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Abstract

Ratliff and Rosenthal (1983) state that their dynamic programming algorithm for optimal picker routing has
linear complexity in the number of aisles. Indeed, solving the dynamic program is linear in the number of
aisles. However, computing the cost coefficients of the dynamic program certainly requires the consideration
of all picking positions, whose number is independent of the number of aisles. A straightforward approach
sorts the set of picking positions lexicographically by aisle and distance from the bottom cross-aisle, which
gives a superlinear (log-linear) algorithm. We show that a better overall linear time complexity can be
achieved for a given unsorted sequence of picking positions. The proposed algorithm is linear in the sum of
the number of aisles and the number of picking positions.
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1. Introduction

A fundamental problem in warehouse management is the determination of a distance-minimal picker
route. For a rectilinear one-block warehouse with m aisles, the algorithm by Ratliff and Rosenthal (1983)
determines such an optimal picker route by solving a dynamic program that has O(m) stages, a constant
number of states per stage, and likewise a constant number of transitions between consecutive stages. As a
result, their dynamic-programming algorithm runs in linear time O(m) (as stated by Ratliff and Rosenthal).
Other sources like (Roodbergen and de Koster, 2001b; de Koster et al., 2007) say that the ‘running time
[is] linear in the number of aisles and the number of pick locations’. Certainly, the complexity depends on
whether one considers the construction of the state space of the dynamic program including the computation
of cost coefficients. We did however not find a reference providing an algorithm that constructs and solves
the picker routing problem in linear time O(m+n), where n is the total number of picking requests (common
are also the synonyms picking locations or picking positions).

A straightforward approach is to sort the set of picking positions lexicographically by aisle and distance
from the bottom cross-aisle, which results in a superlinear O(n log(n)) construction algorithm for the state
space. In this note, we show that a better overall linear time complexity can be achieved for a given unsorted
sequence of picking positions. The complicating part is the computation of the maximum gap between
picking positions in each aisle that has at least two items to be picked. This maximum gap problem (MGP)
can be formulated as follows: Given an unsorted sequence of at least two different numbers, determine the
maximum difference between two consecutive elements in the sorted sequence. For the MGP, we identified
(Gonzalez, 1975) as an (unavailable) scientific reference and (Preparata and Shamos, 1985, p. 261) citing
Gonzalez’ work, providing a pseudo code, and discussing the algorithm as an example for the usefulness of the
pigeonhole principle (a.k.a. Dedekind’s box argument (Dedekind used the German word Schubfachprinzip)
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Figure 1: Warehouse with m = 8 aisles and n = 20 picking positions and optimal picker tour. Note that
retrieving items from the left-hand or right-hand side in the same aisle does not make a difference for the
length of the picking tour; the side is chosen arbitrarily here.

or the chest of drawers argument). We confirm that MGP can be solved in linear time in the length of the
sequence, but exemplify that the pigeonhole principle is not the true reason for the algorithms’ correctness.
Finally, we use the MGP once per aisle resulting in an algorithm for the picker routing problem running in
linear time in the sum of the number of aisles and the number of picking requests.

The remainder of this note is structured as follows: Section 2 defines the picker routing problem and
sketches the dynamic programming algorithm of Ratliff and Rosenthal. The presentation of the linear time
algorithm for the MGP follows in Section 3, before conclusions and an outlook are provided in Section 4.

2. The Picker Routing Problem and the Dynamic Programming Algorithm of Ratliff and
Rosenthal

The basic picker routing problem of Ratliff and Rosenthal can be formalized as follows (see Figure 1
for visualization): We are given a rectilinear one-block warehouse with m aisles (running vertically). Let
I = {1, 2, . . . ,m} denote the set of aisles, numbered from left to right. The total dimension of the warehouse
is X times Y , where the horizontal dimension X is given by the sum X1, X2, . . . , Xm−1 of distances Xi > 0
between aisle i and aisle i+1. The aisles are connected by top and bottom cross-aisles running horizontally at
the vertical positions Y and 0, respectively. A picking request is a pair p = (i, y) for which i ∈ I determines
the aisle and y ∈ [0, Y ] the picking position in this aisle (e.g., the first picking request in Figure 1 is p = (1, 8)).
We assume that all n picking requests are given as a not necessarily sorted sequence P = ((ij , yj))j∈J , where
J = {1, 2, . . . , n} denotes the index set of P. Moreover, it is assumed that the picker starts and ends her/his
route at the so called depot located at an intersection between one aisle and cross-aisle (located at position
(3, 0) in Figure 1). Therefore, we further assume that P includes the depot as an artificial picking request
of the form (i, 0) or (i, Y ) depending on whether the depot is located on the top or bottom. An instance of
the picker routing problem is given by ((Xi)

m−1
i=1 , Y,P = (ik, yk)nk=1).
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The distance between two picking positions (ik, yk) and (i`, y`) is

dk` =


|yk − y`|, if ik = i`∑i`−1

i=ik
Xi + min{2Y − yk − y`, yk + y`}, if ik < i`∑ik−1

i=i`
Xi + min{2Y − yk − y`, yk + y`}, if ik > i`

,

where the first case is for identical aisles and the second (third) case for different aisles when (ik, yk) is
stored left (right) to (i`, y`). The minimum term in the latter cases reflects that the shortest path between
the two picking positions is either by using the top or bottom cross-aisles. For these distances (dk`)k,`∈J ,
an optimal TSP tour is the solution to the picker routing problem. Ratliff and Rosenthal have shown that
this type of TSP can be better solved by exploiting the warehouse geometric structure.

The dynamic-programming algorithm of Ratliff and Rosenthal alternates between the decision how the
aisle i ∈ I is traversed and the decision how the cross-aisle between aisles i and i+ 1 is traversed. Since the
latter decisions are simpler to explain, we start with them. For cross-aisles connecting aisles i and i+ 1, the
only potentially optimal decisions are

{11, 02, 20, 22, 00}

where the first (second) number indicates how often the top (bottom) cross-aisle is traversed. Note that
00 is only possible if all aisles left to i or right to i + 1 are empty. In Figure 1, the cross-aisle traversal 11
is used to connect aisles 1–4, and 7 with 8, traversal 02 to connect aisles 4–6, and traversal 22 to connect
aisle 6 with 7.

Inside an aisle, the only potentially optimal traversals are

{1pass, 2pass, top, bottom, void, gap}

where 1pass (2pass) means that the picker completely traverses the aisle once (twice), top (bottom) that the
picker enters the aisle from the top (bottom), moves to the lowest (highest) picking position in this aisle,
U-turns, and exits the aisle from the same side as entered. The decision void can be made if the aisle does
not contain picking requests and means that the picker does not enter the aisle at all. The last decision gap
is the one that is in our focus now. If an aisle contains two or more picking positions, it is possible to enter
and leave the aisle from both ends. As all picking positions must be served either way, this leaves a gap
between two consecutive picking positions of the aisle. We can see in Figure 1 that the distance-minimal
picker tour uses gap in aisles i = 2 and i = 3.

All traversal decisions have an associated cost, and computing this cost is trivial for all decision ex-
cept gap. To simplify the presentation, we define the sequence of relevant positions in aisle i ∈ I as

Ai = {yk : (ik, yk) ∈ P and ik = i}.

Then, for this aisle i, the cost of the aisle traversal gap is

c(i, gap) = 2Y − 2 max {y` − yk : yk < y` ∈ Ai and there is no yq ∈ Ai with yk < yq < y`} .

The maximum term is the MGP for the sequence Ai as stated in the introduction.

Example 1. For the sequence Ai = (y1, . . . , y7) = (18, 2, 11, 5, 14, 6, 20) with si = 7 elements, sorting
produces the sequence

(2, 5, 6, 11, 14, 18, 20)

from which we can immediately read the largest gap 5 = 11− 6 as the largest difference between consecutive
elements. However, sorting is not linear in the number of elements. We seek for a linear-time procedure
that allows the determination of the largest gap.

For all other decisions, the cost is simple to compute. Let the minimum and maximum elements in each
aisle i ∈ I be

y
i

= minAi and ȳi = maxAi,
3
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(a) Traversals within an aisle i. Note that void
is only valid in empty aisles.
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Figure 2: Possible transitions between states.

defining y
i

= ∞ and ȳi = −∞ for empty sets. Then, c(i, 11) = c(i, 20) = c(i, 02) = 2Xi, c(i, 22) = 4Xi,
c(i, 00) = 0, c(i, 1pass) = Y , c(i, 2pass) = 2Y , c(i, top) = 2(Y − y

i
), c(i, bottom) = 2ȳi, and c(i, void) = 0.

Ratliff and Rosenthal finally define seven states

{uu1c, e01c, 0e1c, ee1c, ee2c, 000c, 001c}

that characterize the so-called partial tour subgraphs (PTSs). Two PTSs are defined for each aisle i ∈ I,
both representing the respective picker tour from aisle 1 to aisle i, the first one before the traversal of
aisle i has been decided and the second after this decision. For each PTS, the first two symbols are either
u (=uneven, odd), e (=even), or 0 (=zero) describing the degree of the rightmost cross-aisle vertices at the
top and bottom of the PTS (vertices ai and bi in Figure 1). The last two symbols indicate an empty PTS
(0c), or a PTS that has one (1c) or two (2c) connected components, respectively. Figure 2 visualizes the
possible transitions between the seven states. Figures 2a and 2b are the graphical representation of Tables I
and II in (Ratliff and Rosenthal, 1983, p. 515f).

3. Solution of the Maximum Gap Problem

For this section, we omit the aisle index i and assume that A = (ak)sk=1 is an arbitrary sequence of
s numbers (not necessarily integer numbers, real numbers are allowed). Clearly, the minimum y = minA
and the maximum ȳ = maxA can be determined in time O(s). In case y = ȳ, the solution of the MGP is
defined as 0 (uninteresting for our purposes). We therefore assume y < ȳ, i.e., s ≥ 2 in the following.

The procedure we describe now is based on the work of Gonzalez (1975) as described in (Preparata and
Shamos, 1985). At some places we slightly deviate from their description for the sake of clarity. We start
defining the real number ∆ = (ȳ−y)/(s−1). ∆ is a tight lower bound for the maximum gap, and this value
is assumed if all values yj ∈ A are equidistantly distributed in [y, ȳ]. We define s − 1 (half open) intervals
Ip = (y + (p− 1)∆, y + p∆] for p ∈ {1, 2, . . . , s− 1}. These intervals I1, . . . , Is−1 partition the interval (y, ȳ].
Therefore, each number yj ∈ A not equal to y falls into exactly one interval I1, . . . , Is−1. Accordingly, we
define s− 1 possibly empty buckets

Bp = Ip ∩ A
4



for p ∈ {1, 2, . . . , s− 1}. The minimum and maximum element of each bucket is denoted as

ap = minBp and bp = maxBp,

assuming again that empty sets give ap = ∞ and bp = −∞. Also the computation of all values ap and bp
can be done within a single loop over A, i.e., in linear time.

Since any two elements in the same bucket have an absolute difference strictly smaller than ∆, the
maximum gap must occur between elements from different buckets (one might interpret this fact as an
example of the pigeonhole principle). Therefore, the maximum gap is of the form aq−bp for p < q under the
condition that all intermediate buckets are empty, i.e., Br = ∅, equivalent to ar =∞ and br = −∞, for all
r with p < r < q. These differences can also be computed in linear time, proving that the MGP is solvable
in linear time. A borderline case is related to the first bucket B1 which, by definition, does not include the
minimum element y. In order to properly account for the case that the maximum gap is formed by y and
the next largest element, we define b0 = y and allow 0 ≤ p < q ≤ s− 1.

Example 2. (continued from Example 1) For the sequence A = (y1, . . . , y7) = (18, 2, 11, 5, 14, 6, 20) with
s = 7 elements, we have the minimum y = 2 and maximum ȳ = 20. Hence ∆ = (20− 2)/(7− 1) = 3. The
s− 1 = 6 intervals are

I1 = (2, 5], I2 = (5, 8], I3 = (8, 11], I4 = (11, 14], I5 = (14, 17], I6 = (17, 20]

with the following buckets, minima, and maxima:

B1 = {5}, B2 = {6}, B3 = {11}, B4 = {14}, B5 = ∅, B6 = {18, 20}
a1 = 5, a2 = 6, a3 = 11, a4 = 14, a5 =∞, a6 = 18

b0 = 2, b1 = 5, b2 = 6, b3 = 11, b4 = 14, b5 = −∞, b6 = 20

The values to compare are a1−b0 = 5−2 = 3, a2−b1 = 6−5 = 1, a3−b2 = 11−6 = 5, a4−b3 = 14−11 = 3,
and a6 − b4 = 18 − 14 (note that bucket B5 is empty). The maximum of these values is gap = 5 resulting
from the consecutive elements 6 and 11 of the sorted sequence, which is the solution to the MGP.

Algorithm 1 provides a pseudo code of the procedure that we described verbally. This type of algorithm
has also been described in some software programming forums (e.g. Chauhan, 2021) and websites (e.g.,
(Unknown), 2015). Note that Example 2 shows that the maximum gap can occur between two consecutive
buckets even if some other bucket remains empty. We would like to stress that Algorithm 1 does not rely
on the fact that sorting all s − 2 numbers different from y and ȳ into s − 1 buckets must leave one bucket
empty (again, the pigeonhole principle). Some online discussions and also (Preparata and Shamos, 1985)
use such an argument.

4. Conclusion

We have shown in this note that the crucial step for proving the linearity of the dynamic-programming
algorithm of Ratliff and Rosenthal is the computation of the cost coefficient of the traversal possibility gap,
where a picker enters an aisle from the top as well as from the bottom leaving a middle segment of the
aisle untraversed. Algorithm 2 summarizes our cost computation for all cost coefficients of the dynamic
program. In particular, c(i, gap) is computed from an unsorted sequence Ai of positions belonging to aisle i.
In Step 10 of Algorithm 2, the procedure MaximumGap computes the solution to the associated maximum
gap problem (MGP) in a time proportional to |Ai|. Since n = |A1|+ |A2|+ · · ·+ |Am−1|, it is shown that
the cost coefficients of all transitions can be computed in O(m + n) time.

The algorithm of Ratliff and Rosenthal consists not only of the construction and resolution of the dynamic
program, but of a third component, which is the construction of the final picker tour (like a step-by-step
sequence of commands where the picker has to go). Ratliff and Rosenthal have already shown that also this
last tour construction component is linear in the number of aisles (Ratliff and Rosenthal, 1983, Sect. 4).
Hence, the entire algorithm can be implemented to run in O(m + n) time.
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Algorithm 1: MaximumGap
Input : Sequence A = (yj)sj=1

1 y ←∞
2 ȳ ← −∞
3 for j = 1, 2, . . . , s do
4 y ← min{y, yj}, ȳ ← max{ȳ, yj}

5 If y ≥ ȳ return 0
6 ∆← (ȳ − y)/(s− 1)

7 for p = 1, 2, . . . , s− 1 do
8 ap ←∞, bp ← −∞
9 for j = 1, 2, . . . , s : yj 6= y do

10 p← d(yj − y)/∆e
11 ap ← min{ap, yj}, bp ← max{bp, yj}
12 gap← 0
13 bprev ← y

14 for p = 1, 2, . . . , s− 1 do
15 if ap <∞ then
16 gap← max{gap, ap − bprev}
17 bprev ← bp

18 return gap

Algorithm 2: ComputeCostCoefficients
Input : Instance ((Xi)

m−1
i=1 , Y,P = (ij , yj)nj=1)

1 for i = 1, 2, . . . ,m do
2 Create the empty sequence Ai ← ()
3 y

i
←∞, ȳi ← −∞

4 for j = 1, 2, . . . , n do
5 Insert yj into Aij

6 y
ij
← min{ȳij , yj}, ȳij ← max{ȳij , yj}

7 for i = 1, 2, . . . ,m do
8 gap← −∞
9 if |Ai| ≥ 2 then

10 gap← MaximumGap(Ai)

11 c(i, 1pass)← Y
12 c(i, 2pass)← 2Y
13 c(i, top)← 2(Y − y

i
)

14 c(i, bottom)← 2ȳi
15 c(i, void)← 0
16 c(i, gap)← 2Y − 2gap
17 if i < m then
18 c(i, 11)← c(i, 20)← c(i, 02)← 2Xi

19 c(i, 22)← 4Xi

20 c(i, 00)← 0

Certainly, the difference between a linear and log-linear algorithm for picker routing is marginal if one
wants to solve a single picker routing problem or a few problems of that kind. However, algorithms for
the joint order batching and picker routing problem (Henn et al., 2012) may solve a huge number of them,
because the number of possible batches typically grows exponentially with the number of orders. In these
integrated problems, a linear and log-linear algorithm can make a difference.

Finally, we would like to note that alternative warehouse layouts are often found in practice. Two-block
and multi-block rectilinear warehouses (Roodbergen and de Koster, 2001b,a) can lead to shorter picker routes
at the cost of a smaller storage space. Alternative layouts like fishbone, flying-V etc. try to further optimize
the tradeoff between picker route length and storage space (Gue and Meller, 2009). Even if layouts are more
sophisticated, extended dynamic-programming algorithms remain applicable and the fundamental traversal
decisions per aisle remain as in the single-block case (see, e.g., Masae et al., 2019): computing the maximum
gap is the most complicated cost computation. Our linearity result is therefore directly generalizable to
picker routing problems in other warehouse layouts.
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