
Adapting the ng-path Relaxation for Bike Balancing Problems

Christian Tilk∗,a

aChair of Logistics Management, Johannes Gutenberg University Mainz,
Jakob-Welder-Weg 9, D-55128 Mainz, Germany.

Abstract

This paper deals with the multiple vehicle balancing problem, a static bike relocation problem that deploys
a fleet of vehicles to redistribute shared bicycles. To solve the problem to optimality, we present a branch-
price-and-cut algorithm for which we adapt several state-of-the-art components. Moreover, a new path
relaxation for the pricing problem is introduced that relaxes the constraints on the maximum number of
bikes to move at each station in a similar fashion as elementary can be relaxed in standard vehicle routing
problems. Computational results show that our algorithm outperforms the former state-of-the-art.

Keywords: Branch-and-Price, Bike Balancing, Path Relaxation, Split-pick-up, Split-delivery

1. Introduction

Bike sharing systems have been rapidly developed and adopted world wide since the middle of the 2000s.
According to the website bikesharingworldmap.com, more than 2000 bike sharing systems are operating
worldwide. Bullock et al. (2017) have shown how bike sharing can supply significant economic returns for
the urban economy. One central problem faced by shared mobility systems operators is to maintain an
adequate number of vehicles in every station. Indeed, too large numbers can impede the return of vehicles
whereas too small numbers may translate into lost demand (Laporte et al., 2018).

The paper at hand deals with the multiple vehicle balancing problem (MVBP). It is a static bike relocation
problem that deploys a fleet of vehicles to redistribute shared bicycles during night time when customer
demand is negligible (Shui and Szeto, 2020). Recently, Casazza et al. (2021) proposed a branch-price-and-
cut (BPC) algorithm based on the decomposition of routes into simpler substructures called clusters. For
an overview on problem-specific and related literature, the reader is referred to (Casazza et al., 2021).

We present an exact BPC algorithm for the MVBP that is based on the column-generation part of the
matheuristic presented in (Casazza et al., 2018). In particular, we introduce a new path relaxation for the
pricing problem that relaxes the constraints on the maximum number of bikes to move at each station in
a similar fashion as the ng-path relaxation (Baldacci et al., 2011) relaxes elementary. Additionally, several
known state-of-the-art components that are frequently used in BPC algorithms for vehicle routing problems
(VRPs) are adapted. In a computation study, we evaluate the impact of the new path relaxation and show
that our BPC outperforms the former state-of-the-art algorithm.

2. Problem Description and Branch-Price-and-Cut

A fleet of F vehicles with a capacity of Q bikes is initially located at the depot vertex 0 and must end
their journey at the end depot n + 1. Let N be the set of all stations that needs to be balanced. Each
station has a positive or negative demand di ∈ Z representing the number of bikes that needs to be delivered
or picked-up. It is not allowed to temporarily store a bike at a station, i.e., each station i ∈ N is either a

∗Corresponding author.
Email address: tilk@uni-mainz.de (Christian Tilk)

Technical Report LM-2021-01 May 31, 2021

bikesharingworldmap.com

pick-up station (di > 0) or a delivery station (di < 0). Hence, we define N+ := {i ∈ N : di > 0} to be the
set of all pick-up stations and N− := {i ∈ N : di < 0} to be the set of all delivery stations. The pick-up or
delivery of a single bike at a station i is referred to as performing a task at station i. Moreover, we assume
w.l.o.g. that (i) the absolute demand at each station is smaller than the vehicle capacity, and (ii) the overall
demand allow a perfect balancing, i.e.,

∑
i∈N di = 0.

The MVBP can be formalized with the help of a directed graph G = (V,A) with node set V := {0, n+
1} ∪N and arc set A := {(i, j) : i 6= j, i 6= n+ 1, and j 6= 0}. Each arc (i, j) ∈ A has a positive travel cost
cij for which we assume that the triangle inequality holds. The goal is to find at most F feasible vehicle
routes such that the demand of all stations is satisfied while minimizing travel cost. A vehicle route is a
path P = (0 = i0, i1, . . . , im, im+1 = n + 1) in G together with a task pattern T = (k1, . . . , km) where kj
specifies the amount of tasks performed at station ij for all j = 1, . . . ,m. A route is feasible if it visits at
most S stations and the vehicle capacity is never exceeded, i.e., if it holds

m ≤ S and 0 ≤
∑
j≤l

ij∈N+

kj −
∑
j≤l

ij∈N−

kj ≤ Q for all l = 1, . . . ,m.

Let Ω be the set of all feasible routes, for each route r ∈ Ω, αir denotes the number of tasks performed
at station i and cr its travel cost. The path-based formulation of the MVBP introduced by Casazza et al.
(2018) reads as follows:

min
∑
r∈Ω

crλr (1a)

subject to
∑
r∈Ω

αirλr = |di| ∀i ∈ N (1b)∑
r∈Ω

λr ≤ F (1c)

λr ∈ {0, 1} r ∈ Ω (1d)

The objective function (1a) minimizes the overall travel cost. Constraints (1b) enforces that the ap-
propriate number of tasks is performed at each station. The size of the fleet is limited by constraint (1c).
Finally, constraints (1d) restrict routing variables to be binary. Note that Casazza et al. (2018) have shown
that this restriction is valid since it is assumed that |di| ≤ Q for all i ∈ N . In the following, we call the linear
relaxation of Formulation 1 in which the set of all feasible routes is replaced by a subset Ω̄ the restricted
master program (RMP). A column-generation algorithm (Desaulniers et al., 2005) is employed to solve the
RMP, it alternates between the optimization of the RMP and the solution of the pricing subproblem that
either generates new negative reduced-cost routes to be added to Ω̄ or proves that none exist. In the latter
case, the column-generation process terminates with a solution to the linear relaxation of the extensive
formulation and branching may be required to obtain an integer solution to the MVBP.

2.1. Pricing Problem
Let πi and µ be the dual prices of constraints (1b) and (1c). The pricing problem asks for a route r

with negative reduced cost c̄r = cr − µ−
∑

i∈N αirπi. This can be modelled as a shortest-path problem with
resource constraints (SPPRC) and solved with a labeling algorithm.

A partial forward path P = (0, . . . , i) starts at the depot 0 and ends at some vertex i ∈ V . The associated
forward label Li = (i, T cost

i , T load
i , T stops

i , (δmi)m∈N) comprises the following attributes:
i: the last visited vertex

T cost
i : the reduced cost of the path

T load
i : the number of loaded bikes

T stops
i : the number of visited stations

(δmi)m∈N : a vector containing for each station ` ∈ N the number δ`i of tasks performed by the route
2

Li can be extended to all vertices j ∈ N with the help of resource extension functions (REFs) fkij for all
k = 1, . . . , dj or to vertex n + 1 with f0

i,n+1. The parameter k denotes the number of tasks performed at
station j. The resulting label Lj = (j, T cost

j , T load
j , T stops

j , (δmj)m∈N) can be computed as:

T cost
j :=

{
T cost
i + cij − kπj if j ∈ N
T cost
i + cij − µ otherwise

T load
j :=

{
T load
i + k if j ∈ N+

T load
i − k otherwise

T stops
j :=

{
T stops
i + 1 if j ∈ N
T stops
i otherwise

δ`j :=

{
δ`i + k if j = l

δ`i otherwise

The extension is feasible if (i) 0 ≤ T load
j ≤ Q, (ii) T stops

j ≤ S, (iii) δ`j ≤ d` for all ` ∈ N , and (iv)
T load
j = 0 if j = n+ 1. The initial label is given by L0 := (0, 0, 0, 0,0). To avoid enumerating all paths, we

apply the following dominance rule:

Rule 1. Label L1 = (i, T cost
1 , T load

1 , T stops
1 , (δm1)m∈N) dominates L2 = (i, T cost

2 , T load
2 , T stops

2 , (δm2)m∈N) if
T cost

1 ≤ T cost
2 , T load

1 = T load
2 , T stops

1 ≤ T stops
2 , and (δi1) ≤ (δi2) for all i ∈ N .

The main difficulty of the resulting labeling algorithm relies in the handling of the resources (δmi)m∈N .
Instead of using an exact labeling algorithm, it is quite common to solve SPPRC pricing problems by relaxing
the elementary requirement, e.g., using the ng-path relaxation (Baldacci et al., 2011). Note that routes in
the MVBP do not need to be elementary in terms of visited stations, we therefore need another kind of
relaxation. Casazza et al. (2018) propose a relaxation to compute completion bounds in which the number
of tasks performed at each station is ignored. As a result, routes can perform more tasks at a station than
are available there. Inspired by this idea, we present an adapted version of the ng-path relaxation called
limited task memory (LTM) relaxation for the MVBP. The idea of LTM is to allow routes to contain some
cycles that exceed the number of available tasks at certain stations. In particular, a label will reset the
information about the number of tasks performed at some other stations, thereby drastically strengthening
the dominance.

A LTM relaxation is parametrized by neighborhoods Ni for each vertex i ∈ V which contain i and its
sz closest stations. If a label Li = (i, T cost

i , T load
i , T stops

i , (δmi)m∈N) is extended with REF fkij , we only alter
the update of the resources (δmi)m∈N as follows:

δ`j :=


δ`i + k if j = `

0 if ` /∈ Nj

δ`i otherwise

Figure 1 shows an example of a feasible path in the LTM relaxation that is not feasible for the MVBP. The
example depicts the path P = (0, 1, 2, 3, 1, 4, 2, n+ 1), the demand and the neighborhood of each vertex are
depicted above. On each arc (i, j) the value k of the number of tasks performed at j is depicted. The values
of the resources T load, δ1, δ2, δ3, and δ4 at each vertex are depicted below the path. The path contains two
cycles, 1−2−3−1 and 2−3−1−4−2. While the former is feasible for the MVBP, the latter is only feasible
in the LTM relaxation: The second visit of vertex 1 is feasible for the MVBP since the amount of tasks
performed at vertex 1 is six (four on arc (0,1) and two on arc (3,1)) and hence smaller than |d1| = 7. When
vertex 2 is visited for the second time, the overall amount of tasks performed at station 2 would be six, four
on arc (1,2) and two on arc (4,2), and thereby infeasible for the MVBP since it is greater than |d2| = 5.

3

0 n+11

d1 = 7

N1 = {1, 2, 3}

2

−5

{1, 2, 3}

3

2

{1, 2, 3}

1

7

{1, 2, 3}

4

−2

{1, 3, 4}

2

−5

{1, 2, 3}

k = 4 4 2 2 2 2


T load = 0

δ1 = 0
δ2 = 0
δ3 = 0
δ4 = 0




4
4
0
0
0




0
4
4
0
0




2
4
4
2
0




4
6
4
2
0




2
6
0
2
2




0
6
2
2
0




0
6
2
2
0


Figure 1: Example of a forward path that is feasible in the LTM relaxation but infeasible for the MVBP.

However, in the LTM relaxation the value δ2 was reset to zero at station 4 because station 2 is not included
in the neighborhood N4, and hence, the path is feasible. Note that the corresponding route-variable of such
a LTM-path can only have a fractional value in the RMP and will therefore be eliminated by cutting and
branching (see Section 2.2). Next, we summarize acceleration techniques that we use for solving the pricing
problem.

Bidirectional labeling. A partial backward path P = (j, . . . , n+ 1) starts at some vertex j ∈ V and ends at
the depot n+ 1. The associated backward label Lbw

j = (j, T cost
j , T load

j , T stops
j , (δmj)m∈N) comprises the same

attributes as the forward label. It can be extended backwards to all vertices j ∈ N with the help of REFs
gkij for all k = 1, . . . , di or to vertex 0 with f0

0,j . The parameter k gives the number of tasks performed at
station i. The resulting label Li = (i, T cost

i , T load
i , T stops

i , (δmi)m∈N) can be computed as:

T cost
i :=

{
T cost
j + cij − kπi if i ∈ N
T cost
i + cij − µ otherwise

(2a)

T load
i :=

{
T load
j + k if i ∈ N−

T load
j − k otherwise

(2b)

T stops
i :=

{
T stops
j + 1 if i ∈ N
T stops
j otherwise

(2c)

δ`i :=


δ`j + k if i = `

0 if ` /∈ Ni

δ`i otherwise
(2d)

The extension is feasible if (i) 0 ≤ T load
i ≤ Q, (ii) T stops

i ≤ S, (iii) δ`i ≤ d` for all ` ∈ N , and (iv) T load
i = 0

if i = 0. The initial label is given by Lbw
0 := (0, 0, 0, 0,0) and the same dominance rule as in the forward

labeling can be applied.
A forward label Lfw

i = (i, T cost
i , T load

i , T stops
i , (δmi)m∈N) and a backward label Lbw

j = (j, T cost
j , T load

j , T stops
j ,

(δmj)m∈N) can be merged to obtain a feasible route if T load
i = T load

j , T stops
i + T stops

j ≤ S, and δ`i + δ`j ≤ dl
for all ∈ N . The cost of the resulting path is given by T cost

i + T cost
j + cij .

Bounding. Similar to (Casazza et al., 2018), we compute completion bounds and use them to discard un-
promising partial paths in the labeling algorithm. Using a LTM relaxation with neighborhoods (N1

i)i∈V ,
valid completion bounds for forward label can be computed by solving a backward labeling with an-
other LTM relaxation with neighborhoods (N2

i)i∈V that fulfill N2
i ⊆ N1

i for all i ∈ V . Let Lbw be
the set of all backward label, according to the merge criterion, we can merge the forward label Li =
(i, T cost

i , T load
i , T stops

i , (δmi)m∈N) with all backward labels from the set Lbw(Li) := {Lj ∈ Lbw : T load
i =

T load
j , T stops

i + T stops
j ≤ S, and δ`i + δ`j ≤ dl for all l ∈ N}. Hence, a valid completion bound for Li can be

4

computed as lb(Li) := minLj∈Lbw(Li) T
cost
j + cij and all forward label with T cost

i + lb(Li) > 0 can be dis-
carded. The computation of completion bounds for backward label works analogous. In our computational
analysis, we compute the completion bound with a neighborhood size sz = 0.

Partial pricing. Instead of solving the pricing problem exactly, we use the following three pricing heuristics
hierarchically: In the first heuristic, we strongly reduce the size of the pricing network by considering for
each station only the two cheapest ingoing and outgoing arcs to other stations. Additionally, all arcs from
and to the depot are kept. The second heuristic uses a heuristic dominance rule ignoring the resources
(δmi)m∈N to drastically increase the number of discarded labels. In the third heuristic, we adapt the limited
discrepancy search (Feillet et al., 2007) to the MVBP. Therein, REFs fkij (gkij) are labelled good if |dj | = k
(|di| = k) and all other REFs are labelled bad. Then the total number of bad arcs that can be traversed in
a route is limited by two. Only if all heuristics fail, the pricing problem is solved exactly.

2.2. Cutting and Branching
We strengthen the linear relaxation of Formulation 1 by two classes of valid inequalities. First, we use

rounded capacity inequalities (RCIs). Let bijr be the number of times route r uses arc (i, j), the RCIs for a
set S ⊂ N are given by: ∑

i∈S

∑
j∈N\S

∑
r∈Ω

bijrλr ≥


∣∣∑
i∈S

qi
∣∣

Q


For the separation, we adapt the model presented in (Fukasawa et al., 2005) for the capacitated vehicle
routing problem. Second, we use the robust profitable cuts introduced by Casazza et al. (2018) for pairs of
either pick-up or delivery stations:∑

r∈Ω

(bijr + bjir)λr ≤ 1 for all i, j ∈ N+ or i, j ∈ N−

This class of inequalities can be separated by inspection. Note that both classes of inequalities are robust,
i.e., they only introduce an additional dual price that can be incorporated in the pricing problem by changing
the arc cost cij . Both classes of valid inequalities are separated at each branch-and-bound node.

To finally obtain integer solution, we use a three-stage branching scheme. Let λ∗r be the current solution
of the RMP. First, we branch on the number of vehicles F ∗ :=

∑
r∈Ω λ

∗
r , creating two branches with∑

r∈Ω λr ≥ dF ∗e and
∑

r∈Ω λr ≤ bF ∗c. Second, we branch on the number of visits to a station, let air be
the number of visits of route r to station i. If a∗i :=

∑
r∈Ω airλ

∗
r is fractional for some i ∈ N , we choose

the station i with value a∗i − ba∗i c closest to 0.5 to branch on and the two branches
∑

r∈Ω airλr ≥ da∗i e and∑
r∈Ω airλr ≤ ba∗i c are created. Third, we branch on the flow on arcs if b∗ij :=

∑
r∈Ω bijrλ

∗
r is fractional

for some (i, j) ∈ A. We choose the arc (i, j) with value b∗ij − bb∗ijc closest to 0.5 to branch on and the
two branches

∑
r∈Ω bijrλr ≥ db∗ije and

∑
r∈Ω bijrλr ≤ bb∗ijc are created. The first, second, and third stage

all induce new dual prices that that can be incorporated in the pricing problem by changing the arc cost
cij . Note that integer flows on arcs may not guarantee that the route variables are integer for the MVBP.
However, fractional route variables could always be convex combined into feasible integer solutions (see,
Desaulniers et al. (1998) and Jans (2010)).

To accelerate the solution process, we apply strong branching on stages 2 and 3 of the branching hierarchy.
In both stages, we choose the eight most fractional candidates in the current solution and perform a rough
evaluation of each candidate by solving the current RMP twice, adding the constraint corresponding to each
child node and using only the first two pricing heuristics to generate additional columns. The resulting
improvements in the lower bounds are usually overestimated. However, this evaluation strategy is fast and
beneficial compared to just choosing the most fractional candidates to branch on. The candidate to branch
on is then chosen according to the product rule (Achterberg, 2007). As branch-and-bound node-selection
rule, we apply a best-bound-first strategy.

5

3. Computational Results

In this section, we evaluate the impact of the LTM relaxation and compare our BPC with the state-of-
the-art in the literature. We, therefore, use the benchmark set from Casazza et al. (2018). It consists of 40
instances with up to 30 stations with demands in [−10, 10], the vehicle capacity is set to 10 and the maximum
number of stops to 9. Travel costs are based on Euclidean distances and fulfill the triangle inequality.

The BPC algorithm was implemented in C++ and compiled with MS Visual Studio 2019 into 64-bit
single-thread code. The callable library of CPLEX 12.9.0 was used for (re)optimizing the RMPs. All results
were obtained using a standard PC with an Intelr CoreTM i7-5930K processor clocked at 3.5 GHz and
64 GB RAM running Microsoft Windows 10 Education. The time limit is set to three hours.

Table 1 compares our BPC with the column-generation algorithm of (Casazza et al., 2018) and the BPC
of (Casazza et al., 2021). We evaluate our BPC with a labeling algorithm using LTM neighborhood sizes 0
and 6 as well as using the non-relaxed version. For each instance class, it contains the number of stations
(|N |), the number of instances in the class (#) as well as the number of solved instances and the average
solution times for all algorithms. The table shows that the LTM-relaxation with β = 6 clearly outperforms
all other algorithms. It solves all but one instance to optimality, and the average computation time decreases
by more than factor three compared to the other algorithms. All in all, 14 new proven optimal solutions are
computed. Note that all variants of our BPC are superior to the algorithms presented in the literature.

instance |N | #
Solved instances Time [sec]

class LTM 0 LTM 6 exact cas18 cas21 LTM 0 LTM 6 exact cas18 cas21

velib 10 10 20 20 20 20 20 20 5.0 1.5 18.1 605.9 9.9
velib 20 20 10 10 10 9 5 3 297.3 130.2 1415.9 6690.5 7851.3
velib 30 30 10 5 9 3 0 0 6516.7 2071.2 8097.6 10800.0 10800.0

all - 40 35 39 32 25 23 1706.0 551.1 2387.4 4675.6 4667.8

Table 1: Comparison of the exact labeling algorithm, labeling with different LTM sizes, and (Casazza et al., 2018, 2021).

Next, we evaluate the impact of forbidding split pick-ups and split deliveries. For that purpose, we solve
the same set of instance but deleting all REFs fkij with k < |dj | (and gkij with k < |di|) in the labeling
algorithm. Note that the resulting problem is much easier and all instances are solved to optimality in a
fraction of the time needed to solve the corresponding instance of the MVBP. For all instances that were
solved to optimality for both problems, Figure 2 depicts the increase in the optimal objective value when
splitting is forbidden. In 32 out of 39 instances, the optimal objective value increases. The average increase
is more than five percent with a maximum at around 25 percent.

5

10

15

20

25

Instance

A
dd

.
C
os
t
[%

]

Figure 2: Cost increase in the optimal objective when splitting demands is forbidden.

To access the limitations of our BPC, we tested LTM 6 on the same instances with doubled vehicle
capacity Q = 20 and different number of stops S ∈ {12, 15, 18}. The average computation time for the
resulting instance sets is depicted in Figure 3. We can see that a larger vehicle capacity surprisingly just

6

slightly increases the average computation time to solve an instance. The average computation time increases
linear with the number of stops with one exception: Increasing the number of stops further than 15, does
slightly decrease the average computation time for the Q = 20 instances.

9 12 15 18
500

1,000

1,500

2,000

2,500

3,000

S

av
g
T
im

e
[s
ec
]

Q = 10

Q = 20

Figure 3: Average computation time when instance parameter S and Q are varied.

4. Conclusion

In this paper, we have presented a branch-price-and-cut algorithm for the multiple vehicle balancing
problems. The algorithm adapts several known techniques that were successfully used in BPC algorithms
for other vehicle routing problems. Moreover, we have introduced a new path relaxation for solving the
pricing problem. Computational results clearly show the benefit of using the new relaxation. On the
benchmark set from the literature, the new algorithm can compute all known optimal solutions in a fraction
of the time of the former state-of-the-art algorithm. Moreover, 14 instances are solved to proven optimality
for the first time. Further computational experiments indicate that the solution time scales linear with the
instance parameter number of stops, while the vehicle capacity seems to have less impact on the solution
time.

Acknowledgement

This research was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant no. IR 122/9-2.

References

Achterberg, T. (2007). Constraint Integer Programming. Ph.D. thesis, Technische Universität Berlin, Fakultät II – Mathematik
und Naturwissenschaften, Berlin, Germany.

Baldacci, R., Mingozzi, A., and Roberti, R. (2011). New route relaxation and pricing strategies for the vehicle routing problem.
Operations Research, 59(5), 1269–1283.

Bullock, C., Brereton, F., and Bailey, S. (2017). The economic contribution of public bike-share to the sustainability and
efficient functioning of cities. Sustainable Cities and Society, 28, 76–87.

Casazza, M., Ceselli, A., Chemla, D., Meunier, F., and Wolfler Calvo, R. (2018). The multiple vehicle balancing problem.
Networks, 72(3), 337–357.

Casazza, M., Ceselli, A., and Wolfler Calvo, R. (2021). A route decomposition approach for the single commodity split pickup
and split delivery vehicle routing problem. European Journal of Operational Research, 289(3), 897–911.

Desaulniers, G., Desrosiers, J., Ioachim, I., Solomon, M. M., Soumis, F., and Villeneuve, D. (1998). A unified framework for
deterministic time constrained vehicle routing and crew scheduling problems. In T. G. Crainic and G. Laporte, editors, Fleet
Management and Logistics, pages 57–93. Kluwer, Boston.

Desaulniers, G., Desrosiers, J., and Solomon, M., editors (2005). Column Generation. Springer, New York, NY.
Feillet, D., Gendreau, M., and Rousseau, L.-M. (2007). New refinements for the solution of vehicle routing problems with

branch and price. INFOR, 45(4), 239–256.

7

Fukasawa, R., Longo, H., Lysgaard, J., de Aragão, M. P., Reis, M., Uchoa, E., and Werneck, R. F. (2005). Robust branch-and-
cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, 106(3), 491–511.

Jans, R. (2010). Classification of Dantzig-Wolfe reformulations for binary mixed integer programming problems. European
Journal of Operational Research, 204(2), 251–254.

Laporte, G., Meunier, F., and Calvo, R. W. (2018). Shared mobility systems: an updated survey. Annals of Operations
Research, 271(1), 105–126.

Shui, C. and Szeto, W. (2020). A review of bicycle-sharing service planning problems. Transportation Research Part C:
Emerging Technologies, 117, 102648.

8

	Introduction
	Problem Description and Branch-Price-and-Cut
	Pricing Problem
	Cutting and Branching

	Computational Results
	Conclusion

