, Bontoux et al. (2010) use the original version within their memetic algorithm,
while Karapetyan and Gutin (2011) developed different Lin-Kernighan adaptations for the GTSP.

It is beyond the scope of this paper to provide a comprehensive classification of all known and new
neighborhoods. The article by Karapetyan and Gutin (2012) provides such a synopsis. Furthermore, they
explain efficient neighborhood exploration algorithms for all neighborhoods.
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3. Neighborhoods and Efficient Neighborhood Exploration

In this section, we describe the neighborhoods used in our ILS and efficient neighborhood exploration
algorithms. We distinguish between pure TSP neighborhoods (Section 3.1), polynomially-sized GTSP neigh-
borhoods (Section 3.2), and exponentially-sized GTSP neighborhoods (Section 3.3). For the latter, we
introduce three neighborhoods that have not yet been considered in other works.

3.1. TSP Neighborhoods
We consider first (symmetric) TSP neighborhoods for the GTSP. Moves of this type do not change the

selection of vertices from each cluster.

2-Opt and 3-Opt. The k-Opt neighborhoods have been made popular by the work of Lin (1965). The
current TSP solution x is divided into k ≥ 2 segments that can be inverted and permuted. The result is a
neighborhood of size O (Nk).

We apply a cost-based pruning to accelerate the neighborhood exploration based on the gain criterion
of Lin and Kernighan (1973). This technique is known under different names as fixed radius near neighbor
search (Bentley, 1992), fixed radius search (Hoos and Stützle, 2005, p. 373f), or sequential search (Irnich
et al., 2006). For the GTSP, a prerequisite is to have, for each vertex v ∈ V , an ordered neighbor list
of all other vertices sorted by increasing distance. For a G-tour x = (x1, x2, . . . , xN , x1), the complete
neighbor lists of the vertices x1, x2, . . . , xN should be thinned out so that they comprise only vertices from
{x1, x2, . . . , xN} and no vertices from V \ {x1, x2, . . . , xN}. This preparatory step takes O (nN) time and
space. The actual neighborhood exploration is then drastically accelerated on average (Hoos and Stützle,
2005, p. 373f).

Double-Bridge. The double-bridge move (Johnson and McGeoch, 1997) is a special 4-Opt move that divides
the given tour into four non-empty segments x = (A,B,C,D) that are permuted into x′ = (A,D,C,B).
Glover (1996) has shown that, for a given TSP tour x, the double-bridge neighborhood, which comprises
O (N4) tours, can be explored completely and efficiently in O (N2) time and space, with the help of a
dynamic program. We also use this indirect neighborhood exploration technique.

3.2. Polynomial GTSP Neighborhoods
Next we consider neighborhoods that are inspired by TSP neighborhoods but allow to modify the selection

of a vertex for at least one cluster.

Relocation+. The classical TSP relocation move selects a vertex xi in the given tour x, removes it from its
current position, and inserts it between two other consecutive vertices xj and xj+1. For a G-tour x, it is
now allowed to replace xi by a vertex x′i of the cluster V[xi]. Hence,

x = (x1, x2, . . . , xi−1, xi, xi+1, . . . , xj , xj+1, . . . , xN , x1)

is altered into
x′ = (x1, x2, . . . , xi−1, xi+1, . . . , xj , x

′
i, xj+1, . . . , xN , x1)

with [x′i] = [xi]. The size of the neighborhood is O (nN).

Swap+. The swap neighborhood of a TSP tour selects two non-neighboring vertices and swaps them. For
a G-tour x, the two swapped vertices xi and xj can be replaced by other vertices x′i ∈ V[xi] and x′j ∈ V[xj ].
Hence, the given

x = (x1, x2, . . . , xi−1, xi, xi+1, . . . , xj−1, xj , xj+1, . . . , xN , x1)

is modified into
x = (x1, x2, . . . , xi−1, x

′
j , xi+1, . . . , xj−1, x

′
i, xj+1, . . . , xN , x1)

with [x′i] = [xi] and [x′j ] = [xj ]. The size of this GTSP neighborhood is O (n2).
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3.3. Exponential GTSP Neighborhoods
The following exponential GTSP neighborhoods can all be explored with an indirect search method such

that the computational effort is polynomially bounded.

Cluster Optimization. CO takes a given G-tour x = (x1, x2, . . . , xN , x1) and replaces it by a shortest G-
tour x′ = (x′1, x

′
2, . . . , x

′
N , x

′
1) with [x′i] = [xi] for all i ∈ I (Fischetti et al., 1997). Hence, the sequence

of the clusters is kept, but different vertices in all clusters can be selected. This is a neighborhood of size
O (
∏
i∈I mi).

A best neighbor solution results from solving one or several shortest-path problems in the layered graph
with clusters as layers, see Figure 1. Consecutive layers connect all vertices x′i ∈ V[xi] with all vertices
x′i+1 ∈ V[xi+1] for i ∈ I with arc weights cx′i,x′i+1

. While in Figure 1 the first cluster is a singleton set, the
general case requires the solution of one shortest-path problem for each possible x′1 ∈ V[x1] as a start and
end vertex.

V[x1] V[x2] V[x3] V[x4] V[x5] V[x1]

Figure 1: Layered Network for CO.

Karapetyan and Gutin (2012) suggest several techniques that aim at lowering the worst-case time com-
plexity of the computation. First, every G-tour can be rotated so that w.l.o.g. m1 = mini∈I mi, i.e., the
first cluster has minimum cardinality. Karapetyan and Gutin describe further implementation improve-
ments such as the reduction of the first cluster (exploiting that the clusters V[x2] and V[xN ] are known) and
optimizing the dynamic-programming calculation order. They prove that CO can be searched efficiently in
O (n ·minimi ·maximi) time. As the (practical) impact of the two last techniques is relatively minor, we
only rotate the G-tour and use a first cluster of minimum cardinality.

Balas-Simonetti for the GTSP. In this section, we present a new neighborhood for the GTSP that is the
synthesis of CO and the Balas-Simonetti neighborhood originally introduced for the TSP and TSP with
time windows (Balas, 1999; Balas and Simonetti, 2001). We describe the TSP case first before we provide
details about the synthesis.

For a given integer k ≥ 2, the Balas-Simonetti (BS) neighborhood NBS
k allows the restricted permutation

of the vertices relative to a given tour or path. More precisely, for a given tour x = (x1, x2, . . . , xN , x1)
another tour x′ = (xπ(1), xπ(2), . . . , xπ(N), xπ(1)) defined by a permutation π on {1, 2, . . . , N} is in the
neighborhood, i.e., x′ ∈ NBS

k (x), if

i+ k ≤ j implies π(i) < π(j) for all i, j ∈ {1, 2, . . . , N}.

A larger value of k offers more flexibility so that the neighborhoods are nested, i.e., NBS
k ⊂ NBS

k+1 for all
k ≥ 2.

A least-cost neighbor can be determined by solving a shortest-path problem in an auxiliary network Gk .
Figure 2 shows the auxiliary network Gk for k = 2. In general, the auxiliary network Gk is a layered network
with N + 1 layers L1, L2, . . . , LN , LN+1 (assuming LN+1 = L1), one for each position (1, 2, . . . , N, 1) of the
given tour. All layers are identical. Each layer comprises exactly (k + 1)2k−2 states (three states for
k = 2) partially describing the permutation π. To this end, states have an associated value α depicted
left to the states of a row in Figure 2. Moreover, also two consecutive layers Li and Li+1 induce identical
subgraphs Gk [Li ∪ Li+1] for all i ∈ {1, 2, . . . , N}. The number of arcs of Gk [Li ∪ Li+1] is bounded by
k(k + 1)2k−2. For k = 2 in Figure 2, there are five (≤ 2 · 3 · 20 = 6) arcs connecting two layers.
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x1 x2 x3 x4 x5 x1

α = 0:

α = 1:

α = −1:

Figure 2: Auxiliary Network Gk for k = 2.

The point is now that every 0-0’-path in Gk describes exactly one permutation π and therefore the
neighbor x′, where 0 ∈ L1 and 0′ ∈ LN+1 are specific null states in the layers (depicted on top in each
layer in Figure 2, associated with α = 0). A state with value α in ith layer refers to vertex xi+α. For
example, the path depicted on top passing all vertices with values α = 0 (using only the horizontally
drawn arcs in Figure 2) represents the neighbor x′ = x. The path drawn in bold represents the neighbor
x′ = (x1+0, x2+1, x3+(−1), x4+1, x5+(−1), x1+0) = (x1, x3, x2, x5, x4, x1) of x = (x1, x2, . . . , x5, x1).

Accordingly, if arcs (v, w) ∈ Gk [Li ∪ Li+1] with values αv for the state v ∈ Li and αw for the state
w ∈ Li+1 are equipped with the cost cxi+αv ,xx+1+αw

, the length of any 0-0’-path is identical to the length of
the represented tour x′. Hence, solving a shortest-path problem between 0 and 0′ in Gk provides a least-cost
neighbor of x.
Some remarks are due:
• Since the network Gk is acyclic, a pulling or reaching type of dynamic-programming (DP) labeling

approach for solving the shortest-path problem has a complexity proportional to the total number of
arcs, i.e., O (N k(k+1)2k−2). In particular, for a fixed k, the complexity is linear in the tour length N .

• Our sparse representation of the auxiliary network in the DP stores distance labels for all states.
For the arcs, it suffices to only store the structure of Gk [L1 ∪ L2], because all consecutive layers are
connected in the same way. Arc costs are computed on the fly.

• Some states in the first layers and in the last layers are irrelevant, because they are unreachable from
0 and 0’ (backwardly). For the above-sketched implementation of the DP, the unreachable states pose
to difficulty.

We can now combine CO and BS into a neighborhood that simultaneously permutes the order of the
clusters (via BS) and allows to select alternative vertices from the permuted clusters. Figure 3 visualizes
the idea for a given G-tour x = (x1, x2, . . . , xN , x1). Meta-states (big circles) represent the clusters that
are initially sorted into the sequence (V[1], V[2], . . . , V[N ], V[N+1]) (assuming V[N+1] = V[1]; meta-states are
depicted only for the purpose of explanation). In Figure 3, the different number of states and their graphical
positioning helps to distinguish between different clusters. For example, V[1] comprises one state, V[2] three
states, and V[3] two states. Both V[2] and V[4] contain three states, but are depicted differently.

All states of a meta-state at the ith layer are connected with all states of a meta-state at the (i + 1)th
layer (for i ∈ {1, 2, . . . , N}) if and only if there is a corresponding arc in the original auxiliary network
Gk . These complete connections between meta-states of consecutive layers are similar to the arcs in the
CO network. Indeed, for k = 1 (note that in this case the BS neighborhood of the TSP degenerates to
{x} = NBS

1 (x)) the CO network shown in Figure 1 is identical to G1. This network can also be found at
the top of Figure 3 if only meta-states with α = 0 are considered.

The new GTSP neighborhood NBS
k (x) is huge having (at least) (k/e)N−1 ·

∏
i∈I mi elements, where the

first term bounds the number of different permutations from below (Theorem 7, Gutin et al., 2007, assuming
N ≥ k(k + 1)) and the second term comes from the CO analysis.

Gutin Neighborhood. The assignment neighborhood of the TSP (Gutin et al., 2007) first chooses a set Z ⊂
{1, 2, . . . , N} such that xi and xj for i, j ∈ Z, i 6= j are non-adjacent in the given tour x = (x1, x2, . . . , xN , x1).
The vertices {xi : i ∈ Z} can now be removed from x and be reinserted into the void positions one-to-one. For
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V[x1] V[x2] V[x3] V[x4] V[x5] V[x1]

α = 0:

α = 1:

α = −1:

Figure 3: Auxiliary GTSP Network Gk for k = 2.

example, the subset Z = {2, 4, 7} allows for the tour x = (x1, x2, . . . , x7, x1) exactly six reinsertions, where
one of the resulting neighbors is x′ = (x1, x4, x3, x7, x5, x6, x2, x1). In general, the neighborhood NGutin

Z (x)
comprises |Z|! elements and a best neighbor can be identified in O (|Z|3) by solving an assignment problem.

Our adaptation for the GTSP works as follows: Let a G-tour x = (x1, x2, . . . , xN , x1) be given. First,
we determine the set Z with a randomized heuristic. Initially we set Z = ∅. Iterating over i = 1, 2, . . . , N ,
we first test whether xi−1 has been chosen. If xi−1 ∈ Z, we skip xi (for i = n we also test whether x1 ∈ Z)
and iterate. Otherwise, we toss a coin to decide whether xi should be included into Z (with probability
0.5) or not, and iterate. Note that the expected length of a non-movable segment (between two consecutive
elements of Z) is, therefore, 1 + 1/2 + 1/4 + 1/8 + · · · = 2. Hence, Z comprises N/3 elements on average.

Second, when computing the insertion cost for moving vertex xi, i ∈ Z, into the void position j ∈ Z, we
allow that xi is replaced by a best x′i ∈ V[xi]. Accordingly, we compute the insertion cost as

ai,j := min
x′i∈V[xi]

(
cxj−1,x′i

+ cx′i,xj+1

)
.

with the convention x0 = xN and xN+1 = x1. In this way, the new GTSP neighborhood NGutin
Z (x) can

simultaneously change the ordering of the clusters and the choice of cluster representatives.
The computational effort for determining a best neighbor in NGutin

Z (x) is bounded by O (nN + N3),
where the first term results from the insertion cost computation and the second from the exact solution of
the assignment problem over (ai,j)i,j∈Z .

String Relocation+. The string relocation neighborhood N SR
L for L ≥ 1 is a generalization of Relocation+

described in Section 3.2. Instead of moving a single vertex, a string of length up to L is removed from its
current position and inserted into another position allowing different cluster representatives. Formally, a
G-tour x = (x1, x2, . . . , xN , x1) is given. The string (xi, xi+1, . . . , xi+k) to remove is defined by i ∈ I and an
integer k, 1 ≤ k ≤ L (assuming that xi+p = xi+p−N for 2N > i + p > N). It can be replaced by a string
(x′i, x

′
i+1, . . . , x

′
i+k) with [x′i] = [xi], [x

′
i+1] = [xi+1], . . . , [x′i+k] = [xi+k]. The new string is then inserted

between xj and xj+1 for some j ∈ I in the given G-tour. The neighbor solution is:

x′ = (x1, x2, . . . , xi−1, xi+k+1, . . . , xj , x
′
i, x
′
i+1, . . . , x

′
i+k, xj+1, . . . , xN , x1)

The neighborhood N SR
L (x) comprises O (N2LmL+1

max ) elements, where ¯mmax = maximi.
To keep the computational effort manageable, we explore N SR

L (x) with the following heuristic. Before-
hand, only once per GTSP instance, we compute and store in a lookup table the following information for
each vertex w and each i ∈ I with i 6= [w]: The element u = MDE(w, i) ∈ V[i] is the vertex with minimum
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Algorithm 1: Heuristic to explore N SR
L (x).

Input: x, L
1 for i ∈ I do
2 for x′i ∈ V[xi] do
3 Let string ← (x′i)
4 for k = 1, 2, . . . , L do
5 Let x′i+k ←MDE(x′i+k−1, [xi+k])

6 Let string ← (string, x′i+k)

7 for j ∈ I \ {i− 1, i, i+ 1, . . . , i+ k, i+ k + 1} do
8 if Improving then
9 Let i∗ ← i, j∗ ← j, string∗ ← string

Output: i∗, j∗, string∗

distance to w (MDE, minimum distance element), i.e., cwu = minv∈V[i]
cwv (ties are broken arbitrarily). The

precomputation of the MDE values takes O (n2) time.
The actual exploration heuristic for N SR

L (x) is presented with the pseudo-code in Algorithm 1. Line 1,
we determine the first vertex xi and the starting position i of the string that is relocated. With the loop
in Line 2, we consider all possible replacements of xi by an x′i of the same cluster. The loop in Line 4
determines the length k of the string. The following replacements of xi+k by x′i+k are then looked up with
the help of the auxiliary function MDE, i.e., the following replacements are heuristically chosen as close as
possible to the preceding and last chosen vertex x′i+k−1 (Line 5). Thanks to the lookup table, Line 5 takes
only constant time O (1). The result is that the string (xi, xi+1, . . . , xi+k) of length k is possibly replaced
by the string (x′i, x

′
i+1, . . . , x

′
i+k). The insertion position j is determined in the loop in Line 7. Finally, the

resulting move is completely determined now so that the cost of the move and possible improvement can be
checked (Line 8).

The overall time complexity of the exploration heuristic is bounded by O (NLn).

4. Basic Iterated Local Search

In this section, we propose our simple metaheuristic algorithm based on ILS (Lourenço et al., 2003)
using a random VND (Subramanian et al., 2010) as a local-search component. More precisely, given a
current feasible G-tour x, the algorithm alternates between a local search starting from x using multiple
neighborhoods and ending at a joint local minimum x∗, and a perturbation step. So every time the local
search is trapped in a local minimum x∗, ILS perturbs it and starts a new local search based on this modified
solution x′. As a consequence, ILS does a randomized walk in the space of all joint local minima.

Moreover, to better guide the search to more promising solutions, an acceptance criterion can be used.
It decides whether the local minimum or locally optimal solution x∗ is accepted as the new current solution
or the previous current solution will be randomly perturbed again. Hence, the acceptance criterion controls
the balance between intensification and diversification.

To achieve high performance, the four main functions Initial Solution Construction, Local Search, Per-
turbation, and Acceptance Criterion have to be tailored to the needs of the GTSP. In the following, we
discuss how we implemented these main functions. Furthermore, Algorithm 2 shows how they are finally
combined into the basic ILS metaheuristic that we apply and evaluate later in this section.

Initial Solution Construction. Several heuristics can be used to obtain a feasible starting solution for the
GTSP. Most of them are derived by simple tour construction heuristics for the classical TSP. As an example,
Fischetti et al. (1997) adapted the well-known TSP insertion heuristics to obtain a feasible G-tour. Based on
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Algorithm 2: Iterated Local Search (ILS) with Record-to-Record Travel Acceptance Criterion
Input: acceptance parameter ε > 0, cooling rate 0 < h < 1)

1 xinit ← Initial SolutionConstruction()
2 x← xILS ← Local Search(xinit)
3 repeat
4 x′ ← Perturbation(x)
5 x∗ ← Local Search(x′)

/* Test Acceptance Criterion */
6 if c(x∗) < c(x) or c(x∗) ≤ (1 + ε) · c(xILS) then
7 x← x∗

8 if c(x∗) < c(xILS) then
9 xILS ← x∗

10 if cooling update condition fulfilled then
11 ε← ε · h
12 until time limit reached

Output: xILS

these, Smith and Imeson (2017) provide a unified insertion procedure that contains three insertion procedures
as special cases.

We create an initial solution with a random insertion procedure similar to the insertion heuristics pre-
sented in (Fischetti et al., 1997). Initially, we randomly pick a vertex x1 ∈ V and add it as the start and
end vertex of the subtour (x1, x1). In each iteration, the subtour (x1, x2, . . . , xk, xk+1 = x1) (with k < N)
is then enlarged by randomly choosing one of the non-visited clusters V[i] and inserting the vertex y ∈ V[i]
into the subtour that minimizes the insertion cost, i.e., y = arg minx∈V[i],1≤j≤k{cxjx+cxxj+1

−cxjxj+1
}. The

procedure stops when the G-tour visits all N clusters.

Local Search. We apply a random VND with all neighborhoods described in Section 3. The idea is that
the resulting VND deeply explores the solution space with the combination of pure TSP neighborhoods
(Section 3.1), TSP-inspired GTSP neighborhoods (Section 3.2), and exponentially-sized GTSP neighbor-
hoods (Section 3.3). We choose a first improvement pivoting strategy for all neighborhoods except those
explored implicitly with an optimization algorithm (double-bridge, CO, BS, Gutin, and SR neighborhood).
Moreover, pre-tests have shown that the BS neighborhood should be used with k ≤ 3, because the state
space for larger k grows considerably, making labeling prohibitively slow (compared to the other exploration
algorithms). Note that we consider BS neighborhoods with different k values as different neighborhoods.
Finally, the maximum string length for the SR neighborhood is set to L = 4.

The random VND chooses one of the available neighborhoods at random. The neighborhood exploration
is however only started if an improvement is possible. Hence, if the same neighborhood is chosen two times in
a row and the first exploration has confirmed local optimality, the second exploration is omitted. Moreover,
recall that the CO neighborhood is identical to NBS

1 and that NBS
1 ⊂ NBS

2 ⊂ NBS
3 etc. Therefore, if NBS

3

fails to find an improvement, CO and NBS
2 are omitted. Likewise, if NBS

2 fails, CO is omitted.

Perturbation. When the VND terminates, a local minimum w.r.t. all neighborhoods has been found. To
escape from such a local minimum and to lead the search towards a region of the solution space not yet
explored, ILS applies a perturbation step. The design of this perturbation step is delicate: If the perturbation
step is too strong, ILS behaves like a random multi-start algorithm with a relatively high computational
burden for the VND. In this case, an average iteration (of the main loop of Algorithm 2) takes more time.
On the other hand, if the perturbation is too weak, the VND tends to fall back into the known local optimum
just found in the iteration before. The diversification of the search is rather limited then.

For the sake of simplicity, we use the random double-bridge move for the perturbation of the current
G-tour x. It is known from the TSP (Johnson and McGeoch, 1997) that the double-bridge move gives an
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effective perturbation. In comparison to the double-bridge move used within the local search (Section 3.1),
the edges to be removed are chosen randomly. Moreover, if the VND falls back into same the local optimum
three times in a row (as a necessary condition we test whether objective values are identical), we do not
perturb with a random double-bridge move. Instead the current solution is set to a fresh starting solution,
computed with the above-described GTSP construction heuristic.

Acceptance Criterion. The acceptance criterion controls the balance between intensification and diversifi-
cation of the search. In case no acceptance criterion is used, the ILS performs a randomized walk in the
space of all local optima, i.e., a strong diversification is achieved. On the opposite, if only better solutions
are accepted, intensification is very strong.

We balance intensification and diversification with the deterministic record-to-record travel (Dueck, 1993)
acceptance criterion as follows: Every solution x∗ improving the current solution x is always accepted.
Moreover, non-improving solutions x∗ (those with c(x∗) > c(x)) are accepted if the deviation from the cost
of the best observed solution (= record, xILS) so far is smaller than a predefined threshold. To this end,
we test c(x∗) ≤ (1 + ε) · c(xILS) for a (small) value ε > 0 (cf. Line 6 in Algorithm 2). Initially, we set
ε to 0.03 so that a deviation of 3% from the record is allowed. With a straightforward geometric cooling
schedule, commonly used in simulated annealing, we systematically lower ε in the course of the ILS. The
cooling update takes place every N iterations of the main loop. The update lowers ε by the factor h = 0.8
(Line 10). That means, e.g., that ε is at approximately a tenth of its initial value after 10N iterations.

4.1. GTSP Instances
We evaluate the performance of the basic ILS on commonly used symmetric GTSP problem libraries that
have also been used to compare
• the memetic algorithm GK of Gutin and Karapetyan (2010),
• the Lin-Kernighan-Helsgaun GLKH algorithm of Helsgaun (2015), and
• the large neighborhood search GLNS of Smith and Imeson (2017).

Note that GK, GLK, and GLNS are the best-performing state-of-the-art GTSP solvers published in the
literature (see Section 2). Smith and Imeson (2017) made the three GTSP algorithms well comparable by
running all of them for the same amount of computational time (we provide details below). They were
tested on four libraries:
• The GTSP_LIB was introduced by Fischetti et al. (1997) and later extended by Silberholz and Golden

(2007). It consists of 88 symmetric and asymmetric instances with up to 1084 vertices and 217 clusters
taken from the TSP_LIB (Reinelt, 1991). The vertex clustering simulates geographical regions. The
45 largest instances of the library have been used in the GK, GLK, and GLNS comparison presented by
Smith and Imeson (2017). We omit the five asymmetric instances.

• The BAF_LIB was introduced by Bontoux (2008) and was also derived from the TSP_LIB. The pseudo-
random clustering scheme implies that there are no geographical regions. The library comprises
56 symmetric instances with up to 1084 vertices and 217 clusters. The standard comparison uses the
45 largest instances.

• The MOM_LIB was introduced by Mestria et al. (2013) and contains 249 symmetric instances with six
different clustering schemes. The largest instances have up to 3000 vertices and up to 200 clusters. All
instances are adapted either from TSP_LIB or the Concorde project (Applegate et al., 1999). Here, the
45 largest instances are used in the GK, GLK, and GLNS comparison of Smith and Imeson (2017).

• The LARGE_LIB was introduced by Helsgaun (2015) and contains 44 very large symmetric instances
ranging from 1,000 to 85,900 vertices. Instances originally stem from the TSP_LIB, the 8th DIMACS
Implementation Challenge (Johnson et al., 2000), and the National TSP benchmark library (Applegate
et al., 2015). The clusters were also generated with the clustering scheme of Fischetti et al. (1997).
Only the 27 smallest instances have been used to benchmark the GK, GLK, and GLNS algorithms.

4.2. Computational Results of the Basic ILS
The basic ILS was coded in C++ and compiled with MS Visual Studio 2015 in release mode. All

computations were performed on a standard PC with MS Windows 10 running on an Intelr CoreTM i7-
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5930K CPU clocked at 3.5 GHz and with 64 GB RAM.
We designed the experiments in the same way as Smith and Imeson (2017) did: The computation time

limit was 300 seconds for all instances of the GTSP-LIB, MOM-LIB, and BAF-LIB, and 1200 seconds for all
instances of the LARGE-LIB. Table 2 shows the computational results, where columns have the following
meaning:
• instance is the name of the GTSP instance. The name’s prefix is the number N of clusters and the

suffix is number n of vertices. For all instances marked with *, a new best solution was found.
• best known shows the cost of the best-known solution xBKS (BKS), i.e., c(xBKS), known from the

literature for the instance. This information is taken from Smith and Imeson (2017) (available at
https://ece.uwaterloo.ca/~sl2smith/GLNS/) and Helsgaun (2015) (available at http://akira.
ruc.dk/~keld/research/GLKH/).

• #best is the number of runs, out of ten, in which a BKS was obtained or a better solution was found.
• ∆(%) shows the average percentage error between the cost c(xBKS) of a BKS and the cost c(xILS)

obtained by our ILS over 10 runs. The percentage error e is calculated as e = 100 · (c(xILS) −
c(xBKS))/c(xBKS). If a new solution could be found, e is negative. Accordingly, this negative e is
also included in the calculation of the average percentage error ∆(%).
For example: A new best solution with cost 1600 was computed for the instance 45tsp225 of the
GTSP_LIB in 10 of 10 runs. The previous BKS was c(xBKS) = 1612. Hence, e = −0.74 % for all runs
so that also ∆ = −0.74 %.
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Table 2: Results of the Basic ILS on 157 symmetric GTSP Instances.

GTSP_LIB MOM_LIB BAF_LIB LARGE_LIB

instance best #best ∆(%) instance best #best ∆(%) instance best #best ∆(%) instance best #best ∆(%)

31pr152 51,576 10 — 50i2000-603 4,325 10 — baf20kroD100 5,266 10 — 10C1k.0 2,522,585 10 —
32u159 22,664 10 — 50i2500-707 3,961 10 — baf20kroE100 5,449 10 — 31C3k.0 3,553,142 10 —
35si175 5,564 10 — 50i3000-802 4,070 10 — baf20rat99 230 10 — 49usa1097 10,337 10 —
36brg180 442 10 — 50kroA100 15,944 10 — baf20rd100 1,747 10 — 100C10k.0 6,158,999 0 1.16
39rat195 854 10 — 50kroB100 15,842 10 — baf21eil101 105 10 — 200C1k.0 6,375,154 10 —
40d198 10,557 10 — 50lin105 11,294 10 — baf21lin105 2,758 10 — 200E1k.0 9,662,857 0 0.38
40kroa200 13,406 10 — 50lin318 18,163 10 — baf22pr107 6,849 10 — 235pcb1173 23,399 1 0.80
40krob200 13,111 10 — 50nrw1379 7,449 10 — baf24gr120 1,377 10 — 259d1291 28,400 3 0.13
41gr202 23,301 10 — 50pcb1173 9,385 10 — baf25pr124 10,745 10 — 261rl1304 150,468 0 0.23
45ts225 68,340 10 — 50pcb442 14,430 10 — baf26bier127 11,740 10 — 265rl1323 154,023 0 0.36
45tsp225 * 1,612 10 −0.74 50pr1002 54,583 10 — baf28pr136 17,824 10 — 276nrw1379 20,050 0 0.41
46gr229 71,972 10 — 50pr439 45,253 10 — baf29pr144 14,070 10 — 280fl1400 15,316 10 —
46pr226 64,007 10 — 50rat783 1,626 10 — baf30kroA150 7,005 10 — 287u1432 54,469 0 0.31
53gil262 1,013 10 — 50rat99 814 10 — baf30kroB150 5,855 10 — 316fl1577 14,182 10 —
53pr264 29,549 10 — 50vm1084 54,156 10 — baf31pr152 13,002 10 — 331d1655 29,443 0 0.52
56a280 1,079 10 — 72vm1084-8x9 64,647 10 — baf32u159 7,301 10 — 350vm1748 185,459 0 0.55
60pr299 22,615 10 — 75lin105 13,134 10 — baf39rat195 477 10 — 364u1817 25,530 0 0.59
64lin318 20,765 10 — 81vm1084-9x9 69,659 10 — baf40d198 1,466 10 — 378rl1889 184,034 0 0.63
80rd400 6,361 10 — 100i1000-410 5,481 10 — baf40kroA200 7,113 10 — 421d2103 40,049 0 1.59
84u417 9,651 10 — 100i1500-506 5,088 8 0.06 baf40kroB200 7,126 10 — 431u2152 27,614 0 1.63
87gr431 101,946 10 — 100i2000-604 5,316 6 0.17 baf41gr202 3,531 10 — 464u2319 65,758 0 3.37
88pr439 60,099 10 — 100i2500-708 5,297 10 — baf45ts225 25,697 10 — 479pr2392 169,874 0 3.27
89pcb442 21,657 10 — 100i3000-803 5,458 2 0.04 baf46pr226 13,555 10 — 608pcb3038 52,416 0 5.39
99d493 20,023 10 — 100nrw1379 10,566 10 — baf53gil262 571 3 0.40 633C3k.0 10,255,031 0 2.49
107ali535 128,639 10 — 100pcb1173 13,901 4 0.20 baf53pr264 7,716 10 — 633E3k.0 16,197,552 0 5.80
107att532 13,464 10 — 100pr1002 74,269 9 0.00 baf60pr299 10,047 10 — 759fl3795 18,662 0 1.19
107si535 13,502 10 — 100prb1173-10x10 12,644 10 — baf64lin318 7,489 10 — 893fnl4461 63,163 0 6.84
113pa561 1,038 10 — 100rat783-10x10 2,216 10 — baf80rd400 3,254 2 1.38
115rat575 2,388 10 — 100rat783 2,496 10 — baf84fl417 2,226 10 —
115u574 16,689 10 — 100vm1084 78,440 10 — baf87gr431 10,569 10 —
131p654 27,428 10 — 144pcb1173-12x12 16,412 1 0.28 baf88pr439 13,882 10 —
132d657 22,498 8 0.02 144rat783-12x12 2,813 4 0.03 baf89pcb442 8,749 10 —
134gr666 163,028 7 0.17 150i1000-411 6,296 9 0.05 baf99d493 3,081 10 —
145u724 17,272 9 0.02 150i1500-507 6,085 9 0.00 baf107att532 3,880 8 0.06
157rat783 3,262 1 0.14 150i2000-605 5,940 9 0.00 baf107si535 8,912 7 0.47
200dsj1000 9,187,884 4 0.10 150i2500-709 6,158 5 0.17 baf113pa561 431 0 1.44
201pr1002 114,311 2 0.07 150i3000-804 6,569 0 0.44 baf115rat575 1,330 9 0.15
207si1032 22,306 0 0.07 150nrw1379 13,370 3 0.21 baf131p654 5,824 4 0.03
212u1060 106,007 1 0.31 150pcb1173 17,082 2 0.50 baf132d657 8,132 10 —
217vm1084 130,704 6 0.11 150pr1002 92,969 7 0.03 baf145u724 7,354 0 0.63

150rat783 3,131 2 0.34 baf157rat783 1,700 8 0.56
150vm1084 95,922 10 — baf201pr1002 48,400 0 2.40
200i2000-606 7,274 0 0.39 baf207si1032 18,836 9 0.00
200i2500-710 7,191 3 0.28 baf212u1060 38,639 5 0.24
200i3000-805 6,909 0 0.65 baf217vm1084 44,681 10 —

Average 8.70 0.01 7.62 0.09 8.56 0.17 2.37 1.39
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We give some side notes: The basic ILS finds a BKS at least once for 131 of the 157 instances, while for
95 instances it was determined in 10 of 10 runs. In addition, for the instance 45tsp225 of the GTSP_LIB, a
new best solution was found.

For GTSP_LIB, a BKS (or a better solution) is found in 8.70 of 10 runs on average. For instances with
up to 131 clusters, a BKS is found or undercut in 10 of 10 runs, while for instances with more than 131
clusters, the number of runs in which a BKS is obtained varies between 0 and 9 with an average of 4.

For MOM_LIB, the basic ILS finds a BKS in at least one run for 42 of the 45 instances. For 26 instances,
all ten runs find it. For the instances for which a BKS was not obtained in all ten runs, the average number
of achieved BKS is 4, with an average percentage error of 0.2%.

For the BAF_LIB, the basic ILS finds a BKS in all ten runs for 33 instances. For the other instances, the
average number of BKSs found is 5 with an average percentage error of 0.65%. On the downside, for three
instances, a BKS was never obtained in all 10 runs. For two of them, the average percentage error is rather
high with 1.44% and 2.40%.

For the LARGE_LIB, we summarize the results as follows: From 27 instances, only 6 instances can be
solved with the BKS in 10 of 10 runs, 2 instances can be solved at least one time, whereas for 19 instances
a BKS is never obtained. Thus, the average percentage error is relatively large with 1.79%. In particular
for instances with more than 400 clusters, the average percentage error varies between 1.19 % and 6.84%.

Finally, we compare the basic ILS with the three algorithms GK, GLKH, and GLNS. Table 3 presents
average values of #best and ∆(%) on the four groups of instances and for the four algorithms. Note that
only the symmetric instances are taken into account to be comparable with the analysis of Smith and Imeson
(2017). In spite of its simplicity, the basic ILS produces reasonable results on the first three libraries, while
results for the LARGE_LIB are clearly behind.

Table 3: Comparison of the basic ILS with Algorithms from the Literature

GTSP_LIB MOM_LIB BAF_LIB LARGE_LIB

Algorithm #best ∆(%) #best ∆(%) #best ∆(%) #best ∆(%)

GK 9.10 0.01 8.44 0.03 8.11 0.29 2.77 0.76
GLKH 9.20 0.01 5.40 0.82 5.04 6.51 3.04 0.52
GLNS 8.73 0.01 9.18 0.02 8.91 0.07 3.31 0.50

Basic ILS 8.70 0.01 7.62 0.09 8.56 0.17 2.37 1.39

We can provide some reasons why the basic ILS is not convincing on the LARGE_LIB: In particular for
instances with a large number N of clusters, the ILS performs only a relative small number of iterations,
because some neighborhoods are very time-consuming. It is clear that, in these cases, the more time-
consuming neighborhoods should either be completely omitted or should be explored less often, e.g., only
when elite solutions are found.

5. Refined Iteratated Local Search

Section 4 has shown that the basic ILS already achieves reasonable results. It is however not yet
competitive with the currently best algorithm GLNS and does not consistently outperform GK and GLKH.
Our overall goal for the ILS still remains to design a simple but powerful algorithm and well-reproducible
results. We implement the three following refinements:

Reset. We observed that, in particular for some more difficult instances, the best found solution xILS is
identified only once in a run (if ever). It seems that intensifying the search in the solution space around
xILS could help to identify other very good solutions, hopefully better ones.

Hence, if no improvement takes place for a pre-defined number of iterations, the reset component resets
the current solution x to the best found solution xILS . Pre-tests have shown a reset after every 50 iterations
is a good compromise balancing intensification and diversification.
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VND with Neighborhood Prioritization. The classical VND, as proposed by Hansen and Mladenović (2005),
orders the neighborhoods according to their size and expected computational effort. The first neighborhood
is then the one with the smallest computational effort. The second neighborhood is only explored when a
local optimum in the first is reached. Moreover, after an improving move in the second neighborhood, one
returns to the exploration of the first neighborhood. More than two neighborhoods are “prioritized” in the
same fashion.

We want to find out whether a prioritization is also beneficial for the local-search component of our ILS.
This includes the possibility to completely disregard neighborhoods and to choose a pivoting strategy (first
improvement or best improvement) per neighborhood. Moreover, for the BS neighborhood, a value for the
parameter k has to be set. In contrast, the maximum string length in the SR neighborhood is fixed to L = 4,
because larger values lead to unacceptably long computation times.

To this end, we consider the set of all parameterized neighborhoods

N all = {N 2Opt
best ,N

2Opt
first ,N

3Opt
best ,N

3Opt
first ,N

dbl−brdg, . . . ,NBS
2 ,NBS

3 ,NBS
4 ,NBS

5 , . . . ,N SR
4 , . . . ,NGutin}

resulting from the description given in Section 3.
Of course, we do not perform a full factorial parameter study over N all, simply because the number of

possible VND variants and resulting ILS setups is too large. Furthermore, there is the danger of overfitting
the possible setups to the set of 157 GTSP instances that is considered.

Our pragmatic approach to design refined ILS setups with different prioritized neighborhoods in the
VND can be summarized as follows:
• Initially, we randomly select one of the four GTSP libraries and a subset I of 10 = |I| instances from

it.
• For this subset I, we determine the subset N V ND ⊂ N all of useful neighborhoods by adding, one by

one, a not yet selected parameterized neighborhood N ∈ N all \N V ND to N V ND. This is done in the
following way:
– The neighborhood selection process is initialized with N V ND

0 = ∅.
– In the pth iteration (p = 1, 2, . . . ), i.e., when |N V ND

p−1 | = p− 1, the next parameterized neighbor-
hood N p ∈ N all \ N V ND

p−1 is the one producing the best improvement over the ILS using N V ND
p−1 ,

when added to N V ND
p−1 , i.e., for the tentative subset N V ND

p = {N p} ∪ N V ND
p−1 .

– We measure the improvement (relative to the subset I) as the value

∆(I,N V ND
p ) =

1

|I|
∑
I∈I

(
c(xIILS)− c(xIBKS)

)
/c(xIBKS),

where c(xIILS) is the cost of a best solution of instance I obtained with the refined ILS using
N V ND
p , and c(xIBKS) the cost of a BKS for instance I known from the literature.

– We perform a single run per instance I ∈ I limited to 120 seconds of computation time.
– If there is no improvement, i.e., ∆(I,N V ND

p ) ≥ ∆(I,N V ND
p−1 ) for all N p ∈ N all \ N V ND

p−1 , the
process of adding neighborhoods stops.
The final set of neighborhoods is chosen as N V ND = N V ND

p−1 .
By repeating the random selection of instances I, we have obtained several versions of a nested VND.

Two rather well-performing but different ones give rise to two refined versions of ILS in which the random
VND is replaced by nested VND I or VND II summarized in Table 4.

Balas-Simonetti for High-Quality Solutions. When a high-quality solution is found, we try to further improve
it with the Balas-Simonetti neighborhood with a high k-value (Section 3.3). We define high-quality solutions
as G-tours with a cost falling into the lower 1 %-fractile of all local optimal solutions x∗ found so far (see
Line 5 of Algorithm 2). Therefore, the ILS regularly computes and updates a bound b on the cost. More
precisely, we set the first bound b after 200 iterations of the main loop and subsequently update b after
every 50 iterations, but only if the newly computed bound is lower than the old bound. With this latter
condition, the bound b never increases.
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Table 4: Selection, Priorities, and Pivoting Strategies of Neighborhoods.

VND I VND II

Neighborhood priority pivoting priority pivoting

2-Opt — — 6 first
3-Opt 4 best 2 best
Double Bridge 3 best 4 best
Relocation+ 1 best — —
Swap+ — — — —
CO — — — —
BS k = 3 — — — —
BS k = 4 2 best — —
BS k = 5 — — 3 best
String Relocation+ — — 5 best
Gutin Neighborhood 5 best 1 best

Note: The maximum string length for String Relocation+ is L = 4 for VND II.

If a solution x∗ is a high-quality solution, the BS neighborhood is explored. We have experimented with
different values of k. Obviously, larger values of k offer a higher potential for an improvement but also come
at a large computational effort. As explained for CO, we rotated the G-tour x so that the first cluster has
minimum cardinality. Additionally, we run the corresponding shortest-path problem only for the vertex x1
that is currently selected in x = (x1, x2, . . . , xN , x1). With these accelerations, pre-tests have shown that
k = 8 is still possible and offers a good trade-off between solution quality and computational time.

Technically, the Balas-Simonetti neighborhood with k = 8 is added to the VND with the lowest possible
priority, i.e., highest value priority (cf. Table 4). Every time the VND calls this new BS neighborhood, it
checks if the cost of the current solution x belongs to the best 1 % fractile, i.e., c(x) ≤ b.

Table 5: Performance of the three ILS Setups on four GTSP Libraries.

GTSP_LIB MOM_LIB BAF_LIB LARGE_LIB

ILS with #best ∆(%) #best ∆(%) #best ∆(%) #best ∆(%)

random VND 8.70 0.01 7.62 0.09 8.56 0.17 2.37 1.39
VND I 9.15 −0.004 7.16 0.14 8.16 0.44 2.70 1.15
VND II 8.73 0.01 7.27 0.10 7.29 1.05 2.81 1.06

Table 5 summarizes the comparison of the basic ILS and the two new refined ILS versions using VND I
and VND II. Note that the first line repeats the results presented before for the basic ILS, which uses the
random VND and no reset to xILS . The refined ILS with VND I performs very well on the GTSP_LIB both
regarding the average number of BKSs found (#best) and the average deviation to the BKS (∆(%)). Recall
that a negative deviation is possible: it results from the new BKS that was computed for one instance. The
refined ILS with VND II outperforms the one with VND I and the basic ILS on the LARGE_LIB. For MOM_LIB
and BAF_LIB, the basis ILS is still the best algorithm.

5.1. Instance-Based Selection of an ILS Setup
With three alternative ILS setups at hand (basic ILS, refined ILS with VND I or VND II), the question

is now whether one can estimate the performance beforehand. Looking into instance-by-instance results for
the three refined ILS setups, the refined ILS with VND I outperforms the other version on instances that are
not geometrically clustered. Accordingly, we define for a GTSP instance, the average relative inner-cluster
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distance as

α(I) =
c̄in
c̄

with c̄in =

(∑
i∈I

∑
x<x′∈Vi

cx,x′

)
/

(∑
i∈I

(
|Vi|
2

))
and c̄ =

( ∑
x<x′∈V

cx,x′

)
/

(
|V |
2

)
,

where c̄in is the average distance between vertices of the same cluster and c̄ the average distance between
two arbitrary vertices. Moreover, the refined ILS with VND II works well for large instances, where we
define large instance as one with N > 250.

Having defined this, the following simple rules assign an instance I to one of the three refined ILS
versions:
• If α(I) < 0.5, use the refined ILS with VND I;
• If α(I) ≥ 0.5 and N > 250, use the refined ILS with VND II;
• In all other cases, use the basic ILS (with random VND, without reset).

The resulting metaheuristic with the instance-based selection of the ILS setup is denoted as the refined ILS
from now on.

5.2. Computational Results of the Refined ILS
Table 6 shows the results obtained with the refined ILS on the 157 symmetric GTSP instances. The

meaning of the columns is the same as in Table 2.
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Table 6: Results of the Refined ILS on the 157 symmetric GTSP Instances

GTSP_LIB MOM_LIB BAF_LIB LARGE_LIB

instance best #best ∆(%) instance best #best ∆(%) instance best #best ∆(%) instance best #best ∆(%)

31pr152 51,576 10 — 50i2000-603 4,325 10 — baf20kroD100 5,266 10 — 10C1k.0 2,522,585 10 —
32u159 22,664 10 — 50i2500-707 3,961 10 — baf20kroE100 5,449 10 — 31C3k.0 3,553,142 10 —
35si175 5,564 10 — 50i3000-802 4,070 10 — baf20rat99 230 10 — 49usa1097 10,337 10 —
36brg180 442 10 — 50kroA100 15,944 10 — baf20rd100 1,747 10 — 100C10k.0 6,158,999 0 1.16
39rat195 854 10 — 50kroB100 15,842 10 — baf21eil101 105 10 — 200C1k.0 6,375,154 10 —
40d198 10,557 10 — 50lin105 11,294 10 — baf21lin105 2,758 10 — 200E1k.0 9,662,857 2 0.21
40kroa200 13,406 10 — 50lin318 18,163 10 — baf22pr107 6,849 10 — 235pcb1173 23,399 0 0.74
40krob200 13,111 10 — 50nrw1379 7,449 10 — baf24gr120 1,377 10 — 259d1291 28,400 10 —
41gr202 23,301 10 — 50pcb1173 9,385 10 — baf25pr124 10,745 10 — 261rl1304 150,468 3 0.17
45ts225 68,340 10 — 50pcb442 14,430 10 — baf26bier127 11,740 10 — 265rl1323 154,023 0 0.18
45tsp225 * 1,612 10 −0.74 50pr1002 54,583 10 — baf28pr136 17,824 10 — 276nrw1379 20,050 0 0.45
46gr229 71,972 10 — 50pr439 45,253 10 — baf29pr144 14,070 10 — 280fl1400 15,316 10 —
46pr226 64,007 10 — 50rat783 1,626 10 — baf30kroA150 7,005 10 — 287u1432 * 54,437 1 0.24
53gil262 1,013 10 — 50rat99 814 10 — baf30kroB150 5,855 10 — 316fl1577 14,182 10 —
53pr264 29,549 10 — 50vm1084 54,156 10 — baf31pr152 13,002 10 — 331d1655 29,443 0 0.28
56a280 1,079 10 — 72vm1084-8x9 64,647 10 — baf32u159 7,301 10 — 350vm1748 185,459 0 0.22
60pr299 22,615 10 — 75lin105 13,134 10 — baf39rat195 477 10 — 364u1817 25,530 1 0.28
64lin318 20,765 10 — 81vm1084-9x9 69,659 10 — baf40d198 1,466 10 — 378rl1889 184,034 0 0.24
80rd400 6,361 10 — 100i1000-410 5,481 10 — baf40kroA200 7,113 10 — 421d2103 40,049 0 0.74
84u417 9,651 10 — 100i1500-506 5,088 8 0.06 baf40kroB200 7,126 10 — 431u2152 27,614 0 1.09
87gr431 101,946 10 — 100i2000-604 5,316 6 0.17 baf41gr202 3,531 10 — 464u2319 65,758 0 1.67
88pr439 60,099 10 — 100i2500-708 5,297 10 — baf45ts225 25,697 10 — 479pr2392 169,874 0 1.34
89pcb442 21,657 10 — 100i3000-803 5,458 2 0.04 baf46pr226 13,555 10 — 608pcb3038 52,416 0 3.89
99d493 20,023 10 — 100nrw1379 10,566 10 — baf53gil262 571 3 0.40 633C3k.0 10,255,031 0 1.80
107ali535 128,639 10 — 100pcb1173 13,901 4 0.20 baf53pr264 7,716 10 — 633E3k.0 16,197,552 0 4.39
107att532 13,464 10 — 100pr1002 74,269 9 0.00 baf60pr299 10,047 10 — 759fl3795 18,662 0 0.53
107si535 13,502 10 — 100prb1173-10x10 12,644 10 — baf64lin318 7,489 10 — 893fnl4461 63,163 0 6.77
113pa561 1,038 10 — 100rat783-10x10 2,216 10 — baf80rd400 3,254 2 1.38
115rat575 2,388 10 — 100rat783 2,496 10 — baf84fl417 2,226 10 —
115u574 16,689 8 0.04 100vm1084 78,440 10 — baf87gr431 10,569 10 —
131p654 27,428 10 — 144pcb1173-12x12 16,412 1 0.28 baf88pr439 13,882 10 —
132d657 22,498 10 — 144rat783-12x12 2,813 4 0.03 baf89pcb442 8,749 10 —
134gr666 163,028 9 0.05 150i1000-411 6,296 9 0.05 baf99d493 3,081 10 —
145u724 17,272 8 0.04 150i1500-507 6,085 9 0.00 baf107att532 3,880 8 0.06
157rat783 3,262 4 0.08 150i2000-605 5,940 9 0.00 baf107si535 8,912 7 0.47
200dsj1000 9,187,884 8 0.02 150i2500-709 6,158 5 0.17 baf113pa561 431 0 1.44
201pr1002 114,311 8 0.01 150i3000-804 6,551 0 0.44 baf115rat575 1,330 9 0.15
207si1032 22,306 0 0.07 150nrw1379 13,370 3 0.21 baf131p654 5,824 4 0.03
212u1060 106,007 2 0.25 150pcb1173 17,082 2 0.50 baf132d657 8,132 10 —
217vm1084 130,704 9 0.03 150pr1002 92,969 7 0.03 baf145u724 7,354 0 0.63

150rat783 3,131 2 0.34 baf157rat783 1,700 8 0.56
150vm1084 95,922 10 — baf201pr1002 48,400 0 2.40
200i2000-606 7,272 0 0.39 baf207si1032 18,836 9 0.00
200i2500-710 7,191 3 0.28 baf212u1060 38,639 5 0.24
200i3000-805 6,902 0 0.65 baf217vm1084 44,681 10 —

Average 9.15 −0.004 7.62 0.09 8.56 0.17 2.85 0.98
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Again, we give some side notes. The refined ILS finds a BKS at least once for 134 of the 157 instances
(85%). While this number remains unchanged in comparison to the basic ILS, the number of instances for
which a BKS was not found decreases from 26 to 23. The new BKS for instance 45tsp225 of the GTSP_LIB
can be confirmed and another new one for the instance 287u1432 of the LARGE_LIB is found.

For the GTSP_LIB, a BKS (or a better one) is found in 9.15 of 10 runs on average. Due to the negative
deviation for instance 45tsp225 and the relatively small deviations for all other instances the average devi-
ation to the BKS decreases to −0.004 % over all instances. For instances with up to 113 clusters, a BKS
is found or undercut in 10 of 10 runs, while for instances with more than 113 clusters, the number of runs
in which a BKS is obtained varies between 0 and 10 with an average of 7. Their corresponding average
deviation could be reduced from 0.11% to 0.06% compared to the basic ILS.

For the LARGE_LIB, 7 of 27 instances are solved with a BKS in 10 of 10 runs, 4 instances are solved
with a BKS at least one time, and for 16 instances the BKS is never obtained (3 less compared to the basic
ILS). For instances with more than 400 clusters, the average percentage error is relatively large and varies
between 0.74 % and 6.77%, with an average of 2.47 % (3.51 % for basic ILS). The new BKS with costs of
54, 437 is found for instance 287u1432 in 1 of 10 runs, leading to a reduction of the total G-tour costs by
0.06 %.

The results for MOM_LIB and BAF_LIB remain unchanged because all these instances are still solved with
the basic ILS.

Finally, we compare the refined ILS with the basic ILS and the best-performing algorithms GK, GLKH
and GLNS from the literature. Table 7 provides an overview with all entries as defined before for Table 5.
The refined ILS clearly outperforms the basic ILS on GTSP_LIB and LARGE_LIB. In comparison to the liter-
ature, results are not clear-cut and there is no unique winner. The GLNS outperforms all other algorithms
on the MOM_LIB, BAF_LIB, and LARGE_LIB, where clusters are generated so that they do not comprise sets
of vertices that are mutually close. For the GTSP_LIB, however, GLKH is best regarding #best (directly
followed by the refined ILS) and the refined ILS is best regarding ∆(%). It seems that the refined ILS can
cope very well with instances where the clusters consist of relatively close vertices.

Table 7: Comparison of the Basic and Refined ILS with best-performing Algorithms from the Literature.

GTSP_LIB MOM_LIB BAF_LIB LARGE_LIB

Algorithm #best ∆(%) #best ∆(%) #best ∆(%) #best ∆(%)

GK 9.10 0.01 8.44 0.03 8.11 0.29 2.77 0.76
GLKH 9.20 0.01 5.40 0.82 5.04 6.51 3.04 0.52
GLNS 8.73 0.01 9.18 0.02 8.91 0.07 3.31 0.50

Basic ILS 8.70 0.01 7.62 0.09 8.56 0.17 2.37 1.39
Refined ILS 9.15 −0.004 7.62 0.09 8.56 0.17 2.85 0.98

6. Conclusions

The paper has introduced a simple but effective ILS for solving symmetric instances of the GTSP.
The basic ILS combines several neighborhoods into a random VND that are then used as the local-search
component of the ILS. For the VND, we introduced three new neighborhoods that allow simultaneous
modifications of the sequence of the clusters and the selection of vertices per cluster. Unexpectedly, this
truly simple design of an ILS already gives reasonable results on standard benchmarks.

One finding of our experimental studies is that a single ILS setup that is not tailored to characteristics
of the GTSP instance at hand can be easily improved. Indeed, while some instances have geometrically
defined clusters that comprise mutually close vertices, other instances systematically spread the vertices of
all clusters. The distinction of these cases is crucial, and we have defined a refined ILS that chooses priorities
for the neighborhoods in the VND according to the size N and the average relative inner-cluster distance.
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With these refinements, the computational results also show that the new GTSP neighborhoods con-
tribute significantly to the success of both ILS versions. This can be seen, for example, from the fact that the
Balas-Simonetti neighborhood with k = 8 further improves elite solutions. Moreover, the good performance
of the adapted Gutin neighborhood becomes evident within the refined ILS, where this neighborhood is used
with highest priority/first in the nested VND II.

The refined ILS is particularly powerful on the GTSP_LIB and improves the results of the basic ILS on the
LARGE_LIB (finding one new best solution in both libraries). For the latter library, the refined ILS performs
slightly below the best algorithms from the literature. This can be attributed to prohibitively increasing
computation times for exploring some neighborhoods for large-scale GTSP instances. A strong point in
favor of the new ILS is, however, its simple design making it much less involved to code compared to many
other metaheuristics.

For the future, further accelerating neighborhood explorations with established techniques like granular
search (Toth and Vigo, 2003; Schröder et al., 2020), don’t look bits (Hoos and Stützle, 2005, p. 375), and
dynamic sequential/radius search (Irnich et al., 2006; Gauthier and Irnich, 2020) as well as with new ideas
to be worked out is a promising research path.
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