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Abstract

We consider the exact solution of the basic version of the multiple-compartment vehicle-routing problem,
i.e., a problem consisting of clustering customers into groups, routing a vehicle for each group, and packing
demands of the visited customer uniquely into one of the vehicle’s compartments. Compartments have a fixed
size, and there are no incompatibilities between the transported items or between items and compartments.
The objective is to minimize the total distance of all vehicle routes such that all customers are visited. We
study the shortest-path subproblem that arises when exactly solving the problem with a branch-price-and-
cut algorithm. For this subproblem, we compare a standard dynamic-programming labeling approach with
a new one that utilizes a partial dominance. While the algorithm with standard labeling already struggles
with relatively small instances, the one with partial dominance can cope with much larger instances.

Key words: vehicle routing, packing, shortest-path problem with resource constraints,
dynamic-programming labeling, partial dominance

1. Introduction

In this paper, we consider the exact solution of the basic version of the multiple-compartment vehicle-
routing problem, which extends the capacitated vehicle-routing problem (VRP, Toth and Vigo, 2014) by the
task to uniquely assign every customer’s demand to a compartment of the vehicle that performs the visit. The
focus is the comparison of two different modeling and associated labeling approaches for the shortest-path
problems with resource constraints that have to be solved repeatedly within a branch-price-and-cut (BPC)
algorithm. The standard labeling approach is straightforward and directly assigns the customer demand to
a compartment, while the new labeling approach represents all possible demand assignments within a single
label. The latter labeling approach results in a poor direct one-to-one dominance between labels, but it
allows the application of a new partial dominance. We derive criteria for reducing undesirable properties
of the straightforward labeling approach related to symmetric and redundant intermediate solutions. Both
the standard labeling but even more the labeling approach with partial dominance can successfully exploit
these criteria.

The basic multiple-compartment vehicle-routing problem (BMCVRP) that we study here assumes that
the vehicle fleet is homogeneous and that each vehicle has at least two separate loading spaces (called
compartments) of fixed size. It is not allowed to split a customer’s demand and load only parts of the
demand into different compartments (either because goods are bulky or for operational/handling reasons,
see Ostermeier et al. (2018); Cherkesly and Gschwind (2020); Heßler et al. (2021). The literature on multi-
compartment vehicle routing is extensive, but excellent surveys are available, e.g., by Coelho and Laporte
(2015) and Ostermeier et al. (2021). We therefore briefly distinguish the BMCVRP from other popular
variants with multiple compartments.
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In many applications, it is necessary to consider different commodities (goods, products, waste) that
are to be distributed to (or collected from) customers. These commodities require transportation in sep-
arate and/or dedicated compartments, and one commodity can be incompatible with another commodity.
In supermarket supply chains, temperature-sensitive groceries (fresh, ambient, and frozen) have to be dis-
tributed. Accordingly, the compartments provide different cooling zones, and sometimes the overall loading
space is configurable into compartments of flexible size (Heßler, 2021). Moreover, compatibility between
products (which products can be shipped in the same compartment?) and fixed assignments of products to
compartments are predominant.

The replenishment problem of gas stations (Cornillier et al., 2008) is often considered a periodic or
inventory-routing VRP, in which different types of gas (regular and high-octane gas, diesel) must be trans-
ported in separate compartments. Coelho and Laporte (2015) distinguish four cases depending on whether
customers allow multiple visits per period and on whether vehicles are equipped with gas meters, so that
split deliveries are possible (otherwise, a full delivery implies that the entire content of a compartment must
fit into the customer’s underground tank).

Further important fields of application are the collection of urban waste (Henke et al., 2015; Kiilerich
and Wøhlk, 2017), the collection of agricultural products and the transportation of livestock (Oppen and
Løkketangen, 2008; Lahyani et al., 2015), and maritime transportation of cement and fuel (Christiansen
et al., 2011; Agra et al., 2013).

Two loading spaces naturally arise when vehicles are composed of a truck and a trailer. However, the
focus of truck-and-trailer VRPs is different (Rothenbächer et al., 2018; Parragh and Cordeau, 2017), because
they stress the need and possibility to decouple the trailer from the truck before a visit to a customer, in
particular to those customers, where a combined vehicle is not allowed, e.g., due to limited maneuvering
possibilities. The truck must later come back to the trailer’s parking position and couple the trailer again.
Important applications arise in row-milk collection (Drexl, 2007), where goods are typically divisible.

In the pickup-and-delivery problem with time windows and multiple stacks (Cherkesly et al., 2016), the
customer demands must be assigned uniquely to compartments. Note that here demands are point-to-point
transportation requests, and the stacking constraints enforce the LIFO loading policy, i.e., that goods loaded
last into a compartment must be delivered first from that compartment.

To summarize, we classify the BMCVRP according to the taxonomy of Ostermeier et al. (2021): The
BMCVRP is a VRP with only one type of product, several demands of different customers are allowed to
share a compartment (SC), vehicles have compartments of fixed size (FixedS), and a flexible assignment of
this product to compartments (FlexA) is allowed (these are the compartment-related attributes). Only a
single visit to a customer is allowed (SV), and therefore the demand of a customer is not split (UD) (these
are the order fulfillment-related attributes). By duplicating customers that then reside at the same physical
location, the BMCVRP also covers the case of possible multiple visits (MV), giving rise to the discrete split
delivery VRP a.k.a commodity-constrained split delivery VRP (see Gschwind et al., 2019).

We comment on the technical term partial dominance now. For a general introduction to BPC algorithms
for VRPs we refer to (Costa et al., 2019) and for modeling and solving shortest-path problems with resource
constraints (SPPRC) to (Irnich and Desaulniers, 2005). The effectiveness of labeling algorithms strongly
depends on the possibility to eliminate labels with the help of dominance rules. Recall that a label L is a
(convenient) representation of a partial path P (L) that starts at a given origin vertex. Partial dominance
describes those dominance algorithms that use (in general) several labels for the elimination of a label. More
precisely, a label L is dominated by s ≥ 1 other labels L1, L2, . . . , Ls if for every feasible extension Q of
its partial path P = P (L) into a feasible origin-destination path (P,Q), there exists a feasible extension Q′
of at least one of the other partial paths, say that of label Lr (for r ∈ {1, 2, . . . , s}), into a feasible origin-
destination path p′ = (P (Lr), Q′) with smaller or identical cost compared to (P,Q).

Partial dominance has been used in relaxations of the elementary SPPRC: For the elimination 2-cycles
(Houck et al., 1980; Kohl et al., 1999), i.e., short cycles of the form (i, j, i), the standard one-to-one dominance
applies only to labels that are extended from the same predecessor vertex. A label can be jointly dominated
by two other labels that have mutually different predecessor vertices, i.e., they all result from extensions
from different vertices. Later, Irnich and Villeneuve (2006) generalize this partial dominance to k-cycle
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elimination, i.e., all cycles of length up to k are forbidden. Here, not more than six different predecessor
sequences are needed in 3-cycle elimination and not more than k!(k − 1)! different predecessor sequences in
general. A problem-specific type of partial dominance has been introduced for the ng-route relaxation of
the SPPRC subproblem of the minimum latency problem (Bulhões et al., 2018).

For two-arc fixing using reduced costs, Desaulniers et al. (2020) present a labeling algorithm that relies
on partial dominance. Moreover, vehicle scheduling and routing problems with SPPRC subproblems that
have a tradeoff between two resources can benefit from a partial dominance as shown for airplane flight
scheduling (Ioachim et al., 1998, 1999), the active-passive VRP (Tilk et al., 2018), and the VRP with
convex inconvenience cost functions (convex node costs) defined on time windows (He et al., 2019). The
seminal paper (Desaulniers et al., 1998) describes when and how linear tradeoffs between resources result
from resource constraints in extensive path-based formulations solved with column-generation methods.
The linear tradeoff imposes linear node/vertex costs, for which Desaulniers and Villeneuve (2000) provide
a general approach using an implicit form of partial dominance. Even if we did not find works suggesting
partial dominance for some applications, it should also be applicable when solving SPPRC subproblems
of the following problems: the VRP with soft time windows (Liberatore et al., 2010), the time-window
assignment VRP (Spliet and Gabor, 2015), the electric VRP with time windows and partial recharges
(Desaulniers et al., 2016b), the split-delivery VRP with time windows (Desaulniers, 2010), the dial-a-ride
problem with ride-time constraints (Gschwind and Irnich, 2015), the inventory-routing problem (Desaulniers
et al., 2016a), and the truck-and-trailer VRP with quantity-dependent transfer times (Rothenbächer et al.,
2018). This list should not be considered complete.

Overall, the contribution of this paper is the development of a powerful exact optimization algorithm
for the BMCVRP, which is the basic problem synthesizing VRP and one-dimensional bin packing with
multiple bin sizes (Correia et al., 2008). The methodological contribution is the design and comparison
of two shortest-path labeling algorithms for the subproblems that have to be repeatedly solved within the
branch-price-and-cut algorithm. Both labeling algorithms benefit from new techniques that reduce inherent
symmetry which can produce redundant labels. The computational experiments will reveal that the first
and more standard labeling is strongly inferior to the second one, which relies on a new type of partial
dominance.

The remainder of the paper is organized as follows. In Section 2, we formally define the BMCVRP,
provide a route-based formulation, and explain how a tight lower bound on the fleet size can be computed.
Section 3 provides two results on sorted and unsorted vectors important for symmetry reduction. The
standard labeling and labeling algorithm with partial dominance are presented in Section 4. Results and
interpretations of the computational experiments are provided in Section 5, before conclusions are drawn in
Section 6.

2. Problem Definition

The BMCVRP can be formally defined over the undirected complete graph G = (V,E) with vertex set V
and edge set E. Let N = {1, 2, . . . , n} denote the set of customers and 0 the depot such that V = N ∪ {0}.
The vehicle fleet is homogeneous and housed at the depot comprising F vehicles. Each vehicle has m ≥ 2
compartments indexed by k ∈ C = {1, 2, . . . ,m}. The compartment sizes are Q = (Q1, Q2, . . . , Qm) so that
the total capacity of a vehicles is Q =

∑
k∈C Qk = 1>Q, where 1 denotes the vector (1, 1, . . . , 1) ∈ Rm.

Each customer i ∈ N has a demand given by the positive integer di. The demand is non-splitable in the
sense that it must be uniquely assigned to one compartment of the vehicle that serves customer i. Let cij
denote the routing cost for each ij ∈ E.

2.1. Route-based Formulation
The branch-price-and-cut algorithms that we explain and use later are based on a route-based model. A

route is a cycle r in G containing the depot 0. We denote by V (r) the set of vertices and by E(r) the set of
edges of r. The cost of a route is cr =

∑
ij∈E(r) cij . A route is feasible if the demand (di)i∈V (r)\{0} can be

feasibly assigned to the compartments of one vehicles, i.e., there exists a partition V (r)\{0} = V1∪V2∪. . .∪Vm
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with
∑
i∈Vk

di ≤ Qk for all k ∈ C. In the following, the associated utilization w = (
∑
i∈Vk

di)k∈C =
(
∑
i∈V1

di,
∑
i∈V2

di, . . . ,
∑
i∈Vm

di) of the compartments is called a packing, an assignment of demands to a
single compartment is called a pattern. A packing is feasible if w ≤ Q holds. The task of the BMCVRP is to
find a set of feasible routes, where each route has an associated feasible packing, so that each customer i ∈ N
is served exactly once.

Let Ω denote the set of all feasible routes. The route-based set-partitioning formulation of the BMCVRP
uses binary route variables λr for all routes r ∈ Ω and a non-negative integer variable f to count the number
of vehicles that are employed:

min
∑
r∈Ω

crλr (1a)

subject to
∑

r∈Ω : i∈V (r)

λr = 1 ∀i ∈ N (1b)

∑
r∈Ω

λr − f = 0 (1c)

FLB ≤ f ≤ F and integer (1d)
λr ∈ {0, 1} ∀r ∈ Ω. (1e)

The objective (1a) is the minimization of the routing costs. The visit of all customers is guaranteed by
constraints (1b). The coupling between the route variables and the vehicle-counting variable f is established
via (1c). A valid lower bound FLB on the number of necessary vehicles can be quickly computed as FLB =
d
∑
i∈N di/Qe. The solution of the respective bin-packing problem may provide an even tighter bound. The

domains of the variables are given by (1d) and (1e).

2.2. Computation of a Fleet-Size Lower Bound
We comment on the computation of a tight lower bound F ?LB for the minimal size of the vehicle fleet

now. For the case of identical compartments, i.e., Q1 = Q2 = · · · = Qm = Q/m, we can compute such
an exact lower bound by solving a bin-packing or cutting-stock problem with bins of capacity Q/m and
demands (di)i∈N . The computed number zBP of bins can then be divided by m and rounded up to the next
integer, i.e.,

F ?LB =
⌈zBP
m

⌉
.

For the case of compartments of different size, the following approach yields the exact lower bound. Let
C̄ ⊂ C be an index set (not unique) of all different capacity values, i.e., {Qk : k ∈ C̄} = {Qk : k ∈ C}
and Qk 6= Qk′ for all k, k′ ∈ C̄ with k 6= k′. Further, let hk denote the frequency, i.e., the number of
compartments of size Qk for all k ∈ C̄, i.e., hk = |{k′ ∈ C : Qk = Qk′}|. For example, (Q1, Q2, . . . , Q6) =
(50, 50, 30, 20, 20, 20) has frequencies 2, 1, and 3 with k ∈ C̄ = {1, 3, 4}. Likewise, let N̄ be an index set (not
unique) of all different demand values occurring with frequencies bi for i ∈ N̄ .

The model that we suggest uses copies of the arc-flow formulation of the cutting-stock problem (CSP)
(Valerió de Carvalho, 1998), more specifically one copy for each compartment size given by k ∈ C̄. Recall
that the arc-flow formulation of the CSP uses a digraph in which each feasible pattern is in one-to-one
correspondence to a source-to-sink path in the digraph. Hence, a source-to-sink flow through the digraph
represents a solution to the CSP if sufficient flow passes through each subset of arcs that corresponds to a
specific demand value bi for all i ∈ N̄ .

Let Dk = (V k, Ak) be the digraph for the index k ∈ C̄ with source vertex ok and sink vertex dk. The
subset of arcs corresponding to the demand di for i ∈ N̄ is denoted by Ak(i). There are non-negative integer
flow variables xk = (xkhj)(h,j)∈Ak . The non-negative integer variables zk for k ∈ C̄ indicate the total flow
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through the network Dk. Finally, the variable z provides the objective value. The model is:

F ?LB = min z (2a)

subject to hkz ≥ zk ∀k ∈ C̄ (2b)

∑
h : (h,i)∈A

xkhi −
∑

j : (i,j)∈A

xkij =

 +zk, if i = ok

−zk, if i = dk

0, otherwise
∀k ∈ C̄, i ∈ N̄ (2c)

∑
k∈C̄

∑
(h,j)∈Ak(i)

xkhj ≥ bi ∀i ∈ N̄ (2d)

xkhj ≥ 0 and integer ∀k ∈ C̄, (h, j) ∈ Ak (2e)

z, zk ≥ 0 ∀k ∈ C̄. (2f)

The objective (2a) minimizes the total number of packings covering the entire demand. Constraints (2b)
couple the objective value with the total flow through each network Dk for k ∈ C̄. Due to the inequality,
empty compartments without any assigned demand are possible. Hence, no additional loss arcs must be
added to the network to allow empty compartments. Flow conservation and the coupling with the zk-
variables is accomplished via constraints (2c). The demand covering constraints (2d) differ from those of
the original CSP because they refer to all networks Dk for k ∈ C̄ together. The domains of the variables
are stated in (2e) and (2f).

Example 1. Consider an instance of the BMCVRP in which vehicles have m = 2 compartments of size Q =
(11, 7) so that the total vehicle capacity is Q = 18. The customers N = {1, 2, . . . , 14} have demands
d1 = · · · = d4 = 8 and d5 = · · · = d14 = 4. The total demand is 4 · 8 + 10 · 4 = 72.

The trivial lower bound of the fleet size is d72/18e = 4. The bin-packing bound, which is the exact lower
bound on the number of vehicles for the capacitated VRP, is 5, because every feasible packing into bins of
size Q = 18 gives a loss of at least 2 units and any greedy packing produces a solution with 5 bins. Finally,
model (2) provides the exact lower bound F ?LB = 6. Note that four compartments of size Q1 = 11 are
exclusively occupied with the first four demands d1 = · · · = d4 = 8. The other ten demands d5 = · · · =
d14 = 4 either occupy a second compartment of size Q2 = 7 or two of them can be packed together into the
first compartment of size Q1 = 11. A possible solution therefore consists of four packings (8, 4) and two
packings (4 + 4, 4). �

Note that also refined pseudo-polynomial formulations for the CSP and bin-packing problem can be used
(Delorme and Iori, 2020, provide an overview). Since the computation of the lower bound is not time-critical
in our application, we retain the simple model and hereby keep the description clear.

3. Some Properties of Sorted and Unsorted Vectors

In this short section, we collect some results on sorted and unsorted vectors that will be helpful to reduce
symmetry in the label extension step, the dominance algorithm, and the label merge step in bidirectional
labeling presented in the next section.

We start with defining some notation. The set of all possible permutations of {1, 2, . . . ,m} is denoted
by Σm. For a vector a = (a1, a2, . . . , am) ∈ Rm and a permutation π ∈ Σm, we denote by aπ the vector
(aπ(1), aπ(2), . . . , aπ(m)). Two vectors a,b ∈ Rm are permutation-equivalent if there exists a permutation
π ∈ Σm such that aπ = b. A vector a = (a1, a2, . . . , am) ∈ Rm is (componentwise non-decreasingly) sorted
if a1 ≤ a2 ≤ · · · ≤ am. For a vector a ∈ Rm, the (unique) permutation-equivalent and sorted vector is
denoted by a≤ ∈ Rm. For two permutations π, τ ∈ Σm, the concatenation τ ◦ π ∈ Σm gives

aτ◦π = (aτ◦π(1), aτ◦π(2), . . . , aτ◦π(m)) = (aτ(π(1)), aτ(π(2)), . . . , aτ(π(m))) = (aπ)τ .

Proposition 1. Let a,b ∈ Rm be two vectors. The following two statements are equivalent:
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(1) there exists a permutation π ∈ Σm such that aπ ≤ b;
(2) a≤ ≤ b≤.

Proof. “(1) ⇒ (2)”: Let aπ ≤ b for the permutation π ∈ Σm. We first sort the inequalities of the compo-
nentwise comparison aπ ≤ b such that the values a1, . . . , am on the left-hand side are non-decreasing. For
this purpose, let τ ∈ Σm be the permutation that produces the sorted vector, i.e., aτ◦π = a≤. The sorting
guarantees

aτ◦π(i) ≤ aτ◦π(j) for all i, j ∈ {1, 2, . . . ,m} with i < j, (3)

Moreover aπ ≤ b implies
a≤ = aτ◦π ≤ bτ . (4)

If bτ is already sorted, i.e., bτ = b≤, then a≤ ≤ b≤ follows immediately from (4). Otherwise, bτ is not
sorted, i.e., there exist two indices i, j ∈ {1, 2, . . . ,m} such that i < j and bτ(i) > bτ(j). Then,

aτ◦π(i)

(3)
≤ aτ◦π(j)

(4)
≤ bτ(j) and aτ◦π(j)

(4)
≤ bτ(j) < bτ(i).

Both inequalities mean that bτ(i) and bτ(j) (two values on the right-hand side of (4)) can be swapped without
sacrificing a≤ ≤ bτ . (Formally, τ is replaced by τ ◦ (i, j), where (i, j) ∈ Σm denotes the permutation that
swaps i and j.) The repeated application of such swaps for pairs i < j and bτ(i) > bτ(j) leads to a sorted
vector bτ establishing the result a≤ ≤ bτ = b≤.

“(2) ⇐ (1)”: Let a≤ ≤ b≤. Then there exist two permutations ρ, τ ∈ Σm such that a≤ = aρ and b≤ = bτ . It
follows aρ = a≤ ≤ b≤ = bτ , which implies aτ−1◦ρ ≤ b. Hence, π = τ−1 ◦ ρ ∈ Σm is the permutation that
establishes the result.

A vector b = (b1, b2, . . . , bm) ∈ Rm is (componentwise) non-increasingly sorted if b1 ≥ b2 ≥ · · · ≥ bm.
For a vector b ∈ Rm, the (unique) permutation-equivalent and non-increasingly sorted vector is denoted by
b≥ ∈ Rm.

Proposition 2. Let a,b ∈ Rm be two vectors, and let Q ∈ R be a real value. The following two statements
are equivalent:
(1) there exists a permutation π ∈ Σm such that aπ + b ≤ Q1;
(2) a≤ + b≥ ≤ Q1.

Proof. We can re-write aπ + b ≤ Q1 into aπ ≤ Q1 − b, and likewise, a≤ + b≥ ≤ Q1 into a≤ ≤ Q1 − b≥.
Since the latter right-hand side Q1 − b≥ is equal to (Q1 − b)≤, the equivalence is a direct consequence of
Proposition 1.

Remark 1. When replacing Q1 = (Q, . . . , Q) by Q = (Q1, Q2, . . . , Qm) with Qi 6= Qj for at least one
pair i 6= j, statements (1) and (2) in Proposition 2 are no longer equivalent. As a counterexample, consider
a = (2, 3), b = (1, 3), and Q = (3, 6). Then aπ+b ≤ Q for identity permutation π but a≤+b≥ = (5, 4) 6≤ Q.

4. Solution of the Subproblem

According to Costa et al. (2019), ‘the leading exact algorithms for solving many classes of VRPs are
branch-price-and-cut algorithms’. They summarize: ‘A branch-price-and-cut algorithm is a branch-and-
bound algorithm where the lower bounds are computed by column generation and the cutting planes are
added to strengthen the linear relaxations encountered in the search tree’. For a general introduction to
column generation and BPC algorithms, we refer to (Desaulniers et al., 1998, 2005; Lübbecke and Desrosiers,
2005).

For presenting the labeling algorithm, it is advantageous to work on a directed graph, because label ex-
tensions are directed anyway and splitting the depot into an origin and a destination vertex is necessary. We
therefore denote by (N ∪{0, 0′}, A) the associated complete directed graph with origin vertex 0, destination
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vertex 0′, vertex set N ∪ {0, 0′}, and arc set A. The routing costs in the BMCVRP are symmetric implying
that cij = cji for all arcs (i, j) ∈ A ∩ (N ×N) between two customers and ci0′ = c0i for all arcs connecting
a customer i ∈ N with the depot.

For this work, it suffices to know that the linear relaxation of a restricted route-based model (1), in which
only a subset Ω̄ ⊂ Ω of all routes are initially considered (the restricted master program, RMP) and binary
route variables are replaced by λr ≥ 0 for all r ∈ Ω, is solved by column generation and strengthened with
the help of capacity cuts (CCs) and subset-row inequalities (SRIs, Jepsen et al., 2008). We use the ng-route
relaxation (Baldacci et al., 2011) of the elementary SPPRC subproblem with a neighborhood Ni ⊂ N for
each vertex i ∈ N ∪ {0, 0′}. Since the ng-route relaxation allows cycles in routes, we need to extend the
notation. Let the integer coefficient ari denote the number of times that route r ∈ Ω visits vertex i ∈ V and
hrij denote the number of times that route r ∈ Ω traverses arc (i, j) ∈ A.

Capacity cuts require a minimum flow of vehicles trough the arcs δ+(C) = {(i, j) ∈ A : i ∈ C, j /∈ C} for
a subset C ⊂ N of the customers. As for the overall fleet lower bound, we have the choice between different
lower bounds, with a tradeoff between the computational effort to compute the bound and its strength. We
use the simple-to-compute lower bound FLB(C) = d

∑
i∈C di/Qe for the following capacity cuts:∑

r∈Ω̄

∑
(i,j)∈

A(r)∩ δ+(C)

hrijλ
r ≥ FLB(C) ∀C ⊆ N, |C| ≥ 2

Tight bounds—in general stronger than FLB(C)—result from the solution of a respective bin-packing prob-
lem or problem (2) using the subset C instead of the customer set N (see Section 2.2).

For SRIs, we use row subsets S ⊂ N of cardinality three only. Let S denote the collection of subsets S ⊂
N , i.e., S ∈ S is used to refer to the SRIs present in the RMP:∑

r∈Ω̄

⌊∑
i∈S a

r
i

2

⌋
λr ≤

⌊
|S|
2

⌋
∀S ∈ S (5)

The column-generation subproblem (a.k.a. pricing problem) must identify a negative reduced cost route,
if one exists. To this end, let (νi)i∈N be the dual prices of the partitioning constraints (1b), let ν0 = ν0′ be
the dual price of the coupling constraint (1c), and let (σS)S∈S be the dual prices of the SRIs (5).

The reduced cost of a route r ∈ Ω is then

c̃r = cr − ν0 −
∑
i∈N

ari νi −
∑
S∈S

⌊∑
i∈S a

r
i

2

⌋
σS =

∑
(i,j)∈A

hrij c̃ij −
∑
S∈S

⌊∑
i∈S a

r
i

2

⌋
σS

with reduced cost c̃ij = cij−(νi+νj)/2 for all arcs (i, j) ∈ A. Note that also the reduced costs are symmetric,
i.e., c̃ij = c̃ji.

Labels L of the two different labeling algorithms that we present share the following attributes: the
reduced cost c̃(L) accumulated along the partial path P = P (L), the total demand w(L) accumulated
along P , the binary attribute sriS(L) of a SRI for S ∈ S , and the ng-neighborhood-related attribute ngv(L)
for every v ∈ N . At the origin vertex 0, all attributes are set to zero, i.e., the initial label is L0 = (0, 0,0,0).
When extending a label L over an arc (i, j) ∈ A, the new label L′ of the partial path P ′ = (P, j) = P (L′)
has the following components:

c̃(L′) = c̃(L) + c̃ij −
∑

S∈S : j∈S,
sriS(L)=1

σS

w(L′) = w(L) + dj

ngv(L
′) =

 ngv(L) + 1, if j = v
ngv(L), if v ∈ Nj \ {j}
0, otherwise

∀v ∈ N

sriS(L′) =

{
1− sriS(L), if j ∈ S
sriS(L), otherwise ∀S ∈ S
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The partial path P (L′) is feasible, if

w(L′) ≤ Q and ngv(L) ≤ 1 ∀v ∈ N,
and the associated packing(s) is (are) feasible. (6)

Necessary conditions for a label L1 dominating a label L2, both resident at the same vertex, are

c̃(L1)−
∑
S∈S :

sriS(L1)=1,

sriS(L2)=0

σS ≤ c̃(L2) and w(L1) ≤ w(L2) and ngv(L
1) ≤ ngv(L2), ∀v ∈ N. (7)

We apply a version of bidirectional labeling (Righini and Salani, 2008; Tilk et al., 2017) that exploits the
symmetry of the pricing problem. Note that the dual prices of all robust constraints including those resulting
from branching, see Section 5.2, are distributed in a symmetric manner onto the arcs of the digraph defining
the pricing problem. As a result, the bidirectional labeling requires the computation of partial paths only
for one direction. Labeling in the opposite direction would yield identical paths just ending at 0′ and with
reverse arc orientation. Hence, we compute only forward labels L using the total load onboard the vehicle as
the critical resource, i.e., the attribute w(L) ∈ R. Label extension ends, if either the destination vertex 0′ is
reached or the total load w(L) exceeds the half-way point H = Q/2. This implicit bidirectional techniques
has already been successfully implemented and applied, e.g., in (Bode and Irnich, 2012; Goeke et al., 2019;
Gschwind et al., 2019).

In the sequel, we focus on the question of how to represent, manipulate, and check the feasibility of
packings, in particular, condition (6), and how to extend the dominance (7) so that it considers pack-
ings consistently. We compare a standard labeling algorithm with a new labeling approach using partial
dominance. They differ in the following fundamental underlying modeling assumptions:

• In the standard labeling algorithm, a label uniquely determines a partial path and also a packing, i.e.,
the information which demands of customers visited along the path are assigned to which compartment.
Hence, a label represents a combination of a partial path and an associated packing. The modeling
assumption also implies that the label extension step, where a label resident at a vertex i ∈ V is
extended over outgoing arcs (i, j) ∈ A, must generally create multiple labels for every vertex j. They
represent the same partial path but different packings. Indeed, up to m new feasible labels can result
depending on whether the demand of customer j fits only into some or all compartments. We discuss
how symmetry reduction can substantially empower a naive implementation of standard labeling in
Section 4.1.

• In the new labeling approach, a label represents a partial path for which (at least) one feasible packing
exists. The decision about the concrete packing finally used is, however, postponed until the partial
path reaches the destination. In this way, one label can represent many alternative packings. However,
being more general comes at the cost of a more intricate dominance between labels. For example, it
can happen now that some packings of one label are dominated by some packings of a second label, but
some other packings are not dominated. In such a situation, the first label cannot be discarded directly.
Several dominating labels together may however justify the elimination of the label. Partial dominance
is the technique that can cope adequately with these complications, as we explain in Section 4.2.

4.1. Standard Labeling
Recall that the total vehicle capacityQ is divided intom compartments of sizeQ = (Q1, Q2, . . . , Qm) with

Q =
∑m
k=1Qk. In the standard labeling approach, we explicitly store the load onboard each compartment,

the packing, in a vector w(L) = (w1, w2, . . . , wm) ∈ Rm for each label L. The label L0 for the initial partial
path P (L0) = (0) has a packing given by the null vector w(L0) = 0 ∈ Rm.

When extending a label L resident at vertex i ∈ V along an arc (i, j) ∈ A, we create up to m new
labels L′, one for each compartment k ∈ C. For k ∈ C, the new label L′ has the packing w(L′) =
(w1, w2, . . . , wk + dj , . . . , wm) = w(L) + dju

k, where uk ∈ Rm is the kth unit vector. The new packing is
feasible if w(L′) ≤ Q.
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Example 2. We consider an instance with three customers 1,2, and 3 with demand d1 = 2, d1 = 3, and
d3 = 2 and vehicles with m = 2 different compartments of capacity Q = (5, 10). Along the path (0, 1, 2, 3),
a naive label extension procedure creates, out of the initial label L0, new labels with the following packings:

• two labels for customer 1 with packings (0, 2) and (2, 0);
• four labels for customer 2 with packings (0, 5), (2, 3), (3, 2), and (5, 0);
• seven labels for customer 3 with packings (0, 7), (2, 5) (2 times), (3, 4), (4, 3), and (5, 2) (2 times).

Note that for customer 3 the packing (7, 0) is infeasible for the compartment sizes Q = (5, 10). �

The example underlines the undesirable effect of identical and symmetric packings. While identical
packings are clearly redundant, symmetric packings are not obviously redundant. In Example 2, the packing
(0, 7) for the path (0, 1, 2, 3) can only be constructed from (0, 5) and not from (5, 0).

The consideration of sorted packings and sorted capacity vectors Q = Q≤ substantially reduces the
occurrence of identical and symmetric packings. More precisely, we only allow labels L with sorted pack-
ings w(L) = w≤(L). After an extension along an arc (i, j) ∈ A assigning the demand dj to compart-
ment k ∈ C, the resulting packing w(L) + dju

k may be unsorted. We distinguish the two cases of identical
and different compartment size. For identical compartments, the feasibility test w(L)k + dj ≤ Q/m can be
performed adhoc. For compartments of different size, w(L) + dju

k is first sorted creating the new pack-
ing w(L′) = (w(L) + dju

k)≤. In a second step, the feasibility test w(L′) ≤ Q is performed. The correctness
of this procedure (guaranteeing that no possible packings are missing) is ensured by Proposition 1.

When relying on sorted packings, only one extension needs to be performed per group of identical entries
in the packing vector w(L). Otherwise identical packings would be created with the sorting.

Example 3. (cont’d from Example 2) The initial packing (0, 0) has two identical entries. Therefore, only
one packing (0, 2) = (2, 0)≤ is created for customer 1. Overall, the restriction to sorted packings results in:

• one label for customer 1 with packing (0, 2);
• two labels for customer 2 with packings (0, 5) and (2, 3);
• three labels for customer 3 with packings (0, 7), (2, 5) (2 times), and (3, 4).

Note that the two labels with identical packings (2, 5) cannot be avoided in standard labeling, because they
result from the two different and independent labels at the preceeding customer 2, i.e., those with the pack-
ings (0, 5) and (2, 3). �

One-to-one dominance between labels is straightforward due to Proposition 1:

Dominance 1. For two labels L1 and L2 representing partial paths ending at the same vertex, L1 dominates
L2 if w(L1) ≤ w(L2) and (7) (dominance on other resources).

To identify negative reduced cost routes, we then consider the labels L that reach the destination vertex 0′

resulting at most half-fully loaded vehicle routes. Moreover, we consider all pairs (L,L′) of (forward) labels
residing at the same vertex j. It is tested whether the concatenation of partial path P = P (L) and the
revered partial path P ′ = P (L′) produce a feasible route r = (P, reverse(P ′)). A precondition to avoid
identical results is the requirement w(L) ≥ H. Since both labels L and L′ already incorporate the demand
of vertex j, it is now convenient to also consider the predecessor label L′′ = pred(L′) of label L′. This idea
of considering the predecessor L′′ of the backward label L′ has been used in (Tilk et al., 2018) and several
subsequent works. The negativity of the reduced cost and the feasibility of the resulting path r regarding
the total load and the ng-route relaxation are to be tested with

c̃(L) + c̃(L′) +
∑

S∈S : j∈S
sriS(L)=0,
sriS(L′)=0

σS < 0 and w(L) + w(L′′) ≤ Q

and ngv(L) + ngv(L
′) ≤ 1, ∀v ∈ N \ {j}. (8)

Conditions (8) are necessary but not sufficient because packings are not tested yet. Regarding the combina-
tion of the two packings w(L) and w(L′′), we distinguish the cases of identical and different compartments:
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• For identical compartments, the necessary and sufficient condition is w(L) +w(L′′)≥ ≤ Q/m1, which
results from Proposition 2.

• For different compartment size, we are not aware of a straightforward test. We need to find (if
existent) two one-to-one mappings between compartments, i.e., permutations π, τ ∈ Σm such that
wπ(k)(L)+wτ(k)(L

′′) ≤ Qk holds for all k ∈ C. By Proposition 1, it suffices to test (wπ(L)+w(L′′))≤ ≤
Q for all π ∈ Σm exploiting that Q = Q≤ is sorted.

All components of the standard labeling approach, i.e., label extension, feasibility test, dominance, and
merge procedure are defined now.

4.2. Labeling with Partial Dominance
The labeling algorithm that we describe now relies on the modeling approach in which a label represents

a partial path. All feasible packings for this partial path are considered together. For this purpose, we define
W (L) as the set of all feasible packings possible for the partial path P (L) represented by the label L. We
show that partial dominance can be established between labels by manipulating their sets W (L).

We assume that all packings w ∈ W (L) are sorted, i.e., w = w≤, and also that sets W (L) of packings
are sorted lexicographically.

The label L0 for the initial partial path P (L0) = (0) has the set W (L0) = {0} of packings. When
extending a label L over an arc (i, j) ∈ A, a single new label L′ is generated (if feasible) as follows. For each
w ∈ W (L), the up to m possible resulting packings are created as in the standard labeling, feasibility is
tested, and feasible packings are inserted into a tentative collection W (L′). In this process, identical packings
are immediately eliminated. Hence, we implement W (L) as a data structure which allows to (1) sort the
packings in a lexicographically non-decreasing fashion, (2) eliminate identical packings, and (3) eliminate a
selected subset of packings. Note that the identification of identical packings is trivial after a lexicographical
sorting.

Example 4. For the extension of a label L over the arc (i, j) ∈ A, let the set of packings be W (L) =
{(0, 2), (1, 1)} and the demand at the head vertex be dj = 1. The resulting new label is denoted by L′.
The intermediate results is W (L′) = {(1, 2), (0, 3), (1, 2)}, while after sorting and elimination of duplicate
packings the set becomes W (L′) = {(0, 3), (1, 2)}.

The main difference between standard labeling and labeling with partial pricing is the dominance:

Dominance 2. For two labels L1 and L2 representing partial paths ending at the same vertex, L1 partially
dominates L2 if there is at least one pair of packings w ∈ W (L1) and w′ ∈ W (L2) with w ≤ w′ and (7)
(dominance on other resources). In this case, all such packings w′ can be eliminated from W (L2). If the
set W (L2) becomes empty, the label L2 is completely dominated and can be discarded.

The representation of the packings in the set W (L) is redundant. The point is that all packingsw ∈ W (L)
have the same total load 1>w = w(L). One can therefore use the attribute w(L) and store only m − 1
components of the packings w ∈ W (L). We use the set of truncated packings storing only the first m − 1
components.

4.2.1. The Case of Two Compartments
In particular for the case of only m = 2 compartments, we can exploit sets of truncated packings, which

then contains numbers w1 only. We can reconstruct the second component w2 = w(L) − w1 so that the
packing is w = (w1, w(L)−w1). We next explain how label extension, dominance test, and merge procedure
become simpler with the truncated sets of packings.

Label Extension. Algorithm 1 describes the extension of a label L over the arc (i, j) ∈ A. In Step 1, the new
total load w = w(L′) is computed for the new partial path ending at vertex j. The idea is now to merge two
sets of packings in which the new demand dj is either added to the second compartment so that the value
w1 is just copied for every w1 ∈ W (L), or added to the first compartment resulting in the value w1 +dj . The
direct use of the values w1 + dj for all w1 ∈ W (L) would however be incorrect, because the packing could

10



Algorithm 1: Label Extension for m = 2

Input : label L and arc (i, j)
1 w := w(L) + dj
2 S1 := {w1 : w1 ∈ W (L), w − w1 ≤ Q2}
3 S2 := {w1 + dj : w1 ∈ W (L), w1 + dj ≤ w/2,

w1 + dj ≤ Q1}
4 S3 := {w − w1 − dj : w1 ∈ W (L), w1 + dj > w/2,

w−w1−dj ≤ Q1}
5 Revert(S3)
6 W ′ := MergeWithoutDuplicates(S1, S2, S3)

Output: w(L′) := w and W (L′) := W ′

Algorithm 2: Partial Dominance form=2

Input : labels L1 and L2

1 w1 := W (L1).first()
2 w′1 := W (L2).first()
3 while w1 6= W (L1).end() and w′1 6= W (L2).end()

do
4 next := W (L2).next(w′1)
5 while w1 ≤ w′1 do
6 if w(L1)− w1 ≤ w(L2)− w′1 then
7 Remove w′1 from W (L2);
8 Break

9 if W (L1).next(w1) > w′1 then
10 Break

11 w1 := W (L1).next(w1)

12 w′1 := next

Output: (possibly) modified W (L2)

be unsorted, i.e., w1 + dj > w2 = w(L′) − (w1 + dj). To distinguish between a packing for which entries
must be retained or flipped, the values w1 + dj and w(L′)/2 must be compared. In summary, three sorted
lists S1, S2, and S3 of values are computed in Steps 2–4, where the last list is sorted decreasingly. The
reversal of S3 (Step 5) afterwards allows to merge three increasingly sorted lists of values in Step 6, where
the insertion of duplicate entries can be suppressed. The result is a linear-time label-extension procedure
with complexity O (|W (L)|).

Partial Dominance Procedure. The second algorithmic component that can exploit the implicit represen-
tation with the set of truncated packings is the dominance test. Dominance still relies on the simple
packing-wise comparison using Dominance 2. Algorithm 2 shows how the set of truncated packings of la-
bel L2 has to be modified due to a possible partial dominance between labels L1 and L2. We assume that
the sets W (L) of truncated packings are sorted and can be traversed (using first() to refer to the first
(smallest) element, next(w1) to refer to the element behind w1, and end() to check whether the end of
the truncated set of packings has been reached). The outer loop (Steps 3–12) traverses the values w′1 of
the set of truncated packings of L2, while the inner loop (Steps 5–11) traverses values w1 of the set of
truncated packings of L1 maintaining the invariant w1 ≤ w′1. Hence, the overall run-time complexity is
linearly bounded by O (|W (L1)|+ |W (L2)|). We explain in Section 4.2.2 how an alternative implementation
with a binary search can further improve the run time in the average case.

Bidirectional Labeling and Merge Procedure. The merge procedure can also exploit the two-compartment
case with truncated sets of packings. Recall that for the merge we consider a forward label L and the
predecessor L′′ = pred(L′) of another backward (=forward) label L′ in order to not count the demand of
customer j twice. We assume that the necessary conditions (8) for a feasible merge have already been tested
and are fulfilled. As another fast necessary condition, we check that the slack ∆ = Q−w(L)−w(L′′) in the
total-capacity constraint is non-negative. For ∆ ≥ 0, we distinguish two cases:

For identical compartments, i.e., Q1 = Q2 = Q/2, any combination of w1 ∈ W (L) and w′′1 ∈ W (L′′)
is feasible if and only if Q/2 − w1 − w′′2 ≤ ∆ according to Proposition 2 (due to ∆ ≥ 0 both inequalities
w1 + w′′2 ≤ Q/2 and w2 + w′′1 ≤ Q/2 hold true then). This merge condition means that w1 and w′′2 must
fit together into a compartment and that the unused capacity Q/2 − w1 − w′′2 should be kept as small as
possible. The latter observation is used in Algorithm 3, where w′′2 is computed as w(L′′)−w′′1 in Step 8. As
a result, the main loop in Steps 7–14 either increases w1 or decreases w′′2 (by increasing w′′1 ).

For compartments of different size, we can no longer exploit Proposition 2. Four subcases have to be
tested as shown in the first column of Table 1. The four cases can be checked in a similar way as described
in Algorithm 3 (the first case is identical to Algorithm 3 with Q/2 replaced by Q1 in Step 8). The necessary
modifications for the three other cases are summarized in the second and third column of Table 1. On the
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Algorithm 3: Merge Procedure for Iden-
tical Compartments and m = 2

Input : labels L and L′ at same vertex i
1 L′′ := pred(L′)
2 ∆ := Q− w(L)− w(L′′)
3 if ∆ < 0 then
4 return false;

5 w1 := W (L).first()
6 w′′1 := W (L′′).first()
7 while w1 6= W (L).end() and w′′1 6= W (L′′).end() do
8 ∆1 := Q/2− w1 − (w(L′′)− w′′1 )
9 if ∆1 < 0 then

10 w′′1 := W (L′′).next(w′′1 )

11 else
12 if ∆1 ≤ ∆ then
13 return true

14 w1 := W (L).next(w1)

15 return false

Algorithm 4: Merge Procedure for Com-
partments of Different Size and m = 2

Input : labels L and L′ at same vertex i
1 for four cases of Table 1 do
2 Modify Steps 6, 7, and 10 in Algorithm 3 for the

traversal of W (L′′)
3 Modify Step 8 in Algorithm 3 for the

computation of ∆1

4 Call Algorithm 3
5 if result is true then
6 return true

7 return false

Case Value ∆1 Traversal
in Step 8 of Algorithm 3 of W (L′′)

w1 + w′′2 ≤ Q1 Q1 − w1 − (w(L′′)− w′′1 ) increasing
w1 + w′′2 ≤ Q2 Q2 − w1 − (w(L′′)− w′′1 ) increasing
w1 + w′′1 ≤ Q1 Q1 − w1 − w′′1 decreasing
w1 + w′′1 ≤ Q2 Q2 − w1 − w′′1 decreasing

Table 1: Merge Procedure for Compartments of Dif-
ferent Size

one hand, the criterion ∆1 must be adapted to the specific case. On the other hand, we must ensure that
the w′′1 -values of w′′1 ∈ W (L′′) are traversed in decreasing order (as the values of w′′2 in the original version of
Algorithm 3). It is here required to initialize w′′1 as the last element of W (L′′) in Step 6, to compare against
the reverse end in Step 7, and to move to the preceding element in Step 10. Algorithm 4 calls modified
versions of Algorithm 3 up to four times. If all four calls are not successful, i.e., they all return false, no
overall feasible packing can be determined (Step 7).

In both Algorithms 3 and 4, the run-time complexity is again linearly bounded by O (|W (L1)|+|W (L2)|).

4.2.2. The Case of More than Two Compartments
For m > 2 compartments, we do not rely on sets of truncated packings but use the untruncated packings.

We discuss label extension, dominance test, and the merge procedure of bidirectional labeling.

Label Extension. The extension of a label L over an arc (i, j) ∈ A is a straightforward generalization of
the label extension that we have described in Section 4.1. For each w ∈ W (L), the packing w is treated
like a packing in the standard labeling: Identical and different compartment size are handled with different
procedures, where the former case allows an ad hoc feasibility test and the latter requires sorting the
components of w first and comparison against Q≤ second.

Dominance Test. A naive dominance test for two labels L1 and L2 could test all pairs (w,w′) ∈ W (L1)×
W (L2) regarding w ≤ w′, see Dominance 2. Such a test has quadratic run time O (|W (L1)| · |W (L2)|)
and should be avoided whenever possible. Instead, we distinguish two cases comparing the total load of L1

and L2.
If the total load is identical, i.e., w(L1) = w(L2), dominance can only occur for identical packingsw = w′.

Since the sets of packings are lexicographically sorted (the lexicographical ordering is a total ordering), one
can identify all identical entries in linear time O (|W (L1)|+ |W (L2)|).

For unequal total load w(L1) < w(L2), the worst case complexity remains O (|W (L1)| · |W (L2)|), but
we observed in pretests that the average-case complexity can be reduced, in particular when the two sets of
packings are very unbalanced in size.
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Algorithm 5: Partial Dominance form≥3
Case |W (L1)| � |W (L2)|

Input : labels L1 and L2

1 ∆ := w(L2)− w(L1)

2 w′ := W (L2).first()
3 while w′ 6= W (L2).end() do
4 next := W (L2).next(w′)
5 w := BinarySearch(W (L1), w′1 −∆)
6 while w1 ≤ w′1 do
7 if w ≤ w′ then
8 Remove w′ from W (L2)
9 Break

10 w := W (L1).next(w)

11 w′ := next

Output: (possibly) modified W (L2)

Algorithm 6: Partial Dominance form≥3
Case |W (L1)| � |W (L2)|

Input : labels L1 and L2

1 ∆ := w(L2)− w(L1)

2 w := W (L1).first()
3 while w 6= W (L1).end() do
4 w := BinarySearch(W (L2), w1)
5 while w′1 ≤ w1 + ∆ do
6 next := W (L2).next(w′)
7 if w ≤ w′ then
8 Remove w′ from W (L2)

9 w := next

10 w′ := W (L2).next(w′)

Output: (possibly) modified W (L2)

If |W (L1)| � |W (L2)|, one can loop over w ∈ W (L2) and perform a binary search on W (L1) to identify
relevant packings w ∈ W (L1) for the comparison. Algorithm 5 summarizes the refined approach. The
outer loop (Steps 3–11) over all packings w′ ∈ W (L2) tests whether w′ is dominated. Since W (L1) is
lexicographically sorted, we can restrict the potential packing w ∈ W (L1) to those whose first component
is in the interval [w′1 −

(
w(L2)− w(L1)

)
, w′1]. Accordingly, the function BinarySearch (Step 4) returns

the first packing w from the set W (L1) of packings with entry w1 not smaller than w′1 −
(
w(L2)− w(L1)

)
,

and the inner loop (Steps 6–10) runs over the packings w whose first component is in the interval [w′1 −(
w(L2)− w(L1)

)
, w′1].

If |W (L1)| � |W (L2)|, the corresponding procedure is shown in Algorithm 6. Just note that w1 ∈
[w′1 −

(
w(L2)− w(L1)

)
, w′1] is equivalent to w′1 ∈ [w1, w1 +

(
w(L2)− w(L1)

)
].

To decide which type of dominance procedure is performed, we use the difference δ = |W (L1)|−|W (L2)|.
We apply the all-pairs comparison for −20 ≤ δ ≤ 20 and one on the binary search-based tests for δ < −20
and δ > 20, respectively.

Bidirectional Labeling and Merge Procedure. Also the bidirectional labeling is a straightforward generaliza-
tion of what we described in Section 4.1. When testing a forward label L and a backward label L′, we
consider the predecessor L′′ = pred(L′) of L′. We first test the necessary conditions (8). If fulfilled, we
perform two nested loops over w ∈ W (L) and over w′′ ∈ W (L′′), and test whether the two packings w
and w′′ can be combined into a feasible packing. As in Section 4.1, the two cases with identical and different
compartments are treated specifically.

5. Computational Results

In this section, we describe how we generated the benchmark instances, we present details of the BPC
implementation and parameterization and the computational setting, and we report computational results.
A comparison between instances with identical and different compartment size closes the section.

5.1. Benchmark Instances
To compare the two types of BPC algorithms, we generated BMCVRP instances as follows. The locations

of the depot and customers are discretely uniformly distributed on a [1, 100] × [1, 100] grid. We consider
vertex sets V = {0, 1, 2, . . . , n− 1, n} with n ∈ {10, 20, . . . , 100}. The number m of compartments is 2, 3, or
4. To compare the impact of shorter and longer route lengths on the algorithms’ performance, the vehicle
capacities are varied with Q = 120 or Q = 240, and the demand di is discretely uniformly distributed on
[1, Q/4] ∩ N for Q = 120 and on [1, Q/6] ∩ N for Q = 240, respectively. Moreover, we consider instances
with identical and different compartment size as specified in Table 2. We generated five instances of each
kind yielding 600 instances in total. The instances are online available at the online archive (iRODS, 2021).
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Table 2: Overview of compartment sizes Q = (Q1, . . . , Qm) with total capacity Q =
∑m
k=1Qk.

Total Capacity Q = 120 Total Capacity Q = 240

Compartments identical different identical different

m = 2 (60, 60) (40, 80) (120, 120) (80, 160)
m = 3 (40, 40, 40) (20, 40, 60) (80, 80, 80) (40, 80, 120)
m = 4 (30, 30, 30, 30) (10, 15, 30, 65) (60, 60, 60, 60) (20, 30, 60, 130)

5.2. Branch-Price-and-Cut Setup
Both BPC algorithms, the one that uses the standard labeling and the one with partial dominance,

are configured identically regarding the general strategies for pricing, cutting, and branching. We briefly
summarize the parameterization of these algorithmic components.

Pricing Strategy. The ng-route relaxation defining the subproblem to be solved in the pricing subproblem
uses neighborhoods Ni of size 14 for all i ∈ N . The neighborhood Ni contains the customer i and the
13 closest customers to i. As a fast heuristic for partial pricing (Gamache et al., 1999), we use nearest
neighbor networks of increasing size with 2, 5, 10, and 15 neighbors before the complete network is explored.

Cutting Strategy. We restrict the addition of CCs and SRIs to branch-and-bound nodes up to level 3 (root
node, the two child nodes, and the four grand children). A maximum of 300 violated CCs is added. They
are identified by the greedy shrinking heuristic and the extended shrinking heuristic presented by Ralphs
et al. (2003). The separation procedure for SRIs is only employed when no violated CC has been found.
We use the refined version of SRIs with a limited memory as described in (Pecin et al., 2017). Per round of
separation, we identify via enumeration the 10 most violated SRIs defined by a row subset S with |S| = 3
requiring a minimum violation of 0.05. Up to 320 SRIs are added in total.

Branching Strategy. We apply the standard two-level branching strategy: On the first level, we create two
branches f ≤ bf̄c and f ≥ bf̄c+ 1 if the number f̄ =

∑
r∈Ω λ̄

r of employed vehicles is fractional (note that
we distinguish between values f̄ and λ̄r and decision variables f and λr).

On the second level, we branch on the overall flow on edges ij ∈ E for customers i, j ∈ N , if x̄ij =∑
r∈Ω(hrij + hrji)λ̄

r is fractional. In the zero-branch, the two associated arcs (i, j) and (j, i) are eliminated
from the SPPRC digraph, while in the one-branch, we add the constraint

∑
r∈Ω(hrij + hrji)λ

r ≥ 1 to the
RMP. We use strong branching (Achterberg et al., 2005) where candidate edges ij are those with a value x̄ij
closest to 1/2. For each candidate edge, the two child nodes are solved and the best edge is determined
with the help of the product rule of Achterberg et al. We evaluate up to 8 different edges at the root node,
decrease the number of candidates so that at the level 10 of the branch-and-bound tree only two candidates
are evaluated. Deeper in the search tree, strong branching is turned off, i.e., one edge with value x̄ij closest
to 1/2 is directly chosen.

5.3. Computational Setup
The algorithms are implemented in C++ and compiled into 64-bit single-thread code with Microsoft

Visual Studio 2015. CPLEX 12.10.0 is utilized to solve the RMP at each column-generation iteration.
Moreover, CPLEX is used as a primal MIP-based heuristic solver after the solution of each branch-and-
bound node using all generated columns. Apart from setting the number of threads to 1, CPLEX’s default
values are kept for all other parameters. The computational study is carried out on a 64-bit Microsoft
Windows 10 computer equipped with an Intel® Core™ i7-5930k CPU clocked at 3.5 GHz and 64 GB of
RAM. Computation times are limited to a maximum of 3600 seconds per instance.
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5.4. Results
Tables 3 and 4, for instances with vehicle capacity Q = 120 and Q = 240, respectively, summarize

the comparison of the BPC algorithms using standard labeling (including the refinements presented in
Section 4.1) and labeling with partial dominance. Additionally, the Appendix contains detailed results per
instance for the BCP algorithm with partial dominance. The table entries of the Tables 3 and 4 have the
following meaning:

#inst: number of instances;
#opt: number of instances solved to proven optimality within 1 hour (3600 seconds);
time t̄: average computation time in seconds; unsolved instances are taken into account with the

time limit TL of 1 hour (3600 seconds);
gap: 100 · (UB − LB)/LB, i.e., the average gap in percent at termination (the average is taken

only over the instances for which an upper bound was computed with the BPC algorithm).

The BPC algorithm using partial dominance can solve many more instances to proven optimality and
has a lower average computation time compared to the one with standard labeling. For the smaller capacity
of Q = 120, 83 of 150 instances with identical compartment size and 72 of 150 instances with different
compartment size can be solved exactly. Likewise, for the higher capacity of Q = 240 and identical (different)
compartment size, 63 (58) instances can be solved by utilizing partial dominance and only 19 (19) by
utilizing standard labeling. The average computation time is reduced by approximately 20% to 30% on
average (depending on the group of instances) when utilizing partial dominance for instances with identical
or different compartment size, respectively. Comparing both algorithms on the subset of better solvable
instances with |V | ≤ 40, the average computation time is even one or two orders of magnitudes smaller.
Overall, the version with partial dominance is superior compared to the algorithm utilizing standard labeling,
which is also confirmed by the performance profile (Dolan and Moré, 2002) shown in Figure 1. Note that
for a set of algorithms A, the performance profile ρA(τ) of an algorithm A ∈ A describes the ratio of
instances that can be solved by A within a factor τ compared to the fastest algorithm, i.e., ρA(τ) =∣∣{I ∈ I : tAI /t

∗
I ≤ τ

}∣∣ / |I|.
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Figure 1: Performance profile comparing the BPC algorithm that uses labeling with partial dominance and
the BPC algorithm that uses standard labeling.

We highlight some additional findings: Apart from a few exceptions, instances with more vertices and
more compartments are more difficult to solve. Moreover, regardless of the number m of compartments, the
number of optimally solved instances with identical compartments is higher in comparison to instances with
different compartment size. This can be attributed to the faster algorithmic components in the labeling,
i.e., label extension, dominance, and merge procedure (cf. Section 4). In comparison, more instances with
capacity Q = 120 are solved compared to instances with Q = 240.
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Table 3: Results for instances with vehicle capacity Q = 120.

Identical compartments Different compartment size

Standard labeling Partial dominance Standard labeling Partial dominance

m |V | #inst #opt time t̄ gap #opt time t̄ gap #opt time t̄ gap #opt time t̄ gap

2 10 5 5 0.2 0.0 5 0.2 0.0 5 0.3 0.0 5 0.2 0.0
20 5 5 306.4 0.0 5 25.3 0.0 5 141.1 0.0 5 17.0 0.0
30 5 5 285.2 0.0 5 5.1 0.0 4 1022.5 0.3 5 2.3 0.0
40 5 4 781.8 0.0 5 27.4 0.0 4 905.1 0.0 5 30.2 0.0
50 5 2 2799.0 1.7 3 2119.0 1.6 1 3221.6 0.1 2 2183.3 1.8
60 5 1 3231.3 0.0 5 1539.6 0.0 0 TL 0.1 3 2259.1 0.0
70 5 0 TL 2 2685.3 0.5 0 TL 2 3196.3 0.4
80 5 0 TL 0 TL 0.9 0 TL 1 3234.3 0.8
90 5 0 TL 1 3286.6 0.7 0 TL 0 TL 0.9
100 5 0 TL 0 TL 1.1 0 TL 0 TL 1.0

Subtotal 50 22 2180.4 0.3 31 1688.8 0.5 19 2329.1 0.1 28 1812.3 0.5

3 10 5 5 0.6 0.0 5 0.2 0.0 5 2.4 0.0 5 0.1 0.0
20 5 5 572.3 0.0 5 3.3 0.0 4 827.9 0.0 5 4.3 0.0
30 5 4 1135.6 0.0 5 176.6 0.0 3 1553.6 0.0 5 39.4 0.0
40 5 3 2098.8 0.0 5 100.1 0.0 2 2938.9 0.2 5 282.6 0.0
50 5 0 TL 1.4 3 1741.8 1.2 0 TL 2 2520.1 0.8
60 5 0 TL 0 TL 0.5 0 TL 1 3052.0 0.4
70 5 0 TL 2 3024.9 0.1 0 TL 1 3507.1 0.0
80 5 0 TL 1 2939.2 0.5 0 TL 0 TL 1.3
90 5 0 TL 0 TL 1.0 0 TL 0 TL
100 5 0 TL 1 3321.2 0.0 0 TL 0 TL

Subtotal 50 17 2540.7 0.1 27 1850.7 0.3 14 2692.3 0.0 24 2020.6 0.3

4 10 5 5 0.4 0.0 5 0.1 0.0 5 23.3 0.0 5 0.1 0.0
20 5 4 740.5 0.0 5 4.3 0.0 3 1649.9 0.0 5 26.6 0.0
30 5 4 1429.0 0.0 5 12.8 0.0 3 1610.0 0.0 4 765.4 0.0
40 5 1 3437.3 0.0 5 734.6 0.0 0 TL 4 1174.4 0.0
50 5 0 TL 1.0 1 2891.2 0.3 0 TL 1 3302.8 1.5
60 5 0 TL 2 2390.2 0.3 0 TL 0 TL 0.4
70 5 0 TL 1 2944.8 0.2 0 TL 0 TL 0.9
80 5 0 TL 1 3267.2 0.4 0 TL 1 3235.1 0.2
90 5 0 TL 0 TL 0.4 0 TL 0 TL
100 5 0 TL 0 TL 0.2 0 TL 0 TL

Subtotal 50 14 2600.8 0.1 25 1944.5 0.1 11 2745.8 0.0 20 2290.4 0.3

Total 150 53 2434.0 0.2 83 1828.0 0.3 44 2582.5 0.1 72 2041.1 0.4

Note: Larger numbers of exactly solved instances and smaller average times are highlighted in bold.

Summarizing, the most difficult BMCVRP instances of our test set are those with m = 4 compartments
of different size that provide a larger total capacity of Q = 240. Here, the BPC algorithm with the standard
labeling completely fails for all instances with more than ten customers, while the one with partial dominance
still optimally solves all instances with 20 and two of the five instances with 30 customers.

As a side note we mention that the computation of the tight fleet-size lower bound F ?LB (see Section 2.2)
never gave a strictly larger number than the trivial lower bound d

∑
i∈N di/Qe for any of the 600 test

instances. One can provoke different lower bounds by increasing the average demand (for a discussion and
analysis of demand distributions and their impact on the employed fleets and route length in the context of
split-delivery VRPTWs, see Bianchessi et al., 2019, Sections 1 and 5), but the resulting BMCVRP instances
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Table 4: Results for instances with vehicle capacity Q = 240.

Identical compartments Different compartment size

Standard labeling Partial dominance Standard labeling Partial dominance

m |V | #inst #opt time t̄ gap #opt time t̄ gap #opt time t̄ gap #opt time t̄ gap

2 10 5 5 0.3 0.0 5 0.1 0.0 5 0.5 0.0 5 0.1 0.0
20 5 4 1321.2 0.0 5 4.3 0.0 4 1718.6 0.0 5 1.4 0.0
30 5 0 TL 5 87.2 0.0 0 TL 5 76.3 0.0
40 5 0 TL 4 756.7 0.0 0 TL 4 765.4 0.0
50 5 0 TL 4 856.9 1.8 0 TL 4 873.6 2.0
60 5 0 TL 2 2791.2 0.6 0 TL 2 2754.9 0.3
70 5 0 TL 2 2964.7 0.0 0 TL 1 3052.4 0.0
80 5 0 TL 0 TL 0.6 0 TL 0 TL 0.9
90 5 0 TL 0 TL 2.8 0 TL 0 TL 3.3
100 5 0 TL 0 TL 3.8 0 TL 0 TL

Subtotal 50 9 3012.2 0.0 27 1826.1 0.6 9 3051.9 0.0 26 1832.4 0.5

3 10 5 5 1.7 0.0 5 < 0.1 0.0 5 7.6 0.0 5 0.1 0.0
20 5 0 TL 5 14.9 0.0 0 TL 5 23.4 0.0
30 5 0 TL 5 768.6 0.0 0 TL 4 1110.0 0.0
40 5 0 TL 4 1276.8 0.0 0 TL 4 1752.9 0.0
50 5 0 TL 2 2569.2 0.0 0 TL 2 2410.7 0.0
60 5 0 TL 0 TL 0 TL 0 TL
70 5 0 TL 0 TL 0 TL 0 TL
80 5 0 TL 0 TL 0 TL 0 TL
90 5 0 TL 0 TL 0 TL 0 TL
100 5 0 TL 0 TL 0 TL 0 TL

Subtotal 50 5 3240.2 0.0 21 2263.0 0.0 5 3240.8 0.0 20 2329.7 0.0

4 10 5 5 2.0 0.0 5 0.1 0.0 5 48.3 0.0 5 0.4 0.0
20 5 0 TL 5 74.6 0.0 0 TL 5 605.3 0.0
30 5 0 TL 3 2429.3 0.0 0 TL 2 2917.7 0.0
40 5 0 TL 2 2576.0 0.0 0 TL 0 TL
50 5 0 TL 0 TL 0 TL 0 TL
60 5 0 TL 0 TL 0 TL 0 TL
70 5 0 TL 0 TL 0 TL 0 TL
80 5 0 TL 0 TL 0 TL 0 TL
90 5 0 TL 0 TL 0 TL 0 TL
100 5 0 TL 0 TL 0 TL 0 TL

Subtotal 50 5 3171.7 0.0 15 2668.0 0.0 5 3177.2 0.0 12 2872.3 0.0

Total 150 19 3139.6 0.0 63 2252.4 0.3 19 3155.5 0.0 58 2344.8 0.2

Note: Larger numbers of exactly solved instances and smaller average times are highlighted in bold.

then become much simpler to solve. Moreover, we analyzed the computed 276 (of 600) optimal solutions.
We found that 236 solutions utilize exactly F ?LB vehicles, 37 utilize exactly F ?LB + 1 vehicles, and three
utilize F ?LB + 2 vehicles.

5.5. Comparison for Identical and Different Compartment Size
In this section, we compare optimal solutions for instances with identical compartment size with those

that have different compartment size. For each BMCVRP instance with identical compartments, there is
one corresponding instance with compartments of different size but otherwise identical characteristics, i.e.,
identical depot and customers, identical total capacity Q, and identical number of compartments m. We
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Table 5: Comparison between instances with identical (idt) compartments and compartments of different
size (diff ).

Count zidt versus zdiff Cost

m |V | #opt both 6= > < z̄idt z̄diff

2 10 10 0 0 0 3214.9 3214.9
20 10 0 0 0 4852.6 4852.6
30 10 2 2 0 6297.9 6293.0
40 9 1 1 0 7668.8 7667.9
50 6 1 1 0 8545.8 8537.2
60 5 2 1 1 9626.6 9635.2
70 3 1 1 0 10649.0 10646.3

Subtotal 53 7 6 1 6491.1 6489.7

3 10 10 2 2 0 3270.6 3214.9
20 10 4 4 0 4992.3 4914.5
30 9 4 4 0 6496.9 6428.2
40 9 5 5 0 7830.8 7746.6
50 4 3 3 0 9244.0 9068.5

Subtotal 42 18 18 0 5918.0 5836.7

4 10 10 2 1 1 3234.0 3248.1
20 10 4 1 3 4916.4 4956.7
30 6 2 0 2 6655.3 6740.0
40 4 3 2 1 8536.3 8527.8
50 1 1 1 0 14265.0 14019.0

Subtotal 31 12 5 7 5478.9 5503.8

Total 126 37 29 8 6051.0 6029.5

Note: Smaller costs are highlighted in bold.

use the superior BPC algorithm with partial dominance to compute optimal solutions. For the comparison,
we only consider pairs of instances that are optimally solved for both compartment settings. Results are
summarized in Table 5, where the table entries have the following meaning:

#opt both: number of pairs of corresponding instances solved to proven optimality within 1 hour
(3600 seconds);

6= : number of instances with different total cost, i.e., zidt 6= zdiff ;
> : number of instances with zidt > zdiff ;
< : number of instances with zidt < zdiff ;

z̄diff : average optimal objective value for instances with different compartment size;
z̄idt : average optimal objective value for instances with identical compartment size.

For instances with only m = 2 compartments and up to 20 customers, we observe no differences in
optimal solutions for identical and different compartment sizes. However, starting from m ≥ 3 or |V | ≥ 30,
at least one pair of corresponding instances shows a difference. For all numbers m of compartments, the
proportion of instances with different optima increases with the number of vertices |V |. For |V | ≥ 40,
different costs occur in 40% of the cases.

In most of the cases, namely 29 out of 37, the cost of solutions to instances with different compartment
size is lower than the cost of those with identical compartment size. We explain this observation with the fact
that one larger compartment is generally beneficial as occurring in instances with different compartment sizes
(see Table 2). The larger compartment provides more flexibility for packing items. However, if the smaller
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compartments become too small, as it happens for m = 4, the average total cost of different compartment
size is higher than the cost of identical compartments. Overall, the average relative difference in cost is less
than 0.1%, i.e., very small.

By construction (see Table 2), instances with m = 2 compartments are relaxations of instances with
m = 4 compartments, i.e., every feasible solution for m = 4 is also feasible for the corresponding instance
with m = 2. The cost comparison in Table 5 reflects this fact when comparing one row for m = 2 with
the corresponding row (i.e., identical number of customers) for m = 4. Note however that cost averages are
taken over samples of different size so that opposite cost relations could also occur.

6. Conclusions

Dominance rules are of high importance for the effectiveness of SPPRC labeling algorithms. Many studies
confirm that the largest share of the computation time of a BPC algorithm in vehicle and crew routing and
scheduling is spent in the SPPRC subproblems. Within the SPPRC labeling algorithm, the dominance
procedure is often the critical part and responsible for the consumption of more than 90% of the entire BPC
computation time.

In this work, we have introduced a new type of partial dominance tailored to the BMCVRP, a VRP
variant that synthesizes vehicle routing and one-dimensional bin packing with possibly multiple bin sizes.
For the BMCVRP, the new SPPRC labeling algorithm with partial dominance has been shown striking
performance compared to standard labeling. The properties that make labeling with partial dominance
superior can be attributed to the following facts: Labeling with partial dominance

• eliminates identical packings immediately during the extension step (in standard labeling, the elimi-
nation is postponed to the dominance test, which leads to the generation of more labels that are soon
afterwards eliminated again);

• represents many possible packings within a label and, thus, avoids the same comparisons of the cost,
ng-route, and SRI attributes in the dominance algorithm;

• also avoids identical calculations and feasibility checks of the above attributes in the merge procedure;
• reduces redundancy in the merge process (in standard labeling, it is hardly possible to directly avoid

the generation of identical routes that only differ in the packings; these are typically filtered out in a
final step of the labeling algorithm).

Compared to published approaches that also introduced versions of partial dominance, the new BMCVRP-
tailored partial dominance has different nature: Older approaches exploited partial dominance either to
solve a relaxation of the elementary SPPRC or to cope with a continuous tradeoff between two SPPRC
attributes (see discussion of the literature in the introduction). The partial dominance for the BMCVRP is
of discrete nature, because finite sets of packings of the compartments are thinned out.

We encourage other researchers to try out partial dominance in their dynamic-programming algorithms.
The presented results suggest that the principle of partial dominance has the potential to substantially
accelerate the solution of some SPPRC subproblems, but it may also help in very different problems solved
with dynamic programming.
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Appendix

In this Appendix, we present instance-by-instance results. The entries in Table 6 have the following meaning:

No.: number of the instance;
|V |: number of vertices;
Q: total capacity;
m: number of compartments;
Q: capacity vector;

opt: an asterisk * indicates if the respective algorithm could solve the instance to proven opti-
mality within 1 hour of computation time;

UB: upper bound;
LBtree: lower bound when reaching the time limit of 1 hour;
LBLP: linear relaxation lower bound;
LBcut: linear relaxation lower bound of restricted master problem with cutting planes;

gap: percentage optimality gap 100 · (UB − LBtree)/LBtree at termination;
time: computation time in seconds; TL indicates that the time limit of 1 hour was reached;

#BaB: number of solved branch-and-bound nodes;
#CC: number of capacity cuts added;
#SRI: number of subset-row inequalities added.

Table 6: Detailed results for all instances solved by labeling with partial dominance.

No. |V | Q m Q opt UB LBtree LBLP LBcut gap time #BaB #CC #SRI

1 10 120 2 (60, 60) * 408.3 408.3 344.1 408.3 0.0 0.5 1 300 6
2 10 120 2 (40, 80) * 408.3 408.3 344.1 408.3 0.0 0.4 1 300 6
3 10 120 3 (40, 40, 40) * 408.3 408.3 344.1 408.3 0.0 0.4 1 300 6
4 10 120 3 (20, 40, 60) * 408.3 408.3 344.1 408.3 0.0 0.4 1 300 6
5 10 120 4 (30, 30, 30, 30) * 408.3 408.3 358.4 408.3 0.0 0.4 1 300 6
6 10 120 4 (10, 15, 30, 65) * 408.3 408.3 349.9 408.3 0.0 0.1 1 19 0
7 10 120 2 (60, 60) * 361.3 361.3 331.6 361.3 0.0 0.1 1 20 0
8 10 120 2 (40, 80) * 361.3 361.3 331.6 361.3 0.0 0.1 1 19 0
9 10 120 3 (40, 40, 40) * 361.3 361.3 332.1 361.3 0.0 <0.1 1 16 0

10 10 120 3 (20, 40, 60) * 361.3 361.3 331.6 361.3 0.0 0.1 1 19 0
11 10 120 4 (30, 30, 30, 30) * 361.3 361.3 342.9 361.3 0.0 <0.1 1 13 0
12 10 120 4 (10, 15, 30, 65) * 361.3 361.3 342.9 361.3 0.0 0.1 1 13 0
13 10 120 2 (60, 60) * 300.0 300.0 300.0 300.0 0.0 0.1 1 0 0
14 10 120 2 (40, 80) * 300.0 300.0 300.0 300.0 0.0 0.1 1 0 0
15 10 120 3 (40, 40, 40) * 300.0 300.0 300.0 300.0 0.0 <0.1 1 0 0
16 10 120 3 (20, 40, 60) * 300.0 300.0 300.0 300.0 0.0 <0.1 1 0 0
17 10 120 4 (30, 30, 30, 30) * 300.0 300.0 300.0 300.0 0.0 0.1 1 0 0
18 10 120 4 (10, 15, 30, 65) * 300.0 300.0 300.0 300.0 0.0 0.1 1 0 0
19 10 120 2 (60, 60) * 299.2 299.2 292.1 299.2 0.0 0.1 1 22 0
20 10 120 2 (40, 80) * 299.2 299.2 292.1 299.2 0.0 0.1 1 22 0
21 10 120 3 (40, 40, 40) * 321.7 321.7 310.7 321.7 0.0 0.3 1 300 9
22 10 120 3 (20, 40, 60) * 299.2 299.2 292.1 299.2 0.0 0.1 1 23 0
23 10 120 4 (30, 30, 30, 30) * 306.8 306.8 299.8 306.8 0.0 <0.1 1 21 0
24 10 120 4 (10, 15, 30, 65) * 299.2 299.2 292.1 299.2 0.0 0.1 1 25 0
25 10 120 2 (60, 60) * 374.3 374.3 364.5 374.3 0.0 0.1 1 17 0
26 10 120 2 (40, 80) * 374.3 374.3 361.8 374.3 0.0 0.1 1 35 0
27 10 120 3 (40, 40, 40) * 407.5 407.5 407.5 407.5 0.0 <0.1 1 0 0
28 10 120 3 (20, 40, 60) * 374.3 374.3 374.3 374.3 0.0 <0.1 1 0 0
29 10 120 4 (30, 30, 30, 30) * 385.8 385.8 385.8 385.8 0.0 <0.1 1 0 0
30 10 120 4 (10, 15, 30, 65) * 407.5 407.5 407.5 407.5 0.0 <0.1 1 0 0
31 10 240 2 (120, 120) * 336.4 336.4 336.4 336.4 0.0 0.1 1 0 0
32 10 240 2 (80, 160) * 336.4 336.4 336.4 336.4 0.0 0.1 1 0 0
33 10 240 3 (80, 80, 80) * 336.4 336.4 336.4 336.4 0.0 0.1 1 0 0
34 10 240 3 (40, 80, 120) * 336.4 336.4 336.4 336.4 0.0 0.1 1 0 0
35 10 240 4 (60, 60, 60, 60) * 336.4 336.4 336.4 336.4 0.0 0.1 1 0 0
36 10 240 4 (20, 30, 60, 130) * 336.4 336.4 336.4 336.4 0.0 1.0 1 0 0
37 10 240 2 (120, 120) * 310.5 310.5 310.5 310.5 0.0 0.1 1 0 0
38 10 240 2 (80, 160) * 310.5 310.5 310.5 310.5 0.0 0.1 1 0 0
39 10 240 3 (80, 80, 80) * 310.5 310.5 310.5 310.5 0.0 <0.1 1 0 0
40 10 240 3 (40, 80, 120) * 310.5 310.5 310.5 310.5 0.0 0.1 1 0 0
41 10 240 4 (60, 60, 60, 60) * 310.5 310.5 310.5 310.5 0.0 <0.1 1 0 0
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42 10 240 4 (20, 30, 60, 130) * 310.5 310.5 310.5 310.5 0.0 0.4 1 0 0
43 10 240 2 (120, 120) * 279.9 279.9 279.9 279.9 0.0 0.1 1 0 0
44 10 240 2 (80, 160) * 279.9 279.9 279.9 279.9 0.0 0.1 1 0 0
45 10 240 3 (80, 80, 80) * 279.9 279.9 279.9 279.9 0.0 <0.1 1 0 0
46 10 240 3 (40, 80, 120) * 279.9 279.9 279.9 279.9 0.0 0.1 1 0 0
47 10 240 4 (60, 60, 60, 60) * 279.9 279.9 279.9 279.9 0.0 0.1 1 0 0
48 10 240 4 (20, 30, 60, 130) * 279.9 279.9 279.9 279.9 0.0 0.4 1 0 0
49 10 240 2 (120, 120) * 269.2 269.2 269.2 269.2 0.0 0.1 1 0 0
50 10 240 2 (80, 160) * 269.2 269.2 269.2 269.2 0.0 0.1 1 0 0
51 10 240 3 (80, 80, 80) * 269.2 269.2 269.2 269.2 0.0 <0.1 1 0 0
52 10 240 3 (40, 80, 120) * 269.2 269.2 269.2 269.2 0.0 0.1 1 0 0
53 10 240 4 (60, 60, 60, 60) * 269.2 269.2 269.2 269.2 0.0 <0.1 1 0 0
54 10 240 4 (20, 30, 60, 130) * 269.2 269.2 269.2 269.2 0.0 0.1 1 0 0
55 10 240 2 (120, 120) * 257.8 257.8 257.8 257.8 0.0 0.1 1 0 0
56 10 240 2 (80, 160) * 257.8 257.8 257.8 257.8 0.0 0.1 1 0 0
57 10 240 3 (80, 80, 80) * 257.8 257.8 257.8 257.8 0.0 <0.1 1 0 0
58 10 240 3 (40, 80, 120) * 257.8 257.8 257.8 257.8 0.0 0.1 1 0 0
59 10 240 4 (60, 60, 60, 60) * 257.8 257.8 257.8 257.8 0.0 <0.1 1 0 0
60 10 240 4 (20, 30, 60, 130) * 257.8 257.8 257.8 257.8 0.0 0.3 1 0 0
61 20 120 2 (60, 60) * 568.5 568.5 564.4 568.5 0.0 0.5 1 300 6
62 20 120 2 (40, 80) * 568.5 568.5 564.4 568.5 0.0 0.5 1 300 6
63 20 120 3 (40, 40, 40) * 654.9 654.9 653.1 654.9 0.0 0.5 1 300 2
64 20 120 3 (20, 40, 60) * 613.6 613.6 609.7 613.6 0.0 0.6 1 300 9
65 20 120 4 (30, 30, 30, 30) * 602.0 602.0 598.4 602.0 0.0 0.5 1 300 14
66 20 120 4 (10, 15, 30, 65) * 621.6 621.6 621.2 621.6 0.0 0.9 1 300 10
67 20 120 2 (60, 60) * 521.4 521.4 517.2 521.4 0.0 0.3 1 37 0
68 20 120 2 (40, 80) * 521.4 521.4 517.2 521.4 0.0 0.3 1 34 0
69 20 120 3 (40, 40, 40) * 538.2 538.2 536.2 538.2 0.0 0.5 1 120 0
70 20 120 3 (20, 40, 60) * 538.2 538.2 528.7 538.2 0.0 1.8 1 300 18
71 20 120 4 (30, 30, 30, 30) * 547.2 547.2 547.2 547.2 0.0 0.2 1 0 0
72 20 120 4 (10, 15, 30, 65) * 538.2 538.2 538.2 538.2 0.0 0.9 1 0 0
73 20 120 2 (60, 60) * 472.6 472.6 457.9 472.6 0.0 3.6 1 300 36
74 20 120 2 (40, 80) * 472.6 472.6 470.3 472.6 0.0 2.5 1 300 10
75 20 120 3 (40, 40, 40) * 481.2 481.2 475.1 481.2 0.0 6.1 1 300 10
76 20 120 3 (20, 40, 60) * 472.6 472.6 470.3 472.6 0.0 16.0 1 300 10
77 20 120 4 (30, 30, 30, 30) * 472.6 472.6 457.9 472.6 0.0 18.6 1 300 20
78 20 120 4 (10, 15, 30, 65) * 472.6 472.6 470.3 472.6 0.0 60.8 1 300 10
79 20 120 2 (60, 60) * 508.4 508.4 484.5 504.1 0.0 121.4 12 300 95
80 20 120 2 (40, 80) * 508.4 508.4 493.0 504.2 0.0 80.9 7 300 113
81 20 120 3 (40, 40, 40) * 528.3 528.3 518.2 528.2 0.0 8.6 2 300 77
82 20 120 3 (20, 40, 60) * 508.4 508.4 493.0 508.4 0.0 2.7 1 160 0
83 20 120 4 (30, 30, 30, 30) * 509.9 509.9 507.9 509.9 0.0 1.8 1 300 19
84 20 120 4 (10, 15, 30, 65) * 528.3 528.3 518.2 527.9 0.0 63.0 2 300 75
85 20 120 2 (60, 60) * 479.3 479.3 471.7 479.3 0.0 0.5 1 300 23
86 20 120 2 (40, 80) * 479.3 479.3 471.7 479.3 0.0 0.5 1 300 20
87 20 120 3 (40, 40, 40) * 487.3 487.3 481.1 487.3 0.0 0.6 1 300 9
88 20 120 3 (20, 40, 60) * 479.3 479.3 473.6 479.3 0.0 0.5 1 61 0
89 20 120 4 (30, 30, 30, 30) * 482.3 482.3 480.0 482.3 0.0 0.3 1 75 0
90 20 120 4 (10, 15, 30, 65) * 493.6 493.6 491.2 493.6 0.0 7.5 1 300 22
91 20 240 2 (120, 120) * 440.8 440.8 437.0 440.8 0.0 0.5 1 45 0
92 20 240 2 (80, 160) * 440.8 440.8 437.0 440.8 0.0 0.5 1 52 0
93 20 240 3 (80, 80, 80) * 440.8 440.8 437.0 440.8 0.0 5.2 1 43 0
94 20 240 3 (40, 80, 120) * 440.8 440.8 437.0 440.8 0.0 7.8 1 43 0
95 20 240 4 (60, 60, 60, 60) * 440.8 440.8 438.1 440.8 0.0 21.4 1 41 0
96 20 240 4 (20, 30, 60, 130) * 440.8 440.8 437.9 440.8 0.0 166.6 1 44 0
97 20 240 2 (120, 120) * 463.6 463.6 450.9 463.6 0.0 1.3 1 300 0
98 20 240 2 (80, 160) * 463.6 463.6 450.9 463.6 0.0 1.0 1 196 0
99 20 240 3 (80, 80, 80) * 463.6 463.6 451.1 463.6 0.0 5.9 1 300 10

100 20 240 3 (40, 80, 120) * 463.6 463.6 450.9 463.6 0.0 8.3 1 156 0
101 20 240 4 (60, 60, 60, 60) * 463.6 463.6 451.7 463.6 0.0 12.7 1 247 0
102 20 240 4 (20, 30, 60, 130) * 463.6 463.6 451.1 463.6 0.0 154.9 1 214 0
103 20 240 2 (120, 120) * 451.6 451.6 418.4 451.6 0.0 17.6 1 300 79
104 20 240 2 (80, 160) * 451.6 451.6 418.4 451.6 0.0 3.0 1 300 32
105 20 240 3 (80, 80, 80) * 451.6 451.6 418.4 451.6 0.0 14.1 1 300 9
106 20 240 3 (40, 80, 120) * 451.6 451.6 418.4 451.6 0.0 33.5 1 300 30
107 20 240 4 (60, 60, 60, 60) * 451.6 451.6 424.4 451.6 0.0 38.1 1 300 8
108 20 240 4 (20, 30, 60, 130) * 451.6 451.6 421.3 451.6 0.0 606.0 1 300 16
109 20 240 2 (120, 120) * 457.4 457.4 446.8 457.4 0.0 0.9 1 104 0
110 20 240 2 (80, 160) * 457.4 457.4 446.8 457.4 0.0 0.9 1 115 0
111 20 240 3 (80, 80, 80) * 457.4 457.4 446.8 457.4 0.0 9.2 1 111 0
112 20 240 3 (40, 80, 120) * 457.4 457.4 446.8 457.4 0.0 13.8 1 111 0
113 20 240 4 (60, 60, 60, 60) * 457.4 457.4 446.8 457.4 0.0 40.5 1 157 0
114 20 240 4 (20, 30, 60, 130) * 457.4 457.4 446.8 457.4 0.0 198.7 1 112 0
115 20 240 2 (120, 120) * 451.0 451.0 425.3 451.0 0.0 1.5 1 122 0
116 20 240 2 (80, 160) * 451.0 451.0 425.3 451.0 0.0 1.6 1 134 0
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117 20 240 3 (80, 80, 80) * 451.0 451.0 425.3 451.0 0.0 40.0 1 177 0
118 20 240 3 (40, 80, 120) * 451.0 451.0 425.3 451.0 0.0 53.6 1 69 0
119 20 240 4 (60, 60, 60, 60) * 451.0 451.0 426.5 451.0 0.0 260.5 1 60 0
120 20 240 4 (20, 30, 60, 130) * 451.0 451.0 426.8 451.0 0.0 1900.2 1 61 0
121 30 120 2 (60, 60) * 911.8 911.8 874.1 911.8 0.0 2.0 1 300 29
122 30 120 2 (40, 80) * 911.8 911.8 867.6 911.8 0.0 2.4 1 300 40
123 30 120 3 (40, 40, 40) * 926.6 926.6 897.5 921.9 0.0 108.6 9 300 141
124 30 120 3 (20, 40, 60) * 911.8 911.8 877.6 911.8 0.0 5.6 1 300 28
125 30 120 4 (30, 30, 30, 30) * 929.0 928.9 896.3 926.7 0.0 21.7 2 300 122
126 30 120 4 (10, 15, 30, 65) * 942.8 942.8 919.9 942.8 0.0 12.8 1 300 63
127 30 120 2 (60, 60) * 690.5 690.5 668.3 690.5 0.0 1.4 1 300 48
128 30 120 2 (40, 80) * 690.5 690.5 656.2 690.5 0.0 1.4 1 300 49
129 30 120 3 (40, 40, 40) * 702.3 702.3 698.9 702.3 0.0 0.8 1 132 0
130 30 120 3 (20, 40, 60) * 690.5 690.5 672.5 690.5 0.0 2.4 1 300 31
131 30 120 4 (30, 30, 30, 30) * 702.3 702.3 702.3 702.3 0.0 0.4 1 0 0
132 30 120 4 (10, 15, 30, 65) * 739.3 739.3 719.1 739.3 0.0 12.2 1 300 69
133 30 120 2 (60, 60) * 626.2 626.2 618.7 626.2 0.0 0.7 1 300 10
134 30 120 2 (40, 80) * 624.4 624.4 616.0 624.4 0.0 0.7 1 300 0
135 30 120 3 (40, 40, 40) * 643.2 643.2 636.6 643.2 0.0 2.8 1 300 30
136 30 120 3 (20, 40, 60) * 626.2 626.2 618.7 626.2 0.0 1.8 1 263 0
137 30 120 4 (30, 30, 30, 30) * 626.2 626.2 625.4 626.2 0.0 0.8 1 143 0
138 30 120 4 (10, 15, 30, 65) * 626.2 626.2 626.2 626.2 0.0 6.1 1 0 0
139 30 120 2 (60, 60) * 646.1 646.1 634.4 644.1 0.0 16.0 2 300 73
140 30 120 2 (40, 80) * 643.0 643.0 629.5 643.0 0.0 1.8 1 300 0
141 30 120 3 (40, 40, 40) * 650.5 650.5 643.3 650.0 0.0 29.4 2 300 37
142 30 120 3 (20, 40, 60) * 650.5 650.5 639.0 645.3 0.0 141.9 3 300 52
143 30 120 4 (30, 30, 30, 30) * 650.5 650.5 644.6 650.5 0.0 11.5 1 300 10
144 30 120 4 (10, 15, 30, 65) * 650.5 650.5 639.7 650.5 0.0 196.0 1 300 50
145 30 120 2 (60, 60) * 638.7 638.7 628.6 638.7 0.0 5.5 1 300 30
146 30 120 2 (40, 80) * 638.7 638.7 628.6 638.7 0.0 5.3 1 300 30
147 30 120 3 (40, 40, 40) * 656.9 656.9 640.0 652.2 0.0 741.3 4 300 246
148 30 120 3 (20, 40, 60) * 638.7 638.7 628.6 638.7 0.0 45.4 1 300 20
149 30 120 4 (30, 30, 30, 30) * 638.7 638.7 636.3 638.7 0.0 29.6 1 300 10
150 30 120 4 (10, 15, 30, 65) 656.9 655.6 640.0 652.6 0.2 TL 2 300 215
151 30 240 2 (120, 120) * 582.7 582.7 543.3 582.7 0.0 13.4 1 300 25
152 30 240 2 (80, 160) * 582.7 582.7 543.3 582.7 0.0 8.7 1 300 10
153 30 240 3 (80, 80, 80) * 582.7 582.7 543.4 582.7 0.0 99.3 1 300 10
154 30 240 3 (40, 80, 120) * 582.7 582.7 543.3 582.7 0.0 212.8 1 300 26
155 30 240 4 (60, 60, 60, 60) * 582.7 582.7 543.7 582.7 0.0 785.7 1 300 23
156 30 240 4 (20, 30, 60, 130) * 582.7 582.7 543.4 582.7 0.0 1727.4 1 300 16
157 30 240 2 (120, 120) * 511.1 511.1 491.1 511.1 0.0 366.1 1 300 53
158 30 240 2 (80, 160) * 511.1 511.1 491.1 511.1 0.0 314.2 1 300 30
159 30 240 3 (80, 80, 80) * 511.1 511.1 491.1 511.1 0.0 2599.1 1 300 30
160 30 240 3 (40, 80, 120) 501.3 491.1 501.3 TL 1 300 30
161 30 240 4 (60, 60, 60, 60) 491.2 491.2 491.2 TL 1 113 0
162 30 240 4 (20, 30, 60, 130) TL 0 0 0
163 30 240 2 (120, 120) * 467.7 467.7 458.8 467.7 0.0 2.9 1 198 0
164 30 240 2 (80, 160) * 467.7 467.7 458.8 467.7 0.0 4.8 1 191 0
165 30 240 3 (80, 80, 80) * 467.7 467.7 458.8 467.7 0.0 73.4 1 203 0
166 30 240 3 (40, 80, 120) * 467.7 467.7 458.8 467.7 0.0 112.4 1 185 0
167 30 240 4 (60, 60, 60, 60) * 467.7 467.7 458.8 467.7 0.0 760.6 1 181 0
168 30 240 4 (20, 30, 60, 130) * 467.7 467.7 458.8 467.7 0.0 2061.3 1 204 0
169 30 240 2 (120, 120) * 541.7 541.7 513.2 541.7 0.0 38.0 1 300 10
170 30 240 2 (80, 160) * 541.7 541.7 513.2 541.7 0.0 35.5 1 275 0
171 30 240 3 (80, 80, 80) * 541.7 541.7 513.2 541.7 0.0 835.7 1 300 20
172 30 240 3 (40, 80, 120) * 541.7 541.7 513.2 541.7 0.0 1305.1 1 300 10
173 30 240 4 (60, 60, 60, 60) 513.2 513.2 513.2 TL 1 0 0
174 30 240 4 (20, 30, 60, 130) TL 0 0 0
175 30 240 2 (120, 120) * 623.4 623.4 593.7 623.4 0.0 15.6 1 300 50
176 30 240 2 (80, 160) * 623.4 623.4 593.7 623.4 0.0 18.0 1 300 57
177 30 240 3 (80, 80, 80) * 623.4 623.4 593.8 623.4 0.0 235.3 1 300 50
178 30 240 3 (40, 80, 120) * 623.4 623.4 593.7 623.4 0.0 319.9 1 300 51
179 30 240 4 (60, 60, 60, 60) * 630.3 630.3 594.8 630.3 0.0 3400.3 1 300 155
180 30 240 4 (20, 30, 60, 130) 619.9 594.7 619.9 TL 1 300 30
181 40 120 2 (60, 60) * 761.7 761.7 738.5 761.7 0.0 2.1 1 300 30
182 40 120 2 (40, 80) * 761.7 761.7 738.5 761.7 0.0 2.3 1 300 31
183 40 120 3 (40, 40, 40) * 782.0 781.9 748.8 778.8 0.0 242.0 6 300 186
184 40 120 3 (20, 40, 60) * 773.0 773.0 740.9 773.0 0.0 21.4 1 300 73
185 40 120 4 (30, 30, 30, 30) * 782.7 782.7 762.4 782.7 0.0 32.1 1 300 124
186 40 120 4 (10, 15, 30, 65) * 782.7 782.7 765.9 782.7 0.0 88.0 1 300 76
187 40 120 2 (60, 60) * 847.9 847.9 832.5 847.9 0.0 8.1 1 300 82
188 40 120 2 (40, 80) * 847.9 847.9 826.8 846.8 0.0 24.1 2 300 115
189 40 120 3 (40, 40, 40) * 874.6 874.6 864.2 868.5 0.0 111.9 5 300 121
190 40 120 3 (20, 40, 60) * 874.0 873.9 860.6 865.3 0.0 916.2 16 300 226
191 40 120 4 (30, 30, 30, 30) * 878.8 878.8 851.0 869.5 0.0 3070.7 34 300 297
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192 40 120 4 (10, 15, 30, 65) * 887.6 887.6 874.0 882.7 0.0 467.4 4 300 131
193 40 120 2 (60, 60) * 749.0 749.0 723.5 749.0 0.0 5.8 1 300 106
194 40 120 2 (40, 80) * 748.2 748.2 722.5 748.2 0.0 12.2 2 300 82
195 40 120 3 (40, 40, 40) * 767.0 767.0 741.5 767.0 0.0 16.0 1 300 101
196 40 120 3 (20, 40, 60) * 749.0 749.0 723.5 749.0 0.0 19.0 1 300 70
197 40 120 4 (30, 30, 30, 30) * 790.0 789.9 773.6 787.6 0.0 37.3 3 300 97
198 40 120 4 (10, 15, 30, 65) * 787.2 787.2 778.1 787.2 0.0 20.0 1 300 20
199 40 120 2 (60, 60) * 911.4 911.4 898.3 911.4 0.0 1.5 1 300 10
200 40 120 2 (40, 80) * 911.4 911.4 898.3 911.4 0.0 2.3 1 300 35
201 40 120 3 (40, 40, 40) * 984.6 984.6 969.3 978.5 0.0 26.6 2 300 93
202 40 120 3 (20, 40, 60) * 944.0 944.0 927.9 944.0 0.0 28.0 1 300 33
203 40 120 4 (30, 30, 30, 30) * 958.2 958.2 940.5 956.0 0.0 52.2 2 300 140
204 40 120 4 (10, 15, 30, 65) 991.1 979.7 991.1 TL 2 300 155
205 40 120 2 (60, 60) * 909.6 909.6 883.5 909.3 0.0 119.5 3 300 155
206 40 120 2 (40, 80) * 909.6 909.6 883.4 908.6 0.0 110.0 3 300 149
207 40 120 3 (40, 40, 40) * 917.2 917.2 893.9 917.2 0.0 103.9 1 300 88
208 40 120 3 (20, 40, 60) * 909.6 909.5 884.6 909.5 0.0 428.6 2 300 165
209 40 120 4 (30, 30, 30, 30) * 931.8 931.8 909.9 929.7 0.0 480.5 5 300 147
210 40 120 4 (10, 15, 30, 65) * 922.4 922.4 895.5 921.3 0.0 1696.8 4 300 138
211 40 240 2 (120, 120) * 615.5 615.5 605.1 615.5 0.0 21.4 1 300 30
212 40 240 2 (80, 160) * 615.5 615.5 605.1 615.5 0.0 32.5 1 300 52
213 40 240 3 (80, 80, 80) * 615.5 615.5 605.3 615.5 0.0 326.8 1 300 43
214 40 240 3 (40, 80, 120) * 615.5 615.5 605.1 615.5 0.0 1530.1 1 300 66
215 40 240 4 (60, 60, 60, 60) * 615.5 615.5 606.2 615.5 0.0 875.9 1 300 40
216 40 240 4 (20, 30, 60, 130) TL 0 0 0
217 40 240 2 (120, 120) * 676.7 676.7 671.4 676.7 0.0 23.7 1 300 31
218 40 240 2 (80, 160) * 676.7 676.7 671.4 676.7 0.0 31.4 1 300 30
219 40 240 3 (80, 80, 80) * 676.7 676.7 671.5 676.7 0.0 195.3 1 300 29
220 40 240 3 (40, 80, 120) * 676.7 676.7 671.4 676.7 0.0 385.1 1 300 30
221 40 240 4 (60, 60, 60, 60) 726.9 714.6 726.9 TL 1 300 126
222 40 240 4 (20, 30, 60, 130) 715.4 710.0 715.4 TL 1 300 10
223 40 240 2 (120, 120) 662.7 647.1 662.7 TL 1 300 215
224 40 240 2 (80, 160) 667.0 647.1 667.0 TL 1 300 205
225 40 240 3 (80, 80, 80) 662.2 647.1 662.2 TL 1 300 60
226 40 240 3 (40, 80, 120) 656.1 647.1 656.1 TL 1 300 40
227 40 240 4 (60, 60, 60, 60) 648.1 648.1 648.1 TL 1 300 0
228 40 240 4 (20, 30, 60, 130) TL 0 0 0
229 40 240 2 (120, 120) * 659.5 659.5 647.5 659.5 0.0 43.0 1 300 50
230 40 240 2 (80, 160) * 659.5 659.5 647.5 659.5 0.0 52.7 1 300 64
231 40 240 3 (80, 80, 80) * 659.5 659.5 648.8 659.5 0.0 572.3 1 300 61
232 40 240 3 (40, 80, 120) * 659.5 659.5 647.5 659.5 0.0 594.6 1 300 42
233 40 240 4 (60, 60, 60, 60) * 659.5 659.5 649.5 659.5 0.0 1204.0 1 300 30
234 40 240 4 (20, 30, 60, 130) 652.8 649.3 652.8 TL 1 300 0
235 40 240 2 (120, 120) * 700.4 700.4 689.9 700.4 0.0 95.5 1 300 83
236 40 240 2 (80, 160) * 700.4 700.4 689.9 700.4 0.0 110.7 1 300 71
237 40 240 3 (80, 80, 80) * 700.4 700.4 690.4 700.4 0.0 1689.8 1 300 70
238 40 240 3 (40, 80, 120) * 700.4 700.4 689.9 700.4 0.0 2654.5 1 300 72
239 40 240 4 (60, 60, 60, 60) 699.3 690.9 699.3 TL 1 300 32
240 40 240 4 (20, 30, 60, 130) TL 0 0 0
241 50 120 2 (60, 60) 1345.8 1268.9 1244.4 1263.7 6.0 TL 25 300 320
242 50 120 2 (40, 80) 1342.3 1260.3 1236.4 1252.9 6.5 TL 15 300 320
243 50 120 3 (40, 40, 40) 1365.3 1293.5 1263.3 1289.5 5.5 TL 13 300 320
244 50 120 3 (20, 40, 60) 1333.4 1315.0 1257.8 1311.8 1.4 TL 4 300 303
245 50 120 4 (30, 30, 30, 30) 1358.6 1353.2 1339.1 1345.6 0.4 TL 26 300 320
246 50 120 4 (10, 15, 30, 65) 1380.7 1309.4 1287.2 1308.0 5.4 TL 3 300 198
247 50 120 2 (60, 60) * 978.4 978.4 959.2 978.1 0.0 31.1 2 300 150
248 50 120 2 (40, 80) * 978.4 978.4 957.9 976.5 0.0 87.3 3 300 150
249 50 120 3 (40, 40, 40) * 1066.8 1066.7 1042.1 1061.7 0.0 1228.5 15 300 270
250 50 120 3 (20, 40, 60) 1020.3 1015.2 992.0 1007.5 0.5 TL 37 300 320
251 50 120 4 (30, 30, 30, 30) * 1021.8 1021.8 1003.5 1021.8 0.0 55.9 1 300 79
252 50 120 4 (10, 15, 30, 65) 1055.8 1053.6 1037.0 1052.8 0.2 TL 3 300 146
253 50 120 2 (60, 60) * 974.0 974.0 945.9 967.9 0.0 3333.7 22 300 320
254 50 120 2 (40, 80) 974.0 971.5 941.6 963.7 0.3 TL 22 300 320
255 50 120 3 (40, 40, 40) * 1024.7 1024.7 997.0 1017.8 0.0 223.2 2 300 144
256 50 120 3 (20, 40, 60) * 989.8 989.8 968.9 989.8 0.0 337.0 2 300 132
257 50 120 4 (30, 30, 30, 30) 1018.7 1016.3 981.5 1001.8 0.2 TL 13 300 277
258 50 120 4 (10, 15, 30, 65) * 991.1 991.1 973.3 990.9 0.0 2114.0 3 300 165
259 50 120 2 (60, 60) * 1035.3 1035.3 1011.9 1035.3 0.0 30.0 1 300 100
260 50 120 2 (40, 80) * 1030.1 1030.1 1011.7 1030.1 0.0 29.0 1 300 72
261 50 120 3 (40, 40, 40) * 1079.9 1079.9 1071.8 1079.9 0.0 57.4 1 300 30
262 50 120 3 (20, 40, 60) * 1051.5 1051.4 1024.9 1043.8 0.0 1463.7 6 300 229
263 50 120 4 (30, 30, 30, 30) 1079.7 1077.1 1044.8 1067.7 0.2 TL 9 300 320
264 50 120 4 (10, 15, 30, 65) 1083.9 1062.8 1083.9 TL 1 300 110
265 50 120 2 (60, 60) 990.9 970.4 940.4 964.6 2.1 TL 18 300 320
266 50 120 2 (40, 80) 990.9 969.1 939.2 963.1 2.2 TL 13 300 320
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267 50 120 3 (40, 40, 40) 1012.7 1007.4 980.2 997.0 0.5 TL 40 300 320
268 50 120 3 (20, 40, 60) 996.9 975.7 947.0 972.6 2.1 TL 7 300 320
269 50 120 4 (30, 30, 30, 30) 1077.0 1071.1 1055.6 1061.9 0.5 TL 56 300 320
270 50 120 4 (10, 15, 30, 65) 1084.5 1079.2 1065.0 1075.8 0.5 TL 3 300 147
271 50 240 2 (120, 120) * 663.3 663.3 658.2 663.3 0.0 17.5 1 300 20
272 50 240 2 (80, 160) * 663.3 663.3 658.2 663.3 0.0 19.6 1 300 20
273 50 240 3 (80, 80, 80) * 663.3 663.3 658.2 663.3 0.0 401.8 1 300 30
274 50 240 3 (40, 80, 120) * 663.3 663.3 658.2 663.3 0.0 582.8 1 300 20
275 50 240 4 (60, 60, 60, 60) 663.3 658.9 663.3 TL 1 300 20
276 50 240 4 (20, 30, 60, 130) TL 0 0 0
277 50 240 2 (120, 120) * 883.6 883.6 869.7 883.6 0.0 54.6 1 300 40
278 50 240 2 (80, 160) * 883.6 883.6 869.7 883.6 0.0 41.9 1 300 30
279 50 240 3 (80, 80, 80) * 890.5 890.5 871.8 890.5 0.0 1644.4 1 300 114
280 50 240 3 (40, 80, 120) * 883.6 883.6 870.0 883.6 0.0 670.5 1 300 30
281 50 240 4 (60, 60, 60, 60) 895.1 877.1 895.1 TL 1 300 90
282 50 240 4 (20, 30, 60, 130) 883.4 872.7 883.4 TL 1 300 30
283 50 240 2 (120, 120) * 875.1 875.1 861.1 875.1 0.0 467.8 1 300 132
284 50 240 2 (80, 160) * 875.1 875.1 861.1 875.1 0.0 435.9 1 300 122
285 50 240 3 (80, 80, 80) 873.9 861.5 873.9 TL 1 300 101
286 50 240 3 (40, 80, 120) 872.3 861.4 872.3 TL 1 300 82
287 50 240 4 (60, 60, 60, 60) 877.2 868.7 877.2 TL 1 300 10
288 50 240 4 (20, 30, 60, 130) 861.5 861.5 861.5 TL 1 300 0
289 50 240 2 (120, 120) 1119.5 1026.3 993.8 1023.3 9.0 TL 4 300 320
290 50 240 2 (80, 160) 1112.4 1010.8 993.8 1008.1 10.0 TL 3 300 275
291 50 240 3 (80, 80, 80) 1011.6 997.2 1011.6 TL 1 300 102
292 50 240 3 (40, 80, 120) 1010.6 994.2 1010.6 TL 1 300 50
293 50 240 4 (60, 60, 60, 60) 1021.4 1011.6 1021.4 TL 1 300 10
294 50 240 4 (20, 30, 60, 130) 998.7 998.7 998.7 TL 1 0 0
295 50 240 2 (120, 120) * 633.0 633.0 625.5 633.0 0.0 144.7 1 300 20
296 50 240 2 (80, 160) * 633.0 633.0 625.5 633.0 0.0 270.4 1 300 40
297 50 240 3 (80, 80, 80) 632.6 625.5 632.6 TL 1 300 30
298 50 240 3 (40, 80, 120) 627.9 625.5 627.9 TL 1 300 0
299 50 240 4 (60, 60, 60, 60) TL 0 0 0
300 50 240 4 (20, 30, 60, 130) TL 0 0 0
301 60 120 2 (60, 60) * 989.1 989.1 967.7 980.4 0.0 3272.7 19 300 320
302 60 120 2 (40, 80) 989.1 988.4 967.0 980.3 0.1 TL 20 300 320
303 60 120 3 (40, 40, 40) 1008.7 1004.3 980.4 997.6 0.4 TL 6 300 320
304 60 120 3 (20, 40, 60) 993.4 985.2 969.3 982.2 0.8 TL 3 300 229
305 60 120 4 (30, 30, 30, 30) 1016.0 1010.4 990.2 1007.5 0.5 TL 3 300 252
306 60 120 4 (10, 15, 30, 65) 998.0 984.9 998.0 TL 1 300 126
307 60 120 2 (60, 60) * 1114.8 1114.8 1094.7 1114.2 0.0 65.6 2 300 190
308 60 120 2 (40, 80) * 1121.6 1121.6 1097.7 1119.2 0.0 470.0 8 300 264
309 60 120 3 (40, 40, 40) 1167.9 1163.3 1130.4 1157.5 0.4 TL 35 300 320
310 60 120 3 (20, 40, 60) * 1141.7 1141.7 1115.7 1139.0 0.0 860.2 6 300 298
311 60 120 4 (30, 30, 30, 30) * 1167.6 1167.6 1147.3 1166.8 0.0 625.5 3 300 178
312 60 120 4 (10, 15, 30, 65) 1169.0 1164.3 1135.0 1160.5 0.4 TL 16 300 277
313 60 120 2 (60, 60) * 957.1 957.1 932.3 954.5 0.0 1727.5 9 300 320
314 60 120 2 (40, 80) * 954.6 954.5 931.8 952.8 0.0 848.7 5 300 307
315 60 120 3 (40, 40, 40) 965.8 965.4 937.3 960.0 0.0 TL 10 300 320
316 60 120 3 (20, 40, 60) 957.1 933.8 957.1 TL 3 300 273
317 60 120 4 (30, 30, 30, 30) * 963.1 963.1 949.4 963.1 0.0 525.8 1 300 85
318 60 120 4 (10, 15, 30, 65) 959.8 943.6 959.8 TL 1 300 93
319 60 120 2 (60, 60) * 1002.5 1002.5 979.2 998.9 0.0 1048.2 5 300 320
320 60 120 2 (40, 80) * 1002.5 1002.5 979.0 998.3 0.0 2776.8 15 300 320
321 60 120 3 (40, 40, 40) 1047.4 1032.8 1004.5 1028.2 1.4 TL 7 300 320
322 60 120 3 (20, 40, 60) 1005.9 1000.9 982.2 1000.6 0.5 TL 2 300 257
323 60 120 4 (30, 30, 30, 30) 1049.9 1041.8 1016.3 1039.6 0.8 TL 6 300 320
324 60 120 4 (10, 15, 30, 65) 1021.2 1009.9 1021.2 TL 1 300 75
325 60 120 2 (60, 60) * 1063.9 1063.9 1038.1 1058.7 0.0 1583.8 13 300 320
326 60 120 2 (40, 80) 1063.9 1063.0 1037.4 1057.2 0.1 TL 31 300 320
327 60 120 3 (40, 40, 40) 1069.2 1064.2 1042.7 1062.3 0.5 TL 4 300 303
328 60 120 3 (20, 40, 60) 1063.9 1062.4 1039.4 1059.9 0.1 TL 4 300 279
329 60 120 4 (30, 30, 30, 30) 1088.1 1076.2 1088.1 TL 2 300 195
330 60 120 4 (10, 15, 30, 65) 1067.4 1060.2 1067.4 TL 1 300 42
331 60 240 2 (120, 120) 943.3 928.3 915.1 927.4 1.6 TL 2 300 203
332 60 240 2 (80, 160) 934.1 929.9 915.1 929.8 0.5 TL 3 300 224
333 60 240 3 (80, 80, 80) 923.4 915.2 923.4 TL 1 300 40
334 60 240 3 (40, 80, 120) 921.0 915.1 921.0 TL 1 300 20
335 60 240 4 (60, 60, 60, 60) 918.3 918.3 918.3 TL 1 0 0
336 60 240 4 (20, 30, 60, 130) TL 0 0 0
337 60 240 2 (120, 120) * 915.6 915.6 898.0 915.6 0.0 2046.5 1 300 239
338 60 240 2 (80, 160) * 915.6 915.6 898.0 915.6 0.0 1845.7 1 300 218
339 60 240 3 (80, 80, 80) 912.0 898.9 912.0 TL 1 300 80
340 60 240 3 (40, 80, 120) 909.1 898.8 909.1 TL 1 300 50
341 60 240 4 (60, 60, 60, 60) 905.7 903.1 905.7 TL 1 300 10
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342 60 240 4 (20, 30, 60, 130) TL 0 0 0
343 60 240 2 (120, 120) 823.5 815.5 791.1 812.8 1.0 TL 10 300 320
344 60 240 2 (80, 160) 820.6 815.0 791.1 812.9 0.7 TL 8 300 320
345 60 240 3 (80, 80, 80) 816.0 791.9 816.0 TL 1 300 170
346 60 240 3 (40, 80, 120) 815.4 791.4 815.4 TL 1 300 148
347 60 240 4 (60, 60, 60, 60) 803.4 802.1 803.4 TL 1 300 20
348 60 240 4 (20, 30, 60, 130) TL 0 0 0
349 60 240 2 (120, 120) 1117.1 1106.5 1117.1 TL 2 300 239
350 60 240 2 (80, 160) 1116.7 1106.5 1116.7 TL 1 300 243
351 60 240 3 (80, 80, 80) 1112.6 1108.8 1112.6 TL 1 300 20
352 60 240 3 (40, 80, 120) 1110.5 1106.9 1110.5 TL 1 300 23
353 60 240 4 (60, 60, 60, 60) TL 0 0 0
354 60 240 4 (20, 30, 60, 130) TL 0 0 0
355 60 240 2 (120, 120) * 764.3 764.3 748.6 764.3 0.0 1109.3 1 300 134
356 60 240 2 (80, 160) * 764.3 764.3 748.6 764.3 0.0 1128.9 1 300 127
357 60 240 3 (80, 80, 80) 755.8 748.6 755.8 TL 1 300 30
358 60 240 3 (40, 80, 120) 754.0 748.6 754.0 TL 1 300 20
359 60 240 4 (60, 60, 60, 60) TL 0 0 0
360 60 240 4 (20, 30, 60, 130) TL 0 0 0
361 70 120 2 (60, 60) 1347.2 1339.5 1313.1 1334.0 0.6 TL 17 300 320
362 70 120 2 (40, 80) 1334.1 1333.7 1309.8 1330.1 0.0 TL 14 300 320
363 70 120 3 (40, 40, 40) * 1367.3 1367.3 1347.9 1367.3 0.0 1592.0 1 300 194
364 70 120 3 (20, 40, 60) 1340.4 1324.4 1340.4 TL 3 300 164
365 70 120 4 (30, 30, 30, 30) 1384.7 1381.4 1366.5 1377.8 0.2 TL 2 300 212
366 70 120 4 (10, 15, 30, 65) 1383.3 1365.3 1383.3 TL 1 300 121
367 70 120 2 (60, 60) 1292.2 1272.7 1246.6 1262.7 1.5 TL 16 300 320
368 70 120 2 (40, 80) 1278.7 1267.8 1243.6 1258.6 0.9 TL 14 300 320
369 70 120 3 (40, 40, 40) 1298.2 1285.7 1298.2 TL 2 300 167
370 70 120 3 (20, 40, 60) 1265.9 1248.5 1265.9 TL 2 300 221
371 70 120 4 (30, 30, 30, 30) * 1329.2 1329.2 1315.0 1329.2 0.0 323.9 2 300 183
372 70 120 4 (10, 15, 30, 65) 1316.5 1302.6 1316.5 TL 2 300 184
373 70 120 2 (60, 60) 1351.0 1343.6 1324.0 1342.6 0.5 TL 2 300 319
374 70 120 2 (40, 80) 1357.2 1342.2 1324.6 1341.4 1.1 TL 3 300 320
375 70 120 3 (40, 40, 40) 1383.4 1371.6 1383.4 TL 1 300 159
376 70 120 3 (20, 40, 60) 1363.3 1352.9 1363.3 TL 1 300 93
377 70 120 4 (30, 30, 30, 30) 1388.7 1380.2 1388.7 TL 1 300 36
378 70 120 4 (10, 15, 30, 65) 1380.7 1380.7 1380.7 TL 1 300 0
379 70 120 2 (60, 60) * 1109.5 1109.5 1095.8 1106.8 0.0 808.5 5 300 294
380 70 120 2 (40, 80) * 1109.5 1109.4 1088.5 1104.3 0.0 2390.7 24 300 320
381 70 120 3 (40, 40, 40) 1162.2 1159.3 1139.3 1153.8 0.2 TL 23 300 320
382 70 120 3 (20, 40, 60) * 1131.9 1131.9 1113.8 1129.2 0.0 3135.4 5 300 278
383 70 120 4 (30, 30, 30, 30) 1214.3 1209.6 1186.3 1202.6 0.4 TL 10 300 320
384 70 120 4 (10, 15, 30, 65) 1193.8 1182.9 1160.6 1181.2 0.9 TL 2 300 250
385 70 120 2 (60, 60) * 1073.7 1073.6 1047.4 1071.6 0.0 1817.8 6 300 320
386 70 120 2 (40, 80) * 1072.9 1072.9 1047.4 1069.8 0.0 2790.6 14 300 320
387 70 120 3 (40, 40, 40) * 1080.7 1080.7 1058.8 1076.2 0.0 2732.7 4 300 248
388 70 120 3 (20, 40, 60) 1074.7 1049.4 1074.7 TL 1 300 241
389 70 120 4 (30, 30, 30, 30) 1094.3 1075.3 1094.3 TL 2 300 215
390 70 120 4 (10, 15, 30, 65) 1088.6 1067.4 1088.6 TL 1 300 148
391 70 240 2 (120, 120) * 970.1 970.1 958.6 970.1 0.0 427.4 1 300 72
392 70 240 2 (80, 160) * 970.1 970.1 958.6 970.1 0.0 862.0 1 300 112
393 70 240 3 (80, 80, 80) 965.0 958.6 965.0 TL 1 300 10
394 70 240 3 (40, 80, 120) 964.5 958.6 964.5 TL 1 300 10
395 70 240 4 (60, 60, 60, 60) TL 0 0 0
396 70 240 4 (20, 30, 60, 130) TL 0 0 0
397 70 240 2 (120, 120) * 1009.6 1009.6 985.7 1007.4 0.0 3595.9 3 300 305
398 70 240 2 (80, 160) 1009.6 1009.3 985.7 1007.6 0.0 TL 3 300 300
399 70 240 3 (80, 80, 80) 1005.0 990.2 1005.0 TL 1 300 94
400 70 240 3 (40, 80, 120) 1002.3 986.5 1002.3 TL 1 300 77
401 70 240 4 (60, 60, 60, 60) 1003.0 1001.0 1003.0 TL 1 300 10
402 70 240 4 (20, 30, 60, 130) 818.6 818.6 818.6 TL 1 0 0
403 70 240 2 (120, 120) 1131.7 1109.4 1131.7 TL 1 300 204
404 70 240 2 (80, 160) 1131.4 1109.4 1131.4 TL 1 300 186
405 70 240 3 (80, 80, 80) 1118.1 1109.5 1118.1 TL 1 300 10
406 70 240 3 (40, 80, 120) 1112.4 1109.4 1112.4 TL 1 300 0
407 70 240 4 (60, 60, 60, 60) TL 0 0 0
408 70 240 4 (20, 30, 60, 130) TL 0 0 0
409 70 240 2 (120, 120) 1001.5 987.1 1001.5 TL 1 300 171
410 70 240 2 (80, 160) 1001.0 987.1 1001.0 TL 1 300 171
411 70 240 3 (80, 80, 80) 990.8 987.6 990.8 TL 1 300 10
412 70 240 3 (40, 80, 120) 720.2 720.2 720.2 TL 1 0 0
413 70 240 4 (60, 60, 60, 60) TL 0 0 0
414 70 240 4 (20, 30, 60, 130) TL 0 0 0
415 70 240 2 (120, 120) 958.5 937.2 958.5 TL 1 300 259
416 70 240 2 (80, 160) 958.4 937.2 958.4 TL 1 300 257
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417 70 240 3 (80, 80, 80) 945.8 937.2 945.8 TL 1 300 20
418 70 240 3 (40, 80, 120) 945.8 937.2 945.8 TL 1 300 10
419 70 240 4 (60, 60, 60, 60) 954.9 954.9 954.9 TL 1 0 0
420 70 240 4 (20, 30, 60, 130) TL 0 0 0
421 80 120 2 (60, 60) 1414.5 1410.1 1385.1 1405.7 0.3 TL 24 300 320
422 80 120 2 (40, 80) 1413.4 1409.0 1384.0 1405.1 0.3 TL 23 300 320
423 80 120 3 (40, 40, 40) 1428.2 1423.8 1404.2 1420.8 0.3 TL 13 300 320
424 80 120 3 (20, 40, 60) 1414.7 1412.5 1389.9 1411.4 0.2 TL 5 300 279
425 80 120 4 (30, 30, 30, 30) 1499.7 1489.6 1479.4 1486.6 0.7 TL 6 300 320
426 80 120 4 (10, 15, 30, 65) 1462.2 1455.5 1440.5 1455.2 0.5 TL 3 300 223
427 80 120 2 (60, 60) 1325.3 1322.7 1299.2 1317.8 0.2 TL 22 300 320
428 80 120 2 (40, 80) 1330.6 1322.5 1300.9 1319.6 0.6 TL 9 300 320
429 80 120 3 (40, 40, 40) * 1373.4 1373.4 1361.9 1373.4 0.0 295.8 1 300 106
430 80 120 3 (20, 40, 60) 1334.5 1320.7 1334.5 TL 2 300 263
431 80 120 4 (30, 30, 30, 30) * 1410.7 1410.7 1389.2 1410.3 0.0 1936.2 3 300 295
432 80 120 4 (10, 15, 30, 65) * 1386.1 1386.1 1366.4 1386.1 0.0 1775.3 1 300 108
433 80 120 2 (60, 60) 1570.0 1525.1 1505.4 1523.7 2.9 TL 4 300 262
434 80 120 2 (40, 80) 1557.7 1525.4 1505.0 1524.2 2.1 TL 5 300 248
435 80 120 3 (40, 40, 40) 1585.7 1566.8 1547.8 1564.6 1.2 TL 6 300 320
436 80 120 3 (20, 40, 60) 1570.5 1532.1 1515.5 1531.1 2.5 TL 3 300 218
437 80 120 4 (30, 30, 30, 30) 1576.5 1569.6 1558.6 1566.1 0.4 TL 5 300 261
438 80 120 4 (10, 15, 30, 65) 1585.2 1572.0 1585.2 TL 1 300 193
439 80 120 2 (60, 60) 1575.6 1572.1 1554.2 1567.6 0.2 TL 19 300 320
440 80 120 2 (40, 80) * 1561.0 1561.0 1545.2 1558.0 0.0 1771.6 9 300 304
441 80 120 3 (40, 40, 40) 1617.1 1611.2 1590.6 1607.8 0.4 TL 2 300 297
442 80 120 3 (20, 40, 60) 1573.3 1557.0 1573.3 TL 1 300 229
443 80 120 4 (30, 30, 30, 30) 1647.4 1627.7 1647.4 TL 1 300 202
444 80 120 4 (10, 15, 30, 65) 1621.2 1608.9 1621.2 TL 1 300 81
445 80 120 2 (60, 60) 1447.6 1436.6 1414.1 1429.8 0.8 TL 12 300 320
446 80 120 2 (40, 80) 1447.6 1434.7 1412.3 1428.1 0.9 TL 9 300 320
447 80 120 3 (40, 40, 40) 1448.9 1430.3 1448.9 TL 1 300 211
448 80 120 3 (20, 40, 60) 1430.3 1415.2 1430.3 TL 1 300 182
449 80 120 4 (30, 30, 30, 30) 1495.5 1479.0 1495.5 TL 1 300 136
450 80 120 4 (10, 15, 30, 65) 1464.7 1454.0 1464.7 TL 1 300 56
451 80 240 2 (120, 120) 1340.6 1326.6 1340.6 TL 1 300 209
452 80 240 2 (80, 160) 1340.7 1326.6 1340.7 TL 1 300 207
453 80 240 3 (80, 80, 80) 1333.3 1329.7 1333.3 TL 1 300 10
454 80 240 3 (40, 80, 120) 1328.5 1328.5 1328.5 TL 1 300 0
455 80 240 4 (60, 60, 60, 60) TL 0 0 0
456 80 240 4 (20, 30, 60, 130) TL 0 0 0
457 80 240 2 (120, 120) 1159.5 1138.8 1159.5 TL 1 300 191
458 80 240 2 (80, 160) 1156.4 1138.7 1156.4 TL 1 300 240
459 80 240 3 (80, 80, 80) 1145.1 1140.4 1145.1 TL 1 300 20
460 80 240 3 (40, 80, 120) 1139.0 1139.0 1139.0 TL 1 300 0
461 80 240 4 (60, 60, 60, 60) 1152.5 1152.5 1152.5 TL 1 0 0
462 80 240 4 (20, 30, 60, 130) TL 0 0 0
463 80 240 2 (120, 120) 1328.6 1313.9 1328.6 TL 1 300 286
464 80 240 2 (80, 160) 1327.8 1313.9 1327.8 TL 1 300 262
465 80 240 3 (80, 80, 80) 1323.2 1314.6 1323.2 TL 1 300 30
466 80 240 3 (40, 80, 120) 1320.7 1314.1 1320.7 TL 1 300 10
467 80 240 4 (60, 60, 60, 60) 1322.9 1322.9 1322.9 TL 1 0 0
468 80 240 4 (20, 30, 60, 130) TL 0 0 0
469 80 240 2 (120, 120) 1168.0 1156.7 1168.0 TL 1 300 169
470 80 240 2 (80, 160) 1168.2 1156.7 1168.2 TL 1 300 165
471 80 240 3 (80, 80, 80) 1162.1 1157.2 1162.1 TL 1 300 30
472 80 240 3 (40, 80, 120) 1158.8 1157.5 1158.8 TL 1 300 20
473 80 240 4 (60, 60, 60, 60) 755.7 755.7 755.7 TL 1 0 0
474 80 240 4 (20, 30, 60, 130) TL 0 0 0
475 80 240 2 (120, 120) 1323.6 1315.5 1298.3 1313.0 0.6 TL 4 300 320
476 80 240 2 (80, 160) 1326.9 1315.1 1298.3 1313.1 0.9 TL 3 300 286
477 80 240 3 (80, 80, 80) 1316.0 1305.1 1316.0 TL 1 300 70
478 80 240 3 (40, 80, 120) 1307.9 1299.0 1307.9 TL 1 300 50
479 80 240 4 (60, 60, 60, 60) 1326.7 1322.7 1326.7 TL 1 300 10
480 80 240 4 (20, 30, 60, 130) 1277.2 1277.2 1277.2 TL 1 0 0
481 90 120 2 (60, 60) 1531.3 1519.7 1498.3 1514.2 0.8 TL 15 300 320
482 90 120 2 (40, 80) 1531.2 1517.2 1496.2 1512.9 0.9 TL 12 300 320
483 90 120 3 (40, 40, 40) 1576.5 1547.6 1531.2 1545.8 1.8 TL 2 300 320
484 90 120 3 (20, 40, 60) 1533.4 1519.6 1533.4 TL 1 300 231
485 90 120 4 (30, 30, 30, 30) 1566.9 1553.3 1566.9 TL 1 300 247
486 90 120 4 (10, 15, 30, 65) 1556.5 1548.2 1556.5 TL 1 300 80
487 90 120 2 (60, 60) * 1559.6 1559.6 1528.5 1557.2 0.0 2032.9 13 300 320
488 90 120 2 (40, 80) 1562.8 1559.8 1528.4 1556.6 0.2 TL 19 300 320
489 90 120 3 (40, 40, 40) 1591.9 1561.3 1591.9 TL 1 300 312
490 90 120 3 (20, 40, 60) 1566.3 1538.9 1566.3 TL 1 300 254
491 90 120 4 (30, 30, 30, 30) 1626.7 1604.0 1626.7 TL 1 300 233
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492 90 120 4 (10, 15, 30, 65) 1610.0 1592.5 1610.0 TL 1 300 95
493 90 120 2 (60, 60) 1466.2 1435.4 1410.7 1433.2 2.1 TL 7 300 320
494 90 120 2 (40, 80) 1458.0 1434.6 1410.7 1432.0 1.6 TL 8 300 320
495 90 120 3 (40, 40, 40) 1444.1 1426.2 1444.1 TL 1 300 291
496 90 120 3 (20, 40, 60) 1429.3 1413.0 1429.3 TL 1 300 243
497 90 120 4 (30, 30, 30, 30) 1497.3 1486.9 1497.3 TL 1 300 220
498 90 120 4 (10, 15, 30, 65) 1478.1 1468.0 1478.1 TL 1 300 54
499 90 120 2 (60, 60) 1473.9 1473.0 1446.1 1469.5 0.1 TL 25 300 320
500 90 120 2 (40, 80) 1470.6 1467.5 1445.7 1465.4 0.2 TL 24 300 320
501 90 120 3 (40, 40, 40) 1485.9 1482.5 1461.4 1480.8 0.2 TL 5 300 320
502 90 120 3 (20, 40, 60) 1475.8 1451.7 1475.8 TL 1 300 296
503 90 120 4 (30, 30, 30, 30) 1542.8 1536.8 1515.0 1535.8 0.4 TL 2 300 308
504 90 120 4 (10, 15, 30, 65) 1493.2 1476.2 1493.2 TL 1 300 162
505 90 120 2 (60, 60) 1889.7 1881.5 1851.0 1878.4 0.4 TL 17 300 320
506 90 120 2 (40, 80) 1899.0 1873.6 1833.8 1871.1 1.3 TL 8 300 320
507 90 120 3 (40, 40, 40) 1927.6 1910.4 1927.6 TL 1 300 236
508 90 120 3 (20, 40, 60) 1886.4 1875.2 1886.4 TL 1 300 136
509 90 120 4 (30, 30, 30, 30) 1953.9 1945.9 1953.9 TL 1 300 104
510 90 120 4 (10, 15, 30, 65) 1925.6 1915.9 1925.6 TL 1 300 43
511 90 240 2 (120, 120) 1244.2 1225.4 1244.2 TL 1 300 320
512 90 240 2 (80, 160) 1240.6 1225.4 1240.6 TL 1 300 295
513 90 240 3 (80, 80, 80) 1232.4 1227.6 1232.4 TL 1 300 21
514 90 240 3 (40, 80, 120) 1230.7 1227.3 1230.7 TL 1 300 10
515 90 240 4 (60, 60, 60, 60) 939.5 939.5 939.5 TL 1 0 0
516 90 240 4 (20, 30, 60, 130) TL 0 0 0
517 90 240 2 (120, 120) 1178.4 1150.8 1178.4 TL 1 300 320
518 90 240 2 (80, 160) 1178.2 1149.6 1178.2 TL 1 300 305
519 90 240 3 (80, 80, 80) 1163.9 1152.8 1163.9 TL 1 300 40
520 90 240 3 (40, 80, 120) 1161.8 1151.2 1161.8 TL 1 300 20
521 90 240 4 (60, 60, 60, 60) 1161.8 1161.8 1161.8 TL 1 0 0
522 90 240 4 (20, 30, 60, 130) TL 0 0 0
523 90 240 2 (120, 120) 1222.5 1188.9 1164.7 1187.9 2.8 TL 4 300 320
524 90 240 2 (80, 160) 1228.7 1188.6 1164.7 1187.8 3.3 TL 3 300 320
525 90 240 3 (80, 80, 80) 1185.8 1167.0 1185.8 TL 1 300 74
526 90 240 3 (40, 80, 120) 1181.9 1166.8 1181.9 TL 1 300 41
527 90 240 4 (60, 60, 60, 60) 1187.3 1184.3 1187.3 TL 1 300 0
528 90 240 4 (20, 30, 60, 130) TL 0 0 0
529 90 240 2 (120, 120) 1017.2 1001.0 1017.2 TL 1 300 269
530 90 240 2 (80, 160) 1016.9 1000.5 1016.9 TL 1 300 224
531 90 240 3 (80, 80, 80) 1005.4 1001.0 1005.4 TL 1 300 20
532 90 240 3 (40, 80, 120) 1006.5 1001.0 1006.5 TL 1 300 10
533 90 240 4 (60, 60, 60, 60) TL 0 0 0
534 90 240 4 (20, 30, 60, 130) TL 0 0 0
535 90 240 2 (120, 120) 1193.3 1186.2 1193.3 TL 1 300 61
536 90 240 2 (80, 160) 1192.2 1186.3 1192.2 TL 1 300 70
537 90 240 3 (80, 80, 80) 1188.9 1188.9 1188.9 TL 1 0 0
538 90 240 3 (40, 80, 120) TL 0 0 0
539 90 240 4 (60, 60, 60, 60) TL 0 0 0
540 90 240 4 (20, 30, 60, 130) TL 0 0 0
541 100 120 2 (60, 60) 1653.5 1649.6 1626.6 1646.4 0.2 TL 13 300 320
542 100 120 2 (40, 80) 1661.5 1646.7 1626.5 1644.0 0.9 TL 8 300 320
543 100 120 3 (40, 40, 40) 1690.8 1674.4 1690.8 TL 1 300 248
544 100 120 3 (20, 40, 60) 1655.0 1639.0 1655.0 TL 1 300 168
545 100 120 4 (30, 30, 30, 30) 1716.2 1698.4 1716.2 TL 1 300 164
546 100 120 4 (10, 15, 30, 65) 1716.4 1704.9 1716.4 TL 1 300 86
547 100 120 2 (60, 60) 2040.0 2001.2 1978.5 1999.6 1.9 TL 4 300 320
548 100 120 2 (40, 80) 2036.8 1997.5 1975.6 1996.9 2.0 TL 5 300 320
549 100 120 3 (40, 40, 40) 2011.3 1999.2 2011.3 TL 1 300 120
550 100 120 3 (20, 40, 60) 2000.2 1988.4 2000.2 TL 1 300 71
551 100 120 4 (30, 30, 30, 30) 2048.6 2043.4 2048.6 TL 1 300 42
552 100 120 4 (10, 15, 30, 65) 2019.1 2018.9 2019.1 TL 1 300 0
553 100 120 2 (60, 60) 1921.5 1899.8 1875.7 1899.5 1.1 TL 3 300 309
554 100 120 2 (40, 80) 1904.7 1899.0 1874.2 1896.3 0.3 TL 10 300 320
555 100 120 3 (40, 40, 40) 1970.6 1949.0 1970.6 TL 1 300 169
556 100 120 3 (20, 40, 60) 1917.3 1903.0 1917.3 TL 1 300 97
557 100 120 4 (30, 30, 30, 30) 1969.1 1958.2 1969.1 TL 1 300 73
558 100 120 4 (10, 15, 30, 65) 1961.3 1956.4 1961.3 TL 1 300 20
559 100 120 2 (60, 60) 1624.7 1609.5 1589.2 1608.0 0.9 TL 9 300 320
560 100 120 2 (40, 80) 1617.6 1597.8 1573.3 1595.3 1.2 TL 12 300 320
561 100 120 3 (40, 40, 40) 1636.8 1618.7 1636.8 TL 3 300 320
562 100 120 3 (20, 40, 60) 1632.0 1613.2 1632.0 TL 1 300 282
563 100 120 4 (30, 30, 30, 30) 1660.0 1647.2 1660.0 TL 1 300 177
564 100 120 4 (10, 15, 30, 65) 1651.4 1638.4 1651.4 TL 1 300 115
565 100 120 2 (60, 60) 1951.8 1927.0 1902.4 1921.3 1.3 TL 6 300 320
566 100 120 2 (40, 80) 1937.0 1924.0 1897.6 1917.9 0.7 TL 11 300 320
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567 100 120 3 (40, 40, 40) * 2025.4 2025.4 2005.1 2024.3 0.0 2206.2 3 300 294
568 100 120 3 (20, 40, 60) 1935.3 1918.8 1935.3 TL 1 300 261
569 100 120 4 (30, 30, 30, 30) 2133.6 2129.6 2113.1 2120.4 0.2 TL 6 300 320
570 100 120 4 (10, 15, 30, 65) 2119.5 2105.1 2119.5 TL 1 300 252
571 100 240 2 (120, 120) 1236.7 1217.7 1236.7 TL 1 300 151
572 100 240 2 (80, 160) 1236.0 1217.5 1236.0 TL 1 300 140
573 100 240 3 (80, 80, 80) 1218.5 1218.5 1218.5 TL 1 300 10
574 100 240 3 (40, 80, 120) 1219.3 1219.3 1219.3 TL 1 0 0
575 100 240 4 (60, 60, 60, 60) TL 0 0 0
576 100 240 4 (20, 30, 60, 130) TL 0 0 0
577 100 240 2 (120, 120) 1375.8 1361.0 1375.8 TL 1 300 102
578 100 240 2 (80, 160) 1376.4 1361.0 1376.4 TL 1 300 91
579 100 240 3 (80, 80, 80) 1362.2 1362.2 1362.2 TL 1 0 0
580 100 240 3 (40, 80, 120) 1366.8 1366.8 1366.8 TL 1 0 0
581 100 240 4 (60, 60, 60, 60) TL 0 0 0
582 100 240 4 (20, 30, 60, 130) TL 0 0 0
583 100 240 2 (120, 120) 1341.9 1291.6 1256.5 1291.6 3.8 TL 3 300 320
584 100 240 2 (80, 160) 1283.2 1256.5 1283.2 TL 1 300 316
585 100 240 3 (80, 80, 80) 1268.3 1256.9 1268.3 TL 1 300 51
586 100 240 3 (40, 80, 120) 1265.5 1256.9 1265.5 TL 1 300 30
587 100 240 4 (60, 60, 60, 60) 1278.5 1278.5 1278.5 TL 1 300 0
588 100 240 4 (20, 30, 60, 130) TL 0 0 0
589 100 240 2 (120, 120) 1269.6 1253.6 1269.6 TL 1 300 90
590 100 240 2 (80, 160) 1268.6 1253.6 1268.6 TL 1 300 80
591 100 240 3 (80, 80, 80) 1257.9 1257.9 1257.9 TL 1 0 0
592 100 240 3 (40, 80, 120) TL 0 0 0
593 100 240 4 (60, 60, 60, 60) TL 0 0 0
594 100 240 4 (20, 30, 60, 130) TL 0 0 0
595 100 240 2 (120, 120) 1379.7 1360.4 1379.7 TL 1 300 178
596 100 240 2 (80, 160) 1380.7 1360.4 1380.7 TL 1 300 186
597 100 240 3 (80, 80, 80) 1362.3 1362.3 1362.3 TL 1 300 0
598 100 240 3 (40, 80, 120) 1217.4 1217.4 1217.4 TL 1 0 0
599 100 240 4 (60, 60, 60, 60) 1373.9 1373.9 1373.9 TL 1 0 0
600 100 240 4 (20, 30, 60, 130) TL 0 0 0
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